
Feature-Oriented Speci�cation of Hardware Bus Protocols
by

Paul M. Freitas

A Thesis
Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE
in partial ful�llment of the requirements for the

Degree of Master of Science
in

Computer Science
May 2008

APPROVED:

Professor Kathi Fisler, Thesis Advisor

Professor Gary Pollice, Thesis Reader

Professor Michael Gennert, Head of Department

Abstract

Hardware engineers frequently create formal speci�cation documents as part of the veri�cation process.
Doing so is a time-consuming and error-prone process, as the primary documents for communications and
standards use a mixture of prose, diagrams and tables. We would like this process to be partially automated,
in which the engineer's role would be to re�ne a machine-generated skeleton of a speci�cation's formal model.
We have created a preliminary intermediate language which allows speci�cations to be captured using formal
semantics, and allows an engineer to easily �nd, understand, and modify critical portions of the speci�cation.
We have converted most of ARM's AMBA AHB speci�cation to our language; our representation is able to
follow the structure of the original document.

Acknowledgements

This work would not have been possible without the help and support of many people. I would particularly
like to thank: Professor Kathi Fisler, who introduced me to this task and guided me through the process
even after a later start than usual; Chris King, Danny Yoo, Andrey Sklyar, and Yu Feng, my collaborators in
the ISP that led to this project, and whose feedback helped shape many facets of this project; and Professor
Gary Pollice, who demonstrated great patience as my thesis reader.

1

Contents

1 Motivation 6

2 Background 7

2.1 Protocol Speci�cations . 7
2.1.1 Timing Diagrams . 7
2.1.2 Tables . 7
2.1.3 Text . 9
2.1.4 Structure . 9

2.2 Proposed Work�ow . 11
2.2.1 Automatic Protocol Skeleton Extraction . 11
2.2.2 Completion of Full Intermediate Representation . 14
2.2.3 Extraction of Veri�cation and Validation Artifacts . 14

3 Representing Timing Diagrams 16

3.1 Characteristics of Protocol Timing Diagrams . 16
3.1.1 Sequence and Synchronization of Signals . 16
3.1.2 Compositional Nature of Timing Diagrams . 17
3.1.3 Logical Divisions of Bus Protocol Timing Diagrams 18

3.2 Our Method: Blocks . 18
3.2.1 Syntax and Informal Semantics . 20
3.2.2 Formal Semantics . 23
3.2.3 Restrictions on Parallel Sequences . 29

3.3 Future Work on Blocks . 30
3.3.1 Adding Timing Constraints . 30
3.3.2 Glitches and Clean Signals . 32

4 Composing Timing Diagram Fragments to Form a Speci�cation 34

4.1 Composition Requirements for Imitating Speci�cation Structures 34
4.1.1 Extending the Block Structure for Composition . 34
4.1.2 Encapsulation of Protocol Features . 34
4.1.3 Types of Extension . 35
4.1.4 Oblivious Extension . 36

4.2 Aspect-Oriented Programming . 36
4.3 Our Composition Mechanism, by Example . 37

4.3.1 New Language Structures . 37
4.3.2 Basic Composition . 37
4.3.3 Concurrent Composition . 41
4.3.4 More Complicated Examples . 42

4.4 Our Primitive PCDs and Advice Types . 44
4.4.1 The Di�erence Between PCDs and ExtendPoints . 44

2

4.4.2 Why Match to Blocks? . 45
4.4.3 Primitive Extendpoints . 45
4.4.4 Advice Types . 47

4.5 Issues Requiring Further Examination . 48
4.5.1 Advice Collision and Con�icts . 48
4.5.2 Cancelling Scheduled Blocks . 49
4.5.3 More Complicated Protocol Features . 49

4.6 Other Explored Composition Mechanisms . 50
4.6.1 All Blocks . 50
4.6.2 Live Sequence Charts . 50
4.6.3 State Machine Driven Composition . 51

5 Conclusion 53

A Full Language Example 54

3

List of Figures

2.1 Timing diagram for basic read and write transfers in AMBA AHB. 8
2.2 Key to timing diagram conventions in the AMBA document. 8
2.3 A table from the AMBA speci�cation. 9
2.4 Table of contents for the AMBA AHB speci�cation. 10
2.5 Timing diagram for basic read and write transfers in AMBA AHB (shading added). 11
2.6 Timing diagrams showing wait states (Figure (a)) and pipelining (Figure (a)) in AMBA AHB. 12
2.7 Table of transfer types from the AMBA speci�cation. 13
2.8 Transfer types in AMBA AHB. 13

3.1 Timing diagram for basic read and write transfers in AMBA AHB. 17
3.2 2D Regular expression [4] for the AMBA basic transfer shown in Figure 3.1. 18
3.3 Timing diagram for basic read and write transfers in AMBA AHB showing logical blocks. . . 19
3.4 Timing diagram for an unde�ned-length burst in AMBA AHB showing logical blocks. 19
3.5 Speci�cation for the basic transfer of Figure 3.1 in our language. 20
3.6 Grammar for our block language. 22
3.7 A table from the AMBA speci�cation. 23
3.8 The TransType tabletype de�ned in our language. 23
3.9 A block de�ning a clock cycle, and its corresponding RTD. 24
3.10 A block de�ning the address phase of a transfer, and its corresponding RTD. 24
3.11 A block de�ning the data phase of a transfer, and its corresponding RTD. 25
3.12 A block de�ning a simple transfer, and its corresponding RTD. 25
3.13 A block with ambiguous semantics. 30
3.14 Four possible timing diagrams representing the same ambiguous block. 31
3.15 Three blocks with inconsistent semantics. 32

4.1 Table of contents for the AMBA AHB speci�cation. 35
4.2 The slave's retry response and the resultant transfer in AMBA AHB. 36
4.3 First timing diagram in AMBA AHB; shows basic read and write transfers. 38
4.4 Second timing diagram AMBA AHB; adds wait states to the basic transfer. 38
4.5 AMBA AHB basic transfer and waitstates in our language. 39
4.6 Pipelining and multiple transfers in AMBA AHB. 40
4.7 Implementing pipelining in our language without synchblocks. 41
4.8 Implementing pipelining in our language using a synchblock. 42
4.9 Four-beat wrapping burst of transfers from the AMBA AHB speci�cation. 43
4.10 Indeterminate-length burst from the AMBA AHB speci�cation. 44
4.11 Process for concurrent advice using synchblocks. 48
4.12 State machine from the AMBA APB speci�cation. 51
4.13 Example of a Statechart which de�nes a simple pipelined transfer. 52

4

List of Tables

4.1 Primitive extendpoints in our language. 46
4.2 Advice types in our language. 47

5

Chapter 1

Motivation

Veri�cation is a critical part of the Application-Speci�c Integrated Circuit (ASIC) design process; approxi-
mately 70% of the e�ort spent on the average project is consumed by veri�cation. For this reason, methods
which improve the e�ciency and accuracy of hardware veri�cation are immensely valuable.

In terms of human e�ort, the largest task in the veri�cation process is the design and creation of the
veri�cation artifacts which drive automated veri�cation. Two prominent types of these are Register Transfer
Level (RTL) assertions, and testbenches. Both of these artifacts must be hand-written by engineers based on
an informal speci�cation of the device to verify. This process can be thought of as a "translation" from the
informal speci�cation document to a formal veri�cation artifact which will accept devices with the desired
functionality.

Unfortunately, this translation process is di�cult in practice. The di�culty comes from the large dif-
ference between informal and formal representations. The most obvious di�erence between informal spec-
i�cations and veri�cation artifacts is in language; formal veri�cation artifacts use di�erent syntax with
well-de�ned semantics. This di�erence is desirable; without it, there would be no point to the translation.

The problem for veri�cation engineers lies in the other di�erences. Veri�cation artifacts di�er greatly
from informal speci�cations in their organization, scope, and emphasis. These make the initial translation
process time-consuming and error-prone. Locating errors in the resulting veri�cation artifacts is di�cult,
and it can be a challenge to re-use veri�cation artifacts for later projects with similar speci�cations.

The solution to these di�culties, we feel, is not to replace informal speci�cations with documents in
a hardware description language or some similar format with rigidly de�ned semantics. Such a proposal
ignores the value of informality, which facilitates conceptual understanding, modi�cation, and extension of
speci�cation documents. It also ignores the reality that all speci�cations, regardless of format, must come
from some type of informal description created in the design process.

Instead, we propose to bridge the gap between the existing styles of speci�cation and veri�cation ar-
tifacts with an intermediate representation. For this purpose, we have begun designing a language which
embraces aspects of typical informal speci�cations, but which has well-de�ned semantics. We seek to allow
in our language clearly-de�ned, machine-readable speci�cations which are similar in scope, organization, and
�exibility to the informal speci�cations they are based on.

6

Chapter 2

Background

2.1 Protocol Speci�cations

As this project focuses on the conversion of informal speci�cations to formal ones, it is important to under-
stand the features of typical informal speci�cation documents. Both the artifacts that are used to convey
the details of the speci�cation and the structure in which they are laid out contribute to the e�ectiveness of
these documents. As an example of a typical protocol speci�cation document, we use the Advanced Micro-
controller Bus Architecture (AMBA R©) Advanced High-Performance Bus (AHB) interface [2]. This standard
is widely used both in practice and as a benchmark in interface speci�cation and validation research.

2.1.1 Timing Diagrams

By far the most proli�c and important type of non-text artifact found in the AMBA document is the timing
diagram. Figure 2.1 shows the �rst of these that appears in the AMBA AHB, which demonstrates the
protocol for a basic read or write transfer. This timing diagram clearly and concisely communicates the
basic operation of the protocol to an engineer. It demonstrates both the sequencing of signals and how they
are synchronized across multiple channels.

Each line in the timing diagram represents a single signal. Each of these may be a single-bit signal or
a bus. Single-bit signals may take on values of logic HIGH and logic LOW, while buses are a collection
of many of these. Buses can be distinguished from single-bit signals in Figure 2.1 because their names are
annotated with a bit width, for example �HADDR[31:0]�. This means that the HADDR bus is a 32-bit bus.

Since this document uses a number of timing diagrams from the AMBA AHB speci�cation, we will
describe brie�y the conventions used in the AMBA timing diagrams. Figure 2.2 contains the key presented
at the beginning of the AMBA document. In addition to the conventions it presents, the AMBA key also
speci�es that shaded bus and signal areas represent unde�ned areas, where the value of the signal is not
important and can assume any value.

Timing diagrams are largely used to give concrete examples of the operation of a protocol, but, because
of their informality, allow for some abstraction. For example, the unlabeled white polygons in the diagram
represent �don't care� values; in these areas, the value of the signal is not important to the example shown in
the diagram. In addition, the �Control� portion of the protocol at this point in the speci�cation is not well
de�ned. The speci�cation has not described either the number of bits in the control signal or the content of
that signal. These have been replaced by a �Control� placeholder.

2.1.2 Tables

Tables are another important type of artifact found in informal speci�cations. In many cases, a given signal
or set of signals has some small number of values it can take on. Sometimes the operation of the protocol
depends on which of those values are held on that set of signals. This is often the case for bus control signals.

7

Figure 2.1: Timing diagram for basic read and write transfers in AMBA AHB.

Figure 2.2: Key to timing diagram conventions in the AMBA document.

8

Figure 2.3: A table from the AMBA speci�cation.

Usually, each possible value has a speci�c meaning and e�ect on the operation of the protocol. In these
cases, a table such as the one in Figure 2.3 will describe all the possible values of the signal, and its meaning
and usage. Tables are largely used to summarize a set of possible modes for a given feature in the protocol.

2.1.3 Text

The above artifacts and others which are less widely used are always accompanied in an informal speci�cation
by text. Text in an informal speci�cation �lls many roles: it introduces features and provides motivation,
it summarizes sections, describes causality in the protocol, and it provides information on which devices
are responsible for which signals. In terms of describing the functioning of the protocol, however, the
most important role of text is in describing nuances and resolving ambiguities that are introduced by other
artifacts. All of the other artifacts that appear in the speci�cations have severe limitations on what they
may express. Text is able to clarify areas which they have di�culty describing.

2.1.4 Structure

The �nal feature of informal speci�cations we will discuss is their structure. There are two aspects of this that
we will discuss. The �rst is the way in which a protocol is divided into pieces to be described. The second
is the way in which the artifacts described above are used together in an informal speci�cation document to
describe each of the pieces.

Figure 2.4 shows the table of contents entry for the chapter in the AMBA speci�cation describing the
AMBA Advanced High-performance Bus (AHB). The �rst three sections (3.1-3.3) of that chapter provide
an overview of the bus and the devices connected to it. Then the sections on the bus functionality begin.
3.4 introduces the basic transfer and how wait states and pipelining a�ect it. 3.5 introduces the di�erent
types of transfers, including single transfers, burst transfers, placeholder transfers when the master is busy,
and idle transfers when there is no data to be transmitted. These type of sections continue until section
3.14. 3.14-3.16 describe some details for implementation of the AHB, and the �nal �ve sections describe the
devices that may be connected to the AHB.

For our purposes, we care most about the sections that describe the bus functionality (3.4-3.13). These
sections describe the bus protocol incrementally, beginning with its most basic operation. Each subsequent

9

Figure 2.4: Table of contents for the AMBA AHB speci�cation.

section then extends or modi�es the protocol as introduced in the previous sections in order to add a new
piece of functionality.

To show how the artifacts described above are used in one of these sections to convey the material, we will
walk through the beginning of the �Basic Transfer� section in the AMBA document (section 3.4). Section
2.1.1 began this process, describing how the timing diagram for the basic transfer (Figure 2.1 is used in that
section. That diagram is repeated in Figure 2.5, with shading that we will describe later.

Figure 2.6 shows two more timing diagrams, in the order they are presented in the AMBA document.
Sequences of timing diagrams such as this are common in speci�cations. Even without the accompanying
text explaining the nuances of these diagrams a lot of information can be gathered from the sequence. Each
new diagram builds on the previous ones by adding detail or functionality.

Figure 2.6a shows that in some cases, the data phase of a transfer may be extended to span multiple
clock cycles. The areas in the diagram with solid outlines are identical to the portions shaded the same way
in the basic transfer shown in Figure 2.5. The portion of the diagram surrounded by dotted lines (beginning
in the third clock cycle) shows the part that has been added in this step.

In the data phase shown in this diagram the signal HREADY takes a logic LOW value instead of the
HIGH value shown in the basic transfer. The data phase in this diagram is extended by two clock cycles
until HREADY returns to a high value, at which point the transfer continues as normal. The surrounding
text explains that the slave device drives HREADY low in this example to tell the bus master it needs more
time to perform the request. Such an interaction is called a �wait state�. The text also explains that wait
states may be repeated until the slave device signals the master to continue by driving HREADY high.

The diagram in Figure 2.6b demonstrates a sequence of transfers. It shows how transfers in sequence are
pipelined: each transfers address phase occurs concurrently with the previous transfer's data phase. This
diagram also demonstrates an interesting e�ect that appears when the previous diagram's wait states are
combined with this one's pipelining. When the data phase of one transfer is extended by the slave device,
the address phase of the next transfer is extended as well. Note that this con�icts with the original stated
parameters of the address phase, which the text previously stated lasted one clock cycle.

The next artifact that appears in the speci�cation is the table shown in Figure 2.7. This introduces the
four types of transfers possible in the AMBA AHB, as shown in the timing diagram in Figure 2.8. Notice
in the timing diagram that the HTRANS[1:0] signal has taken the place of the previously underspeci�ed
control block. The text associated with the diagram describes each of the �ve transfers in the diagram.

Timing diagrams throughout the AMBA document are presented in similar contexts. This example
demonstrates three points about speci�cation documents:

1. The speci�cation is introduced in small pieces; �rst the basic operation is demonstrated, then the
document adds functionality to it. This is done either by introducing new features or by re�ning

10

Figure 2.5: Timing diagram for basic read and write transfers in AMBA AHB (shading added).

previous examples.

2. A large portion of the speci�cation can be learned by examining the sequence of timing diagrams alone.
Each of these demonstrates a fragment of the protocol that builds on pieces previously shown in other
diagrams. New fragments can be identi�ed by eliminating those portions of the diagram which are the
same as in previous diagrams.

3. The text surrounding the diagrams conveys clari�cation, motivation, and causality details. These are
essential particularly for conveying the operation of the protocol to a human, and a correct model of
the system cannot be constructed without the information they contain.

2.2 Proposed Work�ow

The current method for creating formal veri�cation artifacts requires a signi�cant amount of human e�ort.
Veri�cation engineers must interpret and understand the informal speci�cation of a design. Then, they have
to use that understanding to create each formal artifact by hand.

The long-term goal of this project is to partially automate that process. We imagine a veri�cation process
with three distinct stages. In the �rst, a tool would examine the informal speci�cation and extract a skeleton
formal speci�cation from it. In the second, veri�cation engineers would compare that skeleton to the informal
speci�cation, re�ning and �lling in sections to create a full formal speci�cation. We will refer to this as both
the "formal speci�cation" and "intermediate representation". In the third and �nal stage, a set of software
tools would extract from that formal speci�cation the actual veri�cation artifacts. Each of these stages will
be described in further detail below.

2.2.1 Automatic Protocol Skeleton Extraction

In Section 2.1, we showed the typical artifacts and structure found in an informal speci�cation. The way
in which certain artifacts are used and the document is structured leads us to believe that a machine

11

(a) Waitstates

(b) Multiple transfers and Pipelining

Figure 2.6: Timing diagrams showing wait states (Figure (a)) and pipelining (Figure (a)) in AMBA AHB.

12

Figure 2.7: Table of transfer types from the AMBA speci�cation.

Figure 2.8: Transfer types in AMBA AHB.

13

could mine quite a bit of information from the speci�cation document. In particular, we believe that by
examining sequences of timing diagrams, such as the one in Section 2.1.4, a software tool could extract a lot
of information about the functionality of a protocol.

We envision that this kind of information could be used by that same tool to construct the "skeleton" of
a formal speci�cation. The tool could begin creating the formal speci�cation, based only on the information
it knows. A sophisticated tool could even mark in the skeleton those places where it detected ambiguities or
missing information.

With an intermediate representation for the formal speci�cation such as the one we are proposing, this
speci�cation skeleton could be constructed to closely mirror the informal speci�cation. For example, the
skeleton for the AMBA speci�cation could be organized like the sections in the informal document. The
tool could place the information gathered in each section of the informal speci�cation in the corresponding
section of the formal speci�cation.

We do not presume that such a tool would be able to extract a complete and fully accurate formal
speci�cation. Such a task would require far more sophisticated natural language processing and reasoning
capabilities than the current state of the art would allow. However, we feel that automating even a small
portion of this process should reduce the burden on the veri�cation engineers.

2.2.2 Completion of Full Intermediate Representation

Since the output of the skeleton extraction tool would not be a complete formal speci�cation, in the second
stage engineers would have to �ll in the gaps and repair inconsistencies in the formal speci�cation skeleton.
In this stage, veri�cation engineers would systematically compare the informal speci�cation document to the
formal speci�cation. Any missing information would be �lled in, any ambiguities would be resolved, and any
errors would be �xed. This process would be greatly facilitated by two things: a very detailed skeleton, and
an intermediate representation which facilitated comparison to the original informal speci�cation.

Filling in the protocol skeleton would be greatly facilitated by two kinds of detail in the �rst stage's
output. First, and most obviously, the more accurate information the skeleton extraction tool is able to
gather, the better. Over time, we imagine that this tool would get more sophisticated. While initially it
would probably only be able to extract information from certain sequences of timing diagrams, over time it
might be able to handle a wider variety of artifacts, and do some limited text processing to make its output
more accurate.

The second key detail is information the tool does not know. This can be at least as valuable as the
�rst kind. With reliable and accurate information about ambiguous parts of the skeleton or pieces that are
missing, the engineer's job in the second stage would be much easier.

A high level of detail is important, but it has the potential to obscure the connection to the original
informal speci�cation. For this reason, the formal speci�cation should be structured in such a way that it
is easy to compare to the informal speci�cation. This means it must be laid out in a similar manner, and
matching sections between the informal and formal speci�cations must contain similar information. This
means that any details provided in any section of the formal speci�cation must be understandable given the
information provided in the matching section of the informal document.

One �nal thing to note about the second stage: while we present it here as a separate process that takes
place after the �rst stage, in practice it might prove more e�cient and e�ective if it were done as part of the
�rst stage. At run-time the skeleton extractor could notify a human of each ambiguity or hole in the skeleton
being created. That person could then opt to �ll in that portion of the skeleton immediately. Providing
that kind of information to the skeleton extractor might make it more e�ective on later parts of the informal
speci�cation.

2.2.3 Extraction of Veri�cation and Validation Artifacts

The �nal result of the second stage would be a full formal speci�cation of the protocol contained in the
informal document. Such a representation would unambiguously de�ne the functioning of the protocol.
It should be possible to create a set of tools which each extract veri�cation artifacts from that formal

14

speci�cation. We imagine a given veri�cation team would have a set of such tools that matched each of the
veri�cation methods they used. For example, a given team might use a tool to extract testbenches and a
tool to extract RTL assertions on each of the formal speci�cations they created.

While the ability to extract these artifacts directly is a huge bene�t of the intermediate representation,
there is another bene�t of that representation in this stage and beyond. Until a veri�cation team is reasonably
con�dent in their veri�cation artifacts, each failed test must be examine to determine if it is a problem with
the Device Under Test (DUT) or the veri�cation artifact. In many cases, early failures occur because the
veri�cation artifact does not accurately re�ect the functional description in the informal speci�cation. If a
team were following this proposed work�ow, this comparison could be conducted as a comparison between
the full formal speci�cation and the informal speci�cation.

15

Chapter 3

Representing Timing Diagrams

Since timing diagrams are such an important part of informal speci�cations, it is imperative that any other
representation of those speci�cations provide an adequate means of representing timing diagrams. The basic
building blocks of a speci�cation in our language are structures we call �blocks�, which represent small pieces
of timing diagrams. These can be composed to represent the type of timing diagrams that are common
in protocol speci�cations. In designing the syntax and semantics of our blocks, we have considered the
characteristics of the timing diagrams found in protocol speci�cations.

3.1 Characteristics of Protocol Timing Diagrams

We studied timing diagrams as they appear in protocol speci�cations. Through this process, we identi�ed
three characteristics of timing diagrams that we feel must be supported by any timing diagram representa-
tion. These characteristics are: their representation of both sequence and synchronization of signals, their
compositional nature, and the way in which they are divided into logical blocks. In the following sections,
we will examine each of these as they appear in the timing diagrams of the AMBA speci�cation [2].

3.1.1 Sequence and Synchronization of Signals

One key aspect of timing diagrams is the type of information they are able to represent. Each timing diagram
in a speci�cation represents a single example of an interaction that is allowed by the protocol. It shows a
sequence of values on each of a set of signals.

One way of thinking about a timing diagram's set of signals is as parallel lines of execution. With such a
representation, it becomes easy to talk about the sequence of values on a single signal; the value of a signal
can simply be represented as a function from a point in time to a value. This technique works whether the
signal in question is a single-bit signal or a bus, where the value of a set of related signals can be encoded as
an integer or character.

However, timing diagrams show a set of such signals because the interaction between parallel signals is
just as important. The values on each signal must be synchronized with those on other signals. For example,
in the basic transfer shown in Figure 3.1, the �A� value on the HADDR signal must be synchronized with
the "Control" value on Control and one cycle of HCLK. In addition, the end of the value �A� on HADDR
must be synchronized with changes on all three of HWDATA, HREADY, and HRDATA.

Adding synchronization information to a �parallel execution� type of timing diagram model requires a
di�cult tradeo� between the granularity of control available and the syntactic overhead in describing the
synchronization. We feel that other work which proposes alternative representations for timing diagrams
falls too far on either end of this spectrum. This will be discussed in the rest of this section.

One proposed solution is to divide a timing diagram into equal-length time quanta. Within each quantum,
the values on all signals must be held constant, but at the border of each slice, they may change. Oliveira

16

Figure 3.1: Timing diagram for basic read and write transfers in AMBA AHB.

and Hu use this technique to synchronize their language [8]. Each �character� in their regular expression
language represents a value on a set of signals that is held for one clock cycle. This means that signal
values which persist for any period shorter than a clock cycle, such as the �unstable� (shaded) value on the
HRDATA signal in Figure 3.1, cannot be represented in their language.

A simple solution to this is to divide time into smaller quanta. However, such a solution does not solve
another drawback of this scheme: in many cases, it makes the resulting speci�cation too rigid. For example,
the AMBA speci�cation does not explicitly specify the duration of the unstable value on the HRDATA
signal; it simply speci�es that HRDATA will be unstable at the beginning of the Data phase, but will be
stable at the end of that clock cycle. An actual implementation of the AMBA speci�cation would need to
explicitly de�ne the maximum length of this unstable region, but the protocol speci�cation should not have
to be so concrete. Quantization of time in this manner does not give �ne enough control over synchronization
because it loses an abstraction of time that timing diagrams provide.

Fisler [4] proposed a solution closer to the other end of the spectrum. Her language uses regular expres-
sions similar to Oliveira and Hu's for specifying the sequence of values on a signal, but does not specify the
relative duration of those signals. Synchronization between parallel signals is accomplished through separate
synchronization annotations. This is true even for synchronizing events with the clock.

Unfortunately, though this approach does allow much more control over synchronization, it makes speci-
�cation very complicated. Even very simple diagrams such as the basic AMBA transfer (Figure 3.1) require
many language constructs to represent. For example, the AMBA basic transfer is (mostly) de�ned by the
�2D regular expression� in Figure 3.2.

There is an even larger di�culty than the sheer amount of text required for such a simple case. The
separation of the sequencing and synchronization aspects of timing diagrams makes it di�cult to develop an
intuitive understanding of the example in Figure 3.2. This solution preserves the granularity of control and
the abstraction operations inherent in graphical timing diagrams, but it loses the succinctness and intuitive
expression of timing diagrams that Oliveira and Hu's work preserves.

3.1.2 Compositional Nature of Timing Diagrams

The second major feature of timing diagrams that we considered is the way in which multiple diagrams can
be composed together into larger ones. This feature can be seen by comparing the timing diagram for the
basic transfer in AMBA (Figure 3.3) to a timing diagram for a burst (Figure 3.4). The solid outlined areas
of the burst diagram show the portions of that diagram which match the basic transfer diagram. The areas

17

Figure 3.2: 2D Regular expression [4] for the AMBA basic transfer shown in Figure 3.1.

outlined with dotted lines mark new pieces, each of which could have been represented as a stand-alone
timing diagram.

3.1.3 Logical Divisions of Bus Protocol Timing Diagrams

The �nal feature of timing diagrams that informed the design of our timing diagram representation is the
way in which they can be divided into logical blocks. Certain sets of signals within a timing diagram will
often be synchronized with each other. This allows a timing diagram to be partitioned into rectangular
sections, each of which contains a synchronized sequence of values on each of the signals within. Examples
of these logical blocks are marked on Figure 3.3 and Figure 3.4. In the basic transfer diagram, the authors
of the speci�cation have even labeled the logical blocks for us: one is referred to as the "Address phase",
and the other as the "Data phase".

Logical blocks have very clearly synchronized beginnings and endings; however, within the block syn-
chronization is less important. For example, the �Data phase� in the basic transfer diagram (Figure 3.3)
very clearly begins and ends at the same time as the beginning and end of the second clock cycle, but the
values of the HWDATA and HRDATA signals during that phase are not as clearly de�ned. The exact point
at which they become stable is not synchronized with any events shown in the diagram.

It should be noted that we have observed this logical block feature in all of the bus protocol speci�cations
we have examined. We do not, however, presume that it is present in all applications for which timing
diagrams are used. This may mean that some other representation for timing diagrams may be more
appropriate than ours in other domains.

3.2 Our Method: Blocks

We have taken a slightly di�erent approach to the problem of representing timing diagrams from most of the
established literature. We have chosen to focus on the logical block structure we have found in bus protocol
timing diagrams, and have built a language which allows recursive subdivision of timing diagrams into these
types of logical blocks.

18

Figure 3.3: Timing diagram for basic read and write transfers in AMBA AHB. Shading added to show logical
blocks.

Figure 3.4: Timing diagram for an unde�ned-length burst in AMBA AHB. Shading added to show logical
blocks.

19

//basic clock cycle

block clock() {

CLK = 1, CLK = 0;

}

5

//address/control

block haddrctrl(value addr[31:0],block control) {

clock;

HADDR[31:0] = addr[31:0];

control; 10

}

//data

block data(value wdata[31:0],value rdata[31:0]) {

clock; 15

HREADY = 1;

HWDATA[31:0] = unstable as wdsetup, HWDATA[31:0] = wdata[31:0];

HRDATA[31:0] = unstable as rdsetup, HRDATA[31:0] = rdata[31:0];

}

20

//simple transfer

block simpletrans(value addr[31:0],value wdata[31:0],signal

rdata[31:0],block control) {

haddrctrl(addr[31:0],control),data(wdate[31:0],rdata[31:0]);

} 25

Figure 3.5: Speci�cation for the basic transfer of Figure 3.1 in our language.

3.2.1 Syntax and Informal Semantics

The fundamental syntactic structure for de�ning fragments of timing diagrams is what we refer to as a block.
A few examples of these blocks can be seen in Figure 3.5, which contains the representation in our language
of the basic transfer shown previously in Figure 3.1. A block consists of the keyword block, followed by an
identi�er for the block and a list of arguments. The body of the block is de�ned between curly braces, and
consists of a number of sequences, each of which is terminated by a semicolon. Each sequence consists of one
or more blocks, separated by commas.

Conceptually, our blocks correspond exactly to the logical blocks described in Section 3.1.3. The clock

block corresponds to a single clock cycle in Figure 3.1. Similarly, the haddrctrl block corresponds to the
address phase, and the data block corresponds to the data phase. The simpletrans block ties them all
together, de�ning a sequence in which there is an address phase and then a data phase.

Like the logical blocks described above as part of timing diagrams, the beginning and end points of our
blocks are very clearly de�ned. However, all events in the middle of a block can occur at any time between
those two points. In terms of the syntactic structures in Figure 3.5, this means that all sequences within a
block must begin simultaneously and end simultaneously. Each sequence within a block describe a series of
sub-blocks which occur sequentially. Each block in a sequence begins immediately after the block before it
ends, but the length of each of the blocks in the sequence is not de�ned.

To more clearly de�ne the semantics of blocks, we will examine some of the blocks in Figure 3.5 in more
detail. First, the clock block is the simplest of the example blocks. It contains only one sequence, and
de�nes only one signal. It simply de�nes a clock cycle, in which the CLK signal is �rst high, and then low.
It says nothing about the duration of the high or low value, nor does it describe the relative lengths of either

20

portion of the clock cycle. We will describe later how this type of information might be added to this block
description.

The next block, the haddrctrl block, is a bit more complicated. The �rst two sequences are rather simple;
the previously de�ned clock block is used to ensure every event in the haddrctrl block occurs within one clock
cycle, and the sequence HADDR[31:0] = addr[31:0] speci�es that for the duration of that clock cycle the
HADDR signal should have the value �addr�. �addr� is a signal value which is an argument to the block.
Exposing this value argument outside of the haddr block will allow later blocks which use the haddrctrl block
to constrain its behavior. Note that the statement "HADDR[31:0] = addr[31:0]" is what we refer to as an
atomic block. This is the simplest form a block can take�one value held on one signal.

The �[31:0]� notation next to both HADDR and addr specify the bit width of each value. Both HADDR
and ADDR are 32-bit values, with indices 0-31 referring to each bit. This notation is used both to specify
the bit width of a value argument to a block, and to assign portions of values to di�erent signals. In some
protocols, a value argument may be split between multiple signals. In such a case, the speci�cation in our
language might have an atomic block of the form �WDATA[8:0] = HADDRDATA[31:24]�. We have seen a
need for this in protocols with multiplexed buses, such as the multiplexed address/data bus in Intel's 8088
speci�cation [6].

The only remaining piece in the haddrctrl block is the sequence consisting entirely of the block "control",
which is an argument to the haddrctrl block. Looking at the basic transfer diagram in Figure 3.1, we can see
that the �Control� part of that diagram looks a little di�erent: its name is not in bold, and it is not followed
by a bit width in brackets like the other signals. The surrounding text tells us that is because �Control� is
not a signal; it is a placeholder for a set of signals which will be de�ned later. The representation for this in
our language is a block named �control� which is passed into the haddrctrl block as an argument.

The data block, which corresponds to the data phase in the basic transfer, introduces only a few new
concepts. These can all be seen in the third and fourth sequences in that block. The �rst new thing is the use
of the keyword unstable. This is a special value that can be assigned to a signal whose value may �uctuate
before taking on a distinct value. This is represented in the graphical diagram as a shaded polygonal area
in the middle of a signal's waveform.

One might wonder why we have chosen to explicitly specify the unstable areas in the data phase of the
basic transfer when there are a number of other unstable regions shown in the diagram (for example, before
and after the �A� value on the HADDR signal). This is because the unstable regions before the �Data(A)�
values in the data phase are functionally di�erent than the other unstable regions in the diagram; this is
suggested in the diagram by the relative length of those unstable regions. The other unstable regions are
what are refered to as glitches: momentary �uctuations in a signal as it changes from one value to another.
The unstable regions at the beginning of the data phase, however, are not glitches; they are the setup periods

for the read and write data on the bus. Because of the delays involved when accessing data from most devices
(such as RAM chips), the data for a transfer is unlikely to be available at the very beginning of the data
phase. Therefore, the value of the HWDATA and HRDATA signals will �uctuate as the data is retrieved.

Glitches are relatively unimportant events; because of the complicated logic driving most signals and the
time it takes for an electrical signal to propogate through that logic (propogation delay), most signals will
glitch when their values change. A signal may even glitch when its values do not change, if the internal state
of the device driving that signal changes. It is usually more important in a speci�cation to explicitly state
when a signal will not glitch, as such a signal (referred to as clean) is not the typical case. Ensuring a clean
signal typically requires extra components in the design of the circuit to smooth �uctuations.

Setup times are di�erent. They are based on the performance of the device driving the data on the bus.
Speci�cations usually impose very strict time constraints on the length of these periods; a data signal which
is unstable past the allowed setup time may be unstable when that signal's value is read. Such an occurence
can lead to extremely unpredictable system behavior.

Because protocol designers often add timing constraints to setup periods, we have chosen to name both
of the setup periods in the data block. This is by using the keyword as after the de�nition of those atomic
blocks. These names are intended to make it easier to add timing constraints to those blocks at a later point.

The �nal block in the example, called simpletrans, demonstrates how higher-level blocks may be composed.

21

ex ::= bl ex | tt ex | ε (expressions)
bk ::= block id (al) { sq } (block definition)
al ::= ar, al | ε (argument list)
ar ::= block id | value si | id id (argument declaration)
sq ::= bl; (sequences)
bl ::= be, bl | ε (block list)
be ::= nb | id | ib (block expression)
nb ::= id(nl) (named block)
nl ::= na, nl|ε (named block argument list)
na ::= id | lv (named block argument)
ib ::= si = v | si = v as id (inline block)
si ::= id | id[n : n] (signal identifier)
v ::= si | n (values)
tt ::= tabletype si {el} (tabletype definition)
el ::= ed, el | ε (tabletype enumerated value list)
ed ::= id = n (tabletype enumerated value)

lv ::= unstable | dc | n | id (logical values)
n ∈ N (numbers)
id ∈ {a− zA− z}{a− zA− Z0− 9_}∗ (identifiers)

Figure 3.6: Grammar for our block language.

Syntactically, it is very simple, but it exposes some of the advantages of our block syntax. The simpletrans

block de�nes the whole basic transfer in Figure 3.1, which consists of an address phase followed by a data
phase. In a block, this behavior can all be de�ned within one sequence, even though the address and data
phases do not contain all of the same signals. This means that all sequences in the address phase end
immediately before the beginning of all the sequences in the data phase. Any signals which are not de�ned
in one of the two blocks have unconstrained values for that portion of the sequence. The semantics of our
blocks allow us to very intuitively de�ne the basic transfer as an address phase followed by a data phase.

The grammar for our language is shown in Figure 3.6. There are a few things represented in the grammar
which are not described above. The �rst of these is the tabletype de�nition (tt) expression. These are used to
reproduce tables like those found in informal speci�cations, which de�ne a set of possible values for a signal
and the use or meaning for each. An example of this is shown in Figure 3.7, and the associated tabletype
in our language is shown in Figure 3.8. In our language, these function like enumerated types in C++ or
Java. In blocks, they are treated just as signals with the speci�ed bit width, but they may be assigned the
constant values de�ned in their associated enumerated value list. In the grammar, the ar → id id production
for argument delcarations is used for declaring arguments of a de�ned tabletype.

Another syntactic element in the grammar not shown in the above examples is the value �dc�, which
may be assigned to a signal. This is used to de�ne a portion of a signal whose value doesn't matter, but is
not unstable. We expect this to be used infrequently; typically exposing such an area as a value argument
to a block accomplishes the same thing. However, we have used �dc� for one case: a busy transfer in the
AMBA speci�cation. These are exactly like normal transfers, but the control signals are di�erent, and the
address and data don't matter. �dc� is used in this case to turn the already de�ned simple transfer into a

22

Figure 3.7: A table from the AMBA speci�cation.

tabletype TransType[1:0] {IDLE = 00b,BUSY = 01b,NONSEQ = 10b,SEQ = 11b};

Figure 3.8: The TransType tabletype de�ned in our language. Corresponds to the table in the AMBA
speci�cation shown in Figure 3.7.

busy transfer. This can be seen on line 74 in Appendix A.
One element which is not represented in either the grammar or the examples above is the way in which

values may be represented. The grammar states that values may be any natural number (n ∈ N), but it
does not state the notation for those numbers. We allow values to be written in decimal (ex: 49), binary (ex:
101101b), hexadecimal (ex: 31x), or as characters, where the value is equal to the character's 8-bit ASCII
code (ex: `1'). These forms of notation are interchangable wherever the non-terminal n appears.

3.2.2 Formal Semantics

For de�ning the formal semantics of our block language, we use Regular Timing Diagrams (RTDs), as
proposed by Amla et al. [1]. RTDs provide a way of expressing both synchronous and asynchronous timing
diagrams with precise semantics. Amla et al. also provide a technique for converting RTDs into ∀FA
automata and for using them in model checking. As automata are standard representations for validation
and veri�cation, this semantics gives us a good foundation for using blocks with mainstream veri�cation
techniques.

An RTD is a triple (WF,SD,CD), where:

• WF is a �nite set of waveforms, each of which is a function from points on that waveform to values
(A : [0, n) 7→ SV). Values (SV) may be 0, 1, or X, where X denotes a �don't care�, or variable, value.
Points on a waveform are ordered, but have no other timing or value constraints. The initial point of
some waveform A is always (A, 0), and the endpoint is always (A, length(A)− 1).

• SD is a set of sequential dependencies on the points of WF . A sequential dependency denotes a
constraint on the amount of time between two points, which may be in di�erent waveforms. Each of

these is speci�ed as (A, i)
[a,b〉−−−→ (B, j), where a ∈ N, b ∈ N ∪ {∞}, 1 ≤ a and a ≤ b.

23

//basic clock cycle

block clock() {

CLK = 1, CLK = 0;

}

(clock block)

WF :{CLK}
CLK : 0 7→ 1, 1 7→ 0, 2 7→ X

SD :{}
CD :{{(CLK, 0)}, {(CLK, 2)}}

Figure 3.9: A block de�ning a clock cycle, and its corresponding RTD.

//address/control

block addr (value addr[31:0]) {

clock;

HADDR[31:0] = addr[31:0];

} 5

(addr block)

WF :{CLK, HADDR}
CLK : 0 7→ 1, 1 7→ 0, 2 7→ X

HADDR : 0 7→ addr, 1 7→ X

SD :{}
CD :{{(CLK, 0), (HADDR, 0)}, {(CLK, 2), (HADDR, 1)}}

Figure 3.10: A block de�ning the address phase of a transfer, and its corresponding RTD. Uses the clock
block from Figure 3.9.

• CD is a set of concurrent dependencies. Each of these is a set of points which occur at the same
time. Each concurrent dependency's set of points must be disjoint from that of all other concurrent
dependencies in a given RTD. Each point may occur in only one concurrent dependency. The set of
initial and �nal points of each waveform are prede�ned concurrent dependencies.[1]

Figures 3.9-3.12 show an example of expressions in our language translated into RTDs. We will describe
the algorithm for doing this in the next few paragraphs, and the pseudocode for the algorithm can be found
in Algorithm 3.

Since blocks are recursively composed of other blocks, the translation algorithm is recursive. Therefore,
we begin our discussion of the algorithm by examining the base case for recursion, the atomic block (for
example, �CLK = 0�). The RTD for this kind of block is very simple because its timing diagram is simple.
The RTD has one waveform, with one point at which that waveform has the speci�ed value (in this case, 0).
In order to represent the fact that the value is held for some period of time, and to make later uni�cation
of sequences of blocks easier, we add a second point at which the waveform takes on a value of X. The
�nal requirement to make this a complete RTD is to add the concurrent and sequential dependencies. While
there are no sequential dependencies, RTDs are required to always have two concurrent dependencies, one
at the beginning of all waveforms, and one at the end of all waveforms. Each of the two points is the sole
point in one of those two concurrent dependencies.

We will now incrementally expand the complexity of this example to reveal the entire translation process.

24

//data

block data(value wdata[31:0]) {

clock;

HREADY = 1;

HWDATA[31:0] = unstable as wdsetup, HWDATA[31:0] = wdata[31:0]; 5

}

(data block)

WF :{CLK, HREADY, HWDATA}
CLK : 0 7→ 1, 1 7→ 0, 2 7→ X

HREADY : 0 7→ 1, 1 7→ X

HWDATA : 0 7→ X, 1 7→ data, 2 7→ X

SD :{}
CD :{{(CLK, 0), (HREADY, 0), (HWDATA, 0)}, {(CLK, 2), (HREADY, 1), (HWDATA, 2)}}

Figure 3.11: A block de�ning the data phase of a transfer, and its corresponding RTD. Uses the clock block
from Figure 3.9.

//simple transfer

block simpletrans(value addr[31:0],value wdata[31:0],signal

rdata[31:0]) {

haddrctrl(addr[31:0]),data(wdate[31:0]);

} 5

(simpletrans block)

WF :{CLK, HADDR, HREADY, HWDATA}
CLK : 0 7→ 1, 1 7→ 0, 2 7→ 1, 3 7→ 0, 4 7→ X

HADDR : 0 7→ addr, 1 7→ X, 2 7→ X

HREADY : 0 7→ X, 1 7→ 1, 2 7→ X

HWDATA : 0 7→ X, 1 7→ data, 2 7→ X

SD :{}
CD :{{(CLK, 0), (HADDR, 0), (HREADY, 0), (HWDATA, 0)},

{(CLK, 2), (HADDR, 1), (HREADY, 1), (HWDATA, 1)},
{(CLK, 4), (HADDR, 2), (HREADY, 2), (HWDATA, 2)}}

Figure 3.12: A block de�ning a simple transfer, and its corresponding RTD. Builds on the blocks in Figures
3.9-3.11.

25

Algorithm 1 Utility functions used by ConvertToRTD

1: function ChangePoint(waveform W , point p, value v) : waveform
2: F ←W
3: F (p)← v
4: return F
5: end function

6: function AddPoint(waveform W , value v) : waveform
7: return W ∪ {|W | 7→ v}
8: end function

9: function GetSignals(block b) : {signal}
10: R← {}
11: for all sequences s in b do
12: for all blocks c in s do
13: if c is an atomic block, of the form g = v then
14: R← R ∪ {g}
15: else

16: R← R ∪GetSignals(c)
17: end if

18: end for

19: end for

20: return R
21: end function

The next most simple case is a block which has only one sequence, which contains only atomic blocks referring
to one signal. An example of this is the clock block in Figure 3.12. This case is almost equivalent to the
concatenation of two atomic blocks; again, each atomic block in the sequence corresponds to a single point
in the RTD's waveform. Since in this case multiple points are already being de�ned on that waveform, the
X-transitions at the end of every sub-block can be removed. However, the �nal X-transition is still necessary.
Initial and �nal concurrent dependencies are added to this example in the same way as in the previous one.

Adding concurrent sequences adds very little complexity to the resulting RTD. To do this, we need only
to add additional waveforms for each additional signal, and add the beginning and end points of each of those
waveforms to the initial and �nal concurrent dependencies. However, it should be noted that in order for the
semantics to be unambiguous, no signal may appear in two parallel sequences. This is certainly a limitation
of this translation algorithm, but it seems to also be a limitation of the block model. This limitation is
discussed further in Section 3.2.3. So far, however, we have not encountered a case where it has obstructed
our representation of a protocol speci�cation in blocks.

The next step in increasing the complexity of the examples we consider is adding more complex sub-
blocks. The data block shown in Figure 3.12 is an example of such a block. In order to understand how
nested blocks are incorporated into a larger block's RTD, consider the case where a block is listed in a
sequence with atomic blocks on both sides. Intuitively, we would like to inject the RTD semantics of the
nested block into the RTD of theblock that contains it. With a few small modi�cations, that is exactly what
can be done.

The nested block is �rst converted into a standalone RTD. All of its points must then be shifted to
account for the points added for the previous blocks in the sequence. This process must be applied not only
in the de�nition of the nested block's waveform, but also in its concurrent and sequential dependencies. Once
this process is done, the nested block's sequential dependencies can be added as-is to the containing block's
sequential dependencies. The concurrent dependencies can be similarly added to the containing block's,
but any overlapping dependencies must be merged together (no point may occur in multiple concurrent

26

Algorithm 2 Appending one RTD to another

1: function AppendRTD(RTD R1 = (W1, S1, C1), RTD R2 = (W2, S2, C2)) : RTD
2: Precondition: domain(W2) ⊆ domain(W1)
3: newW ←W1
4: newS ← S1
5: newC ← C1
6: for all w ∈ dom(W2) do
7: newW (w)← ChangePoint((newW (w), |newW (w)| − 1,W2(w)(0)))
8: for all i ∈ dom(W2(w)), i > 0 do
9: newW (w)← AddPoint(newW (w),W2(w)(i))
10: end for

11: end for

12: for all sd = ((x, i)
[a,b〉−−−→ (y, j)) ∈ C2 do

13: k ← i+ length(W1(x))− 1
14: l← j + length(W1(y))− 1

15: newS ← newS ∪ {((x, k) [a,b〉−−−→ (y, l))}
16: end for

17: newS ←W1 ∪ newS

18: for all cd ∈ C2 do
19: newcd← cd
20: for all (x, i) ∈ cd do
21: newcd← newcd ∪ {(x, i+ length(W1(x))− 1)}
22: end for

23: for all c ∈ newC do . merge CDs referring to the same point
24: if newcd ∩ c 6= {} then
25: newC ← newC − {c}
26: newcd← newcd ∪ c
27: end if

28: end for

29: newC ← newC ∪ {newcd}
30: end for

31: return (newW,S1 ∪ newS,C1 ∪ newC)
32: end function

27

Algorithm 3 Translating a block into an RTD

1: function ConvertToRTD(block block) : RTD
2: W ← {} . Initialize
3: S ← {}
4: C ← {}
5: for all g ∈ GetSignals(block) do
6: W ←W ∪ {s 7→ {0 7→ X}}
7: end for

8: if b is an atomic block, of the form g = v then
9: W (g)← ChangePoint(W (g), 0, v)
10: W (g)← AddPoint(W (g), X)
11: else

12: finalsigs← {}
13: for all sequences s ∈ block do . Main RTD Construction Loop
14: p← null

15: sW ← {}
16: sS ← {}
17: sC ← {}
18: for all blocks b ∈ s, in order do
19: R← ConvertToRTD(b)
20: (sW, sS, sC)← AppendRTD((sW, sS, sC), R)
21: p← b
22: end for

23: finalsigs← finalsigs ∪GetSignals(p)
24: W ←W ∪ sW
25: S ← S ∪ sS
26: C ← C ∪ sC
27: end for

28: for all g ∈ GetSignals(block)− finalsigs do
29: W (g)← AddPoint(W (g), X)
30: end for

31: end if

32: bcd← {} . add concurrent dependencies
33: ecd← {}
34: for all g ∈GetSignals(block) do
35: for all cd ∈ C do

36: if (g, |W (g)| − 1) ∈ cd then
37: ecd← ecd ∪ {cd}
38: C ← C − {cd}
39: end if

40: if (g, 0) ∈ cd then
41: bcd← bcd ∪ {cd}
42: C ← C − {cd}
43: end if

44: end for

45: end for

46: C ← C ∪ {bcd, ecd}
47: return (W,S,C)
48: end function

28

dependencies). In addition, the initial concurrent dependency of the block must be merged with the �nal
one of the previous block in the sequence. The algorithm for the whole process can be seen in Algorithm 2.

The only remaining problem is the issue of areas in the sequence for which certain signals are unde�ned.
A block in a sequence may specify signals which no other blocks in the sequence mention, but the containing
block must correctly specify that signal's behavior for the entire duration of the block. Therefore, whenever
a signal is mentioned in the current block that is not mentioned in the previous block, an additional point
must be added to that block's waveform with a value of X to represent the unspeci�ed period.

The ConvertToRTD function in Algorithm 3 contains the overall process for converting a block to
an RTD. This function takes a block (either atomic or non-atomic) as input and returns an RTD (a triple
(WF,SC,CD), described above). The function consists of three distinct phases: initialization (lines 2 - 7),
construction of the waveforms (lines 8 - 31), and uni�cation and creation of the concurrent dependencies
(lines 32 - 46). Currently, blocks do not reaquire the creation of sequential dependencies, so every block's
RTD has an empty set for SD.

The initialization phase is very simple. The three sets that will become the RTD'sWF , SD and CD (W ,
S, and C, respectively) are all initialized to empty sets. Then, a waveform for each signal that is mentioned
in the input block or its sub-blocks is added to W . Each of these initial waveforms contains only one point
with value X. Throughout the function, the terminating X-transition will be maintained on each of the
waveforms in W as new points are added.

The waveform construction phase is the most complicated portion of the algorithm. All of the waveforms
are constructed incrementally by examining each sequence block-by-block. The only exception is the case
where block is an atomic block. This is the base case for ConvertToRTD's recursion, and is handled by
lines 8 - 10. An atomic block's waveform has two points, and concurrent dependencies at the beginning and
end.

The case for more complicated blocks is on lines 12 - 31. The loop on line 13 iterates through each
sequence in the block (order does not matter). The nested loop on line 18 iterates through each sub-block in
a given sequence in order, incrementally constructing an RTD for the sequence. The code within that loop
converts each sub-block into an RTD, and concatenates it to the RTD being constructed. At the end of the
sequence loop, on lines 23 - 26, all of the signals that appear in the �nal block of s are recorded, and the
RTD for s is added to the RTD in progress for the entire block.

The only thing left to mention about the non-atomic block case is that any signal which is not speci�ed
in the last block in a sequence must have an additional X-transfer. If this is not explicitly added, the RTD
will not correctly represent that unspeci�ed period at the end of the block. The variable finalsigs is used to
keep track of all the signals speci�ed at the end of each sequence, and the loop at line 28 adds the X-transfers
for any signals which are speci�ed somewhere in block, but are not speci�ed at its end.

Only one thing remains at the end of ConvertToRTD: creating the initial and �nal concurrent depen-
cencies. This process seems relatively simple, but there is a constraint on the concurrent dependencies of an
RTD; each point in the RTD appear in at most one concurrent dependency. The loop on lines 32-46 handles
this task, adding each signal's initial and �nal points to the block's initial and �nal concurrent dependencies.

It was mentioned above that each sub-block of block is converted to an RTD and then appended to
the working RTD; however, we did not adequately describe the how appending is done. The code for that
function is in Algorithm 2. The process is relatively simple; the primary change that needs to be done is
shifting all of the points in the second RTD to be after the existing waveforms in the �rst RTD. This must
be repeated for the waveform, sequential dependency, and concurrent dependency portions of the RTD.

3.2.3 Restrictions on Parallel Sequences

Section 3.2.2 mentioned brie�y that no pair of parallel sequences may contain blocks which assign values to
the same signal. If this rule is not enforced, it complicates the simple semantics of blocks, and can lead to
blocks with ambiguous or inconsistent semantics.

If we consider the case where two sequences assign values to the same signal, the second sequence read in
must unify its assignments with the �rst signal's. This can be done in two ways. The second sequence may
�t its assignments into unde�ned segments of the existing waveform, or it may unify its assignments with

29

block ambiguous() {

SIG1 = 1A, SIG2 = 1B, SIG1 = 1C;

SIG3 = 2A, SIG2 = 2B, SIG3 = 2C;

}

Figure 3.13: A block with ambiguous semantics.

matching areas in the existing waveform. Both options create a partial ordering on events across multiple
sequences, which come from new cross-sequence dependencies. The syntax of blocks is intended to make it
easy to see the ordering within a sequence; ordering across sequences could be very di�cult to identify.

Even worse, these new dependencies would allow the de�nition of blocks with ambiguous or even in-
consistent semantics. An example of an ambiguous block is shown in Figure 3.13, and some of the possible
timing diagrams for that block are shown in Figure 3.14. Because the beginning and end points of the middle
blocks of each of the sequences in the ambiguous block are not clearly de�ned (because of the semantics of
blocks), the order of the �1B� and �2B� values on SIG2 is ambiguous. When these two values are equal, they
may even overlap, as shown in Figures 3.14(c) and (d).

A block can have inconsistent semantics when two sequences assign con�icting values to the same signal
at the same time. A simple example of this is shown in Figure 3.15a. Figure 3.15b shows a slightly more
complicated example, where the inconsistency comes from con�icting assignments to the SIG2 signal at the
end of the block. While all blocks could be checked for consistency at compile time, Figure 3.15c demonstrates
that the inconsistency in a block can be complicated even further. These examples show only simple blocks;
in some cases, an inconsistency might only arise in the case of a very speci�c composition. This would make
uni�cation an even more di�cult task.

We enforce a restriction on parallel sequences to avoid all these ambiguity and inconsistency pitfalls.
The restriction is that the sets of signals that parallel sequences assign values to must be disjoint. In the
examples we have studied, however, this restriction has not been very limiting.

3.3 Future Work on Blocks

So far, we have been able to test the block model on many di�erent examples, and have found that it
supports representing protocol speci�cations very well. We have re�ned the block model somewhat through
this process, and identi�ed some possible extentions. Two of these were representing timing constraints in
blocks and representing glitches. While we have identi�ed mechanisms for both of these which seem to work
well, we have not yet been able to investigate them enough to unequivocally recommend their use.

3.3.1 Adding Timing Constraints

Protocol speci�cations usually describe the logical functioning of the protocol in a way that is independent of
the technology used to implement the protocol. This means that protocol speci�cations rarely give concrete
timing constraints for the events in the protocol. Concrete implementations of those speci�cations, however,
must give such consraints. For this reason, we would like our block model to allow timing constraints without
requiring them, and allow them to be added to an existing block speci�cation. We have identi�ed a way
of specifying timing constraints which seems to satisfy these requirements. However, our e�orts so far have
been focused on the AMBA speci�cation, which does not provide timing constraints, so we do not feel we
have conducted an adequate investigation of this technique's merits.

Our technique takes advantage of the fact that blocks have clearly de�ned beginnings and ends, and that
everything within the block must occur between those two points. Our proposed technique adds a new type
of block, which contains only a timing constraint. By using such a block as part of a sequence, a delay
between two events can be speci�ed. By using a timing block in parallel with another block, one can specify

30

SIG1

SIG2

SIG3

V�VVVVVVVV�UUUUUU�VVVVVVV�VV1A 1C

V�UUUUUUUU�VVVVVV��VV�U�VV1B 2B

V�VVVVVVVVVVVVVVVVVV�UU�V�VV2A 2C

(a) Possibility 1

SIG1

SIG2

SIG3

V�VVVVVVVV�UUUUUU�VVVVVVV�VV1A 1C

V�UU�VV��VVVVVV�UUUUUUU�VV2B 1B

V�VV�UU�VVVVVVVVVVVVVVVVV�VV2A 2C

(b) Possibility 2

SIG1

SIG2

SIG3

V�VVVVVVVV�UUUUUU�VVVVVVV�VV1A 1C

V�UUUUUUUU�VVVVVV�UUUUUUU�VV1B = 2B

V�VVVVVVVV�UUUUUU�VVVVVVV�VV2A 2C

(c) Possibility 3

SIG1

SIG2

SIG3

V�VVVVVVVV�UUUUUU�VVVVVVV�VV1A 1C

V�UUUUUUUU�VVVVVVVV�UUUUU�VV1B = 2B

V�VVVVVVVVVV�UUUUUU�VVVVV�VV2A 2C

(d) Possibility 4

Figure 3.14: Four possible timing diagrams representing the block in Figure 3.13. (c) and (d) might be
possible when 1B=2B.

31

block inconsistent1() {

SIG1 = 1A;

SIG1 = 2A;

}

(a) A simple inconsistent block

block inconsistent2() {

SIG1 = 1A, SIG2 = 1B;

SIG3 = 2A, SIG3 = 2B, SIG2 = 2C;

}

(b) A more complicated example

block inconsistent3() {

X = 1A, Y = 1B, X = 1C;

Y = 2A, X = 2B, X = 2C, Y = 2D;

Z = 3A, Y = 3B, Z = 3C;

} 5

(c) An even more complicated example

Figure 3.15: Three blocks with inconsistent semantics.

the duration of that block. We have not decided exactly what types of timing constraints should be allowed;
however, it seems that it would be necessary to allow ranges of times.

A good example of this would be �xing the length of the clock cycle in a clock block. By replacing the
atomic blocks with more complicated blocks that contain both a timing constraint and the change in clock
value, both of the segments of the clock block could have their durations �xed. While such an approach seems
to require designing the clock block at the same time as specifying the timing constraints, the composition
operators shown in Chapter 4 would allow this kind of timing constraint to be added after the fact.

3.3.2 Glitches and Clean Signals

Section 3.2.1 describes brie�y the role of glitches in any digital circuit. Most su�ciently complicated digital
circuits display glitching behavior when their internal state or inputs change; these �uctuations in output
are a result of delays in the time it takes for a signal to propogate through the circuit. While in some
applications glitches can be disasterous, most synchronous protocols and circuits allow them because they
only read signal values on clock edges.

In the domain of bus protocols (which are almost always synchronous), glitches are usually the default
case whenever the internal state of a device driving the bus changes. This means that any change in the
values on the bus is usually preceded by a glitch (notice the glitches before every change in value in Figure
3.4). In addition, any signal which depends on the dynamic state of some component, may also exhibit a
glitch even when its value does not change (as is the case for the HREADY signal in Figure 3.4.

In our work with the AMBA speci�cation, we have not explicitly included glitches in our language's
representation of the protocol. However, we have noticed that the places in which the speci�cation shows
a possible glitch always correspond to the boundary of a block in our language, and that those occasions
where glitches do not occur on a block boundary are almost always special cases (such as the clock signal).

For this reason, it seems as though the semantics of our block language should allow glitches at any
block boundary, unless otherwise speci�ed. We have not yet decided on a syntax for representing boundaries
which do not have glitches, but there are three options we have considered. The �rst is that a signal could
be speci�ed as clean, signifying that it is not allowed to glitch at any point. Second, an individual block
could have annotations added to specify that none of the signals within it glitch at its boundaries. Finally,
an individual boundary between two blocks (a comma in a sequence, or the beginning or end of a sequence)

32

could be marked as non-glitching. We have not yet examined these options in depth, and for that reason,
we ignore glitches for this version of the language.

33

Chapter 4

Composing Timing Diagram Fragments

to Form a Speci�cation

While the block language we have created seems to support speci�cation of protocol timing diagrams very
nicely, it doesn't do much towards our stated goal of allowing intermediate representations that are struc-
turally similar to the speci�cations they represent. To achieve that goal, we need ways to compose our timing
diagram blocks into full protocol representations. We have designed a mechanism based on existing work on
Aspect Oriented Programming (AOP) for doing this that both allows the types of composition needed for
this task, and which preserves the synchronization and sequencing characteristics of our block language.

4.1 Composition Requirements for Imitating Speci�cation Struc-

tures

Composition of blocks needs to support the operations that are required to compose block fragments into
full de�nitions for bus protocols. We have identi�ed four features that are necessary to allow speci�cation
in our language to follow the structure of informal speci�cations. Each of these features is described in the
following sections.

4.1.1 Extending the Block Structure for Composition

The �rst requirement we set for our composition language was that it should preserve the underlying block
structure of the fragments being composed. Higher-level protocol fragments should be able to be broken
down into blocks, in the same way blocks representing timing diagrams can be. This feature is important
because it allows an engineer working with the language to use the intuition they have developed for the
block language when working with the composition language. Also, the block model seems to �t this task
very nicely at lower levels, and this allows that model to be extended to higher levels.

Another reason for extending the block structure into the composition language is that it allows our
composition operators to be used on both block fragments and composed fragments. If composed fragments
did not adhere to the block structure, there would have to be special composition operators to create larger
composed fragments. If the composition operators preserve that structure, however, they can be re-used at
all levels of the speci�cation.

4.1.2 Encapsulation of Protocol Features

The second requirement for our speci�cation language is that it should allow features of the protocol to be
encapsulated into cohesive fragments. In informal speci�cations, each feature is introduced in its entirety in

34

Figure 4.1: Table of contents for the AMBA AHB speci�cation.

a single section of the document. This can be seen by examining the table of contents for the AMBA AHB
speci�cation, shown in Figure 4.1. Sections 3.4 - 3.13 each introduce a new, previously unmentioned, feature
to the protocol speci�cation.

We do not use a precise de�nition for the term �feature�. Features in the AMBA speci�cation range
from adding previously unspeci�ed signals to existing diagrams to de�ning completely new transfer modes.
Regardless of the scope of the feature, however, it must be possible in our language for its speci�cation to be
encapsulated in a single area, just as it is encapsulated within a single section of the informal speci�cation
document. This must be true even if the feature requires modi�cations to multiple other features. In the
Aspect-Oriented community, such a feature would be referred to as a cross-cutting concern.

Another incentive for tight encapsulation of features in a speci�cation is the common practice of creating
�product lines� of devices that each implement a di�erent subset of a design's more advanced features. For
example, the AMBA AHB speci�cation includes descriptions of burst transfers, split transfers, and retries
that a designer might not want to support in a simple device. A design team might want to create a product
line of devices, in which the simplest (and cheapest) models implement only the basic functionality of the
protocol speci�cation, and the more sophisticated models allow all of the more advanced protocol features
to be used. Ideally, a single speci�cation for the protocol should be able to describe the entire product line;
a veri�cation engineer should be able to ignore optional features during veri�cation without modifying the
speci�cation document.

4.1.3 Types of Extension

The third feature required in our composition language is support for all the types of composition that
protocol speci�cations use. While the need for this is relatively obvious, identifying the operations required
is not a trivial task. So far, we have identi�ed four basic ways that protocol speci�cations compose timing
diagram fragments to add features:

1. Extension of existing fragments (wait states, Figure 4.4)

2. Addition of previously unspeci�ed signals (burst control signals, Figure 4.9, and basic control signals,
Figure 4.3)

3. Sequencing fragments with overlap (pipelining, Figure 4.6), repetition of fragments (wait states, Figure
4.4)

35

Figure 4.2: The slave's retry response and the resultant transfer in AMBA AHB.

4. Insertion of fragments (retry response, Figure 4.2)

4.1.4 Oblivious Extension

Fragments that are oblivious to extension is the �nal requirement for our composition language. In informal
speci�cation documents, all of the extension operations described above are done without explicit modi�ca-
tion points in the more basic sections. For example, the basic transfer diagram shown in Figure 4.3 does not
show the burst control signals, even though those are de�ned for that transfer. They are added later. This
allows the basic cases to stay simple; they don't get cluttered with the requirements for more complicated
features.

4.2 Aspect-Oriented Programming

The issues described above have very striking parallels to the motivations for Aspect-Oriented Programming
(AOP). The most obvious of these are encapsulation of cross-cutting concerns, base code that is oblivious to
modi�cation, and base code that is functional before modi�cation. Because of these similarities, we based
our compositional operations on AOP, as represented in the widely-deployed AspectJ language [7].

AspectJ is based on Java, and it adds three new syntactic constructs to the language: pointcut designators,
advice, and aspects. Together, these three constructs allow new code to be inserted and new functionality to
be added to basic Java applications without modifying the original Java source code. We will examine each
of these constructs brie�y, and discuss how they and AspectJ relate to the stated requirements above.

Pointcut designators (PCDs) are the constructs in AspectJ that allow modi�cation points to be picked
out of existing code. AspectJ contains a set of primitive PCDs that can be combined using boolean operators
to very precisely de�ne sets of join points in the call graph of a program where new functionality should be
added. These can be at the calling or return of a method, getting or setting a �eld, or a shift of control �ow
into an object. PCDs allow a programmer to de�ne extension points within an existing codebase without
requiring explicit hooks for modi�cation within the base code. This is exactly like our stated requirment of
extension of oblivious base code.

Advice is the actual code that can be applied at join points picked out by PCDs. AspectJ advice may
add code before, after, or around the code being called at the join point. Advice may even modify the code
being called. These types of modi�cations are very similar to our desired types of extension.

36

Aspects are the modules that encapsulate related PCDs and advice. They are rather like classes in
Object-Oriented Programming in that they are intended to encapsulate the code implementing a cross-
cutting concern into a single modular block. In our language, we wish to also allow this kind of encapsulation
and modularity.

The �nal thing to point out about AspectJ is that when the cross-cutting concerns in aspects are correctly
encapsulated, the base Java code that the aspects modify can be fully functional. A similar mechanism would
allow a single document in our language to describe a whole product line of implementations; feature modules
could be selectively removed from the full speci�cation to de�ne simpler devices.

4.3 Our Composition Mechanism, by Example

To introduce the composition portion of our language, we will demonstrate its features incrementally by
walking through some examples from the AMBA-2 speci�cation [2]. First, however, we will describe some of
the basic syntax that is necessary for any composition language fragment. The AMBA-2 examples that will
be shown after that will demonstrate in detail how our composition language allows simple composition, and
composition with concurrent signals. Finally, we will brie�y examine how the concepts presented in those
sections extend to more complicated examples.

4.3.1 New Language Structures

We begin our introduction of the composition language by describing the new syntactic structures that the
compositon language adds to the block language. These three new structures, extendpoints, extendrules, and
features, closely correspond to Pointcut Designators, Advice, and Aspects in AspectJ.

Our language's analogue to a Pointcut Designator is called an extendpoint. We have chosen to give these
a slightly di�erent name because while they are similar to PCDs in that they identify sets of points in the
base code to modify, the points they pick out are slightly di�erent from the join points identi�ed by PCDs.
This will be elaborated more in later sections.

Just as PCDs are closely related to extendpoints, our language has extendrules as a replacement for
advice. Our extendrules take an extendpoint and a block, and de�ne how the block is used to modify the
points referred to by the extendpoint.

Aspects in AspectJ are very similar to our features. Features in our language are used to de�ne modular
blocks of functionality, and are intended to correspond to a section in the informal speci�cation document.
Features contain blocks, extendpoints, and extendrules. Together these either de�ne a basic feature of a
protocol, or how to modify existing functionality to add a new feature. Features may depend on other
features in a partial ordering, and it is intended that features may be removed from the speci�cation in our
language to create one instance of a device in a product line.

4.3.2 Basic Composition

Our �rst example will serve to show very basic composition of two speci�cation fragments in our language.
Figures 4.3 and 4.4 show the �rst two timing diagrams in the AMBA AHB speci�cation. These diagrams and
the text around them together de�ne the basic AHB transfer (Figure 4.3) and wait states (Figure 4.4). The
basic transfer is the fundamental fragment on which all other features in the AHB speci�cation are based,
and wait states are a slight extension to the basic transfer that allows a bus slave to delay its response to a
bus request.

The basic transfer feature (basictrans) is nearly identical to the blocks presented in Figure 3.5. The only
di�erences are two additions: the enclosing basictrans feature, and (on line 28) the statement �toplevel is

{simpletrans}�. The feature statement de�nes these four blocks as a single encapsulated feature of the
standard. The toplevel statement speci�es that any sequence of signals that conforms to the speci�cation
will be based on a sequence of simpletrans blocks. The toplevel statement does not, however, prevent the
modi�cation of those simpletrans blocks by other features.

37

Figure 4.3: First timing diagram in AMBA AHB; shows basic read and write transfers.

Figure 4.4: Second timing diagram AMBA AHB; adds wait states to the basic transfer.

38

feature basictrans {

//basic clock cycle

block clock() {

CLK = 1, CLK = 0; 5

}

//address/control

block haddrctrl(value addr[31:0],block control) {

clock; 10

HADDR[31:0] = addr[31:0];

control;

}

//data 15

block data(value wdata[31:0], value rdata[31:0]) {

clock;

HREADY = 1;

HWDATA[31:0] = UNSTABLE as wdsetup, HWDATA[31:0] = wdata[31:0];

HRDATA[31:0] = UNSTABLE as rdsetup, HRDATA[31:0] = rdata[31:0]; 20

}

//simple transfer

block simpletrans(value addr[31:0], value wdata[31:0], value rdata[31:0], block control) {

haddrctrl(addr[31:0],control),data(wdate[31:0],rdata[31:0]); 25

}

toplevel is {simpletrans};

}

30

feature waitstate requires basictrans {

extendpoint waitsplit(value wdata[31:0], value rdata[31:0])

= data(wdata, rdata) && in(simpletrans);

block waitstate(value data[31:0]) { 35

clock;

HREADY = 0;

HWDATA[31:0] = data[31:0];

}

40

extendrule: prepend waitsplit(wdata, rdata) waitstate(wdata) allowed;

}

Figure 4.5: AMBA AHB basic transfer and waitstates in our language.

39

Figure 4.6: Multiple transfers in AMBA AHB. Shows pipelining of sequential transfers.

The feature after it introduces our composition operators, using them to add waitstates to the basic
transfer de�ned in the basictrans feature. The waitstate feature de�nition delares that it �requires� basic-
trans. Intuitively, this means that in order for the wait states to be used in a speci�cation, basic transfers
must be used. Semantically, it allows the waitstate feature to refer to any blocks or extendpoints within the
basictrans feature.

The waitstate feature contains three pieces: an extendpoint, a block, and an extendrule. All three of
these are required to use our aspect-like composition language. The extendpoint declaration de�nes a name
(waitsplit), arguments (wdata and rdata), and a boolean expression of PCDs which de�nes the set of join
points that belong to this extendpoint. The waitsplit extendpoint occurs at the data phase of a simple
transfer. The extendpoint's arguments will give any extendrule that uses it access to that data.

The waitstate block within the waitstate feature de�nes a wait state lasting a single clock cycle. This
matches both the second and third clock cycles in Figure 4.4. This block is very similar to the data block in
the basictrans feature, but HREADY is 0 and HRDATA is left unspeci�ed.

The extendrule at the end of the waitstate feature describes how the waitstate block is to be added to the
basic transfer. Line 41 is responsible for this speci�cation, and it contains four pieces. First is the keyword
prepend, which states what kind of advice is to be added. Second is the extendpoint at which to add the
advice (in this case, waitsplit). Third is the block which this extendrule will insert (waitstate). The �nal
piece is the (optional) keyword allowed, which means that this extendrule is not required to be applied in
all situations where it could be.

That extendpoint uses prepend advice, which is not available in AspectJ. This type of advice adds the
speci�ed block before the indicated extendpoint; in this case, it adds a wait state before the data phase of
the basic transfer. That behavior could also be achieved with before advice. However, the prepend advice
also modi�es the data phase of the basic transfer; the new wait state actually becomes part of the previously
speci�ed data block. Any other extendpoints that refer to the same data block will obliviously refer to the
new combined data and wait state block.

The prepend advice also has another e�ect. Normally, each extendrule may only be applied at any given
extendpoint once. In this case, however, the addition of a wait state to the data block actually changes the
waitsplit extendpoint. The data block referred to in that extendpoint has changed because of the addition of
the wait state, so the new combined data and wait state block is a new match for the waitsplit extendpoint.
The two primitive PCDs that make up the waitsplit extendpoint will always match the data phase of a basic
transfer, regardless of the number of added wait states. Therefore, the extendrule in this feature could be
recursively and in�nitely applied. In this case, the allowed statement makes it possible to end this recursion.

40

feature pipeline requires basictrans {

extendpoint datapoint(data d, simpletrans s1, simpletrans s2)

= d && in(s1) && next(s2);

//override haddrctrl 5

//have to do this-the basictrans version of haddrctrl explicitly makes it

//a single clock cycle

block haddrctrl(value addr[31:0], block control) {

HADDR[31:0] = addr[31:0];

control; 10

}

extendrule: concurrent pipesplit(d, s1, s2) s2.haddrctrl 1;

extendrule: after pipesplit(d, s1, s2) s2.data 1;

} 15

Figure 4.7: Implementing pipelining in our language without synchblocks. Builds on the code in Figure 4.5.

4.3.3 Concurrent Composition

Figure 4.6 demonstrates multiple transfers in a row, with the address phase of each transfer occuring simul-
taneously with the data phase of the previous one. This is called pipelining, and is the next feature that the
AMBA AHB introduces. An important part of pipelining in the AMBA speci�cation is the way in which it
interacts with wait states; a wait state during the data phase of one transfer extends the address phase of
the next transfer. In Figure 4.6, this occurs during the data phase of B and the address phase of C.

Our �rst attempt to implement pipelining behavior is shown in Figure 4.7. The �rst part of the pipeline
feature looks very similar to the waitstate feature; it also requires basictrans, and the pipesplit extendpoint
identi�es the same location as the waitsplit extendpoint in waitstate. pipesplit di�ers from waitsplit in the
arguments it makes available to its advice, and that pipesplit refers to the next transfer as well. While
waitsplit makes the wdata and rdata arguments to the data block available, pipesplit provides access to the
data block, and both the current and next simpletrans blocks. This allows the pipelining extendrules to use
those arguments.

The pipelining feature has to override the haddrctrl block, and does so on line 6. This is to allow that
block to correctly extend when it is pipelined with a data phase that is extended with wait states. This does
not deviate from the speci�cation, which also claims that the address phase only lasts one clock cycle when
the basic transfer is introduced, but changes that when demonstrating pipelining. The new haddrctrl block
is identical to the original, except it does not contain a clock block. The original's clock block would have
con�icted with the multiple clock cycles that are possible in a data phase extended with wait states.

The pipeline feature also contains two extendrules to de�ne how it �ts in with the previous features. In
this version of pipeline, the address and data phases of the two simpletrans blocks are added to the sequence
separately. The haddrctrrl sub-block of the second simpletrans is added concurrently with the �rst transfer's
data block, and the second transfer's data block is added afterward.

While the above example does correctly de�ne a single pair of pipelined transfers, we are not satis�ed
with the way in which it does so. This method splits the second simpletrans in order to place it back in
a di�erent location with the same con�guration. The process of pipelining two transfers is an exercise in
synchronization, not modi�cation and extension. Such a task should be possible without modifying the
blocks to be synchronized.

For this reason, we added a new language structure called a synchblock, shown in our �nal pipeline feature
in Figure 4.8. A synchblock has the same syntax as a regular block, with one di�erence: the restriction that
parallel sequences may not refer to the same signal is di�erent. Parallel sequences in a synchblock may not

41

feature pipeline requires basictrans {

extendpoint pipesplit(data d, simpletrans s1, simpletrans s2)

= d && in(s1) && next(s2);

//override haddrctrl 5

//have to do this-the basictrans version of haddrctrl explicitly makes it

//a single clock cycle

block haddrctrl(value addr[31:0], block control) {

HADDR[31:0] = addr[31:0];

control; 10

}

synchblock pipelined(simpletrans s1, simpletrans s2) {

s1.data 1;

s2.addr 1; 15

}

extendrule: concurrent pipesplit(d, s1, s2) s2 using pipelined(s1, s2);

}

Figure 4.8: Implementing pipelining in our language using a synchblock. Builds on the code in Figure 4.5.

refer to the same signal as it appears in di�erent blocks. This is possible because a synchblock only de�nes
how the pieces of multiple blocks are synchronized. As long as the synchblock is not inconsistent with the
structure of the blocks it synchronizes, this condition is su�cient to ensure that the synchblock will not
cause any inconsistencies in the surrounding blocks.

The pipelined synchblock in the pipeline feature synchronizes the data phase of the current transfer and
the address phase of the next transfer. To pull these sub-blocks out of the two simpletrans arguments, we
use syntax that has not previously been introduced. �s1.data 1� refers to the �rst data block appearing in
the s1 block. If multiple data blocks appeared within the s1 block, later ones could be referred to by using
higher numbers (2 for the second, 3 for the third, etc.).

As long as �sub-block� to in this syntax does not refer to a placeholder block such as the control block in
basictrans, this technique is guaranteed to always uniquely identify a single sub-block. Each non-placeholder
block of a given type will assign values to a concrete signal; within a consistent block these assignments will
be fully ordered. Therefore, all the occurences of a given type of sub-block will also be ordered, and referring
to those sub-blocks by an integer will uniquely identify a single sub-block.

4.3.4 More Complicated Examples

We will brie�y describe two more examples, but in the interest of space they will not be reproduced here.
They can, however, be found in Appendix A, within the AMBA AHB speci�cation. Both examples are
within the bursts feature, on lines 87-279.

The AMBA AHB speci�cation de�nes burst transfers, which are comprised of sequences of transfers to
sequential addresses. These are provided because AHB devices can be optimized to handle bursts more e�-
ciently than equivalent sequences of basic transfers. The AMBA AHB de�nes both �xed-length bursts, which
can be 2, 4, 8, or 16 transfers long, and indeterminate-length bursts, which last until they are terminated by
the master.

The basic blocks for �xed-length bursts are not complicated; for example the 4-beat wrapping burst
block (burst4wrap) on lines 156-163 in Appendix A should be mostly understandable from the explanations
given so far. The timing diagram for this is shown in Figure 4.9. What is worth examining in this example,

42

Figure 4.9: Four-beat wrapping burst of transfers from the AMBA AHB speci�cation.

however, is the way in which the address for each sucessive transfer is calculated. The AMBA-2 speci�cation
contains an entire page of text (page 3-11) describing the address calculation process for burst transfers.
To avoid reproducing the same calculations for each block in a burst, we created a set of functions for
doing these calculations. The incrementval, burstbeatval, and burstaddrcalc functions are responsible for these
calculations, and should be understandable for anyone familiar with C.

It should be noted that these blocks appear to violate our previously stated restriction on assignment to
the same signal in parallel sequences. The second sequence in each of these blocks also refers to the �nal
data block of the �rst transfer. While by our rules mentioned above this should not be allowed, this is a
shortcut we use to simplify these blocks which does not actually violate that rule. By referring to a speci�c
data block within the same block, we have added an extra point of synchronization within the block. This
same e�ect could have been achieved by removing the second sequence from the block and adding new advice
to each block to add it back in using a synchblock to achieve the same synchronization.

The �nal line of the pipeline feature demonstrates how synchblocks are used. They are only used with
concurrent advice. Use of the using keyword with concurrent advice and a synchblock speci�es that rather
than synchronizing the entire advice block with the entire block being advised, just the portions de�ned
within the synchblock should be synchronized. Any remaining overhang should displace any blocks before
or after the block being advised.

The second example shows how indeterminate-length bursts are de�ned. A sample timing diagram for
this kind of burst is in Figure 4.10. The �rst important step in specifying this kind of burst is enabling
a possibly in�nite chain of transfers. To do this while allowing the burst to end at any point requires
a recursively applied optional (allowed) extendrule which adds a transfer every time it is applied. That
extendrule and its corresponding extendpoint are on lines 250 - 254 in Appendix A.

One would expect rhe extendpoint for this extendrule to be fairly simple, considering it only picks out the
end of the current sequence of transfers and adds a new one. It is so complicated because it also must retrieve
the address of the last transfer so that the address for the new transfer being added can be calculated. This
means that it has to speci�cally retrieve the last transfer in the current burst.

There is one more facet of creating the indeterminate length burst transfer which is suprisingly di�cult:
adding the control signals. The speci�cation de�nes two burst control signals, HBURST and HSIZE, which
must be held constant from the address phase of the �rst transfer in the burst to the address phase of the
last transfer in the burst (in the data phase of the last transfer, these switch to the control signals for the

43

Figure 4.10: Indeterminate-length burst from the AMBA AHB speci�cation.

next pipelined transfer). There are two ways we saw to approach this.
The simpler of the two (not shown in Appendix A) is to de�ne concurrent advice on each address phase

in the burst with the speci�ed control signals. While this method would correctly set the control signals for
the correct duration, it would not work if we adopted the glitch semantics described in Section 3.3.2. The
speci�cation requires that the control signals be held without glitches for the full duration of the burst, but
splitting those signals into separately applied advice would allow them to glitch using those glitch semantics.

The second method, and the one we chose to use, uses a synchblock to synchronize the control signals with
the burst. The di�culty for this method, however, is in eliminating the data phase of the �nal transfer from
the block synchronized with the control signals. The semantics for synchblocks and picking out sub-blocks
from their parents that was shown in the previous section would allow any data block at a constant o�set
from the beginning of the burst to be eliminated, but not the �nal data block. Unfortunately, since this is
a burst of abitrary length, we cannot use the numerical constant notation used earlier to pick out this data
block. For this reason, we added the last keyword, which allows sub-blocks to be picked out from the end
of a block.

4.4 Our Primitive PCDs and Advice Types

We mentioned earlier that the extendpoints in our language were di�erent from AspectJ's Join Points and
Pointcut Designators. This section will describe that di�erence and why we made our language that way; then
it will describe each of the basic extendpoints and advice that make our language's composition operators
possible.

4.4.1 The Di�erence Between PCDs and ExtendPoints

The major di�erence between our extendpoints and AspectJ's PCDs is that while AspectJ's PCDs pick out
sets of points in the runtime call graph of a program, our extendpoints pick out sets of blocks in the block
representation of the protocol. There are two pieces of this that need to be more clearly de�ned. First, what
is the �block representation of the protocol�, and second, what does it mean for an extendpoint to �pick out�
blocks in that representation?

44

An AspectJ program listing serves to de�ne the runtime behavior of that program, and the runtime call
graph is an abstraction of that behavior. The generation of the program's behavior can be thought of as a
two phase process. In the �rst phase, the basic runtime call graph is generated from the main function of
the program and all of the code called from it. In the second phase, each PCD picks out a set of nodes, and
any advice that applies to them is used to augment or modify that basic call graph. The end result is the
full call graph of the program.

A listing in our language describes something di�erent: a description of all the possible behavior allowed
by a given protocol speci�cation. To simplify this, we look at a particular instance of that behavior, or a
�run� of the protocol as might be required to be generated or validated by a test bench. Such a run could
be represented by the logical blocks that it is made up of.

We can also imagine the generation of such a run as a two-phase process. In the �rst phase, a sequence
of �toplevel� blocks are laid out. In the second phase, each extendpoint picks out a set of blocks, and its
associated extendrules are used to modify those blocks, and to insert new ones. The �nal result is a single
instance of an allowed protocol run represented in blocks. This is what we refer to as the block representation
of the protocol.

Both our extendpoints and AspectJ's PCDs are collections of criteria connected by and, or and not (&&,
||, and !). Each PCD matches a set of points in the runtime call graph which satisfy its criteria. It is said
to �pick out� those join points. Extendpoints in our language work in the same way, except that blocks are
picked out by this process. Note that the extendpoint need not pick out a named block; it may also pick out
a sequence of blocks, an atomic block, or a set of contiguous blocks with synchronized beginning and end
points.

4.4.2 Why Match to Blocks?

We decided to have our extendpoints match blocks rather than points in a run of the protocol for two reasons.
First, our language places far more emphasis on concurrency and synchronization than AspectJ, and block
extendpoints support these far more naturally than point PCDs. Second, block extendpoints more naturally
support the type of extension that the prepend and append advice in our language allow.

The �rst reason for block extendpoints is that de�ning and synchronizing concurrent advice is a lot more
natural when the join �points� being picked out are blocks. This is because synchronization in our language
is only accomplished in one of two ways: through composition of blocks, or by using synchblocks. We would
like to minimize the number of synchblocks that an engineer working with our language would have to write,
so we would like to allow synchronization through the former method as often as possible. If single-point
PCDs were used in our language, concurrent advice would always require some additional mechanism to
de�ne how the advice was to be synchronized.

The second reason for block extendpoints is to support append and prepend advice. In the examples
we have studied and translated into our language, we have found that these types of advice are far more
common than before and after advice. Therefore, we want our composition language to be optimized
for using prepend and append advice. Applying such advice at a point is somewhat ambiguous: which of
the adjacent blocks subsume the advice blocks? With block extendpoints, it is the block de�ned by the
extendpoint that subsumes the advice block.

4.4.3 Primitive Extendpoints

Table 4.1 shows all of the primitive extendpoints that we currently support in our language. Each of these
will match a set of blocks in a run of the protocol, and that set may be re�ned by combining these primitive
extendpoints with �and�, �or�, and �not�. While a brief description of each is given in the table, we will
examine them in more depth in the following sections.

The block extendpoint is by far the simplest; it picks out any blocks that match the signature speci�ed
in the BlockPattern. It is also very commonly used in the example in Appendix A. It can �rst be seen on
line 33, in the waitstate feature.

45

block(BlockPattern) Picks out every block matching BlockPattern.
in(BlockPattern) Picks out every block that is enclosed within a block matching BlockPattern.
next(BlockPattern) Picks out every block whose end coincides with the beginning of a block matching

BlockPattern.
prev(BlockPattern) Picks out every block whose beginning coincides with the end of a block matching

BlockPattern.
if(BooleanExpression) Picks out every block for which BooleanExpression evaluates to true. May only

access parameters exposed by the enclosing extendpoint.

Table 4.1: Primitive extendpoints in our language.

The in extendpoint picks out every block that is contained within a block that matches the signature
of its BlockPattern. This includes any blocks which themselves match that BlockPattern. One block b1 is
considered contained within another block b2 if three conditions are satis�ed:

1. The beginning of b1 occurs at the same time or after the beginning of b2

2. The end of b1 occurs at the same time or before the end of b2

3. The signals of b1 are a subset of the signals of b2.

The prev and next primitive extendpoints are very closely related. They each allow speci�cation of
extendpoints based on the blocks that appear sequentially before and after them. For each block picked
out by the BlockPattern, there is a set of blocks that match the next primitive extendpoint. Each block in
this set has the property that its end point is concurrent with the starting point of a block that matches
the BlockPattern. For example, in Figure 4.6, there are three blocks which match the primitive extendpoint
�next(data(C,C))�:

1. The data block for transfer B

2. The address block for transfer C

3. The entire basic transfer block B

The endpoints of all three of these blocks coincide with the beginning of the data block for transfer C. The
prev primitive extendpoint functions in the same way, but matches blocks which occur immediately after a
block that matches the BlockPattern.

All but the if primitive extendpoint use a BlockPattern to refer to a set of blocks. At this point,
we have not settled on all of the possibilities for that language construct. AspectJ allows a wide variety
in its equivalents (MethodPattern, FieldPattern, ConstructorPattern, etc.), including wild card characters and
argument conditions. We feel that the requirements for the BlockPattern in our language need to be examined
in more depth; at this moment we have only a few examples to go by. In all our examples, we have not
needed more than the name of a named block, and optionally its arguments. We allow wild cards in place of
arguments which do not matter. Another option for BlockPatterns which we have not explored is speci�cation
of a block based on attributes of its beginning and end points.

The if primitive extendpoint is di�erent from the others. While the other extendpoints are all based
on the relative position of an extendpoint to a particular block, the if extendpoint allows speci�cation of
an extendpoint by characteristics of data. The argument to the if primitive extendpoint is any boolean
expression which depends only on values exposed by the enclosing (non-primitive) extendpoint. It matches
any block for which that boolean expression evaluates to true.

46

before Adds the advice block immediately before the extendpoint.
after Adds the advice block immediately after the extendpoint.
append Like before, except all block and in primitive extendpoints that are part of this

extendpoint's expression are extended to include the advice block.
prepend Like after, except all block and in primitive extendpoints that are part of this

extendpoint's expression are extended to include the advice block.
concurrent Adds the advice block in parallel with the extendpoint. The beginning and end

of the advice block are synchronized with the beginning and the end of the ex-
tendpoint, unless a synchblock is used.

Table 4.2: Advice types in our language.

4.4.4 Advice Types

Table 4.2 contains all of the advice types that we currently allow in our language. We have been able to
construct all of our examples using only these basic advice types. While the table describes each brie�y,
the following sections will provide a more in-depth discussion of the semantics of each. For each of these
discussions, b will refer to the block being added by the advice, and e will refer to the block picked out by
the advice's extendpoint.

before and after advice are very basic, and are closest to the types of advice available in AspectJ. Since
the only di�erence in their functioning is whether b is added before or after e, we will discuss only after

advice. after advice simply adds b immediately after e, which means that the end point of e coincides with
the beginning of b in the resultant block representation. Any blocks which previously began immediately
after e are displaced by the new b block. before and after advice may cause con�icts with concurrent

advice that uses synchblocks. Each before and after advice may only be applied once at each extendpoint.
prepend and append advice are unique to our composition language, and have the same semantics as

before and after advice, respectively, with one di�erence. Whereas the new block b added due to before

or after advice is considered to be a new standalone block, in the case of append and prepend advice, the
new block is made part of the extendpoint it was added to. This is done by modifying any blocks matching
either in or block primitive extendpoints within the extendpoint that the advice is modifying to include the
new block.

For example, when the waitstate prepend advice is applied in Figure 4.4, the data block is extended;
afterward, its beginning has changed to the beginning of the new wait state block. Because applying append

or prepend advice modi�es the blocks that an extendpoint matches, the application of either of these types
of advice may allow the same advice to be repeatedly and in�nitely applied to the same base block. This
in�nite application of advice may be avoided by either specifying that the advice is optional, by using the
allowed keyword, or by using if, prev, and next primitive extendpoints to avoid matching the same block
multiple times.

The �nal type of advice, concurrent advice, is also unique to our language. In its simplest form, b, the
advice block, is added in parallel with e, the block matching the extendpoint. Together, b and e de�ne a
new block, and all of the basic block syntax applies. Their beginning and end points are synchronized to
each other, but none of their internal events are. In addition, they may not both modify the same signal, in
concordance with the restrictions on signal assignment in parallel sequences.

concurrent advice may be used with synchblocks, as in the pipelining example in Figures 4.6 and 4.8.
In this case, both b and e are essentially split into four separate blocks. Each is split into:

1. a block containing the portion of the sequence occurring strictly before the events in the synchblock

2. a block containing the portion which occurs within the sequence

3. a block containing the portion occuring strictly after the events in the synchblock

47

(a) Intended result of concur-
rent advice with synchblocks;
the shaded area represents the
portion speci�ed by the synch-
block.

(b) Component blocks split into
parts based on the synchblock.

(c) Synch-
block parts
composed
concur-
rently.

(d) Before and after frag-
ments added.

(e) Non-synchronized signals
added, �nal result.

Figure 4.11: Process for concurrent advice using synchblocks.

4. a block containing events which are una�ected by the synchblock (any signals which are not mentioned
in the synchblock)

This splitting, and the process described below, are shown in Figure 4.11.
These four blocks are then added to the run of the protocol in the following way. All four blocks of e

remain in their original positions. Block 2 of b is added to the run in the same way as concurrent advice
to block 2 of e. Blocks 1 and 3 of b are added to the run as before and after advice, respectively, on block
2 of b. Finally, Block 4 of b is added as concurrent advice to the extendpoint de�ned by blocks 1, 2 and 3
of b. In many cases, a few of these blocks will be empty. This is the case in the pipelining example, where
blocks 1 and 4 of b and blocks 3 and 4 of e contain no signals.

4.5 Issues Requiring Further Examination

At this point, our composition language has not been fully �eshed out. There still remain many areas which
have not yet been examined in adequate detail. These include: con�icting advice applied at the same point,
a mechanism to cancel scheduled blocks, and support for more advanced protocol features. Each of these
issues will be discussed in more depth in the following sections.

4.5.1 Advice Collision and Con�icts

A problem that is often discussed in Aspect-Oriented literature is advice collision, which occurs when more
than one piece of advice applies to a single join point. It is important to handle such a situation consistently,

48

because in some cases the order in which the advice is applied can matter. While the same problem applies
to our language, we have not yet examined it in enough depth to recommend a solution.

AspectJ handles the problem by applying advice in order of its speci�city [7]. If we think of the advice
being applied in layers around the join point, the least speci�c advice is applied on the innermost layer, while
the most speci�c is applied outermost. This means that for before and around advice, the most speci�c advice
is applied �rst, while for after advice the opposite is true.

We have not yet designed such a mechanism for our language because we have not seen many examples
which produce con�icting advice. The only rule we have consistently applied so far is that prepend and
append advice are applied before concurrent advice. This is necessary to ensure that concurrent blocks are
correctly synchronized. Based on the examples we have examined, we expect that many advice collisions
will be avoidable.

4.5.2 Cancelling Scheduled Blocks

In the bursts feature on lines 87-279 of the AMBA AHB example in Appendix A, we use a type of advice
which does not appear anywhere else in our examples. It is intended to allow the early termination of a burst
of transfers, as described in the AHB speci�cation. The extendrule that uses this advice appears on line 275,
and it reads: �extendrule: before inburst(b) end(b) allowed�. The semantics of this extendrule are
intended to be that all sub-blocks of block b after the speci�ed point should be removed from the protocol
run. In e�ect, the end of block b should be moved to the current point.

We are not satis�ed with this mechanism, though it seems as though there may be many more cases
where such a mechanism is needed. Except for this end advice, no other command in our language allows
blocks to be removed from the protocol run. This particular solution has not been adequatly examined, but
we suspect that it is inadequate, and that a more sophisticated mechanism will be required to meet this
need.

4.5.3 More Complicated Protocol Features

We had hoped to provide an example of the full AMBA AHB speci�cation in our language. However,
one of the more sophisticated features of the AMBA speci�cation slowed our progress. The AMBA AHB
speci�cation describes a few ways in which a transfer between a given master and slave may be �split�. This
can occur when a burst is interrupted, or the slave requests a transfer to be repeated or split. In these
cases, control of the bus may shift to another master, splitting the transfer in progress. The catch is, when a
master regains control of the bus, the speci�cation states that it is obligated to continue any split transfers
that are pending.

This requirement is not possible to represent using our language in its current form. We can imagine
two mechanisms which could be used to do this. The �rst would be to provide a way to de�ne advice which
reverts to the top-level blocks of a feature. This would allow the splitting of the transfer to be speci�ed
as advice that gets inserted in the middle of the transfer, and allows any sequence of top-level blocks to
be inserted. The problem with this approach is that the top-level blocks within that advice would have to
be restricted; the master device waiting on the split transfer would not be able to make any transfers for
the duration of that advice. This becomes even more complicated if multiple masters have split transfers
pending.

The second way we can think of to enable split transfers requires two mechanisms. The �rst is mentioned
in the previous section: a way to remove blocks from the protocol run. This would allow the rest of the
transfer to be canceled. The second mechanism would enable restoring the transfer, and would take the
form of one-time advice. This would be a new type of advice which could be dynamically de�ned and added,
and would apply only once. For split transfers, it would take e�ect the next time the current master gained
control of the bus, and would insert blocks to complete the transfer. The one-time advice would be de�ned
when the transfer was split to contain the necessary blocks, and would no longer exist after being applied.

Speci�cation of split transfers is so complicated because its introduction in the AMBA AHB speci�cation
brings along with it a previously hidden and very large feature: bus arbitration. Before splitting transfers is

49

mentioned, all of the transfers in the AHB speci�cation are presented as if each AHB bus has one master.
Interruption of transfers and split transfers only occur on buses with multiple masters and an arbiter; the
section on these in the AHB speci�cation occurs after interruption is introduced, and consumes 11 pages
(3-28 to 3-39 in [2]). For comparison, all of the features we have implemented take up 19 pages. This feature
is more sophisticated than any of the others we have examined, and depends on the functional description
of the bus arbiter device.

Up to this point, we have tried to represent the protocol speci�cation without describing the devices that
use it in too much detail. It does not seem possible to present bus arbitration in this manner; therefore, a
solution for representing split transfers should be based on a more thourough examination of cases where
protocol speci�cations contain functional descriptions of devices they depend on.

4.6 Other Explored Composition Mechanisms

We chose to base our composition language on Aspect-Oriented programming after examining a few other
options. The following sections will examine a few of these, and describe why we decided on Aspects.

4.6.1 All Blocks

The early work we did on composition attempted to use the basic composition available in the block language
to construct the entire protocol speci�cation. In order to handle cases where a given sequence was optional
or could be repeated, we allowed regular expression-type operators such as *. Such a scheme could be used
to describe entire speci�cations; this is demonstrated by the fact that all of our aspect-based composition
operators can be reduced to blocks.

We learned that blocks are too concrete of a speci�cation mechanism to satisfactorily handle the task of
higher-level fragment composition. Representing more complicated protocol features revealed that blocks do
not allow su�cient abstraction. They are far better suited to representing simple, small, concrete cases of
signals and their values. It is interesting that a very similar criticism has been applied to timing diagrams
[4].

A very simple example that demonstrates this is the case of pipelining. Adding this feature to a protocol
using only blocks is suprisingly di�cult. It is impossible using the syntax of blocks to de�ne the overlap of
two simple transfers without re-de�ning the address and data phases of adjacent transfers to occur within
the same block. Such a solution requires that the address and data phases of the same transfer be separated
into two unrelated blocks, which is unacceptable.

We explored adding operators which would collapse non-con�icting adjacent blocks into each other. This
could have allowed the speci�cation of pipelining without breaking up the basic transfer block; such a
mechanism would allow the address phase of one transfer to be collapsed into the corresponding unde�ned
region of the previous transfer's data phase. However, all the solutions we examined in this area seemed to
either take too much control out of the hands of the engineer or required too much annotation for a simple
operation.

4.6.2 Live Sequence Charts

Another method we examined was based on Damm and Harel's work on Live Sequence Charts (LSCs) [3],
which extend the Message Sequence Charts (MSCs) in the Uni�ed Modeling Language (UML). We were
drawn to this work because MSCs su�er from problems similar to the ones we noticed while pursuing all-
block composition (described in the previous section). MSCs are popular artifacts for de�ning small, concrete
examples of an interaction between multiple objects in an Object-Oriented design. Like blocks and timing
diagrams, however, MSCs have di�culty extending to more complicated examples. LSCs are an extension
to MSCs which are intended to allow speci�cation of an entire system using MSC-like diagrams.

LSCs do this by adding an activation condition to each MSC. They also extend MSCs to have both
an existential and a universal form. Existential LSCs de�ne a sequence which is allowed when the chart's

50

Figure 4.12: State machine from the AMBA APB speci�cation.

activation condition is satis�ed, while Universal LSCs de�ne a sequence that must be followed whenever
the chart's activation condition is satis�ed. By composing these together, it is possible to de�ne all of the
allowed sequences that may occur in any run of the system.

We were not satis�ed with our initial investigation into doing the same thing with blocks. Specifying the
correct placement for a block via its activation condition obscured some of the relationships between blocks.
In addition, this technique did not provide us with the oblivious extension or product line �exibility that
the aspect-based approach provides.

4.6.3 State Machine Driven Composition

The last composition technique we examined took advantage of an artifact which appears in many hardware
speci�cations: state machines. Figure 4.12 shows one from the AMBA APB (Advanced Peripheral Bus)
speci�cation, which shows the states the APB goes through during each transfer on the bus. Because these
are widely used in speci�cations, we spent a considerable amount of time examining the feasibility of using
these to compose blocks. We examined two methods for doing so, each of which will be elaborated further.

The �rst method we examined was representing the high-level operations of the protocol with a state
machine, and annotating its transitions with blocks. Every time the state machine made a transition, its
corresponding block would be output on the protocol run. Unfortunately, simple state machines such as the
one in Figure 4.12 are inadequate for such a model; that kind of simple state machine is unable to represent
parallel lines of execution and other more complicated features of a full bus speci�cation.

We therefore attempted to apply this same idea to a more complicated model of state machine. State-
charts, as presented by David Harel [5], are able to handle parallel execution very well. They can express
parallel state machines, and use conditions on the transitions to describe synchronization between parallel
state machines. In addition, Harel's Statecharts can be composed into larger and more complicated systems
very easily, allowing for incremental development of the full protocol speci�cation. Our early exploration
revealed that we were able to specify many of the examples that were problems for the other techniques.

Unfortunately, though the StateCharts could represent the things we needed, they tended to obscure
the functionality of even simple examples. For example, Figure 4.13 is the Statechart used for de�ning a
basic transfer with wait states. It obscures the relationship between the address and data phases, and the
synchronization of the two halves of the Statechart is di�cult to see. For this reason, Statecharts were
unacceptable.

51

Figure 4.13: Example of a Statechart which de�nes a simple pipelined transfer.

The other method we tried was an event-based model using FrTime, a scheme package for Functional
Reactive Programming. In this model, the state machine constantly cycled, and output events for leaving
each state, entering each state, and for each transition. The surrounding code then de�ned how blocks were
laid out based on those signals. Each block was given a condition based on the signals that de�ned its start
point, and a similar condition for its end point. While the state machines used for this were much simpler
than the Statecharts, they did not have to represent more sophisticated concurrency and synchronization.
Those could be handled by the start and end conditions for each block.

While we were able to generate timing diagrams for the simple transfers in the AMBA APB, it required
a lot of work. In addition, the framework seemed rather in�exible; extension would have required careful
modi�cation of the fundamental state machine. Another drawback of this approach was that further study of
other protocol speci�cations revealed that state machines were not as commonly used as we thought. Within
the AMBA spec the APB state machine is the only time state machines are used to describe signals; all the
others are used to describe the functioning of devices. This may be because the APB is not pipelined. In
addition, on no occasion did we see a state machine which represented the full capabilities of a protocol. A
veri�cation engineer would be required to design such an artifact, and we would like to eliminate that kind
of task from the veri�cation work�ow.

52

Chapter 5

Conclusion

This document presented a preliminary language for specifying hardware bus protocols. It is intended to
eventually support a new process for hardware veri�cation of these protocols, in which it will be the language
for a machine-generated and human-re�ned intermediate representation. Its role in that process requires it
to be human-readable, and to allow speci�cation in a manner similar to the informal speci�cations which
it represents. Our language can be divided into two sub-languages, one which is used for de�ning small
fragments on the scale of individual timing diagrams, and one for composing those fragments together into
full speci�cations.

The fragment-level language we have designed is based on the logical blocks we found common in bus
protocol timing diagrams. Like the timing diagrams it is intended to represent, it is particularly good at
de�ning concrete cases of a protocol's functioning. It captures both the sequencing and synchronization
aspects of timing diagrams using simple syntax with intuitive semantics. Unlike some other approaches to
representing protocol fragments, it can be used to represent asynchronous protocols. The same mechanism
that this language uses to create fragments can also be used to compose such fragments to represent arbitrarily
large timing diagrams.

While it does not currently support speci�cation of timing constraints, we have proposed a method for
doing so which should support all the ways in which that kind of information is used. Our proposal would
also allow such information to be easily added after the fact. In addition, our preliminary investigation
suggests that it may also naturally support representation of glitches, a feature of timing diagrams which
some languages for the same purpose have ignored.

Our fragment language also naturally supports the composition language, which is based on ideas from
the Aspect-Oriented Programming community. Aspect-Oriented ideas have given us a composition language
which allows oblivious modi�cation of existing code. This allows simple cases in our language to avoid being
complicated by more advanced protocol features. In addition, aspects allow our speci�cation to be organized
into sections which match those in an informal speci�cation. This is signi�cant because sections in those
documents often introduce new features which extend and modify multiple preceding sections.

We have been able to specify most of the AMBA2 AHB speci�cation in this language, including basic
transfers, wait states, pipelining, and bursts. That speci�cation, which appears in Appendix A, introduces
these features in the same order as the informal speci�cation, and can easily be compared to that speci�cation.
We have also used our fragment language to de�ne the PS/2 mouse and keyboard protocol, which is an
asynchronous protocol, and the Address/Data bus of Intel's 8088 microprocessor.

The more advanced features in the AMBA2 speci�cation which our language is not yet able to de�ne
require more sophisticated language constructs. Further study must be done to investigate similar features
in other protocols before such constructs are added to the language.

Once the language is completed, the next step will be to build the tools that support the proposed
work�ow mentioned in Section 2.2. These include an automatic speci�cation skeleton extractor, and a set of
tools to extract veri�cation artifacts from a speci�cation in our language. The latter should be created �rst,
as they will allow the language to be applied to real problems. At the moment, we have not implemented
any tools to consume a speci�cation in our language.

53

Appendix A

Full Language Example

feature basictrans {

//basic clock cycle

block clock() {
CLK = 1, CLK = 0; 5

}

//address/control

block haddrctrl(value addr[31:0],block control) {
clock; 10

HADDR[31:0] = addr[31:0];
control;

}

//data 15

block data(value wdata[31:0], value rdata[31:0]) {
clock;
HREADY = 1;
HWDATA[31:0] = UNSTABLE as wdsetup, HWDATA[31:0] = wdata[31:0];
HRDATA[31:0] = UNSTABLE as rdsetup, HRDATA[31:0] = rdata[31:0]; 20

}

//simple transfer

block simpletrans(value addr[31:0], value wdata[31:0], value rdata[31:0], block control) {
haddrctrl(addr[31:0],control),data(wdate[31:0],rdata[31:0]); 25

}

toplevel is {simpletrans};
}

30

feature waitstate requires basictrans {
extendpoint waitsplit(value wdata[31:0], value rdata[31:0])

= block(data(wdata, rdata)) && in(simpletrans);

block waitstate(value data[31:0]) { 35

clock;
HREADY = 0;
HWDATA[31:0] = data[31:0];

}
40

extendrule: prepend waitsplit(wdata, rdata) waitstate(wdata) allowed;
}

feature pipeline requires basictrans {
extendpoint pipesplit(data d, simpletrans s1, simpletrans s2) = block(d) && in(s1) && next(s2); 45

//override haddrctrl

//have to do this-the basictrans version of haddrctrl explicitly makes it a single clock cycle

block haddrctrl(value addr[31:0], block control) {
HADDR[31:0] = addr[31:0]; 50

control;
}

synchblock pipelined(simpletrans s1, simpletrans s2) {
s1.data 1; 55

54

s2.addr 1;
}

extendrule: concurrent pipesplit(d, s1, s2) s2 using pipelined(s1, s2);
} 60

//up to Figure 3-5

tabletype TransType[1:0] {IDLE = 00b,BUSY = 01b,NONSEQ = 10b,SEQ = 11b};

feature transfertypes requires basictrans { 65

block control(Transtype tt) {
HTRANS[1:0] = tt;

}

block singletrans(value addr[31:0], value wdata[31:0], value rdata[31:0]) { 70

simpletrans(addr[31:0], wdata[31:0], rdata[31:0], control(NONSEQ));
}

block busy(value addr[31:0]) {
simpletrans(addr[31:0], dc, dc, control(BUSY)); 75

}

toplevel is {singletrans, busy};
}

80

tabletype BurstType[2:0] {SINGLE = 000b,INCR = 001b,WRAP4 = 010b, INCR4 = 011b,
WRAP8 = 100b, INCR8 = 101b, WRAP16 = 110b, INCR16 = 111b};

tabletype BurstSizeType[2:0] {B8 = 000b, B16 = 001b, B32 = 010b, B64 = 011b, B128 = 100b,
B256 = 101b, B512 = 110b, B1024 = 111b}; 85

feature bursts requires transfertypes {
block burstctrl(Transtype tt, BurstType bt) {

control(tt);
HBURST[2:0] = bt; 90

}

//single transfer operation

//note: overrides singletrans in prev feature

block singletrans(value addr[31:0], value wdata[31:0], value rdata[31:0]) { 95

simpletrans(addr[31:0], wdata[31:0], rdata[31:0], burstctrl(NONSEQ,SINGLE));
}

function incrementval(BurstSizeType bs) {
switch(bs) { 100

case B8: return 1;
break;

case B16: return 2;
break;

case B32: return 4; 105

break;
case B64: return 8;

break;
case B128: return 16;

break; 110

case B256: return 32;
break;

case B512: return 64;
break;

case B1024: return 128; 115

break;
}

}

function burstbeatval(burstType bt) { 120

switch(bt) {
case SINGLE:
case INCR: return 1; //doesn't really matter, undefined size burst

break;
case WRAP4: 125

case INCR4: return 4;
break;

case WRAP8:
case INCR8: return 8;

break; 130

case WRAP16:
case INCR16: return 16;

55

break;
}

} 135

function burstaddrcalc(value iaddr[31:0], BurstType bt, BurstSizeType bs, value transNo[3:0]) {
if(transNo == 0) {

return iaddr;
} 140

value nextaddr[31:0] = transNo[3:0] * incrementval(bs) + iaddr[31:0];
if(bt == WRAP4 | | bt == WRAP8 | | bt == WRAP16) {

value burstspace[31:0] = incrementval(bs) * burstbeatval(bt)
value upperbound[31:0] = ((iaddr[31:0] + burstspace[31:0])

/ burstspace[31:0]) * burstspace[31:0]; 145

//integer division/mult to get nearest boundary

if(nextaddr[31:0] > upperbound[31:0]) {
nextaddr[31:0] = nextaddr[31:0] − burstspace[31:0];

}
} 150

return nextaddr[31:0];
}

//4 beat wrapping burst 155

block burst4wrap(value iaddr[31:0], value wd[31:0][4], value rd[31:0][4], BurstSizeType bs) {
simpletrans(iaddr[31:0], wd[31:0][0], rd[31:0][0], control(NONSEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP4, bs, 1), wd[31:0][1], rd[31:0][1], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP4, bs, 2), wd[31:0][2], rd[31:0][2], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP4, bs, 3), wd[31:0][3], rd[31:0][3], control(SEQ)); 160

HBURST[2:0] = WRAP4,(this.simpletrans 4).data 1;
}

block burst4incr(value iaddr[31:0],value wd[31:0][4],value rd[31:0][4],BurstSizeType bs) { 165

simpletrans(iaddr[31:0], wd[31:0][0], rd[31:0][0], control(NONSEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR4, bs, 1), wd[31:0][1], rd[31:0][1], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR4, bs, 2), wd[31:0][2], rd[31:0][2], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR4, bs, 3), wd[31:0][3], rd[31:0][3], control(SEQ));

170

HBURST[2:0] = INCR4,(this.simpletrans 4).data 1;
}

block burst8wrap(value iaddr[31:0], value wd[31:0][8], value rd[31:0][8], BurstSizeType bs) {
simpletrans(iaddr[31:0], wd[31:0][0], rd[31:0][0], control(NONSEQ)), 175

simpletrans(burstaddrcalc(iaddr[31:0], WRAP8, bs, 1), wd[31:0][1], rd[31:0][1], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP8, bs, 2), wd[31:0][2], rd[31:0][2], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP8, bs, 3), wd[31:0][3], rd[31:0][3], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP8, bs, 4), wd[31:0][4], rd[31:0][4], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP8, bs, 5), wd[31:0][5], rd[31:0][5], control(SEQ)), 180

simpletrans(burstaddrcalc(iaddr[31:0], WRAP8, bs, 6), wd[31:0][6], rd[31:0][6], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP8, bs, 7), wd[31:0][7], rd[31:0][7], control(SEQ));

HBURST[2:0] = WRAP8,(this.simpletrans 8).data 1;
} 185

block burst8incr(value iaddr[31:0], value wd[31:0][4], value rd[31:0][4], BurstSizeType bs) {
simpletrans(iaddr[31:0], wd[31:0][0], rd[31:0][0], control(NONSEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR8, bs, 1), wd[31:0][1], rd[31:0][1], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR8, bs, 2), wd[31:0][2], rd[31:0][2], control(SEQ)), 190

simpletrans(burstaddrcalc(iaddr[31:0], INCR8, bs, 3), wd[31:0][3], rd[31:0][3], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR8, bs, 4), wd[31:0][4], rd[31:0][4], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR8, bs, 5), wd[31:0][5], rd[31:0][5], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR8, bs, 6), wd[31:0][6], rd[31:0][6], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR8, bs, 7), wd[31:0][7], rd[31:0][7], control(SEQ)); 195

HBURST[2:0] = INCR8,(this.simpletrans 8).data 1;
}

block burst16wrap(value iaddr[31:0], value wd[31:0][16], value rd[31:0][16], BurstSizeType bs) { 200

simpletrans(iaddr[31:0], wd[31:0][0], rd[31:0][0], control(NONSEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,1), wd[31:0][1], rd[31:0][1], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,2), wd[31:0][2], rd[31:0][2], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,3), wd[31:0][3], rd[31:0][3], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,4), wd[31:0][4], rd[31:0][4], control(SEQ)), 205

simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,5), wd[31:0][5], rd[31:0][5], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,6), wd[31:0][6], rd[31:0][6], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,7), wd[31:0][7], rd[31:0][7], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,8), wd[31:0][7], rd[31:0][7], control(SEQ)),

56

simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,9), wd[31:0][7], rd[31:0][7], control(SEQ)), 210

simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,10), wd[31:0][10], rd[31:0][10], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,11), wd[31:0][11], rd[31:0][11], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,12), wd[31:0][12], rd[31:0][12], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,13), wd[31:0][13], rd[31:0][13], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,14), wd[31:0][14], rd[31:0][14], control(SEQ)), 215

simpletrans(burstaddrcalc(iaddr[31:0], WRAP16,bs,15), wd[31:0][15], rd[31:0][15], control(SEQ));

HBURST[2:0] = WRAP16,(this.simpletrans 16).data 1;
}

220

block burst16incr(value iaddr[31:0], value wd[31:0][4], value rd[31:0][4], BurstSizeType bs) {
simpletrans(iaddr[31:0], wd[31:0][0], rd[31:0][0], control(NONSEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 1), wd[31:0][1], rd[31:0][1], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 2), wd[31:0][2], rd[31:0][2], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 3), wd[31:0][3], rd[31:0][3], control(SEQ)), 225

simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 4), wd[31:0][4], rd[31:0][4], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 5), wd[31:0][5], rd[31:0][5], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 6), wd[31:0][6], rd[31:0][6], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 7), wd[31:0][7], rd[31:0][7], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 8), wd[31:0][8], rd[31:0][8], control(SEQ)), 230

simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 9), wd[31:0][9], rd[31:0][9], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 10), wd[31:0][10], rd[31:0][10], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 11), wd[31:0][11], rd[31:0][11], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 12), wd[31:0][12], rd[31:0][12], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 13), wd[31:0][13], rd[31:0][13], control(SEQ)), 235

simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 14), wd[31:0][14], rd[31:0][14], control(SEQ)),
simpletrans(burstaddrcalc(iaddr[31:0], INCR16, bs, 15), wd[31:0][15], rd[31:0][15], control(SEQ));

HBURST[2:0] = INCR16,(this.simpletrans 16).data 1;
} 240

block burstincr(value iaddr[31:0], value wd[31:0], value rd[31:0], BurstSizeType bs) {
simpletrans(iaddr[31:0], wd[31:0] ,rd[31:0], control(NONSEQ));

}
245

block burstincradd(value addr[31:0], value wd[31:0], value rd[31:0], BurstSizeType bs) {
simpletrans(addr[31:0], wd[31:0], rd[31:0], control(SEQ));

}

extendpoint incrburst(value prevaddr[31:0], BurstSizeType bs) = 250

(block(burstincr(prevaddr[31:0], wd, rd, bs)) && !contains(burstincradd()))
| | (block(burstincradd(prevaddr[31:0], wd, rd, bs)) && !next(burstincradd()));

extendrule: append incrburst(prevaddr[31:0], bs)
burstincradd(burstaddrcalc(prevaddr[31:0], INCR, bs, 1), wd[31:0], rd[31:0], bs) allowed;

255

block burstincrctrl(BurstSizeType bs) {
HBURST = INCR;
HSIZE = bs;

}
260

synchblock burstincrsynch(burstincrctrl bic, burstincr bi) {
bic, bi.data last;
bi;

}
265

extendpoint burstincrblock(burstincr bi, BurstSizeType bs) = block(burstincr(*, *, *, bs) bi);
extendrule: concurrent burstincrblock(bi, bs) burstincrctrl(bs) bic using burstincrsynch(bic, bi);

//early termination

extendpoint inburst(block b) = block(simpletrans) && in(b) 270

&& if(blocktype(b) == burst4wrap | | blocktype(b) == burst4incr
| | blocktype(b) == burst8wrap | | blocktype(b) == burst8incr
| | blocktype(b) == burst16wrap | | blocktype(b) == burst16incr
| | blocktype(b) == burstincr;

extendrule: before inburst(b) end(b) allowed; 275

toplevel is also {burst4wrap, burst4incr, burst8wrap,
burst8incr, burst16wrap, burst16incr, burstincr};

}

57

Bibliography

[1] Nina Alma, E. Allen Emerson, and Kedar S. Namjoshi. E�cient Decompositional Model Checking for Regular
Timing Diagrams. 1703:700, 1999.

[2] ARM Limited. AMBA speci�cation (rev 2.0). http://www.arm.com/products/solutions/amba2overview.html,
May 1999.

[3] Werner Damm and David Harel. LSCs:Breathing Life into Message Sequence Charts. Formal Methods in System

Design.

[4] Kathi Fisler. Two-Dimensional Regular Expressions for Compositional Bus Protocols. Formal Methods in Com-

puter Aided Design, pages 154�157, 2007.

[5] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8(3):231�
274, June 1987.

[6] Intel Corporation. 8088 8-Bit HMOS Microprocessor. August 1990.

[7] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Je�rey Palm, and William G. Griswold. An Overview
of AspectJ.

[8] Marco T. Oliveira and Alan J. Hu. High-level speci�cation and automatic generation of IP interface monitors.
pages 129�134, 2002.

58

