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Abstract 

Human needs are being increasingly addressed by information technologies. As a 

consequence, market competition has shifted toward developing innovative user 

experiences. Neuro information systems (NeuroIS) that detect user needs automatically 

can play a major role in addressing the continual demand for innovative user experiences 

in today's digital economy. By using sensors that can collect physiological measurements 

from users, NeuroIS can provide a continuous stream of valuable objective data for 

detecting user needs in various problem domains. 

One problem domain that can be addressed by NeuroIS is chronic pain. Chronic pain is 

a major public health problem that impacts 1 out of 5 American adults. Assessment of 

chronic pain is often achieved via self-reported scales. Research indicates that identifying 

measures that can objectively assess chronic pain can improve its effective treatment. 

Grounded in pain and eye tracking literature, I developed a theory-based eye tracking 

machine learning (ETML) engine as a proof of concept. Grounded in prior research, I 

develop a set of visual stimuli and an extensive set of eye tracking features that can be 

used to detect a person’s chronic pain status from the person’s eye movements. 

Grounded in user-centered design framework, I also propose and test an iterative process 

for developing such a NeuroIS (ETML engine) over time as more data becomes available. 

The results of my project show that the visual stimuli and the eye tracking features that I 

have developed for designing the ETML can indeed help to build a reliable NeuroIS for 

detecting chronic pain status. The results of my project also suggest that my proposed 

iterative process is likely to produce a robust ETML that can predict chronic pain status 

with 80% accuracy or more.  
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1. INTRODUCTION 

Today's digital economy is driven by continuous market demand for innovation. This 

market need can be met by creating smart adaptive devices that provide useful services 

with excellent user experiences (Djamasbi and Strong 2019). Neuro information system 

(NeuroIS) research can address this pressing market need thanks to advances in 

technology that make it possible to use sensors to collect physiological measures without 

burdening users. NeuroIS research aims to use physiological measures to detect 

changes in user experiences and/or behaviors, so that systems can be designed to 

respond in real time to user needs (Fehrenbacher and Djamasbi 2017; Shojaeizadeh et 

al. 2019). Because vision is the dominant sense of human being (Pocock 1981) research 

in this area recently received more attention and was used in NeuroIS research. To collect 

data about this dominant sense, the use of modern eye trackers has become more 

popular. These eye-trackers can unobtrusively collect accurate gaze data without 

requiring additional gears such as chin rests. As eye movements reveal a great deal about 

a person's attention to objects in visual environments, and that they can be collected 

unobtrusively, eye tracking has become a gold standard for investigating user experience 

and behavior objectively (Alrefaei et al. 2022; Djamasbi 2014; Norouzi Nia et al. 2021; 

Shojaeizadeh et al. 2019). 

One problem domain that can benefit from developing eye-tracking enabled NeuroIS is 

chronic pain. Pain is defined as “a distressing experience associated with actual or 

potential tissue damage with sensory, emotional, cognitive, and social components” 

(Williams and Craig 2016). A pain experience that is rated as 4 or higher on a 0-10 low to 

high scale and lasts more than 3 months is called chronic pain (Alrefaei et al. 2022). 

Chronic pain is considered as a major public health problem that afflicts about %20 of 

American adults (Yong et al. 2022). Chronic pain is often assessed with self-reported 

measures. While understanding pain from a patient point of view is important, it lacks the 

objectivity that is often needed for effective treatment and management of chronic pain 

(Alrefaei et al. 2022). Developing a NeuroIS that can detect chronic pain status from eye 
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movements can serve as a first step toward providing objective measures for chronic 

pain. 

Regarding the importance of chronic pain, the National Health Survey introduced a pain 

module in 2019. The module estimated that 50.2 million (1 out of 5) American adults 

experienced chronic pain. This group missed 10.3 working days compared to non-chronic 

pain people who, on average, only missed 2.8 days. This difference between the missed 

days of the two groups is significant (p<0.001). Based on the survey, the impact of chronic 

pain on the economy is notable. The US annual lost wages are estimated to be $79.9 

billion, and the lost productivity can account for $300 billion. In contrast, the estimated 

yearly US expenditure on medical expenses lost productivity, and disability programs 

comprise 560 billion dollars. The estimates shed light on the magnitude of the topic and 

demonstrate the importance of improving treatment of chronic pain, for example, by 

providing objective measures for identifying and treating chronic pain. 

In this dissertation, I address this gap in knowledge by developing an eye tracking 

machine learning ETML engine that can detect chronic pain from the objective measure 

of eye movements as a proof of concept. In addition to building the proof of concept, I 

propose and test an iterative process to continue refining the initial proof of concept. When 

designing new products, minimum viable products (MVPs) are tested iteratively with 

smaller sets of data until a success threshold is achieved (Tullis and Albert 2013). By 

gathering insight iteratively from smaller datasets, such an iterative process facilitates 

efficiency. Similarly, building an ETML proof of concept with a relatively smaller set of 

data, and validating and refining it as needed (iteratively) with new sets of data allow us 

to build reliable engines over time efficiently and cost-effectively.  

Research has shown that eye movements can provide insight into task load 

(Fehrenbacher and Djamasbi 2017) and can be used to detect cognitive load 

automatically (Shojaeizadeh et al. 2019). As pain impacts cognition, and eye movements 

can reliably measure cognitive load, it is reasonable to assume that eye movements can 

also measure chronic pain. I explore this possibility through developing an eye-tracking 

machine learning (ETML) engine, as a proof of concept that is grounded in eye tracking 
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and pain literature, that predicts chronic pain status. My proposed iterative process for 

developing such an ETML, requires iterative validation with new sets of data. I set the 

threshold for validation success in my project to 80% accuracy. For this accuracy 

threshold and given the complexity of the problem domain (e.g., predicting chronic pain 

status from eye movements), it is reasonable to expect that the development process 

must go through several iterations before it can pass the success criteria.  As expected, 

the initial proof of concept in my project did not achieve the 80% validation accuracy 

threshold that was set as the success criteria for developing a finished product. Hence, I 

followed my proposed iterative process, and as the last step in my project, I used the 

entire dataset to refine the ETML. The refined ETML developed based on the combined 

datasets supported the initial theoretically based proof of concept in this project; it showed 

that the eye tracking metrics and visual stimuli used in the project were effective in 

predicting chronic pain. Hence the refined ETML, based on my proposed iterative 

process, warrants further development. While refining the ETML with the combined 

datasets was the last step in my current project, the results obtained provide support for 

the theoretical soundness of the ETML as well as the visual stimuli, and task used to 

collect eye movements. The results from iterative refinement of the ETML, suggests that 

the proposed iterative process is likely to results in a robust ETML for predicting chronic 

pain. 

In the following sections, I explain the theoretical background for the design of the ETML. 

This was achieved by conducting a thorough review of literature that used eye tracking to 

investigate the impact of chronic pain on attention to visual stimuli. Following the review 

of literature, in the method section I describe the method that I used to construct the ETML 

that can detect chronic pain status by expanding the task paradigm and eye movement 

metrics used in the reviewed studies. I also explain the method that I used to validate the 

ETML proof concept. Then I explain my proposed process for developing such ETML 

iteratively with newly collected sensor data over time.  Finally, I explain how I used my 

proposed iterative process to develop a theoretically based refined proof of concept for 

predicting chronic pain-status using only eye movements.  
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The results of my project show that the task (reading) and visual stimuli (text passages) 

used to develop the ETML provided a rich context for investigating the impact of pain on 

visual behavior. Hence, a major contribution of my project is extending the task paradigm 

in chronic pain literature. The current chronic pain literature focuses mostly on measuring 

the initial stages of attention (e.g., using metrics such as first fixations, or duration of first 

visit). Extending the task paradigm into reading allows us to investigate the impact of 

chronic pain more effectively in later stages of attention, such as attention maintenance 

(e.g., using saccadic eye movements to measure a change in attention and pupillometry 

to measure the intensity of effort). I extended the currently used eye metrics to a rich set 

of eye movement features, which were not previously used in the chronic pain literature. 

This set is suitable for measuring both initial and later stages of attention. In this regard, 

my project majorly contributes to chronic pain and eye tracking literature.  

The results of my project have also major contribution for NeuroIS research. The results 

showing that the eye movement metrics I used to develop the ETML were reliable 

predictors of chronic pain status, establish eye movements as reliable biomarkers of pain. 

The methodology and iterative process I proposed for developing the ETML proof of 

concept lays the groundwork for developing NeuroIS that can predict chronic pain 

objectively, automatically, and unobtrusively. According to a recent user-centered 

framework (Djamasbi and Strong 2019), to address the challenge of continual market 

demand for innovation, we must develop smart engines that can adjust and modify as 

more data becomes available. The iterative process that I propose in this project for 

designing an ETML iteratively over time can serve as an initial framework for developing 

such smart NeuroIS systems that can address the market demand for innovation.  

 

2. BACKGROUND 

The ETML engine development in my project was carried out using data collected through 

an eye tracking study that required participants to read four different short texts (each 

about 100 words). Eye movement metrics used to develop the ETML as well as the design 
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of visual stimuli and the task in the study were based on a systematic review of literature 

involving chronic pain and eye tracking. This review, which examines eye movement 

metrics, visual stimuli, and task paradigms used to compare viewing behavior of people 

with and without chronic pain, are provided in this section. 

2.1. Eye Tracking Chronic Pain 

I began my research by looking into prior chronic pain studies that used eye tracking.  

The amount of chronic pain research that has used eye tracking methodology is 

somewhat limited as attested by a review article published in 2020 (Chan, Suen, Jackson, 

et al. 2020). An overview of the research that used eye tracking data to study pain has 

been published in a 2020 review paper. The systematic review conducted by this article 

resulted in 24 papers. Out of the 24 papers, 9 of them dealt with chronic pain. To update 

the findings of the 2020 review regarding chronic pain to include papers from 2020-

present, I conducted a systematic review using the same keyword combinations used in 

Chan's review paper to maintain consistency throughout the study. The search was 

adjusted to return related papers in the three databases, as there were differences in the 

logic order of the three databases. I used the same databases except one, Web of 

Science. I used Scopus instead of Web of Science because it contains a larger set of 

journals. There are 21,950 journals in Scopus in comparison to 13,100 journals on the 

Web of Science according to(Iowa State University 2022). A further fact to consider is 

that about 99.11% of journals indexed by Web of Science are also indexed by Scopus. 

The keywords used for each database can be found in Table 1. 

Table 1: Databases and Keyword 

ProQuest 

TI,AB,IF(pain) AND TI,AB,IF(eye PRE/0 track* OR gaze AND behavio*r OR 

ems OR eye PRE/0 movement* OR fixation) AND TI,AB,IF(attention* PRE/0 

bias* OR selective PRE/1 attention OR vigilance OR hypervigilance OR 

avoidance OR maintenance OR disengagement) 

PubMed 
(((pain[TW]) AND (("eye-track*"[TW] OR "eye track*"[TW] OR "gaze 

behavior"[TW] OR EMs[TW] OR "eye movement*"[TW] OR fixation[TW])) AND 
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(2020/5/1:3000/12/12[pdat])) AND (("attention* bias*"[Text Word] OR "selective 

attention"[Text Word] OR vigilance[Text Word] OR hypervigilance[Text Word] 

OR avoidance[Text Word] OR maintenance[Text Word] OR 

disengagement[Text Word])) 

Scopus 

TITLE-ABS-KEY ((pain) AND (eye- AND tracking OR eye AND tracking OR 

gaze AND behavio*r OR ems OR eye AND movement* OR fixation) AND 

(attention OR bias* OR selective AND attention* OR vigilance OR 

hypervigilance OR avoidance OR maintenance OR disengagement)) 

 

My systematic review resulted in 96 papers, after removing duplication and making sure 

they were about chronic pain 9 papers were left. following the criteria of the 2020 review 

paper, I updated the search to include any related papers published after May 2nd, 2020, 

which resulted in finding 18, 59, and 19 papers in ProQuest, PubMed, and Scopus 

databases, respectively. The repetitive papers were removed from the review. Due to the 

fact that the purpose of this study is to differentiate chronic pain from healthy people, I 

excluded any research that did not include chronic pain and healthy participants, did not 

use eye-tracking data, or was a review of other studies. My systematic review resulted in 

96 papers, after removing duplication and making sure they were about chronic pain 9 

papers were left. This process resulted in a total of 18 papers (see Table 2). 

During the process of searching for relevant original papers, I came across of another 

review paper (Jones et al. 2021) that covered papers up to 2021. My updated review 

included all the relevant papers that were listed in the 2021 review and expanded that 

review to include all relevant papers to present.  

I report the findings of the comprehensive review in the following fashion. I begin by 

discussing participants’ characteristics in the reviewed papers. I then summarize the 

task/stimulus they used and continue by discussing the analysis methods that were used 

in the reviewed studies. Next, I explain the type of analysis used in these studies. Then I 

explain how eye-tracking was operationalized in the context of chronic pain and provide 

a summary of the analysis of the 18 relevant papers reviewed for my project in Table 2. 
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2.1.1. Participants' Characteristics 

Most studies conducted their investigations by comparing the viewing behavior of those 

who suffered from chronic pain with those who were pain free. There were a few 

researchers who, in addition to recruiting both chronic pain and healthy groups, have also 

divided the participants into subgroups and matched the number of participants in each 

group in the study. For instance, (ten Brink et al. 2021) focused on one type of chronic 

pain, Complex Regional Pain Syndrome (CRPS), but in addition to recruiting participants 

with CRPS along with healthy participants, the same numbers of patients with chronic 

pain but with different kinds of pain were also recruited, to create a pain control group. 

(Giel et al. 2018), for example, created a control group with depressive symptoms 

matching the chronic-pain (CP) group, or (Chan et al. 2022) investigated the reactions of 

participants in four groups of young CP and pain-free (PF), as well as old CP and PF.  

Here, for comparing the eye movement and other characteristics of chronic pain patients 

with those of healthy participants, only studies that recruited chronic pain patients and 

healthy participants were included.  

 

2.1.2. Stimulus and Task 

There has been a trend to use a dot-probe task as one of the most commonly used tasks 

in pain studies (Chan, Suen, Jackson, et al. 2020), and it has even become popular 

among eye tracking research that is focused on chronic pain. Researchers used to use 

the dot-probe method, where the participants were presented with either pain or non-pain 

words or faces, and they were then asked to respond to a dot that appeared after the 

stated words or faces appeared to compare their response to pain or non-pain. Due to 

the limited amount of information about a user based on reaction time alone, researchers 

have started to use eye trackers to gather information beyond what the initial attention to 

a dot in the dot probe will reveal about the user. 
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Amongst those researchers, (Fashler and Katz 2014; Yang et al. 2013) used neutral 

words and pain words as stimuli for dot-probe tests with an eye tracker, while (Fashler 

and Katz 2016; Franklin et al. 2019) used scene images (neutrals, injuries) and (Mazidi 

et al. 2021) used faces (happy, sad, neutral). 

Another common task used in these studies is free viewing, during which participants are 

asked to explore one or more images, faces, or activities that appeared in random 

locations or participants were told where to look for them. In some studies, emotional 

faces such as happy, sad, painful, and angry photos have been presented to the 

participant, such as in (BlaisdaleJones et al. 2021; Chan et al. 2022; Chan, Suen, Hsiao, 

et al. 2020; Giel et al. 2018; Liossi et al. 2014; Priebe et al. 2021; Soltani et al. 

2022). There have also been studies in which scene images such as painful daily 

activities as well as neutral daily activities were used (Mahmoodi-Aghdam et al. 2017; 

Shiro et al. 2021). As an example of a painful activity, (Shiro et al. 2021) use a video 

where a person touches the hand of another person. Considering that participants in this 

study had chronic pain in one hand, touching the same hand of the person in the video 

could trigger the pain for the participant and result in different eye movements, which were 

recorded and analyzed. 

Researchers also used visual search to investigate the impact of pain on cognition. 

Hence, for example, researchers have used face images (pain, angry, happy, neutral) 

(Schoth et al. 2015) or another shape such as a diamond (Koenig et al. 2021) images to 

investigate participant's ability to distinguish between the target and distractors. (Soltani 

et al. 2020) used Flanker task, a visual filtering task. 

The paper by (ten Brink et al. 2021) implemented a multi-task design involving dot-probe, 

free viewing, and visual search, as well as free-viewing. 

While Dot probe is the most popular task used in the reviewed studies it has an inherent 

limitation. When single words are used as a stimulus, it is possible that participants 

interpret the same word differently. For example, one participant might perceive "sharp" 

as a neutral word given that it recalls a sharp knife, while another might view it as a pain 
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word because it recalls sharp pain. This ambiguity then can affect the results obtained 

from eye movements. A different stimulus with richer context is likely to reduce ambiguity 

and by doing so remove the noise caused by possible different interpretation of the 

stimulus. 

 

2.1.3. Analysis Method 

Regarding the analysis method, 16 of 18 relevant papers used only basic statistical 

methods, while 2 papers used machine learning as well as basic statistical methods. 

None of the papers which used basic statistical methods were able to find significant 

differences in viewing behavior between the groups. The two papers (Chan et al. 2022; 

Chan, Suen, Hsiao, et al. 2020) that used machine learning methods used Hidden Markov 

models to cluster the eye movements of participants to nose-centric versus eye-centric in 

one paper and explorative versus focused in the other paper. Then they used basic 

statistics to compare viewing behavior (e.g., nose vs. eye centric or explorative vs. 

focused) between the chronic pain and pain-free groups. Yet, they could not find a 

significant difference between eye movements of the two groups. 

Overall, neither of the approaches found a significant difference between the eye 

movements of chronic pain and healthy participants. 

 

2.1.4. Operationalization and Quantification of 

Attentional Bias 

Eye tracking analysis starts by identifying areas of interest (AOI) in visual stimuli. A 

defined AOI is used by the investigator to study viewing behavior related to that specific 

region of stimuli. Participants will not be able to see the AOI, as it is only visible to the 

researchers. 
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Eye movement variables used in the reviewed studies are related to fixation, visit, and 

only one study used pupillometry metrics. Fixations refer to relatively slow eye 

movements, during which a visual stimulus can be processed and understood. Hence, 

fixations are considered as reliable indication of attention. 

Visit refers to the period of time between the first fixation to an AOI, and the last one 

before a different AOI is looked at. A visit can include a single fixation or a series of 

fixations, and a saccade (high velocity eye movement between fixations) or more. 

Pupillometry metrics, which measure pupillary responses to stimuli, are considered 

reliable indication of cognitive activity (Shojaeizadeh et al. 2019). Only one out of 18 

papers used pupillometry metrics to study chronic pain. 

None of the studies used saccadic eye movements, which refer to rapid eye movements 

that change the focus of attention from one focal point (fixation) to another. 

In the following paragraphs, I will explain the eye movement variables that were used in 

the reviewed studies. I start by discussing the fixation metrics followed by visit metrics. 

For a fair comparison, some researchers calculated Cohen's d. Whenever this value is 

reported by researchers, it is referred to herein as "d". 

 

First fixation proportion: 

The percentage of the number of fixations on an AOI during the first visit divided by the 

total number of fixations on that AOI during all visits. 

A study by (Mahmoodi-Aghdam et al. 2017) found that all participants had significantly 

more first fixations (d = 2.00) for painful activity than neutral images, whereas a study by 

(Giel et al. 2018) found that all participants had more first fixations (d = 1.44) for happy 

faces than neutral faces. However, these differences were not significant between 

groups. The proportion of first fixations was not found to differ significantly across studies 
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carried out by (ten Brink et al. 2021; Chan et al. 2022; Liossi et al. 2014; Mazidi et al. 

2021; Schoth et al. 2015; Soltani et al. 2020; Yang et al. 2013). 

 

Time To First Fixation (First Fixation Latency): 

The time between the onset of the stimulus and the first fixation on a particular AOI. 

(BlaisdaleJones et al. 2021; Schoth et al. 2015) have both found that all participants had 

a shorter first fixation latency for pained faces and happy faces compared to neutral faces, 

but there were no significant differences between the groups. (Mahmoodi-Aghdam et al. 

2017), on the other hand, reported shorter first fixation latency between pain-free groups 

for images of neutral versus painful activity (d = 0.70). Additionally, (Franklin et al. 2019) 

reported that the chronic-pain group had shorter first fixation latency (d = 0.90) for painful 

activity images than neutral images, and the chronic-pain group also had shorter first 

fixation latency (d = 0.70) on painful activity images than the pain free group. As a 

contrast,(Mazidi et al. 2021; Yang et al. 2013) did not find any significant differences 

between groups in regard to their time to first fixation. 

 

First Fixation Duration: 

The duration of the first fixation. 

A study by (Yang et al. 2013) reported that the chronic-pain group had a shorter first 

fixation duration on health-catastrophe words than the pain-free group when compared 

with the chronic-pain group. According to (Mahmoodi-Aghdam et al. 2017), people with 

higher current-week pain severity had shorter latency for first fixation of painful activity 

images (d = 1.38) when compared to those with lower pain severity. On the other hand, 

(Koenig et al. 2021; Liossi et al. 2014; Mazidi et al. 2021) found no significant differences 

in the duration of the first fixation between the two groups. 
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Average Fixation Duration: 

Average duration of single fixations. 

(Liossi et al. 2014) reported that participants' average fixations on happy faces were 

longer than those on pained faces (d = 0.27 for all participants). On the other hand, 

(Franklin et al. 2019) found that the average duration of fixations for neutral images was 

longer in the chronic-pain group than for images that contained painful activity (d = 0.80). 

A longer average fixation duration (d = 0.90) was also reported in the chronic-pain group 

compared to the pain-free group on images showing painful activity. The average duration 

of fixation, however, did not appear to differ significantly between the two studies 

conducted by (Fashler and Katz 2014, 2016). 

 

Total Fixation Count: 

Total frequency of fixations 

(Fashler and Katz 2014) reported that the chronic-pain group had more total fixations on 

sensory-pain words than the pain-free group (d = 0.48). The studies conducted by 

(Fashler and Katz 2014; Mahmoodi-Aghdam et al. 2017), respectively, also found that all 

participants had higher total fixations on pain stimuli as compared to neutral stimuli (d = 

1.54) and (d = 2.73). (BlaisdaleJones et al. 2021) also found that there was a significant 

difference in the number of fixations made on pain stimuli by all participants, but no 

significant difference between groups. (Franklin et al. 2019), however, found only the 

chronic-pain group had more fixations (d = 1.57) for images containing painful activity 

than those with neutral activity. In spite of these findings, (BlaisdaleJones et al. 2021; 

Chan, Suen, Hsiao, et al. 2020; Mazidi et al. 2021; Shiro et al. 2021) did not find any 

discernible difference between the groups. 



 13 

Total Fixation Duration: 

Total duration of fixations on a specific AOI. 

Visit duration includes the amount of time for both fixation and saccades (rapid eye 

movements between fixations). In addition to recording the visit duration of the stimulus 

over its whole visible duration, some researchers recorded it over shorter periods. In dot-

probe, for example, if the words were visible for 2000 ms, the visits during 0-500, 500-

1000, 1000-1500, and 1500-2000 ms are separately recorded. 

As reported by (Fashler and Katz 2014), CP participants experienced a longer period of 

time during their 1000-2000 ms visit for sensory pain compared to neutral words (d = 

0.76). In contrast, (Fashler and Katz 2016) noted that all participants had longer total 

fixation durations for neutral images during 0-500 ms (d = 0.77) and for injury images 

during 500-1000 ms (d = 0.53), and CP group had a longer total fixation duration for injury 

images during 1000-2000 ms. 

As for faces, (Giel et al. 2018) found that participants had a longer total fixation duration 

(d = 1.69) for happy faces than for neutral faces, while (Mazidi et al. 2021) found that the 

duration of the visit for happy faces was longer than the duration for pained faces during 

1000–1500 ms (d = 0.31). 

In (BlaisdaleJones et al. 2021), there were significant differences in visit duration between 

all participants subjected to a pain stimulus, whereas no significant differences were 

identified between groups on pain stimulus. Furthermore, (ten Brink et al. 2021; Chan et 

al. 2022; Mahmoodi-Aghdam et al. 2017; Yang et al. 2013) have not found any 

remarkable differences in the duration of total fixations. 

 

Total Visit Count: 

Frequency of visits of an AOI. 
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A greater number of total visits (d = 1.11) were reported in (Fashler and Katz 2014) for 

sensory pain words than for neutral words by everyone in the study. In addition,(Liossi et 

al. 2014) found that the number of visits to neutral faces was higher than that to angry 

faces (d = 0.26) and pained faces (d = 0.38), as well as to neutral faces compared to 

angry faces (d = 0.45) and pained faces (d = 0.57). As per(Fashler and Katz 2016) similar 

results were obtained with more participants visiting for injuries (d = 1.66) than for neutral 

images. The findings of (Koenig et al. 2021), however, showed a higher number of 

distractors visiting in higher threat conditions, but not a significant difference between the 

two groups. 

 

Average Visit Duration: 

Average time spent on an AOI. 

There was a longer visit duration for sensory pain than neutral words (d = 0.87) in a study 

by (Fashler and Katz 2014) among chronic-pain patients. A more recent study by (Fashler 

and Katz 2016) found that the average visit duration for injury images (d = 0.74) was 

longer than the average visit duration for neutral images among all participants. 

 

In my review, I discussed popular variables used in chronic pain studies. Despite this, 

there are a few researchers who use other eye-tracking variables. For instance, only a 

team of researchers used the average duration of a visit in their analyses.  Using none of 

those variables, the researchers were able to separate the chronic pain group from the 

healthy group. 

Moreover, there were limited variables in the relevant papers due to the limitations of the 

analysis method, basic statistics. 16 out of these 18 papers used basic statistical methods 

with no more than 6 variables. Yet, both papers that used machine learning methods that 
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could handle large sets of variables used no more than five variables. Overall, in previous 

research, very few variables are used to distinguish chronic pain from healthy people. 

Additionally, there have been eye tracking studies which, in order to understand user 

characteristics such as cognitive loads and develop automatic tools for detecting user 

status, used other variables such as saccadic or pupillometry features (Shojaeizadeh et 

al. 2019). As pain is a complex phenomenon that can have a significant impact on 

cognitive function, I use a wide range of eye tracking variables that  measure attention 

(fixation) change in attention (saccade) and cognitive effort (pupillometry) in order to 

develop my tool. 

A summary of 18 related papers is provided in Table 2: 
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Table 2: Summary of Literature Review 

  
Participants Task 

Research Question/ 

Hypotheses 

Eye Movement 

Variables 
Key Findings 

1 (Yang et al. 

2013) CP 

and PF 

groups with 

high and low 

fear of pain 

subgroups 

(24 CP, 24 

PF) 

  

Dot-Probe 

(2000 ms) 

Words 

(sensory-

pain, health 

catastrophe, 

neutral) 

1. Participants with 

higher fear of pain 

were expected to 

display more fixation 

and shorter time to first 

fixation on pain/health 

catastrophe words 

than neutral 

alternatives 

2. Effects of Fear of pain 

and pain status on 

subsequent biases in 

attention maintenance 

(first fixation and total 

fixation durations were 

explored 

1. First fixation 

proportion 

2. First fixation 

latency 

3. First fixation 

duration 

4. Total fixation 

duration 

 

1. CP had a shorter first fixation 

duration on health-

catastrophe words than the 

PF group 

2. No significant finding for first 

fixation latency and total 

fixation duration or first 

fixation proportion 

2 (Fashler and 

Katz 2014) 

51 CP, 62 PF 

Dot-Probe 

(2000 ms) 

(sensory-

pain, 

neutral) 

CP participants, compared to 

PF, will: 

1. Fixate more to sensory 

pain-related words 

1. Total fixation 

count 

2. Total visit count 

3. Average fixation 

duration 

1. CP group had more total 

fixations on sensory pain 

words than PF group (d = 

0.48) 
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2. Exhibit a different 

pattern of sustained 

attention to sensory 

pain-related and 

neutral words 

3. Show an attentional 

bias toward sensory 

pain-related words at 

different stages of 

visual attentional 

processing 

4. Average visit 

duration 

5. Total fixation 

duration during 

0–500, 500–

1000, and 

1000–2000 ms 

2. CP participants had longer 

visits (d = 0.87) and longer 

total fixation duration during 

1000–2000 ms (d = 0.76) for 

sensory pain than neutral 

words 

3. All participants had more total 

fixations (d = 1.54), more total 

visits (d = 1.11), and longer 

total fixation duration (d = 

0.54–1.26) for sensory-pain 

than neutral words 

4. No significant finding for 

average fixation duration 

3 (Liossi et al. 

2014) 

23 CP, 23 PF 

Free 

viewing 

(4000 ms) 

Face 

images 

(pain, angry, 

happy, 

neutral) 

CP individuals, compared to 

PFs, would demonstrate: 

1. A higher proportion of 

initial fixations on pain 

expressions 

2. Longer first fixation 

duration 

3. More visits to pain 

expressions. 

1. First fixation 

proportion 

2. Total visit count 

3. First fixation 

duration 

4. Average fixation 

duration 

  

1. CP had more first fixations on 

pain than neutral faces 

(d=1.21) 

2. CP had more first fixations on 

pained faces than PF group 

(d=0.79) 

3. All participants had more 

visits to happy compared to 

angry (d = 0.45) and pained 
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4. The current 

investigation also 

explored the specificity 

of bias when 

negatively-valenced, 

positively-valenced, 

and neutral target 

pictures were 

presented 

simultaneously. 

faces (d =0.57), and 4to 

neutral compared to angry (d 

= 0.26) and pained faces (d = 

0.38) 

4. All participants had longer 

fixations for happy than 

pained faces (d = 0.27) 

5. No significant finding for first 

fixation duration 

4 (Schoth et al. 

2015) 

23 CP, 24 PF 

Visual 

search, 

Face 

images 

(pain, angry, 

happy, 

neutral) 

CP individuals relative to PFs 

would show: 

1. A significantly higher 

proportion of initial 

fixations to target pain 

expressions 

2. Significantly shorter 

time to first fixation on 

pain expressions 

1. First fixation 

proportion 

2. First fixation 

latency 

1. CP group had more first 

fixations on pain than neutral 

faces (d = 1.01) 

2. CP had more first fixations on 

pained faces than PF 

(d=0.93) 

3. All participants had shorter 

first fixation latency for 

pained (d = 1.12) and happy 

faces (d = 0.53) than neutral 

faces 
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5 (Fashler and 

Katz 2016) 

51 CP, 62 PF 

Dot-probe 

(2000 ms) 

Scene 

images 

(injury, 

natural) 

CP individuals would show: 

1. More fixations on 

injury pictures 

2. Higher fixation 

duration on injury 

pictures 

3. Longer visit of injury 

pictures in later 

phases of attention 

than PFs. 

1. Total fixation 

count 

2. Total visit count 

3. Average fixation 

duration 

4. Average visit 

duration 

5. Total visit 

duration during 

0–500, 500–

1000, and 

1000–2000 ms 

  

1. All participants had more 

fixations (d = 1.74), more visit 

(d = 1.66) and longer average 

visit 

2. Duration (d = 0.74) for injury 

than neutral images 

3. All participants had a longer 

total fixation duration for 

neutral images during 0–500 

ms (d = 0.77) and for injury 

images during 500–1000 ms 

(d = 0.53) 

4. CP group had a longer total 

fixation duration for injury 

images during 1000–2000 

ms than the PF group (d = 

0.48) 

5. No significant finding for 

average fixation duration 

6 (Mahmoodi-

Aghdam et 

al. 2017) 20 

CP, 18 PF 

Free 

viewing 

(1000 ms) 

Scene 

1. CP patients show an 

engagement bias (i.e., 

the initial orientation of 

attention to pain-

1. First fixation 

proportion 

2. First fixation 

latency 

1. All participants had more first 

fixations (d = 2.00), more total 

fixations (d = 2.73) and 

shorter first visit duration (d = 



 

 20 

  

  

  

  

images 

(painful and 

neutral daily 

activity) 

provoking activity 

pictures than neutral 

ones). 

2. Regarding sustained 

attention, CP patients, 

relative to PFs, have 

difficulty disengaging 

from pictures of pain-

provoking activities or 

disengaging from 

those pictures faster 

than PFs. 

3. Total fixation 

count 

4. First fixation 

duration 

5. First visit 

duration 

6. Total fixation 

duration 

0.94) for painful activity than 

neutral images 

2. PF group had shorter first 

fixation latency for neutral 

than painful activity images (d 

= 0.70)  

3. People with higher current 

week pain severity had 

shorter first fixation latency 

for painful activity images (d = 

1.38) 

7 (Giel et al. 

2018) 17 CP, 

17 control 

group with 

depressive 

symptoms 

matched to 

the CP 

group, 17 PF 

Free 

viewing 

(3000 ms) 

Face 

images 

(happy, sad, 

neutral) 

1. PFs show an early and 

maintained attentional 

bias for emotional 

faces. 

2. CPs and DCs 

(depressive 

symptoms) show 

facilitated orienting to 

and longer 

maintenance on 

negative emotions 

(sad faces) while less 

1. First fixation 

proportion 

2. Total fixation 

duration. 

  

1. All participants had more first 

fixations (d = 1.44) and longer 

total fixation duration (d = 

1.69) for happy than neutral 

faces 
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orienting to and 

maintaining positive 

emotions (happy 

faces). 

8 (Franklin et 

al. 2019) 18 

CP, 17 PF 

Dot-probe 

(500 ms) 

Scene 

images 

(painful and 

neutral daily 

activity) 

Chronic back pain participants 

compared to PFs would have: 

1. A significantly higher 

percentage of fixations 

to threatening stimuli 

2. A longer average 

fixation duration to 

threatening images 

3. Exhibit a faster 

reaction time to 

threatening images in 

the dot-probe task. 

1. First fixation 

latency 

2. Total fixation 

count 

3. Average fixation 

duration 

  

1. CP group had a shorter first 

fixation latency (d = 0.90), 

more fixations (d = 1.57) and 

longer 

2. Average fixation duration (d = 

0.80) for painful activity than 

neutral images 

3. CP group had a shorter first 

fixation latency (d = 0.70) and 

longer average fixation 

duration 

4. (d = 0.90) on painful activity 

images than PF group 
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9 (Mazidi et al. 

2021) 28 CP, 

29 PF 

Dot-probe 

(1500 ms) 

Face 

images 

(pain, 

happy, 

neutral) 

1. CP people would 

demonstrate 

increased vigilance 

towards pain faces 

compared to PF 

people. 

2. Attentional control 

would moderate the 

relationship between 

catastrophizing and 

increased attention to 

pain faces. 

1. First fixation 

proportion 

2. First fixation 

latency 

3. Total fixation 

count 

4. First fixation 

duration 

5. Total fixation 

duration 

6. Total fixation 

duration during 

0–500, 500–

1000, and 

1000–1500 ms 

1. All participants had a longer 

total fixation duration for 

happy than pained faces 

during 1000–1500 ms (d = 

0.31) 

2. No significant finding for first 

fixation proportion, first 

fixation latency, total fixation 

count, and first fixation 

duration 
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10 (Priebe et al. 

2021) 

20 CP, 20 PF 

Free-

viewing 

(2000 ms) 

Face 

images 

(happy, 

angry, pain) 

1. Pain patients would 

show difficulties 

disengaging from pain 

faces, with group 

differences becoming 

increasingly evident 

during later stages of 

processing 

  

1. Probability of 

first fixation 

2. Fixation 

duration over 0-

500ms, 500-

1000ms, 1000-

1500ms and 

1500-2000 ms 

epochs 

3. The difference 

between the 

fixation time for 

emotional/painf

ul faces and the 

fixation time for 

neutral faces 

1. All participants had 

significantly lower first 

fixation probabilities on pain 

faces than anger ones (d = 

0.65) 

2. Similar fixation duration 

between groups 

3. Preference for pain faces in 

some epochs, but no 

significant difference 

between groups 

11 

  

(Chan, Suen, 

Hsiao, et al. 

2020) 

32 PF, 31 CP 

Free-

viewing (500 

ms) Face 

images (with 

doctors', 

patients', 

1. People with chronic 

pain may be either 

more nose-centered or 

more eye-centered 

than healthy controls 

for neutral faces with 

different identity labels 

1. Fixation location 

2. Fixation 

duration 

3. Fixation number 

Eye movement is used 

to create eye-centered 

vs. Nose-centered and 

1. The CP group endorsed 

more negative interpretations 

for ambiguous scenarios but 

did not differ in attentional 

processing of faces with 

different identities. 
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and healthy 

labels) 

2. Correlations between 

participants' 

interpretation styles 

and eye movements 

without specifying a 

direction 

holistic vs. Analytics 

patterns 

2. No difference in eye 

movements between people 

with and without chronic pain 

12 (BlaisdaleJo

nes et al. 

2021) 

74 CP, 66 PF 

Free 

viewing, 

with face 

images: 

(happy, sad, 

angry, and 

pain) and 

words 

(sensory 

pain and 

neutral 

words), 

Recognition 

task 

(interpretati

on bias), 

Flanker task 

1. More pronounced 

cognitive biases 

towards pain and 

poorer attentional in 

CP participants 

2. Attentional biases, 

interpretation biases, 

and attentional control 

would be significantly 

associated with each 

other 

3. Cognitive biases 

would be significantly 

associated with pain-

related outcomes. 

  

1. Probability of 

first fixation 

2. Time to first 

fixation 

3. First fixation 

duration 

4. Visit duration 

5. Number of 

fixations within 

the AOI. 

Although significant differences in 

duration of first fixation, visit duration, 

time to first fixation, and the number 

of fixations between all participant on 

pain stimulus was found, no 

significant differences in groups were 

identified 



 

 25 

(attentional 

control) 

13 (Koenig et al. 

2021) 

25 CP, 25 PF 

Visual 

search 

(finding the 

diamond) 

1. If chronic pain patients 

fail to establish the CS- 

as a safety signal, both 

the CS+ and the CS- 

should elicit 

comparable levels of 

emotional arousal 

(indexed by pupil 

dilation) compared to 

healthy controls. 

2. The failure to 

discriminate between 

the CS should lead to 

increased attention to 

the CS- which in 

healthy controls 

exhibits shorter 

fixation dwell time than 

the CS+ 

3. If deficits in differential 

learning in CP patients 

are based on 

1. Pupil dilation 

2. Fixation 

probability on 

the diamond 

over a 5-sec 

interval 

3. Total fixation 

duration 

4. Number of visits 

of distractors 

5. Duration of first 

fixation (if on 

distractor) 

1. Higher dilation in higher 

threat, but not significant 

between groups. 

2. No significant difference in 

fixation probability and total 

fixation duration 

3. Higher visit of distractors in 

higher threat conditions, but 

no significant difference 

between groups 

4. No significant difference 

between groups in the 

duration of first fixations 
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overgeneralization of 

fear, stimuli that are 

irrelevant for predicting 

shock should attract 

more attention in CP 

patients than in 

healthy controls 

14 (ten Brink et 

al. 2021) 

40 CP 

Complex 

Regional 

Pain 

Syndrome 

(CRPS), 40 

pain controls, 

40 PF 

  

Free 

viewing, 

visual 

search, 

temporal 

order 

judgment, 

and dot-

probe 

  

1. People with CRPS 

would show a 

visuospatial attention 

bias away from the 

affected side that was 

larger for, or only 

evident in, conditions 

that were more likely to 

recruit body 

representation 

2. There would be an 

interaction between 

any visuospatial 

attention bias and the 

location of the body-

part stimulus (i.e., on 

the affected or 

1. Proportion of 

first fixations 

2. Visit duration of 

the affected 

side/total visit 

duration 

3. Number of first 

fixations on the 

affected 

side/total 

number of first 

fixations 

4. Average latency 

of first fixations 

on the 

unaffected 

side/average 

1. There is no evidence for a 

body-related or general 

visuospatial attention bias in 

people with CRPS. However, 

there are indications that a 

body-related visuospatial 

attention bias might be 

present in some people with 

CRPS. 
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unaffected side of the 

screen) 

latency of all 

first fixations 

15 (Soltani et al. 

2020) 

102 CP, 53 

PF 

Flanker 

visual 

filtering task 

  

1. The nature of 

attentional bias in 

youth with chronic pain 

vs. A pain-free control 

group 

2. The moderating effect 

of attentional control 

on attentional bias. 

1. Probability of 

first fixation 

2. Mean total 

fixation time 

1. No significant difference 

between groups in the 

probability of first fixation 

2. No significant difference 

between groups in mean total 

fixation time 

16 (Soltani et al. 

2022) 

125 CP, 52 

PF 

Free 

viewing, 

with face 

images: 

(neutral, and 

low, 

moderate, 

and high 

pain) 

  

  

1. Higher levels of 

anxiety sensitivity, 

pain catastrophizing, 

and fear of pain would 

be associated with a 

greater attentional bias 

for pain expressions. 

2. Greater attentional 

biases for pain 

expressions would be 

associated with worse 

clinical outcomes 

1. First fixation 

(bias) 

proportion 

2. Total fixation 

bias 

1. All participants exhibited first 

fixation bias and total fixation 

bias for pain facial 

expressions, regardless of 

chronic pain status 

2. Pain catastrophizing, anxiety 

sensitivity, and fear of pain 

were not related to attentional 

bias in youth with chronic 

pain 

3. Other than the first fixation 

bias and pain intensity at 

follow-up, the rest of the 

attentional bias variables 



 

 28 

were not correlated with 

clinical outcomes (pain and 

mental). Higher first fixation 

bias for pain faces was 

associated with lower self-

reported pain intensity at 

follow-up 

17 

  

(Chan et al. 

2022) 

32 young PF, 

31 young CP, 

31 old PF, 32 

old CP 

Free-

viewing (500 

ms) Face 

images (with 

doctors', 

patients', 

and healthy 

labels 

1. People with chronic 

pain would endorse 

more injury-/illness-

related interpretations 

for ambiguous 

scenarios and may be 

more vigilant toward 

injury scene images 

than pain-free 

controls. 

2. There is an age 

difference in 

interpretive and 

attentional processing. 

3. Interpretation and 

attentional biases are 

1. Proportion of 

fixations on pain 

AOI 

2. Total duration of 

fixations within 

AOIs 

3. First fixation 

proportions on 

the pain-related 

AOIs 

4. Duration of visit 

of pain AOIs 

5. Sequence of 

fixation 

locations in 

each trial 

1. CP endorsed more negative 

interpretations for injury-

/illness-related scenarios 

than PF, but the two groups 

did not differ in their eye 

movements on injury scenes 

2. CP participants, regardless of 

age group, had a more 

negative interpretation bias 

for injury-/illness-related 

scenarios than controls 

3. Distinct roles of interpretation 

and attention in chronic pain 
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correlated and may 

together predict later 

pain functioning 

18 (Shiro et al. 

2021) 

8 CP, 8 PF 

Free 

viewing (a 

clip with 

neutral and 

one with 

pain-related 

content) 

1. Whether CP patients 

have a visual 

attentional bias toward 

the bodies of others 

2. Whether CP patients 

have a visual 

attentional bias when a 

stranger touches the 

patient's hand 

3. Relation between 

attentional behavior 

and clinical symptoms 

1. Fixation 

duration 

2. Fixation count 

1. No significant difference 

between groups in fixation 

duration or fixation count 

2. No significant correlation 

between clinical symptoms 

and attentional patterns 
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2.2. Limitation of Previous Studies 

In early pain research, Dot-probe were used to examine participants' initial attention to 

dots appearing after words or faces. Initial attention did not provide all the information 

about visual attention to the content; however, technologies for tracking sustained 

attention to stimuli were unavailable. After eye tracking emerged and was used in this 

topic of research, researchers were able to collect more information about eye 

movements.  

Along with initial orientation, which is typically measured through first fixation proportion 

and first fixation latency, eye tracking also allowed for continuous attention to be 

measured. Some researchers, such as (Chan, Suen, Jackson, et al. 2020), have labeled 

continued attention as attentional engagement, measured by the number of fixations and 

visits, and attentional maintenance (i.e., the first fixation/visit duration, the average 

fixation/visit duration, and the total gaze duration). 

According to previous research (Chan, Suen, Jackson, et al. 2020), attentional 

engagement and maintenance could be better indicators for studying pain than initial 

orientation, which was not accessible before eye trackers. In order to capture this valuable 

information to study chronic pain and healthy people's attentional biases, I use an eye 

tracker. 

Aside from technological limitations, most researchers used dot-probes or other stimuli 

with short tasks. The typical duration of dot-probes is 2 seconds, which does not provide 

much opportunity for collecting continuation of attention, but initial attention. I propose 

asking participants to read short passages to overcome this limitation. This new stimulus 

(text passages) provides a suitable context for studying attentional engagement and 

maintenance more fully, hence, affords the opportunity to obtain more information on 

these influential indicators. 

Furthermore, as discussed previously, the stimulus in dot-probe tasks, for example, could 

be richer if the ambiguity of different interpretations of a single word was reduced. 
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Through passages instead of a single word, the participant can gain a greater 

understanding of the context. I addressed the limitation of the stimulus' richness by 

replacing words with passages. 

Despite the fact that eye trackers also enabled researchers to collect more information 

about eye movements, not many eye movement variables were used by researchers on 

this topic. I used a large list of variables that are used in other eye tracking studies to 

investigate attention (visit, fixation, and saccadic metrics), and cognitive effort 

(pupillometry) to take advantage of this overlooked opportunity. For instance, saccades 

can reveal changes in attention which is critical to study attentional biases. Also, pupillary 

responses can reveal information about cognitive effort when processing (attending to) 

information (Shojaeizadeh et al. 2019). However, both these series of variables are not 

utilized in previous chronic pain eye-tracking studies. I also summarized the researchers' 

analysis methods in my literature review. A majority of studies used basic statistical 

methods, which have limitations for decoding complex patterns such as attentional bias 

and are less powerful than machine learning models for dealing with multiple variables. 

This might explain why previous researchers have used a short list of variables. In order 

to analyze complex patterns of eye movements, I use a number of machine learning 

methods. 

In order to create an accurate ETML model for identifying chronic pain from healthy 

participants, I propose replacing the stimulus to facilitate richer context and longer 

exposure to afford us opportunity to more extensively study attention. I also propose a 

rich list of eye-tracking variables that include fixation, saccade, and pupillometry metrics. 

And propose utilizing machine learning methods that can operate the proposed rich set 

of eye-tracking variables.  

My proposal also involves an iterative approach to create a model that is both accurate 

and reliable across a variety of sample pools. 
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3. METHODOLOGY 

In this section I explain the methodology for implementing my proposal. 

 

3.1. Stimulus Design 

To address the limitation of previous studies and to increase the exposure time to stimuli, 

and provide richer context, I used four textual passages as visual stimuli. To develop the 

visual stimuli a set of online articles were reviewed, from which 9 articles were selected. 

These articles were reviewed by me and three other PhD students to select the final 4 

articles for the study. These articles were modified to have similar length, approximately 

100 words each. Hence the visual stimulus included a total of four passages, containing 

a total of 19 sentences, and 410 words. The four text passages were presented to 

participants in a random order.  

The topic for 2 of the 4 text passages was pain (headache and neckache); the other two 

passages had a neutral topic (bees and furniture). This is because prior pain research 

suggests that that people with chronic pain exhibit attentional bias (attention and/or 

avoidance) towards pain-related stimuli. These pain studies often include both pain-

related and neutral stimuli to study the impact of pain on attention. Additionally, because 

pain affects cognition, I created two levels of task load by manipulating the reading 

difficulty of the text passages (Shojaeizadeh et al. 2017). Two of the passages (one in 

each topic) was designed to be harder to read (14th, and 16th grade reading level) and 2 

were designed to be relatively easy to read (7th grade reading level) (see appendix 1 for 

text passages and their respective reading level).  The reading difficulty of the passages 

were determined by an online tool available at (“Readability Formulas” n.d.)  

The visual stimuli was formatted to match the optimal accuracy of the eye tracking device. 

The optimal accuracy of the eye tracker used in my project (Tobii spectrum 600Hz) was 

0.4 degrees (Tobii Technology Inc. 2017). Based on that, the line spacing was adjusted 
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to about 1.5 to consider this accuracy and to minimize the probability of overlapping 

attention to different lines of the text. The conservative space of 0.5 degrees translated 

to 20 pixels or 0.5 cm. Hence, I used 16-point size Arial font for the passages.  

The passages and their respective reading level are available at appendix 1. 

 

3.2. Eye-tracking Apparatus 

To collect eye movements, I used an eye-tracker called Tobii Pro Spectrum that captured 

600 samples per second. I used Tobii Pro lab 1.162.32461 software to use this device. 

Using an I-VT filter with a threshold of 30 degrees/second, a minimum fixation time of 100 

milliseconds, and gap fill-in, fixation, saccade, and unclassified gazes were labeled. 

Previous research (Nuske et al. 2015) reported a change in pupillometry data at different 

luminosity levels, and behavior change at different temperature settings (Ramsey, Jerry 

D; Burford, Charles L; Beshir, Mohamed Youssef; Jensen 1983). To minimize such 

effects, the experiment was conducted in a room with controlled temperature and light. 

A Tobii Spectrum IPS built-in monitor with 92 pixels per inch and a 16:9 ratio was used 

(DisplayDB 2016). The monitor provided images with a resolution of 1920 x 1080. 

 

3.3. Data collection Process 

The data for my project was collected via an IRB approved eye-tracking study at the User 

Experience and Decision Making (UXDM) laboratory at WPI.  Eye tracking data was 

collected individually, one participant per study session. Participants were recruited from 

WPI community (due to COVID, no outside visitors were allowed on campus). At the 

beginning of each data collection session, I explained the study to participants and 

requested their consent. Once the participant consented to collect the accurate gaze data, 
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they went through a calibration process. Tobii Pro lab, the software I used for the data 

collection, includes five calibration points and then 4 validation points. The results of 

calibration were shown afterward. The calibration process took on average about a 

minute. For some participants, redoing the calibration process to get acceptable results 

was done.  

Once I received accurate calibration results, the participant was asked to read 4 short text 

passages, each about 100 words. Participants’ eye movements were recorded when they 

were reading the text. After completing the task, each participant was asked to self-

identify, based on the definition of chronic pain as someone who suffers from chronic 

pain, someone who is pain-free, or someone with an “in-between” experience (Figure 1). 

This information was used to categorize eye movement datasets into chronic-pain and 

pain-free groups. The experiment finished by thanking participants for their participation. 

Each participant received a $20 Amazon gift card as a token of our appreciation. 

 

3.4. Eye Movement Metrics 

All variables and their definitions are presented in Table 3. Additionally, variables used in 

the literature review are marked. The variables I calculated for this study are also marked.

Figure 1 - Self-reported health status question 
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Table 3: Eye Movement Metrics 

 Variable  Category Definition  

Used in 

previous 

chronic 

pain eye 

tracking 

research 

1 
Total duration of 

whole fixations  
Fixation 

The total duration of the fixations inside an AOI during an interval 

(excluding partial fixations).*  
   

2 
Average duration of 

whole fixations  
Fixation 

The average duration of the fixations inside an AOI during an interval 

(excluding partial fixations).*  
   

3 
Minimum duration of 

whole fixations  
Fixation 

The duration of the shortest fixation inside an AOI during an interval 

(excluding partial fixations).*  
   

4 
Maximum duration of 

whole fixations  
Fixation 

The duration of the longest fixation inside an AOI-during an interval 

(excluding partial fixations).*  
   

5 
Number of whole 

fixations  
Fixation 

The number of fixations occurring in an AOI during an interval (excluding 

partial fixations).*  
   

6 
Time to first whole 

fixation  
Fixation 

The time to the first fixation inside an AOI during an interval (excluding 

partial fixations).*  
   

7 
Duration of first whole 

fixation  
Fixation 

The duration of the first fixation inside an AOI during an interval 

(excluding partial fixations). *  
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8 
First-pass first fixation 

duration  
Fixation 

The duration of the first fixation during first-pass inside an AOI during an 

interval. *  
   

9 First-pass duration  Fixation 
The total duration of the fixations during first-pass inside an AOI during 

an interval. *  
   

10 Go-past duration  Fixation 

The total duration of the fixations from first fixation in this area of interest 

until a fixation occurs in an area of interest progressive to this one, during 

an interval. *  

   

11 First pass regression  Fixation 
Indicates whether the reader exits the AOI with a regression (1) or reads 

on progressively (0) during an interval. *  
   

12 
Regression-path 

duration  
Fixation 

The total duration of the fixations from first fixation in this area of interest 

until a fixation occurs in an AOI progressive to this one, including fixations 

in regressive AOIs, during an interval. *  

   

13 Re-reading duration  Fixation 
Regression path duration excluding first pass fixations during an 

interval. *  
   

14 
Average duration of 

fixations  
Fixation The average duration of the fixations inside an AOI during an interval.  X 

15 
Standard deviation of 

Duration of fixations  
Fixation 

The standard deviation of duration of the fixations inside an AOI during 

an interval.  
   

16 
Average fixation inner 

density  
Fixation The average inner density of fixations inside an AOI during an interval.     

17 
Standard deviation of 

fixation inner density  
Fixation 

The standard deviation of inner density of fixations inside an AOI during 

an interval.  
   

18 Number of fixations  Fixation The number of fixations occurring in an AOI during an interval.  X 
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19 
Total duration of 

fixations  
Fixation The total duration of the fixations inside an AOI during an interval.  X 

20 
Minimum duration of 

fixations  
Fixation The duration of the shortest fixation inside an AOI during an interval.     

21 
Maximum duration of 

fixations  
Fixation The duration of the longest fixation inside an AOI-during an interval.     

22 Time to first fixation  Fixation The time to the first fixation inside an AOI during an interval.  X 

23 
Duration of first 

fixation  
Fixation The duration of the first fixation inside an AOI during an interval.  X 

24 
Number of fixations 

during first visit  
Fixation The number of fixations during the first visit of AOI.  X 

25 

Total duration of 

fixations/total duration 

of visits  

Fixation 
Normalizing duration of fixation: Ratio of duration of fixations to duration 

of visits  
   

26 

Number of 

fixations/Number of 

fixations on sentence  

Fixation 
Normalizing the number of fixations on sentence: The number of fixations 

divided by the number of fixations on corresponding sentence.  
   

27 

Number of 

fixations/Number of 

fixations on passage  

Fixation 
Normalizing the number of fixations on passage: The number of fixations 

divided by the number of fixations on corresponding passage.  
X 

28 

Number of 

fixations/Number of 

fixations on all 

passages  

Fixation 
Normalizing the number of fixations on passage: The number of fixations 

divided by the number of fixations on all passages.  
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29 
Normalized duration of 

fixations on sentence  
Fixation 

Normalizing duration of fixation: Ratio of duration of fixations to duration 

of fixation on corresponding sentence  
   

30 
Normalized duration of 

fixations on passage  
Fixation 

Normalizing duration of fixation: Ratio of duration of fixations to duration 

of fixation on corresponding passage  
   

31 

Normalized duration of 

fixations on all 

passages  

Fixation 
Normalizing duration of fixation: Ratio of duration of fixations to duration 

of fixation on all passages  
   

32 
Normalized number of 

fixations in first visit  
Fixation 

Normalizing number of fixations: Ratio of number of fixations in the first 

visit to number of fixations on all passages  
   

33 
Average size of pupil 

during fixations  
Pupillometry 

The average size of pupil during fixations inside an AOI during an 

interval.  
   

34 

Standard deviation of 

average size of pupil 

during fixations  

Pupillometry 
The standard deviation of size of pupil during fixations inside an AOI 

during an interval.  
   

35 
Median size of pupil 

during fixations  
Pupillometry 

The median size of pupil during fixations inside an AOI during an 

interval.  
   

36 

Standard deviation of 

median size of pupil 

during fixations  

Pupillometry 
The standard deviation of median of pupil size during fixations inside an 

AOI during an interval.  
   

37 
Average pupil dilation 

during fixations  
Pupillometry 

The average change of size of pupil during fixations compared to 

baseline  
   

38 

Standard deviation of 

pupil dilation during 

fixations  

Pupillometry 
The standard deviation of change of size of pupil during fixations 

compared to baseline  
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39 Average pupil size  Pupillometry 
The average size of pupil among all gazes of the participant during the 

visit of whole stimuli  
X 

40 Median of pupil size  Pupillometry 
The median size of pupil among all gazes of the participant during the 

visit of whole stimuli  
   

41 Average pupil dilation  Pupillometry 
The average change of size of pupil during whole experiement compared 

to baseline  
   

42 
Number of saccades 

in AOI  
Saccade The number of saccades occurring in an AOI during an interval. *     

43 
Time to entry 

saccade  
Saccade 

The duration until the start of the first saccade that ends in an AOI during 

an interval. *  
   

44 Time to exit saccade  Saccade 
The duration until the start of the first saccade that exits an AOI during an 

interval. *  
   

45 
Peak velocity of entry 

saccade  
Saccade 

The peak velocity of the first saccade that ends in an AOI during an 

interval. *  
   

46 
Peak velocity of exit 

saccade  
Saccade 

The peak velocity of the first saccade that exits an AOI during an 

interval. *  
   

47 Number of saccades  Saccade The number of saccades occurring during an interval. *     

48 
Average peak velocity 

of saccades  
Saccade The average peak velocity of all saccades in this interval. *     

49 
Minimum peak 

velocity of saccades  
Saccade 

The peak velocity of the saccade with the lowest peak velocity in this 

interval. *  
   

50 
Maximum peak 

velocity of saccades  
Saccade 

The peak velocity of the saccade with the highest peak velocity in this 

interval. *  
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51 

Standard deviation of 

peak velocity of 

saccades  

Saccade 
The standard deviation of all peak velocities of the saccades in this 

interval. *  
   

52 
Average amplitude of 

saccades  
Saccade The average amplitude of all saccades in this interval. *     

53 
Minimum amplitude of 

saccades  
Saccade The amplitude of the saccade with the lowest amplitude in this interval. *     

54 
Maximum amplitude of 

saccades  
Saccade The amplitude of the saccade with the highest amplitude in this interval. *     

55 
Total amplitude of 

saccades  
Saccade The total amplitude of all saccades in this interval. *     

56 Time to first saccade  Saccade The time to the first saccade during an interval. *     

57 
Direction of first 

saccade  
Saccade The direction of the first saccade in the interval. *     

58 
Peak velocity of first 

saccade  
Saccade The peak velocity of the first saccade in the interval. *     

59 
Average velocity of 

first saccade  
Saccade The average velocity of the first saccade in the interval. *     

60 
Amplitude of first 

saccade  
Saccade The amplitude of the first saccade in the interval. *     

61 
Total duration of 

Glances  
Visit The total duration of the Glances inside an AOI during an interval. *     

62 
Average duration of 

Glances  
Visit The average duration of the Glances inside an AOI during an interval. *     
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63 
Minimum duration of 

Glances  
Visit The duration of the shortest Glance inside an AOI during an interval. *     

64 
Maximum duration of 

Glances  
Visit The duration of the longest Glance inside an AOI during an interval. *     

65 Number of Glances  Visit The number of Glances occurring in an AOI during an interval. *     

66 Time to first Glance  Visit Time in milliseconds to the first Glance inside an AOI during an interval. *     

67 
Duration of first 

Glance  
Visit The duration of the first Glance inside an AOI during an interval. *     

68 Total duration of visits  Visit The total duration of the visits inside an AOI during an interval.  X 

69 Duration of first visit  Visit The duration of the first visit inside an AOI during an interval.     

70 
Minimum duration of 

visits  
Visit The duration of the shortest visit inside an AOI during an interval.     

71 
Maximum duration of 

visits  
Visit The duration of the longest visit inside an AOI during an interval.     

72 
Average duration of 

visits  
Visit The average duration of the visits inside an AOI during an interval.  X 

73 Duration of next visits  Visit The duration of visits after the first visit inside an AOI during an interval.  X 

74 Number of visits  Visit The number of visits occurring in an AOI during an interval.  X 

75 Duration of interval  Visit The duration of an interval. *     

76 Start of interval  Visit The start time of an interval. *     

77 
Native language of 

participant  
 1 if English, 0 if not. *     

Eye-tracker provided variables are marked by *. 



 

 42 

3.5. ML Methods and Settings 

Various data inputs were determined for this project (passage, sentence, word, combined 

passage-sentence-word, pain passages, neutral passages, difficult passages, easy 

passages). Each data input was run with a set of commonly used algorithms, each was 

tested with different settings and the best model was selected by cross-validation. The 

algorithms include: 

1. Random forest with 200 estimators 

2. A neural network called Multi-layer Perceptron classifier with maximum iteration of 

50,000 

3. Logistic Regression (LR) with maximum iteration of 250,000 

4. Linear Support Vector Classifier (SVC) 

All algorithms were used with three variable settings, including: 

1. Using all variables 

2. Using principal component analysis (PCA) to reduce variables and only use 3 new 

ones 

3. Using principal component analysis (PCA) to reduce variables and use as many 

new variables as needed to cover 90% of the variation of the data 

All algorithms are used with two settings for the number of observations which include: 

1. Actual observations 

2. Equal observations in both classes by oversampling the minority class 

The combination of these algorithms and settings were used to train and test 24 models 

on each input. 
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3.6. Model Evaluation 

3.6.1. Confusion Matrix 

Confusion matrices show the number of correct and incorrect predictions for each group. 

A schematic confusion matrix is shown in the Table 4. 

Table 4: Schematic confusion matrix 

 Predicted as negative Predicted as positive 

True 

condition 

condition: 

negative 
TN FP 

condition: 

positive 
FN TP 

The abbreviations in the above table are explained below.  

TP: True positive: Positive observations that are correctly predicted to be positive. In this 

analyses TP refers to pain-free participants who are predicted as pain-free.  

FP: False positive: Positive observations that are incorrectly predicted as negative. Here, 

FP shows the chronic pain subjects who are labeled as pain free.  

FN: False negative: Negative observations that are incorrectly predicted as positive. In 

this study, FN shows the pain-free participants who are classified as chronic pain.  

TN: True negative: Negative observations that are correctly predicted as negative. Here, 

TN points to chronic pain participants who are correctly classified as chronic pain.  

In this research, chronic pain can be considered as a negative condition, and pain-free 

as a positive one.  

Based on the confusion matrix, some indicators are calculated and compared below. 
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3.6.2. Accuracy 

A measure of how accurate the predictions are calculated as follows: 

Accuracy =
() + (+

() + ,) + (+ + ,+
 

Although accuracy is a great indicator of model performance, it can be misleading 

because it aggregates the results of both groups. It is therefore beneficial to compare 

models also based on their specificity and sensitivity. Here are how these terms are 

calculated: 

Specificity, True	negative	rate =
(+

(+ + ,)
 

In the equation above, TN represents correctly predicted chronic pain cases, and 

(TN+FP) represents all negative (chronic pain) subjects. The ratio shows the percentage 

of correct predictions among chronic pain subjects. 

Sensitivity, Recall, or	True	positive	rate =
()

() + ,+
 

Where TP is the number of correctly predicted pain-free cases, and (TP+FN) is the 

number of all positive (pain-free) subjects. In this ratio, the share of correct predictions 

among pain-free participants is shown. 

 

3.6.3. F1-Score 

The F1 score is a measure of accuracy that takes precision and recall into account. 

"Precision" is the ratio of true positive predictions to all observations that are predicted as 

positive, as shown in equation1. The number of positive samples is considered, rather 

than positive sample accuracy alone; therefore, it is a fairer evaluation. 
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Precision =
()

() + ,)
 

The recall is defined as the number of true positive predictions divided by the number of 

true samples. F1 is calculated as follows. 

F1 =
2 ∗ BCDEFGFHI ∗ CDEJKK
BCDEFGFHI + CDEJKK

 

F1 score ranges from 0 to 1, with 1 being the best result and 0 being the worst. The higher 

the F1 score, the better the result. 

 

3.7. Model Selection 

After developing all models, the best model was validated. The procedure is explained 

below. 

As explained in section 3.5, for each input, 24 models were developed. Out of these 24 

models, the model with the highest accuracy on testing data was selected. This model 

then was compared to models with different inputs and the model which overall reached 

the highest accuracy was selected for validation. 

 

3.8. Pre-Processing Data 

3.8.1. Creating AOIs 

Areas of Interests (AOIs) are researcher-defined areas in which the gaze data can be 

captured and reported. To study the difference in attention to the content, I defined AOIs 

for each passage, sentence, and word. To maintain consistency in defining AOIs, the 

height of AOIs at the sentence and word level was kept the same and equal to 83 pixels. 

Obviously, the length of AOIs depended on the length of the word or sentence. The height 
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of the AOIs were calculated based on the accuracy of eye-tracker in degrees and monitor 

pixel density. Based on these AOIs, I extracted data for each passage, sentence, and 

word. 

To distinguish repetitive AOIs, which happened only on words such as a, the, is, a naming 

format including sentence and word number was used. I also created an AOI around each 

passage to provide the most aggregated data. It worth noting here that sentences were 

not necessarily in one line and the sentence-AOIs covered the sentence regardless of 

being in one or more lines of text. 

 

3.8.2. Data Cleaning 

The collected data needs to meet some standards to qualify for being used in the analysis. 

Some of these standards are enforced during the experiment, during calibration, for 

example. After collecting the data, participants’ data will be examined to meet the 

minimum of 80% gaze sample. If a participant’s gaze samples were below 80%, it means 

the eye-tracker was incapable of capturing their eye movements for more than 80% of 

the experiment, which can be caused by numerous blinks or by looking away from the 

screen. As there is no ground truth for determining whether participants are looking away 

or blinking, participants with a sample rate less than 80% are removed from analysis, 

based on previous research (Varzgani et al. 2021). 

 

3.8.3. Adding new variables 

In addition to the variables provided by the eye-tracker software, some additional 

variables had to be calculated before using the collected data as input to the algorithm. 

To incorporate all potential variables in a model that can distinguish chronic pain 

participants from healthy participants, I calculated these additional variables from gaze 

level data, the rawest data the eye tracker can provide. The variables have previously 
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been used in chronic pain research or in eye-tracking research. As an example, previous 

studies (Shojaeizadeh et al. 2019) have found that pupillometry data can function as a 

cognitive process indicator, or saccadic variables have been widely used in previous 

studies with reading stimuli (Rayner et al. 2006). 

 

3.9. Preparing Data for Machine Learning Algorithms 

Data processing was performed using Python 3.8.8, Pandas 1.2.4, and NumPy 1.19.2. 

Multiple machine learning models were trained and tested using Scikit-learn 0.24.1 

package. 

 

3.9.1. Splitting Data to Train and Test Sets 

Data was divided into training and testing sets. Using the training set, the models were 

trained, and then tested with the testing set. To ensure fair training and testing, I used a 

random selection model in which some observations are randomly selected for testing 

and the others are randomly selected for training. I used k-fold cross-validation to 

accomplish this. By using this method, the data is split into multiple chunks, specified by 

k, with one chunk used for testing and the rest for training. Each time the algorithm runs, 

a different chunk is used for testing, the rest for training, and so forth until all chunks have 

been used. Figure 1 is a schematic representation of how k-fold cross-validation works.  

This study used k-fold cross-validation with k of 5. 



 

 48 

 

Figure 2 - Schematic View of K-Fold Cross Validation 

 

3.9.2. Balancing Data 

After pre-processing the collected data of this step, 28 participants' data were qualified to 

be used in the analyses, including 19 pain-free participants and 9 chronic pain subjects 

(these groups were created based on self-identification, using the survey question 

displayed in Figure 1). To prevent bias in the trained model, I needed to balance the data 

before being used in the algorithm. However, I pursued a strategy to ensure the legitimate 

manipulation of the data only impacts the training set, and not the testing set. This strategy 

helps reduce the effect of manipulation and limits its impacts on the evaluations of the 

algorithms. To achieve this, after splitting the data into train and test sets, the training set 

was oversampled. For oversampling, I used" RandomOverSampler" which bootstraps the 

minority group of observation to add them and create a balanced dataset. 

 

3.9.3. Un-arranged data 

The collected data, regardless of word, sentence, or passage level, provides insight into 

some of these AOIs. The information includes eye movement variables used in previous 
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chronic pain research or other previous eye-tracking research examining attention, 

cognitive effort and/or load.  

No matter which AOI is used, each AOI in the dataset is provided in one row, and many 

of these rows are randomly selected for training and testing. In order to prevent data 

snooping and prevent the model from predicting based only on the participant ID, the 

participant ID was removed from all rows.  

In this dataset, the model will be trained and tested using many observations but only one 

AOI's data at a time. This means that the model does not learn about the connections 

between all AOIs (e.g., sentences or words) in a passage, for example, and the fact that 

many of those AOIs were read by one participant. This limits the richness of input to the 

model. Due to the low richness of data, it was expected that the model using un-arranged 

data would have low accuracy. 

 

3.9.4. Re-arranging the Data 

To train the model with richer data, all participant data was rearranged into one row. This 

method provided significantly richer data on the eye movements of participants when 

looking at different AOIs. One disadvantage of this strategy is the lower number of 

observations which would be equal to the number of participants and remarkably less 

than training with un-arranged data.  

I rearranged the data in one row by combining the AOI name with the variable name and 

then displacing the value corresponding to that variable name. 
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3.9.5. Addressing Missing Values 

Scikit Learn, the machine learning package we used, does not work with data with missing 

values or NANs (Not a number). A number of methods are available in the literature to 

resolve this issue, each with its own advantages and disadvantages. Removing missing 

values is the simplest yet safest method, but it comes with the disadvantage of losing 

valuable data. Data variables with at least one missing value were removed from the 

analysis using this method. Despite the loss of some eye-movement features, I still used 

this strategy and removed all columns with missing values because this simple method 

minimizes the risk of adding unwanted changes. 

Nonetheless, missing values cannot be removed from datasets that are used to validate 

existing models constructed from datasets with different variables due to another 

limitation of Scikit Learn. In this situation, I must predict the missing values and fill them 

in. A detailed explanation of how this is done will be provided in the corresponding section. 

 

3.10. Proposed iterative process for developing ETML to 

detect chronic pain   

In this section, I propose an iterative process for creating a robust ETML model. While it 

is expected that in near future eye movements can be collected remotely for studies 

(Alrefaei et al. 2022), currently collecting eye movement data sets are done through 

laboratory experiments via individual sessions, which is inherently a lengthy process. 

Rather than waiting until a large pool of participants’ data is recorded, grounded in the 

“test and refine” cycles in user-centered design, I propose an iterative process in which 

an ETML is developed iteratively. First, a proof of concept is developed based on a 

relatively small pool of data. This ETML is then validated via a new set of data collected 

from a new set of participants. If the validation is successful (e.g., reaches a minimum 

desired accuracy threshold) with the newly collected dataset then process stops 

otherwise the model is refined by using the combined datasets and validated via another 
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set of newly collected datasets. Such a process guarantees that the validation data is not 

available when the model is being developed. It also allows to build the model efficiently 

and cost effectively (collect additional dataset as needed).   

This iterative process starts by collecting eye-tracking data to create an initial dataset 

(step 1). Then, using this dataset multiple models is developed using a few popular 

machine learning algorithms (in my project, I use 4 different algorithms). The model with 

the highest accuracy will be chosen for validation (step 2). For validating the best model, 

which is identified in step 2, a new set of eye-movement data is collected (using the same 

study design and process) (step 3). If the validation process in step 3 does not reach the 

desired threshold (in our case, 80% accuracy with sensitivity and specificity above 50%), 

the collected data in steps 1 and 3 would be merged. A portion of the merged dataset will 

be kept aside for validation, and using the rest, multiple models, similar to step 2, will be 

created (refined model). Following that, the best model among the new models will be 

chosen for validation (step 4). Next, step 4’s best model will be validated using the portion 

of the merged dataset, which was set aside in step 4 (step 5). If the model still serves as 

a good proof of concept (sensitivity and specificity above 50%) then, in step 6, all data in 

the merged dataset in step 3 will be used to train and test a new model, and the best 

model will be chosen to be validated with a new set of data collected from a different set 

of participants (go to step 3). This iterative process continues until the validated model 

satisfies the requirements, or the accuracy does not improve for two consecutive 

iterations. 

The following provides an overview of the steps completed in my project; each step is 

explained in more detail in the following sections:  

Step 1: Collected an initial set of data from 28 participants (9 chronic pain, 19 pain free) 

Step 2: Developed 24 models for each input, selected the best of each, and the best of 

all 24 bests 

Step 3: Collected a new set data (27 participants, including 21 chronic pain and 6 pain 

free); validated the best of all models in step 2 with this set.  
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Step 4: Validation in last step failed (did not reach 80% accuracy), hence I merged the 

datasets, split the merged dataset into train/test/validation, and developed new models 

with the train/test datasets.  

Step 5: Validated the models developed in step 4 with the validation dataset that was 

kept aside.  

Step 6: Validation showed that the proof concept still worked well, hence all parts of 

datasets (train, test, and validation) were merged (n=55 participants) develop (test and 

train) new models. The results were satisfactory for continuing the process. Future studies 

are needed to collect a new dataset for validating the final model developed in my project 

and continue the iterations until a robust model (with 80% accuracy or better) is 

developed. 

 

3.10.1. ETML Development – Step 1: Collecting Initial 

Eye-Tracking Dataset 

Here, I explain how I collected participants’ eye movements. 

For this step, 41 participants from the WPI community attended and consented to the 

experiment. The data collection took place during Spring 2021. Among them, two 

participants were unable to calibrate, and one participant's data was not collected properly 

due to a technical problem with the eye-tracker. It is worth noting that calibration accuracy 

was not satisfactory for a participant with Lasik surgery and a participant who wears 3-

focal glasses. Thus, their data was removed from the project. 

1 of the 38 these participants' gaze samples was below 80%, whose data, according to 

section 3.8.2 was removed. During data collection, the first few participants were closely 

monitored to ensure high-quality data was collected and to identify improvement 

opportunities in the experiment design. Following these observations and participants' 

feedback, some task instructions were revised, and passages were modified to ensure 
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providing a suitable reading experience. For example, words or phrases which were 

considered too cumbersome were replaced by more common words and the length of 

articles was shortened from two paragraphs to one (about 100 words each). This resulted 

in the final analysis not using the data from the first 7 participants, which were collected 

before the final adjustments. In addition, 2 participants reported as in-between health 

status. Due to the study's focus on identifying attentional biases of people with and without 

chronic pain, the models excluded people whose self-identified condition was in-between.  

As a result of all data cleaning steps, I had 28 participants' data (Age mean: 24.2, Age 

Standard deviation: 3.2) ready to be analyzed, 19 of whom were pain-free and 9 of whom 

were chronic pain sufferers. 

 

3.10.2. ETML Development – Step 2: Developing a 

Proof of Concept 

After cleaning the data and preprocessing it using the steps discussed in the method 

section, data was ready to be used as input for the selected machine learning algorithms. 

Using different inputs, algorithms, and settings, multiple models were developed. Then, 

as discussed in section 3.7, the best model for each input was selected. Below the best 

model for each input along with the size of training dataset, and other model settings are 

presented. It is important to remember that the testing set is different from the validation 

set, which will be collected in the next step, Hence the untouched validation set is yet 

unavailable to this analysis. This study uses k-fold (k=5) to create a testing set every time 

it runs. The eye tracking variables used for this part are provided in Table 3. 

This first set of models was developed based on a single AOI, a passage. Hence, the 

models were trained and tested using 112 observations (28 participants X 4 passages) 

and 67 variables (Table 5). This set of models uses samples with high-view data at the 

passage level. Furthermore, each time the models use one passage’s data with no clue 

about the participant or other passages which are read by the same participant. This 



 

 54 

means that the accuracy of this set of models due to the limited access to very little 

information about the participant, only a sample, is likely to be unreliable. In other words, 

the best model is overfitted to the available data and expected not to be able to predict 

unseen data well. With this argument, even if this set of models provides the highest 

accuracy among all models, it would not be selected as the best model for validation. 

However, I will evaluate its performance as an exploratory analysis at the end. 

Table 5: Model Set 1 – Passage level with 112 observations (28 participants X 4 passages) and 

67 variables  

Input Algorithm 
Oversam

pling 
PCA 

Overall 

Accuracy 

Specificit

y 

Sensitivit

y 
F1 Score 

Passage 

level 

Random 

Forest 

Classifier 

(RF) 

Yes No 0.771 0.531 0.886 0.84 

 

The input for the next set of models was still at passage level, however, this time the 

rearranged data was used so that the models are trained and tested using based on not 

just a single passage, but all passages read by each participant. 

It is worth reminding here that the re-arranged data has also unintended positive 

consequences. Because after transposing columns with missing values will be removed, 

there is a chance that multiple missing values will be arranged in one column and hence 

reduce the number of removed columns. This means the re-arranged data may include 

more variables than un-arranged dataset. As a result, the re-arranged data can provide 

significantly more information for the models to be trained with. Moreover, when the 

information for four passages read by the same participant is collapsed into a single row, 

naturally the number of variables (columns) in re-arranged datasets would become higher 

than their corresponding un-arranged sets (e.g., passage, sentence, and word level 

variables must all be presented as unique variables), which is why this set of models is 

built by 28 observations with 126 variables. Here this set of models has access to the 
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data of all four passages read by each participant compared to one passage’s data in 

model set 1. The set of models’ accuracy is lower than the unreasonably high accuracy 

of model set 1, but reasonable for the provided information. Results are shown in Table 

6. 

Table 6: Model Set 2 – Passage level (re-arranged) 28 observations and 126 variables  

Input  algorithm  oversampling  PCA  Overall 
Accuracy  Specificity  Sensitivity  F1 

score  

Re-arranged 
passage level  

Support 
Vector 

Classifier 
(SVC)  

Yes  3  0.575  0.7  0.523  0.625  

 

The sentence-level data were used to train a set of models similar to model set 1. The 

results of testing this set, which used un-arranged, and separate sentences, without a 

clue as to which sentences each participant read, are shown in Table 7. A total of 532 

sentences and 9 variables were used in the training and testing of this set of models (it is 

possible to observe 19 sentences per participant). More missing data in sentences 

compared to passages led to more missing data in columns, resulting in more removed 

columns to prepare the data to be used by Scikit Learn. 

Table 7: Model Set 3 – Sentence level, 532 observations (28 participants X 19 sentences) with 

9 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Sentence 

level 

Logistic 

Regression 

(LR) 

Yes No 0.573 0.686 0.519 0.622 

 

The next set of models uses rearranged sentences read by one participant, which created 

one row for each participant, providing the data of 19 sentences read by each participant. 
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The data includes all variables for each sentence. The results are shown in table 8. This 

set of models included 28 observations and 639 variables. 

Table 8: Model Set 4 – Sentence level with 28 observations and 639 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity  Sensitivity 

F1 

Score 

Re-

arranged 

sentence 

level 

Logistic 

Regression 

(LR) 

No No 0.672 0.53 0.755 0.758 

 

Using the same settings of sets of models 1 and 3, a set of models was trained and tested 

using all variables at the word-level, i.e., the models made decisions based on seeing eye 

movement data for one single word. Columns with missing values were removed, and no 

affiliation of words belonging to a sentence or passage was visible to the set of models. 

This set of models uses a remarkably higher number of observations of 11480 with 10 

parameters to be trained and tested. 

Table 9: Model Set 5 – Word level with 11480 observations (28 participants X 410 words) and 

10 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

score 

Word 

level 

MLP Classifier 

- Neural 

Network (NN) 

Yes No 0.535 0.671 0.471 0.579 

 

The word-level data were rearranged to create a dataset containing 28 observations and 

4344 features from all world level AOIs. Thus, each reader's eye movements on all words 

were provided in this dataset to this set of models. Table 10 shows this set of models and 

its results. 
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Table 10: Model Set 6 – Word level with 28 observations and 4344 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

word level 

Random 

Forest 

Classifier 

(RF) 

Yes 3 0.613 0.6 0.616 0.682 

Next, I developed a set of models with combined passage, sentence, and word level input. 

To train and test these models, data from all passages, sentences, and words seen by all 

participants was used to provide more information about participants' eye movements. A 

total of 12124 observations with 8 variables were used for these models. 

As discussed before, increasing the number of samples, especially of different types, like 

passages, sentences, and words for this set of models, may result in appearing missing 

values in more columns. The result can be fewer columns remaining when columns with 

missing values are removed. Moreover, although the data of each word in a sentence 

and the data of the sentence itself may appear the same, that may not be true for all 

variables. The summation of the number of fixations on each word of a sentence, for 

instance, is equal to the number of fixations on that sentence. The number of visits to a 

sentence cannot, however, be calculated from the number of visits to its words. This set 

of models' results are shown in Table 11. 

Table 11: Model Set 7 – Passage, sentence, and word level with 12124 observations and 8 

variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Passage 

& 

sentence 

& word 

level 

Random 

Forest 

Classifier 

(RF) 

Yes No 0.554 0.559 0.551 0.626 
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Finally, I created the most information-rich set of models by combining all levels' eye 

movements for each participant. It is generally expected that the more information-rich a 

model, the better its accuracy and generalizability. 

To provide all samples viewed by each participant, the data was rearranged. Rearranging 

the data provides the models with information about different AOIs, enabling it to learn 

more about each participant and not just stick to one sample. Therefore, it is expected 

that these models will outperform previous models due to more available details.  

However, because Scikit Learn cannot work with missing data, adding more samples to 

the set can result in fewer variables after removing the missing data. For instance, model 

set 6 uses only words and has 4344 variables as input, while this set of models includes 

passage, sentence, and word level data and has 3658 variables. Despite this, a broader 

range of available samples should still enhance the generalizability and reliability of 

models like this set. 

 

This set of models used 28 observations with 3658 variables. As shown in Table 12, this 

set yields the following results. 

Table 12: Model Set 8 – Passage, sentence, and word level with 28 observations and 3658 

variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-arranged 

passage & 

sentence & 

word level 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.703 0.76 0.672 0.734 
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My next four sets of models examine how pain/neutral or easy/difficult stimulus can affect 

eye movements and can be used to distinguish chronic pain participants from healthy 

participants. 

Because pain literature suggests that chronic pain influences attention to pain-related 

stimuli, I developed a set of models that included only pain passages. In other words, a 

set of models using only pain stimuli’s data was trained and tested in order to determine 

if there are possible differences in attention to pain stimuli. Using rearranged data, this 

set of models used 28 observations and 1797 variables. The performance of this set is 

shown in Table 13. 

Table 13: Model Set 9 – Passage, sentence, and word level for pain stimuli with 28 observations 

and 1797 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Pain 

Passages 

only 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.735 0.78 0.720 0.775 

In order to better understand the role of the pain stimuli in differentiating eye movements 

between the CP and PF participants, a set of models was trained with the same settings 

as model set 9 but using non-pain (neutral) passages. This set of models uses 28 

observations with 1862 features. This set's performance is shown in Table 14. 

 

 



 

 60 

Table 14: Model Set 10 – Passage, sentence, and word level for neutral stimuli with 28 

observations and 1862 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity  Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Neutral 

Passages 

only 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.696 0.79 0.647 0.718 

Next, I looked at a set of models that used input based on text difficulty. Because pain 

affects cognition, and cognitive load is reflected in eye movements (Mina’s paper), the 

level of text difficulty might be helpful in distinguishing pain status. The first set of models 

in this series used only difficult passages for input. This set of models used 28 

observations and 1910 variables, and its performance is shown in Table 15. 

Table 15: Model Set 11 – Passage, sentence, and word level for difficult stimuli with 28 

observations and 1910 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Difficult 

Passages 

only 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.723 0.78 0.698 0.757 
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Similar to model set 11, a set of models that only used easy passages' eye movements 

was trained and tested. This set of models used 28 observations and 1749 variables, and 

its performance and settings are shown in table 16. 

Table 16: Model Set 12 – Passage, sentence, and word level for easy stimuli with 28 

observations and 1749 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Easy 

Passages 

only 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.684 0.8 0.635 0.719 

 

For each set of models 9, 10, 11, and 12, two passages (pain vs. neutral, difficult vs. 

easy) were used as input, resulting in some interesting findings. I narrowed down the 

input of the next four set of models to one type of passage including pain difficult, pain 

easy, neutral difficult, and neutral easy). This analysis gives us information about the 

nature of attention influenced by pain-related and difficulty level separately. Hence it helps 

us to see which type of stimuli was best in predicting health status. Furthermore, we 

investigate whether a reliable model can be trained using data from only a single passage. 

The results of these analyses are displayed in Tables 17 to 20. 
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Table 17: Model Set 13 – Passage, sentence, and word level for neutral easy stimuli with 28 

observations and 911 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Neutral 

Easy 

Passage 

only 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.703 0.88 0.625 0.71 

 

Table 18: Model Set 14 – Passage, sentence, and word level for neutral difficult stimuli with 28 

observations and 952 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Neutral 

Difficult 

Passage 

only 

Random 

Forest 

Classifier 

(RF) 

No 3 0.683 0.61 0.728 0.742 
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Table 19: Model Set 15 – Passage, sentence, and word level for pain difficult stimuli with 28 

observations and 959 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Pain 

Difficult 

Passage 

only 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.753 0.76 0.743 0.788 

 

Table 20: Model Set 16 – Passage, sentence, and word level for pain easy stimuli with 28 

observations and 939 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Pain Easy 

Passage 

only 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.713 0.77 0.683 0.744 

 

Among sets of models 13 to 16 that were trained using only one passage, the best mode 

of the model set 15, which used pain difficult passage, provided the highest accuracy.  

Prior research shows that people attend to pain stimuli differently than neutral stimuli 
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(Franklin et al. 2019; Soltani et al. 2022) which is why model sets 13 and 14 are developed 

to investigate the impact of pain/non-pain stimulus on predicting the health status. 

Additionally, based on (Shojaeizadeh et al. 2019) the difficulty level of passage can 

impact the eye movement of the two groups by altering the cognitive load of the reader. 

Thus, these sets of models have high potential to analyze influential factors on eye 

movement and differentiate the two groups. The other three sets of models resulted in a 

slightly lower accuracy, which still is important because each set of models uses limited 

data of one passage. 

The results of the models reported in this section show that it is possible to develop an 

eye-tracking ML model to differentiate chronic pain from pain-free participants. In other 

words, the metrics and stimuli that were used in the project were suitable for creating the 

proof of concept. Hence, we continue the project by validating the best-obtained model in 

this section with a new dataset that is collected in a separate eye-tracking experiment. 

As discussed before, the models with un-arranged data use very limited data of one 

sample, which could be a passage, sentence or word. Thus, they are not reliable. Among 

the developed models with rearranged data, which provides the data of a few to many 

samples of each participant, model set 15, SVC algorithm with oversampling and without 

using principal component analysis, showed the highest accuracy. 

 

3.10.3. ETML Development – Step 3: Validating the 

Proof of Concept (the Best Model of Step 2) 

This best model of step 2 was validated using a new dataset collected during Spring 2021. 

Since the data was collected in a separate step (hence unavailable at the time the model 

was being developed in step 2), it can provide an excellent way to validate the model's 

reliability. 
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The validation data was similarly prepared. It started by removing participants who self-

identified as in-betweens, resulting in a database of 27 participants (Age mean: 30.3, Age 

Standard deviation: 15.6), and then rearranged the data. Then I needed to address the 

missing values as discussed in section 3.6.5 because our ML package cannot use 

columns with missing data. The package also cannot use inputs with variables that are 

not the same as the trained model. So, to begin addressing the package limitations, the 

columns in step 3 were trimmed so that they match those in step 1. In other words, some 

details about step 3 participants were ignored. As an example, some participants in step 

1 did not see the word "the". Therefore, it was removed from step 1, but it was not 

removed from step 3 since it had been viewed by all participants of this step. But due to 

Scikit Learn's limitations, during validation this additional information was removed from 

step 3, and the model predicted participants based on variables included in the models 

which developed based on step 1 data. As a result of trimming the validation set to match 

the training/testing set (step 1’ data), we obtained a dataset with 27 observations and 

3658 variables. Out of 3658 variables, 254 had missing values, so Scikit Learn could not 

use them. 

In order to fill in the missing values, I used a random forest model. First, the target of this 

dissertation, health status, was removed from both steps' datasets in order to protect the 

model against data snooping and prevent the model from using this variable in predicting 

the missing values. Next, the step 3 set has been labeled as X for columns without 

missing data and Y for columns with NANs. On the basis of these two sets, step 1 data 

were also split into X and Y. After that, a random forest (Rodriguez-Galiano et al. 2012) 

using step 1’s X and Y was trained and applied to the step 3 data to impute the missing 

values. 

 

Once imputing procedure was completed, and the trimmed step 3 set was free of missing 

values, the dataset was ready for validation of the best model of model set 15. The result 

of validating this model using this prepared dataset is shown in Table 21. 
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Table 21: Validating Step 1 – Model Set 15 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Validating 

model 15 

(pain 

difficult) 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.381 0.957 0.217 0.353 

As this prediction is not as accurate as flipping a coin with a 50% chance in both classes, 

the model is not ready for implementation. With the small training/testing set of step 1 

with 28 observations, this poor performance was predictable. The differences in variation 

between step 1 and 3 sets, considering the high variance in small sets, could explain the 

poor validation results. 

Despite the fact that the selected model from model set 15 provided the highest accuracy 

among models which used rearranged data, this model uses only one passage and offers 

limited context. In contrast, the best of model set 8 provides the most contextual 

information as it provides passages, sentences, and words for all four passages. Since 

this range of data can help create a more solid model, I also validate it. The result of 

validating this model is shown in Table 22. 

 

Table 22: Validating Step 1 – Model 8  

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity Score 

Validating 

model 8 (all 

passages) 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.175 1.0 0.096 0.175 
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Also, to compare the validity of models which used limited context of one passage, model 

sets of 13 to 16 were validated. For the sake of comprehensiveness, the result of model 

set 15 is repeated here. The results are shown in Table ... 

Table 23: Validating Step 1 - Models Sets 13, 14, 15, 16 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity Score 

Validating 

model 13 

(neutral 

easy) 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.296 1.0 0.094 0.172 

Validating 

model 14 

(neutral 

difficult) 

Random 

Forest 

Classifier 

(RF) 

No 3 0.68 0.183 0.822 0.8 

Validating 

model 15 

(Pain 

difficult) 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.381 0.957 0.217 0.353 

Validating 

model 16 

(pain easy) 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.253 0.993 0.041 0.079 

 

In step 1, model set 1 had the least amount of information but performed the best. The 

high accuracy of this model on the testing set is likely due to overfitting. Here, I evaluated 

my argument that this model is unreliable, and its validation results were as poor as other 

models, shown in Table 24. Due to the limited data available to this model and similar 

model sets, it is impossible to develop a robust model. Therefore, in each iteration, I focus 

only on the performance of model 8 to 16, which has the potential to produce solid models. 
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Table 24: Validating of Step 1 – Model Set 1 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Validating 

model 1 

(all 

passages) 

Random 

Forest 

Classifier 

(RF) 

Yes No 0.745 0.027 0.95 0.853 

 

Overall, none of the models provided accurate predictions in both groups, which means 

none of the models is reliable. The results show that the high accuracy of these models 

is achieved by overfitting the step 1 data and not learning from eye movements of the two 

groups.  

To create a more reliable model, I follow the iterative process that was discussed in 

section 3.10. 

 

3.10.4. ETML Development – Step 4: Refining the 

Proof of Concept (the Best Model of Step 3) 

Accordingly, the two datasets of steps 1 and 3 were merged based on the iterative 

process of validation, described in section 3.10. Next, 20% of the new larger dataset was 

randomly selected and kept aside for validation. The models were trained and tested with 

the remaining 80% of the data. Then similar models of 8 to 16 of step 1 using k-fold of 5 

with the new training/testing set were trained and tested. For each setting, the best model 

based on testing accuracy is selected and presented. The names of corresponding 

models were kept the same for the sake of simplicity in comparing models of step 1 and 

3. 

The result of redoing model set 8 with the new dataset is shown in Table 25. 
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Table 25: Model Set 8 – Passage, sentence, and word level for all passages with 44 

observations and 3405 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 

 

Specificity 

 

Sensitivity 
F1 

Score 

Re-

arranged 

passage 

& 

sentence 

& word 

level 

Logistic 

Regression 

(LR) 

No No 0.719 0.520 0.794 0.799 

 

The result of redoing model set 9 with the new dataset is shown in Table 26. 

Table 26: Model Set 9 – Passage, sentence, and word level for pain passages with 44 

observations and 1664 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage 

& 

sentence 

& word 

level - 

Pain 

Passage

s only 

Logistic 

Regression 

(LR) 

Yes No 0.649 0.547 0.699 0.734 
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The result of redoing model set 10 with the new dataset is shown in Table 27. 

Table 27: Model Set 10 – Passage, sentence, and word level for neutral stimuli with 44 

observations and 1742 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity  Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Neutral 

Passages 

only 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.557 0.808 0.462 0.603 

The result of redoing model set 11 with the new dataset is shown in Table 28. 

Table 28: Model Set 11 – Passage, sentence, and word level for difficult stimuli with 44 

observations and 1755 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Difficult 

Passages 

only 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.589 0.793 0.514 0.631 
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The result of redoing model set 12 with the new dataset is shown in Table 29. 

Table 29: Model Set 12 – Passage, sentence, and word level for easy stimuli with 44 

observations and 1651 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Easy 

Passages 

only 

MLP 

Classifier 

- Neural 

Network 

(NN) 

No No 0.652 0.475 0.719 0.75 

 

The result of redoing model set 13 with the new dataset is shown in Table 30. 

Table 30: Model Set 13 – Passage, sentence, and word level for neutral easy stimuli with 44 

observations and 872 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence 

& word 

level - 

Neutral 

Easy 

Passage 

only 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.548 0.85 0.434 0.583 
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The result of redoing model set 14 with the new dataset is shown in Table 31. 

Table 31: Model Set 14 – Passage, sentence, and word level for neutral difficult stimuli with 44 

observations and 871 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

 F1 

Score 

Re-

arranged 

passage 

& 

sentence 

& word 

level - 

Neutral 

Difficult 

Passage 

only 

Logistic 

Regression 

(LR) 

Yes 3 0.520 0.57 0.503 0.573 

The result of redoing model set 15 with the new dataset is shown in Table 32. 

Table 32: Model Set 15 – Passage, sentence, and word level for pain difficult stimuli with 44 

observations and 885 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

 F1 

Score 

Re-

arranged 

passage & 

sentence 

& word 

level - 

Pain 

Difficult 

Passage 

only 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.639 0.793 0.580 0.688 
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The result of redoing model set 16 with the new dataset is shown in Table 33. 

Table 33: Model Set 16 – Passage, sentence, and word level for pain easy stimuli with 44 

observations and 780 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

 F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Pain Easy 

Passage 

only 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.53 0.783 0.434 0.573 

Model set 8 provided the highest overall accuracy.  Also, among the 4 model sets which 

only used a single passage, the model set 15, which used pain difficult passage again, 

provided the highest accuracy. In the next step, I will validate the best model. 

 

3.10.5. ETML Development – Step 5: Validating the 

Refined Proof of Concept (From Step 4) 

After merging the two steps' data sets, model set 8 provided the best results. The best 

model of model set 8 is a Logistic Regression (LR) without PCA and oversampling, with 

an overall accuracy of 71.9%. The result of validating this model with the unseen data is 

shown in Table 34. 
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Table 34: Validating the Refined ETML - Model Set 8 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

 F1 

Score 

 

Validatin

g model 8 

(all 

passages

) 

Logistic 

Regression 

(LR) 

No No 0.598 0.633 0.585 0.679 

Using a larger dataset (44 observations), the new model can distinguish the two groups 

with about 60% accuracy. Because the performance of the model on specificity and 

sensitivity is above 50%, merging the datasets and adding the number of samples for 

training the model helped create a more reliable model. Following the iterative process 

that was discussed in section 3.10 can likely result in a reliable and more accurate model 

to separate the groups. 

 

Following the previous discussion on validating the models which only used one passage, 

Table 35 shows the results of these models’ validation. 

Table 35:  Validating the Refined ETML - Models Sets 14, 15 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Validating 

model 14 

(neutral 

difficult) 

Logistic 

Regression 

(LR) 

Yes 3 0.595 0.64 0.578 0.674 

Validating 

model 15 

(Pain 

difficult) 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.385 0.72 0.26 0.381 
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The models sets 14 and 15 provided greater than 50% accuracy, specificity, and 

sensitivity on the test set when only one passage was used for training. 

Among models that used one passage for training, only model sets 14 and 15 exceeded 

50% accuracy, specificity, and sensitivity on the test set. Among these two model sets, 

only model set 14, which used only neutral difficult passage, performed well in validation. 

Despite the fact that the best model of this model sets’ performance is almost as good as 

the best model of model set 8, which used all passages since the available samples for 

this model set are much fewer than model set 8, we should keep an eye on its 

performance going forward. There is a possibility that in future iterations, we will find the 

high performance of this model set, likely as a result of differentiating the cognitive loads 

that this passage creates for the participants. It is possible, however, that this finding will 

weaken when sample sizes are larger. Regardless, further iterations can reveal more 

insights. 

With the additional samples, validation of the best model of model set 15, which 

performed well in previous iterations, does not indicate that this model can differentiate 

between groups. Similarly, more samples can change this finding. 

 

3.10.6. ETML Development – Step 6: Refining the 

Proof of Concept (With Step 3 Merged Set) 

At step 5, we validated the best model from step 4 and found that the improved results 

met the requirement for a minimum viable product. In other words, the validation of the 

ETML model, which was trained with more samples, suggests that continuing this iterative 

process will lead to a stronger model. Accordingly, as explained in section ..., I now redo 

model sets 8 to 16 with the merged set created in step 3. Our next step is to validate the 

new models by returning to step 3. 

Here are the models that were trained with the whole merged dataset. 
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The result of redoing model set 8 with the new dataset is shown in Table 36. 

Table 36: Model Set 8 – Passage, sentence, and word level for all passages with 55 

observations and 3405 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 

 

Specificity 

 

Sensitivity 
F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level 

Logistic 

Regression 

(LR) 

Yes 3 0.591 0.540 0.61 0.668 

 

The result of redoing model set 9 with the new dataset is shown in Table 37. 

Table 37: Model Set 9 – Passage, sentence, and word level for pain passages with 55 

observations and 1664 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Pain 

Passages 

only 

Logistic 

Regression 

(LR) 

Yes No 0.651 0.513 0.703 0.740 
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The result of redoing model set 10 with the new dataset is shown in Table 38. 

Table 38: Model Set 10 – Passage, sentence, and word level for neutral stimuli with 55 

observations and 1742 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity  Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Neutral 

Passages 

only 

Logistic 

Regression 

(LR) 

Yes 3 0.585 0.533 0.605 0.671 

 

The result of redoing model set 11 with the new dataset is shown in Table 39. 

Table 39: Model Set 11 – Passage, sentence, and word level for difficult stimuli with 55 

observations and 1755 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-arranged 

passage & 

sentence & 

word level - 

Difficult 

Passages 

only 

Support 

Vector 

Classifier 

(SVC) 

Yes No 0.549 0.793 0.458 0.596 
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The result of redoing model set 12 with the new dataset is shown in Table 40. 

Table 40: Model Set 12– Passage, sentence, and word level for easy stimuli with 55 

observations and 1651 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Easy 

Passages 

only 

Logistic 

Regression 

(LR) 

Yes 3 0.615 0.48 0.665 0.715 

 

The result of redoing model set 13 with the new dataset is shown in Table 41. 

Table 41: Model Set 13 – Passage, sentence, and word level for neutral easy stimuli with 55 

observations and 872 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Neutral 

Easy 

Passage 

only 

Logistic 

Regression 

(LR) 

Yes 3 0.636 0.526 0.678 0.721 
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The result of redoing model set 14 with the new dataset is shown in Table 42. 

Table 42: Model Set 14 – Passage, sentence, and word level for neutral difficult stimuli with 55 

observations and 871 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Neutral 

Difficult 

Passage 

only 

Logistic 

Regression 

(LR) 

Yes 3 0.547 0.594 0.53 0.613 

 

The result of redoing model set 15 with the new dataset is shown in Table 43. 

Table 43: Model Set 15 – Passage, sentence, and word level for pain difficult stimuli with 55 

observations and 885 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage & 

sentence & 

word level - 

Pain 

Difficult 

Passage 

only 

Logistic 

Regression 

(LR) 

Yes 3 0.583 0.533 0.603 0.667 
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The result of redoing model set 16 with the new dataset is shown in Table 44. 

Table 44: Model Set 16 – Passage, sentence, and word level for pain easy stimuli with 55 

observations and 780 variables 

Input Algorithm Oversampling PCA 
Overall 

Accuracy 
Specificity Sensitivity 

F1 

Score 

Re-

arranged 

passage 

& 

sentence 

& word 

level - 

Pain 

Easy 

Passage 

only 

Logistic 

Regression 

(LR) 

Yes 3 0.538 0.5 0.552 0.635 

The accuracy of the best model of model set 8, the model set with most samples, is less 

than previous models, and now the best overall model is used only pain passages, 

resulting in 65% accuracy.  

An interesting finding is that all models which use only one passage provide higher than 

50% accuracy, specificity, and sensitivity. 

Another interesting finding is with this dataset, almost all best models are logistic 

regression and use PCA. This phenomenon might be explained by the fact that PCA helps 

to reduce dimensions. In a feature rich model such as the one in this project, is helpful to 

reduce the dimension of the data. 

Next step in the process requires validating the new best models with a new set of data 

collected from a new set of people (step 3). While this step is beyond the scope of my 

current project, all the steps completed in this project suggest that continuing the process 

is likely to lead to a robust model. 
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4. DISCUSSION 

The objective of this project was twofold 1) develop an ETML as a minimum viable proof 

concept for predicting chronic pain and 2) propose an iterative approach to continue 

developing the ETML into a robust predictive model that can detect chronic pain people 

from eye movements automatically with 80% accuracy.  

To achieve this goal, I started by reviewing the existing studies that used eye-tracking 

methodology to study the impact of chronic pain on attention to visual stimuli. The review 

of literature resulted in a small set (18) of relevant papers; there has been relatively little 

work in this area. Chronic pain studies typically examine the impact of chronic pain on 

visual attention to detect bias toward pain-related stimuli. This objective is often achieved 

by capturing participants’ reactions to pairs of pain-related and neutral visual stimuli (e.g., 

words and/or images) for a fixed short period of time (e.g., 2 to 5 seconds). In pain studies 

that use eye tracking methodology, attention to stimuli is typically captured by fixations 

and visits metrics (Table 2 that shows the summary of literature review). Because 

fixations reveal the maintenance of one’s gaze on a specific object or stimuli and visits 

include a collection of one’s consecutive fixations on an object or stimuli, they provide 

excellent eye tracking metrics for such studies, particularly if the focus is on measuring 

initial engagement (e.g., time to first fixation or duration of first visit). However, measuring 

later stages of attention (i.e., attentional engagement and maintenance), which seem to 

provide more consistent evidence for detecting attentional bias in such stimuli 

presentation tasks (Chan, Suen, Jackson, et al. 2020) can benefit from stimuli that is 

richer in context and exposure time. Stimuli that is rich in context, naturally require longer 

processing time, which is likely to provide more opportunities for detecting differences in 

all stages of attention, particularly for detecting differences in attentional engagement and 

maintenance. Hence, in this project, I extend the task paradigm that is used in prior eye 

tracking chronic pain literature. Rather than comparing attention to simple pain-related 

and neutral words or images, I examined viewing behavior when people read four short 

(about 100 words) text passages, two of which covered pain-related topics (headache 

and backache) and two neutral topics (bees’ communications and furniture). The 
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extension of the task paradigm also allowed me to extend the set of eye tracking metrics 

used in prior chronic pain studies.  For example, saccadic variables were not used in prior 

chronic pain research. Saccadic variables, however, which reflect a change of focus, are 

very important to assess attention maintenance.  

Because chronic pain impacts cognition (Phelps et al. 2021), the viewing behavior of 

people with chronic pain is likely to be affected by task load. To test this possibility, I 

created two levels of task loads (easy and difficult) by manipulating the reading level of 

the stimuli (2 text passages were simplified to be at 7th grade reading level; 2 were more 

difficult at 14th and 16th reading grade levels). This is yet another extension to the existing 

task paradigm in chronic pain literature.   

Because prior research shows that pupillometry serves as a great metric for automatic 

detection of cognitive load, I included a host of pupillary metrics that can reliably detect 

cognitive load (e.g., Shojaeizadeh et al. 2019). 

Using the above discussed extended task paradigm and extended list of eye movement 

metrics, I developed a feature-rich ETML (76 eye tracking features) from the eye 

movements of 28 people (9 with chronic pain and 19 pain free) that read 4 text passages 

(about 400 words), randomly presented to them, at their own pace (section 3.1). The 

results showed that the ETML which used the richest set of related data (rearranged data, 

see section 3.9.4) reached a promising level of accuracy (model 8, 70.0% overall 

accuracy with good specificity and sensitivity).  

Comparatively, model 1, with an unarranged dataset, reached 77.1% accuracy with only 

passage-level eye movements with no other information on the passage (word, sentence) 

or other passages that the same participant read. Among all passages, this model 

received the least input, and it is likely that overfitting led to such high accuracy. While 

models 8 and 15 were support vector machines with oversampling and without dimension 

reduction (PCA), model 1 used the random forest algorithm with the same settings. 

Although the high accuracy achieved by model 1 (the least information-rich model, which 
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used only passage level eye movement data for only one passage) was not deemed 

reliable, this model was still validated on an exploratory basis. 

The above results showed that the selected feature set that was obtained after removing 

the missing values were suitable for predicting chronic pain. The results also showed that 

it might be possible to reach relatively high level of accuracy with a model that takes eye 

movements at passage, sentence, and word levels for the difficult pain-related passages 

(model 15, with 75.3% accuracy). This result is important because it indicated we might 

be able to build a reliable ETML by asking users to read only one short paragraph (4-6 

sentences, about 100 words) rather than all four passages. These encouraging results, 

which were obtained with a relatively small number of participants (n=28), warranted 

further iterative development. Hence, I continued to refine my investigations by following 

the iterative model that I proposed in the methodology section of this dissertation, for 

developing an ETML engine for predicting chronic pain. 

The next step in the process (step 3) was to collect a new set of eye tracking data using 

the same stimuli and task paradigm as before. I collected eye movement data for 27 new 

participants. The new dataset, which was roughly the size of the original dataset, had the 

same inherent skewness; there were more pain-free participants in the pool than people 

who suffered from chronic pain (6 chronic pain and 21 pain-free people).   

I used the newly collected dataset to validate the ETML that was developed in step 2 

(model 8). Also, the validation of the two other models (model 1 and 15) was also 

explored. None of the three models maintained a specificity or sensitivity above 50% while 

maintaining relatively acceptable accuracy. This low validation accuracy of the models 

was expected because the proof of concept was developed (trained and tested) in step 2 

with collected data from a small number of participants (n=28). Hence, as specified in the 

step 4 of my proposed process, I merged all data from both collected datasets (n=55) and 

divided the data randomly into two chunks: 80% of the data was used for training and 

testing new models and 20% were kept aside for validating the models. This allowed me 

to see how the models perform when the two sets of data were uniformly distributed.  
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Overall, the best model in this step was model 8, which covered passage, sentence, and 

word-level input for all 4 passages. The best results were obtained by a logistic regression 

without oversampling or PCA, resulting in an accuracy of 71.9%. Among the models 

which used passage, sentence, and world level input for a single passage, models 14 

and 15, with a SVC algorithm with oversampling but no PCA, and logistic regression with 

oversampling and a PCA with 3 components, provided 52% and 63.9% accuracy, 

respectively. These promising results provide support that continuing the process is likely 

to result in developing a robust ETML that can predict chronic pain with a minimum of 

80% accuracy. Hence, these “good” models were validated using the portion of the 

dataset set aside for validation. Both models 8 and 14 reached approximately 60% 

accuracy in validation, but model 15's was not acceptable. Improved validation results for 

models 8 and 14 encourage us to continue the iterative process until high validation 

accuracy is reached. 

Because step 5 result was encouraging, as instructed in my proposed iterative process, I 

used all the data to test and train new ETMLs to be validated with a newly collected set 

of data (go back to step 3) in a future study.  

The results of this step (6) were also encouraging. Almost all models’ specificity and 

sensitivity were above 50% (except model 11 and 12) and some reached as high as 65% 

accuracy. The best model was model 9, which used two pain passages as input. The best 

performance on this input was achieved by logistic regression with oversampling and 

without PCA, resulting in 65.1% accuracy. Among models which used only one passage 

for input, the neutral difficult (54.7% accuracy) was the poorest performer, and the best 

performance (highest accuracy) was achieved by model 13, which used the neutral easy 

passage, leading to 63.6% accuracy. Developing a model using all samples of the merged 

set resulted in a slight decrease in the accuracy of the models that were developed with 

the smaller datasets (n=28). 

Another interesting finding of this iteration is the trend of using dimension reduction 

between best models. Upon adding the number of samples for training, the best models 

started to use PCA. In step 6, almost all the best models used PCA. Because adding 
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samples may introduce complex eye movements, the model likely will use PCA to reduce 

the dimension of data to manage the number of variables while keeping the performance 

high. Additionally, the results seem to show a trend for winning models among the best 

models. In step 2, SVC performed best in almost all inputs. Later, some best models used 

logistic regression, and in step 6, all of the best models used logistic regression. The 

different algorithms or dimension reduction settings used among the best models in later 

iterations likely can explain the slight reduction of accuracy, and with more samples, it is 

possible to see a convergence of algorithms and settings between the best models. 

Given the small sample sizes used to develop these initial models, the fluctuations in 

accuracy of the models and variation in best performing algorithms is not surprising. The 

fact that a reasonably good model can be built in each iteration provides support that 

building an ETML for predicting chronic pain is likely to be successful, following the 

suggested iterative process.  As more and more data are collected in each iteration, more 

differentiating eye movement nuances are captured and incorporated in the models. 

Meanwhile, the iterative process allows us to monitor how the fluctuation in accuracy 

stabilizes over time and which algorithms and settings continue to outperform others.  

The results of this research have important implications. By extending the task paradigm 

as well as using more eye movement metrics, my research contributes to chronic pain 

literature that investigates the impact of chronic pain on attentional bias. By developing 

an ETML proof of concept, this study contributes to NeuroIS literature. As more and more 

consumer-grade eye tracking devices become available, NeuroIS for supporting clinical 

decision-making becomes more affordable and hence feasible to use in clinical settings 

and perhaps in a not so distant future, at home, during remote clinical visits (Alrefaei et 

al. 2022). According to a recent user-centered framework for product development 

(Djamasbi and Strong 2019), there is a need for developing smart machine learning 

engines to address the continual market demand for user experience-driven innovations. 

My proposed iterative process, which allows for collecting sensor data over time, presents 

an initial step towards developing such smart NeuroIS systems over time as more sensor 

data becomes available. Finally, the developed proof of concept in this study provides 
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evidence for appropriateness of using eye movement data as an objective biomarker for 

chronic pain. 

Similar to any project in its formative stages, my dissertation is not without limitations that 

should be addressed in future iterations. The ETML in this research was built with 4 text 

passages (2 pain-related and 3 neutral passages) with limited topics. For example, the 

pain-related text covered headache and backache. Expanding the pain stimuli to cover a 

wider variety of chronic pain topics may improve the accuracy of the models and even 

help to build models that can distinguish between people with different types of chronic 

pain. Previous eye-tracking studies suggest that including relevant images can improve 

attention to text (Norouzi Nia et al. 2021). Hence, including images in textual passages 

may improve the effectiveness of the visual stimuli in detecting attentional biases between 

pain-free and chronic pain groups.  

Eye tracking data was collected primarily from WPI community members for my project. 

Collecting eye movement data from a wider population with different educational 

backgrounds is necessary to build a robust model. None of the participants in this 

research suffered from acute chronic pain. Thus, collecting eye movements from people 

with mild, moderate, and acute chronic pain experience will improve the robustness of the 

models.  
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6. APPENDIX I 

 

 

Figure 3 - Neutral easy passage (Difficulty level: 7th grade) 
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Figure 4 - Neutral difficult Passage - Difficulty level: 14th grade 

 

 

Figure 5 - Pain difficult Passage - Difficulty level: 16th grade 
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Figure 6 - Pain easy passage - Difficulty level: 7th grade 
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Figure 7 – Passage- level AOI (AOI at the size of the page) 

 

 

Figure 8 - Sentence-level AOI 

 



 

 97 

 

Figure 9 - Word-level AOI 
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Neuro Information Systems

Today’s market needs for quick response to users’ needs require 
adaptive devices. Using NeuroIS, we can build such adaptive devices.

Neuro Information Systems (NeuroIS) research refers to research 
that uses neuroscience knowledge, tools and physiological measures 
to design intelligent information systems that can detect user needs 
automatically.1,2

1. http://www.neurois.org/what-is-neurois/
2. Shojaeizadeh, M., Djamasbi, S., Paffenroth, R. C., & Trapp, A. C. (2019). Detecting task demand via an Eye Tracking Machine Learning System. Decision Support Systems, 116, 91–101.



Smart NeuroIS for Detecting 
Chronic Pain

Problem Domain 

• Chronic pain is pain that persists or recurs for more than 3 months"1

• It impacted 50.2 million2 American adults and the US pays $560 billion3 on 
medical expenses, lost productivity and disability programs, annually.

Eye Tracking

• Vision is a dominant sense4

• Modern eye-tracking devices allow to capture gaze unobtrusively 

JAVAD NOROUZI NIA | PH.D. DISSERTATION | AUGUST 202203

1. Treede, R. D., Rief, W., Barke, A., Aziz, Q., Bennett, M. I., Benoliel, R., Cohen, M., Evers, S., Finnerup, N. B., First, M. B., Giamberardino, M. A., Kaasa, S., Korwisi, B., Kosek, E., Lavand'homme, P., Nicholas, M., Perrot, S., Scholz, J., Schug, S., Smith, B. H., … Wang, S. J. (2019). 
Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain, 160(1), 19–27.

2. Yong RJ, Mullins PM, Bhattacharyya N. Prevalence of chronic pain among adults in the United States. Pain. 2021 Apr 2. Epub ahead of print. 
3. https://www.washingtonpost.com/national/health-science/the-big-number-50-million-adults-experience-chronic-pain/2018/10/19/30831828-d2e0-11e8-83d6-291fcead2ab1_story.html
4. Pocock, D. C. D. (1981). Sight and Knowledge. Transactions of the Institute of British Geographers, 6(4), 385–393.



Goals & Contribution
Research Goal

GOAL

• Develop a proof of concept for an eye tracking machine learning (ETML) 
System that can detect chronic pain automatically and exclusively from eye 

movement
• Develop and test an iterative process for data collection and model 

development following user-centered design methodology

Research Contribution

• NeuroIS (designing smart systems)
• Eye-tracking (identifying and expanding set of metrics for attentional biases) 
• Health and wellness (objective biomarker to diagnose chronic pain or assess 

treatment efficacy
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Background



Background

• May 2020 review paper of eye tracking pain studies 
(9 chronic pain – eye-tracking papers)1

• May 2020 – present: 9 newer studies

05

Total of 18 papers used eye tracking 

to study chronic pain

1 Chan, F., Suen, H., Jackson, T., Vlaeyen, J., & Barry, T. J. (2020). Pain-related attentional processes: A systematic review of eye-tracking research. Clinical psychology review, 80, 101884. https://doi.org/10.1016/j.cpr.2020.101884

JAVAD NOROUZI NIA | PH.D. DISSERTATION | AUGUST 2022



06

Limitation of Prior Research

A common cause of a stiff neck is poor posture while working,
eating, and sleeping. A compromised posture, such as looking
down at your smartphone for a long time, can make your neck

ache - a problem that has been dubbed "text neck" or "tech
neck. If your neck bothers you, you should also pay attention

to your pillow. A pillow that bends your neck forward or to one
side will only make your neck pain worse. The kind of pillow 

you
choose and how you sleep on it makes a big difference in how

much pain you feel when you wake up in the morning.

Limited context Short exposure time
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06

Limitation of Prior Research

Limited context Short exposure time
Small set of eye-tracking 

variables
Analysis method
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Experiment Design

Experimental Session

• Consent
• Calibration
• Text Passages 
• Debriefing

Equipment

• 600 Hz Tobii Pro Spectrum
• Tobii Pro Lab software 1.162
• IVT filter, with 100 ms for fixation 

threshold 
• 30 degree/s for saccade threshold

Process

• Designing and testing the visual stimuli 
with 10 participants

• Designing and developing ETML 
iteratively with 55 different participants



Each participant views

Pain easy passage

Pain difficult passage

Neutral easy passage

4 Passages 

19 sentences

410 words

Neutral difficult passage
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Category of eye movement metrics used in this research

Measuring Attentional Biases
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Preparing Datasets for 
My Proposed Theory-based ML

10

Split the data to train and test sets (k-fold=5), with 10 repeat
Balancing the data
Addressing missing values (NANs)
Arranging the data
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Evaluation of Model

11

Accuracy

Specificity

Sensitivity

F1 score

Evaluation and selection of models based on performance of testing set on:
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Dimension Reduction 

Level 

(Principal Component 

Analysis (PCA))

ML Models and Settings

12

Oversampling

Algorithm
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Model Selection

13

Select 
model(s) 

for 
validation

.

.

.

.

.

.

Best model of 
input 1

Best model of 
input n

Total of 24 models

for each input
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Input 1

Input n



Model Set Inputs
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Sensor data from 
products usually 
accumulates over time

Learning while 
developing a product

Proposed Iterative Process

15

Iterative process based on UXDI1 model for product development

1. Djamasbi, S., & Strong, D. (2019). User Experience-driven Innovation—Theory and Practice: Introduction to Special Issue. AIS Transactions on Human-
Computer Interaction, 11(4), 208-214. https://doi.org/10.17705/1thci.00120
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Proposed Iterative Process

17

Iterations to refine the proof of concept

Proof of concept
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Implemented Iterative Process

18

Step 1-2 
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(28 participants: 19 PF, 9 CP)
Age, mean: 24.2, SD: 3.2



Step 2 Results 
Develop Models with Step 1 Train/Test data

19

PSW: passage, sentence, word-level data; (R): re-arranged
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Implemented Iterative Process

20

Step 1-2

proven concept 
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(28 participants: 19 PF, 9 CP)
Age, mean: 24.2, SD: 3.2



Implemented Iterative Process

21

Step 3
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(27 participants: 21 PF, 6 CP)
Age, mean: 30.3, SD: 15.6

(28 participants: 19 PF, 9 CP)
Age, mean: 24.2, SD: 3.2



Step 3 -
Validating step 2 models with a new dataset

22

Not acceptable validation results

JAVAD NOROUZI NIA | PH.D. DISSERTATION | AUGUST 2022



Implemented Iterative Process

23

Step 3: poor validation with the new set of data 
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(27 participants: 21 PF, 6 CP)
Age, mean: 30.3, SD: 15.6



Implemented Iterative Process

24

Step 4: from merged data (55 participants)

created train/test/validation datasets

developed model with train/test dataset (44 participants)
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Step 4 Results –
Develop Models with Step 3 Train/Test data
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Step 4: from merged data (55 participants)

created train/test/validation datasets

developed model with train/test dataset (44 participants)

Implemented Iterative Process

27

Step 5: with validation set of the 

merged data Validated models 

(11 participants)
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Acceptable results



Step 5 -
Validating step 4 models
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Implemented Iterative Process
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Step 4: from merged data (55 participants)

created train/test/validation datasets

developed model with train/test dataset (44 participants)

Step 5: with validation set of the 

merged data Validated models 

(11 participants)

Improved results
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Acceptable results



Implemented Iterative Process
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Step 6: using all merged data created train/test 

datasets; developed models (55 participants)
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Step 6 Results –
Develop Models with Step 3 All Data
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Implemented Iterative Process

32

Step 4: from merged data (55 participants)

created train/test/validation datasets

developed model with train/test dataset (44 participants)

Step 5: with validation set of the 

merged data Validated models 

(11 participants)

(27 participants: 21 PF, 6 CP)

Iterations to refine the proof of concept

Proof of concept
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Improved results Acceptable results



Conclusion



Conclusion
Proof of concept for an ETML model to differentiate chronic pain and pain-free people 
with validated models on step 5

Evidence for working iterative process
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Universal label for all Chronic pains

Initial datasets came from WPI 

community (COVID)

Text passagesLimitation

Model eye movements of people with 

different types of pain

Wider range of participants

Adding images to stimuliFuture Research
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Thank You

for attending my presentation!

JAVAD NOROUZI NIA

School of Business
Worcester Polytechnic Institute
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