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Abstract

Complex Event Processing (CEP) is the technical choice for high performance analyt-

ics in time-critical decision-making applications. Although current CEP systems support

sequence pattern detection on continuous event streams, they do not support the computa-

tion of aggregated values over the matched sequences of a query pattern. Instead, aggre-

gation is typically applied as a post processing step after CEP pattern detection, leading

to an extremely inefficient solution for sequence aggregation. Meanwhile, the state-of-

art aggregation techniques over traditional stream data are not directly applicable in the

context of the sequence-semantics of CEP. In this paper, we propose an approach, called

A-Seq, that successfully pushes the aggregation computation into the sequence pattern

detection process. A-Seq succeeds to compute aggregation online by dynamically record-

ing compact partial sequence aggregation without ever constructing the to-be-aggregated

matched sequences. Techniques are devised to tackle all the key CEP-specific challenges

for aggregation, including sliding window semantics, event purging, as well as sequence

negation. For scalability, we further introduce the Chop-Connect methodology, that en-

ables sequence aggregation sharing among queries with arbitrary substring relationships.

Lastly, our cost-driven optimizer selects a shared execution plan for effectively process-

ing a workload of CEP aggregation queries. Our experimental study using real data sets

demonstrates over four orders of magnitude efficiency improvement for a wide range of

tested scenarios of our proposed A-Seq approach compared to the state-of-art solutions,

thus achieving high-performance CEP aggregation analytics.
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Chapter 1

Introduction

Complex Event Processing (CEP) systems detect complex sequence patterns over high

speed event streams. As more applications from stock market analysis to seismic motion

monitoring require time-critical decision-making support, enhancing the performance of

CEP systems has drawn increased attention recently [15, 17, 25].

1.1 Motivation

Current research in CEP focuses on how to efficiently detect time-valued correlated se-

quence patterns [4, 17, 25]. Yet the processing of CEP aggregation, which is critical for

high-performance analytics, has largely been overlooked. CEP aggregation queries focus

on asking questions from an overall statistic view point, such as how frequently a cer-

tain sequence pattern happens over some period of time or what is the maximum value

of event attributes in a pattern among all matched sequences. In fact, CEP aggregation

queries are prevalent in every aspect of our digital daily life and business world alike. For

example, in fraud detection, a susceptible credit card fraud might be defined as a partic-

ular online purchase pattern repeatedly arising with respect to the same credit card with
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the total value over $10,000 in the last 60 minutes. In seismic monitoring, geologists de-

fine abnormal seismic motion patterns. Once the occurrence of those patterns surpassed

a given threshold frequency, an alert must be issued.

As the above examples demonstrate, a timely response is of paramount importance

when processing CEP aggregation queries. For applications, even a one-second delay

may lead to a loss of huge amounts of money or even perhaps human lives. Thus, high-

performance support for processing CEP aggregation queries is the central challenge tack-

led in this paper.

1.1.1 Running Example

Using a running example in E-Commerce, we now briefly introduce the state-of-art tech-

nique in CEP aggregation processing. In online shopping, customer shopping habits are

crucial for optimally timing targeted promotions, product recommendations, and cus-

tomized display layout on webpages. For example, consider the web click sequence pat-

tern (ViewKindle, BuyKindle, ViewCase, BuyCase)(in short VK, BK, VC, and BC) that cor-

responds to a purchase pattern revealing that a customer purchases a Kindle case shortly

after they purchased a Kindle. If this pattern is extremely frequent, then it implies that

customers prefer to buy a case to protect their E-Reader. Given this insight, merchants

would want to adjust their market strategies such as displaying Kindles and cases on the

same webpage when customers search for either product, recommending cases when cus-

tomers view a Kindle webpage, as well as bundling a Kindle and a matching case together

as a package with a promotion price.

For large E-Commerce companies, such as Amazon and eBay, a huge amount of web-

click data is generated continuously every single second. Suppose the merchant asks for

the total occurrence of the web-click pattern (VK, BK,VC, BC), where the Kindle model

is ”touch” within the last 10 minutes. In current CEP systems [4, 17, 25], this query will
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be processed using a two-step aggregation process, namely, first the Sequence Detection

and Construction (SDC) and then the Aggregation Computation Process (AGG). The

SDC firstly finds all event instances that match the CEP pattern such as (VK, BK,VC,

BC) sequencing along with predicates such as ”touch” model and constructs sequence

results (see Chapter 2 for details). As the last AGG step, the aggregation function, such

as COUNT, is applied to count the number of all matched sequences constructed in the

SDC step.

1.2 State-of-art Limitations

This two-step aggregation process suffers from serious performance bottlenecks, includ-

ing:

Expensive CPU Costs. CPU resources are spent on compute-intensive tasks, namely,

first to maintain the ordering occurrence information among continuous incoming events

when detecting each sequence match. Second, to construct each individual matched event

sequence. However, these result sequences will be thrown away after they have been

constructed, as what the query asks for is only the aggregated result: a simple number.

Huge Memory Storage. To detect and construct each full sequence match, memory

resources must be dedicated to store all incoming event instances. In addition, the tempo-

ral sequence results must also be stored for a later negation check (if any) and subsequent

aggregation computation (see step 2 above).

No research work to date has focused on this critical aggregation performance prob-

lem in the CEP context. In most current CEP systems [4, 17, 25], the above two-step

aggregation process would thus be applied to process such queries. This points to the

opportunity to greatly improve performance if aggregation could be obtained instanta-

neously as part of the sequence detection process itself, namely, without having to first
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construct all matched sequences.

However, existing aggregation techniques in the literature do not tackle this challenge.

On the one hand, most aggregation techniques in streaming environments are designed for

independent data records [11, 13], i.e., they tend to have set-based semantics rather than

sequence or pattern semantics. That is, they collect a set of independent data records irre-

spective of their time-order and then aggregate them. The time-order constraint between

data items that are to be aggregated as in our context now clearly complicates the prob-

lem as we cannot accumulate the aggregation result with the arrival of event instances.

On the other hand, techniques proposed for aggregation in traditional sequence databases

assume data is static and given apriori [16, 19, 21]. A lot of techniques such as indexing

is exploited to efficiently search for the data sequences that match the required pattern,

however, for aggregation, they still apply the two-step post aggregation approach.

In addition, in the streaming context, the problems caused by sliding window seman-

tics are non-negligible, as a high-performance re-computation and purging mechanism

must be supported to correctly update the aggregation results due to data expiration. Other

challenges specific to CEP include negation of a pattern are not tackled in static sequence

databases. Therefore, a customized high-performance approach for processing sequence

pattern-based aggregation over stream must be developed to fill this void.

1.3 Challenges & Proposed Solution

First, a light-weight technique must be designed to overcome the performance bottle-

neck of state-of-art methods both in terms of CPU resource consumption and memory

utilization. To achieve this goal, we devise the A-Seq methodology that correctly pushes

aggregation computation into the sequence detection process itself by dynamically calcu-

lating partial aggregation result without first having to detect each full sequence match.
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As additional benefit, the actual sequence construction process is completely eliminated.

Our preemptive Dynamic Prefix Counting (DPC) algorithm supports the computation of

partial aggregation instantly upon the arrival of each event instance, while our compact

data structure Prefix Counter maintains the relevant ordering semantics of event instances

for a sequence match identification, but without storing individual event instances.

Second, achieving a light-weight aggregation solution is complicated by the fact that

the aggregation result needs to be continuously updated with the expiration of event in-

stances from the current window. The design of such an expiration mechanism is chal-

lenging, as one event expiration might cause an arbitrary number of sequence matches

to become invalid. For this, we propose an effective expiration mechanism that is not

only sequence-aware to detect invalid sequence matches, but also light-weight maintain-

ing only aggregated results, instead of all raw event instances or worst yet all sequence

matches. Furthermore, our algorithm also supports pattern queries with negation, namely,

the occurrence of an event instance matching a negated expression within a sequence pat-

tern may lead some detected sequence matches to be invalid. In addition, this mechanism

is agile to efficiently function over high-speed streams with high expiration frequency.

Third, applications often process many similar queries over the same popular data

stream [5, 11, 15]. The sharing of computations among queries in a workload has been

shown to be vital for scalability in the literature [16, 28], yet these work focus either on

non-sequence based queries [11, 24] or on the computation sharing of sequence construc-

tion process [15]. Given that A-Seq approach avoids the construction of sequences, we

now set out to obtain the aggregation result of a full query pattern by stitching together

aggregations of sub-patterns. However, this leads to the paradox that keeping the time

implicit order semantics among sub-patterns to ensure correctness would prevent us from

exploiting the key merit of our given A-Seq approach. We overcome this challenge and

design a computation method that leverage the aggregate meta information maintained by
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our A-Seq technology to successfully stitch aggregation results of different sub-patterns

together This method makes the selectively sharing aggregation computations over arbi-

trarily sub-patterns within multi queries possible.

Fourth, we show that the selection of a good sharing plan for a given query workload

is an NP-Complete problem (Section 4.3.3). We devise a cost-based optimizer that is

practical in spite of the complexity of this search space. The optimizer applies a hill-

climbing search strategy, which is shown to be efficient to produce a good sharing plan

close to the optimal solution in terms of its quality by our experimental studies in Section

5.3.

1.4 Contributions

In our A-Seq approach, we successfully tackle all challenges outlined above. Contribu-

tions of our work on solving this real time CEP query aggregation problem include:

• The A-Seq Methodology. We design a dynamic computation algorithm and a com-

pact data structure for processing the aggregation of sequence pattern queries, A-

Seq succeeds to conduct sequence detection and aggregates computation simultane-

ously in an extreme efficient manner, which overcomes the performance shortcom-

ing of the state-of-art two-step aggregation method, greatly enhancing both CPU

costs and memory utilization by several orders of magnitude (See Section 5.2).

• CEP Featured Problems Solution. We propose a set of techniques to cope with

the core CEP specific problems. For instance, an agile mechanism is proposed to

update the aggregation result timely with the event expiration that caused by sliding

window constraint. For negated patterns, an recounting principle is plugged into the

sequence detection process which enables the on-the-fly negation check.
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• Multi-query Sharing Strategy. To support effective aggregation computation shar-

ing of arbitrary sub-patterns among a given set of queries. Our multi A-Seq strategy

chops queries into sub-pattern and reuses the aggregation results of sub-patterns

among multi queries that share them. Effective data structures and sophisticated

computation algorithm are devised to support the arbitrary sub-pattern sharing.

• Cost-based Multi A-Seq Optimizer. We design a cost-driven algorithm (A-Seq

optimizer) to constructs the a good sharing plan for a given query workload. A-

Seq optimizer employs several well-known algorithm to simplify the sharing plan

search problem from NP-hard complexity to guaranteed polynomial running time.

Complete complexity analysis of both exhaustive and optimized search algorithm

is given. The practicability and accuracy of A-Seq optimizer is demonstrated in our

experimental study (Section 5.3).

• Experimental Evaluation. We conducted extensive experiments over real world

data streams validating the effectiveness of our proposed methods. The experimen-

tal study compares the performances with state-of-art approaches, demonstrating

over four orders of magnitude efficiency improvement for a wide range of tested

scenarios of our proposed A-Seq approach.

The rest of the paper is organized as follows. Chpater 2 gives a brief introduction

of the preliminary knowledge about CEP. The A-Seq approach for single query is op-

timization introduced in Chapter 3, the multi-query solution is presented in Chapter 4.

Experimental results are analyzed in Chapter 5. Chapter 6 covers related work, while

Chapter 7 concludes the whole paper.
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Chapter 2

CEP Basics

2.1 Basic Concepts

An event instance is an occurrence of interest denoted by lower-case letters (e.g.,‘e’). We

use ei.ts to denote the time-stamp when ei arrives to system. For compactness, the time

of occurrence of an event instance is denoted by its subscript i.

An event type E of an instance ei describes the essential features associated with the

event instance ei, and is denoted by ei.type. For the example in Section 1.1.1, clicks on a

page to view a Kindle are Clicks on a page to view a Kindle, denoted as vki, are instances

of event type V iewKindle, that is, vki.type = V iewKindle.

Sequence Pattern Query. We focus on sequential pattern queries denoted by SEQ

operator below, a core feature of most event processing systems [4, 25].

Definition 1 A SEQ operator specifies an order on the time-stamps in which the in-

stances of specific event types must occur to match the sequence pattern.
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SEQ(E1, E2, ..., En) = {< e1, e2, ..., en > |e1.ts < e2.ts <

... < en.ts ∧ (e1.type = E1) ∧ (e2.type

= E2) ∧ ... ∧ (en.type = En)}.

(2.1)

The symbol ”!” before an event type Ei indicates that the instance of type Ei is not

allowed to appear within the specified position in the stream [25]. We call such Ei a

negative event type. Consequently, when an event type Ei is used in a SEQ construct

without “!”, we call it a positive event type.

SEQ(E1, !Ei, En) = {< ej, ek > |(ej.ts ≤ ej.te < ek.ts ≤ ek.te)

∧ (ej.type = E1) ∧ (ek.type = En)

∧ (¬∃ef where(ef .type = Ei) ∧ (ej.te < ef .ts

≤ ef .te < ek.ts))}.

(2.2)

Beyond Equation 2.2, negative event types can also exist in the beginning or the end in

a SEQ operator. For details see [25]. Other pattern operators such as conjunction (AND)

and disjunction (OR) can be defined in a similar manner [17]. But henceforth, we focus

on ordered sequence patterns.

2.2 Language Specification

We adopt a CEP query language commonly used in the literature [14, 15, 25], which has

the following structure:

PATTERN <event pattern>

[WHERE <qualification>]
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[AGG <aggregation function>]

[WITHIN <window>]

The PATTERN clause composed of the SEQ operator specifies sequence and nega-

tion constraints has been explained above. The WHERE clause contains predicates on

attributes of the events, such as the E-Reader’s model, etc. The AGG clause specifies

an aggregation function such as COUNT the number of matched sequence result. The

WITHIN clause ensures that the time difference between the first to the last event in-

stances matched by a pattern query falls within the window constraint.

The query example in Section 1.1.1 can thus be represented as:

Pattern SEQ <VK, BK,VC, BC>

Where VK.model=BK.model=

VC.model=BC.model="touch"

Agg COUNT

Within 10 mins

2.3 Stack-Based Pattern Evaluation

First, each pattern query qi is compiled into a query plan. A window sequence opera-

tor, denoted by WinSeq(E1 ,..., En, window) extracts all matches of instances within the

sliding window as specified in query qi. Queries with negative event types, denoted by

WinSeq(E1 ,. . . , ! Ei ,..., En, window), verify that no event instances of negative compo-

nents such as Ei exist in the indicated location among the positive instance matches.

An indexing data structure named SeqState associates a stack with each event type E

in the query. Each new event instance of e.type = E is appended to the end of its corre-

sponding stack E. Event instances are augmented with pointers ptri to adjacent events to
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facilitate locating related events in other stacks during result construction. When an event

instance en of the last event type En of a query qi arrives, the compute function of qi is

initiated1. The result construction proceeds in a depth-first search along instance pointers

ptri rooted at that last arrived instance en. Each path composed of edges ”reachable” from

this root en to a leaf corresponds to one matched event sequence returned for qi.

Example 1 Figure 2.1 depicts the event instance stacks for the pattern Q = SEQ(V K,BK,

V C,BC). In each stack, its instances are sorted from top to bottom by their timestamps.

When bc2 of type BuyCase arrives, the most recent instance vc2 is the last event event

in V iewCase stack. The pointer of bc2 thus points to vc2, as shown in the parenthesis

preceding bc2. As BuyCase is the last event type in Q, bc2 triggers result construction.

Two results <vk1, bk1, vc2, bc2> and <vk1, bk2, vc2, bc2> are constructed involving bc2.

Stream 
vk1 bk1 bk2 vc1 bc1 vk2 vc2 bc2 

[] vk1 

[] vk2 

[vk1] bk1 

[vk1] bk2 

[bk2] vc1 

[bk2] vc2 

[vc1] bc1 

[vc2] bc2 

ViewKindle BuyKindle ViewCase BuyCase 

Figure 2.1: Stack Based Pattern Evaluation

Example 1 illustrates the Sequence Detection and Construction (SDC) step dis-

cussed in Section 1.1.1. For aggregation computation, the aggregation function will be

applied to the sequence results once they have all been constructed. The performance

bottleneck of this tow-step aggregation process has been discussed in Section 1.2.

1if the last event type En in query qi is a negative event type, postponed sequence evaluation is applied.
We omit the details here.
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Chapter 3

A-Seq Single Query Strategy

We now introduce our A-Seq methodology that computes aggregation on-the-fly. Here

we first focuses on COUNT computation, which is one of the most popular aggregation

operation in the context of sequence analysis (see Sections 1.1 and 1.1.1). In fact, most

research related to sequence aggregation focuses on the COUNT operation from data

mining, frequent sequence mining, to statistics [16, 20, 23]. Henceforth, we thus explain

our strategies using the COUNT aggregation function in the rest of the paper.

3.1 Basic Approach: Dynamic Prefix Counting

Next, we introduce the key idea of pushing the aggregation computation into the sequence

detection process, named the Dynamic Prefix Counting (DPC) method. To better under-

stand how DPC works, let’s start by examining the sequence match formation process

using the concrete example of pattern (A,B,C) as in Figure 3.1. At time ti, one match

(a1, b1, c1) has been found, while a2 is waiting for further event instances that can partic-

ipate in the formation of new matches.

When b2 arrives at time ti+1, together with a1 and a2, we form two new sub-sequences

12



Event Stream: 

Pattern: (A, B, C) 

Total Count (A, B, C):  1+0=1 1+ 0+0=1 1 1 1 + +    + 1        = 4 

a1 b1 c1 a2     b2 
    c2   

a1 

ti ti+1 ti+2 

b1 

c1 

b2 

c2 

b1 b1 

c1 c1 

b2 b2 

c2 c2 

a1 a2 a2 a2 a1 

b2 

Figure 3.1: Sequence Form Process

(a1, b2) and (a2, b2). When c2, the instance of last event type to form sequence (A,B,C),

arrives at time ti+2, we append it to subsequences (a1, b1), (a1, b2) and (a2, b2) to form

3 new (A,B,C) sequences. Thus, the total count of sequences constructed that match

pattern (A,B,C) at ti+2 is 4, including the 3 newly formed sequences and one formed

earlier. From this process, we observe that when each ci arrives, we can obtain the count

of pattern (A,B,C) by adding counts of two sub-patterns, namely, 1) the count of sub-

pattern (A,B), to which ci will be able to append to form new (A,B,C) matches, and

2) the count of the previously detected pattern (A,B,C). Generalizing this observation,

when event En arrives at ti, the count of a sequence pattern (E1, E2, ..., En) can be com-

puted from the count of its Longest Prefix Pattern (LPP ) (E1, E2, ..., En−1) at ti−1, in

the following manner:

Count(E1, E2, ..., En)ti =Count(E1, E2, ..., En−1)ti−1
+

Count(E1, E2, ..., En)ti−1

(3.1)

Thus, for pattern (A,B,C), we recursively compute the count from the singleton

prefix (A), until we get count of the full pattern (A,B,C). Given this recursive structure,
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our problem can be solved through dynamic programming. That is, to get the count

of the whole pattern (the final problem), we count all its prefix patterns (sub-problems)

incrementally and stored those counts. Moreover, in the streaming context, the counts of

these respective prefix patterns will be updated correspondingly upon the arrival of new

events to continuously reflect real-time changes.

Example 2 Figure 3.2 depicts the prefix count update process based on the computation

rule given above when a new instance of a particular type arrives. The number at the

lower right corner of each circle represents the count of this prefix pattern at the respec-

tive moment in time indicated at top of each column. When event instance b arrives at time

ti+1, new matches of the prefix pattern that end in B will be triggered, namely, (A,B) For

this, we simply add the existing counts of (A) = 3 and (A,B) = 2 to get the new count

of (A,B) = 5. The counts of all other prefix patterns remain unchanged. Similarly, when

the instance d arrives, the same update process is applied to compute the new count of its

corresponding pattern (A,B,C,D).

IIn general, the rules for a pattern (E1, E2, ..., Ei, ..., En) when an event instance ei

arrives at time tj , can be formulated as below:

Update Rules:

ei.type ∈ E1 :

i. C(E1)tj = C(E1)tj−1
+ 1,

ei.type ∈ Ei, (1 < i <= n) :

ii. C(E1, ..., Ei)tj = C(E1, ..., Ei−1)tj−1 + C(E1, ..., Ei)tj−1
,

We classify event types of a sequence pattern (E1, E2, ..., Ei, ..., En) into three cate-

gories based on the different operations that event instances of this type must trigger:

• Start Event Type (START). The first event type E1 in a sequence pattern (E1, E2, ..., En).

14



A 

AB 

ABC 

ABCD 

3 

2 

3 

1 

A 

AB 

ABC 

ABCD 

3 

5 

3 

1 

A 

AB 

ABC 

ABCD 

3 

2 

3 

        
b d 

2(AB) 

1(ABCD) 

4 

Figure 3.2: Prefix Pattern Count Update Process

When a START instance arrives, we increase the count of (E1) by 1 since there is

no prefix pattern prior to it.

• Update Event Type (UPD). All other event types except START in a sequence

pattern (E1,E2, ...,En). When a UPD instance arrives, the count of the prefix

pattern it triggers (ending with this UPD type) will be updated. For example, the

count of (A,B,C) should be updated when a C instance arrives.

• Trigger Event Type (TRIG). The last event type En in a sequence pattern (E1, E2, ...,En).

It not only performs the UPD update operation, but also represents the completion

of the full pattern. Thus, the just generated aggregation result will be returned to

the user.

An example of this DPC method is illustrated in Figure 3.3.

Example 3 In Figure 3.3, when a1 arrives, as it is an START instance, the count of (A) is

updated to 1. When b1 arrives, the count of (A,B) is calculated as 1(A) + 0(A,B) = 1.
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    Stream 

Prefixes 

A 1 1 1 2 2 2 2 

A,B 0 1 1 1 1 3 3 

A,B,C 0 0 1 1 2 2 2 

A,B,C,D 0 0 0 0 0 0 2 

Output 

2 without 
constructing 

Figure 3.3: DPC Computation Process for Sequence Pattern (A,B,C,D)

Similarly, count of (A,B,C) is updated to 1 when c1 arrives. Continuing whenever a new

event instance arrives, the count of the prefix pattern that ending with this instance type

will be updated. Finally, when d1 arrives, we output result 2 to the user.

As we can see from Figure 3.3, A-Seq is a lightweight approach. From the CPU view,

only one ”ADD” calculation is required for each new event instance. From the memory

view, we do not store any event instances. Rather, instances are immediately discarded

upon their arrival and instantaneous processing. Since the count update only depends on

the counts at the previous time point, it is sufficient to only store one single time slice

copy of the data. Namely, only the counts for all the prefix patterns in the most recent

column, instead of the whole update table depicted in Figure 3.3 are kept. We call this

one column data structure the Prefix Counter (PreCntr).

The pseudocode for our basic A-Seq algorithm for a single query is given in Figure

3.4.
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Basic A-Seq (Input: pattern query qi, stream S) 
 
 ei : an event instance 
 ei.cat : event category ei falls in (START, UPD, TRIG) 
 Lq : the number of event types in qi  
 
1.  initialize a PreCntr of size Lq 
2.  for each arriving event ei in S 
3.     if ei.cat = START 

4.        apply update rule i 
5.     if ei.cat = UPD 

6.        apply update rule ii 
7.     if ei.cat = TRIG 
8.         return the full sequence count 

Figure 3.4: Basic A-Seq Algorithm

3.2 Sliding Window Support for A-Seq

Sliding Window Problem. In the sliding window scenario [3], a continuous CEP aggre-

gation query Q(S,win, slide, Agg) returns the result of sequence aggregation Agg com-

puted over the content in the query window Wi on the data stream S. Here we assume the

window semantics in CQL [3], namely, the query window has a fixed window size Q.win

and a Q.slide that slides from Wi to Wi+1 whenever a new event instance arrives.1 When

the window slides, the events which have fallen out of the window should no longer par-

ticipate in any future CEP sequence construction. Thus, they can be purged. However, for

1With the tuple-driven sliding window type becoming among the most commonly used window type for
CEP pattern detection query [4, 15, 25], we similarly use these semantics here. Otherwise, our technique
could be easily extended to support other sliding window types.
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CEP sequence aggregation, purging only the expired events is not sufficient. With events

get expired, any sequence match that contain expired events would also become invalid.

Thus, the partial aggregation results maintained by our A-Seq method would at that point

account for many potentially invalid sequence matches. Thus, we must design a solution

to correct the erroneous counts when events expire.

Event Marking Strategy. The Window-ID (WID) approach [13] introduced for pro-

cessing non-CEP aggregation CQL queries, provides insights into how to tackle this event

purging and result updating challenge. Namely, for our tuple-driven sliding window type,

it marks each tuple with its life span, which reflects how long this instance will stay ac-

tive. Only currently active tuples will be considered in the aggregation when ever the

window slides. However, this technique, being designed for set-based aggregation, would

now require us to keep all instances in the stacks, and then force us to repeat the fully

computation over and over for each new event. This is incompatible with the core prin-

ciple of our A-Seq method of keeping compact counts instead of recounting aggregation

from scratch for each window. We now consider how to adapt the key principles of this

strategy to our CEP time-order semantics.

First, we compute and mark the life span, namely, the timestamp when each partic-

ular event instance expire. Second, we record the count for each event instance, which

indicates how many sequence matches would contain this event instance. For example, in

Figure 3.1, the count information for a1 is 2 (two sequences contain a1), while for a2 it is

0. We notice that this count keeps changing. As future events arrive, more sequences will

be formed based on this event. Lastly, when an event instance expires, we must purge

it and the count attached to this event should not be considered as part of the final total

result.

However, this modified WID approach seriously complicates our core A-Seq solution.

As we can see, we would now have to 1) store information about all incoming event
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instances including their life span and sequence count contribution, 2) continuously mod-

ify the sequence counts formed on each active event instance within the window. This

maintenance process greatly degrades the overall performance, rendering our solution in-

effective. A more in-depth examination reveals that it is not necessary to store the above

information for all event instances. The earliest time a sequence match becomes invalid

would exactly be the time when the first event in this sequence (START instance) expires.

Thus, we obtain an important observation that:

Lemma 1 For a pattern query qi = (E1, E2, ..., En), once an instance ei with ei.type ∈

Ei expires, all sequence instances matches of qi that contain this ei should correspond-

ingly be expired.

Therefore, we now propose that recording the life span and sequence count informa-

tion on each START instance is sufficient. The expiration of all other event type instances

are shown to make no impact on the result update process. Thus, we can continue to

discard them immediately as in the basic A-Seq approach. Thus, our core idea here is

to compute the counts built on each START instance separately to avoid undue impact of

expired START instances on output results.

Start Event Marking (SEM) Solution. Based on this idea, we now propose a

Start Event Marking (SEM) technique.SEM marks each START instance with its lifespan,

namely, the expiration time-stamp. The general process is composed of the following

steps:

1. When a START instance arrives, a PreCntr is created for it to record the number of

sequence matches formed using this START instance.

2. When a UPD instance arrives, the same update process as in our basic A-Seq ap-

proach is applied. However, this update is now applied to the prefix counters of all

active START instances.
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3. When a TRIG instance arrives, counts on all active prefix counters are summed

together and output as aggregation result. Expired counters are ignored.

4. When the window slides, any expired START event with its corresponding PreCntr

are removed. If output result is required, then the count on this PreCntr will be

simply subtracted from the total count result.

This SEM computation process is illustrated in Figure 3.5. Figure 3.6 gives the pseu-

docode of the revised A-Seq algorithm with SEM.

Q: Pattern SEQ <A, B, C, D>

Within 7s

        

Stream 
a1 
1s 

b1 
2s 
 

c1 
3s 
 

a2 
4s 
 

c2 
5s 
 

b2 
6s 
 

d1 
7s 
 

c3 
8s 
 

a3 
9s 
 

d2 
10s 

 PC  AB 1 1 1 1 2 2 

Exp:8s ABC 0 1 1 2 2 2 

ABCD 0 0 0 0 0 2 

 PC  AB 0 1 1 1 1 1 

Exp:11s ABC 0 0 0 1 1 1 

ABCD 0 0 0 0 0 1 

 PC  AB 0 

Exp:15s ABC 0 

ABCD 0 

Output: 2 Output: 1 

Figure 3.5: Pushing Windows Down into A-Seq Using SEM

Example 4 In Figure 3.5, when a1 arrives at time t = 1s, we first calculate its expiration

timestamp (Exp), where Exp = arrT ime + Q.win. Thus, a1.Exp = 1s + 7s = 8s,

that is, a1 and its aggregation result will become invalid at t = 8s. Then we create a

PreCntr for a1. There is no count for prefix (A) in each PreCntr, as we have separated

each instance of A to maintain its own counts. Thus, the count for (A) is always 1.
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SEM A-Seq 
ei.ts: arrival timestamp of ei 
PreCntr.exp: expiration timestamp of a PreCntr (a START instance ei) 

ts : current system timestamp  
Win : query window size (time based) 

 
1.  agg = 0  
2.    for each arriving event  in stream S 
1.   //step 1: Create PreCntr 

2.     if ei.cat = START  
3.        create a PreCntr of size Lq-1 
4.        mark PreCntr.exp = et.ts + Win 
5.   //step 2: Update Count 
6.     else  
8.         for each PreCntr  
9.             if PreCntr.exp< ts 

10.             apply update rule ii 
11.   //step 3: Sum aggregation result 
12.        if ei.cat = TRIG    
13.           for each PreCntr 
14.              if PreCntr.exp< ts 
15.                 agg = agg + PreCntr.count 
16.              else  
17.                 remove this expired PreCntr 
18.    return agg 

Figure 3.6: SEM A-Seq Algorithm

The update process of the basic A-Seq method is utilized when b1 and c1 arrive. When

a2 arrives at t = 4s, we now in addition create a PreCntr for a2 and mark it with its Exp.

Subsequently, when c2 and b2 arrive, the count update takes place on both a1’s PreCntr

and a2’s PreCntr, as both a1 and a2 are active.

When d1 arrive at t = 7s, first we update the count on both PreCntrs. Then, as

instances of event type D trigger the completion of the full sequence query, we compute

the final the aggregation result by suming of the counts of pattern (A,B,C,D) from all

active PreCntrs. Thus, the output result is 2 = 2(a1PreCntr) + 0(a2PreCntr).

Next, c3 arrives at time t = 8s. When we perform the update on each PreCntr, we
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find that a1 expires at 8s and a1’s PreCntr should be purged. If users require a result at

this moment, the output would be 0 instead of 2. Same steps as above are applied when

a3 and d2 arrive. The output result becomes 1 after d2 is processed.

3.3 Negation Support for A-Seq

Invalid Sequence Check Problem. Negation in CEP aggregation requires us to assert

the non-occurrence of any instances of the negated event types at certain positions in a

sequence pattern. For example, online retailers considering the web advertisement rev-

enue might be interested in pattern (VK, BK, !REC, VC, BC) to track how many customers

purchases a case after the purchase a kindle, yet without first clicking through the ”Rec-

ommendation” link. The problem of negation is that, if negative event instances of ”Rec”

occur, they can cause previously detected prefix sequences (vki, bki) to become invalid.

One way to solve this problem would be to add a negation filter on top of the query

plan as typically done in the literature [4, 25] to discard all positive matched sequences

(vki, bki, vci, bci) that have reci between bki and vci. An obvious problem with this later-

filter-step solution is not only that it generates a potentially huge number of intermediate

results, many of which may be filtered out eventually, but also that it is incompatible with

our core A-Seq approach of time-sensitive aggregation. We now propose a solution that

solves this problem by pushing this negation check into our A-Seq approach.

The Immediate Re-Counting Solution. We propose the Recounting Rule (RR) tech-

nique to tackle this challenge. We find an important observation here:

Lemma 2 For a pattern query with negation qi = (E1, E2, ..., !Ei, ..., En), when a nega-

tive event instance ei with ei.type ∈ Ei arrives, the count of the prefix pattern previous to

Ei, namely, (E1, E2, ..., Ei−1) becomes invalid.

Since in our A-Seq solution, the count of the prefix pattern prior to this negative event
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type is preserved, when a negative event instance arrives, we propose to simply reset the

count of the previous prefix pattern to 0. This simple reset corresponds to an effective

re-counting.

However, it should be noted that NOT all prefix patterns previous to the negative

event type need to be reset. For example, for the negation sequence pattern (A,B, !C,D),

though prefix (A,B) becomes invalid when a C instance arrives, matches of the prefix

(A) continue to remain valid and thus can continue to be connected with future B and

D events to complete the full sequence detection. In general, as the counts of all prefix

patterns are preserved using the PreCntr structure, when C instance arrives, only the

count of (A,B) must be cleared to 0, while the counts of all other prefixes, here (A) and

(A,B,D) remain unchanged.

        

Stream 
a1 
1s 

b1 
2s 

c1 
3s 

a2 
4s 

b2 
5s 

    d1   
6s 

A 1 1 1 2 2 2 

AB (!C) 0 1 0 0 2 2 

ABD 0 0 0 0 0 2 

Output: 2 
Q: 
Pattern SEQ (A,B,!D) 
Agg COUNT 
 

<a1, b2, d1> 
<a2, b2, d1> 
 

without 
constructing 

Figure 3.7: Pushing Negation Down to Sequence Detection Process

Example 5 Figure 3.7 illustrates how RR works through a sequence pattern (A,B, !C,D).

When c1 arrives at t = 3s, the count of (A,B) is cleared to 0 while the (A) and

(A,B,D) counts are kept. The output result is 2 when d1 arrives, because the sequence

< a1, b1, d1 > is not counted as c1 is between b1 and d1.
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Several cases of special negation locations in a pattern, namely, at the start, at the

second and at the end position of a pattern, require customized processing, as discussed

next.

Negation Start. For query pattern (!A,B,C,D), RR cannot be applied as there is no

prefix pattern previous to A. The challenge caused by this special negation start case is

that, initially made invalid (B,C,D) sequences following an A instance will eventually

become valid again, once the A instance is expired. Thus, simply applying SEMA-Seq to

detect the pattern (B,C,D) is insufficient. To capture the negation start impact, a separate

list recording the expiration timestamp of each A instance is maintained. When summing

the counts on each PreCntr to output a result, a check of the A list is performed to ensure

there is no A instances before this PreCntr that are still valid. For this, we compare the

expiration timestamp with this PreCntr. If not expired, we add 0 to the aggregation result

for this PreCntr without modifying the PreCntr count.

Negation End. For query pattern (A,B,C, !D), if aggregation result is output when

each D instance arrives, the output is reset to 0 as the count of (A,B,C) is reset to 0

according to the RR. To avoid this ”always 0 output”, one method is when a D instance

arrives, we output the (A,B,C) count first and then reset it to 0. Another solution would

be to change the output style. For example, the aggregation result is output when required

by the user instead by the arrival of each triggering event instance. In this way, the RR

would effectively handle this Negation End case.

Negation Second. For query pattern (A, !B,C,D), the count of (A) should be cleared

to 0 when B instance arrives. However, since counting is separately processed for each

A instance due to handle sliding window semantics. Since no counts are recorded for the

A instances, thus, the existing PreCntr structure for each A should now be completely

purged, instead of first cleared to 0.
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3.4 Predicates Support for A-Seq

Below, we present solutions of how to push the predicate evaluation into our aggregation

process.

Local Predicates. The most common predicates over event data are local predicates,

which impose constraints on the attribute values of an event instance (e.g. Kindle.model

= ”touch”). Predicates are evaluated on the relevant event instances before these instances

are involved in the aggreagtion process. Event instances that do not satisfy the predicates

are immediately discarded .

Equivalence Predicate Test. It is well-known that CEP queries often using equiva-

lence predicates correlate events in a sequence pattern [25]. For example, in our online

shopping habit tracking scenario, the clicks should be from the same customer. Similarly,

in the stock market example, the pattern of price increases and decreases should be of

the same stock. An equivalence test essentially partitions an event stream into several

sub-streams, where events in the same partition have the same value for the attribute used

in the equivalence test (i.e. equivalence attribute). Here, we propose a technique to dy-

namically partition the event stream during the sequence aggregation, henceforth called

Hashed Prefix Counter (HPC).

The basic idea of HPC is that the aggregation process is applied separately to each

equivalent partition. Prefix counters for a START instance are created upon their arrival

and hashed into the corresponding partition based on the equivalence attribute value of

this instance. Other event instances are similarly hashed to their corresponding partition.

Aggregation results are computed based on each partition.

Pattern SEQ <A, B, C, D>

Where A.id = B.id = C.id = D.id

Within 7s
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id=3 

 a4 
Exp:16 

AB ABC 

2 2 
a1 
Exp:9 

AB ABC 

5 4 

a3 
Exp:14 

AB ABC 

3 2 
 

 

id=2 

id=1 

attr:id 

a2 
Exp:12 

AB ABC 

4 3 

a5 
Exp: 21 

AB ABC 

1 0 

Figure 3.8: Hashed Prefix Counter (HPC)

Example 6 Figure 3.8 illustrates the HPC data structure to cope with the equivalence

predicates processing in sample query Q2. The equivalence test for Q2 is on attribute id.

The id value of each incoming event will be evaluated. Assuming three distinct id values

(1,2,3), then we create three hash partitions as depicted in Figure 3.8 with id values as

key and the prefix counters as the value. For instance, the id values of instances a1 and

a4 are 1. Thus their prefix counters are created in the ID1 partition. For instances of

type B,C,D, they will update the prefix counters in the partition determined by their

respective id values.
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Chapter 4

A-Seq Multi Query Strategy

For rich data streams from web-clicks to stock ticker streams, large workloads of similar

queries may be processed. Since executing each query separately could lead to scalability

and performance problems. Thus, we explore the opportunity to share the computation

across a workload of CEP aggregation queries [15]. Consider the running example in

Section 1.1.1, where merchants are interested in various purchase patterns to determine

customer shopping habits, including 1:

Q1 = (VKindle,BKindle,VCase,BCase)

Q2 = (VKindle,BKindle,VKindleFire)

Q3 = (VKindle,BKindle,VCase,BCase,VeBook,BeBook)

Q4 = (VKindle,BKindle,VCase,BCase,VLight,BLight)

Q5 = (ViPad,VKindleFire,VKindle,BKindle)

Several common sub-queries (substrings) arise across these 5 pattern queries, such as

(V Kindle, BKindle). The intuition is that if we were to compute intermediate aggre-

gates for the (V Kindle, BKindle) substring, then would we be able to share this result

among the other queries that contain this substring. This way, redundant aggregation
1capital letter V represents View, and B represents Buy
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computation for common substrings would be avoided. In principle, the more queries

share common substrings, the more computational resources could potentially be saved.

This promise of scalability leads us to our proposed techniques below.

4.1 The Prefix Sharing Strategy

We observe that once the aggregation of a full sequence pattern is computed by A-Seq,

then the aggregation of all its prefix patterns would also have been obtained as side-effect.

Thus, the most straitghtforward way to achieve multi-query aggregation sharing is to share

the prefix computations among queries with the same prefixes. Based on this observation,

we now propose a Prefix Tree (PreTree) data structure in support of the Prefix Sharing

(PreShare) strategy in the Multi A-Seq approach.

vKindle bKindle 

vKindle 
Fire 

vCase bCase 

vEBook bEBook 

vLight bLight  

 

 

 

Figure 4.1: PreTree Structure

Example 7 Figure 4.1 shows an example of the PreTree structure for Q1 ∼ Q4, namely,

these four prefix counters are organized into a PreTree structure. For computation of

these four patterns, the result of substring (vKindle, bKindle) is pipelined into both Q1

and Q2, while the Q1 result is pipelined to both Q3 and Q4.

Compared to computing each query independently without sharing also using A-Seq

solution, this process using PreTree is now slightly adapted as below to account for the
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arrival of instances of each event category:

1. When a START instance arrives, a Prefix Tree(PreTree) will be created instead of

a previous PreCntr. For example, in Figure 4.1, one single PreTreeCntr structure

would be initialized, compared to the four normal PreCntrs that would have been

created in the non-share approach.

2. When a UDP instance arrives, the count update occurs on the corresponding loca-

tion in each PreTree only once. For example, when a bKindle instance arrives, one

update on PreTree is needed in place of four updates on each of the four PreCntrs.

3. When a TRIG instance arrives, results for the the respective query can be directly

accessed from the appropriate locations within the PreTree.

This way, the redundant computation of common prefix patterns is avoided. As is

apparent, very little overhead is introduced to maintain such a tree structure or to output

results for this multi-query case. In fact, the more queries share the same prefix patterns,

the more computation costs should be saved.

4.2 The Arbitrary Sub-pattern Sharing Mechanism: Chop-

Connect

Overall Idea of Chop-Connect Method. In general, queries may feature common sub-

expressions at random locations rather than only at their prefix positions. In the above

example, P5 shares (V Kindle, BKindle) with the other four query patterns. Since we

can obtain the count of (V Kindle, BKindle) from the prefix tree that has been set up for

Q1 ∼ Q4, then if we could potentially compute (V iPad, V KindleF ire) separately, then

we could potentially connect the counts of these two substrings together.This way, the
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computation of (vKindle, bKindle) would be shared by all five queries. This intuition

leads us to propose the Chop-Connect (CC) idea for tackling this general problem of

sharing the computation arbitrarily of common sub-expressions. The idea is to Chop a

query into substrings, with each substring being computed separately. Finally, the results

of all substrings are later Connected together to get the count of the whole sequence

pattern.

Analyzing the Connect Problem. Analyzing the Connect problem, we notice that

we cannot simply construct a simple Cartesian Product of two previously computed sub-

counts to get the count of the longer connected sequence. Rather, the time order between

instances of the two connect event types VKindleFire and VKindle matters. Since the

A-Seq approach does not maintain any time information (except START for expiration),

additional ordering knowledge between connect events must be recorded correctly to en-

able the full sequence count, namely, TRIG from the first substring and START from the

second substring.

One straightforward solution to solve this problem is to maintain the timestamps of

all connect event instances during the computation process, and join the counts of two

substrings by comparing the timestamps of all connect event instances. For ease of expo-

sition, let us now use sub1 = (A,B,C) and sub2 = (D,E) to denote the two substrings

that need to be connected, then C and D are the connect event types. As in the single A-

Seq approach, the expiration timestamps of all START (D) instances in sub2 are recorded,

we now also need to maintain the timestamps of each C instance in sub1.

Proposed Solution. However, after careful examination, we find that it is not neces-

sary to store the timestamps of all C instances. Instead, it is sufficient to only record the

C instance that is the most recent before the arrival of a D instance.

Lemma 3 Any other instance that arrives before this most recent C instance is guaran-

teed to be valid to connect with this D instance.
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For example, if the arrival order of C and D is: < c1, c2, c3, d1, ... >, then c3 is the

most recent C instance for d1. Clearly, C instances before c3 can safely be connected

with d1 while those after c3 cannot. To conclude, the key principle in our aggregation

context is to obtain meta-data about how many sub1 matches have been detected before

each START in sub2 arrives. Example in Figure 4.2 illustrates how our above strategy

works.

        

Stream 
a1 

1s 
b1 

2s 
c1 

3s 
a2 

4s 
b2 

5s 
d1 

6s 
c2 

7s 
d2 

8s 
e1 

9s 

a1  
PreCntr 

AB 1 1 1 2 2 2 2 2 

ABC 0 1 1 1 1 3 3 3 

a2  
PreCntr 

AB 1 1 1 1 1 

ABC 0 0 1 1 1 

#(ABC) 1 4 1 

d1   1 
PreCntr 
 

DE 0 0 1 

d2     4 
PreCntr 

DE 1 
#(A,B,C, d1, E) = 1 * 1 = 1 
#(A,B,C, d2, E) = 4 * 1 = 4 
#(A,B,C, D, E) = 1 + 4 = 5 

 
 

Figure 4.2: Connect Counts of Two Substrings

Example 8 Figure 4.2 illustrates how to connect the counts of sub1 = (A,B,C) and

sub2 = (D,E) to get the count of (A,B,C,D,E). First, we compute two substrings

using our single A-Seq separately. However, to prepare for a later ”connect” computa-

tion, when d1 arrives at time t = 6s, besides creating the PreCntr for (D,E), we also

extract the count of sub1 at that moment (#(A,B,C) = 1) and attach this count to d1’s

PreCntr for later use. Similarly, when d2 arrives, we attach #(A,B,C) = 4 to d2’s

PreCntr.

When TRIG instances arrive and trigger the output of the aggregate result for the
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full sequence pattern, a multiplication of (1) the #(sub2) and (2) the attached #(sub1)

on each PreCntr of D instance is performed. For example, when e1 arrives, there is

1 sequence match of (D,E) formed on d1 (#(D,E) = 1), and 1 match of (A,B,C)

formed before this d1 (attached #(A,B,C) = 1). Thus, #(A,B,C, d1, E) = 1 ∗ 1 = 1.

Similarly, for d2’s PreCntr, #(A,B,C, d2, E) = 4 ∗ 1 = 4.

Lastly, we sum the results of all active PreCntrs to derive the final result, that is,

when e1 arrives, the total count #(A,B,C,D,E) = 1 + 4 = 5.

Challenge Caused by Expiration. However, the above connect solution assumes

that events never expire. Suppose #(sub1) is attached to a START instance of sub2 when

that START instance arrives at time ti. However, when we use this #(sub1) in the mul-

tiplication as a TRIG instance of sub2 arrives at time ti+1, this attached #(sub1) might

already have become invalid at that time. As #(sub1) is calculated separately from sub2,

#(sub1) might become invalid during at the ti+1 time, due to the START instance expira-

tion of sub1. (See Section 3.2 for the event expiration details). To illustrate this problem,

consider example 8. When e1 arrives at time t = 9s, #(A,B,C) should no longer be 4 if

a1 had expired before t = 9s. Thus, the attached count would have intermittently become

incorrect, no longer accurately reflecting the most recent count upon the arrival of TRIG

instances. This causes erroneous aggregation.

SnapShot Solution. We now propose a solution to this connect expiration problem.

When a START instance of sub2 arrives, instead of attaching the current sub1 count , we

record sub1 counts on each sub1’s PreCntr separately with their expiration timestamps.

Therefore, when a TRIG instance arrives, the respective counts expired by its arrival can

be safely discarded.

Lastly, we design the (SnapShot(SS) data structure to represent counts on all sub1’s

PreCntrs whenever a sub2 START instance arrives. The snapshot is organized as a table.

Each row represents the count snapshot of a sub1’s PreCntr. The columns contain meta-
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data: 1) PreCntr tag, indicating the START instance to which this PreCntr belongs to,

2) the corresponding expiration time of this PreCntr, and 3) the count of this PreCntr.

Figure 4.3 illustrates the snapshot maintenance of sub1 (A,B,C) for sub2 (D,E).

Compared to the stream in Figure 4.2, we now add the extra instance a3 before d2 to show

the change in the snapshots.

When d1  arrives, 

a1  PreCntr 
 
Exp: 10s 

AB ABC 

2 1 

d1 PreCntr 
 
Exp: 14s 

DE 

0 

a2  PreCntr 
 
Exp: 13s 

AB ABC 

1 0 

START Exp Cnt 

a1  10 1 

a2 13 0 

Snapshot of (A,B,C) for d1  

When d2  arrives, 

a1 PreCntr 
Exp: 10s 

AB ABC 

2 3 

d2PreCntr 
Exp: 17s 

DE 

0 

a2  PreCntr 
 
Exp: 13s 

AB ABC 

1 1 

START Exp Cnt 

a1  10 3 

a2 13 1 

a3 18 0 

Snapshot of (A,B,C) for d2  

a3  PreCntr 
 
Exp: 18s 

AB ABC 

0 0 

When e1  arrives, 

d1 PreCntr 
 
Exp: 14s 

DE 

1 

d2  PreCntr 
 
Exp: 17s 

DE 

1 

        

Stream 
a1 

1s 
b1 

2s 
c1 

3s 
a2 

4s 
b2 

5s 
d1 

6s 
c2 

7s 
a3 

8s 
d2 

9s 
e1 

10s 

Figure 4.3: SnapShot Maintenance

Example 9 In Figure 4.3, when d1 arrives, a snapshot (SS) of d1 with counts and ex-

piration timestamps of all sub1 prefix counters is created, and attached to d1. When d2

arrives, similarly, another snapshot is created to record the prefix counter status of sub1

at that moment and attached to d2. When e1 arrives at t = 10s, after the update aggre-

gation process applied to the (D,E) PreCntrs, the SS expiration timestamp check is
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applied to each table row of sub2 PreCntr. Expired rows are discarded, and thus won’t

be involved in any future aggregations. For example, when e1 arrives at t = 10s, the SS

check finds that a1 expires at that time. Thus, only counts of PreCntrs of a2 and a3 will

be used. The total count #(A.B,C,D,E) at t = 10s thus is calculated as:

Count1 = #(d1 PreCntr) = #(A,B,C, d1, E) = 1× 0 = 0,

Count2 = #(d2 PreCntr) = #(A,B,C, d2, E) = 1× 0 + 1× 1 = 1

#(A,B,C,D,E) = Count1 + Count2 = 0 + 1 = 1

For above we now introduce a new event category, called Connect Event Type (CNET)

(besides START, UPD and CNET). CNET is the START event type in sub2 when connect-

ing sub1 and sub2. The arrival of a CNET instance will trigger the process of checking

counts on sub1’s PreCntrs and creating the sub1 snapshot for sub2. For example, event

type D falls into the category CNET. Meaning when connecting (A,B,C) and (D,E), a

snapshot of (A,B,C) count is created for (D,E) whenever a new D di instance arrives.

Multi-Connect Process. A query might be chopped into multi pieces rather than

just only 2. For example, pattern query (A,B,C,D,E, F,G) might be chopped into:

sub1 = (A,B,C), sub2 = (D,E), and sub3 = (F,G), as sub2 and sub3 are shared by

other queries, respectively. In this case, when the CNET instance F in sub3 arrives, it

triggers the creation of a snapshot of (A,B,C,D,E) and then attaches to this snapshot to

sub3 PreCntr. Due to the expiration problem, we postpone summing the counts on each

(D,E). Instead, we calculate the snapshot counts of (A,B,C,D,E) for each A instance,

that is, counts of (ai, B, C,D,E) for all active ai. When F instance arrives, these counts

can be calculated in the following two steps :

1. Calculate count of (ai, B, C,D,E) on each (D,E) PreCntr. For each (D,E)

PreCntr, to which the snapshot of (A,B,C) is attached to, we multiply the count

34



in the snapshot with the count on (D,E) on this PreCntr one by one. That is, we

calculate the counts for (ai, B, C, dj, E).

2. Then we calculate count of (ai, B, C,D,E) on all (D,E) PreCntrs. Given the

counts calculated by step 1, we apply a sum over those snapshot counts with the

same ai tag across all (D,E) PreCntrs.

Example 10 Figure 4.4 illustrates the multi-connects calculation process of the above

example. When f1 arrives at t = 12s, we first multiply the count on each (D,E) PreCntr

with its corresponding snapshot counts of (A,B,C). Then, we plus the count 1 with tag

a2 on d1’s PreCntr to the count 2 with tag a2 on d2’s PreCntr. Similarly, we add the

counts with same tag across all (D,E) PreCntrs. Then we attach these counts to the f1

PreCntr representing the snapshot of (A,B,C,D,E).

d1  PreCntr 
 
Exp: 17s 

DE 

1 

d2  PreCntr 
 
Exp: 20s 

DE 

1 

START Exp Cnt 

a1  10 2 

a2 13 1 

START Exp Cnt 

a1  10 3 

a2 13 2 

a3 18 1 

f1  PreCntr 
 
Exp: 24s 

FG 

0 

START Exp Cnt 

a2 13 3 

a3 18 1 

t=12s, f1 arrives 

t=12s, a1  expires 

a2 1 * 1 = 1 

t=12s, a1  expires 

a2 2 * 1 = 2 

a3 1 * 1 = 1 

+ 

Figure 4.4: Snapshot Computation of Multi-connect
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4.3 Sharing Plan Selection

In the above, we have introduced a solution for tackling the Connect challenge assuming

we are given the substrings into which a given set of pattern queries is to be decomposed.

However, since some computation and storage overhead is introduced by each connect

operation, we now need an effective strategy for chopping the workload into sharable

sub-strings. Thus, we design a global sharing plan and call it ”Chop Strategy”. Given this

”Chop Strategy”, we chop each query in the workload into smaller substrings, such that

the computation of those common substrings is shared across queries in this workload.

Our goal is to find a solution with the ”minimal” overall computation costs.

Multi A-Seq Optimization Problem: Given a query workload WL, find a shared

execution plan for WL that indicates which substrings are shared by which queries (if

any), with the lowest overall execution costs.

One straightforward optimal solution for this problem is exhaustive search, which is

composed of 3 steps: 1) find all potential sharing substring candidates, which satisfy

two conditions: substring length l >= 2, and shared by k >= 2 queries; 2) for each

candidate (sharing substring), calculate its Benefit Value (BValue), namely, the execution

costs gained when sharing this candidate compared with not sharing. 3) compose all

candidate combinations (subsets of all candidates), and find the combination with the

largest BValue. This maximal benefit candidate combination is our final shared execution

plan.

Complexity Analysis. Several practical considerations make this solution challeng-

ing. Suppose there are n queries in this WL, and the length of each query is m. For

step 1), we can simply run a search over all queries to find all substrings of length from

2 to m − 1, and then filter those not shared by at least two queries. However, too many

unqualified substrings (k < 2) will be generated, especially for larger n and m. Thus,
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a smarter solution is required. For step 2), a cost model that can correctly measure the

computation gain (sharing versus non-sharing) of employing a particular substring can-

didate must be developed. For step 3), the time complexity of generating all subsets of

the given candidates set is exponential. An exhaustive search for the optimal combination

will thus need to traverse too huge of a search space for a large query workload. Thus it is

in general not practical to find the optimal solution. Thus, we now propose the following

solutions to cope with above three challenges.

4.3.1 Apriori for finding all potential sharing candidates

Given the similarity between this sharing candidate generation problem and the frequent

itemset identification problem in association rule mining, we now deploy the Apriori al-

gorithm [2] to solve our problem. Apriori is a candidate generation and test approach.

The key concept of Apriori is its pruning principle: if there is any itemset which is infre-

quent, then its superset is guaranteed to also be infrequent. When applying the Apriori

algorithm here, the pruning principle for our problem can be stated as: if a substring

(E1, E2, ..., Ei−1) of length i− 1 is infrequent (not shared by at least 2 queries), then any

substring (E1, E2, ..., Ei−1, Ei) of length i would not be frequent.

Thus, we now design the following potential candidates generation algorithm:

1. Initially, scan all queries once to get all frequent substring candidates (k >= 2)

with l = 2.

2. Repeatedly generate candidates with length l = i from frequent candidates with

l = i− 1 (i starts from 2) .

3. Terminate when no new frequent candidates can be generated any more.

This way, a large number of unqualified substring candidates would be pruned right

37



away upon their generation. This greatly reduces the candidates size and thus saves both

memory and CPU processing resources.

4.3.2 Cost-Based Benefit Model

Next, we establish a model to calculate the CPU costs of both sharing a substring candi-

date X (CC method), versus not sharing it (NonShare method). Then the BValue of X

is obtained by: XBV alue = XNonShare − XCC . Now we analyze the estimated costs of

processing a common substring X by either of two computation approaches. To make the

cost model easy to understand, we assume our stream is uniformly distributed, with the

data frequency of each event type in this stream the same. Namely, each event type has the

same number of instances. We estimate the cost of processing of all instances in a sample

stream. We divide event types into four categories START, UPD, CNET, TRIG based on

the different operations they trigger upon their arrival (See section 3.1 and 4.2). Gener-

ally, we estimate the cost of all instances in each category, and then sum them together as

the total cost. The total cost of a single query can thus be formulated as:

Costtotal =
4∑

i=1

Ncati ∗ Costcati ∗Numcati (4.1)

Table 4.1 represents the parameters and terminology used in the cost estimation. Take

the computation cost for pattern query (A,B,C,D) as an example. There is one START,

two UPD and one TRIG event types in this query. Then based on the Equation 4.1, the

total cost of (A,B,C,D) in a uniformly distributed stream is: Cost(A,B,C,D) = CSTART ∗

NSTART ∗ NumSTART + CUPD ∗ NUPD ∗ NumUPD + CTRIG ∗ NTRIG ∗ NumTRIG =

CSTART ∗N0 ∗ 1 + CUPD ∗N0 ∗ 2 + CTRIG ∗N0 ∗ 1.
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Table 4.1: Terminology Used in Cost Estimation

Term Definition
N0 The instances number of each event type in a uniformly distributed

stream (except the CNET instances number)
f the occurrence frequency of CNET instances, that is, (# of CNET)/N0

fN0 the number of CNET instances in stream
l the length of a substring X
k the number of queries that share X

Ncati The number of instances of event category i
Numcati The number of event types of category i in a pattern
CSTART The cost of a START instance: create a PreCntr, time complexity O(C)
CUPD The cost of a UPD instance: update count of all active PreCntrs, at most

N0 in Naive and fN0 in CC. Time complexity O(n)
CTRIG The cost of a TRIG instance: update and sum count of all active PreC-

ntrs, worst case N0, time complexity O(n)
CCNET The cost of a CNET instance: compute and create snapshot, worst case

N0
2, time complexity O(n2)

NonShare Method. The cost of computing a common substring X without sharing

(duplicate in k queries). Then, the total cost is simply compute X k times. We can

utilize Equation 4.1 to get the costs of computing X once. To simplify the cost model but

without underestimation, no matter what event category X has, we assume that CSTART =

CTRIG = CCNET = CUPD = N0 operation cost. Thus, for computing X once, the cost

is: Xonce = N0 ∗ fN0 ∗ 1 +N0 ∗N0 ∗ (l − 1).

The cost is composed of two parts: (1) cost of all CNET instances, and (2) cost of

all other instances (as the number of CNET is different with other events based on our

assumption). The first N0 in both parts represents the operation costs of an individual

event instance (no matter what event category). We simplify (l − 1) as l, then, the total

cost of computing X in k queries is:
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XNaive = (N0 ∗ fN0 ∗ 1 +N0 ∗N0 ∗ l) ∗ k

= N0
2 ∗ k ∗ (l + f)

(4.2)

ChopConnect Method As we can see from the operation analysis for CC in Sec-

tion 4.2, the overhead costs of CC mainly come from the connect operation, namely, the

snapshot computation and creation operations when the CNET arrives. This snapshot

computation cost for a multi-connect operation includes two parts: 1) the multiplication

of count of each sub2 PreCntr with its attached sub1 snapshot count, and 2) the summing

of the counts across all sub2 PreCntrs. There are at most N0 records in the sub1 snapshot,

also at most N0 sub2 PreCntrs. Thus, the worst case cost for a multi-connect snapshot

computation is N0
2.

Based on the above cost analysis, we conclude that the data frequency of CNET in-

stances dominantly determine the CC costs, as the costs of other event categories is at

most N0. Besides, the CNET corresponds to the START in X . Thus, the fewer CNET

instances, the fewer PreContrs the UPD instances need to update. Namely, at most fN0

PreCntrs will be created, and thus the CUPD should be at most fN0 in this case. To mea-

sure the effect of the data frequency of CNET, we set a parameter f in our Benefit Model.

Theoretically, the lower f , the lower the CC costs.

In the CC method, we only need to compute substring X once. However, we need

to connect it thereafter with other substrings in the k queries that share it. To simplify

the cost model but without underestimating the costs, here we make two assumptions:

1) share X in one query will cause one chop before this substring, thus there are total

k connects, and 2) we use the multi-connect costs (N0
2) for all connects, no matter it is

single or multi connect. Therefore, except the CNET costs that need to be calculated k

times, the costs of other event categories (only UPD if share X) would be calculated only
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once. Given the above two assumptions, we conclude the computation costs of processing

X by the CC method as in Equation 4.3:

XCC = CCNET ∗ k ∗ fN0 + CUPD ∗ (l − 1) ∗N0

≈ N0
2 ∗ k ∗ fN0 + fN0 ∗ l ∗N0

= N0
3 ∗ f ∗ k +N0

2 ∗ f ∗ l

(4.3)

Benefit Model. Now we calculate the Benefit Model together with using the XCC

and XNaive costs from Equation 4.3 and 4.2 respectively.

XBV alue = XNaive −XCC

= N0
2 ∗ k ∗ (l + f)−N0

3 ∗ f ∗ k −N0
2 ∗ f ∗ l

(4.4)

From Equation 4.4, three parameters together impact the computation gains of sharing a

candidate substring. To observe the effect of each parameter independently, we transform

the Benefit Model by treating one parameter as variable while the other two are being set

to some constant. This way we obtain the following three linear equations:

XBV alue =


(N0

2k −N0
3k −N0

2l) ∗ f +N0
2kl, f as variable (a)

(N0
2k −N0

2f) ∗ l + (N0
2 −N0

3)kf, l as variable (b)

(N0
2l +N0

2f −N0
3f) ∗ k−N0

2fl, k as variable (c)

(4.5)

In the Equation 4.5(a), we see that (N0
2k − N0

3k − N0
2l) < 0 as N0

2 < N0
3 for

N0 > 1. Thus, the smaller f , the larger the BValue. Moreover, since N0
2 is usually a

large number, only a light change in f will cause significant change in BValue. This cost
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analysis corresponds to our intuition that f is the major factor that affect the sharing cost.

In the Equation 4.5(b), we can see that (N0
2k − N0

2f) > 0 as f < 1 while k >= 2.

Thus, the larger l, the larger the BValue. This indicates that the longer a substring we

share, the more we can gain.

Lastly, in the Equation 4.5(c), we see that N0
2l+N0

2f −N0
3f could be either greater

or smaller than 0. This corresponds to our intuition that it is hard to decide whether we can

benefit more if more queries share a common substring. As the larger k, the more chops

and connects are introduced. Though we can eliminate more duplicate computation, but

higher CONNECT costs overhead will also arise.

4.3.3 Mapping to the Maximum Independent Set Problem

Given the set of potential sharing candidates and the Benefit model for assessing the

quality of a chosen candidate substring, we are now ready to calculate the BValue of all

candidates. The next step is to generate all possible combinations (subset) of the potential

candidates, calculate the total BValue of each combination, until we select the subset with

the largest BValue as the final sharing plan.

Pruning using Heuristic: Sharing Compatibility. Next, we introduce some criteria

for pruning those impossible candidates combinations with the sharing incompatibility

problem. For example, suppose there two candidates: (A,B,C) is shared by q1, q2, and

q4, (B,C,D) is shared by q1, q2, and q5, in the same combination. We note that these

two candidates have overlapped substring (B,C). Once we decide to share (A,B,C) in

q1, q2, and q4, we cannot share (B,C,D) in q1, q2 any more, as it will introduce another

chop between A and B, which make the substring sharing impossible. Thus, we cannot

choose this combination as our sharing plan. Instead, if (B,C,D) were to be only shared

by q3 and q5, namely, these two candidates are not shared by the same queries, then they

could be shared at the same time. The notion of Sharing Conflict thus is defined as: given
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two substring candidates can1 and can2, if there is a pattern overlap among them, then

we check whether there is an overlap in their respective shared query group. If yes, can1

and can2 are said to be conflict.

Therefore, combinations that have this sharing conflict issue are discarded. Since

Apriori approach generates candidate substring from shorter length to longer length within

the same query pattern, the sharing conflict is can be prevalent among candidates. Con-

sequently, generating all combinations of all candidates produces too many combinations

with conflict and that subsequently would be discarded, wasting CPU and memory re-

sources. Given the above notion of the sharing conflicts exist in members in a combina-

tion, and the Benefit Model of each candidate, we now illustrate that our ”optimal sharing

plan search” problem can be mapped to a well known graph problem, namely, finding the

Maximum Independent Set.

Definition 2 Mapping Theorem. Given the set of all potential sharing candidates, we

define an undirected graph G = (V,E), where vi denotes a candidate, and an edge

e(vi, vj) denotes sharing conflict between vi and vj exists. Now, our aim is to find an max-

imum independent vertex set Vi, among all possible Vi ⊂ V , where no vertices in Vi are

connected (no sharing conflict), with the largest overall BValue maxVi
(
∑

vi∈Vi
BV alue(vi)).

Example 11 Figure 4.5 illustrates an graph example of a maximum independent set prob-

lem. There are 5 sharing candidates and the table represents the queries that share them

and their corresponding BValues (Figure 4.5(a)). In Figure 4.5(b), we construct the graph

based on the Mapping Theorem, where candidates with sharing conflict are connected.

The maximum independent set of this candidate set is {(A,B,C), (C,D,Q), (E,F )}

(vertices in gray).

The maximum independent set is known to be a N-P hard problem [10], meaning that

the optimal solution to our problem an thus not be achieved in polynomial time com-
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Candidate Queries BValue 

(B,C,D) 2,5 0.57 

(C,D,Q) 2,5,6 0.121 

(C,D,E,F) 3,4 0.4 

(A,B,C) 1,3,4 0.9 

(E,F) 3,4 0.33 

ABC!

BCD!

CDEF!

CDQ!

EF!

0.9! 0.4!

0.57! 0.121!

0.33!

(a) 

(b) 

Figure 4.5: Mapping to Maximum Independent Set Problem

plexity. Usually, for a large query group with many similar queries, a huge number of

potential candidates could be generated, which leads to a huge search space. Even if we

simply remove the candidates with negative BValue 2 to reduce the space, the number

of positive candidates might still be significant. Given this scalability consideration, we

now design an efficient algorithm to tackle this problem using greedy search strategy. The

well-known hill-climbing search approach is applied here to find the local optimal solu-

tion by incrementally adding candidate with larger BValue each time. The pseudo code

of our greedy search algorithm is illustrated in Figure 4.6.

Complexity Analysis. This algorithm firstly sort all the candidates by their BValue.

Suppose there are n candidates, any comparison-based sorting algorithm can finish in

2would not affect the optimality, as the total BValue is a linear sum of each single BValue, negative
BValues will only make the total BValue smaller
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Xi: an candidate substring 
Si: an candidate substring in final solution set 
Xi_BV : the BValue of candidate Xi 
 
1.    remove candidates with Xi_BV <0 
2.    sort all positive candidates by Xi_BV  

3.    from largest to smallest into a CheckList 

4.    create a empty final solution set FinalSet 
5.    for (Xi : CheckList)  
6.        for (Si : FinalSet) 
7.            check ifConflict(Xi, Si);  
8.            if ifConflict is false  
9.               put Xi  to FinalSet;    
10.            else 
11.               discard Xi; 
 
 
 
 
 
        

Figure 4.6: A-Seq Optimizer Greedy Search Algorithm

O(nlogn) time. The time complexity of compatibility check with the candidates in Fi-

nalSet depends on the size of the FinalSet, which is at most n. Thus, the upper bound

complexity of compatibility check for n candidates is O(n2), which however is an upper

bound that never would be achieved. Besides, the FinalSet would not be too large in prac-

tical due to the sharing conflict pruning method as discussed above. Thus the worst case

of our greedy algorithm would not exceed O(n2). The performance and accuracy of this

greedy algorithm will be evaluated in our experimental study in Section 5.3.
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Chapter 5

Performance Evaluation

5.1 Experimental Setup

We describe our methodology for evaluating the performance of both single and multi

A-Seq approach. Single A-Seq Evaluation. We compare our proposed A-Seq approach

that pushes aggregation into sequence detection (see Chapter 3), with the state-of-art post

aggregation approach (using the popular stack-based join method for sequence detection

and construction) [15, 25]. We examine the performance of both method by varying query

key parameters, namely, the pattern length (l) and the window sizes (w). Besides, a stress

test for our single A-Seq solution is conducted to show the scalability. We also evaluate

the A-Seq performance for processing negation queries.

Multi A-Seq Evaluation. First, we evaluate the performance and sensitivity of our

multi A-Seq technique (Chop-Connect, CC) by independently varying each of the three

key parameters identified by our cost analysis (see Section 4.3.2) in the Benefit Model,

namely, connect event frequency (f), shared substring length (l), and sharing cardinality

queries (k). We study the changing trend of CC performance through comparing the aver-

age processing time (ms/event) with non-share computation method, namely, computing
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each query separately without sharing.

Second, we compare our Multi A-Seq optimizer with the optimal search method (Ex-

haustive) 1 on 12 different multi-query groups. Each method returns a sharing plan for a

given query group. We verify how often our efficient optimizer returns the same sharing

plan as the optimal method (evaluate the effectiveness of A-Seq). We also compare the

optimization search time of these two methods, illustrating the efficiency of our Multi

A-Seq optimizer.

Experiment Environment. We implement our proposed A-Seq inside the X5 stream

management system (cite) using Java. We run the experiments on Intel Core 2 Duo CPU

2.4 GHz WITH 4 GB RAM.

Evaluation Matrix. Performance is measured by the average processing time for

each incoming event instance, namely, Processing T ime = Telapsed/|Events|, where

|Events| represents the number of tuples that arrive to our system and Telapsed represents

the total elapsed time to process all tuples in our sample stream so far. Peak memory usage

is calculated by measuring the number of created Java objects. Namely, for the state-of-

art approach, we count the sum of the three types of objects: active events inserted in

the stacks, pointers, as well as intermediate sequence matches for later aggregation. For

our A-Seq approach, we count the number of active prefix counters (PreCntr) created, in

which all the information for aggregation computation is stored. The maximum object

counts for these two approaches are reported as peak memory usage.

Data Sets. We evaluate our single query techniques using real stock trades data from

[8], which contained stock ticker, timestamp and price information. The portion of the

trace we use contains 10,000 event instances. For evaluating the multi-query techniques,

to make longer queries and larger query workload, we also generate synthetic stock

1Since the query group is large, the exhaustive search causes seems infinite execution time, we apply
a heuristic to the optimal solution, yet won’t affect the optimal result. That is, remove candidates with
negative BV alue before generating all combinations.
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streams with more event types and more instances introduced. There are 20 stock types

and around 10,000 event instances in our synthetic streams respectively. Each stream has

different distributions as explained in later experiment.

5.2 Single Query Evaluation

Experiment 1 - Varying pattern length l. In this experiment, we evaluate each ap-

proach’s sensitivity to the pattern length l by varying l from 2 to 5, while the window size

is fixed as 100ms. The average processing time per event and peak memory usage for

these two approaches are reported in Figures 5.1(a) and 5.1(b) The pattern queries are as

below, with event types the ticker name of each stock.

q1 = (DELL, IPIX)

q2 = (DELL, IPIX, QQQ)

q3 = (DELL, IPIX, QQQ, AMAT)

q4 = (DELL, IPIX, QQQ, AMAT, MSFT)

Figure 5.1(a) shows the average processing time of both approaches using logarith-

mic scale on Y-axis. As can be seen, A-Seq outperforms state-of-art by several orders

of magnitude at all lengths. When l = 2, the processing time of A-Seq is as low as

0.0012ms/event. As the pattern length increases, the performance of state-of-art ap-

proach seriously degrades due to the exponentially time complexity of sequence con-

struction; while the performance of A-Seq only slightly decreases.At length 5, A-Seq is

almost 16736-fold faster than the state-of-art method. This can be explained by the fact

that A-Seq avoids the expensive sequence construction process, resulting in remarkably

scalability.
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Figure 5.1(b) shows the peak memory usage of the two approaches for varying pattern

lengths. Y-axis is used again in a logarithmic scale. As can be seen, A-Seq again wins

significantly in terms of memory utilization, because the only objects created by the A-

Seq solution are prefix counters, whose cardinality is equivalent to all START instances

in the stream. On the other hand, the state-of-art approach must store all relevant event

instances along with the pointers indicating events order, and the intermediate sequence

result matches. As the pattern length increases, the PreCntr number remain stable for

a given input stream, because the maximal number of active START instances is fixed.

Meanwhile, the peak memory of the state-of-art increases dramatically, as more events

are inserted into stacks as the pattern length grows. More importantly, a huge number

of intermediate results are being generated and must be stored for the later aggregation

computation.
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Figure 5.1: (a)(b) Single A-Seq Performance by Varying Pattern Length

Experiment 2 - Varying window sizes w. In this experiment, we evaluate each ap-

proach’s sensitivity to the window size w by varying w from 100ms to 500ms. We fix the

query length at 3 (as q2 in Experiment 1). We again measure both the average processing

time and peak memory of each approach. As depicted in Figure 5.2(a), the performance
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Figure 5.2: (a)(b) Single A-Seq Performance by Varying Window Size
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Figure 5.3: (a)Single A-Seq Stress Test (b) Negation Test for A-Seq

of the state-of-art approach degrades much faster than that of the A-Seq approach. This is

because the sequence construction cost in the state-of-art solution is much more compli-

cated than the operation costs in A-Seq, including PreCntr initialization, count updating

and summation. Thus, as more events are involved in the sequence construction process

due to the window size increasing, the state-of-art loses more. Similarly as in Experi-

ment 1, the A-Seq approach also shows high superiority in memory usage with increasing
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window sizes (see Figure 5.2(b)).

Experiment 3 - Scalability/Stress Test for A-Seq. As demonstrated above, the per-

formance of the state-of-art approach degrades dramatically with the growth in either the

pattern length or the window size. Now we examine the scalability of A-Seq under stress

tests in which the traditional stack-based join method fails in our system (i.e. memory

overflow). Namely, we set the pattern length from 6 to 10, and the window size is fixed at

2000ms instead of 500ms eariler. The pattern queries are as below:

q5 = (DELL,IPIX,QQQ,AMAT,MSFT,CSCO)

q6 = (DELL,IPIX,QQQ,AMAT,MSFT,CSCO,INTC,ORCL)

q7 = (DELL,IPIX,QQQ,AMAT,MSFT,CSCO,INTC,ORCL,YHOO,RIMM)

Figure 5.3(a) illustrates the stress test result of A-Seq in terms of the average processing

time. No significant performance degradation of A-Seq, even at the most extreme case (at

length=10 and window=2000). As can be observed that the performance (0.0219ms/event)

is almost the same as that of state-of-art performance at length=2 and window=100 (0.02ms/event).

Experiment 4 - Negation performance for A-Seq. In this experiment, we study A-

Seq’s performance for processing queries with negation. We compare the performance

of A-Seq (negation pushed down) approach with the state-of-art (post-filtering negation

check) approach, by processing the queries q8 and q9 below:

q8 = (DELL,IPIX,AMAT)

q9 = (DELL,IPIX,!QQQ,AMAT)

q8 and q9 have the same positive pattern (DELL,IPIX,AMAT) while q9 has the addi-

tional negative event type QQQ filter inserted. When processing q9, the state-of-art ap-

proach will first collect all matches of the positive pattern (DELL,IPIX,AMAT), and then

filter out those matches that contain QQQ instances between IPIX and AMAT instances.
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For A-Seq, as the negation checked is pushed down, the sequence detection will terminate

the matching of an instance once a negative event instance arrives. Figure 5.3(b) depicts

the average processing time results for these two methods. We can observe that the A-

Seq approach, experiences almost no overhead for processing the negation query, while

the state-of-art approach suffers from significant overhead introduced by the post-filtering

negation check.

5.3 Multi Query Evaluation

Experiment 1 - Evaluation of Chop-Connect Performance. In this experiment, we

evaluate the sensitivity of CC method with respect to its cost model key parameters. This

experiment is run on a given query group with the fixed sharing plan below (with window

fixed at 1000ms for all queries):

WorkLoad1(WL1):

q1=(DELL,AMAT, YHOO,AMAZ,MSFT,ORCL,RIMM,CSCO,INTC)

q2=(IPIX,FB,YHOO,AMAZ,MSFT,ORCL)

q3=(QQQ,IBM,MSFT,ORCL,RIMM,CSCO,INT)

q4=(VMW,GOOG, YHOO,AMAZ,MSFT,ORCL,RIMM,CSCO,INTC)

q5=(LNKD,NTAP, YHOO,AMAZ,MSFT,ORCL,RIMM,CSCO,INTC)

There are 5 queries in WL1. We fix the sharing plan as: q1, q4 and q5 share sub1

= (YHOO, AMAZ, MSFT, ORCL, RIMM, CSCO, INTC). To observe the effect of each

parameter independently, each time we vary only one parameter of sub1 while the other

two are fixed.

Varying the Connect Event Frequency f . The connect event type in sub1 is YHOO.

We first vary the instance occurrence frequency of YHOO in the stock stream at 0.1%,
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Figure 5.4: (a)(b)Chop-Connect Performance Evaluation by Varying Connect Event Fre-
quency

0.020 

0.025 

0.030 

0.035 

4 6 8 10 12 

P
ro

ce
ss

in
g

 T
im

e(
m

s/
tu

p
le

) 

Shared Length (l) 

CC 

NonShare 

(a) CC Performance when Varying l

0.030 

0.035 

0.040 

0.045 

0.050 

2 3 4 5 6 

P
ro

ce
ss

in
g

 T
im

e(
m

s/
tu

p
le

) 

Shared Query Number (k) 

CC 

NonShare 

(b) CC Performance when Varying k

Figure 5.5: (a)(b)Chop-Connect Performance Evaluation by Varying Shared Length and
Shared Query Number

2.5%, 5%, 7.5% and 10%, while the other is uniformly distributed event types. The

length of sub1 is 7 (l = 7) and it is shared by 3 queries (k = 3). The results of CC

and NonShare methods are illustrated in Figure 5.4(a). We observe that CC performs

better than NonShare when f is smaller than some value between 0.1% and 2.5%. The

performance degrades quickly with f increases, indicating that the CC performance is
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quite sensitive to f . This result is consistent with our cost analysis (see Section 4.3.2),

which demonstrates that the connection cost of connect events contribute significantly to

the CC overhead cost. Thus, the more connect event instances exist (larger f ), the worse

CC performs. To observe the changing point of the CC performance more clearly, we

conduct this experiment again by varying f at much smaller values (see Figure 5.4(b)).

We see that CC performance begins to degrade at 1.3%. Now, we plug in the fixed l and

k of the two shared substrings into our Benefit model and determine that: to make their

BV alue > 0, the f of sub1 should be smaller than 1%, to ensure that we can benefit from

using the CC solution.

Varying the Connect Event Frequency l. We vary the sub1 length from 4, 6, 8, 10

and 12 in the following way:

l=4:(YHOO,AMAZ,MSFT,ORCL)

l=6:(YHOO,AMAZ,MSFT,ORCL,RIMM,CSCO)

l=8:(YHOO,AMAZ,MSFT,ORCL,RIMM,CSCO,INTC,IBM)

l=10:(YHOO,AMAZ,MSFT,ORCL,RIMM,CSCO,INTC,IBM,GOOG,LNKD)

l=12:(YHOO,AMAZ,MSFT,ORCL,RIMM,CSCO,INTC,IBM,GOOG,LNKD,FB,NTAP)

The frequency of YHOO is set to 0.5% to ensure that CC outperforms NonShare. k is 3

means that sub1 is still shared by 3 queries. The results of CC and NonShare methods

are illustrated in Figure 5.5(a). We observe that, compared to the NonShare method, the

performance of CC is increasingly better as l grows, as the processing time difference

of these two methods increases. This indicates that the superiority of sharing is more

pronounced when the shared length is longer.

Varying the Number of Shared Queries k. In this experiment, we add more queries

into the WL1 to compose a larger query group with 8 queries. To vary k at 2, 3, 4, 5

and 6, only 2 of the 8 queries share sub1, while the other 6 queries do not contain sub1.
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Then, each time we change the pattern of one more query to contain sub1. Due to space

limitations, we omit the specific queries here. f is still set to 0.5% and l is 7. The results of

CC and NonShare methods are illustrated in Figure 5.5(b). We observe that the processing

time difference of these two methods is increasing, indicating that compared to NonShare

method, the performance of CC improves with the growth of k. Thus, more queries share

sub1, the better CC performs .

To sum up, the CC performance is most sensitive to f compared with l and k. For a

substring, if its f is low, the longer this substring and the more queries share it, the better

CC will perform. This result is consistent with our Benefit Model analysis (see Section

4.3.2).
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Figure 5.6: (a)(b)Comparisons between Multi-query Optimizers in terms of Running
Time and Effectiveness

Experiment 2 - Evaluation of Multi A-Seq Optimizer. In this experiment, we com-

pare the two optimization algorithms: our optimizer (Multi A-Seq) and the optimal search

(Exhaustive), by applying them to the same query groups. We design 12 query groups

(QG), where QG1 to QG3 contain 8 queries, QG4 to QG6 contain 12 queries, QG7 to

QG9 contain 16 queries, and QG10 to QG12 contain 20 queries. To ensure that queries

have common substrings to share within each group, we first design 8 substrings of length

2 to 3. Then we compose queries by randomly forming combinations of these 8 sub-
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strings. Thereafter, we adjust the event stream by controlling the frequency of the connect

event types. This provides the opportunity for sharing plan to have positive benefit values,

otherwise our optimizers would quickly suggest to the NonShare solution. Due to space

limitations, we do not list these 12 query groups here. We run both approaches on these

12 query groups, record their optimization running time, and compare whether our opti-

mizer returns the same sharing plan as the optimal algorithm. The results are illustrated

in Figure 5.6(a).

As depicted in Figure 5.6(a), the running time of the Exhaustive optimizer is signifi-

cantly longer than that of our Multi A-Seq optimizer on average, with Y-axis in a logarith-

mic scale. The larger the query group is, the more sharing chances arise. Consequently,

the longer time the Exhaustive optimizer takes. While the performance of Multi A-Seq

optimizer is efficient and fairly stable. For the quality of the optimizers found, Multi A-

Seq optimizer returns optimal results in 11 of 12 groups. For QG7, the result slightly

differs, however, below we show that it does not make big difference in performance.

This confirms that our optimizer achieves high accuracy in practice..

In addition, we process these 12 query groups with sharing plans suggested by the

optimizers, and record the average processing time result to test the effectiveness of our

Multi A-Seq optimizer (Figure 5.6(b)). Generally speaking, if the Multi optimizer sug-

gests to share, the performance of share (gray bar) is always better than non-share (white

bar). For QG3, QG5 and QG6, both optimizers suggest computation each query sepa-

rately without sharing. Thus no result is shown for these 3 groups. For QG7, where the

Multi A-Seq optimizer returns a different sharing plan compared to the Exhaustive opti-

mizer, we thus process QG7 with 3 plans: NonShare, our Greedy optimizer, and Exhaus-

tive optimizer (black bar). W can see that the latter two plans perform indeed both better

than NonShare, with the Exhaustive optimizer is only slightly better than our Greedy opti-

mizer. To conclude, our Multi A-Seq optimizer is highly accurate yet extremely efficient.
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Chapter 6

Related Work

Complex Event Processing. CEP systems have been developed for scalable pattern de-

tection over high-speed data streams. SASE [9, 25] employs an NFA-based matching

model for stack-based sequence construction. Cayuga [4] employs a more general NFA

system for processing complex events. These two systems inherit the limitations of the

NFA-based model including the late negation-filter processing. ZStream [17] optimized

this CEP sequence matching process by selecting a flexible tree-based query execution

plan using costing in place of the fixed-order NFA evaluation. However, no technique

has been proposed to address the aggregation computation performance over sequence

patterns. Rather, in these CEP systems, aggregations would be applied as a post-pattern-

detection step, resulting in inefficient solution as demonstrated by our experiments (Sec-

tion 5.2).

Aggregations over Stream Data. Research on traditional aggregation over data

streams has also been studied. [12, 13] propose incremental techniques that avoid re-

computation among overlapping sliding windows. [26] provides an optimal solution to

top-k aggregation. Unlike the work mentioned above, [27] maintains aggregates using

multiple levels of temporal granularities: older data is aggregated using coarser granu-
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larities while more recent data is aggregated with fine detail. However, these state-of-art

aggregation techniques are all set-based (like aggregation in a relational database) instead

of sequence-based. That is, the aggregates are computed over individual data events of

the stream rather than over detected complex sequences.

Aggregation in Static Sequence Databases. For static sequence databases, SQL-

style languages support order join operation among data records and also aggregation

functions [1, 16]. However, these works assume that the data is still statically stored

apriori to processing. Also, sequence is defined by time-based predicates instead of con-

tinuously arriving event streams. Thus, customized query processing strategies are de-

signed to implement operators with such time-based predicates that effectively utilize

disk-and-buffer resources. In contrast, A-Seq targets dynamic stream data where results

are produced instantaneously and continuously upon the arrival of data. [1, 22] sup-

port range-based aggregation, where independent data records within a certain time range

are aggregated. A-Seq instead works at a higher level, where aggregates are over multi-

sequences rather than within a single sequence. Moreover, in [19, 21], aggregations are

specified for patterns with recursion, however, again on independent data records.

Data Mining of Sequential Patterns. Sequential pattern mining aims to discover

all subsequences that frequently arise over sequential data. Typically, they use a Prefix

Tree (PF-Tree) structure and the Apriori Principle to find all frequent subsequences [6, 7,

18, 20]. Clearly, the problem introduced by those works is distinct from ours. First, in

our context, the pattern query is pre-specified by users and thus our task is to search for

occurrences of that particular sequence pattern rather than to discover all possible frequent

patterns. Second, the notion of sliding window semantics is not adopted in sequential

pattern mining. Thus, solutions to tackle efficient data purging or result updating are not

required. Third, existing sequential pattern mining does not handle CEP specific problems

including negation.
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Multi-query Sharing. A lot of research has also been done on multi-query sharing

topics. [28] presents a method to detect potential sub-expression sharing opportunities

among multi expressions. [16] supports OLAP based aggregation operations for sequence

by incorporating hierarchy for pattern sharing. However, these two works are for tra-

ditional static databases, which cannot solve the issues caused by continuos streaming

data. [11] extends aggregation to multi-query workloads by sharing streaming aggregate

queries with differing periodic windows and arbitrary selection predicates. Yet, these

techniques focus on non CEP pattern queries, where sequence constraint is not taken into

account. citeMOEcube proposes concept and pattern hierarchy to explore the sharing

opportunities among multi CEP pattern queries. But those sharing strategies are designed

for stack-based sequence construction computation, thus can only be applicable to the

post two-step aggregation.
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Chapter 7

Conclusion

In this thesis, we present the A-Seq approach for high-performance processing of CEP

aggregation queries in streaming environments. A-Seq pushes the aggregation computa-

tion into the pattern detection process. It gracefully tackles the CEP-specific challenges

including window constraints, negation and predicates. Compared to the state-of-art two-

step solution, A-Seq is a lightweight computation method, which achieves several orders

of magnitude savings in terms of both CPU costs and memory utilization. Techniques for

A-Seq aggregation computation sharing among multi-query workloads is also developed

for multi-query optimization. First, the problem is shown to be NP-hard, then an efficient

cost-driven Multi A-Seq optimizer is designed to search and form a sharing plan for a

given multi-query workload, which is shown to be practical while achieving high-quality

(near optimal) sharing plans.
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