
Semantic Query Optimization for Processing XML Streams
with Minimized Memory Footprint

by

Ming Li

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

August 2007

APPROVED:

Professor Murali Mani, Advisor

Professor Elke A. Rundensteiner, Reader

Professor Michael Gennert, Head of Department

Abstract

XML streams have become increasingly prevalent in modern applications, ranging

from network traffic monitoring to real-time information publishing. XQuery evalu-

ation over XML streams requires the temporary buffering of XML elements, which

not only utilizes system buffer and CPU resources but also causes un-necessary

output latency. This thesis presents a semantic query optimization solution to

minimize memory footprint during XQuery evaluation by exploiting XML schema

knowledge. In many practical applications, XML streams are generated conform-

ing to pre-defined schema constraints typically expressed via a DTD or an XML

schema specification. Utilizing such constraints enables us to on-the-fly predict the

non-occurrence of a given pattern within a bound context. This helps us to release

buffered data earlier or possibly avoid ever storing it, thus achieving a minimized

memory footprint. In this work, we focus on one particular class of constraints,

namely, the Pattern Non-Occurrence (PNO) constraint. We develop an automaton-

based technique to detect PNO constraints at runtime. For a given query, optimiza-

tion opportunities which can be triggered by runtime PNO detection are explored

for memory footprint minimization. Optimization decisions are encoded using our

proposed Condition-Action Graph (CAG). The optimization-embedded execution

strategy is then proposed to execute an optimized plan by detecting PNO con-

straints at run-time and then triggering the corresponding encoded actions when

certain predefined conditions are satisfied. To ensure the efficiency of such PNO-

triggered optimization, we propose a method for shrinking the CAGs by utilizing

constraint knowledge during the query plan compiling phase. We implement our

optimization technique within the Raindrop XQuery engine. Our system implemen-

tation processes XQuery utilizing the Raindrop algebra. It is efficiently augmented

by our optimization module, which uses Glushkov automaton technique to capture

and monitor PNO constraints in parallel with the query-driven pattern retrieval. Fi-

nally, we conduct experimental studies using both real and synthetic data streams

to illustrate that our techniques bring significant performance improvement in both

memory and CPU usage as well as improved output latency over state-of-the-art

solutions, with little overhead.

2

Acknowledgements

I would like to express my gratitude to my advisor Professor Murali Mani and my

thesis reader Professor Elke A.Rundensteiner for everything they have done to make

this thesis possible. I deeply appreciate their great help and great patience in guiding

my study at Worcester Polytechnic Institute.

I am grateful for the help offered by other faculty and staff members from the

Computer Science Department at WPI. Thanks a lot!

I thank all the lovely DSRGers, who are fun, smart, energetic, creative, easy-

going, hardworking, knowledgable and all sharing the same belief that a week has

seven days instead of only five.

My thanks also go to all the teachers who ever taught me during my kindergarten,

primary school, middle school, high school, college and graduate school. OMG, I

cannot believe I have attended that many that many that many different schools.

My parents receive my deepest gratitude. They have always believed in me and

encouraged me. They don’t know too much about computer science (the state-

ment staying TRUE even when the word “science” is removed), but they have been

teaching me how important “knowledge” is since I was 1-year-old.

My “A Po”(grandma at father’s side) passed away two years ago. I miss her and

sincerely dedicate this thesis to her.

i

Contents

1 Introduction 1

2 Preliminary 12

2.1 Supported Language . 12

2.2 Query Tree . 12

2.3 Pattern Queries . 14

2.4 Document Type Definition . 16

3 Pattern Non-Occurrence Constraints 17

3.1 Definition . 17

3.1.1 Element Types . 17

3.1.2 Element Prefix and Element Evolution 19

3.1.3 Pattern Non-Occurrence (PNO) Constraint 20

3.2 PNO Constraint Checking . 20

3.2.1 Semantic Knowledge on Element Types 21

3.2.2 PNO Rule . 22

3.3 PNO Constraint Evolution . 23

3.3.1 Definition . 23

3.3.2 Monitoring PNO Constraint Evolutions 24

ii

4 Memory-Oriented Optimization Utilizing PNO 28

4.1 Optimization of Single-Level Pattern Queries 28

4.1.1 General Guideline . 28

4.1.2 Optimization for Sequence SPQ 34

4.1.3 Optimization for Nested-Sequence SPQ 38

4.1.4 Optimization for Filter SPQ 40

4.2 Optimization on Multi-Level Pattern Queries 41

4.3 Condition Action Graph (CAG) . 42

5 Towards an Efficient SQO 49

5.1 Considering Constraint Knowledge at CAG Construction 49

5.1.1 Cutting the CAG by Cutting Unreachable States 49

5.1.2 Shrinking the CAG by Applying Global Ordering Knowledge . 50

5.2 Applying Ending Marks . 51

6 Implementation 52

6.1 Raindrop XQuery Engine . 52

6.1.1 Raindrop Algebra . 52

6.1.2 Automaton-Based Pattern Retrieval Implementation 54

6.2 Optimization Modules . 54

6.2.1 Extended System Architecture 54

6.2.2 Constraint Engine Based on Glushkov Automaton 55

7 Experimental Evaluation 57

7.1 Experimental Setting . 57

7.2 Experimental Results . 58

8 Related Work 62

iii

9 Conclusion and Future Work 64

9.1 Conclusion . 64

9.2 Future Work . 65

iv

List of Figures

1.1 Application of Streaming XML . 1

1.2 XQuery Examples . 2

1.3 Input XML Token Stream . 3

1.4 Data Buffering and Data Output in Evaluating Q1 to Q3 by Just-in-

Time Strategy . 4

1.5 DTD Constraints . 5

1.6 Memory Footprint in Evaluating Q1 with Semantic Query Optimization 8

1.7 Memory Footprint in Evaluating Q2 with Semantic Query Optimization 8

1.8 Memory Footprint in Evaluating Q3 with Semantic Query Optimization 9

2.1 Grammar of Supported XQuery Subset 13

2.2 Query Tree of the Given XQuery Examples Q1 to Q4 14

3.1 Element Types . 18

3.2 Element Prefix and PNO Constraint 19

3.3 Regular Expression Represented by Deterministic Finite Automaton . 21

3.4 Evolvement of PNO Constraints . 24

3.5 Monitoring of PNO Evolution . 27

4.1 Strategy with the Basic Evaluation (Just-in-Time Strategy) 29

4.2 Strategy with Optimized Evaluation 33

v

4.3 Comparison on Memory Footprint between the Optimized and the

Basic Evaluation for Q1 . 35

4.4 Comparison on Memory Footprint between the Optimized and the

Basic Evaluation for Q2 . 35

4.5 Comparison on Memory Footprint between the Optimized and the

Basic Evaluation for Q3 . 36

4.6 Sequence SPQ Qseq . 36

4.7 Nested-Sequence SPQ Qnested−seq . 39

4.8 Filter SPQ Qfilter . 40

4.9 The Inner Subtree of Q4’s Query Tree 42

4.10 Comparison between Two Strategy in MPQ Evaluation 42

4.11 Query Evaluation of Q4 . 43

4.12 CAG of Sequence SPQ . 43

4.13 CAG of Nested-Sequence SPQ . 43

4.14 CAG of Filter SPQ . 46

4.15 Combined CAG Construction . 46

4.16 CAG construction for Q4 . 47

5.1 Cutting the CAG by Cutting Unreachable States 50

5.2 Shrinking the CAG by Applying Global Order 51

5.3 Shrinking the CAG by Applying Global Order (Cont.) 51

6.1 Raindrop Query Algebra . 53

6.2 Raindrop Query Automaton . 54

6.3 Stack Storing Automaton State Transitions 55

6.4 Raindrop-Plus System Architecture 55

7.1 Experimental Setting . 57

vi

7.2 Buffer Avoidance by Applying . 58

7.3 Gain on CPU Performance by Buffer Avoidance 59

7.4 Overhead of the Proposed SQO Technique (I) 60

7.5 Overhead of the Proposed SQO Technique (II) 60

vii

Chapter 1

Introduction

XML and XQuery [W3C04] have been widely accepted as the standard data repre-

sentation and query language for web applications (Figure 1.1) such as web services

and on-line data delivery. Encoded XML streams are passed through network for

data exchange between applications and/or users in a real-time infrastructure, which

has the property of short response time and limited CPU/memory resources.

(a) N ew s Publishing(a) N ew s Publishing(a) N ew s Publishing(a) N ew s Publishing (b) O n(b) O n(b) O n(b) O n----line A uctionline A uctionline A uctionline A uction

Figure 1.1: Application of Streaming XML

State-of-the-art XML stream engines for XQuery evaluation employ automa-

ton for pattern retrieval and result construction. The in-time evaluation strat-

egy is widely applied in the current XML stream engines for XQuery evaluation,

where query evaluation is performed while the XML stream input is processed

and the query engine produces query result on the fly. Due to the nature of

1

XQuery, as a data-transformation query language entirely different from node-

selecting XPath [OMFB02], a certain amount of memory footprint (loading some

elements to memory from the stream input and keeping them for a certain amount of

time) is usually required. When the input consists of large amount of XML tokens,

the main memory buffer needed could be significant. Besides that, the CPU con-

sumption on data buffering can also be significant. To provide real-time responses,

as often required by applications to take prompt actions, serious challenges in CPU

and memory utilization are faced by the XQuery evaluation over XML streams.

In many practical applications, XML stream is generated following a pre-defined

schema such as DTD and XML schema. For example, in the scenario of network

traffic monitoring, anomalies of network traffic flow may need to be detected from

the statistical data sent in XML streams. In such case, the XML stream which

is generated by a work-flow engine or simply a customized program, will follow a

pre-defined schema.

X Q uery E xam plesX Q uery E xam plesX Q uery E xam plesX Q uery E xam ples

FOR $a IN / root / news_report
RETURN
<Sources> $a/source </Sources>
<Date> $a/date </Date>
<Entries> $a/entry </Entries>
<Comments> $a/comment </Comments>
<Weathers> $a/weather </Weathers>

FOR $a IN / root / news_report
RETURN
<Comments>

FOR $c IN $a/comment
RETURN
<Comment> $c <Comment>
<Keywords> $a/keywords </Keywords>
<Topics> $a/topic </Topics>

</Comments>

FOR $b IN / root / news_report / entry
WHERE
$b / location = “Boston“
RETURN

<Reporter> $n/reporter </Reporter>

Q1

Q2

Q3

FOR $a IN / root / news_report
RETURN
<Sources>

$a/source
</Sources>
<Date>

$a/date
</Date>
<Entries>

FOR $b IN $a/entry
WHERE $b / location = “Boston”
RETURN
<Reporters> $b/reporter </Reporters>
<Paragraph> $b/paragraph </Paragraph>

</Entries>
<Comments>

FOR $c IN $a/comment
RETURN
<Coment> $c </Coment>
<Keywords> $a/keyword </Keywords>
<Topics> $a/topic </Topics>

</Comments>
<Weathers>

$a/weather
</Weathers>

Q4

Figure 1.2: XQuery Examples

Utilizing such schema constraints on the input data stream enables us to on-

2

the-fly predict the non-occurrence of a given pattern within a bound context. This

helps us to avoid data buffering and to release buffered data at an earlier moment,

thus achieving a minimized memory footprint. Example 1 below illustrates such

optimization opportunities.

D: date N: news_report S: source
C: comment E: entry P: paragraph
K: keyword T: topic L: location
R: reporter A: advertisement W: Weather

(c) E lem ent R epresentation(c) E lem ent R epresentation(c) E lem ent R epresentation(c) E lem ent R epresentation

(e) R ange of Token Sequence for E ach E lem ent(e) R ange of Token Sequence for E ach E lem ent(e) R ange of Token Sequence for E ach E lem ent(e) R ange of Token Sequence for E ach E lem ent

<root> ……

(a) P artial Input Token Sequence(a) P artial Input Token Sequence(a) P artial Input Token Sequence(a) P artial Input Token Sequence

<news_
report> <source> ABC </source> <entry> <reporter>

Jackie
Lee

</reporter>
June
Bush

t1 t2 t3 t4 t9t5 t10 t11 t12 t13

7: Phoenix
16: Boston
26: Boston
27: Atlanta

(d) E lem ent R epresentation(d) E lem ent R epresentation(d) E lem ent R epresentation(d) E lem ent R epresentation

<date> 12-1-07 </date>

t6 t7 t8

1: t1 -- 9: t181 -- 249 17: t341 -- 350 25: t652 -- 660
2: t2 -- 1000 10: t251 -- 300 18: t351 -- 499 26: t661 -- 670
3: t3 -- 5 11: t301 -- 305 19: t501 -- 610 27: t671 -- 680
4: t6 -- 8 12: t306 -- 320 20: t611 -- 615 28: t681 -- 800
5: t9 -- 250 13: t321 -- 326 21: t616 -- 620 29: t801 -- 899
6: t10 -- 13 14: t327 -- 500 22: t621 -- 640 30: t901 -- 940
7: t14 -- 19 15: t328 -- 330 23: t641 -- 650 31: t941 -- 999
8: t20 -- 180 16: t331 -- 340 24: t651 -- 900

……… ……… ………

(b) P artial Token Stream R epresented in a T ree(b) P artial Token Stream R epresented in a T ree(b) P artial Token Stream R epresented in a T ree(b) P artial Token Stream R epresented in a T ree

KC AD A T

R L R R L L P

root

W

1

2

13 2120 2322 3024

1615 17 2625 27 29
P

E
31

ACD E

R

54 11

76 98

10

LR P

S
3

S
12

N

14

18

E

P

19
C

28

Input of N2

Input of E5 Input of E14 Input of E24

Figure 1.3: Input XML Token Stream

Example 1 (Motivating Example). Suppose that we are evaluating the three

example XQueries Q1 to Q3 shown in Figure 1.2 over the example input XML token

stream in Figure 1.3.

For each news element, (1) Q1 lists the collection of its child source, date, entry,

comment and weather elements; (2) Q2 pairing each of its child comment elements

with the collection of its child keyword and topic elements; (3) Q3 returns the collec-

tion of the child reporter elements for each of its child entry elements which contain

at least one location as “Boston”. There are three types of token input are being

3

considered: the start tag, PCDATA and the end tag. Figure 1.3(a) shows the first

13 tokens from the input token sequence. Suppose 1000 tokens have been received.

Figure 1.3(b) shows the equivalent XML tree representation. Each element node in

the XML tree starts with one start tag token and ends with one end tag token. For

simplification, the element nodes in the XML tree are shown by capitalized letters,

with the corresponding description in Figure 1.3(c). Figure 1.3(e) shows such token

sequence range for each element node. The two numbers associated with the node

are the token IDs for the start and end tag token respectively. (An ID number is

assigned to each input token by their input order for convenience of description)

KAD A TE W
1413 19 2120 2322 30

C
31

ACD E
54 11103

S
12

C ES
24

Atlanta

on E24

Boston

RLL P
25 2726 2928
R

Boston

on E5

PL R
87 96

R

on E14

R P
1817

R
15

L
16

Boston

KAD A TE W
1413 19 2120 2322 30

C
31

ACD E
54 11103

S
12

C ES
24

Q1’s Pattern Retrieval
on N2

(a) D ata B uffering(a) D ata B uffering(a) D ata B uffering(a) D ata B uffering

WE CEDS DS E
412 133 24145 31 30

CC
10 19

CTKC C
10 22 311923

TK
22 23

K T
2322

Q1’s Output
on N1

R
17

R
15on E14

R
28

R
25on E24

Q2’s Output
on N1

Q3’s Output
on E5

(b) D ata O utput(b) D ata O utput(b) D ata O utput(b) D ata O utput

Q2’s Pattern Retrieval
on N2

Q3’s Pattern Retrieval

Figure 1.4: Data Buffering and Data Output in Evaluating Q1 to Q3 by Just-in-
Time Strategy

Q1 extracts all news report elements (such as the element N2). Under a binding,

say N2, the child patterns that may appear in the return result are called the expected

4

patterns. In Q1, source, date, entry, comment and weather are expected patterns

under the binding on news report. Child elements of expected patterns (the child

elements marked by underscore in Figure 1.4) will be located during pattern retrieval

on the input stream. The output for these three queries over the given example data

is also shown in Figure 1.4. Similarly, Q2 also collects all news report bindings (N2

in the example), Q3 instead binds on each entry element (E5, E14 and E24 in our

example).

We make the following three observations:

1. for Q1 there is an order requirement on the output element types within each

binding, i.e., the complete list of child sources needs to output before all the

dates within a news report;

2. for Q2, the query requires nesting between each comment element and the

complete keywords plus topics list within a news report, thus all the keyword

and topic elements must be seen before outputting any comment);

3. for Q3, a predicate on pattern location needs to be satisfied before any output

on an entry binding can be done.

DTD for news_report
(source, date, entry, comment, advertisement)+, advertisement+,
keyword+, topic+, entry+, weather+, comment+

DTD for entry
reporter+, location+, reporter+, paragraph+

Figure 1.5: DTD Constraints

For Q1, among the expected patterns, only the source elements can avoid data

buffering. The date elements must be kept until the completeness of source elements

and entry elements are kept till the completeness of both source and date elements

5

and so on. Thus elements of these patterns need to be kept till the element being

bound has been completely received from the stream (end tag token of N2 (token no.

1000) is reached). If the DTD constraint in Figure 1.5 is given, when we reaching

child element A21’s start tag (token no.616), we can guarantee that in the future

no more source and date elements will be encountered under the current binding

(N2). Thus, we can output and release the buffered date and source elements (D4,

D13, E5 and E14). Furthermore, token sequence of the entry element(s) coming in

future (E24) can be directly output without being buffered. Thus, tokens no. 651

to no. 900 can be output without any buffer footprint. Similarly, while reaching

element W30, from the schema we know that no more entry element will be seen

under this binding. Thus buffered comment elements (C10 and C19) can be output

and released. Future comment elements(s) (C31) can be directly output. Finally,

after the binding has been completely seen (receiving token no.1000), the weather

element(s) (W30) in the memory can be output and released.

In Q2, elements of all the expected patterns require data buffering due to the

nesting on output sequence. If the DTD constraint in Figure 1.5 is given for

news report, when the child element E24 is met (by reaching token no. 651), we

know that all the keyword and topic elements have been completely met under the

current binding. Thus, the buffered comment elements (C10 and C19) can be output

pairing with the buffered keyword and topic elements (K22 and T23). After that the

two comment elements can be released from the buffer. Any comment element(s)

arriving thereafter (C31) in our example can be directly output without buffering,

by appending the buffered K22 and T23 also to the output. After the binding has

been completely seen (by reaching token no. 1000), K22 and T23 can be released

from the buffer.

In Q3, whether an entry element satisfies the predicate filtering is only known

6

when the entry has been completely met. Thus within each entry all the location

and reporter elements require buffering until reaching the end tag of the entry.

Suppose the DTD constraint in Figure 1.5 is given for the entry elements. For

entry E5, when the child reporter element R8 is met (by reaching token no.20), we

can guarantee that within the current entry no more location can be seen. Because

none of the buffered location elements satisfies the filtering requirement (being equal

to “Boston”), we are sure this entry can not pass the predicate verification. At

this stage, all the buffered location and reporter elements can be simply discarded

and released from the memory. Similarly for E14, the arrival of R17 (at reaching

token no. 341) guarantees no more location elements will come under this binding.

Predicate verification gets satisfied for E14. Thus the buffered reporter element

(R15) can be output and released. The token sequence of the just-started reporter

element R17 can be directly output without any buffering. The same optimization

process is as well applied to the entry element E24 for evaluating Q3.

Figures 1.6, 1.7 and 1.8 show the data buffering of the above approach with

semantic query optimization for evaluating Q1 to Q3. The “</N>” / “</E>”

indicate receiving the end tag of a binding entry element. The corresponding incre-

mental data output is also shown on the bottom of each figure.

Obviously, the memory footprint is reduced by applying such semantic query

optimization. If we can capture such runtime constraints that would help us to

minimize the memory footprint with reasonable overhead cost. We note that as

a side effect, CPU performance on query evaluation can also be improved (the

execution time will be shortened and thus the output latency of the query will be

minimized). Our goal in this work is try to use constraints to minimize the memory

footprint in order to improve memory and CPU performance. We observe from

the example that although the event constraints are known statically at the query

7

412 133 24145 31 3010 19
WE CEDS DS E

KAD A TE W
1413 19 2120 2322 30

C
31

ACD E
54 11103

S
12

C ES

CC

Input of N2

24

Q1’s Output on N2

D D

E

D

E

C

D

E

C

D

E

C

C

D

E

C

D

D

E

C

D

E

D

E

C

D

E

C

C

C

C

C

C

C

C

W W

C

D

E

C

D

E

</N>

Figure 1.6: Memory Footprint in Evaluating Q1 with Semantic Query Optimization

KAD A TE W
1413 19 2120 2322 30

C
31

ACD E
54 11103

S
12

C ES </N>

Input of N2

24

TKC C
10 22 1923

K T
2322

Q2’s Output on N2

C C C C C C

C

C

C

C

C

C

C

K

C

C

K

T

K

T

K

T

K

T

C
31

TK
22 23

Figure 1.7: Memory Footprint in Evaluating Q2 with Semantic Query Optimization

compilation time, the real optimization opportunities only emerge at runtime, i.e.,

A21 in Q1. Simply trying to detect the appearance of a certain pattern type [SRM05]

cannot be a generic approach, as it doesn’t fully use the semantic knowledge of

the XML schema. Instead a runtime strategy is needed to detect such constraint

knowledge about pattern completeness at runtime.

8

PL R
1716 18

R

Input of E14

</E>

RR
15 17

15

RR

L

PRL L
2726 2928

R

Input of E24

</E>

RR
25 28

25

RR

L

R

L

L

PL R
87 96

R

Input of E5

R

</E>

R

L

Q3’s Output on E14 Q3’s Output on E24Q3’s has NO Output on E5

AtlantaBostonPhoenix Boston

Figure 1.8: Memory Footprint in Evaluating Q3 with Semantic Query Optimization

Reducing the memory cost is very important for stream applications, as it can

enable us to support more application functionalities as well as to yield better mem-

ory / CPU performance. Only a limited number of XML stream processing en-

gines [BCCN06] [GC04] [SSK07] [DF03] [SRM05] and [KSSS04] have looked

at the SQO opportunity focusing on the memory footprint minimization. Among

them, SQO in [BCCN06] [GC04] is not stream specific while SQO in [SSK07]

[DF03] [SRM05] and [KSSS04] are stream-specific but have drawbacks such as

limited support for queries and limited optimization cases. The state-of-the-art will

be further discussed in Chapter 8.

In this work, we study semantic query optimization (SQO) with particular focus

on minimizing the memory footprint in XML stream evaluation. Our contributions

in this work include:

1. We reason the pattern non-occurrence constraint (PNO Constraint) and de-

velop an automaton-based technique to effectively utilizing schema knowledge

for runtime PNO constraint detection.

9

2. For a given query, we explore the optimization opportunities that could arise

in a query expressed by our XQuery model for memory footprint minimiza-

tion. Optimization decisions are encoded using our proposed Condition-Action

Graph (CAG).

3. We propose an efficient plan execution strategy for realizing embedded runtime

PNO constraint detection and runtime plan optimization.

4. To ensure the efficiency of such PNO-triggered optimization, we propose a

mechanism to shrink the CAG by utilizing order constraints during the query

plan compilation.

5. We implement our SQO technique within the Raindrop XQuery engine. Our

system implementation processes XQuery expressions utilizing the Raindrop

stream algebra. Our system is efficiently augmented by our optimization mod-

ule, which uses Glushkov automatons to extract PNO constraints in parallel

with pattern retrieval.

6. We conduct an experimental study using both real and synthetic data streams

to illustrate that the proposed techniques bring significant performance im-

provements in both memory and CPU usage over state-of-the-art solutions.

Outline. We introduce our supported language and the basic just-in-time XQuery

evaluation strategy in Chapter 2. In Chapter 3 we introduce the pattern non-

occurrence constraint. We also propose mechanism to runtime detect such con-

straints based on given XML constraint knowledge. In Chapter 4 we propose the

optimization model which utilizes pattern non-occurrence constraints to minimize

the memory footprint. Chapter 5 introduces the mechanism to ensure the SQO

efficiency by cutting the optimization overhead. In Chapter 6 we discuss the imple-

10

mentation design of our optimization model. Experimental results are analyzed in

Chapter 7. Chapter 8 introduces the related work and the conclusion and future

work are presented in Chapter 9.

11

Chapter 2

Preliminary

In this chapter, we first introduce the supported language We then propose a query

tree representation to capture the pattern retrieval in an XQuery. Thereafter we

will define an XQuery subset called pattern query which is the focus of our semantic

query optimization. Finally we introduce the document type definition (DTD).

2.1 Supported Language

In our XQuery engine we support a subset of XQuery as shown in Figure 2.1.

Basically, we allow “for... where... return” expressions (referred to as FWR) where

(1) the “return” clause can further contain FWR expressions and (2) the “where”

clause contains conjunctive predicates each of which is a comparison between a

variable and a constant.

2.2 Query Tree

We propose query trees to represent the structural patterns in an XQuery. Figure 2.2

shows the query trees for Q1 to Q4 in Figure 1.2. XPaths in “FOR” clauses de-

scribe required patterns, e.g., in Figure 2.2(a), the “FOR” clause must not evaluate

12

CoreExpr ::= ForClause WhereClause? ReturnClause
| PathExpr

PathExpr ::= PathExpr “/”|“//” TagName|“∗”
| varName
| streamName

ForClause ::= “for” “$”varName “in” PathExpr
(“,” “$”varName “in” PathExpr)∗

WhereClause :: = “where” BooleanExpr
BooleanExpr ::= PathExpr CompareExpr Constant

| BooleanExpr and BooleanExpr
| PathExpr

CompareExpr ::= “ >′′|“! =′′|“ <′′|“ <=′′|“ >′′|“ >=′′

ReturnClause = “return” CoreExpr
|<tagName>CoreExpr (“,” CoreExpr)∗ </tagName>

Figure 2.1: Grammar of Supported XQuery Subset

to empty for the FWR expression to return any result. In contrast, XPaths in “RE-

TURN”/“WHERE” clauses describe optional patterns, e.g., in Figure 2.2(a) even

if $a/source evaluates to empty, a result element will still be constructed. XPaths

in “WHERE” clauses describe predicate patterns for checking “existence” of an ex-

pected value, e.g., if $b/location contains any location element equal to “Boston”,

the bound $b on entry will be constructed. In the query tree, a solid (resp. dashed)

line indicates the child is required (resp. optional) in its parent. A thick (resp. thin)

line indicates the child is an predicate (resp. return) pattern. Query correlation is

represented by a dash box. The returned patterns (nodes being connected by thin

lines) are listed from left to right, following the required return order. In Figure

2.2(d) a thin dashed line connects nodes 1, 2, 5, 6 and 7 with their respective parent

(node 0) indicating these are optional pattern types appearing in the “return” clause

of each /root/news report binding. A thin solid line connecting the nodes 3 and 4

with node 0 indicates $b/entry and $c/comment appear in a “for” clause inside the

outer binding on /root/news report to be a inner FWR binding. A thick dashed line

connecting nodes 3 and 8 shows the predicate on $b/location. Each binding on $c

13

joins each entry with the keyword and topic elements from the outer binding. Such

correlation is represented using a dashed box.

(b) Q uery Tree of Q 2(b) Q uery Tree of Q 2(b) Q uery Tree of Q 2(b) Q uery Tree of Q 2

comment topickeyword

/ root / news_report

(c) Q uery Tree of Q 3(c) Q uery Tree of Q 3(c) Q uery Tree of Q 3(c) Q uery Tree of Q 3

reporterlocation

/ root / news_report / entry

“Boston”

(a) Q uery Tree of Q 1(a) Q uery Tree of Q 1(a) Q uery Tree of Q 1(a) Q uery Tree of Q 1

date entry comment weathersource

/ root / news_report

(d) Q uery Tree of Q 4(d) Q uery Tree of Q 4(d) Q uery Tree of Q 4(d) Q uery Tree of Q 4

date

reporter paragraph

entry

location

comment keyword topic weather

“Boston”

source

/ root / news_report

1 2 4 5 6 7

8

0

3

9 10

Figure 2.2: Query Tree of the Given XQuery Examples Q1 to Q4

2.3 Pattern Queries

Pattern Queries. A pattern query follows the FWR template

FOR $a IN xpath

WHERE where_1 AND where_2 ... where_m (m >= 1)

(called ‘‘WHERE list’’)

RETURN return_1 return_2 ... return_n (n >= 1)

(called ‘‘RETURN list’’)

and satisfies restriction (a) to (d) as listed below:

(a). xpath represents a path from the root;

(b). where i above is an expression of the form $a/childi = “valuei”, where childi

is a direct child pattern of the FOR binding ($a);

(c). returni is either

14

1. $a/childi, where childi is a direct child pattern of the FOR binding $a,

2. a pattern query with FOR binding IN $a/childi,

3. a one-level query correlation, as “FOR $a′ IN $a/childi,

RETURN $a′ $a/inner return 1 $a/inner return 2 ... $a/inner return k”,

where the childi are direct child patterns of the FOR binding $a, the inner return 1

to inner return k are direct child patterns of the FOR binding $a or a pattern

query with FOR binding IN $a/childi.

(d). no direct child pattern childi is both in the WHERE list and the RETURN

list.

Single-Level Pattern Query. We further define the single-level pattern query

(SPQ), which is a pattern query with a loosened restriction in (c) as the returni is

either one of the following:

1. $a/childi, where childi is a direct child pattern of the FOR binding $a, (type

1)

2. a one-level query correlation, as “FOR $a′ IN $a/child
i
,

RETURN $a′ $a/inner return 1 $a/inner return 2 ... $a/inner return k”,

where the inner return 1 to inner return k and the childi are direct child

patterns of the FOR binding on $a. (type 2)

Below we define three simple types of SPQs which will be used in our further

discussion:

Sequence SPQ if the query does not contain any WHERE clause and the RETURN

list contains only returni(s) of type 1;

Nested-Sequence SPQ if the query does not contain any WHERE clause and the

RETURN list contains one and only one returni of type 2;

15

Filter SPQ if there consists a WHERE clause in the query.

We can see that XQuery Q1 to Q3 in Figure 1.2 are all single-level pattern

queries. Q1 is a sequence SPQ, Q2 is a nested-sequence SPQ and Q3 is a filter SPQ.

The query tree of a SPQ has a depth of 2. We can see from Figure 2.2 that the

query tree of Q1 to Q3 all have a depth of 2 (the root node and the child nodes).

This is why it is referred to as “single-level”.

Multi-Level Pattern Query (MPQ). A pattern queries which has a query tree

with depth of at least 3 is called a Multi-level Pattern Query (MPQ). We can see

that Q4 is an example of a MPQ. Its query tree is also given in Figure 2.2.

2.4 Document Type Definition

A Document Type Definition (DTD) [BPSM+06] can be represented as a tuple D =

(Eset; P; root), where Eset is a finite set of element types (equivalent to tag names);

root is a distinguished type in Eset, called the root type; P defines the element types:

for each element E in Eset, P(E) is a regular expression and E → P(E) is called the

production of type E. To simplify the discussion, we consider P(E) of the form:

α ::= PCS | ε | B1, B2, ..., Bn | B1 or B2 or ... or Bn | B∗ | B+

where PCS denotes the string (PCDATA) type, ε is the empty word, B is a type in

Eset (referred to as a subelement type of E), and “or” and “,” denote disjunction

and concatenation respectively. “∗” represents Kleene star and “+” represents one

or more than one occurrence.

Let Σ be a set of symbols (equivalent to tag names). DTD is an extended context

free grammar over Σ. Each production in a DTD is unambiguously identified by

a tag name in Σ. As our data model, we consider the fragment of XML without

attributes; it is trivial to incorporate attributes into the framework. The production

of news report and entry is shown in Figure 1.5.

16

Chapter 3

Pattern Non-Occurrence

Constraints

By the previous examples, we can see that under a bound element, the non-occurrence

of certain child patterns predicted at runtime can trigger the optimization leading

to memory footprint minimization. In this chapter, we study such runtime con-

straint knowledge, named pattern non-occurrence (PNO) constraints. We first give

its definition and introduce the corresponding checking algorithm. We then show

that the presence about applicable PNO constraints can be monitored at runtime.

Thereafter, we introduce the monitoring algorithm for detecting PNO constraint

evolution.

3.1 Definition

3.1.1 Element Types

As described in Sectionr̃efdtdintro, a type E is represented an atomic symbol, P(E)

represents as the regular expression for type E (E → P(E)). SymbSet(P(E)) is the

set of atomic symbols that occur in P(E). L(P(E)) denotes the language defined by

17

P(E), which means the set of words over SymbSet(P(E)) that can be recognized by

P(E). A word ele ∈ L(P(E)) consists of a sequence of symbols, where elei denotes

the i-th symbol of ele.

Under the XML context, the type is equivalent to an element type, simply

denoted by a given tag name. P(E) is defined by the DTD for type E. Symb-

Set(P(E)) is the set of all possible child element types of type E. An element can

be represented using a type sequence: it is a sequence of its child elements, where

each element is represented by its type. Thus elei is the i-th child element in el-

ement ele. As example, let’s look at Figure 3.1. The DTD of type news report

P(news report) and a news report element N2 are given. Based on the given DTD,

we can see that the possible types of a news report’s child element are source, date,

entry, element, comment, advertisement, keyword, topic aned weather (Symb-

Set(P(news report))). N211 represents ele’s 11th child element, which is of type

advertisement.

(a) DTD for Type news_report
(source, date, entry, comment, advertisement)+, advertisement+, keyword+, topic+, entry+, weather+, comment+

P(E) where E = news_report SymbSet(P(E)) = { S, D, E, C, A, K, T, W }

(b) Example Element N2 of Type news_report
source date entry comment advert. source date entry comment advert. advert. keyword topic entry weather comment

N211 = advert.

news_report element :

[]KC AD A TE

root

W

1
2

1413 19 2120 2322 3024
E C

31
ACD E

54 1110
S

3
S

12

N ……… ……… ………

Figure 3.1: Element Types

18

3.1.2 Element Prefix and Element Evolution

Element Prefix. Through the stream input, an element is received on the fly

child element by child element. A partially received element of type E is called an

element prefix of E. The set of possible prefixes of type E is denoted as Prefix(E).

Given finite sequence p, p is in set Prefix(E) if there exists an element ele in L(P(E))

where p is ele’s prefix.

Element Evolution. Given p ∈ Prefix(E), an element evolution of p is the process

of p evolving into another element prefix p’ of the same type by concatenating

additional child elements. Growth(p, E) is the set of all possible evolved portion:

given p ∈ Prefix(E), for any pq ∈ Prefix(E), q is in Growth(p, E). An element

evolution of p in Prefix(E) is denoted as ⇒(p, q, E) while the corresponding growth

portion is q, which is in Growth(p, E).

Element prefix p of type news report is shown in Figure 3.2. The type sequence

q = “advertisement advertisement keyword topic” is in p’s Growth set. p evolves to

the new element prefix p′ by ⇒(p, q, E).

source date entry comment advert. source date entry comment

(a) Element Prefix p of Type news_report

q = “ advert advert keyword topic”

p evolves to p’ after receiving q

q
source date entry comment advert. source date entry comment advert. advert. keyword topic

(b) Element Prefix p’ of Type news_report

PNO (source, p’, news_report) holds ? ��
source in RemainSymbSet (p’, news_report) ?

Figure 3.2: Element Prefix and PNO Constraint

19

3.1.3 Pattern Non-Occurrence (PNO) Constraint

Pattern Non-Occurrence Constraint. For p in Prefix(E), the PNO constraint

on symbol symb holds iff symb is not contained in any p’ ∈ Growth(p, E), denoted

as PNO(symb, p, E) = TRUE (PNO(symb, p, E) holds). Given p in Prefix(E),

PNO(symb, p, E) guarantees that child elements of type symb will not be seen in

the remaining portion of the current element.

Remaining Symbol Set. For p in Prefix(E), its remaining symbol set, denoted as

RemainSymbSet(p), is the set of symbols which can appear in Growth(p, E). Obvi-

ously, PNO(symb, p, E) = FALSE (resp.TRUE) implies symb is within (resp. not

within) RemainSymbSet(p, E)). For example, given element prefix p in Figure 3.3, to

determine whether PNO(source, p, news report) holds is equivalent to determining

whether source is not in the set RemainSymbset(p, news report).

Obviously, PNO(symb, ε, E) doesn’t hold for any symbol in SymbSet(P(E)). (ε

represents an empty element where no child element has been received yet.) Given

an non-empty element prefix of type E, we want to determine the PNO constraint

for a type in SymbSet(P(E)). However, the constraint cannot be simply determined

by looking at the element prefix. For example, for prefix p or p′ in Figure 3.2,

PNO(source, p(or p′), news report) cannot be simply determined by looking at p

and its schema. A more sophisticated algorithm is needed, which will be discussed

in the next section.

3.2 PNO Constraint Checking

In this section, we first model the semantic knowledge expressed by a DTD for a

given element type using a deterministic finite automaton model. We then propose

the PNO checking algorithm.

20

3.2.1 Semantic Knowledge on Element Types

We can represent a regular expression P(E) using an equivalent Deterministic Finite

Automaton (DFA). For P(E), we let AutoSet(P(E)) denote the DFAs accepting

L(P(E)) and without redundant states . Given a regular expression, its equivalent

DFA can be constructed in polynomial time [Koz03]. [Koz03] gives an algorithm to

construct an equivalent DFA from a given regular expression. For a element prefix

p of type E and a given DFA A in AutoSet(P(E)), RS(p, A) denotes the automaton

state in A reached by running p on A.

As example, DFA A in Figure 3.3 is an equivalent automaton of the regular

expression given for type news report. Element prefix p reaches the state S4 on A

(RS(p, A) = S4) and p′ reaches state S8 on A. Suppose p′ keeps evolving by taking

in one new child element entry. The state transits from S8 to S9.

(c) Element Prefix p of Type news_report

PNO on source
doesn’t holdRS (p, A) = S4

source date entry comment advert. source date entry comment

(d) Element Prefix p’ of Type news_report

PNO on source
holdsRS (p’, A) = S8

source date entry comment advert. source date entry comment advert. advert. keyword topic

(source, date, entry, comment, advertisement)+, advertisement+, keyword+, topic+, entry+, weather comment+

(a) DTD of Type news_report

(b) DFA A

entry

source advertisement

comment keyword

source

S4S3S2 S7S6S5

S0

advertisement advertisement

keyword topic

entry
S9S8

topic

entry

weather

weather

POS(S4): {S, D, E, C, A, K, T, W} POS(S8): { T, E, C }

POS(S0): { S, D, E, C, A, K, T, W }

S10
comment

comment

S11S1
date

This is
determined
using the
PNO Rule

Figure 3.3: Regular Expression Represented by Deterministic Finite Automaton

21

3.2.2 PNO Rule

Possible Occurrence Set (POS) of a DFA State. For DFA state S, the Possible

Occurrence Set, denoted as POS(S), is the set of symbols which can occur until

reaching a final state. POS(S) for a DFA without redundant states can be defined

as: let NeighborState(S) = {S ′ | there exists an automaton transition from S to S ′},

FutureSet(S) = S ∪ NeighborState(S) ∪ ∀ S ′ ∈ NeighborState(S) (FutureSet(S ′)),

TransitSymbol(S) = {symb | ∃ S ′ S transits to S ′ through symb}, then POS(S) = ∪

∀ S ′ ∈ FutureSet(S) (TransitSymbol(S ′)).

Datalog [SAV95] can be applied for calculating POS for the states in a given DFA.

The algorithm takes a DFA A as input and outputs the POS for each automaton

state of A. We refer to such algorithm as POS Compute(A). POS for some example

states S0, S4 and S8 of DFA A is shown in Figure 3.3. Take the start state S0 as

example. Obviously, POS(S0) equals to SymbSet(news report).

Theorem 1. (Equivalence between RemainSymbSet and POS) For element

prefix p of type E and any A ∈ AutoSet(P (E)), RemainSymbSet(p, E) = POS(RS(p,

A)).

Proof. This theorem can be proven by contradiction. Because A ∈ AutoSet(P (E)),

the language of A is equivalent to L(P(E)). Suppose RemainSymbSet(p, E) !=

POS(RS(p, A)). Thus there exist an element ele which is in L(P(E)) but cannot be

accepted by A or which is not in L(P(E)) but can be accepted by A. Contradiction.

Hence, RemainSymbSet(p, E) = POS(RS(p, A)).

Based on Theorem 1, we propose the PNO rule which determines the satisfaction

of a given PNO constraint based on the above DFA for L(P(E)):

PNO Rule. Given element prefix p of type E, any A in AutoSet(P(E)) and symbol

symb, PNO(symb, p, E) holds iff symb /∈ POS(RS(p, A)).

Whether PNO(symb, p, E) holds can be determined by a simple application of

22

the above PNO rule. Given prefix p and DFA A in AutoSet(P(E)), for symbol symb,

the rule application on PNO(symb, p, E) is a simple POS check as Algorithm 1.

Algorithm 1 PNO Rule Application

Procedure:
PNO Checking()
Input:
(1) DFA A in AutoSet(P(E))
(2) symbol symb
Output:
TRUE / FALSE indicating whether PNO(symb, p, E) holds

S = POS(RS(p, A))
if symb ∈ S then

return FALSE
else

return TRUE
end if

As example we apply the PNO rule to the element prefix p in Figure 3.3 to

determine whether PNO(source, p, news report) holds. By running p on DFA A,

state S4 (S4 = RS(p, A)) is reached. Because source is contained in state S4’s POS

(source, date, entry, comment, advertisement, keyword, topic, weather), by the PNO

rule the constraint PNO(source, p, news report) thus does’t hold. By checking the

constraint PNO(source, p’, news report), we determine that the constraint holds

since source is not in POS(S8).

3.3 PNO Constraint Evolution

3.3.1 Definition

Element evolution ⇒(p, q, E) is referred to as a singleton element evolution if q

consists of only one symbol (q = “symb”, |q| = 1). It is denoted as 7→(p, symb, E).

Given element prefix p in Prefix(E), singleton element evolution sg: 7→(p, symb, E)

23

and symbol symb′, let p′ = p symb, if PNO(symb′, p′, E) holds but PNO(symb′, p,

E) doesn’t, there is a PNO constraint evolution on symb’ at sg, denoted as ξ(symb′)

at sg.

As the example shown in Figure 3.4, an element grows from prefix p to p1, then

p2, p3 and at last to p′ through a series of singleton element evolutions. We can

see that a PNO constraint evolution on source occurred for p2 because while the

symbol source is contained in POS(S5), it is no longer being contained in POS(S6).

(b) DFA A POS(S5): {S, D, E, C, A, K, T, W} POS(S6): {A, D, K, T, E, C, W}

PNO Constraint
Evolution on source

entry

source advertisement

comment keyword

source

S4S3S2 S7S6S5

S0

advertisement advertisement

keyword topic

entry
S9S8

topic

entry

weather

weather

POS(S0): { S, D, E, C, A, K, T, W }

S10
comment

comment

S11S1
date

source date entry comment advert. source date entry comment

source date entry comment advert. source date entry comment advert.

source date entry comment advert. source date entry comment advert. advert.

source date entry comment advert. source date entry comment advert. advert. keyword

source date entry comment advert. source date entry comment advert. advert. keyword topic

p

p1

p2

p3

P’

S4 –> S5

S5 –> S6

S6 –> S7

S7 –> S8

(a) DTD of Type news_report
ξ (source)

Figure 3.4: Evolvement of PNO Constraints

3.3.2 Monitoring PNO Constraint Evolutions

Theorem 2. (Monotonicity of PNO Constraints) Given element prefixes p1,

p2 of type E and p1 is the prefix of p2, for symbol symb, if PNO(symb, p1, E) holds,

then PNO(symb, p2, E) also holds.

Proof: The theorem can be proved by contradiction. Given element prefixes p1,

24

p2 of type E and p1 is p2’s prefix. Let A be a DFA in AutoSet(P (E)). Because

p1 is p2’s prefix, POS(RS(p2, A)) must be a subset of POS(RS(p1, A)). Suppose

PNO(symb, p1, E) holds but PNO(symb, p2, E) doesn’t for symbol symb, then there

exists symb′ in POS(RS(p2, A)) which is not in POS(RS(p1, A)). Contradiction.

Hence the satisfaction PNO(symb, p1, E) implies the satisfaction of PNO(symb, p2,

E).

Based on Theorem 2, the following theorem is straightforward:

Theorem 3. Assume there exists a PNO constraint evolution on symb at sg: 7→(p,

symb′, E). Let p′ = p symb′. For any p′′ in Growth(p′, E), PNO(symb, p′p′′, E)

holds.

Through the stream input, any non-empty prefix p of type E is on the fly con-

structed through |p| steps of singleton element evolution sg1, sg2, sg3, ..., sgk(let k

= |p|), where sg1 is 7→(ε, p1, E) and sgi(i > 1) is 7→(p1 p2 ..., pi−1, pi, E). sgi is the

process of receiving the i-th child of the current element. Given element prefix p of

type E and symbol symb in SymbSet(L(E)), if PNO(symb, p, E) holds, by Theorem

2 we can conclude the following two facts:

(a). Through the singleton element evolution steps, there exists one and only one

PNO evolution on symb.

(b). Assume the PNO evolution above is at sgi. sgi is the earliest moment to

guarantee that child elements of type symb will not be seen in the remaining portion

of the current element.

We then propose the following algorithm to monitor PNO evolution over a grow-

ing input symbol sequence. Given a sequence SEQ of symbols symb1, symb2, symb3,

... if SEQ corresponds to a sequence of singleton element evolution steps sg1, sg2,

sg3,... where sg1 = 7→(ε, symb1, E), sg2 = 7→(symb1, symb2, E), sg3 = 7→(symb1

symb2, symb3, E),... We refer to SEQ as a well-formed input sequence of type E.

25

SEQ corresponds to the incremental growth of an element of type E. Algorithm 2

sequentially reads in a well-formed sequence SEQ of type E and raises notification

if there exist ξ(symb) at receiving an input symbol symbinput. While the sequence

terminates (the End of Binding is received), PNO on symb will be notified.

Algorithm 2 Monitoring Process of PNO Constraint Evolution

Procedure:
PNO Monitoring()
Input:
(1) DFA A equivalent to L(P(E)) with S0 as the start state;
(POS for each state in A has been pre-computed)
(2) symbol symb
(3) runtime input – a well-formed symbol sequence SEQ of
type E received sequentially plus the termination message
End of Binding T received at the end
Output:
notification of ξ(symb)

state S = S0

on receiving receiving symbol input symbinput:
symbol symb′ = symbinput

S ′ = tf(S, symb′) (tf as the automaton transit function of A)
if S != S ′ (transiting to a new state in A) then

S = S ′

if symb /∈ POS(S) then
return the notification of ξ(symb)

end if
end if
on receiving End of Binding T :
return the notification of ξ(symb)

As the example in Figure 3.4 shows, we can see that the PNO constraint on

source holds at p′ however the PNO evolution happens at p2. While the second

advertisement arrives, the automaton transits from S5 to S6. The monitoring algo-

rithm here captures the absence of source in POS(S6). Thus the PNO constraint on

source evolves from FALSE to TRUE and then stays TRUE for the remainder of pro-

26

source date entry comment advert. source date entry comment advert. advert. keyword topicP’ε
sg1 sg2 sg3 sg4 sg5 sg6 sg7 sg9 sg10 sg11 sg12 sg13

PNO(source, p’, news_report) = TRUE

PNO(source, , news_report) = FALSEε
Monitoring Algorithm to detect the

PNO constraint evolution on source
at the earliest moment

sg8

Figure 3.5: Monitoring of PNO Evolution

cessing the current element. Figure 3.5 shows an example of this PNO monitoring

process on symbol source through the element growing from ε to p′.

27

Chapter 4

Memory-Oriented Optimization

Utilizing PNO

4.1 Optimization of Single-Level Pattern Queries

4.1.1 General Guideline

The Basic Evaluation Strategy

As discussed earlier, the query semantics such as the output sequence order (Q1),

output sequence nesting (Q2) and predicate verification (Q3) requires elements of

expected patterns to be temporarily buffered within a binding until the process-

ing of the bound parent element has been completed. The just-in-time execution

strategy [SRM06] follows this paradigm of evaluation. Under this strategy, pattern

retrieval is performed to locate and buffer all the child elements during the process-

ing of each bound element. After a bound element has been completely received

from the input stream, predicate checking and data output will be performed next

and only after that the buffered child elements will be released from the memory.

Thus, this strategy divides the query execution into two phases: (1) retrieving and

28

buffering expected child elements and (2) follow-up computation related to predicate

verification, data output and buffering release. By this approach, within a binding

all the elements of expected child patterns will need to be buffered until the binding

element has been completely met.

☺

Pattern
Retrieval

Data
Buffering

Predicate
Check

Buffer Release

Tuple
Construction

Data
Output

Phase I

Phase II

Figure 4.1: Strategy with the Basic Evaluation (Just-in-Time Strategy)

There are six types of computations in evaluating a single-level pattern query un-

der such execution strategy, namely (1)pattern retrieval, (2)data buffering,(3)predicate

checking, (4)tuple construction, (5)data output and (6)buffer release. For a query

that does not contain any predicate filtering (Q1 and Q2), step(3) will not be done.

For a query that contains predicate filtering (Q3), if the predicate verification is

not satisfied in step(3), i.e., for the binding element E5, buffer releasing (step(6))

will be directly taken. If the predicate filtering is satisfied, i.e., the binding element

E14 and E24, step(6) will be taken after a result tuple has been constructed and

output (step(4) and step(5)). We can see that the computation under this strategy

is separated into the two phases introduced above for evaluating a binding element:

(1) and (2) correspond to the first phase which occurs until completely meeting the

29

binding element and then (3) to (6) corresponds to the second phase. Algorithm 3

sketches the just-in-time execution strategy and Figure 4.1 shows its execution flow.

Algorithm 3 Procedure of the Just-in-Time Execution Strategy

Procedure:
JustInTime Execution Strategy()
Input:
(1) token sequence within a binding, terminated by T
(2) single-level pattern query Q
Output:
query result of the binding

on receiving a new child element e from the input stream:
if type E (e’s element type) is an expected child element type
then

buffer the token sequence of e
else

discard directly the token sequence of e upon receival
end if
on receiving binding termination T :
perform predicate checking, tuple construction,
data output and buffer release

We call the method of handling elements of an expected pattern the handling

mode of this pattern. Under this just-in-time execution strategy, the retrieved ex-

pected patterns are buffered first. Such handling mode is referred to as HOLD.

For instance, for Q3, the just-in-time execution strategy executes both the pattern

location and reporter in the mode of HOLD.

30

Optimized Evaluation Strategy

By Example 1, intuitively we can see that a strategy with semantic query optimiza-

tion of the memory footprint minimization needs to support the following mecha-

nisms while evaluating a single-level pattern query:

1. (Pattern Retrieval.) Retrieve elements of expected patterns from the input

stream;

2. (Data Buffering.) Buffer a retrieved child element within a binding;

3. (Incremental Checking.) Incrementally perform predicate verification on

a buffered child element during the process of pattern retrieval. For example,

we may need to check L7 after reaching R8 when evaluating the binding E5

in evaluating Q3;

4. (Incremental Output.) Incrementally perform data output on a buffered

child element during the process of pattern retrieval. For example, in Q1, we

should output D4, D13, E5 and E14 after reaching A21 when evaluating N2;

5. (Incremental Release.) Incrementally purge a buffered child element from

the memory during the process of pattern retrieval, for example, in Q1, we

should release the buffered child elements D4, D13, E5 and E14 as soon as

output of these elements has been completed when evaluating N2;

6. (Direct Output.) Directly output the input token sequence of a retrieved

child element. For example, E24 in Q1 and C31 in Q2 are output at the token

granularity without any buffering;

7. (Direct Releasing.) Directly discard the input token sequence of a retrieved

child element. For example, in Q3 R8 is directly discarded token by token (by

the token granularity) without any buffering during E5’s evaluation.

31

Algorithm 4 execution strategy with optimized evaluation

Procedure:
Optimized Execution Strategy()
Input:
(1) token sequence within a binding, terminated as T
(2) single-level pattern query Q
(3) PNO Monitor M (running procedure PNO Monitoring)
Output:
query result of the binding

on receiving a new child element e on the input: //EVENT
pass E (e’s pattern type) to M
while optimization opportunities arise //CONDITION
(based on M ’s feedback on PNO evolution)
safely perform actions (a1) //ACTION
if E is an expected child element type then

perform corresponding action defined by E’s handling mode
(a2)

else
discard the token sequence of e

end if
on receiving binding termination T :
pass T (the End of Binding message) to M

The following we introduce the proposed execution strategy. Algorithm 4 depicts

the evaluation procedure under this strategy. There are two key differences between

the Optimized Execution Strategy and the JustInTime Execution Strategy:

1. While a new child element is started, actions on the buffered data might be

taken (a1). The tuple construction is no longer needed. Within a binding,

all data output, buffer release and predicate verification are performed during

the process of pattern retrieval (thus being called incremental check, output

and release). By action (a1), the buffered elements can thus be released earlier

than in the just-in-time strategy. For example, when A21 is met, the buffered

D4, D13, E5 and E14 can be output and the memory can then be released.

32

2. With the optimized evaluation, retrieved elements of an expected pattern do

not always need to be buffered. Elements of an expected pattern can be in-

stead directly output, such as E24 in Q1, or directly released, such as R8

in Q3 ((a2) in the above procedure). By this, data buffering on some ele-

ments can be completely avoided. The handling mode for an expected pattern

is no longer always “HOLD”. It can instead be DIRECT OUTPUT or DI-

RECT RELEASE. The mode can be changed at runtime, such as for the entry

pattern in Q1. At the beginning the entire pattern is required to be buffered,

thus with the mode HOLD. After reaching A21, its mode is switched from

HOLD to DIRECT OUTPUT. The mode change is triggered by the action in

(a1). For example, when A21 is reached, the mode change on entry will be

triggered from HOLD to DIRECT OUTPUT.

☺

☺

Pattern
Retrieval

Data Buffering

Incremental
Check

Incremental
Output

Incremental
Release

Direct
Output

Direct
Release

Figure 4.2: Strategy with Optimized Evaluation

Figure 4.2 shows the execution flow for the above strategy in handling single-level

pattern queries. We can see that the computations, such as predicate verification

33

and data output, are happening in parallel with the pattern retrieval. Optimization

is driven by the actions you take at a1, which conducts the output/release as well

as the change of the handling mode of the corresponding expected patterns. Such

mode change will further affect the execution step at a2 as well. The action taken

at a1 is triggered by the runtime evolution of the PNO constraints, detected by

runtime PNO Monitoring (procedure PNO Monitoring).

Our proposed execution strategy follows the Event Condition Action (ECA)

rule-based programming model. It consists of the following three parts:

1. Receiving Events (EVENT) which consumes the sequence of input child

elements.

2. Detecting Constraint (CONDITION) which monitors PNO evolution on

the expected patterns over the input (events) within a binding;

3. Taking Action (ACTION) which performs actions on the satisfaction of cor-

responding conditions.

Figures 4.3, 4.4 and 4.5 show the comparison in data buffering between the

basic and optimized strategies for evaluating queries Q1 to Q3.

4.1.2 Optimization for Sequence SPQ

Sequence SPQ Qseq shown in Figure 4.6 returns the list of child E0 elements to

child En elements. Such required order among output types is referred to as output

sequence order. Each return pattern has a certain position in the pattern sequence

without repetition. For example, in Qseq, the list of elements of type Ei needs to

be output earlier than the list of elements of type Ek, if i < k. Straightforwardly,

for elements of type E1, they can be output directly without any buffering. For k >

0, before any output of the elements of type Ek, all the E1, E2, ..., Ek−1 elements

34

KAD A TE W
1413 19 2120 2322 30

C
31

ACD E
54 11103

S
12

C ES

Input of N2

24

S S

D
S

D

E

S

D

E

C

S

D

E

C

S

D

E

C

S

S

D

E

C

S

S

D

E

C

S

S

D

E

C

D D

E

S

D

E

C

S

D

E

C

S

D

E

C

S

D

E

C

S

D

E

C

S

D

E

C

S

D

E

C

S

D

E

C

S

D

E

C

S

D

E

C

S

D

E

C

E

S

D

E

C

S

D

E

C

E

W

S

D

E

C

S

D

E

C

E

W

C

D D

E

D

E

C

D

E

C

D

E

C

C

D

E

C

D

D

E

C

D

E

D

E

C

D

E

C

C

C

C

C

C

C

C

W W

C

D

E

C

D

E

</N>

Un-Optimized Evaluation
(Just-in-Time)

Optimized Evaluation

Figure 4.3: Comparison on Memory Footprint between the Optimized and the Basic
Evaluation for Q1

KAD A TE W
1413 19 2120 2322 30

C
31

ACD E
54 11103

S
12

C ES </N>

Input of N2

24

C C C C C C

C

C

C

C

C

C

C

K

C

C

K

T

C

C

K

T

C

C

K

T

C

C

K

T

C

C C C C C C

C

C

C

C

C

C

C

K

C

C

K

T

K

T

K

T

K

T

Un-Optimized Evaluation
(Just-in-Time)

Optimized Evaluation

Figure 4.4: Comparison on Memory Footprint between the Optimized and the Basic
Evaluation for Q2

35

PL R
1716 18

R

Input of E14

R R

L
R

L

R

R

L

R

</E>
15

RR

L

PRL L
2726 2928

R

Input of E24

R R

L
R

L

L

R

L

L

R

R

L

L

R

</E>
25

RR

L

R

L

L

PL R
87 96

R

Input of E5

R R

L
R

L

R

R

L

R

R

</E>

R

L

AtlantaBostonPhoenix Boston

Un-Optimized Evaluation
(Just-in-Time)Optimized Evaluation

Figure 4.5: Comparison on Memory Footprint between the Optimized and the Basic
Evaluation for Q3

…………E1

$a in xpath

En

FOR $a IN xpath
RETURN

$a/E1
…
$a/Ek

…
$a/En

Ek

Figure 4.6: Sequence SPQ Qseq

must already have been output. Hence the elements of type E1 to Ek−1 need to

be completely met (which is equivalent to the satisfaction of PNO constraints on

these elements). Thus, before the current element evolves to a state satisfying all

these PNO constraints, elements of type Ek have to be buffered. Once such PNO

condition is satisfied, if the execution strategy guarantees that all elements of types

E1 to Ek−1 have been output, we can perform the following action on Ek:

36

1. Output the buffered Ek’s;

2. Release the buffered Ek’s;

3. Change the handling mode for Ek from HOLD to DIRECT OUTPUT (to

signal that future Ek elements are directly output without any buffering).

Based on the above description, we can define the following n conditions and their

corresponding actions. Optimization starts from the just-in-time approach, where

every pattern initially assumes the HOLD handling mode. Thus, the action on E1

doesn’t require any condition.

Condition 1 (C1): ∅

Action 1 (A1): change the handling mode for E1 from HOLD to DIRECT OUTPUT.

Condition 2 (C2): PNO holds on E1.

Action 2 (A2): output and then release the buffered E2 elements, change

the handling mode for E2 from HOLD to DIRECT OUTPUT.

Condition 3 (C3): PNO holds on E1 and E2.

Action 3 (A3): output and then release the buffered E3, elements, change

the handling mode for E3 from HOLD to DIRECT OUTPUT.

......

Condition n (Cn): PNO holds on E1, E2, ..., En−1.

Action n (An): output and then release the buffered En elements, change

the handling mode for En from HOLD to DIRECT OUTPUT.

37

As previously discussed, any element under type E1 can simply be directly output

without buffering. Thus it doesn’t require any memory footprint in the evaluation,

which obviously is optimal for handling child elements of this pattern in terms of

memory usage. For elements of type Ek (0 < k <= n), if Action Ak above is taken

when Condition Ck is satisfied, the handling on Ek is optimal memory-wise because

it only keeps the Ek elements that must be kept plus the buffered Ek are released

at the earliest possible moment.

From Chapter 3 we know that if we apply the PNO monitoring algorithm on

types E1 to Ek−1, we can detect the earliest possible moment when Ck gets satisfied.

The question is whether taking the action Ak can guarantee the result correctness.

Obviously, for taking the action on type Ek, all elements of types E1 to Ek−1 under

the binding need to be totally met and output.

Claim. Action Ak (k > 0) can be safely taken if condition Ck is satisfied and action

on type Ek−1 has already been taken.

Proof Sketch: The claim can be proved by showing that if the actions on Ek−1

are taken, after the PNO condition on type Ek has been satisfied, the whole list of

child elements E1 to Ek−1 elements will have been completely output.

As an example, let’s look at the evaluation of Q1. When A21 is reached (token

no. 616, <advertisement>), the PNO monitor indicates that the PNO constraint

evolution happens on both type source and date. Thus, C2 and C3 get satisfied at

the same time. A1 needs to be taken before A2.

4.1.3 Optimization for Nested-Sequence SPQ

The nested-Sequence SPQ Qnested−seq shown in Figure 4.7 returns child pattern

elements with nesting. Straightforwardly, any output on the child ER elements

requires that all the child E1, E2, ..., En have been completely met. Thus, before

38

……E1 ER ……

FOR $a IN xpath
RETURN

FOR $b IN $a / ER
RETURN

$a / E1

…
$a / Ek

$b
$a / Ek+1
…
$a / En

$a in xpath

EnEk Ek+1

Figure 4.7: Nested-Sequence SPQ Qnested−seq

the current element satisfies the PNO constraint on E1 to En, elements of type ER

have to be buffered. With the satisfaction of the PNO constraints on E1, E2, ..., En

(Condition 1), we can perform the following action (Action 1):

1. Supposing the buffered ER elements are er1, er2, ..., erm, in their arrival

order, for each eri, in the order from 1 to m, output the element list of E1,

the element list of E2, ..., the element list of Ek, eri, the element list of Ek+1,

..., followed by the element list of En.

2. Release all the buffered elements of ER.

3. Change the handling mode for ER from HOLD to DIRECT OUTPUT.

The above step of mode switching is slightly different from the one in the evalua-

tion of the previously discussed sequence SPQs. Additional action for appending the

buffered collection of E1 to En are needed besides directly outputting each newly

arriving ER element. For example, for Q2, when C31 arrives, it will be output

directly however after that the list of buffered keyword and topic elements needs to

be appended. If the query is changed to output “$a/keyword, $a/topic, $c”, such

39

appended output will be performed before the direct output on C31: while the start

tag token of C31 is met, we output the buffered keyword and topic list, then output

the start tag token as well as the following input tokens of C31.

After the PNO of E1 to En as well as the PNO of ER all have been satisfied

(Condition 2), the buffered elements of type E1 to En can be released (Action

2) after producing the corresponding result. Similarly to the handling of sequence

SPQs, handling of ER as well as E1 to En are optimal if we apply the PNO monitor-

ing algorithm to detect the earliest possible moment for when the expected condition

becomes first satisfied. Obviously, Action 1 needs to be taken before Action 2, in

the case that both conditions get satisfied at the same event.

4.1.4 Optimization for Filter SPQ

FOR $a IN xpath
WHERE
$a / E1 = “value1”
…
$a / Ek = “valuek”
…
$a / En = “valuen”
RETURN

$a / ER

…… EREnE1 Ek

$a in xpath

……

Figure 4.8: Filter SPQ Qfilter

The filter SPQ Qfilter shown in Figure 4.8 returns child elements of ER for the

binding $a which matches the conjunctive existence predicate verification on E1

to En. Obviously, once the predicate is determined to be unsatisfied, the buffered

child elements under this binding thus far can now be purged directly. Also no

more buffering would be needed for any pattern under the current binding. Once

40

the predicate checking is determined to be satisfied, the remaining conditions and

actions will be the same as in the case of a simple non-filter SPQ.

For a conjunctive query, if the predicate is satisfied, a required match on each

single predicate pattern can already determine the success of the binding. However,

for avoiding such context switching, we assume that predicate checking on a predi-

cate branch Ek (1 <= k <= n) can only be undertaken while the PNO on Ek has

been satisfied. Based on this assumption, the above approach can be shown to be

optimal memory-wise.

Thus as in Q3, for E5 (which fails the predicate checking), its child reporter

elements which are potentially needed to be consumed for constructing the result

output sequence are no longer useful due to the predicate being finalized as FALSE

when reaching R8. Thus, the buffered reporter / location element(s) R6 and L7 can

be purged instead of waiting for the end of news. Also, the reporter element R8 that

occur afterwards can be omitted without any storage.

4.2 Optimization on Multi-Level Pattern Queries

Figure 4.9 shows the query tree for the multi-level pattern query Q4, while Fig-

ure 4.10 shows two different scenarios of optimization:

1. The inner binding is with the handling mode set to DIRECT OUPUT or

DIRECT DISCARD: this inner binding can be treated in the same fashion as

the top most binding for buffer optimization (E24 in Figure 4.11);

2. The inner binding is with the handling mode set to HOLD: if the binding does

not contain any predicate checking or with a satisfied predicate checking, no

buffer optimization can be applied on this inner binding in terms of memory

consumption (E14 in Figure 4.11); else, when the predicate checking is deter-

41

mined to be failing, the buffer for the inner binding can be released and no

further buffering on this binding is further needed (E5 in Figure 4.11).

date

reporter paragraph

entry

location

comment keyword topic weather

“Boston”

source

/ root / news_report

Figure 4.9: The Inner Subtree of Q4’s Query Tree

(a)

Retrieval

Predicate
Check

Buffer Release

Tuple
Construction

Buffer

Buffer

Predicate
Check

Buffer Release

(b)
Retrieval

Direct
Release

Tuple Construction

☺

☺
Buffer

Predicate
Check

Data
Output

Buffer Release

Direct
Output

Direct
Release

(c)
Retrieval

Figure 4.10: Comparison between Two Strategy in MPQ Evaluation

4.3 Condition Action Graph (CAG)

We propose our algorithm based on a data structure called CAG (Condition-Action

Graph) to efficiently check the conditions and to ensure that an action is taken when

42

412 133 2414 23 3031 22
WE TDS DS E

KAD A TE W
1413 19 2120 2322 30

C
31

ACD E
54 11103

S
12

C ES

KC

Input of N2

24
</N>

PP
☺ ☺ ☺☺ ☺ ☺

E CPS,D PK PT

☺

10 22 23
KC T

19
C K T

22 23

Figure 4.11: Query Evaluation of Q4

empty E1

Condition 1

…E2 En-1

Mode change
on E1

1. Output
buffered E2
2. Release
buffered E2
3. Mode
change on E2

1. Output
buffered E3
2. Release
buffered E3
3. Mode
change on E3

1. Output
buffered En
2. Release
buffered En
3. Mode
change on En

Condition 2 Condition 3 Condition n

Action 1

Action 2 Action 3 Action n

Figure 4.12: CAG of Sequence SPQ

E1
E2

.

.

.

En

ER

Condition 1

Condition 2

Action 1

Action 2

On all PNO ready:
1. Output buffered ER
paring with the buffered
E1, E2, …, En list.
2. Release buffered ER
3. Mode change on ER

Release buffered E1,
E2, …, En list

Figure 4.13: CAG of Nested-Sequence SPQ

its corresponding condition has been satisfied. A CAG is a state machine where each

state (condition state) represents a set of PNO constraints. Each state is associated

with its corresponding action set which will be fired after the PNO constraints get

satisfied.

43

The CAG of Qseq (Figure 4.6) is shown in Figure 4.12 and the CAG of Qnested−seq

(Figure 4.7) is shown in Figure 4.13. The construction algorithms are straightfor-

ward, which is shown in Algorithm 5 and 6.

Algorithm 5 CAG Construction for Sequence SPQ

Procedure:
CAG Qseq()
Input:
sequence SPQ Qseq (Figure 4.6)
Output:
CAG CAGseq

i = 1
while i != n
construct condition state Si:
if i > 1 then

put in PNO requirement PNOk (1 <= k < i)
else

set the condition as empty
end if
encode action for state Si:
(1)output buffered Ek’s
(2)release buffered Ek’s
(3)change the handling mode for Ei from HOLD to DI-
RECT OUTPUT
(1 <= k < i)
if i != 1 then

connect Si−1 to Si

end if

For filter SPQ Qfilter (Figure 4.8), each predicate branch will be mapped to a

condition. Its corresponding action is to release all the buffer and to avoid all the

future buffering on the binding when PNO is received and the associated predicate

is not satisfied. When all PNOs have been received and no branch fails, the CAG

then moves to the next state. Figure 4.14 shows the construction of the filtering

CAG state.

We already have examined three different categories of SPQs. Each of them

44

Algorithm 6 CAG Construction for Nested-Sequence SPQ

Procedure:
CAG Qnested−seq()
Input:
nested-sequence SPQ Qnested−seq (Figure 4.7)
Output:
CAG CAGnested−seq

construct condition state S1:
put in PNO requirement PNOk (1 <= k <= n)
encode action for state S1:
(1)produce and output join result on the buffer ER’s and E1’s
to Ek’s
(2)release buffered ER’s
(3)change the handling mode for Ek from HOLD to DI-
RECT OUTPUT
construct condition state S2:
put in PNO requirement PNOER

encode action for state S2:
release buffered Ek’s (1 <= k <= n)
connect S1 to S2

45

E1
E2

.

.

.

En

Condition 1

Action 1

Following
conditions / actions

On All PNO:
No specific action,
simply join to the next
CAG state

On single PNO ready,
while the branch fails:
1. Release all the buffer
2. Mode change on all
branches to direct discard

On single PNO ready,
while the branch fails:
1. Release all the buffer
2. Mode change on all
branches to direct discard

On Single PNO,
while the branch fails:
1. Release all the buffer
2. Mode change on all
branches to direct discard

……

Figure 4.14: CAG of Filter SPQ

represents one reason for why data needs to be hold during the SPQ evaluation,

namely, holding on ordered output sequence, holding on nested output sequence and

holding on predicate verification. Some child elements might need to be buffered

within the bound parent element for more than one reason. In such case, given the

root node of a pattern query tree, we can conduct a single left to right scan of its

child branches for the CAG construction. Figure 4.15 shows an example of a CAG

construction for such a combined data holding situation.

Q uery Tree of Q 5Q uery Tree of Q 5Q uery Tree of Q 5Q uery Tree of Q 5

date entry comment keyword topic weathersource

/ root / news_report

keyword

topic
comment

source date entry comment keyword topic

source date entry
keyword

topic
comment

Figure 4.15: Combined CAG Construction

Based on the CAG approach, the execution monitors the input token sequence

using our monitor algorithm (Algorithm 2) for detecting the PNO evolution of the

element types contained in the CAG state. When a condition is satisfied, its corre-

sponding action will be taken and the CAG state jumps to the next. The condition

46

on the subsequent state will be checked and its action will be taken if it is satis-

fied. By such CAG-based process, the execution will monitor the patterns associated

with the current CAG state only, instead of monitoring every expected child pattern.

Algorithm 7 describes this procedure.

Figure 4.16 shows the CAG construction for Q4. Each level of the query tree

maps to one CAG component. CAGs on different level are connected through cor-

responding inner binding.

date

reporter paragraph

entry

location

comment keyword topic weather

“Boston”

source

/ root / news_report

source date entry weather
keyword

topic
comment

location reporter

Figure 4.16: CAG construction for Q4

47

Algorithm 7 Monitoring Process of PNO Constraint Evolution during CAG-Based
Execution

Procedure:
CAG Driven PNO Monitoring()
Input:
(1) a well-formed symbol sequence SEQ of type E received se-
quentially
at runtime plus the termination message End of Binding T re-
ceived at the end
(2) DFA A equivalent to L(P(E)) with S0 as the start state;
(POS set for each state in A has been pre-computed)
(3) symbol set MonitorSymbSet received at runtime
Output:
notification of ξ(symb), where symb in MonitorSymbSet

state S = S0

on receiving symbol input symbinput:
S ′ = tf(S, symbinput) (tf as the automaton transit function of A)
if S != S ′ (transiting to a new state in A) then

S = S ′

for each symb in MonitorSymbSet
if symb /∈ POS(S) then

throw notification of ξ(symb)
remove symb from MonitorSymbSet

end if
end if
on receiving updates on MonitorSymbSet:
update MonitorSymbSet
on receiving END OF BINDING T :
notification of ξ(symb)

48

Chapter 5

Towards an Efficient SQO

5.1 Considering Constraint Knowledge at CAG

Construction

In our previous algorithm in constructing the CAG, we only consider the query

while the constraint knowledge is omitted. Considering the constraint knowledge at

compilation time when the CAG is constructed will lead to a more efficient SQO by

re-structuring the CAG.

5.1.1 Cutting the CAG by Cutting Unreachable States

Unreachable states should be removed from the CAG to avoid the corresponding

monitoring process so they would guarantee to be non-beneficial. For instance, in

the example shown in Figure 5.1, GA states starting from state 3 are removed from

the CAG because from the constraint knowledge we know that the constraint in

Condition 3 (PNO of pattern 3) cannot be satisfied until we reach the end of the

binding.

49

2 3 4 51

Binding on XPATH (T)

6

1 2 3 4 5

DTD for T:
1+, 2+, 6+, 5+, 4+, 3+ 1 2

Figure 5.1: Cutting the CAG by Cutting Unreachable States

5.1.2 Shrinking the CAG by Applying Global Ordering Knowl-

edge

In some cases it is not necessary to notify about pattern completeness at the earliest

possible moment even though at this moment the PNO has been satisfied.

For any two sibling types in the DTD, an order constraint can be inferred. Order

constraints between two patterns, defined as Ord(Em, En; E), indicates that under

an element of type E, no elements of type En appear before encountering all the

elements of type Em.

Order constraints can be used to indicate the completeness of a certain pattern.

For instance, in the example shown in Figure 5.2, GA states can be merged to avoid

any unnecessary context switches during PNO monitoring and in some cases even

avoid PNO monitoring. For instance, in the example shown in Figure 5.3, the PNO

monitoring can be completely avoided.

50

2 3 4 51

Binding on XPATH (T)

6

1 2 3 4 5

DTD for T:
1+, 4+, 2+, 5+, 3+, 6+ 3

Figure 5.2: Shrinking the CAG by Applying Global Order

1

21

Binding on XPATH (T)

DTD for T:
1+, 2+, 6+, 5+, 4+, 3+ ε

Figure 5.3: Shrinking the CAG by Applying Global Order (Cont.)

5.2 Applying Ending Marks

One alternative approach to using an automaton to detect PNO constraint at run-

time is to introduce new patterns into the pattern retrieval itself [SRM05]. For

instance, the appearance of any keyword can serve as source’s ending mark in Ex-

ample 1. Obviously, such ending marks might reduce the monitoring overhead but

it might not be optimal memory-wise.

51

Chapter 6

Implementation

We have incorporated the proposed optimization strategy into the Raindrop sys-

tem [SRM06], an XQuery stream processing engine. Below we first describe the

Raindrop engine and then review our SQO extension to the engine.

6.1 Raindrop XQuery Engine

6.1.1 Raindrop Algebra

Raindrop presents an XQuery expression as an algebraic plan. The algebra con-

sists of XML specific operators such as Navigate, ExtractColl, ExtractUnnest, Struc-

turalJoin and Tagger. It also consists SQL like operators such as Select, Projection,

Join and Aggregate. The input and output of the operators are a collection of tuples.

A cell in a tuple can contain a token, a single XML node or a collection of XML

nodes.

Raindrop evaluates an XQuery by the just-in-time execution strategy [SRM06].

As the discussion in our previous examples, XQuery evaluation generally consists

of two phases, namely pattern retrieval and result construction. In the pattern re-

trieval phase, elements of the expected patterns are located and the token sequence

52

of return elements and predicate element are extracted. TokenNav operator is used

for locating an pattern. For simplification, here we will combine the different To-

kenNav operators and abstract them as one single operator Navigate, which is used

for locating elements of the expected patterns from the input token stream. The

Extract operator then passes the token sequence of each located element to the re-

sult construction operator (Tagger). Select operator is used for predicate checking

on the input of a predicate branch. Based on the checking result of its child Select

operator, SJoin produces an output unit for each bound element by consuming the

data passed up from its child operators based on the required re-construction re-

quirements such as sequence ordering and sequence nesting. Figure 6.1 shows the

Raindrop algebra. For further description, please refer to [SRM06].

Format outputs based on the pattern pt, i.e.,
reconstruct XML tags

Tagger

Filter tuples based on the predicate predSelection

Filter columns in the input tuples based on the
variable list v

Projection

Join input tuples based on the predicate predJoin

Aggregate over input tuples with the aggregate
function f, e.g., sum and average

Aggregate

Join input tuples on their structural relationship,
e.g, the common parent relationship p

Structural
Join

Identify all the elements of path p from the input
stream within a binding

ExtractColl

Take input elements of path p1 and output
ancestor elements of path p2

Navigate

SemanticSymbolOp

2,1 ppΦ

pΨ

predσ

vΠ

ptT

f∆

SJ

Identify an element of path p from the input
stream within a binding

ExtractUnnest
pΨu

Figure 6.1: Raindrop Query Algebra

53

6.1.2 Automaton-Based Pattern Retrieval Implementation

0 1

3

root

6

5

4

7

n e w s _ re p ort

d a te

w e a th e r

e n try

c om m e n t

SJoin on
news_report ($a)

ExtractColl S ExtractColl E ExtractColl W

ExtractColl D ExtractColl C

2

s ou rc e

D a ta f l ow
C on trol f l ow

Figure 6.2: Raindrop Query Automaton

Automaton is a widely used technique for pattern retrieval over XML token

streams. Here we describe the common features of automaton that serve as the

core of most automaton models in pattern retrieval [DF03] [SRM06] [GMOS03].

Figure 6.2 shows the automaton for retrieving the patterns in Q1. Each expected

pattern ends in a final state. A stack is used to store the history of state transitions.

Figure 6.3 shows the snapshots of the automaton stack after the first 13 tokens

(Example 1) have been processed for Q1. The Extract operators extract the source,

comment elements, etc.

6.2 Optimization Modules

6.2.1 Extended System Architecture

Figure 6.4 shows the Raindrop-Plus system framework, which is built upon the

Raindrop XQuery engine.

54

<root> ……
<news_
report> <source> ABC </source> <entry> <reporter>

Jackie
Lee

</reporter>
June
Bush

t1 t2 t3 t4 t9t5 t10 t11 t12 t13

<date> 12-1-07 </date>

t6 t7 t8

s1 s1s1s1 s1 s1s1s1 s1 s1s1s1 s1

s2s2s2 s2s2 s2 s2s2s2 s2

s5s5s5

s0 ……s0s0s0 s0 s0s0s0 s0 s0s0s0 s0s0

s2

s3s3 s4s4

s2

s5 s5

Figure 6.3: Stack Storing Automaton State Transitions

Input Stream

Transit
Input

Schema knowledge XQuery

Required
CAGs

Output Stream

Execution
Controller Query Plan

Generator
&

Adaptor

Feedback

Encoded
Action

Transit Input
(Event)

Required
Constraint Automatons

Query
Automaton

Query Plan Generator and Adaptor
Query Executor
Execution Controller
Constraint Engine

Constraint
Engine

Query Executor

&
Condition Request
(monitor / check)

Figure 6.4: Raindrop-Plus System Architecture

6.2.2 Constraint Engine Based on Glushkov Automaton

Glushkov Automaton. For an one-unambiguous regular expression, an equiv-

alent deterministic finite automaton called the Glushkov automaton (GA) can be

constructed in quadratic time [KD98]. Glushkov automata have the properties that:

55

(1) every state in a Glushkov automaton corresponds to a symbol in the marked

regular expression, and (2) every transition has one and only one destination state.

For a formal definition of Glushkov automata and its construction, please refer to

[KD98].

The automaton in Figure 3.3 is in fact a Glushkov automaton for the pattern

news report. We can observe that in a GA, there is a one-to-one mapping from its

automaton state to the symbols in the corresponding regular expression. The algo-

rithm of computing POS (Section 3) is the same as before. Due to the convenience

of its construction and simplified automaton states, in our Constraint Engine, GA

is used for each binding type where PNO constraints are being monitored.

56

Chapter 7

Experimental Evaluation

7.1 Experimental Setting

We have implemented the SQO techniques in Raindrop [SRM04] using Java 1.4.

Experiments are run on two Pentium 4 3.0G machines, both with 504MB of RAM.

One machine sends the XML stream to the second machine, i.e., the query engine

(Figure 7.1). We assume the incoming data is well-formed and do not check for the

well-formedness. The parsing time in the overall execution time thus is negligible.

The following studies the experimental result of our proposed techniques.

Input queue with
fixed size: as
input buffer

Query
Engine

Stream
Generator

Buffer consumption
during execution

Buffer
Consumption

Figure 7.1: Experimental Setting

57

7.2 Experimental Results

We now report the performance of our SQO techniques on news data shown in our

previous examples. We applied a generated on-line news data set for the experi-

ments. We design a set of queries with predicate filtering. By changing the predicate

position and selectivity, the proposed SQO technique should be able to minimize

the amount of data that is buffered: with a smaller selectivity or an earlier predicate

(position is smaller), less data needs to be buffered. The experimental data shown

in Figure 7.2 provides the verification.

Memory
Consumption

0

5000

10000

15000

20000

25000

30000

35000

40000

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

1 3 5 8 10 12

un-opt i mi zed appr oach

opt i mi zed appr oach

Drop Page Fields Here

posi t i on sel ect i v i t y

Data

Predicate Selectivity /
Predicate Position

Figure 7.2: Buffer Avoidance by Applying

How much the proposed SQO technique can enhance the query evaluation de-

pends on how much buffering has been avoided. We control the portion of the

buffering that can be avoided based on the above design in the above query set.

Figures 7.3 reports the results for our given dataset. In the generated data, each

element has the same size and cardinality. 30 different queries, with the predi-

cate position varying from 1 to 12 and selectivity varying from zero to 100% are

evaluated.

58

Figure 7.3 shows the chart combining the two varying factors on predicate po-

sition and selectivity. We can see that more avoidance on data buffering generally

leads to a bigger enhancement in CPU performance. In the best case (i.e., the

query for which selectivity is 0% and the position is zero), plans optimized with

SQO reduce the execution time of the original plan by 64%.

By fixing the selectivity at 100% and the predicate position at the right-most end,

we can show the overhead of our proposed SQO techniques (Figure 7.4 and 7.5).

For example, while the selectivity is 100% when the predicate position is at the

right-most, none of the monitoring checking will ever lead to any buffer avoidance.

The performance difference between such a plan and the original plan is then the

worst case overhead of SQO in the worst case. Due to the introduced overhead

of PNO monitoring, the optimization execution approach becomes more expensive

than the un-optimized solution.

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0 0 25 50 75 10
0

1 3 5 8 10 12

un-optimized approach

optimized approach

position selectivity

Data

Predicate Selectivity /
Predicate Position

Execution
Time

Figure 7.3: Gain on CPU Performance by Buffer Avoidance

59

Execution
Time

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

0 25 50 75 100

12

un-opt i mi zed appr oach

opt i mi zed appr oach

Drop Page Fields Here

posi t i on sel ect i v i t y

Data

Predicate Selectivity
(position at the 12)

Figure 7.4: Overhead of the Proposed SQO Technique (I)

Execution
Time

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

100 100 100 100 100 100

1 3 5 8 10 12

un-opt i mi zed appr oach

opt i mi zed appr oach

Drop Page Fields Here

posi t i on sel ect i v i t y

Data

Predicate Position
(selectivity as 100%)

Figure 7.5: Overhead of the Proposed SQO Technique (II)

Our experiments reveal that the proposed SQO is practical in two senses. First,

the technique can surely reduce the memory consumption. Second, in most cases, the

savings brought by the techniques on CPU performance can be significant. We can

60

observe that in the following situation(s) where the memory consumption might be

considerably large, the effect of avoiding the unnecessary memory footprint during

query evaluation is not trivial:

(1) Target patterns have large element sizes. For example, in Q1 above, storing

comment element may be costly if the comments are large;

(2) Target patterns of large cardinality. For example, many comment elements may

exist in a returned news element of Q1;

(3) With deep level of nesting. For example, with a query like FOR $o in bound

path P, RETURN P1,P2,...,Pn, P1 to Pn are all under such ”FOR...RETURN”

structure and so on. In such a query with deep nesting structure, execution without

an efficient buffer strategy might be very costly.

61

Chapter 8

Related Work

Projecting XML [MS03] [BCCN06] [SSK07] aimed to address the problem of re-

ducing memory by pre-filtering the data from the input stream based on the paths

from the query. [BGKS03] utilized a pre-computed index to reduce the memory

and CPU costs. However, these solutions do not meet the requirement of typical

stream applications, where a large amount of data input is processed on the fly and

no pre-computed metadata is provided.

On-the-fly query evaluation for XPath queries has been studied in [GGM+04]

[CDZ06] [CDZ05]. Such techniques are not suitable for XQuery evaluation. A data-

transformation query language such as XQuery, which raises new challenges for the

query evaluation, has been studied in several projects [DF03] [PC03] [LA05]

[LMP02] [SJR03] [SRM06]. Commonly these XQuery engines try to address

XQuery on streams using automaton / transducer-networks for pattern retrieval

and introducing stream-specific operations to perform data filtering and data result

re-construction.

XHints [GC04] extends SIX by supporting predicates and online index generation

using only partially buffered streams. However, this work requires metadata being

embedded in the input XML streams. It aims to avoiding the stack operations when

62

further pattern retrieval is not needed for an element. This does not help in cutting

the unnecessary memory footprint during query evaluation.

[DF03] evaluates multiple XQueries over XML streams using an execution strat-

egy similar to in-time execution strategy. It tries to perform optimization in the

XML stream context by using schema knowledge to decide whether results of a

pattern are recursion-free and what types of child elements can be encountered re-

spectively. It also tries to avoid unnecessary pattern retrieval instead of cutting

memory footprint during evaluation.

[SRM05] and [KSSS04] are the closest to our work in this thesis. The goal of

[KSSS04] is to minimize the buffer size by directly outputting tokens of some ex-

tracted patterns. It considers only very limited cases. For example, it cannot switch

the output strategy of a pattern from “buffer” to “output” at runtime. They also do

not support filtering-related computations. [SRM05] also uses schema constraints

to detect the failure of predicate patterns earlier and hence can purge the data

earlier when an element fails on its predicate(s) and will thus not be returned. How-

ever its focus is on avoiding unnecessary pattern retrievals. It utilizes the in-time

execution strategies so it cannot perform join-related computations incrementally

nor other aspects of the filtering-related optimization except the above early data

purging. Further, it cannot completely utilize the constraint knowledge as its al-

gorithm introduces a new pattern to indicate a pattern’s “completeness” under a

bound element. Hence it does not capture all the complex constraints that can be

expressed by a regular expression.

63

Chapter 9

Conclusion and Future Work

9.1 Conclusion

XML and XQuery have been widely accepted as the standard data representation

and query language for web applications such as web services and on-line data deliv-

ery. The memory footprint in XML stream processing can be decreased by applying

schema knowledge of the input data. We reason about pattern non-occurrence

constraint (PNO Constraint) and develop an automaton-based technique to utilize

schema knowledge for runtime PNO constraint detection.

Second, we identify possible optimization opportunities for memory footprint

minimization, which can be triggered by runtime PNO detection. We introduce

the condition-action graph (CAG) to encode optimization decisions and propose

optimization-embedded execution strategy to execute an optimized plan. We also

propose algorithms for shrinking a given CAG to ensure the optimization efficiency.

We implement our SQO technique within the Raindrop XQuery engine, and

conduct an experimental study to illustrate that these techniques bring significant

performance improvements in terms of memory usage. We also perform experi-

ments to show that generally low memory consumption coincides with with a short

64

evaluation time (thus a better CPU usage).

9.2 Future Work

Future work includes: (1) supporting optimization on a more comprehensive query

language subset than the pattern queries; (2) applying the proposed SQO tech-

nique to explore the optimization opportunities in XSLT evaluation (type-based

XSLT evaluation); (3) applying the proposed SQO technique to explore the op-

timization opportunities in XML document projection; (4) comparison between

the generic automaton-based SQO approach and the approach simply using end-

ing marks; (5) studying the “incremental computing” model for evaluating XQuery

over XML streams by a hybrid output granularity.

65

Bibliography

[BCCN06] Véronique Benzaken, Giuseppe Castagna, Dario Colazzo, and Kim
Nguyen. Type-based xml projection. In VLDB, pages 271–282, 2006.

[BGKS03] Nicolas Bruno, Luis Gravano, Nick Koudas, and Divesh Srivastava.
Navigation- vs. index-based xml multi-query processing. In ICDE,
pages 139–150, 2003.

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Fran-
cois Yergeau. Extensible markup language 1.0 (fourth edition). In
http://www.w3.org/TR/REC-xml/, 2006.

[CDZ05] Yi Chen, Susan B. Davidson, and Yifeng Zheng. Vitex: A streaming
xpath processing system. In ICDE, pages 1118–1119, 2005.

[CDZ06] Yi Chen, Susan B. Davidson, and Yifeng Zheng. An efficient xpath
query processor for xml streams. In ICDE, page 79, 2006.

[DF03] Yanlei Diao and Michael J. Franklin. Query processing for high-volume
xml message brokering. In VLDB, pages 261–272, 2003.

[GC04] Akhil Gupta and Sudarshan S. Chawathe. Skipping Streams with
XHints. In Technique Report of University of Maryland Collegeg Park,
http://www.w3.org/TR/REC-xml/, 2004.

[GGM+04] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto Onizuka, and
Dan Suciu. Processing xml streams with deterministic automata and
stream indexes. ACM Trans. Database Syst., 29(4):752–788, 2004.

[GMOS03] Todd J. Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu. Pro-
cessing xml streams with deterministic automata. In ICDT, pages 173–
189, 2003.

[KD98] A.Bruggemann Klein and D.Wood. One-unambiguous regular lan-
guages. In Information and Computation, 142(2), pages 182–206, 1998.

[Koz03] Dexter Kozen. Automata and computability. In W.H.Freeman and
Company, New York, 2003.

66

[KSSS04] Christoph Koch, Stefanie Scherzinger, Nicole Schweikardt, and Bern-
hard Stegmaier. Schema-based scheduling of event processors and buffer
minimization for queries on structured data streams. In VLDB, pages
228–239, 2004.

[LA05] Xiaogang Li and Gagan Agrawal. Efficient evaluation of xquery over
streaming data. In VLDB, pages 265–276, 2005.

[LMP02] Bertram Ludscher, Pratik Mukhopadhyay, and Yannis Papakonstanti-
nou. A transducer-based xml query processor. In VLDB, pages 227–238,
2002.

[MS03] Amélie Marian and Jérôme Siméon. Projecting xml documents. In
VLDB, pages 213–224, 2003.

[OMFB02] Dan Olteanu, Holger Meuss, Tim Furche, and Francois Bry. Xpath:
looking forward. In EDBT 2002 Workshops XMLDM, Czech Republic,
March 24-28, 2002, 2002.

[PC03] Feng Peng and Sudarshan S. Chawathe. Xpath queries on streaming
data. In SIGMOD Conference, pages 431–442, 2003.

[SAV95] Richard Hull Serge Abiteboul and Victor Vianu. Foundations of
Databases. 1995.

[SJR03] Hong Su, Jinhui Jian, and Elke A. Rundensteiner. Raindrop: a uni-
form and layered algebraic framework for XQueries on xml streams. In
CIKM, pages 279–286, 2003.

[SRM04] Hong Su, Elke A. Rundensteiner, and Murali Mani. Semantic query
optimization in an automata-algebra combined XQuery engine over xml
streams. In VLDB, pages 277–288, 2004.

[SRM05] Hong Su, Elke A. Rundensteiner, and Murali Mani. Semantic query
optimization for XQuery over xml streams. In VLDB, pages 1293–1296,
2005.

[SRM06] Hong Su, Elke A. Rundensteiner, and Murali Mani. Automaton meets
algebra: a hybrid paradigm for xml stream processings. DKE Journal,
pages 576–602, 2006.

[SSK07] Michael Schmidt, Stefanie Scherzinger, and Christoph Koch. Combined
static and dynamic analysis for effective buffer minimization. In ICDE,
pages 236–245, 2007.

[W3C04] W3C. XQuery 1.0 and Xpath 2.0 formal semantics.
http://www.w3.org/TR/query-semantics, 2004.

67

