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Abstract

This study aimed to enhance the capabilities of NeuroEvolution of Augment-
ing Topologies (NEAT) to evolve diverse ensembles of neural networks that can
solve both classification and reinforcement learning tasks. A novel fitness func-
tion, Constituent Ensemble Evaluation, rewards networks which perform well
in ensembles. The study showed that for simple reinforcement learning tasks,
the team’s approach did not improve the capability of NEAT to evolve useful
ensembles. However, for classification tasks, when CEE was incrementally intro-
duced into the fitness function, ensembles performed marginally better on average
(0.599±0.09) than a similar published technique, Orthogonal Evolution of Teams
(0.568± 0.02). However, CEE also has a slightly higher variance, making it less
reliable.
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2 Introduction

This paper explores the application of genetic algorithms for evolving ensembles of
neural networks using an ensemble-based fitness function. This section will present these
topics at an introductory level while a further justification of the methods employed in
this paper will be explored during the literature review.

2.1 Genetic Algorithms

Genetic algorithms describe a field of optimization and search techniques analogous to
the principles of natural selection and genetics, wherein only the fittest members of
a population may go on to reproduce their genes in each successive generation. Each
individual in the population corresponds to a point in the search space of a given
problem such that this point may be evaluated as a potential solution. Within the
scope of this project, an individual is represented by its “genome” (a list of the neural
network’s graph edges/weights), which can be expressed as a “phenotype” (a feed-
forward neural network).

Popular techniques such as Neural Evolution for Augmented Topologies (NEAT)
seek to approach the optimal solution to a particular task by evaluating each genome
based on the outputs of the phenotype, selecting the fittest candidates, and then se-
lectively mutating the genomes in some way. For example, mutation can be described
as adding or deleting perceptrons and modifying connection weights. In genetic algo-
rithms, the fittest individuals are more likely to be selected for reproduction, passing
their genetic material to the next generation, while the weaker ones are discarded. By
iteratively applying the genetic operators of selection, crossover, and mutation to the
population, genetic algorithms can search for the optimal or near-optimal solutions to a
wide range of optimization problems, including function optimization, feature selection,
and parameter tuning [3]. Successive rounds of selection and mutation are referred to
as evolution. Evolution, as described above, can simultaneously optimize both weights
and network topology; contrast this with approaches like back-propagation, which can
only optimize weights. Simulating evolution in this manner has been used to solve
computationally intractable problems. However, as genetic algorithms rely on a arbi-
trary fitness function in order to perform selection, the choice of fitness criteria will
necessarily determine the overall effectiveness of the approach.

2.2 Fitness Functions

Fitness functions are a crucial component of genetic algorithms. The fitness function
evaluates the quality of each candidate solution or individual in a population, assigning
a numerical value representing its fitness or suitability for the problem being solved. In
reinforcement learning, where the model is rewarded based on the current state of the
agent, the fitness function may simply be the sum of the reward earned by the model.
For classification problems, where the goal is high accuracy, the fitness function may
be the accuracy of the model on the training data. Fitness functions are by no means
guaranteed to yield the optimal populations, as they simply reward behavior which is
theoretically aligned with the final goal. Misalignment occurs when the intended goals
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are inadequately represented by the fitness function. This presents an opportunity to
experiment with the design of a fitness function to find better aligned behavior.

2.3 Regularization

One prevalent misalignment problem is overfitting, which occurs when a model has
become to closely tied to the training data and fails to perform similarly well on test-
ing data. The process of tackling overfitting is called regularization. Regularization
encourages the model to reach an optimal level of complexity, such that it is able to ap-
propriately learn the overall patterns in the training data without completely mimicking
it, termed generalization. Explicit regularization refers to techniques which specifically
constrain the model to avoid overfitting, such as penalizing the fitness of a genome by
its size. In the context of this paper, explicit regularization is attempted through the
use of an ensemble-based fitness function.

2.4 Ensembles of Neural Networks

Ensemble learning is a powerful technique in machine learning that combines multi-
ple models to improve the accuracy and robustness of predictions. By averaging or
combining the predictions of multiple models, ensembling can reduce the variance in
the predictions, which can improve the generalization performance of the model and
help avoid overfitting. This paper proposes an ensemble-based fitness function which
rewards models that are complementary to other members in the population, such that
the final population contains models that have evolved to work well in an ensemble.

3 Literature Review

Artificial intelligence has experienced a significant increase in interest in utilizing evo-
lutionary algorithms to optimize neural networks. Kenneth Stanley and Risto Miikku-
lainen’s 2002 seminal paper, Evolving Neural Networks through Augmenting Topologies,
proposed NeuroEvolution of Augmenting Topologies (NEAT) as a method for evolving
neural networks by employing genetic algorithms to optimize the networks’ topologies—
the weights and connections of the neural network.

NEAT relies on the concept of a genome, which symbolizes the structure and charac-
teristics of a neural network. The attributes of a given neural network are encoded as a
linear representation specifying incoming and outgoing connections, as seen in Figure 1.
This linear representation allows for two key operations, crossovers and connection pa-
rameter mutations [8]. Connection parameter mutations refer to changes made to an
individual neural network, such as adding, removing, and changing connections be-
tween nodes [2]. Crossover is a powerful technique for introducing diversity into the
population by allowing genomes to recombine and produce offspring that have inherited
aspects of their parents topologies [2]. A point on both parents’ linear genome is picked
randomly, and designated a ’crossover point’. Information to the right of that point
are swapped between the two parent chromosomes. This results in two offspring, each
carrying some genetic information from both parents. Due to the stochastic nature of
crossover and mutation, there is always a chance that good solutions fail to persist [4].
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NEAT approaches this problem by implementing “steady-state” selection [10]. Instead
of creating an entirely new population each generation, a percentage of the fittest so-
lutions are allowed to persist, and the unfit members are replaced by offspring of the
fittest.

Figure 1: A genotype to phenotype mapping example. A genotype is depicted that
produces the shown phenotype. There are 3 input nodes, one hidden, and one output
node, and seven connection definitions, one of which is recurrent. The second gene is
disabled, so the connection that it specifies (between nodes 2 and 4) is not expressed
in the phenotype

Adapted from Evolving Neural Networks through Augmenting Topologies, Stanley and
Miikkulainen, 2002

Prior to NEAT, previous approaches were faced with the Competing Conventions
Problem [6], a difficulty with crossover between two permutations of genomes represent-
ing the same solution which produces offspring with redundant connections in place of
potentially useful ones. NEAT presents a solution to this problem with a crucial tech-
nique, tracking “innovations” in neural network topology. The authors implemented a
historical marking system to track each network’s evolutionary history. When crossover
occurs, individual genes are paired according to their matching innovation number, of
which one is selected randomly to persist. Genes which do not match are allowed to per-
sist if they belong to the fittest of the two genomes. Genes that do not match are either
disjoint or excess, depending on whether they occur within or outside the range of the
other parent’s innovation numbers. This system allows NEAT to build on previous suc-
cesses and avoid replicating failed attempts. NEAT implements additional techniques
for preserving innovations while maintaining diversity within the population. The au-
thors propose limiting competition within the population to smaller niches, defined as
“species”, which are constructed by separating genomes by their species distance. The
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species distance is defined by

δ =
c1E

N
+

c2D

N
+ c3W̄ (1)

where E is the number of excess genes, D is the number of disjoint genes, and W̄ is the
average weight differences of matching genes. By default, this equation is parameterized
by c1 = 1.0, c2 = 1.0, c3 = 0.5, and N = 1. Using this approach, each species is allowed
to evolve separately, and are each permitted a certain number of offspring based off
of an adjusted fitness function which takes the existing species size into account. The
combination of innovation and speciation allow for NEAT to preserve useful topologies
while maintaining a manageable population size, yielding a stable and computationally
viable algorithm for evolving neural networks.

The NEAT algorithm has been highly influential in evolutionary neural network
optimization and has been applied to various problems, including image and speech
recognition, game playing, and robotics. It has also inspired the development of other
algorithms based on evolutionary computation principles, such as HyperNEAT and
CoDeepNEAT.

Neuro-evolutionary algorithms have demonstrated utility in approaching machine
learning tasks, though there are many ways to improve this technique. One problem
facing many machine learning algorithms is overfitting the training data. Yao and
Liu [12] point out that previous approaches to neuro-evolution tend to choose a single
network from the population, which yields the minimum error rate after each generation.
This approach has the problem of being extremely dependent on the initial random state
of the population initialization, making it difficult to know if a solution is generalized
or able to adapt to unseen data. To avoid this, they achieve implicit regularization
of the networks by maintaining smaller networks with diverse structures which are less
capable of overfitting. This is in contrast to explicit diversity regularization, explored by
Optiz and Shavlik [5] which includes in the fitness function a diversity term measuring
the average difference of a given networks weights with that of the average population
network weights.

Ensemble based methods are also used to achieve regularization. Both Yao and Liu
and Optiz and Savlik generate a final ensemble from their populations using a rank
based linear combination of individuals, ranked by fitness. Their approach is similar to
bagging (Bootstrap Aggregating), which generates multiple models and aggregates their
predictions [1] using a ranking function which attempts to maximize the variance in the
final prediction. Rank-based ensembling has been shown to improve the performance
of various classification algorithms, however, Zhou et al. [13] improve on the bagging
approach through the use of a genetic algorithm to evolve a weighted selection criteria
for selecting a subset of the available neural networks, rather than using the entire
population. They conclude that using many (between 50% and 75%) of the available
networks tends to yield the best bias-variance trade-off and improve generalization.

Soule et al. [7] [9], discuss the limitations of existing evolutionary algorithms for
evolving teams or ensembles comprising cooperating team members. The paper exam-
ines two current methods for training ensembles: island and team. The island approach
evaluates each genome individually, only assembling them at the end. In contrast, the
team approach creates groups of individuals and enforces selection based on the teams’
ensemble performance. The island and team approaches have subtle yet significant
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weaknesses restricting their performance. Island approaches generate highly fit team
members but with correlated errors, resulting in sub-optimal team performance. On
the other hand, team approaches can produce team members with inversely correlated
errors, leading to relatively good team performance; however, the members themselves
are relatively poor, limiting the teams’ overall performance. Soule et al. present a
novel class of evolutionary algorithms called Orthogonal Evolution of Teams (OET),
which overcomes these limitations. OET algorithms generate highly successful individ-
ual solutions with members specializing in distinct sub-domains of the problem space.
This specialization leads to robust solutions covering the problem domain with minimal
gaps or errors. Results show that OET algorithms merge the benefits of both island
and team approaches, outperforming standard evolutionary approaches significantly.
The results of this paper inspired the team’s attempt to approach neuro-evolution for
ensembles by implementing individual selection as in the island approach but using an
ensemble based fitness metric, as in the team’s approach.

In conclusion, the field of artificial intelligence has seen significant advancements
in the optimization of neural networks through evolutionary algorithms and the use
of ensemble-based classifiers. NEAT and OET have demonstrated the potential of
evolutionary approaches to optimize neural network topologies and create robust teams
of classifiers, respectively. These methodologies have been applied to various problems,
showcasing their versatility and effectiveness.

4 Methodology

One of the key factors determining an ensemble’s success is the diversity of the indi-
vidual models. The more diverse the models are, the more likely they are to capture
different aspects of the problem and avoid making the same mistakes. In neural network
ensembles, diversity can be achieved by varying the individual networks’ initialization
and architecture. The team’s approach seeks to use the capabilities of NEAT to evolve
diverse neural networks, which are selected based on group performance. Instead of
evaluating a neural network’s fitness by its individual fitness for a given learning task,
the team instead evaluates a neural network by its performance in groups. The team
hypothesizes that this approach will result in a population of neural networks better
suited to ensembling. Additionally, the team will test different approaches to ensem-
bling with selection algorithms, which dictate how to construct varying size ensembles.
Within this project’s scope, the team will experiment with the parameters of the NEAT
algorithm, the choice of the fitness function, and the final ensembling heuristic, with
the intent of finding an optimal configuration across a variety of classification and re-
inforcement learning tasks.

4.1 Ensembling Algorithms

To start the project, the team first created a set of algorithms that create ensembles
given a population of individual neural networks. These algorithms could then later
be used to analyze and evaluate the results of a particular configuration given to an
experimental trial.
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Figure 2: Initial Algorithm Results From Training Data

Each algorithm has its own unique strengths and weaknesses, ranging from its ef-
fective ensemble size(s) (in relation to the entire population size) to its run-time com-
plexity. Straight-forward implementations of the following algorithms can be found in
the source code repository’s algorithms.py.

4.1.1 Random (control)

The first ensembling algorithm to discuss is the random algorithm. The random en-
sembling algorithm is important because it serves as the control to compare all other
algorithms against.

The random algorithm picks random ensemble(s) at all given ensemble sizes and
evaluates their fitnesses. The time complexity for random is the lowest of all algorithms
at O(n), since the random algorithm needs to pick at most k ensembles to test (a
constant, more on this later) for n different ensemble sizes where n is the population
size. Thus, the team test O(kn) ensembles, which boils down to O(n).

As mentioned above, the random algorithm utilizes a constant k, depicting the limit
of the number of ensembles to test at a given ensemble size n. In other words, k is the
limit on the sample size to test for each given ensemble size. To help illustrate the need
for k, take a look at the random (colored blue) and random high sample size (colored
orange) series in Figure 2.

As illustrated in the graph above, it makes much more sense to have a higher k; with
only one sample per ensemble size, the results are sporadic and inconsistent (as pictured
by random). With a higher sample size (k = 100 for random high sample size), the
random distribution is sampled a sufficient number of times to achieve a more accurate
mean fitness. Since the actual implementation of random relies upon some internal
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ensembling algorithms, here is some easier-to-digest pseudo-code instead.

procedure random ( )
a c cu r a c i e s = [ ]
f o r n = 1 to popu l a t i o n s i z e

ensembles = generate at most k random ensembles
a c cu r a c i e s . append ( average f i t n e s s o f ensembles )

re turn a c cu r a c i e s

4.1.2 Brute Force

The brute force algorithm does exactly what it sounds like: it brute-force evaluates all
possible ensemble combinations to determine the best possible ensemble for all given
ensemble sizes for a given population (and consequently, the theoretical best possible
ensemble for a given population, assuming the entire data set is known in advance).
This ability is extremely powerful, but it also comes with a cost.

The team chose not to implement the brute force algorithm for good reason. To
implement brute force, one must sample every possible ensemble for all ensemble sizes
from 1 to the population size; thus, the time complexity is:

n∑
i=1

(
n

i

)
= O(2n)

While this is feasible for smaller populations, it becomes infeasible very quickly. For
example, for a population size of 15, one would only need to evaluate 32767 possible
ensembles. However, when jumping to a population size of 32, one must evaluate over
4 billion ensembles. To address the issue of the extraordinarily large sample space,
the team proposes a greedy algorithm that sufficiently approximates the best possible
ensemble at a given ensemble size within a somewhat reasonable time complexity. The
team names this algorithm “Greedy 1.”

4.1.3 Greedy 1

Greedy 1 was theorized with the help of the project advisor, Professor Joseph Beck.
Originally, thoughts of creating an ensembling algorithm based on dynamic program-
ming (DP) were discussed, but those thoughts were quickly shut down because it is
theoretically impossible to apply DP to the problem of ensembling (because there is no
deterministic recursive step). However, Greedy 1 does draw parallels to a true DP solu-
tion and approximates the best-performing ensembles fairly well, given a deterministic
data set.

Greedy 1 works with the following philosophy: when picking the next genome for
the ensemble, pick the genome that yields the highest ensemble fitness. This heuristic
was implemented with the following Python:

def g r e e d y 1 s e l e c t i o n a c c u r a c i e s ( genomes , e va l f un c ) :
# Some v a r i a b l e s needed f o r the greedy a l gor i thm
# genomes l e f t i s the genomes l e f t to choose from
# genomes picked i s the current b e s t p r ed i c t e d k−wise ensemble
genomes l e f t = {∗genomes}

12



genomes picked = [ ]
a c cu r a c i e s = [ ]

# Remove the genome tha t improves
# ensemble the most a f t e r each round
while genomes l e f t :

# I n i t i a l i z e t h i s round ’ s v a r i a b l e s
bes t accuracy = f loat ( ”− i n f ” )
best genome = None

# Find the genome tha t b e s t
# improves the current ensemble ( genomes picked )
for genome in genomes l e f t :

ensemble = [∗ genomes picked , genome ]
ensemble accuracy = eva l f un c ( ensemble )
i f ensemble accuracy > bes t accuracy :

be s t accuracy = ensemble accuracy
best genome = genome

# Some housekeep ing to f i n i s h o f f the round
genomes l e f t . remove ( best genome )
genomes picked . append ( best genome )
a c cu r a c i e s . append ( be s t accuracy )

return a c cu r a c i e s

The actual number of ensembles evaluated is n + (n − 1) + (n − 2) + . . . + 2 + 1,
which evaluates to O(n2). While this is sufficient for smaller population sizes, this
can be infeasible for larger populations, especially considering ensemble evaluation is
relatively expensive.

Due to the lack of scalability in Greedy 1; another greedy algorithm was devised that
produces similar results but consumes an order of magnitude less time; this algorithm
is dubbed “Greedy 2.”

4.1.4 Greedy 2

Greedy 2 shares many commonalities with Greedy 1, but makes an important tradeoff:
it evaluates all genome fitnesses ahead of time. Instead of picking new genomes based
on how they impact the ensemble, Greedy 2’s philosophy is to pick the next best
genome based on the genome’s individual fitness. Consequently, one needs to evaluate
the fitness of each genome once and then sort the genomes based on their individual
fitness in descending order. Afterward, one must take the first k genomes to create an
ensemble of size k.

Here is an example implementation of Greedy 2 in Python:

def g r e e d y 2 s e l e c t i o n a c c u r a c i e s ( genomes , e va l f un c ) :
genomes in order = l i s t ( genomes )
genomes in order . s o r t ( r e v e r s e=True , key=lambda g : g . f i t n e s s )

13



return a c cu r a c i e s f o r g enome s ( genomes in order , e va l f un c )

It may not be readily obvious what accuracies for genomes does1, but it is not as
important; the crux of the algorithm is in the simple sort call!

Due to the sort step, Greedy 2 is technically O(n ∗ log(n)); however, Greedy 2
approximates O(n) in practice since the genome evaluation step is what takes up the
bulk of the time; the sort step is largely irrelevant.

4.1.5 Diversity-Based Round Robin

Diversity-Based Round Robin (DBRR) is similar to Greedy 2 in operation but also
considers diversity (with a preference for diversity over fitness). The key observation is
that in NEAT, genomes are divided up each generation based on their species difference,
defined in Equation 1; this in turn, allows selecting genomes for ensembles based on
their genetic differences. The philosophy behind DBRR is that after a certain threshold
point, picking for diversity (i.e., species difference) will outperform picking for goodness
(i.e., genome fitness).

For a concrete example of DBRR’s philosophy, take a school group project. At first,
picking the best few students in the class will likely produce the best resulting project
(Greedy 2); however, if adding more and more students to the project, students with
diverse backgrounds can likely bring new ideas to the table and continue to improve
the project further.

DBRR works by first “speciating” a population’s genomes into different species
based on their genetic diversity along with a genetic diversity threshold (called the
“speciation threshold”). Next, each species (a list of genomes with similar genetic
structure) is sorted in descending order based on fitness. Finally, DBRR constructs
ensembles by picking genomes from each (sorted) species round robin style. This struc-
ture may sound familiar; in fact, Greedy 2 acts the same as DBRR if the speciation
threshold was set to infinity.

def d i v e r s i t y r r s e l e c t i o n a c c u r a c i e s ( genomes , eva l func ,
s p e c i a t i o n t h r e s h o l d =3.0) :

# Step 1 : Div ide genomes based on s p e c i a t i on t h r e s h o l d
s p e c i e s = sp e c i a t e ( genomes , s p e c i a t i o n t h r e s h o l d )

# Step 2 : Sort genomes in each s p e c i e s
# in descending order by t h e i r f i t n e s s
for s in s p e c i e s :

s . s o r t ( r e v e r s e=True , key=lambda g : g . f i t n e s s )

# Step 3 : Pick the genomes from
# each s p e c i e s round−rob in s t y l e
s p e c i e s = [ deque ( s ) for s in s p e c i e s ]
genomes in order = [ ]

1 accuracies for genomes creates the accuracies for a list of genomes in their ensemble order;
e.g., the genomes for an ensemble of size 1 would be genomes in order[0 : 1], and the genomes for an
ensemble of size k would be genomes in order[0 : k].
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# For each round−rob in round wh i l e t h e r e are
# s t i l l s p e c i e s l e f t to choose from
while s p e c i e s :

# Pick b e s t genome fo r each s p e c i e s
for s in s p e c i e s :

genomes in order . append ( s . p op l e f t ( ) )

# Remove empty s p e c i e s
s p e c i e s = [ s for s in s p e c i e s i f s ]

# Step 4 : Ca l cu l a t e the accurac i e s based on the p icked
# genomes in order
return a c cu r a c i e s f o r g enome s ( genomes in order , e va l f un c )

In the proposed DBRR implementation, the speciation step takes O(n) by utilizing
one pass through the population. The Greedy 2 step takes O(n/s ∗ s ∗ log(s)) =
O(n∗ log(s)), where s is the species size for a uniformly speciated population. However,
do keep in mind that it is unlikely in practice for speciation to be uniform, and s may
approach n (or even equal n exactly for bad/high speciation thresholds!). However,
as discussed in the previous section on Greedy 2, this step really resembles O(n) in
practice. Finally, the ensembling and evaluation steps both make one pass through
and are consequently O(n). Summing these steps up, DBRR is Θ(n ∗ log(s)), where
1 <= s <= n. Regardless, DBRR resembles O(n) in practice because the sort step is
far from the bottleneck (sorting numbers is much faster than genome evaluation).

4.2 Machine Learning Tasks

Before beginning experimentation, the team needed to choose a set of machine learning
tasks with some objective function to optimize. The team focused on two subdomains
of machine learning, classification and reinforcement learning. Within each subdomain,
the team selected well-studied tasks so that each experimentation result could be com-
pared with a baseline.

4.2.1 Classification Data Sets

Since ensembling is traditionally used for classification tasks, the team decided to test
their novel heuristics and algorithms with well-known classification data sets to start.

MNIST To test the team’s team-based fitness heuristics and ensembling algorithms,
the team initially chose MNIST as the classification data set. MNIST is a collection of
60,000 handwritten digits between 0 and 9. Each input image is comprised of a 28x28
matrix, totaling 784 inputs. There are ten possible outputs representing the probability
for each digit.

The team tried using standard NEAT to classify MNIST data; however, such a task
proved unsuccessful. Even after running for 24 hours, the team still had a best accuracy
of 9.8%, which is as good as a random guess. After viewing the created genomes, the
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team determined that MNIST was too complex a task for genetic algorithms evolved
with NEAT. In order to make accurate predictions on MNIST, a model needs to be
of adequate size and establish numerous connections between inputs and outputs. Al-
though this is theoretically achievable, the team’s attempt at evolving a suitable model
using NEAT could not grow big enough, and it would have taken an impractical amount
of time to do so. As a result of the inherent complexity of MNIST, the team ultimately
decided not to include it in any further experimentation.

UCI Heart Disease Following the challenges with MNIST, the team selected the
University of California Irvine’s Heart Disease data set. This is a multivariate, multi-
class classification problem with thirteen features, three hundred instances, and imbal-
anced data with five possible target classes. It is an appropriate challenge for ensemble
learning as an individual classifier (logistic regression) will struggle to fully capture the
class relationships.

Unlike MNIST’s 784 inputs, the UCI Heart Disease data set only has 13 attributes
and tries to predict a single number.

Here are the 13 attributes:

1. age (Age of the patient in years)

2. sex (Male/Female)

3. cp chest pain type ([typical angina, atypical angina, non-anginal, asymptomatic])

4. trestbps resting blood pressure (resting blood pressure (in mm Hg on admission
to the hospital))

5. chol (serum cholesterol in mg/dl)

6. fbs (if fasting blood sugar > 120 mg/dl)

7. restecg (resting electrocardiographic results) – Values: [normal, stt abnormality,
lv hypertrophy]

8. thalach: maximum heart rate achieved

9. exang: exercise-induced angina (True/ False)

10. oldpeak: ST depression induced by exercise relative to rest

11. slope: the slope of the peak exercise ST segment

12. ca: number of major vessels (0-3) colored by fluoroscopy

13. that: [normal; fixed defect; reversible defect]

Consequently, the UCI Heart Disease data set is a much easier task for a model.
The team split the data into a train/test split of 80/20, consistent with that of OET
(so the team can compare their own ensemble performances with OET’s baseline).
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4.2.2 Reinforcement Learning

After some initial success with classification, the team decided to experiment with
reinforcement learning, selecting several tasks of varying complexity.

Acrobot Acrobot was the most interesting of all the reinforced learning environments.
The environment is a double pendulum, an example can be seen in Figure 3. The model
can move the first linkage. The goal of the model is to get the double pendulum as
high as possible. The action space is to apply negative torque, no torque, or positive
torque. The observation space is the Cosine of theta1, Sine of theta1, Cosine of theta2,
Sine of theta2, Angular velocity of theta1, and Angular velocity of theta2.

Figure 3: Double Pendulum

What made Acrobot interesting was the reward function. Originally, the reward was
calculated by the linkage tip being above a certain height. With this reward function,
the model never learned anything. The linkage would keep flailing around and never
seemed to get better. What was happening was the reward function was never giving
a good score to any ensemble because the tip never got above the threshold to get
points. This is because the model would have to guess a reasonably good solution
randomly. In theory, it would be possible for a model to guess a good solution, but not
probable. After some experimentation, the team realized that reward functions must
be a gradient. There needed to be a continuous space of solution rewards. This is
because then, even if a model is just slightly better, it will get a better reward. NEAT
does not know what to do if all models have the same reward.

As a solution, a reward function was implemented which calculated the average
height of the tip, then subtracted the number of generations it took for the model to
reach the target height. This was done to better determine which models were capable
of swinging the double pendulum higher than others and at achieve the task faster.
This technique saw immediate success in helping NEAT differentiate individuals in the
population.

17



Bipedal Walker Bipedal Walker is a much more complex reinforcement learning
environment. The model’s objective is to control a bipedal robot and make it walk
as far as possible while avoiding obstacles. The observation space is 24 dimensional,
consisting of hull angle speed, angular velocity, horizontal speed, vertical speed, position
of joints and joints angular speed, legs contact with the ground, and 10 lidar rangefinder
measurements. The action space is continuous, with the model controlling the 4 motors
in the hips and knees of the walker.

The complexity of this environment makes it a challenging problem for reinforcement
learning. The observation space is much larger than in simpler environments like Cart
Pole or Hill Climbing, and the action space is continuous, making it difficult for the
model to find the optimal solution. None of the models tested were able to converge on
this task. One explanation is that the task was to complex to be sufficiently optimized
within the time frame allowable. Nonetheless, no further results will be presented for
Bipedal Walker.

4.3 Tools and Technology Used

In order to complete the project, the team utilized a wide variety of tools and resources,
ranging from ML ops to the actual servers running experiments.

4.3.1 Weights and Biases

Initially, the team struggled with manually configuring the team’s experiments. Weights
and Biases (WandB) is a powerful tool that the team discovered later during this project,
which could have saved us a lot of time if found earlier. It is primarily used for data
collection, organizing experiments, and providing graphical representations of results,
including analyzing hyperparameter importance and correlations.

WandB excels in collecting data, logging everything from hyperparameters to the
genomes produced, and ensuring that all aspects of an experiment are recorded for
future reference. This allows for easy review and analysis of past experiments.

Organizing experiments is streamlined with WandB, as it allows for grouping sets of
runs, calculating standard deviations for specific experiments, and conducting hyper-
parameter sweeps. WandB automates the setup and execution of experiments, helping
to optimize hyperparameters and visualize their correlation with performance, even if
the correlation is negative.

The Parameter Importance Panel in WandB enhances hyperparameter tuning by
identifying the most important hyperparameters in terms of predicting model perfor-
mance. It calculates both importance and correlations for hyperparameters, providing
a deeper understanding of their impact on the model. Importance measures the degree
to which each hyperparameter influences the chosen metric, while correlations capture
linear relationships between individual hyperparameters and metric values. These two
measures combined give valuable insights into the most critical hyperparameters.

4.3.2 Slurm

Slurm (Simple Linux Utility for Resource Management) is an open-source job scheduler
and resource management system used for managing and scheduling workloads on Linux
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clusters. Slurm on Turing, WPI’s cloud computing resource, posed several challenges
during the course of the project.

One of the issues the team encountered was a limitation on the number of concurrent
jobs that could be run per user. Each user was restricted to running only 75 jobs
simultaneously, which presented constraints on the team’s ability to perform parallel
processing for large-scale experiments.

Another major limitation of Turing is the inability to install packages directly. In-
stead, it was only possible to load in preexisting modules for any necessary functionality.
While Turing generally provided a wide array of modules, there were a few instances
where the required modules were unavailable. This forced us to find alternative solu-
tions or run certain tasks locally. For instance, the team had to render the videos of the
OpenAI gym environments on the team’s local machines, as the appropriate module
was not available on Turing.

Besides the issue with unavailable modules, the team also faced some other chal-
lenges while using Slurm. The learning curve was steep, and it took time to understand
the system and its intricacies. However, once the team became familiar with the system,
using Slurm was not as problematic as initially thought. Despite the initial difficulties,
the benefits of Slurm started to become more apparent as the team adapted to the
platform.

4.3.3 Anaconda

This project used Anaconda as the team could not install packages on Turing and
an Anaconda environment can be standardized across machines/users. Anaconda al-
lowed users to install Python packages in the user-space and not system-wide; which is
beneficial since the team did not have administrative privileges.

4.3.4 PyTorch

Since PyTorch-NEAT used PyTorch, the team ended up using PyTorch a lot. Py-
Torch is designed for efficient matrix multiplication, which constituted the majority of
calculations in this project. It was also GPU accelerated. It was thought that GPU
acceleration was going to be important at the beginning, but realized that it was more
efficient to use CPU computing. This is because of two factors. Firstly Turing only has
so many GPUs, which are in high demand. This makes it so the team would not have
been able to run many experiments in parallel. Secondly, the overhead of moving the
model from the CPU to the GPU was large enough that it was more efficient to run
the model on the CPU

4.3.5 OpenAI Gym

OpenAI Gym is an open-source package which provides premade environments for
reinforcement learning tasks. The team recommends utilizing this package for further
reinforcement learning projects.
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4.4 Frameworks

Once the team decided that the work would be based on NEAT, the team started look-
ing at NEAT implementations that the team could use as a starting point. There
is no point in reinventing the wheel. Further research found a few options Deep-
Neuroevolution, Python-NEAT, and PyTorch-NEAT. Deep-Neuroevolution never ran,
because some dependencies did not exist anymore. This caused the team to not look
into Deep-Neuroevolution anymore. Python-NEAT is what the team originally thought
the team’s work would be based on. Once the team began to code, the team ran into
some problems with it. It was not GPU accelerated, which was thought to be important
at the beginning of the project, even though it was not in the end. One con was no
experiment wrapper. It also was a pain to work with. So, in the end, the team went
with PyTorch-NEAT. This gave us GPU acceleration and experiment wrappers for free.
The downsides were it does not evolve the activation functions and does not have back
propagation support. Neither of which were integral to the project.

4.5 Heuristics

A heuristic is an approach to problem-solving that employs a practical method not
guaranteed to be optimal nor perfect, but is sufficient for immediate goals. They serve
as rules-of-thumb for an algorithm to follow in order to approach a solution; however,
due to the stochastic nature of the NEAT algorithm and evolution as a whole, there is
no guarantee that an optimal solution will emerge. The team aims to study the effect of
two categories of heuristics: fitness heuristics and ensemble heuristics. It is the aim of
the team to determine which choice of fitness and ensemble heuristics are most suited
toward evolving optimal ensembles.

4.5.1 Fitness Heuristic

Fitness heuristics are used during evolution only to determine a given genome’s fitness
which in turn determines which genomes are selected to persist and reproduce. As a
control, each genome is evaluated using a fitness function corresponding to a specific
machine learning task. For example, in a classification task, a genome is evaluated by
testing the accuracy or cross-entropy loss of its phenotype (feed forward neural net-
work). For a reinforcement learning task, genomes are evaluated by the amount of
reward earned during a task. In addition to the control, the team proposes an alter-
native fitness heuristic Constituent Ensemble Evaluation which evaluates the fitness of
a genome by how well ensembles containing that genome perform. The team hypoth-
esizes that such a fitness heuristic will aid in final ensemble performance, in line with
the teams/islands approach taken by OET.

Constituent Ensemble Evaluation In NEAT, the genome which represents a given
neural network (phenotype) in the population is evaluated each generation using a
fitness function. However, in the team’s experimental design, a different fitness heuristic
was used, named Constituent Ensemble Evaluation. In lieu of evaluating an individual
genome based on its individual fitness, this heuristic instead iterates through possible
teams, or combinations, of a given size that contain the genome and grade the genome

20



based on its overall team (ensemble) performance. There are a number of considerations
with this method, including run time, ensembling method, and fitness metric.

Run Time Considerations - Random Ensemble Sampling For small popula-
tions and ensemble sizes, constituent ensemble evaluation on all possible combinations
for a given genome is computationally light. However, the total number of combinations
grows factorially with a linear increase in the population size, denoted by the equation:(

n

r

)
=

n!

r!(n− r)!

where n is the population size and r is the group size. As the constituent ensemble
evaluation is computed for each generation, the time to complete a single experimental
trial is thus greatly impacted by the choice to fully evaluate all possible constituent
ensembles. While this observation only impacts the run-time of only a particular run,
the concept is important because hundreds of trials must be conducted. As such, the
constituent ensemble evaluation is computed over a sample of all total combinations for
a given ensemble size. This ensemble sample can then be optimized for a given learning
task using hyperparameter search.

Ensembling Method - Soft Voting Once an ensemble has been formed, it must
then be decided how the ensemble will come to its final vote. In soft voting, every
individual of an ensemble provides a probability value that a specific data point belongs
to a particular target class. This is achieved by summing the final activations of each
neural network, then converting the summed activations to a probability vector, in this
case using the Softmax function:

σ(z⃗)i =
ezi∑K
j=1 e

zj

This then produces the final probability vector to make class predictions. The choice
of fitness metric will determine how this probability vector is then converted into a
genome fitness score.

Fitness Metrics At each generation, each individual in the population is evaluated
using a fitness function. This fitness function uses a given metric and converts the
resulting numeric value into a fitness score which NEAT can then use to optimize the
population through natural selection (fitter members have a higher chance of reproduc-
tion and mutation). During experimentation, the choice of fitness metric was varied to
determine which method helped train better ensembles.

Genome Fitness Metric - Reward, Accuracy, and Loss In the traditional NEAT
algorithm, populations evolving to improve on a reinforcement learning task use the
reward metric. The reward of a reinforcement learning task differs by the type of
environment. For example, the Acrobot environment normally returns a value of -1
for each time step that the tip of the double pendulum has not reached the target
height. For classification problems, there is a choice between using the accuracy of
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predictions made or the cross-entropy loss. Accuracy simply measures the number of
correct predictions divided by the total number of predictions. Since high accuracy is
the objective of classification problems, this is a straightforward criteria to judge an
individual genome. Alternatively, cross-entropy loss is a commonly used metric that
measures the dissimilarity between the predicted and actual outputs. Specifically, it
measures the average number of bits required to represent the true distribution of the
classes, given the predicted distribution. In other words, the advantage of using cross-
entropy loss as a fitness function is that it selects individuals with confident predictions.

Constituent Ensemble Fitness Metric - ACER, ACEA, and ACEL To build
upon the standard individual genome fitness metrics, three constituent ensemble fitness
metrics were used in the course of the team’s experiments: Average Constituent Ensem-
ble Reward (ACER), Average Constituent Ensemble Accuracy (ACEA), and Average
Constituent Ensemble Loss (ACEL). For experiments with reinforcement learning, an
agent seeks to maximize the reward. The ACER of an individual genome represents
the average reward across the sample of ensembles containing the individual. Like-
wise, for classification tasks, the ACEA and ACEL represent the average accuracy and
cross-entropy loss across the sample of ensembles containing the individual.

Using both Genome and Constituent Ensemble Fitness Metrics - Warm-
up One concern during initial testing was that during early generations, constituent
ensemble evaluation would limit useful genomes from persisting due to the chance that
they would be grouped with non-complementary genomes and thus have lower fitness.
To combat this, an alternative fitness heuristic was implemented which would evaluate
both the genome fitness and the constituent ensemble fitness, then combine them in a
weighted fitness function. This function would initially weigh the genome fitness as 90%
of the overall fitness, and the constituent ensemble fitness as 10%. These percentages
are inversely proportional with time, such that the final weights result in genome fitness
as 10% and constituent ensemble fitness as 90% of the overall fitness. The team named
this method constituent ensemble with warm-up because the technique “warms-up” the
evolution process using “island” fitness before switching to “team” fitness.

4.5.2 Ensemble Heuristic

After a population has been trained for a certain number of generations using the fitness
heuristic, ensembles are generated using one of the ensemble heuristics as described in
subsection 4.1, and are then evaluated against test data (Classification). Note that for
the remainder of the paper, “ensembling algorithm” will be used interchangeably with
“ensembling heuristic.” Some ensembling heuristics like greedy search use forward step-
wise selection to create optimal ensembles. A novel approach implemented in this paper
uses the species difference coefficient proposed in NEAT to select the best candidate
from diverse species, ensuring that each species is represented. The hypothesis being
that diversity is an appropriate regularization term for creating ensembles that avoid
overfitting by increasing the variance in the final ensemble.
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4.6 Experimental Design

To reiterate, the purpose of this experimentation is threefold. First, it is the aim of this
paper to determine an optimal configuration of the evolutionary NEAT parameters as
follows:

1. Add Connection Mutation Rate (Chance that a genome will add a connection
between two nodes)

2. Add Node Mutation Rate (Chance that a genome will add a new node to the
network)

3. Connection Mutation Rate (Chance that a connection will be reassigned to a
different node)

4. Connection Perturbation Rate (Chance that a connection weight will be increased
or decreased by a small amount)

5. Crossover Re-enable Connection Gene Rate (Chance that a connection that has
been disabled in both parent genomes is reactivated during breeding)

6. Percentage to Save (Proportion of fittest individuals to persist to the next gener-
ation)

7. Speciation Threshold (Degree to which a genome must differ from the existing
species to be categorized as a new species)

8. Use Bias (Whether to include a bias in the activation function)

Second, it is the aim of this paper to optimize the hyperparameters associated with
NEAT which affect the population as a whole. These include custom fitness heuristics
specific to constituent ensemble evaluation. They are as follows:

1. Population Size (The initial size of the population)

2. Number of Generations

3. Use Genome Fitness (Whether to include individual fitness in the fitness function)

4. Genome Fitness Metric (For Classification, whether to use Accuracy or Cross-
Entropy Loss for genome fitness)

5. Use Fitness Coefficient (Whether to gradually increase the weight of ensemble
fitness and decrease the weight of genome fitness in the combined fitness function,
“Warm-up”)

6. Ensemble Fitness Metric (For Classification, whether to use ACEA or ACEL for
genome fitness)

7. Generational Ensemble Fraction (The fraction of the total population to set as
the ensemble size for constituent ensemble evaluation)
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8. Candidate Limit (The fraction of the total number of combinations (ensembles)
to evaluate during constituent ensemble evaluation)

Third, this papers seeks to determine the best choice of ensemble heuristic to create
the final ensemble. These are:

1. Random

2. Greedy1

3. Greedy2

4. Diversity

Realistically, finding the best possible combination is not an achievable goal. Eval-
uating every possible combination would be extremely computationally expensive. In-
stead, the search space is limited by making some assumptions about the likely per-
formance of certain combinations using preliminary experimentation. As more is un-
derstood about the subtle behavioral changes in the algorithm from certain choices,
certain parameters can be fixed as defaults for later searches. This paper utilizes the
Weights and Biases (WandB) platform, which enables efficient configuration and track-
ing of parameter optimization trials. There is a variety of tools available to assist with
this search, referred to as a sweep in WandB. The first is random search. Given a set
of parameters and possible ranges, WandB will initialize multiple sweeps with differ-
ent parameter configurations. This is a surprisingly effective method for determining
the importance of certain parameters when combined with WandB’s built-in sensitivity
analysis and correlation tools. After an initial round of random sweeps, the performance
of certain trials are graphically examined with respect to their parameters. This allows
further narrowing down of the optimal values for certain parameters. Bayesian opti-
mization [11], which updates the probability of selecting certain configurations based
on previous performance will then be used as a comparison to the graphical results.
This is an essential tool, especially when considering the highly stochastic and non-
deterministic nature of the NEAT algorithm, meaning that two runs with identical
configurations may have different results. Thus, the Bayesian approach ensures that
configurations are evaluated multiple times and that the likelihood of finding useful pa-
rameters is less dependent on random chance. Finally, the estimated best parameters
will be chosen and evaluated using multiple trials using different splits of the training
and testing data.

5 Reinforcement Learning Results

The following section describes the performance of over 200 trials using various fitness
heuristics on the Acrobot reinforcement learning task. The results are organized into
two sections: training performance and ensemble testing performance.

5.1 Training Performance

Figure 4 depicts four key metrics collected during training using the NEAT algorithm
and varying fitness heuristics. Some key definitions: Reward is the sum of the height
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achieved at each frame by the tip of the double pendulum. The pendulum starts at a
height of -2 and attempts to reach a height of 1 or above. Step Completed is set as
the frame which the tip of the double pendulum reaches the target height. Fitness is
calculated as the reward minus the step completed. When using constituent ensemble
evaluation (ACER), this is calculated as the average fitness across the sample of ensem-
bles containing the genome being evaluated. Best Fitness (a) describes the maximum
of the population fitness at each generation. Best Average Reward (b) describes the
maximum of the average reward obtained at each generation. Best Max Height (c)
represents the maximum height achieved at each generation. Best Step Completed (d)
represents the minimum step completed at each generation. When aggregated over mul-
tiple trials, these metrics describe the capability of each fitness heuristic to adequately
improve the population over time.

(a) Best Fitness of Acrobot with Standard Devia-
tion

(b) Best Average Reward of Acrobot with Stan-
dard Deviation

(c) Best Max Height of Acrobot with Standard De-
viation)

(d) Best Step Completed of Acrobot with Standard
Deviation

Figure 4: These figures display the mean and standard deviation of four metrics col-
lected during training using the NEAT algorithm.

Based on the observations in Figure 4 it is clear that ensemble regularization does
not yield better results than the baseline even with warm-up. The baseline NEAT
algorithm is able to get the double pendulum to the desired height in fewer steps than
either ACER or ACER with Warm-Up. The shrinking standard deviation bounds
for the control case indicate that most populations converge to a solution, while the
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constant width bounds for ACER and warm-up indicate that many populations fail to
converge to a solution. The team theorizes that the Acrobot task does not benefit from
ensemble regularization as the task is simple enough that the solution space is easily
traversed through stochastic search alone.

5.2 Ensemble Testing Performance

Following training, the final populations were then passed to various ensemble al-
gorithms to determine which combination of fitness heuristic and ensemble heuristic
yielded the best ensembles. The final ensembles were tasked with playing the Acrobot
environment as done in training. The objective of the game is to swing the Acrobot to
reach a target height of 1 in as few frames as possible. During this test, the ensembles
earned a reward of -1 for each frame spent below the target height. Thus, an ensemble
is useful if it maximizes the total reward.

Figure 5 describes the average performance of ensembles on the Acrobot task. The
ensembles were generated using the algorithms described in subsection 4.1. For each
algorithm, the results are grouped by choice of fitness heuristic (Control, ACER, and
ACER with Warm-Up).

Figure 5 indicates that generally, ensembles constructed from populations selected
using individual fitness perform better than ACER and ACER with Warm-Up. The
best overall performance is achieved by the Greedy1 algorithm which is the most ex-
haustive approach. The team concludes that constituent ensemble evaluation is not an
appropriate method for evolving ensembles of neural networks for the Acrobot task.

6 Classification Results

The following results represent the aggregation of several hundred trials performed with
the UCI Heart Disease data set. Topics discussed include sensitivity analysis findings,
in addition to the effectiveness of CEE and CEE with Warm Up when compared to the
control (using traditional genome fitness).

6.1 Best Overall Fitness Heuristic

We conducted an experiment by initializing 150 NEAT trials with randomly varying
parameters to evolve ensembles for classification on the UCI Heart Disease data set. The
key metric used in this section is the mean best ensemble accuracy. Each generation,
DBRR, defined in subsubsection 4.1.5, creates ensembles from the population. The
mean best ensemble accuracy is computed by taking the mean of the test accuracy
returned by the best ensemble created by DBRR across all trials. The primary goal in
this experiment was to determine which fitness heuristic, control, constituent ensemble,
or warm-up, was most beneficial in evolving ensembles. The results of this experiment
are documented in Figure 6. It was observed that, while constituent ensemble evaluation
performed worse than the control, the warm-up approach, which combines individual
and constituent ensemble fitness, outperformed both.

We found that CEE with warm up, which incorporates both individual and con-
stituent ensemble performance, outperforms the control group that focuses solely on
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(a) Diversity Threshold 1 En-
semble Heuristic with Stan-
dard Deviation

(b) Diversity Threshold 2 En-
semble Heuristic with Stan-
dard Deviation

(c) Diversity Threshold 3 En-
semble Heuristic with Stan-
dard Deviation

(d) Diversity Threshold 4 En-
semble Heuristic with Stan-
dard Deviation

(e) Diversity Threshold 5 En-
semble Heuristic with Stan-
dard Deviation

(f) Diversity Greedy 1 En-
semble Heuristic with Stan-
dard Deviation

(g) Diversity Greedy 2 En-
semble Heuristic with Stan-
dard Deviation

(h) Diversity Random En-
semble Heuristic with Stan-
dard Deviation

Figure 5: These figures display the mean reward for the respective ensemble heuristic
for the baseline NEAT, ACER, and ACER with warm-up algorithms. The black line on
each bar indicates the minimum and maximum reward. The rewards are all negative
in this figure, with 0 being on the right since it is the best theoretical reward possible.
The closer the model gets to zero the better it did on the task.
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individual fitness (as is done in traditional ensembling). These findings support our
primary hypothesis and align with the argument presented in the abstract. To ensure a
fair evaluation and address potential limitations such as non-optimized parameters, we
conducted a comprehensive parameter search to give each technique the best possible
opportunity.

Figure 6: This figure summarizes the ensemble performance of 150 trials over time.
The trials are grouped by the chosen fitness heuristic with the control being individual
fitness. The graph indicates that while constituent ensemble evaluation alone performs
worse than the control, combining both approaches (warm-up) performs slightly better
than either on average.

It should be noted that the standard deviation of the mean best ensemble accuracy
(depicted as the shaded areas on the graph) are large in magnitude. This is due to the
stochastic nature of NEAT, wherein some populations are better or worse depending
on their initial state.

Some upward trend in the graphs is observed, indicating that learning is taking
place, though slowly. One explanation is that, over time, the population begins to
grow to a point where the diversity ensembling algorithm has too high a degree of
freedom to over-fit the data; this is associated with high variance. On the other hand,
this explanation would imply that, since the population continues to grow, the effect
of overfitting should magnify, resulting in decreasing performance over time. This is
seen in the constituent ensemble group, but not in the warm-up group, implying that
constituent ensemble evaluation may work to reduce the variance, or increase the bias,
which results in a superior bias-variance trade-off.

6.2 Discussion of NEAT Parameter Importance on Ensemble
Classification Accuracy

The purpose of this section is to determine which, if any, NEAT parameters, defined
in item 4.6 are significantly important in improving the mean ensemble test accuracy.
The results in Table 1 are organized by ensemble heuristic (random, greedy 1, greedy
2, Diversity), and further by fitness heuristic (control, constituent ensemble, and con-
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stituent ensemble with warm-up). For each ensemble and fitness heuristic combination,
the parameter(s) with the highest relative importance are listed along with their corre-
lation with mean ensemble test accuracy. Correlation is the linear correlation between
the parameter and the chosen metric. While it can reveal that a certain parameter is
associated with a change in accuracy, it does not necessarily show causation. Relative
importance is a feature of the Weights and Biases platform, described as the degree to
which each parameter was useful in training a classifier with the parameters as inputs
and the metric as the target output. It is useful as it accounts for interactions between
parameters, rather than solely the interaction between the parameter and the metric.

6.2.1 Interpreting Results: Diversity

Throughout this paper, the term “Diversity” is often used. Diversity is understood
as a desirable quality of evolutionary systems, however, it is not an explicitly defined
metric. NEAT provides three ways of affecting diversity: The rate of mutation, the
population size, and the speciation threshold. The rate of genetic mutation (adding
nodes, perturbing connection weights, etc.) can be thought of as a proxy for the result-
ing diversity of a population by differentiating individuals. The population size simply
limits the space for diverse, but unfit, individuals to persist. The speciation thresh-
old acts as a constraint to the allowable diversity, determining the degree to which
diverse individuals can be separated into smaller, less competitive niches to encourage
survival. One way to measure the impact of diversity on the capability of NEAT to
solve a machine learning problem is to analyze the sensitivity of its evolutionary pa-
rameters. If higher mutation rates correlate to better overall ensemble performance,
this implies (but does not definitively prove) that encouraging diversity yields a more
ensemble-worthy population.

The results in Table 1 indicate that diversity can be a strong contributor to ensemble
performance, as evidenced by the positive correlation of Connection Mutation Rate and
Population Size. However, there is also evidence that the Diversity algorithm favors
populations with a larger Speciation Threshold. One interpretation is that too low
of a threshold enables overly-similar species to persist too early, which crowds out
the population and stifles novelty. While seemingly contradictory, enforcing a larger
speciation threshold may encourage the useful diversity of the population.

6.3 Hyperparameter Choice on Constituent Ensemble Evalu-
ation

The purpose of this section is to examine the effect of hyperparameter choice on the
ensemble test accuracy of genomes evolved using constituent ensemble evaluation. The
hyperparameters are described in item 4.6. In total, 150 trials were conducted by ran-
domly selecting hyperparameter configurations. The key metric used in this section
is the mean best ensemble accuracy. Each generation, DBRR, defined in subsubsec-
tion 4.1.5, creates ensembles from the population. The mean best ensemble accuracy is
computed by taking the mean of the accuracy returned by the best ensemble created by
DBRR across all trials. This metric determines whether runs using a certain hyperpa-
rameter choice create better ensembles than others, and whether those hyperparameter
choices improve the population over time.
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Fitness Heuristic Ensemble Heuristic Most Important Parameters Correlation

Genome Fitness
(Control)

Random Number of Generations 0.44

Greedy 1

Easier to Create
New Species
(Speciation
Threshold)

-0.27

Greedy 2 Connection Mutation Rate 0.74

Diversity

Easier to Create
New Species
(Speciation
Threshold)

0.43

Connection Mutation Rate 0.62

Constituent
Ensemble
Evaluation
(CEE)

Random Speciation Threshold 0.49

Greedy 1 Percentage to Save 0.47

Greedy 2 Generational Ensemble Fraction -0.69

Diversity Generational Ensemble Fraction -0.60

CEE with
Warm-up

Random Population Size 0.445

Greedy 1 Connection Perturbation Rate 0.694

Greedy 2

Easier to Create
New Species
(Speciation
Threshold)

0.52

Population Size 0.51

Diversity

Easier to Create
New Species
(Speciation
Threshold)

0.61

Population Size 0.52

Table 1: Parameter importance with respect to fitness and ensemble heuristic. Only
parameters which had an importance of 0.3 or higher were included. Correlation is
not the measure we used to determine importance, but it is included to emphasize the
strength of the positive or negative relationship between the parameter and the mean
ensemble test accuracy.
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(a) Population Size (b) Number of Generations

(c) Use Genome Fitness (Warm-Up) (d) Genome Fitness Metric

(e) Ensemble Fitness Metric (f) Generational Ensemble Fraction

(g) Candidate Limit

Figure 7: These figures display the mean best ensemble accuracy over time with respect
to hyperparameter choice. The figures also include the standard deviation of the mean
best ensemble accuracy. The standard deviation indicates how closely any given run is
from the mean. A large standard deviation indicates a wide margin for runs to perform
better or worse than the mean, while a small standard deviation indicates most runs
perform similarly.
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As documented in Figure 7, the effect of hyperparameter choice has a demonstrable
impact on the performance of constituent ensemble evaluation to produce accurate
ensembles using the diversity heuristic.

Population Size A low population size is not sufficient to support sufficient popu-
lation diversity for the diversity-based heuristic to create accurate ensembles. Higher
performance is seen with larger population sizes of 25 and 100. Being that they are
nearly equivalent, size 25 is recommended to reduce the compute time of the algorithm.

Number of Generations The number of generations has a positive impact on the
overall performance of the final ensemble. One interpretation is that the hypothesis is
correct that constituent ensemble evaluation is a viable approach to training ensembles
of classifiers using a diversity ensemble heuristic. However, it remains to be seen whether
continuing evolution beyond 200 generations would continue to yield better performance
or simply plateau.

Use Genome Fitness The use of genome fitness in addition to constituent ensemble
evaluation yields much better performance than solely using constituent ensemble eval-
uation. One interpretation of this result is that constituent ensemble evaluation helps
select for complementary networks but only after the population achieves a sufficiently
high level of diversity. This would indicate the constituent ensemble evaluation is a
better suited as a fine tuning method to avoid overfitting.

Genome Fitness Metric For classification tasks, choosing to reward accuracy of loss
of the individual genomes rewards higher overall performance, though cross-entropy loss
appears more consistent (lower standard deviation).

Ensemble Fitness Metric Conversely, the choosing ACEL over ACEA yields higher
performance. One interpretation is that ACEL encourages ensembles with a higher
degree of consensus, which results in better generalization.

Generational Ensemble Fraction These results show that a low generational en-
semble fraction (0.1 - 0.25) has the highest performance. Additionally, a large genera-
tional ensemble fraction (1) is correlated with decreasing performance over time. One
interpretation is that by increasing the proportion of the population ensembled, the
constituent ensemble fitness of each genome approaches the average population fitness,
which limits the selection algorithm’s ability to identify useful genomes.

Candidate Limit Surprisingly, either using a small fraction (25%) or all available
(100%) possible constituent ensembles yields similar high performance while using most
(75%) yields low performance. This may be due to selection bias as trials using a higher
fraction would crash due to high run-time unless they had small populations. As such,
using a smaller population and higher candidate limit may be equivalent to using a
larger population and lower candidate limit.
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6.4 Ensembling Algorithm Performance

Lastly, the team ran several hundred trials using the UCI Heart Disease data set to com-
pare ensembles created with the varying ensembling algorithms (i.e., Random, Greedy
1, Greedy 2, and Diversity Based Round Robin), the results of which are viewable in
Figure 8. The team found a set of parameter configurations well suited for each al-
gorithm via sensitivity analysis, as discussed in the preceding sections, which enabled
each algorithm to perform optimally.

(a) Control (b) CEE

(c) CEE with Warm Up

Figure 8: Determining Optimal Ensemble Algorithm and Size. Each algorithm
was evaluated with an increasing ensemble size. The algorithms converge to the same
value, representing the average accuracy of the ensemble containing 100% of the pop-
ulation

6.4.1 Random

As the team hypothesized, the random (control) algorithm generates ensembles whose
fitness steadily increases as the number of individuals in said ensembles increase, as seen
by the random series in Figure 8. This finding mimics the real world, in which adding
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further guesses without taking into account the accuracy of said guesses is more likely
to produce a result closer to the mean/actual value. In other words, having a larger
sample size is more likely to help predict the true value/mean of a given distribution.

6.4.2 Greedy 1 Vs. Greedy 2

While Greedy 1 performs near-optimally when considering only training data like in
Figure 2, it statistically does not outperform Greedy 2 when its ensembles are tested
with testing data like in Figure 8 (at least for the Control and CEE with Warm Up),
especially when taking into account the perceived error of both algorithms over several
hundred trials.

Overfitting The team suggests that Greedy 1’s lack of ensemble fitness over Greedy
2’s is due to overfitting and a lack of diversity when casting votes. Because Greedy
1 selects the next best network based on how it improves ensemble performance on
given training data, it doesn’t consider variance in the real world (and consequently
testing data). Instead, Greedy 1 hand-picks ensembles that work well only with the
given training data and lack diversity amongst the ensembles’ member networks. As
such, Greedy 1 has a tendency to over-fit, though limiting the ensemble size did improve
performance.

Ensemble Size The team also noticed (in several different configurations) that en-
semble fitness either increases or stays consistent until around 50% of the population
is ensembled when using Greedy 1 or Greedy 2 and CEE with Warm Up, as seen in
Figure 2 and Figure 8. The team hypothesizes that after this 50% threshold, too many
inferior individuals are included in the voting process, resulting in poorer fitness. Fur-
ther, CEE with Warm Up selects for genomes based upon their performance in relatively
small ensembles. Thus, in bigger ensembles, these genomes, which are fine tuned for
smaller ensembles, are less likely to be optimal. This observation differs from Random,
because Random cannot just pick the top 50% of a population; instead, Random works
with what it gets, and when sampling a random distribution, you will tend to get more
accurate results with the more samples taken. (But Greedy 1/Greedy 2 can selectively
see which samples are “worse samples,” and exclude them.)

Performance Considerations Seeing as Greedy 2 takes an order of magnitude less
time to compute, and Greedy 1 does not provide any statistically relevant gains, the
team recommends the use of Greedy 2 over Greedy 1. Greedy 2 is a quick and cheap
way to generate ensembles, without the need for any complicated optimizations.

6.4.3 Diversity

While the team hypothesized that picking individuals for ensembles based on their
genetic diversity over just the individuals’ fitness alone would significantly improve
the resulting ensemble’s fitness (i.e., DBRR should perform just as well as Greedy 2),
experimental results cannot support this hypothesis. For a quick reminder, a higher
speciation threshold results in fewer species and thus less diversity within ensembles,

34



whereas a lower speciation threshold results in more species and consequently higher
diversity within ensembles.

Low Speciation Threshold Low speciation thresholds, such as 1.0 as used in
diversity_1_threshold in Figure 8, did not work as well as anticipated. In fact,
diversity_1_threshold was the worst performer of all (non-control) tested algo-
rithms. To explain this finding, the team suggests that at such low speciation thresh-
olds, far too many species are generated, and resulting ensembles do not have enough
well-performing individuals in the network to help solve tasks (one cannot just have
diversity, one needs diversity and some intelligence). Interestingly, however, picking for
diversity alone still does outperform random on average.

High Speciation Threshold High speciation thresholds, such as 5.0 as used in
diversity_5_threshold in Figure 8, have proven more effective at generating fit en-
sembles than lower thresholds. The team hypothesizes this is because at higher speci-
ation thresholds, the Diversity algorithm more closely approximates Greedy 2, which
itself is a strong performer.

Due to this observation, the team accepts it is unlikely that picking for diversity
improves ensembles more than simply picking individuals by their fitness alone, at least
for the machine learning tasks the team selected (including the UCI Heart Disease data
set).

6.4.4 Algorithmic Recommendations

Given the above findings, the team recommends the use of Greedy 2 at around a 50%
population size to create ensembles in most configurations. These suggestions could
change easily given differing machine learning tasks but are at least consistent with the
team’s findings.
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6.5 Summary of Results

UCI Heart Disease

Fitness Heuristic Ensemble Heuristic Median Ensemble
Size

Mean Accuracy

Control Random 9 0.480 (0.05)

Control Greedy1 3 0.551 (0.05)

Control Greedy2 5 0.553 (0.06)

Control DBRR 40 0.543 (0.20)

CE Random 22 0.335 (0.13)

CE Greedy1 6 0.503 (0.06)

CE Greedy2 6 0.392 (0.15)

CE DBRR 11 0.380 (0.12)

CE w. Warm-up Random 25 0.490 (0.11)

CE w. Warm-up Greedy1 10 0.587 (0.09)

CE w. Warm-up Greedy2 12 0.599 (0.09)

CE w. Warm-up DBRR 14 0.554 (0.10)

Comparison Results from Soule et al. [9]

Island Island 5 0.542 (0.03)

Team Team 5 0.566 (0.03)

Island Team (OET1) 5 0.564 (0.03)

Team Island (OET2) 5 0.568 (0.02)

Table 2: This table indicates the average accuracy of ensembles evolved using the vari-
ous fitness and ensemble heuristics tested in this paper. It also provides a comparison to
results from Soule et al. and their OET methods. The results indicate that constituent
ensemble evaluation (CE) with Warm-Up using the Greedy 2 heuristic outperforms
OET2

In comparing the fitness heuristics across all ensemble heuristics using a two-tailed
t-test, we found that CE with Warm-up is reliably better than CE (p < 0.01), and is
marginally reliably better than control (p < 0.1), and is statistically indistinguishable
from Soule et al. Across the board, the techniques tried, including the control, showed
higher variability than Soule et al’s approach. While CE with Warm-up using the
Greedy2 ensemble heuristic performed better on average than OET2 across 100 trials,
the higher variance of CE with Warm-Up indicates its performance is less reliable,
especially with fewer trials.
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7 Conclusion

This project aimed to evolve ensembles of neural networks using neuro-evolution for
augmenting topologies (NEAT). Using a novel fitness heuristic, termed constituent en-
semble evaluation, individuals in the population are evolved based on the performance
of a small sample of ensembles of which they were a part.

In the case of reinforcement learning, there is no conclusive evidence as to which
approach yields better performance. The team theorizes that the chosen task, Ac-
robot, was easily optimized by both algorithms. Incidentally, while it is not the focus
of this paper, the modification of the fitness function to use the sum of the height
achieved minus the step completed lead to much faster optimization using NEAT than
the default reward metric. Nevertheless, while NEAT is generally capable of solving
simple reinforcement learning tasks, constituent ensemble evaluation does not improve
its capability.

For classification tasks, the team claims that constituent ensemble evaluation is not
sufficient alone, but when incrementally introduced into the fitness function (warm-up),
yields better overall results than solely using individual fitness. Moreover, this approach
can be further improved by evaluating ensembles using the cross-entropy loss rather
than accuracy and by lowering the speciation threshold to encourage more diversity
in the population. Otherwise, the team recommends that default NEAT parameters
are sufficient. Additionally, this paper tested a variety of ensembling algorithms. It
was hypothesized that prioritizing species diversity of candidates over candidate fitness
might yield better performing ensembles, though this was not demonstrated to be the
case. Overall, the straightforward approach of selecting candidates by training fitness
(Greedy 2) was generally the best approach. The combination of Constituent Ensemble
Evaluation with Warm-Up and Greedy 2 selection even outperform a similar approach
to evolving ensembles, Orthogonal Evolution of Teams.

7.1 Future Works

7.1.1 Limiting Population Explosion

By far, the largest challenge in working with NEAT was the high potential for a pop-
ulation size to grow rapidly, which slowed down experimentation severely. This is the
unfortunate trade off with encouraging diversity in NEAT; as the population becomes
more diverse, the number of species allocated to preserve this diversity grows. This was
especially prevalent when the speciation threshold was low, as it drastically increased
the likelihood that new species would be created, increasing the total population size.
For future studies, this problem must be corrected, possibly through the inclusion of a
species budget or stricter elimination criteria to encourage consistent purging of more
members of a species.

7.1.2 Alteration of Diversity Metric

As NEAT already implemented a diversity metric, the team choose to use this metric
to explore the diversity heuristic. However, there are numerous ways to quantify di-
versity of neural networks, specifically by using the diversity in predictions rather than
diversity in structure. Based on the tendency for trials to converge to an overall fitness
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proportional to the presence of the majority class in the test data, it appears that over
time, diverse model structures will begin to represent similar solutions. Using methods
such as boosting, which increase the reward for correct predictions on instances that
are usually missed, may help encourage better ensembles.

7.1.3 Evolution of Neural Network Layers

Due to the challenges the team faced while attempting to classify the MNIST data
set, the team suggests that perhaps larger scale topology evolution could make sense.
Instead of evolving individual nodes and edges, perhaps a concept similar to NEAT
could be employed but instead on the layers of a neural network to evolve things such
as the number of layers, size of each layer, type of each layer (including drop off), etc.,
and then train each generation through traditional back propagation and let the fittest
models’ topologies seed the next generation.

While the idea is promising, one must consider that evolving a topology in this
manner could easily lead to overfitting, so some measures should be taken to prevent
overly optimized topologies for a given input.
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