CubeSat Development for Identification of Space Debris

A Major Qualifying Project Report

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the
Degree of Bachelor of Science
in Aerospace Engineering
by
Der gujarathi
Nev Gujarathi
Kaitlyn Smith

Kaitlyn Smith

Ben Workinger
Ben Workinger

March $24^{\text {th }}, 2023$

Assistant Teaching Professor, Aerospace Engineering Program
UPI
"This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on the web without editorial or peer review."

Abstract

This project presents the design and analysis of a 12U CubeSat that could be used to detect orbital debris. The CubeSat has a 700 km sun-synchronous orbit and 98.19° inclination with the Collapsible Space Telescope as the payload. The mechanical subsystem analyzed the structure and layout of the satellite, managing the volume and mass constraints. Analysis was also done for equal weight distribution. The propulsion subsystem selected Busek's BGT-X5 thruster for the mission. Orbital analysis was done to understand the lifetime of the system and analyze station-keeping maneuvers. The power subsystem managed the power budget of each subsystem, ensuring solar panels and batteries would generate enough power for the components. This report also discusses an ADC Testbed and work done to it.

"Certain materials are included under the fair use exemption of the U.S. Copyright Law and have been prepared according to the fair use guidelines and are restricted from further use."

Acknowledgements

We would like to thank the following individuals and groups for their help and support throughout the duration of this project. Our primary and secondary advisors, Professors Taillefer, Gatsonis, and Demetriou have been instrumental in the success of this MQP. We would also like to thank the significant support received from Dr. Adriana Hera in training us in the proper use of the ANSYS and COMSOL software. Finally, we appreciate the IT support provided by Ed Burnham in regard to the low friction table and Helmholtz cage.

Table of Authorship

Section Title	Authors (initials, if applicable)
1. Introduction	All
2. Mission Payload	BW
3. Mechanical Subsystem Analysis and Design	BW
4. Propulsion Subsystem Analysis and	
Design	

Table of Contents

Abstract 1
Acknowledgements 2
Table of Authorship 3
Table of Contents 4
List of Figures 7
List of Tables 9

1. Introduction 10
1.1 Background and Literature Review. 11
1.2 Project Goals 13
1.3 Mission Design Requirements, Constraints, and Considerations 13
1.3.1 Requirements 13
1.3.2 Constraints 15
1.3.3 Optimal Orbit 18
1.4 Project Management and System Engineering 18
1.5 Launch Vehicle 19
2. Mission Payload 20
2.1 Payload Overview 20
2.2 Collapsible Space Telescope 20
3. Mechanical Subsystem Analysis and Design 22
3.1 Overview 22
3.2 Mechanical Subsystem Requirements 22
3.3 Canisterized Satellite Dispenser (CSD) 24
3.4 Structural Design 25
3.4 Internal Layout 26
3.5 Mechanical Analysis 28
4. Propulsion Subsystem Analysis and Design 30
4.1 Propulsion Overview 30
4.2 Thruster Trade Study 31
4.3 Initial Thruster Analysis and Propulsion System Selection 33
4.3.1 Initial State and Parking Orbit 36
4.3.2 Station-Keeping Maneuvers 36
4.3.3 Deorbiting Maneuver 37
4.3.4 Propulsion System Selection 39
4.4 Orbital Analysis 39
4.4.1 Total Propellant Carried and Tank Sizing 39
4.4.2 Orbital Analysis with Station-Keeping 41
4.4.3 Orbital Analysis without Station-Keeping 44
5. Power Subsystem Analysis and Design 47
5.1 Power Overview 47
5.2 Hardware Selection 48
5.2.1 Solar Panels 48
5.2.2 Electrical Power System and Batteries 51
5.3 STK Simulations and Analysis 55
5.3.1 Model and Scenario Building 55
5.3.2 Beginning of Life Analysis. 57
5.3.3 End of Life Analysis 61
6. ADC Testbed 66
6.1 Overview 66
6.2 Helmholtz Cage 66
6.3 Air Bearing Table 67
6.4 Future Recommendations 68
7. Conclusions and Social Impacts 70
7.1 Conclusions 70
7.2 Societal Impacts 71
References 74
Appendices 77
Appendix A: Hohmann Transfer MATLAB Code 77
Appendix B: Blender and STK COLLADA File 78

List of Figures

Figure 1: Electron performance curves at various inclinations [23] 19
Figure 2: A 6U Canisterized Satellite Dispenser deploying a CubeSat [25] 23
Figure 3: Comparison of the maximum dynamic volume and CubeSat dimensions. 25
Figure 4: ODDSat's mounting tabs compared to the CSD dimensions [25]. 26
Figure 5: ODDSat in the deployed configuration, showing the center of mass. 27
Figure 6: ODDSat mode frequencies 28
Figure 7: ANSYS simulation results for deformation when vibration is applied on the Z axis... 29
Figure 8: STK Lifetime Analysis Tool estimate for station-keeping 36
Figure 9: STK Lifetime Analysis Tool estimate for orbit-lowering from 200 to 75 km 38
Figure 10: STK Lifetime Analysis Tool updated estimate for station-keeping. 41
Figure 11: Hohmann transfer modeled using the Targeter 42
Figure 12: De-orbit burn modeled using the Targeter 42
Figure 13: STK Lifetime Analysis Tool estimate for orbit lowering from 250 to 75 km 43
Figure 14: STK Lifetime Analysis Tool estimate for orbit-lowering from 700 to 680 km 44
Figure 15: NOAA's latest prediction for Solar Cycle 25 [42] 45
Figure 16: STK generated graph of the ODDSat's height of perigee versus time 45
Figure 17: Schematic of general EPS internal workings and connections 52
Figure 18: Snapshot of the initial Blender model of the deployed configuration. 56
Figure 19: Solar panel power output for one orbit on June 21st, 2023 58
Figure 20: Solar panel power output for one orbit on March 21st, 2024 58
Figure 21: Solar panel power output for one year, March 21st, 2023 to March 21st, 2024 60
Figure 22: Solar panel power output for one year, March 21st, 2024 to March 21st, 2025 60

Figure 23: Solar panel power output for one year, March 21st, 2035 to March 21st, 2036 62
Figure 24: Solar panel power output for three orbits on March 21st, 2035.................................. 62
Figure 25: Solar panel power output for three orbits on June 21st, 2035..................................... 63
Figure 26: Wiring of LabJack, CB15 Board, and power supplies for Helmholtz cage 67
Figure 27: The socket part of the air bearing table ... 68

List of Tables

Table 1: Mass Breakdown of Components 27
Table 2: Mechanical Analysis Results 29
Table 3: SiEPS thruster characteristics [29] 31
Table 4: BET-1mN thruster characteristics [29] 31
Table 5: BGT-X5 thruster characteristics [32] 32
Table 6: NPT-30 I2 thruster characteristics [34] 33
Table 7: Busek BHT-100 Hall Thruster characteristics [37] 33
Table 8: Thruster characteristics for one station-keeping maneuver 37
Table 9: Thruster performance for a de-orbiting burn from 683 to 200 km 38
Table 10: Propulsion system timeline with station-keeping 43
Table 11: Propulsion system timeline without station-keeping 46
Table 12: Power Budget 50
Table 13: Voltage regulator options for the Ibeos 28 V EPS 53

1. Introduction

Humanity is on the verge of becoming a space-faring civilization, however every year of progression results in the creation of new debris added to the space environment. Orbital debris is considered as any man-made object in orbit around the Earth that no longer serves a useful purpose such as old separation rings, defunct spacecraft, and scrap metal. An increasing number of objects in geocentric orbit inherently increases the probability of collisions with other Resident Space Objects (RSOs), leading to the creation of more debris. As humans populate the space around earth the risk of a cascade event increases. If this cascade begins, Earth will be surrounded by a shell of debris preventing any type of further space endeavors. This phenomenon is known as Kessler Syndrome [1]. To prevent the Kessler Syndrome from becoming a reality, orbital debris identification and tracking is of the utmost importance. As of January 2022, the National Aeronautics and Space Administration (NASA) actively tracks more than 25,000 pieces of orbital debris with diameters greater than 10 cm . However, the population of debris is inversely proportional to the diameter. It is estimated that there are 500,000 pieces of debris with a diameter between 1 to 10 cm and over 100 million pieces of debris smaller than 1 mm [2]. Fortunately, RSOs and debris of diameter 10 cm or greater are actively tracked by ground stations using either radarbased or optical systems [3] and most collisions with debris smaller than 1 mm can be mitigated through shielding practices [4]. Therefore, the population of RSOs of greatest concern is that of a diameter between 1 and 10 cm as these objects are large enough to cause considerable damage, yet too small to be accurately tracked from the ground [5]. It is evident that a space-based observing system is best suited for tracking this sized RSO.

Like ground-based systems, space-based observing systems take one of two forms: optical systems and radar-based systems [7]. Spaceborne radar systems come at the cost of large power
requirements and low measurement precision from low-frequency band operation [10]. This, coupled with the fact that space-based optical imaging systems have seen success in the past, makes an optical imaging system worthy of research for debris detection missions.

Since their first launch in 2003, CubeSats have been gaining popularity for scientific space missions. Due to their small size and weight, these satellites have become a low-cost option for demonstrating new technologies, carrying out scientific studies, and as imaging system platforms.

This Major Qualifying Project (MQP) details the structure, propulsion, and power subsystems of a 12 Unit volume (henceforth denoted as 12 U) small form satellite, commonly referred to as CubeSat [11]. The team will be working on both the CubeSat and the testbed with two other MQP teams. The CubeSat designed by this team will be referred to as the Orbital Debris Detection Satellite, or ODDSat. These teams will oversee the attitude determination and controls subsystem, guidance and navigation, telemetry and communications, space environments mitigation, and thermal control subsystems.

1.1 Background and Literature Review

In 1999, two professors at the California Polytechnic State University and a professor from Stanford University wanted to give students the opportunity to gain engineering experience working on satellites. The initial CubeSat configuration consisted of a 10 cm cube, known as 1 U , that had a maximum mass of 1.33 kg [13]. To accommodate missions that require more volume or mass, further configurations based on the initial 1 U satellite were developed. These standard configurations include $1 \mathrm{U}, 2 \mathrm{U}, 3 \mathrm{U}, 6 \mathrm{U}, 12 \mathrm{U}$, and 27 U . Because of their small size and low mass, CubeSats could be deployed as secondary payloads for a fraction of the cost for a dedicated launch.

Cost was further reduced by the introduction of standardized deployment methods made possible by the predefined CubeSat size and weight limits.

In 2010, NASA embraced the CubeSat program by starting the CubeSat Launch Initiative. This program allows U.S. institutions and educational non-profits low-cost access to space by providing rideshare opportunities on most launches. Since 2010, NASA has selected over 200 CubeSat missions, 140 of which have been launched [13]. In addition to NASA, private companies such as SpaceX and Rocket Lab also provide rideshare options for CubeSats.

The first MQP involving designs of a CubeSat took place in the year 2010. The design revolved around a 3U CubeSat carrying a Sphinx-NG X-Ray spectrometer as a collaboration effort between WPI, NASA, and the Polish Space Research Center. The design behind this CubeSat involved multiple years of projects as an iterative process to develop more sophisticated hardware and control methods. This project ended in 2017 with a refined parts list and a comprehensive list of algorithms and simulations for the utilization of a spectrometer on a satellite [14].

Further MQP feasibility studies on CubeSats involved the utilization of a Micro Pulsed Plasma Thruster ($\mu \mathrm{PPT}$) on a 3U CubeSat, which outlined methods for controlling a satellite utilizing this propulsion method and conventional CubeSat control systems [18]. The next two years of projects on CubeSats involved extreme Low Earth Orbit (eLEO) missions which utilized a 4 U CubeSat at an approximate 210 km altitude paired with a 16 U CubeSat at an approximate 500 km altitude in a formation flight to study high altitude atmospheric parameters [19]. The latest project was the development of a 6 U CubeSat to deliver a small form factor Ion Neutral Mass Spectrometer (INMS) payload to survey the ionosphere in an elliptical orbit with a perigee of 180 km. This CubeSat, named Appleton, was developed over two projects which generated a comprehensive analysis of the controls, guidance, and communications systems along with their
challenges. The last project in this endeavor was also accompanied by a parts list of modern CubeSat components, many of which were utilized in this project [21].

1.2 Project Goals

- Design and analyze the base model of a 12 U CubeSat for use in an orbital debris detection constellation. The CubeSat will operate at an altitude of 700-800 km and carry the Collapsible Space Telescope (CST) developed by NASA AMES [24] to optically monitor a range of altitudes from $800-850 \mathrm{~km}$ where orbital debris is most prevalent
- Continue previous MQP efforts to build and test an ADC testbed, using a Helmholtz cage and a low-friction air bearing table. This testbed will create a dynamic magnetic field that replicates Earth's magnetic environment, in which the performance of the CubeSats magnetorquers can be tested

1.3 Mission Design Requirements, Constraints, and Considerations

1.3.1 Requirements

Payload

- Payload should have the ability to detect 1 cm objects up to a range of 1200 km
- Payload should always point away from the sun to reduce the collection of stray light and to minimize the phase angle between debris and sun
- At $1,200 \mathrm{~km}$, the relative velocity between debris and spacecraft shall not exceed $11.5 \mathrm{~km} / \mathrm{s}$

Mechanical

- Must interface with deployment mechanism without exceeding weight and volume allowances
- Structure must withstand launch and vibration loads
- No debris can be generated by the CubeSat during deployment or operation

Power

- Must provide enough power for subsystem needs throughout mission duration
- Spacecraft shall be powered from onboard solar cells and batteries
- Power shall be reserved for end-of-life deorbiting
- No electronics shall be active during launch
- Solar panels must generate $\sim 2 x$ the nominal requirement for risk mitigation and deorbit
- Battery packs must provide enough power to support mission during detumbling and eclipse periods

Propulsion

- The propulsion subsystem must be able to counteract orbital perturbations to extend mission duration
- The propulsion subsystem is responsible for de-orbiting the spacecraft within the required time

ADC

- Subsystem must counteract orbital perturbations caused by atmospheric drag, magnetic field, and thrust vector misalignment.
- The spacecraft must achieve a pointing accuracy of payload and communications with a maximum error of 0.5 degrees.
- The CubeSat must be able to detumble from initial angular velocities due to ejection from the launch vehicle without reaction wheel saturation and within time constraints set by the power system.

Telemetry and Comms

- Subsystem must be able to fully receive command uplink
- Subsystem shall have the ability to fully transfer scientific data during downlink
- Subsystem must be able to communicate with its satellite group during crosslink

Space Environments

- Spacecraft shall be designed to operate for mission duration considering electromagnetic conditions at operational altitudes
- Spacecraft shall be designed to operate for mission duration in expected radiation conditions at operational altitudes
- Spacecraft shall be designed to operate for mission duration considering the micrometeorite and orbital debris concentrations at operational altitudes

Thermal

- Spacecraft must be able to operate in an ambient and self-induced thermal environment
- Thermal design shall provide temperatures within survivability and operating range of components

1.3.2 Constraints

Mechanical

- Anodized aluminum tabs shall run the entire length of the spacecraft
- Tabs must be an aluminum alloy with a minimum yield strength of 56 ksi and a maximum surface roughness of N7
- No holes or protruding features may exist along the tabs
- Tabs must conform to the dimensions provided by the CSD datasheet
- The face that contacts the CSD ejection plate must be a uniform surface or discrete contact points and envelope the center of mass
- CubeSat must remain within a maximum dynamic volume provided by the CSD
- The center of mass must remain within a defined rectangular area provided by the CSD datasheet
- Static and dynamic loads applied to the tabs must not be greater than 3559 Newtons
- Deformation due to launch vibrations must be analyzed using the provided vibration spectrum
- Structural deformation cannot exceed the CSD dynamic volume

Power

- Solar panel size cannot exceed $3 \mathrm{U} \times 2 \mathrm{U}$ due to surface area constraints
- Solar panels must fold on the $\pm y$ faces so the other faces are open for launch vehicle connection

Propulsion

- The propulsion system should be able to provide the necessary $\Delta V, I_{s p}$, and T set forth by the orbital and mission requirements
- The propulsion system should be able to operate under limitations set by the power and mechanical subsystems

ADC

- The spacecraft must be able to detumble from $\sim 15 \mathrm{deg} / \mathrm{s}$ angular velocities over ~ 1 2 orbit time span without reaction wheel saturation or excessive power draw
- The control law development for the spacecraft must allow for a pointing accuracy of 0.5 degrees while accommodating for reaction wheel limitations of $0.1 \mathrm{Nm}-\mathrm{s}$ of momentum and 0.07 Nm of torque
- Noise in measurements and torquers must be accounted for by an Extended Kalman Filter, see the components list for noise amounts

Telemetry and Comms

- The antenna shall be able to receive S-Band Radio Frequencies.
- The receiver shall be able to uplink GPS and ADC data
- The transmitter shall be able to downlink pictures collected from the payload of approximately 10 Mbps
- The onboard computer shall be able to connect each of the subsystems, as well as process and store images captured by the payload

Space Environments

- The minimum thickness of the aluminum shell and the aluminized mylar must be at least 1.27 cm or 50 mils thick to prevent radiation damage to the internal components

Thermal

- The components most sensitive to temperature must be kept in the most temperate areas of the spacecraft

1.3.3 Optimal Orbit

The orbit will be a sun-synchronous one so that the satellite is in sunlight for the majority of the orbit. This maximizes power generation from the solar panels. To continue optimizing the power generation, the solar panels face directly against the sun vector at optimal orbit, resulting in an incidence angle of 0°. The payload focuses in the opposite direction away from the sun and has a range of around 1200 km . The highest concentration of orbital debris occurs at an altitude of $\sim 800 \mathrm{~km}$, so to optimize the number of objects in the payload's field of view, the CubeSat will remain at a constant altitude of 700 km . Since the highest concentration of debris also exists around the North and South Poles, the optimal orbit for the payload's field of view occurs when the power generation is not optimal.

1.4 Project Management and System Engineering

For this project, the following subsystems were held:

1. Mechanical Design and Structures (Ben Workinger)
2. Propulsion (Dev Gujarathi)
3. Power (Kaitlyn Smith)
4. Thermal (Ben Brady)
5. Space Environments (Ryan Weeks)
6. Telemetry and Communications (Matt Liliedahl)
7. Attitude Determination (Di Abdimash)
8. Attitude Control (Connor Moriarty)

Bi-weekly meetings were held in person to facilitate communication between the subsystems. Furthermore, the team used Slack to communicate outside of meetings. Ben Workinger, Ben

Brady, and Connor Moriarty acted as team leads, while Dev Gujarathi was the purchasing liaison. Ben Brady was the Air Bearing Table Lead and Cage Development was led by Matt Liliedahl and Dev Gujarathi.

1.5 Launch Vehicle

The Rocket Lab Electron Rocket was chosen as the launch vehicle for this mission. The Electron uses it has the capability to go directly to a sun-synchronous orbit from 400 to 1200 km as shown in Figure 1. This will allow ODDSat to share the inclination of the desired orbit, with a value of 98.1929°. With this capability, the CubeSat can eject into the 700 km parking orbit without the need for an orbit raising maneuver to get to a higher altitude. Furthermore, the Electron has over 30 launches to date with over 150 satellites successfully deployed, making it a reliable choice to be the launch vehicle for this mission [23].

Figure 1: Electron performance curves at various inclinations [23]

2. Mission Payload

2.1 Payload Overview

Detecting and tracking orbital debris is a task that has been almost completely done from earth. The primary method of detection for ground-based systems is by using a large radar. However, due to power and size constraints, this is not a feasible solution for a CubeSat. The second method of detecting orbital debris is by taking one or more exposures using an optical sensor. Streaks in the images, left by debris, can be analyzed to find the right ascension and declination of the object at its initial and final location. This data can be packaged as a tracklet and sent to a third party such as the Unified Data Library, who will match the tracklet with similar detections and attempt to create an orbital estimate of the object. While not as power intensive, an optical system can still occupy a large amount of space. Fortunately, NASA's AMES research center did initial research and development of a CubeSat-mountable collapsible telescope called the Collapsible Space Telescope (CST).

2.2 Collapsible Space Telescope

The CST is a low Technology Readiness Level (TRL) optical system developed by NASA for use on a 6U CubeSat. In its stowed configuration, the CST occupies a $20 \mathrm{~cm} \times 20 \mathrm{~cm} \times 10 \mathrm{~cm}$ volume and weighs 1.6 kg . With a focal length of 1250 mm and an aperture of 152 mm , this telescope's field of view is about 1.6 degrees $\times 1.1$ degrees [24]. Due to the low TRL of the CST, very little information regarding the deployment of the telescope is available.

The performance of the telescope is dependent on the brightness of the target and the limiting magnitude of the telescope. The apparent magnitude of the target m_{v} can be calculated using Eq. (1), where A is the cross-sectional area in cm^{2}, ρ is the albedo coefficient, φ is the phase angle in degrees, and r is the distance from the object to the observer [25]. Because ODDSat faces opposition during operation, it can be assumed that the phase angle is zero. Albedo for space debris ranges from 0.01 to 0.18 [26], so to be conservative, a value of 0.1 was assumed.

$$
\begin{equation*}
m_{v}=-26.7-2.5 \log \left(A \rho\left(\frac{2}{3 \pi^{2}}\right)((\pi-\varphi)+\sin (\varphi))\right)+5 \log (r) \tag{1}
\end{equation*}
$$

The limiting magnitude, V, of the CST can be roughly calculated to be 12.7 using Eq. (2), where D is the aperture diameter in inches [27].

$$
\begin{equation*}
V=8.8+5 \log (D) \tag{2}
\end{equation*}
$$

Substituting the limiting magnitude for the magnitude of the target results in a relationship between debris diameter and maximum range. At the minimum range of 500 km , the CST can detect objects as small as 5.13 cm in diameter and at the maximum range of 1400 km , the CST can detect objects as small as 14.4 cm .

3. Mechanical Subsystem Analysis and Design

This chapter reviews the mechanical design ODDSat, as well as the analysis performed to test the CubeSat's compliance with the design requirements and constraints.

3.1 Overview

The mechanical subsystem is responsible for the structural design and layout of ODDSat, making sure that the CubeSat complies with all requirements set forth by the launch vehicle and deployment system. Many of these requirements are physical limitations or design features such as maximum spacecraft size, center of mass positioning, and mounting tab dimensions. These requirements can be verified using the SolidWorks model. Other requirements, such as finding the maximum deflection of the structure, require further analysis and were conducted using ANSYS software. Off-the-shelf components were assumed to be qualified for launch to simplify the model and allow the focus of the analysis to be on the structure.

3.2 Mechanical Subsystem Requirements

The requirements for the mechanical subsystem have been broken down into three subsections: mechanical features, volume and mass properties, and structural limits. These requirements come from the Canisterized Satellite Dispenser (CSD), which is shown in Figure 2, as well as components from other subsystems.

Figure 2: A $6 U$ Canisterized Satellite Dispenser deploying a CubeSat [25]

- Mechanical Features

- Anodized aluminum tabs shall run the entire length of the spacecraft
- Tabs must be an aluminum alloy with a minimum yield strength of 56ksi and a maximum surface roughness of N7
- No holes or protruding features may exist along the tabs
- Tabs must conform to the dimensions provided by the CSD datasheet
- The face that contacts the CSD ejection plate $(-Z)$ must be a uniform surface or discrete contact points and envelope the center of mass
- All deployables must be verified with the CSD before flight
- No debris can be generated by the CubeSat during deployment or operation
- Volume and Mass Properties
- CubeSat must remain within a maximum dynamic volume provided by the CSD
- The center of mass must remain within a defined rectangular area provided by the CSD datasheet
- Structural Limits
- Static and dynamic loads applied to the tabs must not be greater than 3559 Newtons
- Deformation due to launch vibrations must be analyzed using the provided vibration spectrum
- Structural deformation cannot exceed the CSD dynamic volume
- Modal analysis must be performed to identify dominant modes between 20 Hz and 2000 Hz

- Component Requirements

- Sun sensors must be mounted with an unobstructed view of space on each of the six sides of the spacecraft
- Reaction wheels must be positioned along each axis that passes through the center of mass of the spacecraft
- The rate gyro, accelerometer, and magnetorquer must be located at the center of mass of the spacecraft
- The laser transmitter must have an unobstructed view of space during operations
- The thrust vector must pass through the center of mass

3.3 Canisterized Satellite Dispenser (CSD)

The CSD was originally designed by Planetary Systems Corp. and is now owned by Rocket Labs. This system offers a unique deployment method for $3 \mathrm{U}, 6 \mathrm{U}$, and 12 U satellites. The design features two clamps that run the length of the spacecraft's Z axis. When the deployment door is closed, these clamps apply pressure to mounting tabs on the CubeSat and ensure that it remains fixed inside the deployment unit. Per the requirements of the CSD, the total load on the tabs cannot exceed 3559 Newtons. When the deployment door on the CSD opens, an ejection plate pushes on the back panel ($-Z$ face) of the CubeSat to provide an even force which reduces tumbling from
deployment. While inside the canister, the CubeSat must stay within a designated volume of 239 $\times 239 \times 366 \mathrm{~mm}$ considering any thermal changes and vibrations that accompany the launch. Contact zones are available for deployable systems along the four faces that run perpendicular to the deployment plate ($\pm X$ and Y faces). Mechanisms such as roller bearings that contact these provided zones are allowed [28].

3.4 Structural Design

Although many CubeSat missions adapt off-the-shelf structures to meet their requirements, this option was unfeasible for ODDSat due to the size of the payload. Instead, the payload was incorporated into the structure by using the payload base as the $+Z$ structural element. Due to the low TRL level, the actual structural strength of the payload base is unknown and may require modifications to be used in this manner. The remaining structure was designed around the CSD requirements. Figure 3 shows the maximum dynamic volume compared to the size of the CubeSat.

Figure 3: Comparison of the maximum dynamic volume and CubeSat dimensions.
The minimum difference between the CubeSat volume and the maximum dynamic volume is 1.75 mm in the Y direction while static. Figure 3 also shows the contact surface that is pressed
against the CSD ejection plate during deployment. The surface is flat to prevent uneven loading, with cutouts for the electrical interface and fine sun sensor.

Another mechanical feature visible in Figure 3 are the CSD mounting tabs that run the entire length of the spacecraft's Z axis. For proper securement of the CubeSat during launch, these tabs must be designed and manufactured based on dimensions provided by the CSD datasheet. Figure 4 shows a comparison between the provided dimensions and the modeled tabs.

Figure 4: ODDSat's mounting tabs compared to the CSD dimensions [25].

To improve rigidity of the spacecraft, these tabs are manufactured as part of the bottom support plate and provide a recessed area for one of the solar arrays in the stowed configuration. Unlike the other support panels, the tab panel does not have any lightweighting cutout with the only through feature being for the laser transmitter.

3.4 Internal Layout

The internal layout of the spacecraft was dictated by individual component requirements and center of mass. As shown in Table 1, the heaviest components are the payload, propellant tanks, batteries, and solar panels.

Table 1: Mass Breakdown of Components

Component	Total Mass (kg)
Transceiver	0.19
Laser TXRX	0.40
Reaction Wheel (3)	0.99
Magnetorquer	0.20
Payload	1.60
Ops Battery (3)	2.45
EPS	0.14
Solar Array (2)	2.03
Detumbling Battery	0.46
Structure	3.39
Thruster	1.50
Propellant Tank (4)	5.00
Components < 0.1 kg	0.15

For ODDSat to maneuver correctly, the reaction wheels must be located precisely along one of the axes passing through the center of mass both before and after deployment. Similarly, the center of mass must be located along the vector of thrust after the detumbling process. To achieve these strict requirements, the ODDSat relies upon multiple design features seen in Figure
5.

Figure 5: ODDSat in the deployed configuration, showing the center of mass.
First, the solar arrays and telescope were positioned to mitigate center of mass movement between stowed and deployed configuration. Large, heavy components such as the EPS system
were placed in line with the thruster forming a central component block, further cementing the center of mass location. Finally, the four propellant tanks are spaced symmetrically around the central component block. This allows for adjustments in the center of mass around the X and Z axis, simply by using propellant. Another benefit of the central component block is that the layout naturally increases the structural integrity by connecting the center of the $\pm X$ and Y panels.

3.5 Mechanical Analysis

Throughout the project, modal and random vibration analysis were performed using ANSYS to see how the spacecraft structure would respond to launch vibrations. Per CSD requirements, all modes between $20-2000 \mathrm{~Hz}$ must be identified, structural deformation must not exceed the maximum dynamic volume, and the resultant static load and random vibration load must not exceed 3559N [28]. Before analysis was run, the CAD model was simplified. Small, low mass components such as the rate gyro, accelerometer, and course sun sensors were removed. Because the analysis is done on the stowed configuration, each set of solar panels was combined into a single mass/volume part. Once imported into ANSYS, each component's properties were redefined using custom Engineering Data entries. Each entry was created based on the mass and density of the respective part. The first analysis was performed to determine the frequencies at which the structure and components had compounding responses. Modal analysis revealed a total of eight modes ranging from 872.95 Hz to 1978 Hz as shown in Figure 6.

	Mode	Frequency $[\mathrm{Hz}]$
1	1.	872.95
2	2.	938.95
3	3.	1098.3
4	4.	1241.5
5	5.	1578.1
6	6.	1728.7
7	7.	1759.6
8	8.	1923.

Figure 6: ODDSat mode frequencies

These modes were then used as an input for a random vibration analysis along with a power spectral density, provided by the CSD datasheet. The power spectral density describes the expected intensity of vibration at each frequency during launch, which allows for the calculation of deformation of the structure, as well as load on the CSD mounting tabs. Table 2 shows the resulting tab load and maximum X, Y, and Z deformation as random vibrations are applied along each axis of the model. In all three directions of vibration, the tab loading never exceeds the 3556 N limit given by the CSD. The maximum deformation is also within the 1.75 mm tolerance between the structure and the maximum dynamic volume envelope.

Table 2: Mechanical Analysis Results

Vibration Direction	Tab Loading (N)	X Deformation (mm)	Y Deformation (mm)	Z Deformation (mm)
X	1169	0.107	0.018	0.113
Y	2280	0.023	0.031	0.027
Z	3406	0.148	0.032	0.142

Furthermore, by looking closer at the ANSYS results for vibration in the Z direction as shown in Figure 7, the most deformed part is internal rather than the structure itself. These results show that the structural concept of ODDSat is valid, and that further development is feasible.

Figure 7: ANSYS simulation results for deformation when vibration is applied on the Z axis

4. Propulsion Subsystem Analysis and Design

The purpose of this chapter is to present information regarding the propulsion system for this MQP. The discussion will be focused on the design and analysis of the orbital maneuvers used for mission design, as well as a preliminary propulsion system selection process.

4.1 Propulsion Overview

The propulsion system is responsible for all orbital maneuvers and orbital maintenance required for the duration of the mission. The propulsion system must provide the necessary thrust and ΔV required for each orbital maneuver. In general, there are two types of thrusters commonly used on spacecraft, primary and secondary, for different classes of maneuvers. Primary thrusters are used for orbital maneuvers that require higher magnitude ΔV 's. Secondary thrusters are used to reorient the spacecraft in the desired heading as determined by the mission requirements. Due to volume and mass constraints set forth by the power and mechanical subsystems, it was determined that a primary thruster would be the only source of propulsion for this mission. A magnetorquer is also being used for attitude control and reaction wheels are used for detumbling, further eliminating the need for a secondary thruster. Initial research was done to determine the different types of orbital maneuvers that may be needed throughout the duration of the mission. Once the required orbital maneuvers were determined, a thruster trade study was performed to refine a list of several thrusters that could be used for the mission.

4.2 Thruster Trade Study

Several different thrusters were considered for the propulsion system for the ODDSat. Any thruster considered had to be compact and low in total mass in order to fit the requirements set forth by the mechanical system. To fit the requirements of the power subsystem, the thruster should have a bus power requirement that is as low as possible.

The first thruster considered was the Scalable ion Electrospray Propulsion System (SiEPS) produced by MIT. One of the benefits of this system is its modular capability, allowing for it to be scaled according to the mission requirements. The specifications of the SiEPS thruster are presented in Table 3.

Table 3: SiEPS thruster characteristics [29]

Nominal Thrust	$74 \mu \mathrm{~N}$
Specific Impulse	1150 s
System Power	1.5 W
System Volume	$9 \times 9.6 \times 2.1 \mathrm{~cm}$

The second thruster considered was the BET-1mN produced by Busek Co. Inc. One benefit of this thruster is its ability to have a customizable tank. The specifications of the BET-1mN thruster are presented in Table 4.

Table 4: BET-1mN thruster characteristics [29]

Nominal Thrust	0.7 mN
Specific Impulse	800 s
System Power	15 W
System Volume	$8.5 \times 8.5 \times 6 \mathrm{~cm}$

Both the SiEPS and BET-1mN thrusters are examples of electrospray thrusters. Electrospray thrusters are a form of electric propulsion in which an electrostatic field is applied to the surface of an ionic liquid propellant, which in turn accelerates droplets or ions of the propellant. Field
emission electric propulsion (FEEP) thrusters such as the SiEPS rely on ion emission to generate thrust, whereas colloid thrusters such as the BET-1mN rely on droplet emission through a Taylor cone to generate thrust [29]. Electrospray thrusters have high specific impulse specifications and relatively low thrust specifications, making them perfect for fine attitude control or for primary propulsion for nanosatellites, such as CubeSats [30].

The third thruster and the only chemical propulsion system considered was the BGT-X5, also produced by Busek Co. Inc. This monopropellant thruster uses a more environmentally friendly propellant compared to the more commonly used hydrazine, allows for start-stop procedures, and supports customized tanks. Monopropellant thrusters are a type of chemical propulsion systems in which chemical energy stored within the propellant is used to propel the spacecraft. As the propellant burns, molecular bonds break and release energy in the form of heat. The products of the reaction are then accelerated through a nozzle to produce thrust [30]. Monopropellant thrusters are simple since they contain the oxidizing agent and combustible matter in a single substance. Monopropellants decompose and yield combustion gases either when heated or catalyzed in a catalyst bed [31]. Green monopropellants, such as the one used in the BGT-X5, offer higher density, thrust, and performance as opposed to hydrazine [29]. The specifications of the BGT-X5 thruster are presented in Table 5.

Table 5: BGT-X5 thruster characteristics [32]

Nominal Thrust	0.5 N
Specific Impulse	225 s
System Power	20 W
System Volume	$10 \times 10 \times 10 \mathrm{~cm}$

ThrustMe's NPT-30 I2 Smart Iodine Electric Propulsion System was also considered as a possible option. Like the SiEPS system, the NPT-30 I2 also has a modular design which is useful in terms of scaling the propulsion system. The NPT-30 I2 thruster is an example of an ion engine,
which adds or removes electrons from easily ionized and high atomic mass propellants. This results in positively charged ions, which are then accelerated out of the thruster in a beam along with an equal amount of electrons, to produce thrust that has a total neutral charge [33]. Table 6 presents the specifications of the NPT-30 I2 thruster.

Table 6: NPT-30 I2 thruster characteristics [34]

Nominal Thrust	1.1 mN
Specific Impulse	2400 s
System Power	65 W
System Volume	$9.6 \times 9.6 \times 11.3 \mathrm{~cm}$

The last thruster considered was the Busek BHT-100 Hall Thruster. This thruster has a high thrust, allowing for the capability to perform maneuvers requiring a high ΔV. The BHT-100 thruster is an example of a Hall thruster. Hall thrusters use electrons circulating in a Hall current channel and eventually ionize the propellant, creating ionized plasma. This plasma is then accelerated by the electric field created by the electrons to exhaust velocities up to 65,000 miles per hour, producing thrust [35]. Table 7 presents the specifications of the Busek BHT-100 Hall Thruster.

Table 7: Busek BHT-100 Hall Thruster characteristics [37]

Nominal Thrust	7.0 mN
Specific Impulse	1000 s
System Power	100 W
System Diameter	8.0 cm
System Length	5.5 cm

4.3 Initial Thruster Analysis and Propulsion System Selection

To determine what thruster would be used as the primary propulsion system for the ODDSat, initial estimates were made using a combination of the MATLAB script in Appendix A and STK's Lifetime Tool. These estimates would help to understand the capabilities and
performance of each thruster. The MATLAB script uses the initial and final altitudes and models a Hohmann transfer between the two to determine the total ΔV required for the Hohmann transfer. Once the ΔV was found, it can be plugged in to the Rocket Equation:

$$
\begin{equation*}
\Delta V=-g I_{s p} \ln \left(\frac{m_{f}}{m_{i}}\right) \tag{3}
\end{equation*}
$$

where ΔV is the required change in velocity during a burn in meters per second, m_{f} the final mass of the ODDSat after the burn in kilograms, m_{i} is the initial mass of the ODDSat before the burn in kilograms, and g is the acceleration of gravity. The $I_{s p}$ is given by the manufacturer of the thruster. From Eq. (3), the mass of propellant consumed per burn can be found using:

$$
\begin{equation*}
m_{p}=\left(1-\frac{m_{f}}{m_{i}}\right) m_{i} \tag{4}
\end{equation*}
$$

where m_{p} is the mass of propellant consumed per burn in kilograms. For the initial thruster analysis, an initial mass of 24 kg , which is the maximum allowable mass for a 12 U CubeSat, was assumed.

The burn time required for each maneuver can be found using:

$$
\begin{equation*}
t_{b}=\frac{m_{p} g I_{s p}}{T} \tag{5}
\end{equation*}
$$

where t_{b} is the burn time per maneuver in seconds and T is the thrust of each thruster in Newtons.

However, in the case of low-thrust thrusters such as the electric propulsion systems above, the Edelbaum equation must be used to determine the ΔV needed to follow a spiral trajectory between the two orbit altitudes:

$$
\begin{equation*}
\Delta V=\sqrt{V_{i}^{2}+V_{f}^{2}-2 V_{i} V_{f} \cos \left(\frac{\pi}{2} \Delta i\right)} \tag{6}
\end{equation*}
$$

where ΔV is the required change in velocity during a burn in meters per second, V_{i} and V_{f} are the velocities on the initial and final circular orbits in meters per second, and Δi is the inclination change between the two orbits in radians. The velocity on any circular orbit is given by:

$$
\begin{equation*}
V_{c}(r)=\sqrt{\frac{\mu}{r}} \tag{7}
\end{equation*}
$$

where μ is the standard gravitational parameter of Earth (approximately $3.986 \times 10^{14} \frac{\mathrm{~m}^{3}}{\mathrm{~s}^{2}}$) and r is the radius of the circular orbit in meters. Once the ΔV is found using Eqs. (6) and (7), it can be plugged into Eqs. (3) and (4) to find the spacecraft mass ratio after the orbit transfer, as well as the propellant mass needed for the transfer. To find the burn time, the below equation can be used:

$$
\begin{equation*}
t_{b}=\frac{m_{p}}{\dot{m}} \tag{8}
\end{equation*}
$$

where t_{b} is the burn time per maneuver in seconds, m_{p} is the mass of propellant consumed per burn in kilograms, and \dot{m} is the mass flow rate of the thruster given by:

$$
\begin{equation*}
\dot{m}=\frac{T}{g I_{s p}} \tag{9}
\end{equation*}
$$

where T is the thrust of the thruster in Newtons, g is the acceleration of gravity, and $I_{s p}$ is the given specific impulse of the thruster in seconds.

This analysis was performed for every phase of the mission where a burn would be needed.

4.3.1 Initial State and Parking Orbit

As mentioned in Section 1.5, the Rocket Lab Electron will be used as the launch vehicle for the mission. Since the Electron can eject satellites over the 400 to 1200 km range in a sunsynchronous orbit, there is no need to account for an orbit raise maneuver to bring the ODDSat to the 700 km orbit. Furthermore, the ability for the Electron rocket to launch to a sun-synchronous orbit means that a maneuver will not be required to change the inclination of the ODDSat.

4.3.2 Station-Keeping Maneuvers

One of the goals of the propulsion system is to choose a thruster that can extend the mission lifetime. For this, the propulsion system must be able to counteract orbital perturbations, mainly caused by drag. The first step in this analysis was to determine how long the ODDSat would take to decrease in altitude due to drag. Using STK's Lifetime Tool with an iterative process with a Drag Area of $0.06 \mathrm{~m}^{2}$ and an Area Exposed to Sun of $0.04 \mathrm{~m}^{2}$, it was determined that the ODDSat would take roughly 3.7 years to go from 700 km to 683 km without any burn being performed by the propulsion system, as shown in Figure 8. For the purposes of this initial analysis, an inclination change of 0 was assumed.

Figure 8: STK Lifetime Analysis Tool estimate for station-keeping

Using Eqs. (6) and (7) for the electric propulsion systems and the MATLAB script for the monopropellant thruster, it was determined that for the propulsion system to bring the ODDSat back to the desired 700 km , a total ΔV of roughly $9.028 \frac{\mathrm{~m}}{\mathrm{~s}}$ would be required. For each of the aforementioned five thrusters, Eqs. (5)-(9) were used to determine the amount of propellant required, as well as the burn time, for one station-keeping maneuver. Table 8 summarizes the results.

Table 8: Thruster characteristics for one station-keeping maneuver

Thruster	Thrust (N)	$I_{s p}(\mathrm{~s})$	Power (W)	m_{p} used (kg)	Burn Time (days)
SiEPS	0.00074	1200	1.5	0.0184	33.876
BET-1mN	0.0007	800	15	0.02759	3.580
BGT-X5	0.5	225	20	0.09796	0.005
NPT-30 I2	0.0011	2400	65	0.00920	2.279
BHT-100	0.007	1000	100	0.02208	0.358

4.3.3 Deorbiting Maneuver

An additional maneuver that the propulsion subsystem must perform is deorbiting. Currently, there is a rule set by the FCC which states that a satellite in a low-Earth orbit must deorbit within 5 years of completing its mission in space [38]. For de-orbiting, only the first burn is needed to lower the altitude of periapsis of the ODDSat's orbit for the chemical propulsion system. For the electric propulsion systems, the entire ΔV must be accounted for. So, using Eqs. (6) and (7) for the electric propulsion systems and the MATLAB script for the monopropellant thruster, it was determined that a ΔV of $134.231 \frac{\mathrm{~m}}{\mathrm{~s}}$ would be needed for the monopropellant thruster and ΔV of $270.947 \frac{\mathrm{~m}}{\mathrm{~s}}$ would be needed from the chemical propulsion systems to lower the

ODDSat's altitude from 683 km to 200 km . Eqs. (5)-(9) were again used to determine the amount of propellant required, as well as the burn time, for the de-orbiting maneuver. Table 9 summarizes the results. Again, an inclination change of 0 was assumed for this analysis.

Table 9: Thruster performance for a de-orbiting burn from 683 to 200 km

Thruster	Thrust (N)	$I_{s p}(\mathrm{~s})$	Power (W)	m_{p} used (kg)	Burn Time (days)
SiEPS	0.00074	1200	1.5	0.546	1005.453
BET-1mN	0.0007	800	15	0.814	105.684
BGT-X5	0.5	225	20	1.078	0.055
NPT-30 I2	0.0011	2400	65	0.217	53.856
BHT-100	0.007	1000	100	0.654	10.605

Using STK's Lifetime Analysis Tool, it was determined that due to the effect of drag at low altitudes, the ODDSat would take roughly 7 days for it to get to 75 km , as shown in Figure 9 . The 75 km altitude is a recognized altitude at which peak heat fluxes and mechanical loads result in satellite break up [39]. Using the results from the table above, all five of the thrusters would be capable of having the CubeSat de-orbit within the previously mentioned 5-year limit.

Figure 9: STK Lifetime Analysis Tool estimate for orbit-lowering from 200 to 75 km

4.3.4 Propulsion System Selection

Based on the initial analysis presented in Sections 4.3.2 and 4.3.3, Busek's BGT-X5 monopropellant thruster was chosen as the primary and only propulsion system for the ODDSat. Due to its high thrust specification, the BGT-X5 has a significantly lower burn time than any of the other four thrusters that were considered. Although the thruster has a low specific impulse, leading to a larger amount of propellant needed for the mission, the thruster still fit within the mass and volume constraints set forth by the mechanical subsystem. The maximum 20 W of power needed also fit the constraints set forth by the power subsystem. The ability to integrate with customized tanks and the use of a more environmentally friendly propellant were also a deciding factor in choosing the thruster.

4.4 Orbital Analysis

Once the thruster for the ODDSat was chosen, the total amount of propellant that the ODDSat carried was determined. Based on that amount of propellant, propellant tanks were sized accordingly. Additionally, STK's Astrogator was used to perform in-depth orbital analysis to create a propulsion system timeline for two cases: with station-keeping and without stationkeeping.

4.4.1 Total Propellant Carried and Tank Sizing

To determine the amount of propellant that the ODDSat would carry, a maximum duration of 15 years was assumed for the time the ODDSat could remain in space. Using Tables 8 and 9 , it was determined that four station-keeping maneuvers could be performed, along with the one deorbiting burn at the end. The total amount of propellant required was roughly 1.4698 kg . A
maximum limit of 4.5 kg of propellant, roughly three times greater than what was required, was set, with the extra propellant accounting for redundancy. Based on this 4.5 kg limit, a cylindrical Ti-6Al-4V tank with spherical endcaps was sized according to the following equation:

$$
\begin{equation*}
V_{i n t}=\frac{4}{3} \pi r_{i n t}^{3}+\left(A R r_{i n t}\right) \pi r_{i n t}^{2} \tag{10}
\end{equation*}
$$

where $V_{\text {int }}$ is the internal volume of the tank in $\mathrm{m}^{3}, r_{\text {int }}$ is the internal radius of the tank in m , and $A R$ is the aspect ratio of the tank. For the tank sizing, an aspect ratio of 4 was assumed. The internal radius of the tank was found by setting $V_{\text {int }}$ equal to the volume V_{p} of the propellant, which can be found using:

$$
\begin{equation*}
V_{p}=\frac{m_{p}}{\rho_{p}} \tag{11}
\end{equation*}
$$

where m_{p} is the mass of propellant in kilograms and ρ_{p} is the density of the propellant in $\frac{\mathrm{kg}}{\mathrm{m}^{3}} . V_{p}$ was calculated to be around $0.0031 \mathrm{~m}^{3}$ using Eq. (11) This value was then substituted into Eq. (10) for $V_{\text {int }}$ to determine that a single tank with an internal radius of 0.057 would be needed to store all propellant. Since this did not fit within the model of the ODDSat created by the mechanical subsystem, it was decided to instead use four smaller tanks. Each tank would have an internal radius of 0.0359 m . The combined mass of all four tanks, assuming a mass factor of 1.25 , was calculated to be just under 0.5 kg . This meant that the mass of the entire propulsion system including the propellant, the propellant tanks, and the BGT-X5 thruster was 6.5 kg , bringing the initial wet mass of the ODDSat to 18.5 kg .

4.4.2 Orbital Analysis with Station-Keeping

Orbital analysis was first performed with the assumption of performing station-keeping maneuvers as mentioned in Section 4.3.2. However, the Lifetime Analysis estimate from above was performed with an initial wet mass of 24 kg . With the new updated wet mass of 18.5 kg and updated estimates for the Drag Area and Area Exposed to Sun provided by the mechanical subsystem, the Lifetime Analysis Tool was used to determine that the ODDSat would take 2.1 years to go from 700 km to 683 km because of drag. Figure 10 shows the results from the Lifetime Tool with the settings mentioned above. An analysis start time of 1 Feb 2023 17:00:00.000 UTCG was used for the Lifetime estimate in Figure 10.

Figure 10: STK Lifetime Analysis Tool updated estimate for station-keeping
To obtain more accurate estimates for the ΔV and m_{p} needed to raise the ODDSat's orbit to 700 km from 683 km , a Hohmann transfer as was modeled using the Targeter within STK's Astrogator. Figure 11 shows the Mission Control Sequence (MCS) for the Hohmann transfer mentioned above.

Figure 11: Hohmann transfer modeled using the Targeter
Once the full MCS was run, the ΔV required for one station-keeping maneuver was determined to be roughly $9.028 \frac{\mathrm{~m}}{\mathrm{~s}}$, while the m_{p} required was determined to be 0.07554 kg . The total time taken for the ODDSat to go from 683 km to 700 km was estimated to be 3921.2 seconds. With these values in mind, the decision was made to perform three station-keeping maneuvers. The MCS was run two more times, each with a more refined estimate of the mass of the ODDSat based on the propellant consumed for the previous station-keeping maneuvers. Once three station-keeping maneuvers were performed, an additional 2.1 years was accounted to bring the ODDSat back down to 683 km . Then, the Targeter sequence as shown in Figure 12 was used to determine the ΔV and m_{p} required to bring the ODDSat's altitude to 250 km to begin the de-orbiting process.

Figure 12: De-orbit burn modeled using the Targeter

The Targeter estimated that a ΔV of $119.781 \frac{\mathrm{~m}}{\mathrm{~s}}$ and a m_{p} of 0.9656 kg would be needed to bring the ODDSat to 250 km . The total time taken was estimated to be 4261.1 seconds. After this point, the Lifetime Analysis Tool was used to estimate that the ODDSat would take 14 days to lower to 75 km, as shown in Figure 13.

Figure 13: STK Lifetime Analysis Tool estimate for orbit lowering from 250 to 75 km
The propulsion system timeline including the three station-keeping maneuvers, the de-orbiting burn, and the time taken to decrease in altitude due to drag can be seen in Table 10. Also included is the ΔV and mass required for each maneuver/burn, the total ΔV and propellant mass, as well as the time taken.

Table 10: Propulsion system timeline with station-keeping

Phase/Maneuver/Burn	Initial Altitude (km)	Final Altitude (km)	ΔV Required $\left(\frac{m}{s}\right)$	m_{p} required (kg)	Time Taken $($ years $)$
Orbit-lowering \#1	700	683	-	-	2.1
Station-keeping \#1	683	700	9.028	0.07554	0.0001
Orbit-lowering \#2	700	683	-	-	2.1
Station-keeping \#2	683	700	9.028	0.07523	0.0001
Orbit-lowering \#3	700	683	-	-	2.1
Station-keeping \#3	683	700	9.028	0.07492	0.0001
Orbit-lowering \#4	700	683	-	-	2.1
De-orbit	683	250	119.781	0.9656	0.00014
Orbit-lowering \#5	250	75	-	-	0.0384
Total	-	-	$\mathbf{1 4 6 . 8 6 5}$	$\mathbf{1 . 1 9 1 3}$	$\mathbf{8 . 4 4}$

4.4.3 Orbital Analysis without Station-Keeping

To provide more insight on the capabilities of the BGT-X5 thruster, orbital analysis was also done for the case when no station-keeping maneuvers would be necessary throughout the duration of the mission. With the wet mass of 18.5 kg and updated estimates for the Drag Area and Area Exposed to Sun provided by the mechanical subsystem, the Lifetime Analysis Tool was used to determine that the ODDSat would take 10.6 years to go from 700 km to 680 km because of drag, as shown in Figure 14 below. An analysis start time of 1 Feb 2023 17:00:00.000 UTCG was used for the Lifetime estimate in Figure 14.

Figure 14: STK Lifetime Analysis Tool estimate for orbit-lowering from 700 to 680 km
It was noticed that there was a large gap in time to descend an additional 3 km . In Section 4.4.2, it was estimated that the ODDSat would take 2.1 years to get from 700 km to 683 km because of drag. However, as presented in Figure 14, it would take the ODDSat 10.6 years to get from 700 km to 680 km due to the effects of drag. After doing research why there is such a large time gap between the two estimates, it was determined that solar variation over the course of a solar cycle has a large effect on the lifetime of a satellite [40]. A solar cycle is an 11-year period during which the Sun's magnetic field completely flips [41]. The atmospheric density varies by roughly two orders of magnitude between solar maximum, when there is the highest amount of solar activity, and solar minimum, when there is the lowest amount of solar activity. Due to the large variations
in the density, satellites decay faster during solar maximum and slower during solar minimum [40]. Figure 15 shows the latest forecast for the current solar cycle, Solar Cycle 25, provided by the National Oceanic and Atmospheric Administration (NOAA) [42].

Figure 15: NOAA's latest prediction for Solar Cycle 25 [42]
An analysis start time of 1 Feb 2023 17:00:00.000 UTCG was used for the Lifetime estimate in Figure 14. The estimated decay date of 22 February 2025 from Figure 10 is very close to the estimated solar maximum of July 2025 in Solar Cycle 25, while the estimated decay date of 21 September 2033 from Figure 14 is relatively close to the estimated solar minimum of sometime in 2034. Figure 16 below shows the ODDSat's height of perigee when plotted against the time.

Height of Perigee (km)

Figure 16: STK generated graph of the ODDSat's height of perigee versus time

The area in the blue box in Figure 16 proves that the height of perigee decreases at a faster rate as solar maximum approaches, as opposed to the area in the green box, where the height of perigee decreases at a much lower rate as the time slowly approaches solar minimum.

Even though the altitude of the ODDSat would eventually reach 680 km as opposed to the 683 km altitude used in Section 4.4.2, analysis was still performed for this situation since the 3 km difference was considered negligible when comparing it to the 1400 km maximum range of the CST mentioned in Section 2.2.

After the ODDSat reaches an altitude of 680 km , a de-orbiting burn can be performed to lower the altitude to 250 km . The MCS shown in Figure 12 was set up with an initial altitude of 680 km to estimate that a ΔV of $118.996 \frac{\mathrm{~m}}{\mathrm{~s}}$ and a m_{p} of 0.9713 kg would be needed to bring the ODDSat down to 250 km . The time taken to get to 680 km was estimated to be 4286.2 seconds. From that point, drag could take over and take the ODDSat to 75 km in 14 days, as shown in Figure 13.

The propulsion system timeline including the three station-keeping maneuvers, the deorbiting burn, and the time taken to decrease in altitude due to drag can be seen in Table 11. Also included is the ΔV and mass required for each maneuver/burn, the total ΔV and propellant mass, as well as the time taken.

Table 11: Propulsion system timeline without station-keeping

Phase/Maneuver/Burn	Initial Altitude (km)	Final Altitude (km)	ΔV Required $\left(\frac{m}{s}\right)$	m_{p} required (kg)	Time Taken (years)
Orbit-lowering \#1	700	680	-	-	10.6
De-orbit	680	250	118.996	0.9713	0.00014
Orbit-lowering \#2	250	75	-	-	0.0384
Total	-	-	$\mathbf{1 1 8 . 9 9 6}$	$\mathbf{0 . 9 7 1 3}$	$\mathbf{1 0 . 6 3 8}$

5. Power Subsystem Analysis and Design

This chapter reviews the power subsystem design and components on the ODDSat, as well as the analysis performed to ensure enough power generation and distribution for the other subsystems on the ODDSat with the given requirements and constraints.

5.1 Power Overview

The power system is responsible for managing the collection and distribution of power to the spacecraft and all the subsystems. It is also responsible for storing power so that the satellite has power for eclipses. The power subsystem must ensure that there is enough power to meet the mission requirements. Like most spacecraft, CubeSats typically use solar panels for their power generation. Solar panels consist of photovoltaic solar cells that convert solar radiation to electrical energy [43]. This energy is then stored or distributed to the spacecraft so that the spacecraft can operate and perform mission objectives. Other power generation methods were researched, but the mission is using a sun-synchronous orbit that can maximize the power received from the panels since the panels will be in the sunlight for most of their orbit.

Solar cells have p-n junctions, which are boundaries between two semiconductor materials, a p and n -type. These can be divided into two regions, the p and n regions. P regions have a low electron concentration, and the n -region has a high concentration. Photons from solar radiation remove an electron from the n region and it moves to the p region [43]. The electron flow generates electrical power that can then be distributed through the Electrical Power System (EPS) to the instrumentation on board. Along with the EPS is a battery pack consisting of batteries that will store power for when the satellite requires a higher power output or during eclipses.

5.2 Hardware Selection

5.2.1 Solar Panels

To generate the most amount of power during the mission, the cells must have high efficiency. Since the distance from the sun is nearly constant throughout the CubeSat's orbit, higher-efficiency cells will produce more power than low-efficiency cells. Single junction cells only have one p-n junction where electrons flow, while multi-junction cells have more than one junction. These extra junctions make the panels more efficient overall since there can be more electrons flowing from region to region. Additional junctions also can receive different wavelengths so there is a higher amount of flow occurring. Since the goal is to have the highest efficiency, multi-junction cells were chosen.

After understanding the type of panel needed, the selection of cells came next. Although the choice will be focused on having the cells with the highest efficiency, the subsystem must ensure that the panels fit the size and weight constraints for the satellite. The CubeSat size selected was 12 U using a $3 \mathrm{U} \times 2 \mathrm{U} \times 2 \mathrm{U}$ configuration. This meant that the largest possible solar panel was $3 \mathrm{U} \times 2 \mathrm{U}$ based on the surface area where the panels would be placed. The research was conducted on solar array sizes and their efficiency by different manufacturers. The highest power generation came from the solar cells used by EnduroSat, a manufacturing company that focuses its products on small satellites such as CubeSats. EnduroSat's 6U solar panels have $\sim 30 \%$ efficiency using a triple junction cell (3 p-n regions in the cell for 3 wavelengths) [44]. This efficiency is one of the highest that exists for nanosatellite solar panels and therefore is the chosen panel to maximize power generation. A 6 U solar panel was analyzed since the solar panel size is $3 \mathrm{U} \times 2 \mathrm{U}$, the size
needed for the ODDSat without the need for additional configuration. A single solar panel from EnduroSat has 16 solar cells and can generate around 19.2 W of power at 19.2 V and 1 A [44].

Once these cells were selected, the power subsystem focused on maximizing the solar array size as well to generate the most power. To find the optimal array size at the optimal orbit, the following equations were used:

$$
\begin{gather*}
P_{0}=n s \tag{12}\\
P_{B O L}=P_{o} I_{d} \cos (\theta) \tag{13}\\
A_{a}=\frac{P s a}{P_{B O L}} \tag{14}
\end{gather*}
$$

Equation (12) solves for P_{0} (panel output power) by using the solar cell efficiency (n) and the solar flux at Earth's distance from the sun (s). Equation (13) $\left(P_{B O L}\right)$ is the beginning of life power, which is determined from the panel output power, the nominal inherent degradation I_{d}, and the solar incidence angle θ (which was assumed to be 0° at optimal and 10° at non-optimal based on mission parameters). Equation (14) is the optimal array size, which is simply the needed power divided by the beginning of life power. The efficiency of the EnduroSat panels is 30%, and the nominal inherent degradation is assumed to be 77% [44],[45]. Dividing the optimal array size by the size of one panel $\left(0.06 \mathrm{~m}^{2}\right)$ gives the number of panels to create the optimal array.

To determine the power needed, the subsystem created a budget to manage what each other subsystem would require for mission operations. The budget, shown in Table 12, is based on four different parts of the mission. The first two columns, the nominal wattage and the eclipse needs, both occur for most of the mission while the detections occur. Detumbling needs are the power used before the solar panels are deployed after detaching from the launch vehicle, and the final
column measures what is needed while the spacecraft deorbits to a burnup altitude. All of these are conservative estimates of the power needed during the mission, to ensure the panels and EPS can support the maximum necessary amount of power.

Table 12: Power Budget

Subsystem	Nominal Wattage (W)	Eclipse Needs (W)	Detumbling Needs (W)	Deorbiting Needs (W)
Attitude Determination	2	2	0	0
Attitude Control	6	4.235	4	0
Propulsion	0	0	0	20
Comms	10	10^{*}	5	0
Payload	12	12	0	0
Total	30	28.235	9	20

*Comms would need 10 W only if downlink occurs during an eclipse period (38min total), otherwise 0 W is used
Based on the nominal wattage, the optimal solar array size would be $0.19 \mathrm{~m}^{2}$ for optimal orbit and $0.1929 \mathrm{~m}^{2}$ for 10° incidence angle, meaning that the number of panels is around 3.2 and rounds up to 4 total panels. Based on the maximum wattage, the optimal array size is $0.3167 \mathrm{~m}^{2}$ for optimal orbit and $0.3217 \mathrm{~m}^{2}$ for 10° incidence angle, meaning the number of panels is 5.3 rounding up to 6 total panels. Though this is the optimal array size, it must still fit onto the satellite and fit the size and mass constraints. Assuming the worst-case scenario (6 total panels needed for operating), there is not enough room to fit only body-fixed panels on the CubeSat. The team decided to instead use 6 deployable panels that would fold on top of each other on the CubeSat faces. The configuration chosen was 3 panels on opposite faces of the CubeSat folded, and then extending in the $\pm y$ direction when deployed.

5.2.2 Electrical Power System and Batteries

The EPS is the system that distributes power throughout the satellite. To choose the proper EPS, research was performed to ensure that the system is compatible with the solar panel connections and the instrumentation selected. Based on the different subsystems' instrumentation selections, the payload is the instrument with the highest power draw during one orbit, needing about 12 W . This means the EPS must have an output converter that generates more than 12 W . Additionally, the physical connections of each instrument must be compatible with the EPS. Another condition that would be beneficial for the system is Maximum Power Point Tracking (MPPT). MPPT is a technology that ensures the power output is as close to the input as possible. The system will measure the solar panel generation and looks at the voltage of the instruments and batteries [46]. It then can adjust the current through the EPS so that there is no power lost from start to finish. It does this by taking the DC input of the solar panels and converting it to AC , then back to DC with the adjusted current and correct voltage [46].

An EPS has multiple different components that help take the solar energy and convert it into power for the instruments. The process can be seen in the schematic in Figure 17.

Figure 17: Schematic of general EPS internal workings and connections
The solar arrays connect directly to the MPPTs, which convert the input to the proper battery voltage. The battery unit then distributes to the battery packs and the power control unit. From the power control unit, the distribution unit sends the voltage to the output converters, which connect to the instruments onboard.

When selecting an EPS system, some with batteries on board were considered, meaning that battery packs were included with the EPS. However, this on-board battery pack would sometimes limit additional or external battery packs being added, and the charging time would not be enough between the eclipse periods measured and discussed in Section 5.3. Other EPS systems had connection options for battery packs to attach to it, leaving more flexibility for the types of batteries. After considering different manufacturers and types of EPS', the Ibeos SmallSat EPS was the selected system with the 28 V configuration. The EPS has 4 different output options which
can be varied [47]. To find which outputs should be used, the following equation was used to find how much power would be generated for each option. Table 13 shows the numbers for each output.

$$
\begin{equation*}
P=V I-R I^{2} \tag{15}
\end{equation*}
$$

Table 13: Voltage regulator options for the Ibeos 28 V EPS

	Voltage, volts (V)	Current, amperes (I)	Resistance, ohms (R)	Power Output, watts (P)
3.3V Regulated	3.3	3	0.015	9.765
5V Regulated	5	6	0.015	29.46
12V Regulated	12	4	0.015	119.76
Unregulated	28	10	0.015	278.5

Using the results from Table 13 and the power budget from Table 12 , the 3.3 V and 5 V options are the best for the different subsystems. Attitude Control and Attitude Determination, the subsystems under the 9.765 W threshold, will use the 3.3 V regulated bus. Comms, Propulsion, and Payload, the subsystems over the 9.765 W but below the 29.46 W threshold, will use the 5 V regulated bus.

Having no batteries included on the EPS allows for flexibility in selection, since the batteries would need a discharge time of over or 200 minutes to cover all detumbling but also need an 18-minute discharge for eclipse periods where mission operations are taking place. The EPS itself only consumes 1.5 W , a small amount compared to the generation that comes from the solar panels [43]. The high efficiency allows for very little power to be lost while being converted in and out of the system. Ibeos also produces 28 V compatible batteries that pair well with the system, which perform well with the chosen EPS. A discharge rate of 10A allows for rapid power distribution to the subsystems during eclipse periods [48]. The charging rate of 2.5 A allows for a slower but still efficient recharge time. The BOL capacity is around 135 Wh , higher than many of its competitors [48]. Voltages accepted do not necessarily need to be at 28 V , as the batteries can
handle $22-33.6 \mathrm{~V}$, but a 28 V rail is selected since that is the most compatible with the EPS [48]. There are also built-in protection systems in the batteries, such as an over-current charge or discharge, remove-before-flight (a CubeSat requirement), and more [48]. Three of these batteries were added to the system to support recharging periods and not falling below the DOD of 80% for lithium-ion batteries [49]. While these specs fit the eclipse needs well, the detumbling needs would not be met.

For detumbling, the conservative estimate is that the ADC subsystem needs 2 orbits to have the satellite pointing and positioned correctly with a smaller amount of power needed over the 200-minute period. The 28 V batteries could not be configured to give a small amount of power initially and then adjust later on in the mission to support mission operations with a higher power draw. Instead, a detumbling battery was added to the satellite. A detumbling battery would have the primary purpose of operating the system while detumbling is occurring and the solar panels are not deployed. This battery would require different specs: a lower discharge rate and a smaller volume that would fit in the internal system. This battery would not need as high of power storage since it would only be used once during the mission lifetime. For all of these reasons, the EaglePicher Technologies 12Ah Space Cell was chosen to be the detumbling battery. The discharge rate is $\mathrm{C} / 5$, meaning that it takes around 5 hours for the battery to be fully discharged at maximum usage [50]. The battery is also small and narrow to fit well within the internal structure of the CubeSat [50].

5.3 STK Simulations and Analysis

To understand how the selected components would work over the mission duration, STK was used to model the mission's orbit in LEO. STK generates solar panel power reports which can be used to ensure that the model is working and that the panels are configured correctly.

5.3.1 Model and Scenario Building

STK provides many satellite models to upload into the simulated orbit, some with solar panels and some without. However, the only CubeSat models STK generates are 1U-6U. Since the satellite is 12 U , this would not be the right sizing. Additionally, none of the models had solar panels that fit the 12 U configuration. Blender was used to create a model of the spacecraft so the correct sizing of the body and panels could be uploaded into the system. The initial model is shown in Figure 18 below, where the rectangular prism is the size of the main body, and the extruding parts are the solar panels.

Figure 18: Snapshot of the initial Blender model of the deployed configuration
To create the model in Blender, the initial cube given by the system was narrowed into the rectangular prism with the dimensions of the ODDSat. To create the solar panels, another object was added and adjusted to be the dimensions of three solar arrays deployed, the total top solar panels. To add a grid to the external face, 'Mesh' followed by 'Grid' were selected. The number of subdivisions could be adjusted and were done to create the number of solar cells for the top set of panels. To create the divisions between each cell, a 'Modifier' was added. The modifier selected was 'Wireframe', and the thickness was lowered until the solar cells were visible and equal to the dimensions given by EnduroSat. The material of the solar cells also needed to be edited in the modeling software, and was done by selected 'Material' for each of the cells and adjusting the features such as 'Metallic', 'Roughness', and 'Subsurface' so that it was a metallic, blue color to bring attention to the cells that would be generating the power. Once these steps were completed, the shape was duplicated so that there was a bottom set of solar panels.

It was important while modeling to ensure that the solar panels were separate components from the body and each other. This needed to be done so that the power output in STK would show each of the panel's outputs and the overall output. However, to export the model into a working COLLADA file, the components needed to be connected to one another. This was done by moving the top and bottom solar panels to line up with on face of the ODDSat's body so that they were aligned on the same plane. To add the solar panels, the process was done one set of panels at a time. The body was selected, then 'Properties' was clicked and a 'Boolean' modifier was added. After naming the modifier, the button 'Object' was selected and the top panel component was chosen from the list. To finally merge the objects, 'Operation' followed by 'Union' was selected. The process was repeated for the bottom solar panel set. This creates a single moving piece with three components.

The model was exported from Blender into a COLLADA file so that it could be uploaded to STK. Initially, there was no power generation reported because the COLLADA file did not have the code needed to identify which components were the solar panels. In order to target certain parts of the CubeSat, code was taken from the 6 U CubeSat COLLADA file provided by STK. The 6 U file had code written to target certain parts and to give those parts the necessary efficiency. The editing was done in the Notepad app, then saved as a COLLADA file again. The COLLADA file was reuploaded to STK with the corrected efficiency can be found in Appendix B.

5.3.2 Beginning of Life Analysis

To ensure the model correctly shows the power generation of the panels, a single orbit analysis was done for each solar panel and the total of both panels. Two dates were analyzed, the spring equinox and the summer solstice of the first year in orbit. Figure 19 shows the power
generation over one orbit on June $21^{\text {st }}, 2023$, while Figure 20 shows the power generation over one orbit on March $21^{\text {st }}, 2024$. The green line is the $+y$ panel, the dark blue line is the $-y$ panel, and the light blue line is both panels' output combined.

Figure 19: Solar panel power output for one orbit on June 21st, 2023

Figure 20: Solar panel power output for one orbit on March 21st, 2024
June $21^{\text {st }}$ shows that at the beginning of the orbit, there is a full eclipse period that lasts around 18 minutes. Both solar panels are in total shadow for that time. The power increases quickly once the $+y$ panel is back in full sunlight and generates 47 W of power. The $-y$ panel takes a few
minutes to go from total shadow to total sunlight. Both panels in full sunlight generate around 94 W , which lasts for 20 minutes. The $-y$ panel then drops into partial and then total shadow again after this period and stays in total shadow for around 14 minutes before returning to total sunlight. The $+y$ panel stays in full sunlight for the remainder of the orbit. The cycle repeats itself during the orbit and based on the beginning of the graph, a full eclipse can be expected shortly after. Further analysis will need to be done on this part of the orbit to ensure that the subsystems have enough power at all points and the batteries can recharge fully between eclipse periods.

In contrast, March $21^{\text {st }}$ shows the highest power output of the panels over the two days, around 56 W per panel (112 W total). There is no full eclipse period at this point in the mission, but the $-y$ panel does have periods of full shadow that last around 30 minutes, with 3.5 minutes on either side for the transition from partial to full shadow/sunlight. During the periods where the $-y$ panel is in total shadow, the $+y$ has a smaller period of partial shadow. The power generation goes no lower than 36.5 W , but this amount is not enough to fully support the subsystems, and battery support will be needed. To fully understand how the power will change throughout the mission, a longer analysis needed to be done. A one-year analysis (March 21st, 2023 to March 21 ${ }^{\text {st }}$, 2024) was completed to understand when eclipse periods occur and how partial shadow changes. Figure 21 shows the full results.

Figure 21: Solar panel power output for one year, March 21st, 2023 to March 21st, 2024
The graph shows that there are periods of total eclipse beginning in late May and continuing until late July. The peak eclipse period occurs on the summer solstice, June $21^{\text {st, }}$ and lasts a maximum of 18 minutes. In contrast, the highest amount of power is generated on February $10^{\text {th }}$, generating about 114W. Outside of the months that have a full eclipse period, the power generation is steady and stays above 110W. A second full-year analysis, from March $21^{\text {st }}, 2024$ to March $21^{\text {st }}$, 2025, was done to ensure the pattern was the same from year to year. Figure 22 shows the results, proving that this pattern will stay consistent throughout the mission.

Figure 22: Solar panel power output for one year, March 21st, 2024 to March 21st, 2025

5.3.3 End of Life Analysis

The End of Life (EOL) analysis also needed to be done to measure the performance of the hardware after the 10-year lifetime. The propulsion subsystem does not require station-keeping maneuvers since the satellite will still operate at 680 km , the altitude after around 10 years in LEO. This will be the EOL altitude, which was adjusted in STK. Additionally, most solar panels typically degrade over time during the mission. However, according to the EnduroSat 6U data, the EOL efficiency should remain above 29%. To do a worst-case scenario analysis, the lifetime degradation equation was done using the following equation:

$$
\begin{equation*}
L d=(1-Y d)^{t} \tag{16}
\end{equation*}
$$

Assuming the annual environmental degradation rate $(Y d)$ is 0.017 and using t as the full mission lifetime, the lifetime degradation $L d$ is about 0.834 . Putting this into the EOL power generation, and assuming no cosine loss angle, the highest power generation should come at about 100 W . This is still enough power to support the nominal wattage.

Using this analysis, the COLLADA file was adjusted to account for this degradation, and the STK scenario reflected the EOL altitude. The scenario was re-run as it was for the BOL analysis to ensure the power generation was similar to what was calculated. The initial analysis was a full year power generation graph at an estimated EOL timeline shown in Figure 23.

Figure 23: Solar panel power output for one year, March 21st, 2035 to March 21st, 2036

The above figure shows that the power generation has a similar pattern to what was seen in the BOL analysis, but there appears to be two anomalies due to solar eclipses. Additionally, the estimate of 100 W appears to be correct from the initial analysis. To fully understand the power generation and the effect of eclipse periods at the new altitude, a three-orbit analysis was conducted on the same dates as the BOL analysis, March $21^{\text {st }}$ and June $21^{\text {st }}$. The results can be seen in Figure 24.

Figure 24: Solar panel power output for three orbits on March 21st, 2035

Similar to the BOL conditions, two partial eclipse periods occur during one orbit. The full shadow for the - y panel is still around 30min, while the top panel's shadow period lasts for about 20 minutes. As seen in the full year power EOL analysis, Figure 24 proves that the highest power generation occurs at just around 100 W . The minimum amount of power generated is 33.4 W , slightly under the lowest generation on March $21^{\text {st }}$ with the BOL conditions. The partial shadow period is still enough to support the system, meaning battery support is not needed during these months. Figure 25 is another 3-orbit analysis done, but on June $21^{\text {st }}, 2035$ instead to compare what a total eclipse period generates with the EOL conditions.

Figure 25: Solar panel power output for three orbits on June 21st, 2035
The EOL conditions prove that the pattern is the same as the BOL generation, with an eclipse period length of 18 minutes maximum, and a rapid increase back up to full power generation. The highest generation shown in Figure 25 is around 85 W . The periods of full shadow for the bottom panel generate 42 W , still enough to support the system at nominal wattage. Despite the lower wattage generation at EOL, there is still enough time for the batteries to recharge before the next eclipse period. Since eclipse periods happen often, and the partial shadow periods might
not allow for a full recharge of one battery, two additional mission operations batteries were added to the system to ensure that none of the batteries will fall past the DOD.

The EOL analysis demonstrates that the altitude has minimal effect on the mission operations and power generation. Since the degradation is intendent of altitude, a lower output was expected if eclipse periods were longer or partial shadows were more frequent. However, it seems that only the lifetime degradation of the panels will affect the power generation. This is good for the mission since it means transitioning into deorbiting will be a simple task.

Since 680 km is the altitude that the science period will cease and the deorbiting maneuvers will begin, the EOL analysis also shows that the thruster can be supported for any burns needed to reach a burnup altitude. Based on the thruster need as well as the information presented in Figures 19 and 20 , there will be more than enough power for the thruster if the solar panels remain deployed. Alternatively, if the panels become stowed and are not deployed, the mission operations batteries will be activated to support the burn. Unlike detumbling, the deorbiting will only be a finite burn that will not take as long, so the detumbling battery will not be needed. To find the time that it takes for the battery to fully discharge, the following equations were used:

$$
\begin{align*}
A h & =\frac{W h}{V} \tag{17}\\
h & =\frac{A h}{A} \tag{18}
\end{align*}
$$

In the case of the Ibeos 28 V battery pack, an unregulated bus is used with a 10 A current as seen in Table 13. The Wh is given as 135 Wh , meaning it takes around 28.926 min for one battery to fully discharge. Assuming all three batteries are fully charged, this allows for a maximum of 86.778 min to discharge. Since these support times are much longer than the finite burn at 680 km ,
the batteries will be able to support the deorbiting if there is any issue with the solar panels during the deorbiting burn.

6. ADC Testbed

6.1 Overview

The ADC Testbed is a system designed to simulate the Earth's magnetic field. This allows for testing of the ADC subsystem in an environment that mimics that which the CubeSat will be operating under in orbit. The testbed is divided into two different subsystems: the Helmholtz cage and the low friction table. The Helmholtz cage is the portion of the testbed that creates a magnetic field, while the low friction table allows for the ADC system to be tested with minimal friction.

6.2 Helmholtz Cage

The Helmholtz Cage is used to simulate the magnetic field that the CubeSat will face during its mission in space. The cage consists of three orthogonal coil pairs with a current passing through them. The three pairs represent the three axes of motion. Each coil has several windings, so when the current passes through the coils, the magnetic field generation is created and amplified at the midpoint of the cage. The power is supplied to the coils through programmable power supplies so that the current, and eventually the magnetic field, can be adjusted manually. There are several current sensors and magnetometers that measure the current and magnetic field passing through the cage. The magnetic field data obtained by the magnetometers is plotted against the theoretical magnetic field that should be generated by the cage.

To read the magnetic field values created by the cage, a software called LabVIEW was downloaded to record the magnetic field of the cage. The B-field was to be recorded and mapped to verify results. This software's implementation was made after a few attempts, but progress was halted due to time constraints.

In terms of improvements, programmable power supplies were bought, as well as a Gauss Meter to measure the magnetic field physically. The eventual goal of the cage is to use LabView with a DAQ to automate the entire process such that the magnetic field can be automatically adjusted based on the current magnetic field measured by the magnetometer. The schematic seen in Figure 26 below shows what the theoretical wiring of the LabJack, board, and power supplies would be.

Figure 26: Wiring of LabJack, CB15 Board, and power supplies for Helmholtz cage

6.3 Air Bearing Table

The air bearing table consists of two major parts: the table and the socket. The table is made up of an instrumentation platform containing a battery, reaction control wheels, and a Raspberry Pi that can be remotely accessed. On the underside of the table is a large bearing. When in use, this bearing is placed on top of the socket. Pressurized air is routed into the bottom of the socket,
forming a cushion of air that the table rides on top of. Figure 27 shows the socket part of the air bearing table. Also seen is a pressurized air hose and adapter used to route air from an air compressor into the bottom of the socket. According to previous MQP's, the table is balanced via weights and once balanced is controlled by the reaction control wheels. The system is currently non-functional due to an incident with the lithium-ion battery from the previous year, however work is underway to identify and procure a replacement.

Figure 27: The socket part of the air bearing table

6.4 Future Recommendations

For the Helmholtz cage and Air bearing table, the components we compiled will save time for future teams. We suggest testing all of the components and their connections within the first few weeks of the project to understand what is working, if any extra components are needed, and if anything needs to be replaced. The schematic above shows how everything should be connected, so we suggest beginning with the wiring and using the Gauss meter to measure the magnetic field. Cross-reference the reading on the gauss meter with the magnetometers to ensure that the data is
the same. This recommendation will help save time and progress the cage more steadily in the future.

7. Conclusions and Social Impacts

7.1 Conclusions

For the main portion of this project, a team of 8 students were responsible for designing and analyzing a CubeSat in LEO. This report presents the work done by the mechanical design and structures, propulsion, and power subsystems. The other critical subsystems were discussed in detail in separate reports. Each subsystem was able to select components and design their section to fit the mission parameters best while collaborating with the other subsystems to ensure that the mission was successful.

The ODDSat is a 12 U CubeSat utilizing the NASA AMES Collapsible Space Telescope (CST) in order to identify and track space debris. The ODDSat was designed to operate in a 700 km Sun-synchronous orbit.

The mechanical design and structures subsystem was limited by the selection of the Rocket Lab Electron rocket as the launch vehicle and a Canisterized Satellite Dispenser used to deploy the ODDSat from the Electron rocket. The use of the CST also limited the volume that the other necessary components of the ODDSat had to fit into. The CAD model of the ODDSat was then analyzed using ANSYS software to conduct vibrational analysis. The results of the analysis confirmed that the satellite met all the requirements that the mechanical subsystem had to meet.

The propulsion system was focused on any orbital maneuvers that were needed to extend the lifetime of the mission. The Busek BGT-X5 monopropellant thruster was chosen as the sole propulsion system. STK was an invaluable resource to model the necessary burns and/or maneuvers that were deemed necessary. The propulsion system was within the constraints set forth by the mechanical and power subsystems.

The power subsystem focused on any power needs that any of the other subsystems required. 6 deployable solar panels were chosen to generate all of the required power, with the power being stored in 4 batteries. An on-board EPS was also selected to distribute the power throughout the ODDSat.

The secondary objective of this project was to understand the ADC Testbed, including the Helmholtz Cage and the Air Bearing Table, and continue creating it so that magnetorquers can be used on it to better understand the effects if a magnetic field. While shipping parts and time constraints prevented us from progressing as much as originally hoped, we were able to understand the workings of the testbed and compile tools and components that will save time for future teams working on this project.

7.2 Societal Impacts

All spacecraft launched into space have the potential to leave debris behind. Debris left at a high enough altitude will not re-enter the atmosphere and instead stays in orbit, potentially in the path of other spacecraft or satellites. As LEO becomes polluted with debris, the chance of debris impact increases, and so does the likelihood of a cascade event known as the Kessler Syndrome, discussed in Section 1. LEO could potentially be rendered unusable and would have lasting societal impacts.

There are thousands of satellites currently in LEO. A few well-known satellites in LEO are the Hubble Telescope, SpaceX's StarLink, and the International Space Station. As debris stays in orbit at high altitudes, a collision could occur with these satellites. Even small debris can have catastrophic effects on the satellite it damages. One study specifically studies space debris colliding with solar arrays. While it is not currently possible to measure the impacts in space,
experiments were conducted in a lab to understand the consequences. The study found that when debris impacts at a higher velocity, the electrons discharged will increase in temperature and density. The results hypothesize that the faster the object moves, the more detrimental the collision [51]. Satellites in orbit may become operationally unstable and useless. Satellites with a shorter lifetime than expected become an economic problem. Funding is put into the building and upkeep of the satellite over many years. If the satellite's mission ends early, some of the money will go to waste.

Additionally, future missions will become increasingly difficult. Launch windows will be much more complicated to navigate, making missions scarcer. Like the previous economic impact, it may become more challenging to fund LEO missions since the chance of early shut down is increasingly evident. Without these satellites in orbit, space research would become much more complicated, and there would be little to no way to advance our knowledge.

Having missions become scarcer due to funding and the current debris will also limit missions beyond LEO. Satellites would eventually reach the end of their mission lifetime. Replacing the necessary satellites in Geostationary Operational Environmental (GEO) orbit would become impossible, meaning those satellites would be decommissioned as well. GEO satellites include weather satellites (such as National Oceanic and Atmospheric Administration (NOAA)) and communication satellites for telemetry. Scientific research and knowledge would regress if these were not operational since we would not have access to any information generated by these satellites.

Another issue with space debris is that no active governing body regulates it. Since space is not part of any one country, continent, or governing body on Earth, there are many varying regulations about putting space debris into LEO. One country's government may not have any rules
for protecting LEO, while another organization may have specific rules to follow once a mission is complete. Not having a single set of regulations for all space forces, both private and public sector, can create issues in relationships with other governing bodies. It also means that while an organization is fighting against space debris, its efforts are negated by another organization that is less careful. Showing how much debris is in LEO and that it is an increasing issue would push governing bodies to find a united resolution.

References

[1] Kessler, D. J., and Cour-Palais, B. G., Collision Frequency of Artificial Satellites: The Creation of a Debris Belt, Journal of Geophysical Research, Vol. 83, No. A6, 1978, pp. 2637-2646. doi:10.1029/JA083iA06p02637.
[2] National Aeronautics and Space Administration. (2022, September 29). Ares: Orbital Debris Program Office: Frequently asked questions. ARES \| Orbital Debris Program Office | Frequently Asked Questions. Retrieved October 13, 2022, from https://www.orbitaldebris.jsc.nasa.gov/faq/.
[3] Morton, M., and Roberts, T., Joint Space Operations Center (JSPOC) Mission System (JMS), AMOS Technologies Conference, Maui Economic Development Board, Inc., Maui, HI, 2011, p 6.
[4] Shannon Ryan, Eric L. Christiansen, Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding, Acta Astronautica, Volume 83, 2013, Pages 216-231, ISSN 0094-5765, https://doi.org/10.1016/j. actaastro.2012.09.012.
[5] Shoots, D., Update on 3 Major Debris Clouds, Orbital Debris Quarterly, Vol. 14, No.2, 2010, pp. 1-3.
[6] Christiansen, E., Hyde, J., and Bernhard, R., Space Shuttle Debris and Meteoroid Impacts, Advances in Space Research, Vol. 34, No. 5, 2004, pp. 1097-1103.
[7] J. R. Carl, G. D. Arndt, B. A. Bourgoise and I. Paz, "Space-borne radar detection of orbital debris," Proceedings of GLOBECOM '93. IEEE Global Telecommunications Conference, 1993, pp. 939-943 vol.2, doi: 10.1109/GLOCOM.1993.318216.
[8] Creed, Lewis \& Graham, Julie \& Jenkins, Ciaran \& Diaz Riofrio, Sebastian \& Wilson, Andrew \& Vasile, Massimiliano. (2021). STRATHcube: The Design of a CubeSat for Space Debris Detection Using In-Orbit Passive Bistatic Radar.
[9] P. S. Baranov, R. S. Siryi and A. S. Sahnyuk, A Wide-field Optical System for Detecting Space Debris Based on a Cubesat-Type Spacecraft, 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 2021, pp. 94-97, doi: 10.1109/ElConRus51938.2021.9396409.
[10] Xiongjun. Fu, Guoman. Liu and Meiguo. Gao, Overview of orbital debris detection using spaceborne radar, 2008 3rd IEEE Conference on Industrial Electronics and Applications, 2008, pp. 1071-1074, doi: 10.1109/ICIEA.2008.4582681.
[11] Johnstone, Alicia et al., CubeSat Design Specification, California Polytechnic State University
[12] Howell, Elizabeth. "Cubesats: Tiny Payloads, Huge Benefits for Space Research." Space.com. Space, June 19, 2018. https://www.space.com/34324cubesats.html\#:~:text=The\ cubesat\ design\ was\ first,expensive\ to\ b uild \% 20and \% 20launch.
[13] Jackson, Shanessa. "NASA's CubeSat Launch Initiative." NASA. NASA, February 17, 2017. https://www.nasa.gov/directorates/heo/home/CubeSats initiative.
[14] Bigelow, Andrew Timothy, and Cyle Anthony Hawkins. 2011. Attitude Determination and Control, On Board Computing \& Communication Subsystem Design for a Cubesat Mission.: Worcester Polytechnic Institute.
[15] Dawson, Elizabeth I, Dianna M Velez, and Nell Elizabeth Nassiff. 2012. Attitude Determination and Control Subsystem Design for a Cubesat. : Worcester Polytechnic Institute.
[16] Lu, Ye, Assaad T Farhat, Alan Thomas Snapp, and Jighjigh Tersoo Ivase. 2013. Attitude Determination and Control System for Cubesat. Greenbelt: Worcester Polytechnic Institute.
[17] Gadoury, James, Jack Arnis Agolli, and Andrew M Rathbun. 2017. Design and Analysis of the Sphinx-Ng Cubesat. : Worcester Polytechnic Institute.
[18] Lu, Ye. 2015. Cubesat Design and Attitude Control with Micro Pulsed Plasma Thrusters.: Worcester Polytechnic Institute.
[19] Maki, Colin, Adam M Koubeck, Tristam Winship, and Matthew T Sanchy. 2018. Design of Cubesats for Formation Flying \& for Extreme Low Earth Orbit.: Worcester Polytechnic Institute.
[20] Galliath, Robaire C. 2020. Design and Analysis of a Cubesat.: Worcester Polytechnic Institute.
[21] Mileti, John M., Allison L Robatzek, Alia R Brown, Matthew St Jean, William R Cooley, Sydney E Messey, and Alexander D Klenk. 2021. Magnetospheric Nanosat Design.: Worcester Polytechnic Institute.
[22] Gagnon, Jeremy, Drake Tierney, and Christopher Ritter. 2022. Design of a Cubesat for an Ionospheric Science Mission-2.: Worcester Polytechnic Institute.
[23] Rocket Lab USA, Inc. (2022, November 1). Payload User's Guide. rocketlabusa.com. Retrieved March 6, 2023, from https://www.rocketlabusa.com/assets/Uploads/Electron-Payload-User-Guide-7.0.pdf
[24] Agasid, Elwood, Kimberly Ennico-Smith, and Abraham Rademacher. "Collapsible Space Telescope for Nanosatellites." NASA Ames Research Center, August 2013.
[25] Henize, K. G., O'Neill, C. A., Mulrooney, M. K., \& Anz-Meador, P. (1994). Optical properties of orbital debris. Journal of Spacecraft and Rockets, 31(4), 671-677. https://doi.org/10.2514/3.26494.
[26] J. G. Williams and G. A. McCue, "An Analysis of Satellite Optical Characteristics Data," Planetary and Space Science Vol. 14 (1966) pp. 839-847.
[27] Bowen, I. S. "Limiting Visual Magnitude." Publications of the Astronomical Society of the Pacific 59 (1947): 253. https://doi.org/10.1086/125960.
[28] "Canisterized Satellite Dispenser." Planetary Systems Corporation, August 2018.
[29] Kristina Lemmer, Propulsion for CubeSats, Acta Astronautica, Volume 134, 2017, Pages 231-243, ISSN 0094-5765, https://doi.org/10.1016/j. actaastro.2017.01.048.
[30] NASA. (2016). Electrospray thrusters boost efficiency, precision. NASA. Retrieved March 1, 2023, from https://spinoff.nasa.gov/Spinoff2016/ip_9.html
[31] Sutton, G. P., \& Biblarz, O. (2017). Rocket Propulsion Elements. John Wiley \& Sons, Inc. [32] BGT-X5 monoprop. Busek. (n.d.). Retrieved December 18, 2022, from https://www.busek.com/bgtx5
[33] Dunbar, B. (2016, January 11). Ion Propulsion. NASA. Retrieved March 1, 2023, from https://www.nasa.gov/centers/glenn/about/fs21grc.html
[34] Thrustme. ThrustMe. (n.d.). Retrieved December 18, 2022, from https://www.thrustme.fr/ [35] National Aeronautics and Space Administration. (n.d.). Hall Effect Thruster Technologies. NASA Transfer Technology Program. Retrieved March 1, 2023, from https://technology.nasa.gov/patent/LEW-TOPS-34
[36] Busek Co. Inc. (n.d.). Hall thrusters. Busek. Retrieved March 1, 2023, from https://www.busek.com/hall-thrusters
[37] BHT-100 - staticl.squarespace.com. (n.d.). Retrieved December 18, 2022, from https://static 1.squarespace.com/static/60df2bfb6db9752ed1d79d44/t/6154811d7ac4036af 765f736/1632928031263/BHT_100_v1.0.pdf
[38] Federal Communications Commission. (2022, September 29). FCC Adopts New '5-Year Rule' For Deorbiting Satellites To Address Growing Risk Of Orbital Debris. FCC Adopts New '5-Year Rule' for Deorbiting Satellites. Retrieved from https://www.fcc.gov/document/fcc-adopts-new-5-year-rule-deorbiting-satellites.
[39] Space debris: Feel the burn. ESA. (2021, April 28). Retrieved February 24, 2023, from https://www.esa.int/Space_Safety/Clean_Space/Space_debris_feel_the_burn\#.Y_j2QJRR AL8.link
[40] Wertz, J. R., Everett, D. F., \& Puschell, J. J. (2011). Space Mission Engineering: The New SMAD. Microcosm Press.
[41] Erickson, K. (2021, July 22). What is the solar cycle? NASA. Retrieved March 20, 2023, from https://spaceplace.nasa.gov/solar-cycles/en/
[42] Solar cycle 25 forecast update. Solar Cycle 25 Forecast Update | NOAA / NWS Space Weather Prediction Center. (2019, December 9). Retrieved March 20, 2023, from https://www.swpc.noaa.gov/news/solar-cycle-25-forecast-update
[43] "U.S. Energy Information Administration - EIA - Independent Statistics and Analysis." Photovoltaics and electricity - U.S. Energy Information Administration (EIA). Accessed December 18, 2022. https://www.eia.gov/energyexplained/solar/photovoltaics-andelectricity.php.
[44] "6U Deployable Solar Array CubeSat Solar Panel." CubeSat by EnduroSat, October 13, 2022. https://www.endurosat.com/cubesat-store/cubesat-solar-panels/6u-deployable-solar-array/.
[45] Wertz, J. R., \& Larson, W. J. (1999). 11.4.1 Power Sources. In Space mission analysis and design (3rd ed., pp. 414-414). essay, Microcosm Press.
[46] Posted in Batteries \& Charging. "What Is Maximum Power Point Tracking (MPPT)." Northern Arizona Wind \& Sun. Accessed December 18, 2022. https://www.solar-electric.com/learning-center/mppt-solar-charge-controllers.html/.
[47] 28V/250W Electrical Power Subsystem (EPS) / datasheet. Ibeos. (2021, July). Retrieved March 3, 2023, from https://www.ibeos.com/28v-eps-datasheet
[48] 28V / 135 WHR Battery / Datasheet. Ibeos. (2021, September). Retrieved March 3, 2023, from https://www.ibeos.com/28v-battery-datasheet
[49] Ning, G., \& Popov, B. N. (2004). Cycle life modeling of lithium-ion batteries. Journal of The Electrochemical Society, 151(10). https://doi.org/10.1149/1.1787631
[50] High energy, long cycle life and low maintenance lithium- ion cell for ... EaglePicher Technologies. (2019). Retrieved March 3, 2023, from https://www.eaglepicher.com/sites/default/files/LP32975\ 12\ Ah\ Space\ Ce 11\%200123.pdf
[51] Akahoshi, Y., Nakamura, T., Fukushige, S., Furusawa, N., Kusunoki, S., Machida, Y., Koura, T., Watanabe, K., Hosoda, S., Fujita, T., \& Cho, M. (2008). Influence of space debris impact on solar array under power generation. International Journal of Impact Engineering, 35(12), 1678-1682. https://doi.org/10.1016/j.ijimpeng.2008.07.048

Appendices

Appendix A: Hohmann Transfer MATLAB Code

```
alt_i = 683*10^3; %initial altitude (m)
alt_f = 700*10^3; %final altitude (m)
r_E = 6.37814*10^6; %(m)
mu_E = 3.986*10^14; % standard gravitational parameter (m^3/s^2);
r_t_1 = r_E + alt_i;
r_t_p = r_t_1;
r_n_1 = r_t_p;
r_t_a = r_E + alt_f;
a_t = (r_t_a+r_t_p)/2;
eps_t = -mu_E/(2*a_t);
v_t_1 = sqrt(2*(eps_t+((mu_E)/r_t_1)));
v_i_1 = sqrt(mu_E/r_n_1);
v_f_1 = v_t_1;
v_n_1 = v_i_1;
DelV_1 = v_f_1 - v_i_1;
r_t_2 = r_t_a;
v_i_2 = sqrt(2*(eps_t+((mu_E)/r_t_2)));
v_t_2 = v_i_2;
r_0_2 = r_t_a;
v_f_2 = sqrt(mu_E/r_0_2);
DelV_2 = v_f_2 - v_i_2;
DelVTot = DelV_1 + DelV_2;
```


Appendix B: Blender and STK COLLADA File

```
<?xml version="1.0" encoding="utf-8"?>
<COLLADA xmlns="http://www.collada.org/2005/11/COLLADASchema" version="1.4.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <asset>
    <contributor>
        <author>Blender User</author>
        <authoring_tool>Blender 3.3.1 commit date:2022-10-04, commit time:18:35, hash:b292cfe5a936</authoring_tool>
    </contributor>
    <created>2022-12-14T17:29:45</created>
    <modified>2022-12-14T17:29:45</modified>
    <unit name="meter" meter="1"/>
    <up_axis>Z_UP</up_axis>
    </asset>
    <library_effects>
    <effect id="Material-effect">
        <profile_COMMON>
        <technique sid="common">
        <lambert>
            <emission>
                <color sid="emission">0 00 1</color>
            </emission>
            <diffuse>
                <color sid="diffuse">1 0.7678673 0.8189839 1</color>
            </diffuse>
        <index_of_refraction>
```

<float sid="ior">1.45</float>
</index_of_refraction>
</lambert>
</technique>
</profile_COMMON>
</effect>
<effect id="Material_001-effect">
<profile_COMMON>
<technique sid="common">
<lambert>
<emission> <color sid="emission">0 001 </color>
</emission>
<diffuse>
<color sid="diffuse">0.1402947 0.23116040 .80000011 </color>
</diffuse>
<index_of_refraction>
<float sid="ior">1.45</float>
</index_of_refraction>
</lambert>
</technique>
</profile_COMMON>
</effect>
<effect id="Material_002-effect">
<profile_COMMON>
<technique sid="common">
<lambert>

```
            <emission>
            <color sid="emission">0 00 1</color>
            </emission>
            <diffuse>
            <color sid="diffuse">0.8 0.8 0.8 1</color>
            </diffuse>
            <index_of_refraction>
            <float sid="ior">1.45</float>
            </index_of_refraction>
            </lambert>
            </technique>
                    </profile_COMMON>
                    </effect>
</library_effects>
<library_images/>
<library_materials>
<material id="Material-material" name="Material">
    <instance effect url="#Material-effect"/>
</material>
<material id="Material_001-material" name="Material.001">
    <instance_effect url="#Material_001-effect"/>
</material>
<material id="Material_002-material" name="Material.002">
    <instance_effect url="#Material_002-effect"/>
</material>
</library_materials>
<library_geometries>
```

<geometry id="Cube_013-mesh" name="Cube.013">
<mesh>
<source id="Cube_013-mesh-positions">
<float_array id="Cube_013-mesh-positions-array" count="639">-0.002881348-0.1549686-0.1 0.3392321-0.6950884 -\(0.09900003-0.002881348-0.4969686-0.1-0.002881348-0.15496860 .10 .3392321-0.69508840 .101-0.0028813480 .5290315\) \(-0.1-0.002881348-0.1549685-0.1-0.00426793-0.6950884-0.09900003-0.002881348-0.15496850 .1-0.00426793-0.6950884\) \(0.101-0.0028813480 .1870314-0.10 .005818665-0.4969686-0.1-0.0028813480 .18703140 .1-0.00426793-0.6941379\) \(0.1009999-0.0028813480 .52903150 .1-0.00426793-0.4941379-0.09900015-0.00426793-0.6941379-0.09900015\) \(0.005818665-0.1549685-0.10 .005818665-0.1549686-0.10 .005818665-0.15496850 .10 .004432022-0.4970884-0.09899991\) \(0.005818665-0.15496860 .10 .004432022-0.49708840 .1010001-0.00426793-0.49708840 .001000106-0.002881348\) -\(0.2404685-0.10 .0058186650 .1870314-0.10 .0058186650 .5290315-0.1-0.00426793-0.6910884-0.09899997-0.002881348-\) \(0.3259686-0.1-0.00426793-0.69108840 .10100010 .0058186650 .52903150 .10 .004432022-0.6910884-0.09899997\) \(0.004432022-0.69108840 .1010001-0.002881348-0.4114686-0.10 .0058186650 .18703140 .1-0.00426793-0.6910884\) \(0.0010000460 .004432022-0.69108840 .001000046-0.002881348-0.41146860 .1-0.002881348-0.32596860 .1-0.002881348\) \(0.4435315-0.1-0.002881348-0.24046860 .1-0.0028813480 .1015314-0.1-0.0028813480 .01603144-0.10 .005818665-\) \(0.4114686-0.1-0.0028813480 .3580315-0.10 .005818665-0.3259686-0.1-0.002881348-0.06946861-0.10 .005818665-\) \(0.2404686-0.10 .005818665-0.24046850 .1-0.0028813480 .2725315-0.10 .005818665-0.32596860 .1-0.002881348\) \(0.27253150 .10 .005818665-0.41146860 .1-0.002881348-0.069468610 .1-0.0028813480 .016031380 .1-0.002881348-\) \(0.15496850-0.0028813480 .35803150 .1-0.0028813480 .10153130 .10 .005818665-0.15496850-0.0028813480 .44353140 .1\) \(0.005818665-0.240468600 .0058186650 .2725315-0.10 .005818665-0.06946861-0.10 .005818665-0.325968600 .005818665\) \(-0.411468600 .0058186650 .3580315-0.10 .0058186650 .01603138-0.1-0.002881348-0.41146860-0.002881348-0.3259686\) \(00.0058186650 .4435314-0.10 .0058186650 .1015313-0.1-0.002881348-0.24046860-9.21667 \mathrm{e}-4-0.22846850 .01200002\) \(0.0058186650 .10153140 .10 .0058186650 .44353150 .1-9.21667 \mathrm{e}-4-0.22846850 .08799999-9.21667 \mathrm{e}-4-0.1669685\) \(0.087999990 .0058186650 .35803150 .1-9.21667 \mathrm{e}-4-0.16696850 .012000020 .0058186650 .016031440 .1\)-9.21667e-4 \(0.48496860 .012000020 .005818665-0.069468610 .1-9.21667 \mathrm{e}-4-0.48496860 .087999990 .0058186650 .27253150 .1\) -\(0.002881348-0.15496860-9.21667 \mathrm{e}-4-0.42346870 .08799999-9.21667 \mathrm{e}-4-0.42346870 .01200002-0.0028813480 .18703140\) \(-9.21667 \mathrm{e}-4-0.39946860 .01200002-0.0028813480 .52903150-9.21667 \mathrm{e}-4-0.39946860 .087999990 .0058186650 .18703140\) \(-9.21667 \mathrm{e}-4-0.33796870 .087999990 .0058186650 .52903150-9.21667 \mathrm{e}-4-0.33796870 .012000020 .005818665-0.15496860\) \(-9.21667 \mathrm{e}-4-0.31396860 .012000020 .0058186650 .44353140-9.21667 \mathrm{e}-4-0.31396860 .087999990 .0058186650 .10153130-\) \(9.21667 \mathrm{e}-4-0.25246870 .087999990 .0058186650 .0160313800 .0058186650 .35803150-9.21667 \mathrm{e}-4-0.25246870 .01200002\) \(0.005818665-0.069468610-9.21667 \mathrm{e}-4-0.3139686-0.087999990 .0058186650 .27253150-9.21667 \mathrm{e}-4-0.3139686-\) \(0.01200002-0.0028813480 .27253150-9.21667 \mathrm{e}-4-0.2524686-0.01200002-9.21667 \mathrm{e}-4-0.2524686-0.08799999\) -\(0.002881348-0.069468610-9.21667 \mathrm{e}-4-0.3994686-0.08799999-0.0028813480 .35803150-0.0028813480 .016031380-\) \(9.21667 \mathrm{e}-4-0.3994686-0.01200002-0.0028813480 .10153130-9.21667 \mathrm{e}-4-0.3379686-0.01200002-0.0028813480 .4435314\) \(0-9.21667 \mathrm{e}-4-0.3379686-0.08799999-9.21667 \mathrm{e}-4-0.4849686-0.08799999-9.21667 \mathrm{e}-40.11353140 .01200002-9.21667 \mathrm{e}-4\) -\(0.4849686-0.01200002-9.21667 \mathrm{e}-40.45553150 .01200002\)-9.21667e-4 0.11353140 .08799999 -9.21667e-4 - 0.4234687 -\(0.01200002-9.21667 \mathrm{e}-40.45553150 .08799999-9.21667 \mathrm{e}-4-0.4234687-0.08799999-9.21667 \mathrm{e}-40.17503140 .08799999\) \(9.21667 \mathrm{e}-4-0.2284685-0.08799999-9.21667 \mathrm{e}-40.51703160 .08799999-9.21667 \mathrm{e}-4-0.2284685-0.01200002-9.21667 \mathrm{e}-4\) \(0.17503140 .01200002-9.21667 \mathrm{e}-4-0.1669685-0.01200002-9.21667 \mathrm{e}-40.51703160 .01200002-9.21667 \mathrm{e}-4-0.1669685-\) \(0.08799999-9.21667 \mathrm{e}-4-0.14296860 .01200002-9.21667 \mathrm{e}-40.19903140 .01200002-9.21667 \mathrm{e}-4-0.14296860 .08799999\) \(9.21667 \mathrm{e}-40.19903140 .08799999-9.21667 \mathrm{e}-4-0.081468640 .08799999-9.21667 \mathrm{e}-40.26053140 .08799999\)-9.21667e-4 \(0.081468640 .01200002-9.21667 \mathrm{e}-40.26053140 .01200002\)-9.21667e-4 0.28453150 .01200002 -9.21667e-4 - 0.05746859 0.01200002 -9.21667e-4 -0.05746859 \(0.08799999-9.21667 \mathrm{e}-40.28453150 .08799999-9.21667 \mathrm{e}-40.004031360 .08799999-\) \(9.21667 \mathrm{e}-40.34603140 .08799999-9.21667 \mathrm{e}-40.34603140 .01200002-9.21667 \mathrm{e}-40.004031360 .01200002\)-9.21667e-4 \(0.02803140 .01200002-9.21667 \mathrm{e}-40.37003150 .01200002\)-9.21667e-4 0.02803140 .08799999 -9.21667e-4 0.3700315 \(0.08799999-9.21667 \mathrm{e}-40.089531360 .08799999\)-9.21667e-4 0.43153140 .08799999 -9.21667e-4 0.08953136 0.01200002\(9.21667 \mathrm{e}-40.43153140 .01200002\)-9.21667e-4 0.3700315 -0.08799999-9.21667e-4 0.0280314-0.08799999-9.21667e-4 \(0.0280314-0.01200002-9.21667 \mathrm{e}-40.3700315-0.01200002-9.21667 \mathrm{e}-40.4315316-0.01200002-9.21667 \mathrm{e}-40.08953142-\) \(0.01200002-9.21667 e-40.4315316-0.08799999-9.21667 e-40.08953142-0.08799999-9.21667 e-4-0.05746859-0.08799999-\) \(9.21667 \mathrm{e}-40.2845315-0.08799999-9.21667 \mathrm{e}-4-0.05746859-0.01200002-9.21667 \mathrm{e}-4\) 0.2845315-0.01200002-9.21667e-4 \(0.004031419-0.01200002-9.21667 \mathrm{e}-40.3460315-0.01200002-9.21667 \mathrm{e}-40.004031419-0.08799999-9.21667 \mathrm{e}-40.3460315-\) \(0.08799999-9.21667 \mathrm{e}-4-0.1429686-0.08799999-9.21667 \mathrm{e}-4\) 0.1990314-0.08799999-9.21667e-4 -0.1429686-0.01200002-9.21667e-4 0.1990314-0.01200002-9.21667e-4 -0.08146864-0.01200002-9.21667e-4 0.2605314-0.01200002-9.21667e-4 \(0.2605314-0.08799999-9.21667 \mathrm{e}-4-0.08146864-0.08799999-9.21667 \mathrm{e}-40.4555315-0.08799999-9.21667 \mathrm{e}-40.1135314\) -\(0.08799999-9.21667 e-40.1135314-0.01200002-9.21667 \mathrm{e}-40.4555315-0.01200002-9.21667 \mathrm{e}-40.1750314-0.01200002\) \(9.21667 \mathrm{e}-40.5170316-0.01200002-9.21667 \mathrm{e}-4\) 0.1750314-0.08799999-9.21667e-4 0.5170316-0.08799999-0.002881348\(0.15496860 .09999996-0.002881348-0.15496860-0.002881348-0.15496860-0.002881348-0.1549686-0.09999996-\) \(0.002881348-0.15496850 .09999996-0.002881348-0.15496850-0.002881348-0.15496850-0.002881348-0.1549685-\)
\(0.099999960 .005818665-0.49508830 .10 .005818665-0.49508830-0.002881348-0.49508830 .10 .005818665-0.4969686-\) \(0.09900003-0.002881348-0.4969686-0.099000030 .005818665-0.4950883-0.09900003-0.002574265-0.4950883\) \(0.09811973-0.002574265-0.49508830 .001880288-0.002881348-0.49508830-0.002574265-0.4950883-0.001880288-\) \(0.002718031-0.4959686-0.09900003-0.002574265-0.4950883-0.09811973-0.002718031-0.4950883-\) 0.09900003 </float_array>
<technique_common>
<accessor source="\#Cube_013-mesh-positions-array" count="213" stride="3">
<param name="X" type="float"/>
<param name="Y" type="float"/>
<param name="Z" type="float"/>
</accessor>
</technique_common>
</source>
<source id="Cube_013-mesh-normals">
<float_array id="Cube_013-mesh-normals-array" count="309">-1 \(0010000-1001\)-0.9869264 0.1611714 0-\(0.98692640-0.1611716-0.9869264-0.16117140-0.986926500 .1611714-0.98692630 .16117260-0.98692650-0.1611714-\) \(0.986926400 .1611714-0.98692650-0.1611714-0.98692650001611714-0.98692650-0.1611714-0.986926500 .1611714-\) \(0.98692630 .16117220-0.9869264-0.16117220-0.98692640 .16117140-0.98692650-0.1611714-0.986926400 .1611716-\) \(0.98692630 .16117260-0.98692640-0.1611714-0.9869264-0.16117140-0.986926500 .1611713010-0.98692660 .1611707\) \(0-0.98692640-0.1611714-0.9869263-0.16117220-0.986926400 .1611713-0.98692650-0.1611714-0.986926500 .1611715\) \(-0.98692650-0.1611713-0.986926400 .1611714-0.98692650-0.1611714-0.9869261-0.16117380-0.986926500 .1611715-\) \(0.98692650-0.1611714-0.986926400 .1611716-0.98692650-0.1611715-0.9869264-0.16117220-0.9865978-0.16317120-\) \(0.98692640 .16117180-0.98692640-0.1611715-0.986926400 .1611714-0.9869265000 .1611714-0.98692670 .16117050-\) \(0.98692640 .16117180-0.986926100 .1611731-0.98692640-0.1611714-0.9869263-0.16117220-0.986926500 .1611714-\) \(1.00163 \mathrm{e}-601-1.00163 \mathrm{e}-6011.00163 \mathrm{e}-60-11.00163 \mathrm{e}-60-1-0.9869265-0.16117140-0.986926400 .1611714\)-0.9869263 \(0.16117260-0.98692630-0.1611722-0.99968770 .024992160-0.98693290 .16113190-0.98692640 .16117160-0.98692640\) \(-0.1611714-0.9869265-0.16117150-0.986926500 .1611715-0.98692650 .16117140-0.98692630-0.1611722-0.999654\) \(0.026306680-0.98639390 .1643990-0.98692640-0.1611715-0.986926500 .16117155 .00803 \mathrm{e}-7011.50243 \mathrm{e}-601\) -5.00803e-7 0-1-1.50243e-6 0-1-0.9869266 0.1611707 0-0.9869264 0-0.1611713-0.9869264 0-0.1611715-0.9869265 0 \(0.1611714-0.98692640-0.1611716-0.986926500 .1611713-0.9869263-0.1611724-1.9149 \mathrm{e}-7-0.986926500 .1611714-\) \(0.986926400 .1611715-0.98692660 .16117081 .91488 \mathrm{e}-7-0.986926400 .1611715-1.00163 \mathrm{e}-601100-0.9863939-0.164399\) \(0-0.986926400 .1611714-0.98692583 .77383 \mathrm{e}-7-0.1611757-0.98692640-0.1611712-0.986925800 .1611753-0.98692640\) \(0.1611715-0.98692580-0.1611753-0.98692640-0.1611714-0.98692764 .03041 \mathrm{e}-7\) 0.1611647-0.9869264 0 0.1611713\(0.986926300 .161172-0.9869329-0.16113190-0.9869263-0.16117220-0.986926400 .1611723-0.9996877-0.02499216\) 0</float_array>
<technique_common>
<accessor source="\#Cube_013-mesh-normals-array" count="103" stride="3">
<param name="X" type="float"/>
<param name="Y" type="float"/>
<param name="Z" type="float"/>
```
    </accessor>
```
 </technique_common>
</source>
<source id="Cube_013-mesh-map-0">
<float_array id="Cube_013-mesh-map-0-array" count="2142">0.61 0.19627190 .51500010 .24122810 .5150001 0.19627190 .50 .68750 .6250 .750 .50 .750 .3750 .68750 .1250 .750 .1250 .68750 .6250 .68750 .8750 .750 .6250 .750 .8750 .5 0.6250 .56250 .6250 .50 .8750 .56250 .6250 .6250 .6250 .56250 .8750 .6250 .6250 .68750 .6250 .6250 .3750 .50 .1250 .5625 0.1250 .50 .3750 .56250 .1250 .6250 .1250 .56250 .3750 .6250 .1250 .68750 .1250 .6250 .50 .50 .6250 .56250 .50 .56250 .5 0.56250 .6250 .6250 .50 .6250 .50 .6250 .6250 .68750 .50 .68750 .610 .0087718960 .5150 .053728040 .5150 .008771896 0.61000010 .071271950 .5150 .1162280 .5150 .071271950 .61000010 .13377190 .5150 .1787280 .5150 .13377190 .485 0.13377190 .390 .1787280 .39000010 .13377180 .4850 .071271950 .390 .1162280 .39000010 .071271890 .4850 .008771896 0.390 .053728040 .390 .0087718960 .50 .6250 .3750 .68750 .3750 .6250 .50 .56250 .3750 .6250 .3750 .56250 .50 .50 .375 0.56250 .3750 .50 .3750 .68750 .50 .750 .3750 .750 .4850 .19627190 .39000010 .24122810 .39000010 .19627190 .6250 .1875 0.51500010 .19627190 .50 .18750 .6250 .250 .610 .19627190 .6250 .18750 .50 .250 .610 .24122810 .6250 .250 .50 .1875 0.51500010 .24122810 .50 .250 .5150 .0087718960 .624999900 .610 .0087718960 .62500 .6250 .06250 .610 .053728040 .5 0.06250 .610 .053728040 .6250 .06250 .5150 .053728040 .50 .06250 .500 .6250 .06250 .5150 .071271950 .50 .06250 .6250 .125 0.61000010 .071271950 .6250 .06250 .50 .1250 .610 .11622810 .6250 .1250 .50 .06250 .5150 .1162280 .50 .1250 .6250 .125 0.5150 .13377190 .50 .1250 .6250 .18750 .61000010 .13377190 .6250 .1250 .50 .18750 .610 .1787280 .6250 .18750 .50 .125 0.5150 .1787280 .50 .18750 .3750 .1250 .4850 .13377190 .39000010 .13377180 .50 .18750 .4850 .13377190 .50 .1250 .50 .1875 0.390 .1787280 .4850 .17872810 .3750 .1250 .390 .1787280 .3750 .18750 .50 .06250 .39000010 .071271890 .3750 .06250 .5 0.1250 .4850 .071271950 .50 .06250 .50 .1250 .390 .1162280 .4850 .11622810 .3750 .06250 .390 .1162280 .3750 .1250 .39 0.0087718960 .500 .4850 .0087718960 .500 .50 .06250 .4850 .053728040 .3750 .06250 .4850 .053728040 .50 .06250 .39 0.053728040 .3750 .06250 .37500 .3750 .18750 .4850 .19627190 .39000010 .19627190 .50 .250 .4850 .19627190 .50 .1875 0.3750 .250 .4850 .24122810 .50 .250 .3750 .18750 .39000010 .24122810 .3750 .250 .610 .19627190 .51500010 .2412281 0.51500010 .19627190 .6250 .250 .50 .50 .50 .250 .6250 .68750 .50 .750 .50 .68750 .3750 .68750 .1250 .750 .1250 .68750 .875 0.68750 .6250 .750 .6250 .68750 .8750 .50 .6250 .56250 .6250 .50 .8750 .56250 .6250 .6250 .6250 .56250 .8750 .6250 .625 0.68750 .6250 .6250 .3750 .50 .1250 .56250 .1250 .50 .3750 .56250 .1250 .6250 .1250 .56250 .3750 .6250 .1250 .68750 .125 0.6250 .50 .50 .6250 .56250 .50 .56250 .50 .56250 .6250 .6250 .50 .6250 .50 .6250 .6250 .68750 .50 .68750 .610 .008771896 0.5150 .053728040 .5150 .0087718960 .61000010 .071271950 .5150 .1162280 .5150 .071271950 .61000010 .13377190 .515 0.1787280 .5150 .13377190 .4850 .13377190 .390 .1787280 .39000010 .13377180 .4850 .071271950 .390 .1162280 .3900001 0.071271890 .4850 .0087718960 .390 .053728040 .390 .0087718960 .50 .6250 .3750 .68750 .3750 .6250 .50 .56250 .3750 .625 0.3750 .56250 .50 .50 .3750 .56250 .3750 .50 .50 .68750 .3750 .750 .3750 .68750 .50 .250 .3750 .50 .3750 .250 .4850 .1962719 0.39000010 .24122810 .39000010 .19627190 .6250 .18750 .51500010 .19627190 .50 .18750 .6250 .250 .610 .19627190 .625 0.18750 .50 .250 .610 .24122810 .6250 .250 .50 .250 .51500010 .19627190 .51500010 .24122810 .62500 .5150 .0087718960 .5 00.6250 .06250 .610 .0087718960 .62500 .50 .06250 .610 .053728040 .6250 .06250 .500 .5150 .053728040 .50 .06250 .625 0.06250 .5150 .071271950 .50 .06250 .6250 .1250 .61000010 .071271950 .6250 .06250 .50 .1250 .610 .11622810 .6250 .1250 .5 0.06250 .5150 .1162280 .50 .1250 .6250 .1250 .5150 .13377190 .50 .1250 .6250 .18750 .61000010 .13377190 .6250 .1250 .5 0.18750 .610 .1787280 .6250 .18750 .50 .18750 .5150 .13377190 .5150 .1787280 .3750 .1250 .4850 .13377190 .3900001 0.13377180 .50 .18750 .4850 .13377190 .50 .1250 .50 .18750 .390 .1787280 .4850 .17872810 .3750 .1250 .390 .1787280 .375 0.18750 .50 .06250 .39000010 .071271890 .3750 .06250 .50 .1250 .4850 .071271950 .50 .06250 .50 .1250 .390 .1162280 .485 0.11622810 .3750 .06250 .390 .1162280 .3750 .1250 .500 .390 .0087718960 .37500 .50 .06250 .4850 .0087718960 .500 .375 0.06250 .4850 .053728040 .50 .06250 .37500 .390 .053728040 .3750 .06250 .3750 .18750 .4850 .19627190 .39000010 .1962719 0.50 .250 .4850 .19627190 .50 .18750 .3750 .250 .4850 .24122810 .50 .250 .3750 .18750 .39000010 .24122810 .3750 .250 .61 0.19627190 .51500010 .24122810 .51500010 .19627190 .6250 .68750 .50 .74862550 .50 .68750 .3750 .68750 .1250 .750 .125 0.68750 .6250 .68750 .8750 .74862550 .6250 .74862550 .8750 .50 .6250 .56250 .6250 .50000010 .8750 .56250 .6250 .6250 .625 0.56250 .8750 .6250 .6250 .68750 .6250 .6250 .1250 .56250 .3750 .50 .3750 .56250 .3750 .56250 .1250 .6250 .1250 .56250 .375 0.6250 .1250 .68750 .1250 .6250 .6250 .56250 .50 .50000010 .6250 .50000010 .50 .56250 .6250 .6250 .50 .6250 .50 .6250 .625 0.68750 .50 .68750 .610 .0087718960 .5150 .053728040 .5150 .0087718960 .61000010 .071271950 .5150 .1162280 .515 0.071271950 .61000010 .13377190 .5150 .1787280 .5150 .13377190 .4850 .13377190 .390 .1787280 .39000010 .13377180 .485 0.071271950 .390 .1162280 .39000010 .071271890 .4850 .0087718960 .390 .053728040 .390 .0087718960 .50 .6250 .375 0.68750 .3750 .6250 .50 .56250 .3750 .6250 .3750 .56250 .3750 .56250 .50 .50000010 .50 .56250 .376250 .74862560 .3750 .75 0.3750 .68750 .4850 .19627190 .39000010 .24122810 .39000010 .19627190 .6250 .18750 .51500010 .19627190 .50 .18750 .625 0.250 .610 .24122810 .610 .19627190 .610 .24122810 .50000010 .250 .51500010 .24122810 .51500010 .24122810 .5000001 0.250 .50000010 .250 .610 .0087718960 .50235030 .0013744230 .62264970 .0013744230 .610 .0087718960 .6250 .001374423 0.610 .053728040 .50 .06250 .610 .053728040 .6250 .06250 .5150 .053728040 .50 .06250 .50 .0013744230 .6250 .06250 .515 0.071271950 .50 .06250 .6250 .1250 .61000010 .071271950 .6250 .06250 .50 .1250 .610 .11622810 .6250 .1250 .50 .06250 .515 0.1162280 .50 .1250 .6250 .1250 .5150 .13377190 .50 .1250 .6250 .18750 .61000010 .13377190 .6250 .1250 .50 .18750 .61
0.1787280 .6250 .18750 .50 .1250 .5150 .1787280 .50 .18750 .3750 .1250 .4850 .13377190 .39000010 .13377180 .50 .1875 0.4850 .13377190 .50 .1250 .50 .18750 .390 .1787280 .4850 .17872810 .3750 .1250 .390 .1787280 .3750 .18750 .50 .0625 0.39000010 .071271890 .3750 .06250 .50 .1250 .4850 .071271950 .50 .06250 .50 .1250 .390 .1162280 .4850 .11622810 .375 \(0.06250 .390 .1162280 .3750 .1250 .376257 .30991 \mathrm{e}-40.37500 .3762500 .390 .0087718960 .49764960 .0013744230 .485\) 0.0087718960 .4850 .0087718960 .50 .0013744230 .4850 .053728040 .3750 .06250 .4850 .053728040 .50 .06250 .37500 .37625 \(7.30989 \mathrm{e}-40.376250 .0013744230 .3750 .18750 .4850 .19627190 .39000010 .19627190 .50000010 .250 .4850 .24122810 .485\) 0.19627190 .4850 .24122810 .37500010 .250 .39000010 .24122810 .3750 .250 .3750 .18750 .39000010 .19627190 .61 0.19627190 .610 .24122810 .51500010 .24122810 .50 .68750 .6250 .68750 .6250 .750 .3750 .68750 .3750 .750 .1250 .750 .625 0.68750 .8750 .68750 .8750 .750 .8750 .50 .8750 .56250 .6250 .56250 .8750 .56250 .8750 .6250 .6250 .6250 .8750 .6250 .875 0.68750 .6250 .68750 .3750 .50 .3750 .56250 .1250 .56250 .3750 .56250 .3750 .6250 .1250 .6250 .3750 .6250 .3750 .68750 .125 0.68750 .50 .50 .6250 .50 .6250 .56250 .50 .56250 .6250 .56250 .6250 .6250 .50 .6250 .6250 .6250 .6250 .68750 .61 0.0087718960 .610 .053728040 .5150 .053728040 .61000010 .071271950 .610 .11622810 .5150 .1162280 .61000010 .1337719 0.610 .1787280 .5150 .1787280 .4850 .13377190 .4850 .17872810 .390 .1787280 .4850 .071271950 .4850 .11622810 .39 0.1162280 .4850 .0087718960 .4850 .053728040 .390 .053728040 .50 .6250 .50 .68750 .3750 .68750 .50 .56250 .50 .6250 .375 0.6250 .50 .50 .50 .56250 .3750 .56250 .3750 .68750 .50 .68750 .50 .750 .4850 .19627190 .4850 .24122810 .39000010 .2412281 0.6250 .18750 .610 .19627190 .51500010 .19627190 .6250 .250 .610 .24122810 .610 .19627190 .50 .250 .51500010 .2412281 0.610 .24122810 .50 .18750 .51500010 .19627190 .51500010 .24122810 .5150 .0087718960 .500000100 .624999900 .61 0.053728040 .610 .0087718960 .62500 .62500 .62500 .610 .053728040 .50 .06250 .5150 .053728040 .610 .053728040 .500 .5 00.5150 .0087718960 .5150 .0087718960 .5150 .053728040 .500 .6250 .06250 .61000010 .071271950 .5150 .071271950 .625 0.1250 .610 .11622810 .61000010 .071271950 .50 .1250 .5150 .1162280 .610 .11622810 .50 .06250 .5150 .071271950 .515 0.1162280 .6250 .1250 .61000010 .13377190 .5150 .13377190 .6250 .18750 .610 .1787280 .61000010 .13377190 .50 .1875 0.5150 .1787280 .610 .1787280 .50 .1250 .5150 .13377190 .5150 .1787280 .3750 .1250 .50 .1250 .4850 .13377190 .50 .1875 0.4850 .17872810 .4850 .13377190 .50 .18750 .3750 .18750 .390 .1787280 .3750 .1250 .39000010 .13377180 .390 .1787280 .5 0.06250 .4850 .071271950 .39000010 .071271890 .50 .1250 .4850 .11622810 .4850 .071271950 .50 .1250 .3750 .1250 .39 0.1162280 .3750 .06250 .39000010 .071271890 .390 .1162280 .390 .0087718960 .375000100 .500 .4850 .053728040 .485 0.0087718960 .500 .500 .500 .4850 .053728040 .3750 .06250 .390 .053728040 .4850 .053728040 .37500 .37500 .39 0.0087718960 .390 .0087718960 .390 .053728040 .37500 .3750 .18750 .50 .18750 .4850 .19627190 .50 .250 .4850 .2412281 0.4850 .19627190 .3750 .250 .39000010 .24122810 .4850 .24122810 .3750 .18750 .39000010 .19627190 .39000010 .2412281 0.610 .19627190 .610 .24122810 .51500010 .24122810 .6250 .250 .6250 .50 .50 .50 .6250 .68750 .6250 .750 .50 .750 .375 0.68750 .3750 .750 .1250 .750 .8750 .68750 .8750 .750 .6250 .750 .8750 .50 .8750 .56250 .6250 .56250 .8750 .56250 .8750 .625 0.6250 .6250 .8750 .6250 .8750 .68750 .6250 .68750 .3750 .50 .3750 .56250 .1250 .56250 .3750 .56250 .3750 .6250 .1250 .625 0.3750 .6250 .3750 .68750 .1250 .68750 .50 .50 .6250 .50 .6250 .56250 .50 .56250 .6250 .56250 .6250 .6250 .50 .6250 .625 0.6250 .6250 .68750 .610 .0087718960 .610 .053728040 .5150 .053728040 .61000010 .071271950 .610 .11622810 .515 0.1162280 .61000010 .13377190 .610 .1787280 .5150 .1787280 .4850 .13377190 .4850 .17872810 .390 .1787280 .485 0.071271950 .4850 .11622810 .390 .1162280 .4850 .0087718960 .4850 .053728040 .390 .053728040 .50 .6250 .50 .68750 .375 0.68750 .50 .56250 .50 .6250 .3750 .6250 .50 .50 .50 .56250 .3750 .56250 .50 .68750 .50 .750 .3750 .750 .50 .250 .50 .50 .375 0.50 .4850 .19627190 .4850 .24122810 .39000010 .24122810 .6250 .18750 .610 .19627190 .51500010 .19627190 .6250 .250 .61 0.24122810 .610 .19627190 .50 .250 .51500010 .24122810 .610 .24122810 .50 .250 .50 .18750 .51500010 .19627190 .62500 .61 0.0087718960 .5150 .0087718960 .6250 .06250 .610 .053728040 .610 .0087718960 .50 .06250 .5150 .053728040 .61 0.053728040 .500 .5150 .0087718960 .5150 .053728040 .6250 .06250 .61000010 .071271950 .5150 .071271950 .6250 .1250 .61 0.11622810 .61000010 .071271950 .50 .1250 .5150 .1162280 .610 .11622810 .50 .06250 .5150 .071271950 .5150 .1162280 .625 0.1250 .61000010 .13377190 .5150 .13377190 .6250 .18750 .610 .1787280 .61000010 .13377190 .50 .18750 .5150 .1787280 .61 0.1787280 .50 .18750 .50 .1250 .5150 .13377190 .3750 .1250 .50 .1250 .4850 .13377190 .50 .18750 .4850 .17872810 .485 0.13377190 .50 .18750 .3750 .18750 .390 .1787280 .3750 .1250 .39000010 .13377180 .390 .1787280 .50 .06250 .485 0.071271950 .39000010 .071271890 .50 .1250 .4850 .11622810 .4850 .071271950 .50 .1250 .3750 .1250 .390 .1162280 .375 0.06250 .39000010 .071271890 .390 .1162280 .500 .4850 .0087718960 .390 .0087718960 .50 .06250 .4850 .053728040 .485 0.0087718960 .3750 .06250 .390 .053728040 .4850 .053728040 .37500 .390 .0087718960 .390 .053728040 .3750 .18750 .5 0.18750 .4850 .19627190 .50 .250 .4850 .24122810 .4850 .19627190 .3750 .250 .39000010 .24122810 .4850 .24122810 .375 0.18750 .39000010 .19627190 .39000010 .24122810 .610 .19627190 .610 .24122810 .51500010 .24122810 .6250 .68750 .625 0.74862550 .50 .74862550 .3750 .68750 .3750 .750 .1250 .750 .6250 .68750 .8750 .68750 .8750 .74862550 .8750 .50 .875 0.56250 .6250 .56250 .8750 .56250 .8750 .6250 .6250 .6250 .8750 .6250 .8750 .68750 .6250 .68750 .1250 .56250 .125 0.50000010 .3750 .50 .3750 .56250 .3750 .6250 .1250 .6250 .3750 .6250 .3750 .68750 .1250 .68750 .6250 .56250 .50 .56250 .5 0.50000010 .50 .56250 .6250 .56250 .6250 .6250 .50 .6250 .6250 .6250 .6250 .68750 .610 .0087718960 .610 .053728040 .515 0.053728040 .61000010 .071271950 .610 .11622810 .5150 .1162280 .61000010 .13377190 .610 .1787280 .5150 .1787280 .485 0.13377190 .4850 .17872810 .390 .1787280 .4850 .071271950 .4850 .11622810 .390 .1162280 .4850 .0087718960 .485 0.053728040 .390 .053728040 .50 .6250 .50 .68750 .3750 .68750 .50 .56250 .50 .6250 .3750 .6250 .3750 .56250 .3750 .50 .5 0.50000010 .376250 .74862560 .376250 .750 .3750 .750 .3750 .68750 .50 .68750 .376250 .74862560 .50 .68750 .50 .7486255 0.376250 .74862560 .4850 .19627190 .4850 .24122810 .39000010 .24122810 .6250 .18750 .610 .19627190 .51500010 .1962719 0.610 .19627190 .6250 .18750 .6250 .250 .6250 .250 .6250 .250 .610 .24122810 .610 .24122810 .6250 .250 .50000010 .250 .5 0.18750 .51500010 .19627190 .50000010 .250 .51500010 .19627190 .51500010 .24122810 .50000010 .250 .610 .008771896 0.5150 .0087718960 .50235030 .0013744230 .62264970 .0013744830 .6250 .0013744230 .610 .0087718960 .6250 .001374423 0.6250 .06250 .610 .053728040 .50 .06250 .5150 .053728040 .610 .053728040 .50235040 .0013744230 .5150 .0087718960 .5
0.0013744230 .5150 .0087718960 .5150 .053728040 .50 .0013744230 .6250 .06250 .61000010 .071271950 .5150 .07127195 0.6250 .1250 .610 .11622810 .61000010 .071271950 .50 .1250 .5150 .1162280 .610 .11622810 .50 .06250 .5150 .07127195 0.5150 .1162280 .6250 .1250 .61000010 .13377190 .5150 .13377190 .6250 .18750 .610 .1787280 .61000010 .13377190 .5 0.18750 .5150 .1787280 .610 .1787280 .50 .1250 .5150 .13377190 .5150 .1787280 .3750 .1250 .50 .1250 .4850 .13377190 .5 0.18750 .4850 .17872810 .4850 .13377190 .50 .18750 .3750 .18750 .390 .1787280 .3750 .1250 .39000010 .13377180 .39 0.1787280 .50 .06250 .4850 .071271950 .39000010 .071271890 .50 .1250 .4850 .11622810 .4850 .071271950 .50 .1250 .375 0.1250 .390 .1162280 .3750 .06250 .39000010 .071271890 .390 .1162280 .390 .0087718960 .37735030 .0013744230 .4976496 0.0013744230 .49764960 .0013744230 .50 .0013744230 .4850 .0087718960 .50 .0013744230 .50 .06250 .4850 .053728040 .375 0.06250 .390 .053728040 .4850 .053728040 .37735040 .0013744230 .390 .0087718960 .376250 .0013744230 .390 .008771896 0.390 .053728040 .376250 .0013744230 .390 .053728040 .3750 .06250 .376250 .0013744230 .3750 .06250 .37500 .37625 0.0013744230 .3750 .18750 .50 .18750 .4850 .19627190 .4850 .19627190 .50 .18750 .50000010 .250 .50000010 .250 .50 .25 0.4850 .24122810 .4850 .24122810 .50 .250 .37500010 .250 .39000010 .19627190 .39000010 .24122810 .37500010 .25 0.37500010 .250 .3750 .250 .39000010 .1962719 </float_array>
<technique_common>
<accessor source="\#Cube_013-mesh-map-0-array" count="1071" stride="2">
<param name="S" type="float"/>
<param name="T" type="float"/>
</accessor>
</technique_common>
</source>
<vertices id="Cube_013-mesh-vertices">

> <input semantic="POSITION" source="\#Cube_013-mesh-positions"/>
</vertices>
<triangles material="Material-material" count="60">
<input semantic="VERTEX" source="\#Cube_013-mesh-vertices" offset="0"/>
<input semantic="NORMAL" source="\#Cube_013-mesh-normals" offset="1"/>
<input semantic="TEXCOORD" source="\#Cube_013-mesh-map-0" offset="2" set="0"/>
< \(\mathrm{p}>104131914581562266274628252214122210223702244222541226662274622842229101\) 157621586615999160661617016291163701642516562166581671716814241719324172892417383 1174911175106117661217710217849217926219239219352194692195442196392197652198492199 442200102122861122965123097123165123269123393123469123526123610612372512386112398924 240262424152424252134520113466413474323482234933235024236318236447236547236628236724 23684523693323702823716313994314004514016014024514034714044714059514066014072051408 11140943141010415168115171915186225191725206252125535347053535415353670545376654538 425453966254062254146254210115701041571621572991573101157466157591157699157770157862 15791041580581581142469630246979324698831699341700911701612702252703102704267371769 737183973719697472065747214474722652723612724492725102175310617546117559717561021757 651758931759971760691761106176291176325176489247659324766262476752187020018712011872 4328731128742287524288802889182890475489145548922854893452894432895332896631924641 925431926601927631928451929471930181931951932205193320319341119354387936648793720587 93864193920119402051941 </p>
</triangles>
<triangles material="Material_001-material" count="48">
<input semantic="VERTEX" source="\#Cube_013-mesh-vertices" offset="0"/>
<input semantic="NORMAL" source="\#Cube_013-mesh-normals" offset="1"/>
<input semantic="TEXCOORD" source="\#Cube_013-mesh-map-0" offset="2" set="0"/>
<p>124001320112102138039142040136041146042151043145044154045158046152047162048 167049161050170051174052168053178054183055176056186069190070185071126016813401691230 170139021014302111370212147021315002141440215155021615902171530218163021916602201600 221171022217502231690224179022518202261770227187024319102441840245750342780343720344 82038186038280038390038494038588038698038710303889603891070390110039110503921150393 119039411203951220396127039712003981310411135041212904131240513128051413205151380552 140055314205541460555148055615105571540558156055915805601620561165056216705631700564 172056517405661780567180056818305691860582188058319005841260693130069413406951390735 141073614307371470738149073915007401550741157074215907431630744164074516607461710747 17307481750749179075018107511820752187076818907691910770750867760868780869820906850 9078609089009099209109409119809121000913103091410709151090916110091711509181170919119 \(0920122092112509221270923131094213309431350944</ \mathrm{p}>\)
</triangles>
<triangles material="Material_002-material" count="249">
<input semantic="VERTEX" source="\#Cube_013-mesh-vertices" offset="0"/>
<input semantic="NORMAL" source="\#Cube_013-mesh-normals" offset="1"/>
<input semantic="TEXCOORD" source="\#Cube_013-mesh-map-0" offset="2" set="0"/>
< \(\mathrm{p}>8139831019311123127331334314573157931673317543188131979320911307313199132\) 9913379134101135101136811371041385747212147311647412575124576575778767812867912680 11678113278287783136884196885138886898753988140989111690140691536921421093111109455 10955349614549711149854119914611100531110111461021486103546104111121051511210611412 10754410815241091144110571311115413112541311311661141566115576116114141171581411811614 119421512016215121161151221161112316211124114111251161612616716127165161284271291677130 417131111171321681713346171341141813517018136111181371141613817416139172161404619141174 191424219143176201441982014517820146552114711121148180211494622150180221511112215218323 15346231546231554115156186151571851515887111591861116011611161102216218822163872216441 71651907166107167513180343181833182143183743184303185593186773187743188563189833190 77319193120174120297120397120477120510212061021207831208106120959252461232524711825 24814262491262625059262518927252130272531427254892825512328256134282571242581374259874 2605129261139292621229263108626414162655162668714267143142681081426951427014442711084 27256182731471827451182751136276149627756627810830279150302801133028156428215342831134 284593128515531286563128711827288157272895927290118322911533229215932293441529416315295 16015296118332971633329811333299118343001663430116434302443530316635304393530510817306 169173074917308113363091713631010836311113163121751631317316314493731517537316443731787 1731817717319101732010813321179133228713323492232418122325108223261073271827328497329 3915330187153311841533289383331873833411838335527336189273378927338391233919112340512 341523351202335220033533335448335521335640335750335848335938336052336150336248137295 137321137460137550137663137763137852137964138040441472441571441632941776294187529419 76394201933942178394227840423193404248440425824142620741427206414288242429202424308542 4316764328564333764348643435674343620843437374438884439674440381844190184423718443686 4449264453864466744447944444868444493844509644516844524018453981845438184557164561006 45740645868304591033046071304612815462107154631051546471364651073646668364677116468110

16469109164702835471110354722435473671747411217475331747668364771153647867364796816480 119164811171648233354831193548428354852104548624548720445488120464892094649012246491122 5492208549312554943322495125224966722497247498210474992124750024155011311550212915503 8448504133485051314850613349507195495081354950905051024505111295051281352253352383524 125152557515267351527575252854525297952530543531533532813533911543341544731545991546 731547791548101154979155081155157175851241758612117587124258812842589124425908755591 1325559212855593116565941215659513256596136575971975759819657599140586001385860119658602 196596038596041405960511155606142556071405560855606091976061013660611136146121421461355 14614531761514617616145176175442618148426191464262011455621151556221485562311112624145 1262515112626541762715417628152176295756301565631154563211655633158556341565563511412 63615212637158126384261639114616401626164111662642165626431626264411663645416364616763 64742646481616464916764650111656511706565216865653114626541726265517062656114636574263 658174636594664660168646611746466217657663199576641985766518066666178666671986666819867 66955676701806767146667218366731806674668675199686761766867717612678183126796126804161 681116616821866168387696841886968518669686106687190668818866894170690185706911907069251 370512370634370714717085971709747171059727115672712777271356371451371583371693172630 1727741728971729741730771731102173277173383173459757711267577212375773147677413076775 126767768916777134167781301677989307801183078112330782121778313917784137177855177786141 777871397778810855789143557901415579187787921377879314378794511779514717796144177975679 798149797991477980011355801150558021495580310880804144808051508080656178071551780815317 80959798101577981115579812118168131591681415716815118788161137881715378818446181911361 82016361821118698221646982316369824118818253981826166818274428828160288291662883010865 83117165832169658331136983417369835171698361136383744638381756383949828401698284117582 8428765843179658441776584510833846181338471793384849684918268501816851108385217783853 18283854398485511884856187848578976858189768591877686052786119127862189278633985864184 8586519185866523876373877202387838687940868804886881405288238528835052884383885373886 523887481897601898951899601900481901501902631903501904521905401794575179467217947759 94840994939950388951192889527688953762795419227955193279567114957721495884149597289960 7889961848996282469638046964207469652069096620290967829096820291969379197085919716755 9728655973855597420792975809297620892977801997886199792081998037179819017982881798338 79984927998590799866855987945598892559896764990886499194649923817993981799496179954079 996100799979879998715599910355100010055100168801002968010031038010042861100568611006107 611007716910081096910091076910107163101124631012110631013288210141058210151108210166765 10171156510181126510196869102011769102111569102268631023286310241196310253393102611293 10271199310281204110292114110302094110312099410322089410331229410342089510356795103612595 10373361038127610391256104021196104112096104221296104312089104412789104521289104612797 104733971048212971049339810502981051212981052246110537161105413161105513113105671131057 841310588499105919499106013399106113310010621941001063195100106412910110651351011066195101 \(10671951021068010210691291021070</ \mathrm{p}>\)
</triangles>
</mesh>
</geometry>
<geometry id="Cube_012-mesh" name="Cube.012">
<mesh>
<source id="Cube_012-mesh-positions">
<float_array id="Cube_012-mesh-positions-array" count="564">-0.002881348-0.1549686-0.1-0.002881348-0.4969686 \(-0.1-0.002881348-0.15496860 .1-0.002881348-0.49696860 .1-0.0028813480 .5290315-0.1-0.002881348-0.1549685-0.1-\) \(0.002881348-0.15496850 .1-0.0028813480 .1870314-0.10 .005818665-0.4969686-0.1-0.0028813480 .18703140 .1-\) \(0.0028813480 .52903150 .10 .005818665-0.49696860 .10 .005818665-0.1549685-0.10 .005818665-0.1549686-0.1\) \(0.005818665-0.15496850 .10 .005818665-0.1549686\) 0.1 \(-0.002881348-0.2404685-0.10 .0058186650 .1870314-0.1\) \(0.0058186650 .5290315-0.1-0.002881348-0.3259686-0.10 .0058186650 .52903150 .1-0.002881348-0.4114686-0.1\) \(0.0058186650 .18703140 .1-0.002881348-0.41146860 .1-0.002881348-0.32596860 .1-0.0028813480 .4435315-0.1-\) \(0.002881348-0.24046860 .1-0.0028813480 .1015314-0.1-0.0028813480 .01603144-0.10 .005818665-0.4114686-0.1-\)
\(0.0028813480 .3580315-0.10 .005818665-0.3259686-0.1-0.002881348-0.06946861-0.10 .005818665-0.2404686-0.1\) \(0.005818665-0.24046850 .1-0.0028813480 .2725315-0.10 .005818665-0.32596860 .1-0.0028813480 .27253150 .1\) \(0.005818665-0.41146860 .1-0.002881348-0.069468610 .1-0.0028813480 .016031380 .1-0.002881348-0.49696860-\) \(0.002881348-0.15496850-0.0028813480 .35803150 .1-0.0028813480 .10153130 .10 .005818665-0.154968500 .005818665-\) \(0.49696860-0.0028813480 .44353140 .10 .005818665-0.240468600 .0058186650 .2725315-0.10 .005818665-0.06946861-\) \(0.10 .005818665-0.325968600 .005818665-0.411468600 .0058186650 .3580315-0.10 .0058186650 .01603138-0.1\) -\(0.002881348-0.41146860-0.002881348-0.325968600 .0058186650 .4435314-0.10 .0058186650 .1015313-0.1-0.002881348\) \(-0.24046860-9.21667 \mathrm{e}-4-0.22846850 .012000020 .0058186650 .10153140 .10 .0058186650 .44353150 .1\)-9.21667e-4 \(0.22846850 .08799999-9.21667 \mathrm{e}-4-0.16696850 .087999990 .0058186650 .35803150 .1-9.21667 \mathrm{e}-4-0.16696850 .01200002\) \(0.0058186650 .016031440 .1-9.21667 \mathrm{e}-4-0.48496860 .012000020 .005818665-0.069468610 .1-9.21667 \mathrm{e}-4-0.4849686\) \(0.087999990 .0058186650 .27253150 .1-0.002881348-0.15496860-9.21667 \mathrm{e}-4-0.42346870 .08799999-9.21667 \mathrm{e}-4\) \(0.42346870 .01200002-0.0028813480 .18703140-9.21667 \mathrm{e}-4-0.39946860 .01200002-0.0028813480 .52903150-9.21667 \mathrm{e}-4\) \(-0.39946860 .087999990 .0058186650 .18703140-9.21667 \mathrm{e}-4-0.33796870 .087999990 .0058186650 .52903150-9.21667 \mathrm{e}-4-\) \(0.33796870 .012000020 .005818665-0.15496860-9.21667 \mathrm{e}-4-0.31396860 .012000020 .0058186650 .44353140-9.21667 \mathrm{e}-4\) \(0.31396860 .087999990 .0058186650 .10153130-9.21667 \mathrm{e}-4-0.25246870 .087999990 .0058186650 .0160313800 .005818665\) \(0.35803150-9.21667 \mathrm{e}-4-0.25246870 .012000020 .005818665-0.069468610-9.21667 \mathrm{e}-4-0.3139686-0.08799999\) \(0.0058186650 .27253150-9.21667 \mathrm{e}-4-0.3139686-0.01200002-0.0028813480 .27253150-9.21667 \mathrm{e}-4-0.2524686\) -\(0.01200002-9.21667 \mathrm{e}-4-0.2524686-0.08799999-0.002881348-0.069468610-9.21667 \mathrm{e}-4-0.3994686-0.08799999-\) \(0.0028813480 .35803150-0.0028813480 .016031380-9.21667 \mathrm{e}-4-0.3994686-0.01200002-0.0028813480 .10153130-\) \(9.21667 \mathrm{e}-4-0.3379686-0.01200002-0.0028813480 .44353140-9.21667 \mathrm{e}-4-0.3379686-0.08799999-9.21667 \mathrm{e}-4-0.4849686\) \(0.08799999-9.21667 \mathrm{e}-40.11353140 .01200002-9.21667 \mathrm{e}-4-0.4849686-0.01200002-9.21667 \mathrm{e}-40.45553150 .01200002\) \(9.21667 \mathrm{e}-40.11353140 .08799999-9.21667 \mathrm{e}-4-0.4234687-0.01200002-9.21667 \mathrm{e}-40.45553150 .08799999-9.21667 \mathrm{e}-4\) -\(0.4234687-0.08799999-9.21667 \mathrm{e}-40.17503140 .08799999-9.21667 \mathrm{e}-4-0.2284685-0.08799999-9.21667 \mathrm{e}-40.5170316\) \(0.08799999-9.21667 \mathrm{e}-4-0.2284685-0.01200002-9.21667 \mathrm{e}-40.17503140 .01200002-9.21667 \mathrm{e}-4-0.1669685-0.01200002-\) \(9.21667 \mathrm{e}-40.51703160 .01200002-9.21667 \mathrm{e}-4-0.1669685-0.08799999-9.21667 \mathrm{e}-4-0.14296860 .01200002-9.21667 \mathrm{e}-4\) \(0.19903140 .01200002-9.21667 \mathrm{e}-4-0.14296860 .08799999-9.21667 \mathrm{e}-40.19903140 .08799999-9.21667 \mathrm{e}-4-0.08146864\) \(0.08799999-9.21667 \mathrm{e}-40.26053140 .08799999-9.21667 \mathrm{e}-4-0.081468640 .01200002-9.21667 \mathrm{e}-40.26053140 .01200002\) \(9.21667 \mathrm{e}-40.28453150 .01200002-9.21667 \mathrm{e}-4-0.057468590 .01200002-9.21667 \mathrm{e}-4-0.057468590 .08799999\) - \(9.21667 \mathrm{e}-4\) \(0.28453150 .08799999-9.21667 \mathrm{e}-40.004031360 .08799999-9.21667 \mathrm{e}-40.34603140 .08799999\)-9.21667e-4 0.3460314 \(0.01200002-9.21667 \mathrm{e}-40.004031360 .01200002\)-9.21667e-4 0.02803140 .01200002 -9.21667e-4 0.37003150 .01200002 \(9.21667 \mathrm{e}-40.02803140 .08799999-9.21667 \mathrm{e}-40.37003150 .08799999-9.21667 \mathrm{e}-40.089531360 .08799999\)-9.21667e-4 \(0.43153140 .08799999-9.21667 \mathrm{e}-40.089531360 .01200002\)-9.21667e-4 0.43153140 .01200002 -9.21667e-4 0.3700315-\(0.08799999-9.21667 \mathrm{e}-40.0280314-0.08799999-9.21667 \mathrm{e}-40.0280314-0.01200002-9.21667 \mathrm{e}-40.3700315-0.01200002\) \(9.21667 \mathrm{e}-40.4315316-0.01200002-9.21667 \mathrm{e}-40.08953142-0.01200002-9.21667 \mathrm{e}-4\) 0.4315316-0.08799999-9.21667e-4 \(0.08953142-0.08799999-9.21667 \mathrm{e}-4-0.05746859-0.08799999-9.21667 \mathrm{e}-40.2845315-0.08799999-9.21667 \mathrm{e}-4-0.05746859\) -\(0.01200002-9.21667 \mathrm{e}-40.2845315-0.01200002-9.21667 \mathrm{e}-40.004031419-0.01200002-9.21667 \mathrm{e}-4\) 0.3460315-0.01200002\(9.21667 \mathrm{e}-40.004031419-0.08799999-9.21667 \mathrm{e}-40.3460315-0.08799999-9.21667 \mathrm{e}-4-0.1429686-0.08799999-9.21667 \mathrm{e}-4\) \(0.1990314-0.08799999-9.21667 \mathrm{e}-4-0.1429686-0.01200002-9.21667 \mathrm{e}-40.1990314-0.01200002-9.21667 \mathrm{e}-4-0.08146864-\) \(0.01200002-9.21667 \mathrm{e}-40.2605314-0.01200002-9.21667 \mathrm{e}-4\) 0.2605314-0.08799999-9.21667e-4 -0.08146864-0.08799999-9.21667e-4 0.4555315-0.08799999-9.21667e-4 0.1135314-0.08799999-9.21667e-4 0.1135314-0.01200002 -9.21667e-4 \(0.4555315-0.01200002-9.21667 \mathrm{e}-40.1750314-0.01200002-9.21667 \mathrm{e}-40.5170316-0.01200002-9.21667 \mathrm{e}-40.1750314\) -\(0.08799999-9.21667 e-40.5170316-0.08799999-0.002881348-0.15496860 .09999996-0.002881348-0.15496860-\) \(0.002881348-0.15496860-0.002881348-0.1549686-0.09999996-0.002881348-0.15496850 .09999996-0.002881348-\) \(0.15496850-0.002881348-0.15496850-0.002881348-0.1549685-0.09999996</ f l o a t _a r r a y>\)
<technique_common>
<accessor source="\#Cube_012-mesh-positions-array" count="188" stride="3">

> <param name="X" type="float"/>
<param name="Y" type="float"/>
<param name="Z" type="float"/>
</accessor>
</technique_common>
</source>
<source id="Cube_012-mesh-normals">
<float_array id="Cube_012-mesh-normals-array" count="276">-1 \(0010000-1001-0.98692640 .16117140\) -
\(0.98692640-0.1611716-0.9869264-0.16117140-0.9869265000 .1611714-0.98692630 .16117260-0.98692650-0.1611714\) \(0.986926400 .1611714-0.98692650-0.1611714-0.986926500 .1611714-0.98692650-0.1611714-0.9869265000 .1611714-\) \(0.98692630 .16117220-0.9869264-0.16117220-0.98692640 .16117140-0.9869264000 .1611716-0.98692630 .16117260-\) \(0.9869264-0.16117140-0.98692660 .16117070-0.98692640-0.1611714-0.9869263-0.16117220-0.986926400 .1611713-\) \(0.98692650-0.1611714-0.986926500 .1611715-0.98692650-0.1611713-0.9869264000 .1611714-0.98692650-0.1611714-\) \(0.9869261-0.16117380-0.986926500 .1611715-0.98692650-0.1611714-0.986926400 .1611716-0.98692650-0.16117150\) \(-10-0.9869264-0.16117220-0.98692640 .16117180-0.98692640-0.1611715-0.986926500 .1611714-0.98692640 .1611718\) \(0-0.98692640-0.1611716-0.98692640-0.1611714-0.9869263-0.16117220-0.986926500 .1611714-1.00163 \mathrm{e}-601-\) 1.00163e-6 \(011.00163 \mathrm{e}-60-11.00163 \mathrm{e}-60-1-0.9869265-0.16117140-0.986926400 .1611714-0.98692630 .16117260-\) \(0.98639390 .1643990-0.986926400 .1611714-0.98693290 .16113190-0.98692640 .16117160-0.98692640-0.1611714-\) \(0.9869265-0.16117150-0.986926500 .1611715-0.98692650 .16117140-0.98692640-0.1611714-0.986926500 .1611713-\) \(0.98692640-0.1611715-0.986926500 .16117155 .00803 \mathrm{e}-7011.50243 \mathrm{e}-601-5.00803 \mathrm{e}-70-1-1.50243 \mathrm{e}-60-1-0.9869266\) \(0.16117070-0.98692640-0.1611713-0.98692640-0.1611715-0.986926500 .1611714-0.98692640-0.1611716-0.98692650\) \(0.1611713-0.9869263-0.1611724-1.9149 \mathrm{e}-7-0.986926500 .1611714-0.986926400 .1611715-0.98692660 .1611708\) \(1.91488 \mathrm{e}-7-0.986926400 .1611715-1.00163 \mathrm{e}-601-0.98692650-0.1611714-0.9863939-0.1643990-0.986926300 .1611722\) \(-0.9996447-0.026657160-0.98692640 .16117190-0.986926400 .1611716-0.9869264000 .1611715-0.98692630 .16117180-\) \(0.9869329-0.16113190-0.9869263-0.16117220-0.986926400 .1611723-0.9996877-0.024992160</ f l o a t _a r r a y>\)
<technique_common>
<accessor source="\#Cube_012-mesh-normals-array" count="92" stride="3">
<param name="X" type="float"/>
<param name="Y" type="float"/>
<param name="Z" type="float"/>
</accessor>
</technique_common>
</source>
<source id="Cube_012-mesh-map-0">
<float_array id="Cube_012-mesh-map-0-array" count="2088">0.61 0.19627190 .51500010 .24122810 .5150001 0.19627190 .50 .68750 .6250 .750 .50 .750 .3750 .68750 .1250 .750 .1250 .68750 .6250 .68750 .8750 .750 .6250 .750 .8750 .5 0.6250 .56250 .6250 .50 .8750 .56250 .6250 .6250 .6250 .56250 .8750 .6250 .6250 .68750 .6250 .6250 .3750 .50 .1250 .5625 0.1250 .50 .3750 .56250 .1250 .6250 .1250 .56250 .3750 .6250 .1250 .68750 .1250 .6250 .50 .50 .6250 .56250 .50 .56250 .5 0.56250 .6250 .6250 .50 .6250 .50 .6250 .6250 .68750 .50 .68750 .610 .0087718960 .5150 .053728040 .5150 .008771896 0.61000010 .071271950 .5150 .1162280 .5150 .071271950 .61000010 .13377190 .5150 .1787280 .5150 .13377190 .485 0.13377190 .390 .1787280 .39000010 .13377180 .4850 .071271950 .390 .1162280 .39000010 .071271890 .4850 .008771896 0.390 .053728040 .390 .0087718960 .50 .6250 .3750 .68750 .3750 .6250 .50 .56250 .3750 .6250 .3750 .56250 .50 .50 .375 0.56250 .3750 .50 .3750 .68750 .50 .750 .3750 .750 .4850 .19627190 .39000010 .24122810 .39000010 .19627190 .6250 .1875 0.51500010 .19627190 .50 .18750 .6250 .250 .610 .19627190 .6250 .18750 .50 .250 .610 .24122810 .6250 .250 .50 .1875 0.51500010 .24122810 .50 .250 .5150 .0087718960 .624999900 .610 .0087718960 .6250 .06250 .610 .053728040 .61 0.0087718960 .50 .06250 .610 .053728040 .6250 .06250 .500 .5150 .0087718960 .5150 .053728040 .6250 .06250 .515 0.071271950 .50 .06250 .6250 .1250 .61000010 .071271950 .6250 .06250 .50 .1250 .610 .11622810 .6250 .1250 .50 .06250 .515 0.1162280 .50 .1250 .6250 .1250 .5150 .13377190 .50 .1250 .6250 .18750 .61000010 .13377190 .6250 .1250 .50 .18750 .61 0.1787280 .6250 .18750 .50 .1250 .5150 .1787280 .50 .18750 .3750 .1250 .4850 .13377190 .39000010 .13377180 .50 .1875 0.4850 .13377190 .50 .1250 .50 .18750 .390 .1787280 .4850 .17872810 .3750 .1250 .390 .1787280 .3750 .18750 .50 .0625 0.39000010 .071271890 .3750 .06250 .50 .1250 .4850 .071271950 .50 .06250 .50 .1250 .390 .1162280 .4850 .11622810 .375
0.06250 .390 .1162280 .3750 .1250 .390 .0087718960 .500 .4850 .0087718960 .50 .06250 .4850 .053728040 .4850 .008771896 0.3750 .06250 .4850 .053728040 .50 .06250 .37500 .390 .0087718960 .390 .053728040 .3750 .18750 .4850 .19627190 .3900001 0.19627190 .50 .250 .4850 .19627190 .50 .18750 .3750 .250 .4850 .24122810 .50 .250 .3750 .18750 .39000010 .24122810 .375 0.250 .610 .19627190 .51500010 .24122810 .51500010 .19627190 .6250 .68750 .50 .750 .50 .68750 .3750 .68750 .1250 .75 0.1250 .68750 .8750 .68750 .6250 .750 .6250 .68750 .8750 .50 .6250 .56250 .6250 .50 .8750 .56250 .6250 .6250 .6250 .5625 0.8750 .6250 .6250 .68750 .6250 .6250 .3750 .50 .1250 .56250 .1250 .50 .3750 .56250 .1250 .6250 .1250 .56250 .3750 .625 0.1250 .68750 .1250 .6250 .50 .50 .6250 .56250 .50 .56250 .50 .56250 .6250 .6250 .50 .6250 .50 .6250 .6250 .68750 .50 .6875 0.610 .0087718960 .5150 .053728040 .5150 .0087718960 .61000010 .071271950 .5150 .1162280 .5150 .071271950 .6100001 0.13377190 .5150 .1787280 .5150 .13377190 .4850 .13377190 .390 .1787280 .39000010 .13377180 .4850 .071271950 .39 0.1162280 .39000010 .071271890 .4850 .0087718960 .390 .053728040 .390 .0087718960 .50 .6250 .3750 .68750 .3750 .6250 .5 0.56250 .3750 .6250 .3750 .56250 .50 .50 .3750 .56250 .3750 .50 .50 .68750 .3750 .750 .3750 .68750 .4850 .19627190 .3900001 0.24122810 .39000010 .19627190 .6250 .18750 .51500010 .19627190 .50 .18750 .6250 .250 .610 .19627190 .6250 .18750 .5 0.250 .610 .24122810 .6250 .250 .50 .250 .51500010 .19627190 .51500010 .24122810 .62500 .5150 .0087718960 .500 .625 0.06250 .610 .0087718960 .62500 .50 .06250 .610 .053728040 .6250 .06250 .500 .5150 .053728040 .50 .06250 .6250 .0625 0.5150 .071271950 .50 .06250 .6250 .1250 .61000010 .071271950 .6250 .06250 .50 .1250 .610 .11622810 .6250 .1250 .50 .0625 0.5150 .1162280 .50 .1250 .6250 .1250 .5150 .13377190 .50 .1250 .6250 .18750 .61000010 .13377190 .6250 .1250 .50 .1875 0.610 .1787280 .6250 .18750 .50 .18750 .5150 .13377190 .5150 .1787280 .3750 .1250 .4850 .13377190 .39000010 .13377180 .5 0.18750 .4850 .13377190 .50 .1250 .50 .18750 .390 .1787280 .4850 .17872810 .3750 .1250 .390 .1787280 .3750 .18750 .5 0.06250 .39000010 .071271890 .3750 .06250 .50 .1250 .4850 .071271950 .50 .06250 .50 .1250 .390 .1162280 .4850 .1162281 0.3750 .06250 .390 .1162280 .3750 .1250 .500 .390 .0087718960 .37500 .50 .06250 .4850 .0087718960 .500 .3750 .06250 .485 0.053728040 .50 .06250 .37500 .390 .053728040 .3750 .06250 .3750 .18750 .4850 .19627190 .39000010 .19627190 .50 .25 0.4850 .19627190 .50 .18750 .3750 .250 .4850 .24122810 .50 .250 .3750 .18750 .39000010 .24122810 .3750 .250 .610 .1962719 0.51500010 .24122810 .51500010 .19627190 .6250 .68750 .50 .750 .50 .68750 .6250 .750 .510 .50 .750 .3750 .68750 .1250 .75 0.1250 .68750 .8750 .68750 .6250 .750 .6250 .68750 .8750 .50 .6250 .56250 .6250 .50000010 .8750 .56250 .6250 .6250 .625 0.56250 .8750 .6250 .6250 .68750 .6250 .6250 .1250 .56250 .3750 .50 .3750 .56250 .3750 .56250 .1250 .6250 .1250 .56250 .375 0.6250 .1250 .68750 .1250 .6250 .6250 .56250 .50 .50000010 .6250 .50000010 .50 .56250 .6250 .6250 .50 .6250 .50 .6250 .625 0.68750 .50 .68750 .610 .0087718960 .5150 .053728040 .5150 .0087718960 .61000010 .071271950 .5150 .1162280 .515 0.071271950 .61000010 .13377190 .5150 .1787280 .5150 .13377190 .4850 .13377190 .390 .1787280 .39000010 .13377180 .485 0.071271950 .390 .1162280 .39000010 .071271890 .4850 .0087718960 .390 .053728040 .390 .0087718960 .50 .6250 .375 0.68750 .3750 .6250 .50 .56250 .3750 .6250 .3750 .56250 .3750 .56250 .50 .50000010 .50 .56250 .50 .750 .37510 .3750 .750 .5 0.68750 .3750 .750 .3750 .68750 .4850 .19627190 .39000010 .24122810 .39000010 .19627190 .6250 .18750 .5150001 0.19627190 .50 .18750 .6250 .250 .610 .24122810 .610 .19627190 .610 .24122810 .50000010 .250 .51500010 .2412281 0.50000010 .250 .50 .18750 .51500010 .19627190 .62500 .5150 .0087718960 .500 .62500 .610 .053728040 .610 .008771896 0.50 .06250 .610 .053728040 .6250 .06250 .500 .5150 .053728040 .50 .06250 .6250 .06250 .5150 .071271950 .50 .06250 .625 0.1250 .61000010 .071271950 .6250 .06250 .50 .1250 .610 .11622810 .6250 .1250 .50 .06250 .5150 .1162280 .50 .1250 .625 0.1250 .5150 .13377190 .50 .1250 .6250 .18750 .61000010 .13377190 .6250 .1250 .50 .18750 .610 .1787280 .6250 .18750 .5 0.1250 .5150 .1787280 .50 .18750 .3750 .1250 .4850 .13377190 .39000010 .13377180 .50 .18750 .4850 .13377190 .50 .1250 .5 0.18750 .390 .1787280 .4850 .17872810 .3750 .1250 .390 .1787280 .3750 .18750 .50 .06250 .39000010 .071271890 .3750 .0625 0.50 .1250 .4850 .071271950 .50 .06250 .50 .1250 .390 .1162280 .4850 .11622810 .3750 .06250 .390 .1162280 .3750 .1250 .50 0.390 .0087718960 .37500 .500 .4850 .053728040 .4850 .0087718960 .3750 .06250 .4850 .053728040 .50 .06250 .37500 .39 0.053728040 .3750 .06250 .3750 .18750 .4850 .19627190 .39000010 .19627190 .50000010 .250 .4850 .24122810 .485 0.19627190 .4850 .24122810 .37500010 .250 .39000010 .24122810 .3750 .250 .3750 .18750 .39000010 .19627190 .61 0.19627190 .610 .24122810 .51500010 .24122810 .50 .68750 .6250 .68750 .6250 .750 .3750 .68750 .3750 .750 .1250 .750 .625 0.68750 .8750 .68750 .8750 .750 .8750 .50 .8750 .56250 .6250 .56250 .8750 .56250 .8750 .6250 .6250 .6250 .8750 .6250 .875 0.68750 .6250 .68750 .3750 .50 .3750 .56250 .1250 .56250 .3750 .56250 .3750 .6250 .1250 .6250 .3750 .6250 .3750 .68750 .125 0.68750 .50 .50 .6250 .50 .6250 .56250 .50 .56250 .6250 .56250 .6250 .6250 .50 .6250 .6250 .6250 .6250 .68750 .61 0.0087718960 .610 .053728040 .5150 .053728040 .61000010 .071271950 .610 .11622810 .5150 .1162280 .61000010 .1337719 0.610 .1787280 .5150 .1787280 .4850 .13377190 .4850 .17872810 .390 .1787280 .4850 .071271950 .4850 .11622810 .39 0.1162280 .4850 .0087718960 .4850 .053728040 .390 .053728040 .50 .6250 .50 .68750 .3750 .68750 .50 .56250 .50 .6250 .375 0.6250 .50 .50 .50 .56250 .3750 .56250 .3750 .68750 .50 .68750 .50 .750 .4850 .19627190 .4850 .24122810 .39000010 .2412281 0.6250 .18750 .610 .19627190 .51500010 .19627190 .6250 .250 .610 .24122810 .610 .19627190 .50 .250 .51500010 .2412281 0.610 .24122810 .50 .18750 .51500010 .19627190 .51500010 .24122810 .5150 .0087718960 .500000100 .624999900 .6250 0.62500 .610 .0087718960 .62500 .6250 .06250 .610 .0087718960 .50 .06250 .5150 .053728040 .610 .053728040 .515 0.053728040 .50 .06250 .500 .500 .500 .5150 .0087718960 .6250 .06250 .61000010 .071271950 .5150 .071271950 .6250 .125 0.610 .11622810 .61000010 .071271950 .50 .1250 .5150 .1162280 .610 .11622810 .50 .06250 .5150 .071271950 .5150 .116228 0.6250 .1250 .61000010 .13377190 .5150 .13377190 .6250 .18750 .610 .1787280 .61000010 .13377190 .50 .18750 .515 0.1787280 .610 .1787280 .50 .1250 .5150 .13377190 .5150 .1787280 .3750 .1250 .50 .1250 .4850 .13377190 .50 .18750 .485 0.17872810 .4850 .13377190 .50 .18750 .3750 .18750 .390 .1787280 .3750 .1250 .39000010 .13377180 .390 .1787280 .50 .0625 0.4850 .071271950 .39000010 .071271890 .50 .1250 .4850 .11622810 .4850 .071271950 .50 .1250 .3750 .1250 .390 .116228 0.3750 .06250 .39000010 .071271890 .390 .1162280 .390 .0087718960 .375000100 .500 .500 .500 .4850 .0087718960 .500 .5 0.06250 .4850 .0087718960 .3750 .06250 .390 .053728040 .4850 .053728040 .390 .053728040 .3750 .06250 .37500 .3750 0.37500 .390 .0087718960 .3750 .18750 .50 .18750 .4850 .19627190 .50 .250 .4850 .24122810 .4850 .19627190 .3750 .25
0.39000010 .24122810 .4850 .24122810 .3750 .18750 .39000010 .19627190 .39000010 .24122810 .610 .19627190 .61 0.24122810 .51500010 .24122810 .6250 .68750 .6250 .750 .50 .750 .3750 .68750 .3750 .750 .1250 .750 .8750 .68750 .8750 .75 0.6250 .750 .8750 .50 .8750 .56250 .6250 .56250 .8750 .56250 .8750 .6250 .6250 .6250 .8750 .6250 .8750 .68750 .6250 .6875 0.3750 .50 .3750 .56250 .1250 .56250 .3750 .56250 .3750 .6250 .1250 .6250 .3750 .6250 .3750 .68750 .1250 .68750 .50 .50 .625 0.50 .6250 .56250 .50 .56250 .6250 .56250 .6250 .6250 .50 .6250 .6250 .6250 .6250 .68750 .610 .0087718960 .610 .05372804 0.5150 .053728040 .61000010 .071271950 .610 .11622810 .5150 .1162280 .61000010 .13377190 .610 .1787280 .5150 .178728 0.4850 .13377190 .4850 .17872810 .390 .1787280 .4850 .071271950 .4850 .11622810 .390 .1162280 .4850 .0087718960 .485 0.053728040 .390 .053728040 .50 .6250 .50 .68750 .3750 .68750 .50 .56250 .50 .6250 .3750 .6250 .50 .50 .50 .56250 .375 0.56250 .50 .68750 .50 .750 .3750 .750 .4850 .19627190 .4850 .24122810 .39000010 .24122810 .6250 .18750 .610 .1962719 0.51500010 .19627190 .6250 .250 .610 .24122810 .610 .19627190 .50 .250 .51500010 .24122810 .610 .24122810 .50 .250 .5 0.18750 .51500010 .19627190 .62500 .610 .0087718960 .5150 .0087718960 .6250 .06250 .610 .053728040 .610 .0087718960 .5 0.06250 .5150 .053728040 .610 .053728040 .500 .5150 .0087718960 .5150 .053728040 .6250 .06250 .61000010 .07127195 0.5150 .071271950 .6250 .1250 .610 .11622810 .61000010 .071271950 .50 .1250 .5150 .1162280 .610 .11622810 .50 .0625 0.5150 .071271950 .5150 .1162280 .6250 .1250 .61000010 .13377190 .5150 .13377190 .6250 .18750 .610 .1787280 .6100001 0.13377190 .50 .18750 .5150 .1787280 .610 .1787280 .50 .18750 .50 .1250 .5150 .13377190 .3750 .1250 .50 .1250 .485 0.13377190 .50 .18750 .4850 .17872810 .4850 .13377190 .50 .18750 .3750 .18750 .390 .1787280 .3750 .1250 .3900001 0.13377180 .390 .1787280 .50 .06250 .4850 .071271950 .39000010 .071271890 .50 .1250 .4850 .11622810 .4850 .071271950 .5 0.1250 .3750 .1250 .390 .1162280 .3750 .06250 .39000010 .071271890 .390 .1162280 .500 .4850 .0087718960 .390 .008771896 0.50 .06250 .4850 .053728040 .4850 .0087718960 .3750 .06250 .390 .053728040 .4850 .053728040 .37500 .390 .008771896 0.390 .053728040 .3750 .18750 .50 .18750 .4850 .19627190 .50 .250 .4850 .24122810 .4850 .19627190 .3750 .250 .3900001 0.24122810 .4850 .24122810 .3750 .18750 .39000010 .19627190 .39000010 .24122810 .610 .19627190 .610 .2412281 0.51500010 .24122810 .6250 .68750 .6250 .750 .50 .750 .6250 .750 .62510 .510 .3750 .68750 .3750 .750 .1250 .750 .875 0.68750 .8750 .750 .6250 .750 .8750 .50 .8750 .56250 .6250 .56250 .8750 .56250 .8750 .6250 .6250 .6250 .8750 .6250 .875 0.68750 .6250 .68750 .1250 .56250 .1250 .50000010 .3750 .50 .3750 .56250 .3750 .6250 .1250 .6250 .3750 .6250 .3750 .6875 0.1250 .68750 .6250 .56250 .50 .56250 .50 .50000010 .50 .56250 .6250 .56250 .6250 .6250 .50 .6250 .6250 .6250 .6250 .6875 0.610 .0087718960 .610 .053728040 .5150 .053728040 .61000010 .071271950 .610 .11622810 .5150 .1162280 .6100001 0.13377190 .610 .1787280 .5150 .1787280 .4850 .13377190 .4850 .17872810 .390 .1787280 .4850 .071271950 .4850 .1162281 0.390 .1162280 .4850 .0087718960 .4850 .053728040 .390 .053728040 .50 .6250 .50 .68750 .3750 .68750 .50 .56250 .50 .625 0.3750 .6250 .3750 .56250 .3750 .50 .50 .50000010 .50 .750 .510 .37510 .50 .68750 .50 .750 .3750 .750 .4850 .19627190 .485 0.24122810 .39000010 .24122810 .6250 .18750 .610 .19627190 .51500010 .19627190 .610 .19627190 .6250 .18750 .6250 .25 0.6250 .250 .6250 .250 .610 .24122810 .610 .24122810 .6250 .250 .50000010 .250 .51500010 .19627190 .51500010 .2412281 0.50000010 .250 .50000010 .250 .50000010 .250 .51500010 .19627190 .62500 .610 .0087718960 .5150 .0087718960 .6250 0.6250 .06250 .610 .053728040 .50 .06250 .5150 .053728040 .610 .053728040 .500 .5150 .0087718960 .5150 .053728040 .625 0.06250 .61000010 .071271950 .5150 .071271950 .6250 .1250 .610 .11622810 .61000010 .071271950 .50 .1250 .5150 .116228 0.610 .11622810 .50 .06250 .5150 .071271950 .5150 .1162280 .6250 .1250 .61000010 .13377190 .5150 .13377190 .6250 .1875 0.610 .1787280 .61000010 .13377190 .50 .18750 .5150 .1787280 .610 .1787280 .50 .1250 .5150 .13377190 .5150 .1787280 .375 0.1250 .50 .1250 .4850 .13377190 .50 .18750 .4850 .17872810 .4850 .13377190 .50 .18750 .3750 .18750 .390 .1787280 .375 0.1250 .39000010 .13377180 .390 .1787280 .50 .06250 .4850 .071271950 .39000010 .071271890 .50 .1250 .4850 .1162281 0.4850 .071271950 .50 .1250 .3750 .1250 .390 .1162280 .3750 .06250 .39000010 .071271890 .390 .1162280 .500 .485 0.0087718960 .390 .0087718960 .500 .50 .06250 .4850 .053728040 .3750 .06250 .390 .053728040 .4850 .053728040 .3750 0.390 .0087718960 .390 .053728040 .3750 .18750 .50 .18750 .4850 .19627190 .4850 .19627190 .50 .18750 .50000010 .25 0.50000010 .250 .50 .250 .4850 .24122810 .4850 .24122810 .50 .250 .37500010 .250 .39000010 .19627190 .39000010 .2412281 \(0.37500010 .250 .37500010 .250 .3750 .250 .39000010 .1962719</ f l o a t _a r r a y>\)
<technique_common>
<accessor source="\#Cube_012-mesh-map-0-array" count="1044" stride="2">
<param name="S" type="float"/>
<param name="T" type="float"/>
</accessor>
</technique_common>
</source>
<vertices id="Cube_012-mesh-vertices">
<input semantic="POSITION" source="\#Cube_012-mesh-positions"/>
</vertices>
<triangles material="Material-material" count="58">
<input semantic="VERTEX" source="\#Cube_012-mesh-vertices" offset="0"/>
<input semantic="NORMAL" source="\#Cube_012-mesh-normals" offset="1"/>
<input semantic="TEXCOORD" source="\#Cube_012-mesh-map-0" offset="2" set="0"/>
< \(\mathrm{p}>921314144515502652732281722127222722358224282252722654227322282822989157\) 501585415987160541615816279163581641716550166451671216871117179117294117349217472 17535217618218925219042191572192302193252194532195352196302197901225491226531227851 22853122957123081123157123218123394123417123549123638133946134052134111353424135343 463534429234512346212347162360132361332362332363192364162365312366212367192368511 39629139731139848139931140033140133140283140348140446354051354068354075214088140929 141092151369151414151550251612251752518174753158475322747533584853454485352848536542 53750253832253989156792156850156987157089157154157279157387157458157550157692157745 157871169322169479169549269617269772698186671157667122566713576771453677153067716532 71749271835271990174794174849174985175090175153175281175385175457175594175679175717 1758381861111862461863113586433586541358662928678286812869162882028831328843348885 31488861948887312888292889212890511918521919291920481921511922311923331924131925831 9264635927413592813592952193046193181932 </p>
</triangles>
<triangles material="Material_001-material" count="48">

> <input semantic="VERTEX" source="\#Cube_012-mesh-vertices" offset="0"/>
<input semantic="NORMAL" source="\#Cube_012-mesh-normals" offset="1"/>
<input semantic="TEXCOORD" source="\#Cube_012-mesh-map-0" offset="2" set="0"/>
<p>112001200110902126039130040124041134042139043133044142045146046140047150048 155049149050158051162052156053166054171055164056174069178070173071114016812201691110 170127020713102081250209135021013802111320212143021314702141410215151021615402171480 218159021916302201570221167022217002231650224175023717902381720239630336660337600338 70037874037968038078038182038276038386038491038584038695038798038893038910303901070 391100039211003931150394108039511904111230412117041311205101160511120051212605491280 550130055113405521360553139055414205551440556146055715005581530559155056015805611600 562162056316605641680565171056617405791760580178058111406901180691122069212707291290 730131073113507321370733138073414307351450736147073715107381520739154074015907411610 7421630743167074416907451700746175075917707601790761630858640859660860700900730901740 9027809038009048209058609068809079109089509099709109809111030912105091310709141100 \(91511309161150917119093312109341230935</ \mathrm{p}\) >
</triangles>
<triangles material="Material_002-material" count="242">
<input semantic="VERTEX" source="\#Cube_012-mesh-vertices" offset="0"/>
<input semantic="NORMAL" source="\#Cube_012-mesh-normals" offset="1"/>

\section*{<input semantic="TEXCOORD" source="\#Cube_012-mesh-map-0" offset="2" set="0"/>}
< \(\mathrm{p}>693963101431193126131322314443156731661317403186931967320791306113187132\) 871336713489135891366913792138444721094731044749575112576445777567811667996801047 8112078275783124884184885126886399871289881269899969012869139692421093124109413010 9539496133497994984011991341110039111011026102136610340610499121051391210610212107404 1081404109102411044131111421311240131131046114144611544611610214117146141181041411928 1512015015121149151221041112315011124102111251041612615516127153161282871291557130277 13199171321561713332171341029135158913699913710216138162161391601614032181411621814228 1814316419144186191451661914699131471681314816613149322015016820151992015251215316412 154171121552715156174151571731515875111591741116010411161720162176201637520164277165178 71667716737317722317871317910318062318120318247318365318462318543318671318765318881 1198621199851200851201651202901203901204711205941206472124011121241106212421022243114 2224447222457723246118232471023248772424911124250122242519425212542537542543725255127 252569252579662581296259376260751426113114262961426337426413242659642664392671359268 37926910162701376271436272962627313826274101262754342761414277101427847272791432728043 27281106232821452328347232841062828514128286147282873015288151152891481529010629291151 29292101292931063029415430295152302963031297154312982531299961730015717301351730210132 303159323049632305101163061631630716116308353330916333310303331175173121651731371731496 1331516713316751331735203181692031996203207732117073223573232515324175153251721532677 34327175343281063432942333017723331772333225123331791233441233523334811334938335023 35134335215335326335436335534335624335738335836335934136983137015137148137236137351 137451137538137652137726441460441559441622541764254186325419643642018136421663642272 144235914424601442533742668374274137428338429733843070384315564327364332364344139435 743943655394372344387644395544402494417894422394435664448064452464465539447823944856 394492444508444515644522694538694542494555964568864572664585626459912646059264611915 462951546393154645932465953246656324675916468981646997164701931471983147216314735517 474100174752117476563247710332478553247956164801071648110516482213148310731484193148541 4048610840487140488414148911341490110414912120492113204935520494112495115124962112497 16154981191549911715500724250112142502119425031214350418343505123435060445071644508117 445096935193935206352194552244455236145524444652540465266746527403528393529693530791 5402215416115428715436115446715458915466715476915484417582112175831091758493858511638 586112385877549588120495891164959010450591109505921205059312451594185515951845159618452 5976525981265259962960039296011262960299496031304960412849605130536069953607425360842 54609185546101245461139176121341761313317614403861513638616134386171024961813949619136 496209912621133126221391262340176241421762514017626445627144562814256291044963014649631 144496321021263314012634146126352855636102556371505563810456639153566401505664110457642 2757643155576442858645149586461555864799596481585964915659650102566511605665215856653 1025765428576551625765632586571565865816258659164516601875166118651662186546634254664 1665466542606669960667166606683266691716670168667117161672326167356167455267518752676 1645267727556781045567917455680756268117662682174626837668417866851766686276368717363 6881786368937369993700223701106470247647036264704476570543657066565707433708373709713 710811720201721621722851723621724651725901726651727711728476876211468763111687641069 765118697661146976777167681221676911816770772677110626772111267739177741271777512517776 377077712970778127707799649780131497811294978275717831257178413171785371778613517787132 177884372789137727901357279110149792138497931374979496737951327379613873797431779814317 79914117800477280114572802143728031061680414716805145168061067180710171808141718093055 81010155811151558121066281315262814151628151067481625748171547481830248191482482015424 8219659822159598231575982410162825161628261596282710157828305782916357830357583115775 83216375833755983416759835165598369629837169298381672983935684017068411696842776843165 7684417076845257784610677847175778487769849177698501756985142385217923853177238542578 8551727885617978857233870338711138722798732679874347987526468762446877364687824387923 3880383881341891481892831893481894341895361896511897361898381899261793663179376017 93863809392680940280941281942180819436481944642394518023946181239476082948668294918182 9501818395172839526083953384954708495568849563995723995873995955499607449961734996241 85963688596474859652317966781796776179682472969807297078729715649972824997380499745558 975765897682589772417978861797984179802672981887298286729835949984914998588499865673 987847398891739891955990565599195559925962993976299495629955957996165799798579981975 999937510009875100155591002103591003100591004566210051056210061036210075657100819571009 1075710102186101110086101210786101341871014110871015108871016413210175532101811332101921 6102011561021113610221861023108861024115861025165510265955102711955102811913102959131030

7213103172881032182881033121881034121891035182891036183891037117901038123901039183901040 1839110410911042117911043 </p>
```
    </triangles>
</mesh>
</geometry>
```
<geometry id="Cube_005-mesh" name="Cube.005">
<mesh>
<source id="Cube_005-mesh-positions">
<float_array id="Cube_005-mesh-positions-array" count="165">-0.1858198 0.4433824-0.1012217 0.1562936 0.1032627 \(-0.10022180 .1562936-0.09673732-0.1002218-0.18581980 .1013824-0.1012217-0.18581980 .44338240 .09877824\) \(0.15629360 .10326270 .099778230 .1562936-0.096737320 .09977823-0.18720630 .1032627-0.1002218-0.1858198\) \(0.4433825-0.1012217-0.1872063-0.09673732-0.1002218-0.18720630 .10326270 .09977823-0.18581980 .4433825\) \(0.09877824-0.1872063-0.096737320 .09977823-0.17711970 .1013824-0.1012217-0.18720630 .10421310 .09977811-\) \(0.1872063-0.095786860 .09977811-0.18720630 .1042131-0.1002219-0.1872063-0.09578686-0.1002219-0.1872063\) \(0.1012626-0.1002216-0.17711970 .4433825-0.1012217-0.17711970 .4433824-0.1012217-0.18720630 .10126260 .09977835\) \(-0.17711970 .44338250 .09877824-0.17850630 .1012626-0.1002216-0.17711970 .44338240 .09877824-0.17850630 .1012626\) \(0.09977835-0.18720630 .1012626-2.21659 \mathrm{e}-4-0.17850630 .1012626-2.21659 \mathrm{e}-4-0.1872063-0.09273737-0.1002217-\) \(0.1872063-0.092737370 .09977835-0.1785063-0.09273737-0.1002217-0.1785063-0.092737370 .09977835-0.1872063-\) \(0.09273737-2.21719 \mathrm{e}-4-0.1785063-0.09273737-2.21719 \mathrm{e}-4-0.18581980 .4433825-0.001221716-0.17711970 .4433825-\) \(0.001221716-0.18581980 .4433824-0.001221716-0.17711970 .4433824-0.001221716-0.18581980 .44338250 .09877818-\) \(0.18581980 .4433825-0.001221656-0.1858198\) 0.4433825-0.001221776-0.1858198 0.4433825-0.1012217-0.1771197 \(0.10326270 .09877824-0.17711970 .1032627-0.001221716-0.18581980 .10326270 .09877824-0.17711970 .1013824-\) \(0.1002218-0.1858198\) 0.1013824-0.1002218-0.1771197 0.1032627-0.1002218-0.1855127 0.1032627 0.09689795-0.1855127 0.1032627 6.5852e-4 -0.1858198 0.1032627-0.001221716-0.1855127 \(0.1032627-0.003102064-0.18565640 .1023824-\) \(0.1002218-0.18551270 .1032627-0.09934151-0.18565640 .1032627-0.1002218</ f l o a t _a r r a y>\)
```

<technique_common>
<accessor source="\#Cube_005-mesh-positions-array" count="55" stride="3">
<param name="X" type="float"/>
<param name="Y" type="float"/>
<param name="Z" type="float"/>

```
 </accessor>
</technique_common>
</source>
<source id="Cube_005-mesh-normals">
<float_array id="Cube_005-mesh-normals-array" count="42">1 00000-1001-0.99774920.06705826 0-1 00 \(0.99774910 .0670582600-10-0.9977491-0.067058260-0.9977491-0.06705826001-3.34528 \mathrm{e}-6010011.35564 \mathrm{e}-6\) 8.59208e-6 0-1-1.46927e-6 0-1</float_array>
<technique_common>
<accessor source="\#Cube_005-mesh-normals-array" count="14" stride="3">
\[
\begin{aligned}
& \text { <param name="X" type="float"/> } \\
& \text { <param name="Y" type="float"/> } \\
& \text { <param name="Z" type="float"/> }
\end{aligned}
\]
</accessor>
</technique_common>
</source>
<source id="Cube_005-mesh-map-0">
<float_array id="Cube_005-mesh-map-0-array" count="342">0.5 0.750 .6250 .750 .50 .750 .1250 .750 .3750 .750 .125 0.750 .6250 .750 .8750 .750 .6250 .750 .3750 .750 .50 .750 .3750 .750 .62500 .500000100 .500 .62500 .62500 .62500 .500 .5 00.500 .500 .37500 .37500 .500 .500 .500 .37500 .37500 .37500 .37510 .376250 .750 .3762510 .50 .250 .6250 .250 .625 0.250 .3750 .250 .50 .250 .50 .250 .8676590 .50 .87399080 .50 .8750 .50 .3750 .750 .37510 .3750 .750 .3750 .50 .1250 .750 .125 0.750 .6250 .50 .3750 .750 .3750 .50 .3750 .250 .3750 .25100920 .3750 .2573411001000 .50 .750 .510 .50 .750 .3750 .75 0.37510 .3750 .750 .50 .250 .50 .50 .50 .250 .3750 .250 .3750 .50 .3750 .250 .50 .750 .6250 .750 .6250 .750 .1250 .750 .3750 .75 0.3750 .750 .6250 .750 .8750 .750 .8750 .750 .3750 .750 .50 .750 .50 .750 .62500 .624999900 .500000100 .500 .500 .3750 0.37510 .3750 .750 .376250 .750 .50 .250 .50000010 .250 .6250 .250 .3750 .250 .37500010 .250 .50 .250 .87376740 .5 0.87387190 .50 .8750 .50 .6250 .750 .6250 .750 .8676590 .50 .6250 .750 .8676590 .50 .8676590 .50 .8676590 .50 .8676590 .5 0.6250 .750 .87376740 .50 .8750 .50 .87376740 .50 .8750 .50 .8750 .50 .87399080 .50 .87399080 .50 .87376740 .50 .8750 .5 0.87376740 .50 .87376740 .50 .8750 .50 .87376740 .50 .87399080 .50 .8750 .50 .87399080 .50 .87376740 .50 .8750 .50 .625 0.750 .8676590 .50 .8750 .50 .3750 .750 .37510 .37510 .3750 .50 .3750 .50 .1250 .750 .6250 .50 .6250 .750 .3750 .750 .375 0.2573410 .3750 .2573410 .3750 .50 .3750 .50 .3750 .50 .3750 .2573410 .3750 .50 .3750 .250 .3750 .2573410 .3750 .250 .375 0.2511280 .3750 .2511280 .3750 .250 .3750 .2511280 .3750 .25100920 .3750 .250 .3750 .250 .3750 .25100921011010 .5 \(0.750 .510 .510 .3750 .750 .37510 .37510 .50 .250 .50 .50 .50 .50 .3750 .250 .3750 .50 .3750 .5</ f l o a t\) _array>
<technique_common>
<accessor source="\#Cube_005-mesh-map-0-array" count="171" stride="2"> <param name="S" type="float"/>
<param name="T" type="float"/>
</accessor>
</technique_common>
</source>
<vertices id="Cube_005-mesh-vertices">
<input semantic="POSITION" source="\#Cube_005-mesh-positions"/>
</vertices>
<triangles material="Material-material" count="43">
<input semantic="VERTEX" source="\#Cube_005-mesh-vertices" offset="0"/>
<input semantic="NORMAL" source="\#Cube_005-mesh-normals" offset=" 1 "/>
<input semantic="TEXCOORD" source="\#Cube_005-mesh-map-0" offset="2" set="0"/>
<p>35002401370281320140151909370102001136304563146632429394494010941524212 243624426451264696471048604920509151461524515315054160551405625657266582765927 660186612366229106333106432106532106630106728106835069220702407181721917320174190 783507937080368713688456895310965410977109851099110100431010111010247101034310104 431010542101065101075310108710109511011071011110101125010113501011451101157101164810 117491011810101194910120501012110101224410123481012410101255111264211127101112852129 102130122131261326613312613410135501366013745113847113911140111412114245114321144 9114545114671147541148521149712150521215146121529131537131544613155150156170157160 \(158256159216160266161276162266163186164291016531101663310167321016833101693010170</ p>\)
</triangles>
<triangles material="Material_002-material" count="14">
<input semantic="VERTEX" source="\#Cube_005-mesh-vertices" offset="0"/>
<input semantic="NORMAL" source="\#Cube_005-mesh-normals" offset="1"/>
<input semantic="TEXCOORD" source="\#Cube_005-mesh-map-0" offset="2" set="0"/>
<p>22264272428431239313363144415114163841739418344193642036521415220523364 2434425404264142784280429347333873411735883640837348382227511276427744813848239 483364844048541486344903949138492849341494404 95</p>
</triangles>
</mesh>
</geometry>
</library_geometries>
<library_visual_scenes>
<visual_scene id="Scene" name="Scene">
<node id="Top_Solar_Panel" name="Top Solar Panel" type="NODE">
<matrix sid="transform">-4.37114e-8 4.37114e-8 \(10.1211 .91069 \mathrm{e}-154.37114 \mathrm{e}-80.0801\)-4.37114e-8 2.75000
1</matrix>
<instance_geometry url="\#Cube_013-mesh" name="Top Solar Panel">
<bind_material>
<technique_common>
<instance_material symbol="Material-material" target="\#Material-material">
<bind_vertex_input semantic="UVMap" input_semantic="TEXCOORD" input_set="0"/>
```

            </instance_material>
            <instance_material symbol="Material_001-material" target="#Material_001-material">
            <bind_vertex_input semantic="UVMap" input_semantic="TEXCOORD" input_set="0"/>
            </instance_material>
            <instance_material symbol="Material_002-material" target="#Material_002-material">
            <bind_vertex_input semantic="UVMap" input_semantic="TEXCOORD" input_set="0"/>
            </instance_material>
            </technique_common>
            </bind_material>
    </instance_geometry>
        <extra type="attach_point">
            <technique profile="AGI">
            <solar_panel group="-y Panels" efficiency="30" />
            </technique>
            </extra>
    </node>
    <node id="Bottom_Solar_Panel" name="Bottom Solar Panel" type="NODE">
    <matrix sid="transform">-4.37114e-8 4.37114e-8 1 0.121 1 1.91069e-15 4.37114e-8 0.079 0 1 -4.37114e-8 1.525 000
    1</matrix>
<instance_geometry url="\#Cube_012-mesh" name="Bottom Solar Panel">
<bind_material>
<technique_common>
<instance_material symbol="Material-material" target="\#Material-material">
<bind_vertex_input semantic="UVMap" input_semantic="TEXCOORD" input_set="0"/>
</instance_material>
<instance_material symbol="Material_001-material" target="\#Material_001-material">
<bind_vertex_input semantic="UVMap" input_semantic="TEXCOORD" input_set="0"/>

```
```

            </instance_material>
            <instance_material symbol="Material_002-material" target="#Material_002-material">
            <bind_vertex_input semantic="UVMap" input_semantic="TEXCOORD" input_set="0"/>
            </instance_material>
            </technique_common>
            </bind_material>
    </instance_geometry>
        <extra type="attach_point">
            <technique profile="AGI">
            <solar_panel group="+y Panels" efficiency="30" />
            </technique>
            </extra>
                    </node>
                    <node id="Cubesat_Body" name="Cubesat Body" type="NODE">
                            <matrix sid="transform">-4.37114e-8 4.37114e-8 1 0.1204499 1 1.91069e-15 4.37114e-8 0.2635089 0 1 -4.37114e-8
    2.151649000 1</matrix>
<instance_geometry url="\#Cube_005-mesh" name="Cubesat Body">
<bind_material>
<technique_common>
<instance_material symbol="Material-material" target="\#Material-material">
<bind_vertex_input semantic="UVMap" input_semantic="TEXCOORD" input_set="0"/>
</instance_material>
<instance_material symbol="Material_001-material" target="\#Material_001-material">
<bind_vertex_input semantic="UVMap" input_semantic="TEXCOORD" input_set="0"/>
</instance_material>
<instance_material symbol="Material_002-material" target="\#Material_002-material">
<bind_vertex_input semantic="UVMap" input_semantic="TEXCOORD" input_set="0"/>

```
```

            </instance_material>
            </technique_common>
        </bind_material>
        </instance_geometry>
        </node>
    </visual_scene>
    </library_visual_scenes>
<scene>
<instance_visual_scene url="\#Scene"/>
</scene>
</COLLADA>

```
```

