
1 

LIFESPAN 
 

INTERACTIVE MEDIA AND GAME DEVELOPMENT 
COMPUTER SCIENCE 

 

 

A MAJOR QUALIFYING PROJECT REPORT 

SUBMITTED TO THE FACULTY OF 

WORCESTER POLYTECHNIC INSTITUTE 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF BACHELOR OF SCIENCE 

 

BY: 

MICHAEL GROSSFELD 

COLIN OGREN 

MICHAEL PELISSARI 

NICK SILVIA 

WILL STOCKINGER 

MATT TOMSON 

 

ADVISED BY: 

PROFESSOR JOSEPH FARBROOK 

PROFESSOR CHARLES RICH 

PROFESSOR KEITH ZIZZA 

  



2 

ABSTRACT 
 Lifespan is an Interactive Media and Game Development Major Qualifying Project developed in 
the Unity game engine over the course of one year by six students. Lifespan is a first-person puzzle game 
in which the player affects objects in the environment by using a time-manipulation device. Designed 
with a unique spin on standard puzzle games, Lifespan seeks to add realism, science, and nature to the 
environment with new and interesting mechanics. 

  



3 

ACKNOWLEDGEMENTS 
We would like to thank our advisors – Joseph Farbrook, Charles Rich, and Keith Zizza – for 

helping guide us through the development of Lifespan and making sure it was as good as it could be. We 
would also like to thank our playtesters, who gave us insight into how other people thought of our game 
and found a plethora of bugs, design flaws, and fun solutions that helped us make the game even better. 
We would also like to thank our friends and families for putting up with the long hours devoted to 
developing Lifespan.  



4 

TABLE OF CONTENTS 
Abstract ....................................................................................................................................................................................... 2 

Acknowledgements ................................................................................................................................................................. 3 

Table of Contents .................................................................................................................................................................... 4 

Table of Figures ....................................................................................................................................................................... 8 

Authorship ............................................................................................................................................................................... 10 

1. Introduction ................................................................................................................................................................... 11 

2. Game Design .................................................................................................................................................................. 12 

2.1 Genesis ............................................................................................................................................................................ 12 

2.2 Gameplay ....................................................................................................................................................................... 14 

3. Tech ........................................................................................................................................................................................ 15 

3.1 Managers ........................................................................................................................................................................ 15 

3.1.1 XML ........................................................................................................................................................................ 15 

3.1.2 SceneManager ...................................................................................................................................................... 18 

3.1.3 EnvironmentManager ........................................................................................................................................ 18 

3.1.4 ScriptManager ...................................................................................................................................................... 19 

3.1.5 SoundManager ..................................................................................................................................................... 19 

3.2 Control ............................................................................................................................................................................ 22 

3.3 RigidbodyFPSWalker ................................................................................................................................................ 22 

3.3.1 Walking and Running ........................................................................................................................................ 23 

3.3.2 Jumping .................................................................................................................................................................. 23 

3.3.3 Head Bobbing ...................................................................................................................................................... 23 

3.3.4 Vine Climbing ...................................................................................................................................................... 23 

3.3.5 Tree Tossing ......................................................................................................................................................... 23 

3.4 GUI .................................................................................................................................................................................. 23 

3.4.1 Reticle ..................................................................................................................................................................... 24 

3.4.2 Power Icons .......................................................................................................................................................... 24 

3.4.3 Object Camera ..................................................................................................................................................... 24 

3.4.4 Menu ....................................................................................................................................................................... 25 

3.5 Level Editor ................................................................................................................................................................... 25 

3.5.1 Development Cycle ............................................................................................................................................ 25 

3.5.2 Design Requirements ......................................................................................................................................... 26 



5 

3.6 Challenges ..................................................................................................................................................................... 26 

3.6.1 RigidbodyFPSWalker ........................................................................................................................................ 27 

3.6.2 Reticle ..................................................................................................................................................................... 27 

3.6.3 Level Editor .......................................................................................................................................................... 28 

4. Art ........................................................................................................................................................................................... 29 

4.1 Direction ......................................................................................................................................................................... 29 

4.2 Blend Shapes ................................................................................................................................................................ 29 

4.2.1 Procedure ............................................................................................................................................................... 29 

4.2.2 Trees ........................................................................................................................................................................ 30 

4.2.3 Glass to Sand ........................................................................................................................................................ 31 

4.3 Modularity ..................................................................................................................................................................... 31 

4.4 Character ........................................................................................................................................................................ 33 

4.4.1 Design ..................................................................................................................................................................... 34 

4.4.2 Model ...................................................................................................................................................................... 34 

4.5 Environment .................................................................................................................................................................. 36 

4.5.1 Facility .................................................................................................................................................................... 36 

4.5.2 Biodome ................................................................................................................................................................. 38 

4.6 GUI .................................................................................................................................................................................. 41 

4.6.1 Design ..................................................................................................................................................................... 41 

4.6.2 Power Tray Icons ................................................................................................................................................ 41 

4.6.3 Object Camera ..................................................................................................................................................... 42 

4.6.4 Reticle ..................................................................................................................................................................... 42 

4.6.5 Console Messages ............................................................................................................................................... 42 

4.7 Challenges ..................................................................................................................................................................... 42 

4.7.1 Blend Shapes ........................................................................................................................................................ 43 

4.7.2 GUI .......................................................................................................................................................................... 43 

4.7.3 Transparent Models ............................................................................................................................................ 43 

4.7.4 Concave Models .................................................................................................................................................. 44 

4.7.5 Lighting .................................................................................................................................................................. 44 

4.7.6 Grid/Snapping ...................................................................................................................................................... 44 

5. Sound ..................................................................................................................................................................................... 45 

5.1 Direction ......................................................................................................................................................................... 45 

5.2 Effects ............................................................................................................................................................................. 45 



6 

5.3 Music ............................................................................................................................................................................... 46 

5.3.1 Composition.......................................................................................................................................................... 46 

5.3.2 Design ..................................................................................................................................................................... 47 

5.4 Challenges ..................................................................................................................................................................... 48 

5.4.1 Sound Effects ....................................................................................................................................................... 48 

5.4.2 Music ...................................................................................................................................................................... 49 

6. Project Management ....................................................................................................................................................... 50 

6.1 Scope ............................................................................................................................................................................... 50 

6.2 Planning .......................................................................................................................................................................... 50 

6.3 Challenges ..................................................................................................................................................................... 52 

6.3.1 Early Time Management .................................................................................................................................. 52 

6.3.2 Priority Lists ......................................................................................................................................................... 52 

6.3.3 Timesheets ............................................................................................................................................................ 52 

6.3.4 Communication ................................................................................................................................................... 52 

6.3.5 Scope ....................................................................................................................................................................... 53 

7. Playtesting ........................................................................................................................................................................... 54 

7.1 Procedure ....................................................................................................................................................................... 54 

7.2 Facility ............................................................................................................................................................................ 54 

7.3 Biodome ......................................................................................................................................................................... 54 

7.4 Powers ............................................................................................................................................................................. 55 

7.5 Results ............................................................................................................................................................................. 55 

8. Post-Mortem ....................................................................................................................................................................... 56 

8.1 What Went Well .......................................................................................................................................................... 56 

8.1.1 Team Dynamics ................................................................................................................................................... 56 

8.1.2 Unity ....................................................................................................................................................................... 56 

8.1.3 Planning ................................................................................................................................................................. 56 

8.1.4 Playtesting ............................................................................................................................................................. 56 

8.1.5 Scope ....................................................................................................................................................................... 57 

8.2 What Could Have Gone Better ............................................................................................................................... 57 

8.2.1 Unity ....................................................................................................................................................................... 57 

8.2.2 Unused Assets ...................................................................................................................................................... 57 

8.2.3 Art Integration ...................................................................................................................................................... 57 

8.2.4 Playtesting ............................................................................................................................................................. 58 



7 

8.3 What We Would Do Differently Next Time ...................................................................................................... 58 

8.3.1 Unity ....................................................................................................................................................................... 58 

8.3.2 Blend Shapes ........................................................................................................................................................ 58 

8.3.3 Scope ....................................................................................................................................................................... 59 

Appendix A: Concept Art .................................................................................................................................................. 60 

Appendix B: Promotional Materials ............................................................................................................................. 79 

Appendix C: Level Editor Design Document ............................................................................................................ 80 

 

 

  



8 

TABLE OF FIGURES 
Figure 1: Early sketch of the facility level .................................................................................................................... 13 
Figure 2: Early sketch of the biodome level ............................................................................................................... 13 
Figure 3: The Constraints component handles relationships between GameObject. ............................... 26 
Figure 4: The new Transform component can lock a GameObject on its axis by position, rotation, 
and scale. ................................................................................................................................................................................... 26 
Figure 5: The flower dynamic model, shown with its states left to right: reverse (youngest), normal 
(middle), forward (oldest) ................................................................................................................................................. 30 
Figure 6: An early attempt at making a realistic looking tree did not go well. ............................................ 30 
Figure 7: Our finalized dynamic trees. .......................................................................................................................... 31 
Figure 8: Proper procedure for converting units between Autodesk Maya and Unity3D ...................... 32 
Figure 9: Example tiling texture (Diffuse/Bump) .................................................................................................... 33 
Figure 10: Tiled in game many times ............................................................................................................................ 33 
Figure 11: The full body character rig. ......................................................................................................................... 35 
Figure 12: An exterior view of the main areas of the Facility. ............................................................................ 36 
Figure 13: The hallways of the Facility. ........................................................................................................................ 37 
Figure 14: An exterior view of the main areas of the biodome. ......................................................................... 38 
Figure 15: The sewer and maintenance room in the Biodome. ......................................................................... 40 
Figure 16: The biodome door prevents escape until all four circuit breaker switches have been 
found. .......................................................................................................................................................................................... 41 
Figure 17: The five power icons representing abilities players can use. ....................................................... 41 
Figure 18: The Art Priority List........................................................................................................................................ 51 
Figure 19: Example Timesheet. ....................................................................................................................................... 51 
Figure 20: Concept art for the mechanics of Lifespan. ........................................................................................... 60 
Figure 21: Concept art for the scrapped cave area in the biodome. ................................................................. 60 
Figure 22: First concept for the first floor of the facility. ...................................................................................... 61 
Figure 23: Second concept for the first floor of the facility. ................................................................................. 62 
Figure 24: Concept for the upper floors of the facility, which included an atrium and monorail. ....... 63 
Figure 25: Expanded concept art of the atrium in the facility. ........................................................................... 64 
Figure 26: Concept of the biodome’s waterfall. ........................................................................................................ 65 
Figure 27: Very early concept of the biodome’s layout. ........................................................................................ 66 
Figure 28: An updated concept on the level flow of the facility. ........................................................................ 66 
Figure 29: Concept of the device pedestal/display. ................................................................................................ 67 
Figure 30: Concept of the style of the facility hallways. ........................................................................................ 67 
Figure 31: Jacques concept art. ........................................................................................................................................ 68 
Figure 32: Additional Jacques concept art. ................................................................................................................. 68 
Figure 33: Facility Blast Door concept art. .................................................................................................................. 69 
Figure 34: Facility executive desk concept art. ......................................................................................................... 69 
Figure 35: Concept art for a scrapped female character. ...................................................................................... 70 
Figure 36: Concept art for scrapped assets. ............................................................................................................... 70 
Figure 37: Concept art for scrapped scan pad asset. .............................................................................................. 71 
Figure 38: Concept art for the GUI. ................................................................................................................................. 72 
Figure 39: Concept art for scrapped villain. ............................................................................................................... 73 



9 

Figure 40: Lifespan concept logo. ................................................................................................................................... 74 
Figure 41: Lifespan concept logo. ................................................................................................................................... 75 
Figure 42: Lifespan concept logo. ................................................................................................................................... 76 
Figure 43: Concept art for the device backpack........................................................................................................ 77 
Figure 44: Location power tray icon concepts. ......................................................................................................... 77 
Figure 45: State power tray icon concepts.................................................................................................................. 77 
Figure 46: Power tray icon concepts. ............................................................................................................................ 78 
Figure 47: Lifespan promotional logo. .......................................................................................................................... 79 
Figure 48: WallPunch Studios promotional logo. ..................................................................................................... 79 
Figure 49: PAX East Lifespan promotional buttons. ............................................................................................... 79 
Figure 50: Level Editor interface .................................................................................................................................... 84 
Figure 51: Level Editor menu ........................................................................................................................................... 85 
  



10 

AUTHORSHIP 
 

Introduction........................................................................................................................Michael Grossfeld 
Game Design.................................................... ....................................Michael Grossfeld and Matt Tomson 

Genesis.....................................................................................Michael Grossfeld and Matt Tomson 
Gameplay......................................................................................................................Matt Tomson 

Tech 
Managers...............................................................................................................Michael Grossfeld 
Control...................................................................................................................Michael Grossfeld 
RigidbodyFPSWalker.....................................................................................................Colin Ogren 
GUI..........................................................................................Michael Grossfeld and Matt Tomson 
Level Editor.....................................................................................................................Colin Ogren 
Challenges.........................................................Michael Grossfeld, Colin Ogren, and Matt Tomson 

Art 
Direction..........................................................................................Nick Silvia and Will Stockinger 
Blend Shapes.............................................................................................................Will Stockinger 
Modularity...............................................................................................................Michael Pelissari 
Character...........................................................................................................................Nick Silvia 
Environment......................................................Michael Pelissari, Nick Silvia, and Will Stockinger 
GUI............................................................................................................................Will Stockinger 
Challenges.........................................................Michael Pelissari, Nick Silvia, and Will Stockinger 

Sound 
Direction........................................................................................Michael Pelissari and Nick Silvia 
Effects............................................................................................Michael Pelissari and Nick Silvia 
Music...............................................................................................................................Colin Ogren 
Challenges..............................................................Colin Ogren, Michael Pelissari, and Nick Silvia 

Project Management 
Scope.............................................................................................................................Matt Tomson 
Planning.........................................................................................................................Matt Tomson 
Challenges................................................................................Michael Grossfeld and Matt Tomson 

Playtesting.................................................................................................Will Stockinger and Matt Tomson 
Post-Mortem......................................................................................................................WallPunch Studios 
 

  



11 

1. INTRODUCTION 
 Lifespan began as a small idea and grew into something larger than we thought possible. Five 
Interactive Media and Game Development seniors and one Computer Science senior met for a series of 
weekly meetings in March of 2012 to flesh out a game about time travel. After seven weeks Lifespan had 
been designed. The concept of the game was then brought to three professors, who each accepted an 
advisory capacity on the project, and a Major Qualifying Project was born. Starting in late August 2012, 
we began work on what would eventually become the final product. Working with the three advisors over 
the course of four terms, we iteratively developed Lifespan in the Unity game engine. 

In A Term, we worked on building the facility. Different methods of creating blend shapes were 
being investigated and the control systems for objects were being built. This term saw many redesigns to 
the facility. As such, we moved from a workflow where the facility was designed as all one piece into the 
modular system. A single hallway and some test chambers changed to a series of hallways and rooms 
with doors that blocked off access based on level flow. Every weekly iteration saw major changes to the 
facility level, but by the end of the term we finalized what became the pieces of the facility. 

B Term saw the building of the facility and the creation of the XML Event system. Objects were 
being created, including some more organic models by way of blend shapes. The XML Event system was 
used to direct level flow for the player and proved to be invaluable for the project. The layout of the 
biodome was finalized, created, and then populated with objects. Object placement in the facility was 
getting into the end stages. Outside people could begin playtesting a barebones version of Lifespan. Each 
major piece had been blocked in. 

In C Term we experienced crunch. Object placement was finalized with unique setups in every 
room. The biodome was populated with objects and made into solvable puzzles. The tech team fixed bugs 
related to the SoundManager and threading system. Art integration peaked in this term as all of the assets 
we had been making finally were assimilated into the game. Final textures were generated to replace 
temporary ones. The last few weeks of the term was spent playtesting and making small, iterative changes 
to better the player experience. 

D Term finished the development of Lifespan and brought it to a few competitions. Lifespan 
appeared in the Made in MA first annual Student Showcase, where it won first place – and $250 – by 
popular vote. The game also appeared at WPI’s booth at PAX East, where it was received quite well. 
Lifespan entered to compete in the Game Design category at the New England Undergraduate Computing 
Symposium, but events in Boston caused the event to be cancelled. The project was also chosen, by 
WPI’s Game Development Club, to be WPI’s candidate into the Electronic Entertainment Expo (E3) 
College Game Competition. The competition itself takes place after the end of the project. The term was 
also the formal presentation of the project on Project Presentation Day and an informal showcase at the 
IMGD Showfest. 

The project’s many artistic and technical achievements are documented in the following sections. 
Lifespan was a chance for us to showcase our skills and proved to be a learning experience for all of us. 

  



12 

2. GAME DESIGN 
 The initial step in the development of a game such as Lifespan is to design it thoroughly before 
starting and to continue to adapt to feedback by making changes. Lifespan was designed over D Term, 
2012, in weekly meetings done in our spare time. 

2.1 GENESIS 
 The team originally formed around the idea of making a game about time travel. Once the six of 
us all joined the team and group meetings started taking place, the initial plan was to create a concept for 
a game to take to potential advisors. A puzzle game gave us the best opportunity to design a game around 
time travel, so it was decided that our game would be of this genre. We looked at games such as Portal 
and Braid to gather ideas behind the design of our game. One important point that we stated at every 
meeting was that while we wanted to follow in the vein of some of the popular puzzle games, 
differentiating our game from them was important as well. Giving our game a unique look and feel was 
something that the team valued highly.  

After looking at other time travel games, we noticed that most powers affected the environment 
as a whole. One way this could be accomplished is by making our powers work on a smaller scale, such 
as on smaller pieces of the environment or an object-by-object basis. Another thing we noticed is that 
most of these games take place in a scientific and unnatural environment. The idea the team came up with 
is that an object-by-object mechanic could make for very interesting puzzles in a more natural 
environment. One setting that would showcase our mechanics well was the jungles of Brazil, in the 
Amazon. The jungle areas had plenty of objects in them that the player could interact with. Due to the 
scope of the project, the whole jungle was infeasible and we had to find another way to create a natural-
like environment that the player could experience that was smaller in scope than a whole jungle. The team 
eventually came up with a contained environment, a biodome, where the player could feel like they are in 
a natural setting and still be able to create it with the given timeline and resources. We also wanted to add 
a place where the players could learn the mechanics of the game. Since we wanted some physical object 
that could manipulate the device, we decided to make it a device and that the player should steal it. The 
device would then be contained in a facility (Figure 1), which could transition into the man-made natural 
biodome (Figure 2). This gave us an interesting contrast of unnatural to natural, which would increase the 
interest of our game and show how our game is different than most of the same genre. 

 



13 

 

FIGURE 1: EARLY SKETCH OF THE FACILITY LEVEL 

 

FIGURE 2: EARLY SKETCH OF THE BIODOME LEVEL 

  



14 

2.2 GAMEPLAY 
 The gameplay behind Lifespan focuses on the object-by-object manipulation mechanic. Going off 
the idea of an object-by-object mechanic, we started to come up with lists of objects and how our 
mechanic could affect these objects. It became apparent that manipulating the time of an object could 
pertain to either the age of the object or the location of the object or both. The abilities were split into two 
categories because it gave the player more control of puzzle solving. We also thought that the powers 
would work in three directions: forward, reverse, and freeze. Location forward would move an object 
forward in time to where it would be, location reverse would move an object back to where it has been, 
and location freeze would stop an object in place. The other set of powers would affect the age of the 
object, which we refer to as the state. The state forward power would age an object forward in time to 
what it will be in the future. The state reverse power would make an object younger. And originally we 
thought that a state freeze power would stop an object from changing state. The issue we had with this is 
that we could not come up with any feasible puzzles that utilized this power, so it was cut during 
development. 

 Once we had the idea of these five powers, we wanted to come up with puzzles that the player 
could solve to get a grasp of these powers. One example we thought of early on was activating the state 
powers on a tree, moving it between three states of sapling, healthy tree, and dying tree. This was an 
object we used in any places in the game, therefore we thought that it would be a good object for players 
to test the mechanics on. Another state object we came up with was a flower, because it would be obvious 
as to what’s happening to the flower when the player activates state powers on it. The location powers 
were more difficult to come up with tutorial examples for. The location reverse was to move an object 
back after a player saw it moving. The location forward needed to move something forward with a 
purpose. The location freeze needed to stop something moving. It took a long time to come up with 
interesting beginning puzzles that also gave the players ideas of how the biodome worked, since the 
biodome was the most important part of our game. We had designed several puzzles for the biodome area, 
such as a rock rolling into a grate to break it, freezing a log on a river so that the player could jump across 
it, or reversing a switch from off to on. We added puzzles like this to the tutorial section to both explain 
the powers, explain how to use them, and give players ideas on how to solve some puzzles that occur in 
the biodome. 

 An important part of the design of Lifespan is that the mechanics and gameplay were fluid, 
always changing based on design meetings, playtesting, or advisor suggestions. We changed the 
mechanics many time in the interest of making them easier to understand, more interesting to use, and 
more fun to the player. One design change we made over the course of the production of Lifespan was to 
change the location forward to work for objects that are not moving. Previously, they would not move if 
location forward was activated on a stationary object. This was changed to add velocity to a stationary 
object, as players expected that to happen. Another change that was made was to change the behavior of 
activating either location reverse or location forward on an object that was being affected by location 
freeze. Previously, activating the forward or reverse on a frozen object would only unfreeze the object. 
After the change, an object would both unfreeze and either forward or reverse based on what power was 
selected. This made more sense to the player. 

 



15 

3. TECH 
 The technical team behind Lifespan consisted of Michael Grossfeld, Colin Ogren, and Matt 
Tomson. Programming in C# and using MonoDevelop with Unity allowed the tech team to create 
numerous systems that controlled the player’s interactions with Lifespan. 

3.1 MANAGERS 
 In order to facilitate a faster iterative development process, we decided to create a framework 
which would allow us to quickly change entire aspects of level layout. The Manager system was devised 
as a series of event-driven systems that would call upon one another for very specific purposes. Initially, 
five managers were devised: SceneManager, EnvironmentManager, ScriptManager, SoundManager, and 
AIManager. These managers would work off an XML file which would not only be easy to read but easy 
for anyone on the team to edit. After some design decisions, the AIManager was folded into the 
EnvironmentManager. 

 The Manager system enabled us to change the flow of our first level, the facility, in shorter times. 
Generally, when triggerable events need to happen in Unity, a number of triggers need to be placed in the 
scene, and then for each trigger a script needs to be written for that particular action. Instead, a single 
script was written which would send an event to the Managers, who would then figure out what to do 
based off of the XML. This meant that each trigger did not need its own script, but just an instance of a 
single script with a specific attribute. In practice, the Manager system enabled us to redesign the facility 
about a dozen times with each time getting cheaper in terms of hours spent. 

3.1.1 XML 
 In order to facilitate the creation of the Manager system, we designed our own XML schema for 
events. Each level works off of a unique XML file, which helped to separate the design of the levels. 

 Inside each XML file is an overarching array tag, called events. All events go into this array, and 
are read from this array. An event has a name, which is a unique identifier that is called by the Manager 
system. A single event is broken down into the following categories: 

● Scripts 

● Sounds 

● Environments 

Each of these categories works with a specific manager to control the flow of a level, in-game. 

  



16 

Scripts 
 The scripts tag contains lines of on-screen text that need to be displayed. A sample from the 
scripts tag looks like the following example: 

<line dialogue="The State Reverse function reverses an object's state 
back in time." sound="null" skin="mission" interrupt="true"  
duration="7"/> 

The dialogue variable is the text that actually needs to appear on screen. This can be of any 
length, though it is best if kept short. While the manager for scripted text manages long lines, the more 
text visible on screen at any point in time, the less of the game that is visible. 

 The sound variable is the name of a sound event, in this particular event, that should play when 
this line of text is executed. This sound event must be located in the event that contains the particular 
script tag or else it won’t be executed. 

 The skin variable determines where this line will display on screen. This is determined based off 
of settings in the ScriptManager. In the example above, the line will be shown in the area designated as 
“mission,” which is in the upper center part of the screen. This is useful for having different areas to 
display text at the same time. 

 The interrupt flag determines whether or not this line interrupts any other line in a specific skin. 
For instance, if the example came after a line that lasted for minutes, the example would interrupt up and 
immediately be displayed. 

 The duration variable is how long, in seconds, that the line appears. If a line needs to be displayed 
indefinitely, a very large number needs to be used, such as 9999999999. Duration is useful for 
instructions that don’t need to be visible forever. 

 These variables, paired with the ScriptManager, display text on screen for the player. It allows for 
an initial setup and fast, iterative changes from one document, as opposed to having to go into many 
different scripts to change the lines. 

  



17 

Sounds 
 The sounds tag contains sound events that need to be executed when the main event triggered. 
These sounds are uniquely named for an event. The sound tag looks like the following example: 

<sound name="walkRightFootstep" tag="" 
audioClip="Facility/Facility_Walk2" delay="0.0"> 
               <flags> 
                    <forward value="true"/> 
                    <volume value=".01"/> 
                    <pitch value="1"/> 
                    <pitchVariation value="0"/> 
                    <fadeIn value="0.0"/> 
                    <fadeOut value="0.0"/> 
                    <crossfades> 
                    </crossfades> 
                </flags> 
            </sound> 

 If it seems like there are a lot of variables here, it is because there are. Sounds are extremely 
complicated and have a lot of different options for each event. Not only is each sound uniquely named, 
but the tag variable allows it to execute on any object in game that shares that tag. This is useful for 
having doors slam or alarms to ring. 

 The audioClip variable is the filepath to the actual audio file stored in the Resources folder. 
Without this variable set properly, the sound won’t play because the Manager system will be unable to 
find the correct sound file. 

 The delay option is to delay the sound event from triggering. This is done as a floating point 
number and is in seconds. If the delay is set to -1, it is not executed with the event execution, and is 
instead loaded for later play. However, if every sound in an event has a delay of -1, as is the case with a 
music track, then one of these sound events is chosen at random to begin playing. 

 There are a number of flags that each sound has with it. These flags can optionally be included, as 
they are in the example, for more precise tweaking. Most of these flags are self-explanatory, such as 
volume, fadeIn, fadeOut, pitch, and pitchVariation. The forward flag determines whether or not the sound 
will play forwards or backwards; this is useful for a game where the main mechanic is time manipulation. 
The remaining flag, crossfades, is a bit tricker to explain. 

 The crossfades flag is an array of other sound events that this particular sound plays at the end of 
its execution. This was done so that we could have dynamic music, where each specific loop has a list of 
other loops that can immediately follow it. An example of a crossfade tag looks like the following: 

<crossfade name="hvacG01" time="1.0" /> 

 This tag has a name, which is the name of a sound in this particular event. It doesn’t reference a 
sound in a separate event, or the name of a separate event. The time flag is the length of time for a 
crossfade between the currently playing sound and this crossfaded sound. 



18 

 A sound event can contain many crossfades, and one of them is chosen at random by the 
SoundManager for playback. This is the dynamic playback feature, and it allows the sound designer to 
create a musical flow, with biases, for specific loops to lead into other loops. 

Environments 
 The environment tag works to trigger specific functions on objects with the given tag. Here is an 
example of the environment tag: 

<environment tag="DeviceRoomDoor6" function="door" flag="close" 
delay="0"/> 

 The environment event works over objects with the given tag variable. In this example, the door 
for the sixth device room is the object that will be told what to do. The function variable dictates which 
functions that object is supposed to execute, such as “door,” and these functions are executed with the 
given flags (“close”). This door is being told to close with a delay of zero seconds, but the delay could be 
set to any floating point number greater than or equal to zero. 

 The environment tags are executed in the order of which they appear in the XML file. Like the 
other tags, there can be as many of them as needed per event. The EnvironmentManager takes them in 
and runs them when the main event is triggered and sent to the SceneManager. 

3.1.2 SCENEMANAGER 
 The SceneManager was seen as the manager which controlled the other managers. Events would 
be sent to the SceneManager, who would then send the other managers the pieces that they needed. The 
SceneManager made things easily by consolidating the event messages into a single script so that we 
didn’t have to manually send the event to each of the other managers every time. 

When a script triggered an event, it sent a string as a message to the SceneManager script in the 
scene. The SceneManager would then lookup the name of event in the XML file, which had already been 
converted into easily searchable classes. Based off of the contents of the event, the SceneManager would 
then send the event to the EnvironmentManager, the ScriptManager, and the SoundManager. 

3.1.3 ENVIRONMENTMANAGER 
 The EnvironmentManager began as two different managers, itself and the AIManager. After 
some design changes due to scope, the AIManager was folded into the EnvironmentManager. The 
EnvironmentManager was seen as a way to initiate specific actions in the scene when an event was 
triggered. Actions such as starting animations, opening doors, or occluding objects that didn’t need 
rendering were all taken care of through the EnvironmentManager. 

 This manager, like most of the managers, worked off of tags and message sending. An 
environment event had a tag specified and a function name. When the manager was given an event, it sent 
that function, and any flags associated with it, to every object that had the given tag. This enabled us to 
quickly activate multiple objects, such as the alarms in the facility. However, when it came to do more 
precise actions, such as opening specific doors, each object needed its own specific tag. What this meant 
was that at the end of the project we had upwards of two hundred tags in the system. 



19 

 Had AI been implemented within Lifespan, the EnvironmentManager would have taken the care 
of the actions required for that as well. Switching specific flags to tell the hierarchical state machines to 
change would have been trivial for the manager to work with. 

3.1.4 SCRIPTMANAGER 
 The ScriptManager was designed with the thought of subtitles in mind. In the early designs of 
Lifespan, Jacques would talk to himself often. This would provide a stark contrast to other, similar puzzle 
games that had silent protagonists. With his dialogue would come subtitles, so that people would have the 
option to read along or read instead of listening.  

 As development progressed, the voiceovers for Jacques were scoped out. However, the 
ScriptManager was still in development for other reasons. We decided that the device would have mission 
text, which would inform the player of what they were supposed to be doing. Additionally, we had a 
console visible on screen which served as the device’s diagnostic output story-wise. 

 The ScriptManager worked off of two lists: the name of the outlet, and the GUIText associated 
with that outlet. The script event in the XML would tell the ScriptManager which outlet to send the 
associated text and any flags that would be associated with that event, such as duration or formatting. The 
text would then be displayed on screen. 

3.1.5 SOUNDMANAGER 
 The SoundManager was the most difficult of the managers to get working correctly and that was 
because it required the most fine tuning. With sound playback in video games, timing is essential. Unity 
doesn’t support perfect timing, nor do most game engines, because it is very difficult to do. Another 
requirement we wanted of the SoundManager was support for dynamic music, so that instead of one very 
long, looping track that the player would get bored with, the score would be comprised of different loops 
which would dynamically mix with one another depending on a number of factors. 

 Initially, the SoundManager was a simple manager that controlled all sound playback in the scene 
that wasn’t ambience. Sound effects, collision sounds, and music were all going to just be generated and 
maintained by the SoundManager. These different aspects of the SoundManager proved to be more 
difficult than originally envisioned. 

 The SoundManager grew to include volume control, pitch and pitch variation, fade in and fade 
out times, and a modifier which adjusted which direction the sound would play (forward or backwards). 

 Volume control was a floating point number which went from zero to one. This allowed us some 
flexibility with individual sounds and then individual events associated with those sounds. If a sound file 
was particularly loud, we were able to adjust in the XML its volume. Different collision sounds could 
share the same sound file but have different volumes dependent on how strong the collision was. 

 Pitch and pitch variation were floating point numbers as well that were able to vary greatly in 
either direction. Adjusting the pitch positively larger would speed up the sound, while adjusting the sound 
any size in the negative direction would make the sound play in reverse. The negative aspect of pitch was 
never specifically intentional, as using the backward modifier would have been ideal. 



20 

 Pitch variation, on the other hand, was a plus or minus modifier to the pitch variable. This number 
was generally small, and allowed for a range that the SoundManager could choose from. For example, if 
pitch variation was set to 0.5 and the pitch was set to 1.0, the possible pitches for the sound were 
anywhere from 0.5 to 1.5.This allowed for the sound effects in Lifespan to differ slightly so that the 
player was not hearing the same sound over and over again. 

 Fade in and fade out times were the length of time, in seconds, that the sound effect would fade in 
or fade out. This was mostly for the musical tracks, although sometimes having a sound fade in was 
useful. 

 The forward modifier value, in code, would take the pitch and set it to either negative or positive 
depending on what the modifier was set to. This was useful for some of the initial sound effects, but 
ultimately wasn’t used very often. 

Sound Effects 
 Sound effects in Lifespan are things such as alarm sounds, elevator whirrs, and the myriad of 
collision sounds that are attached to objects. These sounds can be played at specific locations or on an 
object itself. 

 The way that sound effects worked was, once again, XML based. A trigger would send an event 
to the SceneManager, who would in turn send that information to the SoundManager to deal with. The 
SoundManager would look at the data associated with the event and fire the sound. Regular sound effects 
worked off of GameObjects in the scene. Generally, those events were triggered on objects with the same 
tag.  

 Collision sounds were activated by a script attached to each object which called on specific 
collision events. When the script detected a collision, it sent the collision event to the SceneManager with 
the point of impact. The sound was then played at that position. 

 Originally, music loops in Lifespan were maintained and played under the same system that 
governed sound effects. Over time we found that more specificity was needed for music loops in 
particular which led to their own branch of the SoundManager. 

Music 
 Early in the design process, music was envisioned as dynamically changing so that at no point 
would players hear a track loop. Some games choose to avoid these issues by having quite lengthy music 
tracks; others just go with dynamic music. Dynamic music in Lifespan consists of a number of short loops 
– between ten and thirty seconds generally – that have a specific flow to them which is based off of the 
XML. Each loop has a list of other loops that it can flow into and this is randomly selected near the end of 
the played loop. 

 To make this possible, our XML included a “crossfades” tag which contained a list of the other 
loops in the sound event. Included in this was a duration, which was the length of a cross fade between 
the two loops. 



21 

 Moving the music from the original sound effect implementation proved to be quite difficult. It 
was necessary because of the peculiarities that differentiate music from sound effect were too specific to 
include in the same script. 

Coroutines vs. Threads 
 Sound timing is a very difficult thing to do in Unity. As a developer there isn’t a way to set an 
exact time for a sound to play. Attempts to do this often lead to sound firing at the wrong time. Unity’s 
way of solving this problem is called Coroutines. 

 Coroutines are executable functions which run in pseudo-parallel with the main thread. 
Coroutines work by changing the function into a series of enumerators and then yielding the processor up 
to the main thread whenever a yield is called. If a sound needs to play in a range of times, coroutines can 
be used without fail. They’ll play, maybe a bit out of sync, but it won’t be terribly noticeable. 

 The main issue with coroutines is in how they execute. By yielding to the main thread, coroutines 
have to wait until priority comes back to them before they are allowed to continue execution. If a while 
loop begins execution while the coroutine is waiting, the coroutine won’t be able to continue until that 
loop is complete. There is a high probability that this delay will cause something that needed to be played 
in five seconds to instead be played in forty. For sound effects that just needed to play once off there 
wasn’t a need to use a waiting coroutine. The music, however, we wanted to crossfade into one another 
and to play as soon as the previous one was finished. Delays of forty seconds led to lulls in the music that 
sounded disjointed and wrong. 

 A new system was devised for playing music correctly. This system used C# Mono framework’s 
threads, which are not supported in Unity. Threads run slightly differently than coroutines. They run in 
parallel to the main thread, as opposed to the pseudo-parallel way that coroutines work. Threads in Unity 
have an issue with the Unity API which is not thread safe. This means that no calls to the Unity system 
can occur in self-made threads – they must occur within Unity’s main thread. This severely limits the 
usability of threads; if a thread cannot call the Unity API there isn’t much it can do. 

 However, threads can be used for more precise timing. Because threads run in parallel, they can 
keep a running watch to time the loops for music. In the new system, a thread is used for each music track 
that is attached to the player. The thread counts for 80% of the loop’s length, and then queues up, for the 
main Unity thread, the job of adding the new loop into the track. This created seamless music switchovers 
which allowed us to have the music dynamically play how we wanted it to. 

AudioClipExtended 

In order to facilitate the creation of music, a new script was composed that would refactor the 
code from sound effects and make it more focused on music. The AudioClipExtended class took the 
threads out of the sound effects and put them in their own class so that there weren’t hundreds of possible 
threads being created every frame. 

 AudioClipExtended also utilizes the AudioSource and AudioClip classes to their fullest potential. 
AudioClips have the ability to have data, an array of floating point numbers, retrieved from a sound or set 
from another sound. This allowed us to dynamically load sounds and manipulate them directly, which 
meant that we could fade sounds in and out, and also crossfade sounds with precision. Having complete 



22 

control over the sound’s data allowed us to do volume manipulation for music loops as well, while 
keeping it separate from the volume for sound effects. 

3.2 CONTROL 
 In order for objects in the environment to be controlled, a single script was created called 
ObjectControl. This script took care of morphing the blend shapes and for affecting the physics of an 
object. Very quickly this script became monolithic and difficult to edit, so it was refactored into two 
different scripts: State Control and Location Control. 

 State Control worked by telling the Morph Blend Targets script to slightly update the blend 
shapes according to specific values. When a few settings were chosen in the State Control script, the 
update loop would inform the Morph Blend Target script to update which in turn caused the model to 
update. In order for updating physics models to be implemented, these small changes were then set at the 
mesh collider for the object so that the collider would update with the model in real time. State Control 
had three separate states: Reverse, Normal, and Forward. Objects started in their Normal state and were 
able to change to Reverse or Forward from there. Once there the appropriate ability could move them into 
one of the other states. 

 Location Control kept constant track of an object’s previous positions and rotations, kept as a 
Dictionary of Vector3’s and Quaternions, respectively. When the player activated the Location Reverse 
ability, the Location Control script would read the set of previous positions and rotations and forcibly 
move the object to them over a period of time. By storing just the positions and rotations, the Location 
Control was able to avoid memory leaks, which even after forty minutes of gameplay never became an 
issue. In order for Location Forward to work properly, the Location Control script increased the velocity 
of the object’s Rigidbody until it reached a maximum velocity – set for all objects across the scene. 
Because of the increase in speed, many objects found their way moving through colliders and outside of 
the scene’s boundaries. To fix this, any Rigidbodies moving fast enough to go through a collider was set 
to the Continuous Dynamic detection mode, which in conjunction to the maximum velocity cap, saw most 
of the objects remaining within the scene. Location Freeze proved to be the easiest of the Location 
abilities to control, as it required locking the Rigidbody’s constraints down so that it couldn’t move, 
increasing the Rigidbody’s mass so that it can’t be altered in any way, and make the Rigidbody kinematic 
so that no physics act on it at all. All of these changes to the Rigidbody enabled the player to keep an 
object stationary while still allowing them to interact with it by jumping on it. 

 The two separate scripts enabled us to have a very modular system when it came to controllable 
objects – if an object needed to be morphed, State Control was applied and Location Control was not. If 
an object needed both, both were placed on it. It gave us more freedom and simplified the procedure for 
getting an object from model to in-game. 

3.3 RIGIDBODYFPSWALKER 
 The RigidbodyFPSWalker (RFW) script controls all controlled movements and most of the 
physics for the player. The player’s collider is a cylinder with a rigidbody component that allows it to 
interact with other Rigidbody objects according to the laws of physics. This also means that small errors 
can affect the player in big ways, so parts of the script contains workarounds for these issues. The 



23 

following sections document different aspects of the RFW script. Note however, these features and fixes 
are tightly integrated and do not work in isolation of each other. 

3.3.1 WALKING AND RUNNING 
 Walking starts with acquiring a key input from WASD keys. This key is mapped to a vector 
indicating the direction of travel. The RFW script can combine multiple inputs, allowing the player to 
walk diagonally. These inputs are normalized and then multiplied by a velocity. This final vector is 
applied to the player Rigidbody as a velocity, independent of the rigidbody mass, allowing for complete 
control over the player’s speed. 

3.3.2 JUMPING 
 Jumping looks for the spacebar key input. Acquiring this key applies an upwards velocity vector 
to the player. The magnitude of this player is two times the gravity strength times the jump height. This 
vector is only applied when the player is grounded so the velocity is only applied once. Unity physics 
takes over for bringing the player downwards. 

3.3.3 HEAD BOBBING 
 For added realism, we decided to add head bobbing. How this worked was by slightly moving the 
camera when the player was moving down and back up. This followed a three part curve where the player 
would spend an equal amount of time at the top of the curve, going down and going back to the top. 
When we testing this, we found that it was too much and took something out of the game, so we 
ultimately scrapped this functionality. 

3.3.4 VINE CLIMBING 
 The initial incarnation of vine climbing was simple. When the player walks into a trigger with a 
script attached for vine climbing, the script sends a signal to the RFW script to activate the vine climbing 
state. Pressing spacebar in this state added a constant velocity change to the player’s upwards direction. 

 This approach did not satisfy the producers however, as player movement does not move parallel 
to vines on a slope. The current implementation has a GameObject at the top of a vine climb trigger. 
Pressing the forward key in the vine trigger causes the player to move towards this GameObject which 
inevitably pulls the player up the vines. The difficulty in this implementation is that triggers for vines and 
the target GameObjects require careful placements so the player will not start too far away from the vines, 
and so the player can make it all the way up the vines without climbing far above the vines. 

3.3.5 TREE TOSSING 
 Tree tossing is the last phase of tree climbing where the player is thrown into the air as a result of 
the tree growing underneath them and forcing the player upwards. While other objects can simply act on a 
force applied to them, the player has positional constraints and is kinematic, so the player does not react 
to outside forces. Instead a signal is sent to the RFW script which sets a state to jump with a multiplier so 
the player jumps extra high. 

3.4 GUI 
 For the player to have a better understanding of the world, we needed a graphical user interface 
(GUI). While having images on screen is fine, we needed our GUI to be a bit more dynamic with layout 



24 

control. While the main heads up display (HUD) is a single image that is scaled based on the application’s 
window size, the other objects in the GUI needed to be controlled with more precision than just a scaling 
factor. 

3.4.1 RETICLE 
 One part of our GUI is the reticle. The reticle works by first getting the object that the player 
ability script is targeting. It then gets the bounds of the collider of the object. The next step is to find the 
2-dimensional screen coordinates of the top-left and bottom-right points on the object that are on the 
plane perpendicular. These are the targets of the reticle, which surrounds the object. The reticle animates, 
so it must step-by-step move towards the bounds while targeting the object, stopping when it reaches the 
corners. If the player locks on to an object, the reticle automatically snaps to the corners, even if it is not 
at these bounds. When the player has an object locked on, the cursor moves to stay with the bounds when 
the player looks around the screen. When the center of the locked object goes off-screen, an arrow 
replaces the cursor, either an up arrow when the center is above the bounds of the screen, a down arrow 
when the object is below the bounds, a right arrow when the object is to the right, and a left arrow when 
the object is to the left. If there is no longer an object being targeted by the reticle, the reticle animates 
back to the default center of the screen. The special case is when the player unlocks from an object and is 
no longer looking at any object. In this case, the reticle snaps back to the default position. The reason for 
this is that when the reticle is off-screen, it tends to throw errors when animating back to the center. The 
fix for this was automatically hard setting the reticle back to the center. 

3.4.2 POWER ICONS 
 The power icons are an integral part of informing the player as to which of the abilities are 
available at any given time. Each icon is an individual image loaded into a GUITexture in Unity, which 
used normalized values for position – this is more useful than absolute positioning, because it scales with 
different resolutions. Each power icon is then placed in order along the bottom, using the relative size of 
itself and the knowledge of ordering to make sure that each icon is evenly spaced and centered in the tray. 

 When the player is locked onto an object, the icons that represent available abilities are turned 
into the “activate” state, which is more lit up than the “inactive” state, which is faded. This functionality 
was added after players reported that they were unsure which abilities they were able to use on an object. 

3.4.3 OBJECT CAMERA 
 The object camera in the lower right corner of our HUD provided visual feedback for the player 
as to which object he or she currently had selected. This was done because players can lock onto an object 
and then lose sight of it – with the object camera, the player always knew what object was being affected. 

 The object camera works by separating the object into a special layer that no other objects are on. 
The camera then renders only this layer, and displays it on screen, scaled to fit within the region we 
designated. In addition, the camera rotates around the object slowly, so that all facets of the object are 
visible. 

 In the same region as the object camera we also included an indicator which informed the player 
whether he or she had locked onto the object. This was done with a simple closed lock/open lock image, 
which was then grayed out if no objects were selected. Along with this indicator is another power icon 



25 

which shows the player which type of manipulation they are currently using on the object. If an object is 
affected by Location Freeze, the power icon by the object camera would show the freeze icon. 

3.4.4 MENU 
 The menu system is comprised of several components. The first is the splash screen. The 
background is the Lifespan logo. There are 5 buttons placed in front of this, of which the third button is 
placed in the center and there are two buttons evenly spaced on either side of it. The first button takes the 
player to the first level of the game. The second button takes the player to a screen of a picture of the 
controls made by the artist. The third button brings up a different menu where the player can change the 
volume options of the music, the sound effects, or both, as well as a link to the development website. The 
next button plays a movie of the credits. The last button quits the game. 

 The pause menu contained in-game works similarly and contains many of the same options. From 
here, the player can resume the game, go to an identical sound options page with a website link, restart the 
game at the start of the first level, and quit the game and go back to the main menu. The pause 
functionality works by setting the timestep to zero, disabling all of the player functionality and turning off 
some of the GUI elements. 

3.5 LEVEL EDITOR 
 The Level Editor is a set of scripts that function as a Unity add-on. The intention of the Level 
Editor was to accelerate the building of game levels by allowing level designers to lock the geometric 
positions of objects relative to other objects. This tool was designed and implemented in fulfilment of a 
Computer Science requirement for the MQP. 

3.5.1 DEVELOPMENT CYCLE 
 Designing the Level Editor required learning the Unity interface and understanding the features 
that would help level designers to build levels more quickly. Part of this came from first-hand experience 
with Unity, and the other part came from consulting with the team. Requirements were then collected into 
the first draft of the Level Editor Design Document. This document was submitted this to the rest of the 
team for feedback and review. User stories followed along with assigning values using the unit of the 
jigsaw puzzle piece. As the scripts are written in C#, NUNIT testing for full Test-Driven Development 
was investigated. However, scripts cannot run without the Unity engine compiling them, so NUNIT was 
infeasible in this case. Since Test-Driven Development was infeasible and having both a design document 
and user stories was redundant, the decision was made to forgo user stories and stick to implementing 
features from the design document while testing features manually in Unity. 

As implementing the design document progressed, certain challenges needed to be addressed, and 
the result of solving these challenges resulted in a second draft of the Level Editor Design Document. This 
draft can be found in Appendix C. Further challenges during implementation and changes in requirements 
resulted in more changes as the Level Editor took form. 

  



26 

3.5.2 DESIGN REQUIREMENTS 
 The Level Editor exists as a component that level designers can add to a Unity GameObject. This 
component allows level designers to connect the GameObject to other GameObjects by adding a new 
constraint and dragging the objects 
name into the corresponding field. 
The second object will receive a 
Constraints component (Figure 3) 
of its own with the first 
GameObject listed under the same 
type of constraint. Constrained 
objects will maintain the 
specified distance between them 
on the given axis. 

Another feature of the 
Level Editor lies in a 
GameObject’s Transform 
component (Figure 4). When the 
Constraints component is added to 
a GameObject, lock buttons 
appear next to each dimension. 

These buttons toggle whether the 
corresponding dimension can 
change. For example, locking 
translation on the x-axis prevents level designers from moving the object along the x-axis. Both 
transformation locks and constraints save with the scene. 

3.6 CHALLENGES 
SoundManager 

 The SoundManager had many different implementation challenges associated with its 
development. Early on in the process, the SoundManager played all of the different sound effects and 
music using Coroutines. As outlined earlier, Coroutines don’t work like threads. Due to their nature, they 
can cause delays in the activation of sounds in-game. Switching over this implementation to a new 
version with threads made our music playback work, but it wasn’t without its headaches. 

 Because Unity isn’t thread-safe, all API calls are banned from user-generated threads. This meant 
that the threads that the AudioClipExtended class would create couldn’t actually maintain the new data 
but instead had to rely on the main thread to do so. These calls proved to be difficult to execute properly 
and often caused Unity to crash. A bug showed up where on the second time of playing the game in the 
Unity Editor, the editor would crash and require us to restart Unity which would cut into development 
time. Eventually the bugs were traced back to threads not being joined on application quit, which is 
handled awkwardly by the editor. When those bugs were fixed, Unity stopped crashing and the music 
within the levels played flawlessly. 

FIGURE 3: THE CONSTRAINTS COMPONENT HANDLES RELATIONSHIPS BETWEEN 
GAMEOBJECT. 

FIGURE 4: THE NEW TRANSFORM COMPONENT CAN LOCK A GAMEOBJECT ON ITS 
AXIS BY POSITION, ROTATION, AND SCALE. 



27 

 Another issue that arose during development was the handling of the sound file data. AudioClips 
have a feature which lets a developer to get and set the actual data behind the sounds. In order to affect 
music loops for crossfades or pitch variations, this direct manipulation of the sound data was essential. 
The data proved to be problematic, as the sound data is just an array of floats. Without know exactly how 
this data translated into sound there was a long period of time where all attempts at changing the data 
resulted with sections of white noise. Eventually the issues were worked out and the data alteration also 
was working without fail. 

3.6.1 RIGIDBODYFPSWALKER 
Hill Sliding 
 As the player’s collider is a capsule, the bottom is rounded. This causes gravity to pull the player 
down slopes when the player is not walking around. To prevent this sliding, Rigidbody constraints lock 
down the player when no keys are being pressed. When keys are pressed, the constraints are disabled, and 
the player can move. 

Collisions on a Stationary Player 
 While locking the player’s position prevents him from sliding down a slope, it also prevents 
moving objects from pushing the player. To combat this issue, the RFW script checks collisions with the 
player and when it finds one, it checks to see if it’s above a certain height on the player. If the collision 
point is high enough, it is safe to assume that the colliding object is not the floor. Position constraints on 
the player are disabled, and the force of the object is applied to the player. 

Wall Debouncing 
 Wall Debouncing is a term coined to describe a fix on the way Unity handles collisions. Unity 
detects a collision when the two colliders overlap. The engine registers the collision and snaps the two 
overlapping colliders apart so they can collide again. This system works until rigidbody player control 
gets involved. Holding down the forward key will move the player until he hits a collider. Unity will 
detect the collision and then pry the two colliders apart. If the player keeps moving forward, he will again 
collide and Unity will repeat the process. This creates an oscillation on the player as he moves in and out 
of the collider. 

 To fix this, the RFW script detects the initial collision and traces a vector between the point of 
collision and the player’s center axis. This vector is rotated ninety degrees so to lie tangent to the collision 
point. The player is wrapped in a trigger which detects the next collision before it happens. The RFW 
script responds to this forecasted collision by constraining all movement to lie along this tangent vector. 
This forces the player to move parallel to the surface, preventing it from colliding with it again only when 
the initial movement vector points into the surface. In this way, the player can still move away from the 
surface without the tangent vector affecting movement. Jumping also works outside of this system as the 
player cannot continuously move into the wall while in the air. 

3.6.2 RETICLE 
 The reticle proved to be an interesting undertaking for the tech team. The major issue that 
occurred was handling boundary conditions for the reticle when it went off the screen. Unity threw one 
particular issue where when one of the two reticle pieces would disappear sometimes when it was near the 
edge of the screen. As this bug was not reproducible, we had to find a workaround for this bug. What 



28 

happened is that when doing some of the math related to getting the screen coordinates of the reticle 
piece, the position would become NaN and would break. This was solved by checking before the reticle 
was drawn that the coordinates are numbers. If not, it set them to numbers. This solved the issue for the 
most part, except for a very rare occurrence of this same error. 

3.6.3 LEVEL EDITOR 
Requirements 
 Sourcing requirements from the team was difficult for a variety of reasons, the largest being that 
consulting occurred during the summer. Team members lacked motivation to consider what a Level 
Editor would need to effectively accelerate level design, and as the team members lived in different 
locations, all communication was constrained to email, the game blog, and Google Plus Hangout sessions. 
We speculate that another reason was that team members familiar with Unity’s workflow could not see 
the need for a level design acceleration tool. 

 Another issue with requirements came up very late in the implementation of the Level Editor. 
Miscommunication over terminology between team members resulted in an incongruent understanding of 
the requirements. Some members thought that GameObjects could be mated in local coordinates when the 
design specified that a GameObject could rotate around another GameObject in world coordinates. This 
misunderstanding was not cleared up until the final week of implementation, but this turned out to not 
matter as time did not permit its implementation. 

Implementation 
 The Level Editor had many technical challenges during implementation, the largest of which are 
saving constraints, nesting prefabs, and computation of many constraints and many GameObjects.  

For saving constraints, the Level Editor initially implemented db4o, but it moved to Unity’s built-
in serialization so Constraint components would save with the scene file. Unity cannot distinguish 
between GameObjects with the same name however, so ID tags were added to each GameObject to 
ensure that each one could be uniquely identified. The scene also needed a trigger to reload the constraints 
whenever the scripts recompiled or the scene loaded, which Unity managed to provided methods for 
through the API. 

 Another problem arose with Unity prefabs. Unity cannot nest prefabs. While Unity can place 
prefabs inside prefabs, the inner prefab connection is lost and the prefab becomes a GameObject 
hierarchy. This design breaks the grouping concept for prefabs, but the feature is still in the final 
implementation as there is no way around this, and the feature works in all other instances. 

 The final problem with the Level Editor was computation. In a small scene with few 
GameObjects and constraints, the constraint tree is small and depth-first search moves quickly. In a large 
scene however, constraint computation slows to a crawl. In addition, engine errors appear with regards to 
the customized Transform component on constrained GameObjects. To solve these problems, the 
dimension locks were moved into the constraint components and the Unity Transform component was 
restored to its default. Updating constraints were also delayed until the level designer finished moving 
GameObjects, eliminating continuous computation lag. This solved speed issues to a degree, but not 
entirely. Unfortunately, time did not permit finishing optimization for the Level Editor. 



29 

4. ART 
 Lifespan’s art team was staffed by Michael Pelissari, Nick Silvia and Will Stockinger.  They were 
responsible for all of the visual aspects of the game, including models, textures, animations, lighting, and 
many other aspects that went into defining the visual experience of Lifespan. 

4.1 DIRECTION 
 When designing Lifespan, the main philosophy was to have an art style and feel that tied the 
world, the character, and the gameplay together as a single entity. The three pillars of the art style are 
realism, science, and nature. Although science and nature are opposing styles, the contrast was key in 
getting the feel of our environment across to the player. These pillars define Lifespan as well, using 
science to manipulate nature in a realistic looking world. 

 Players needed to see the state changed objects morph in front of their eyes. Immediate feedback 
makes it easier for the player to see how powers affect each object in real time. To approach this issue we 
used blend shapes to change the environment in real time along with their physics. Changing and 
morphing nature allows us to mix our art style and the mechanics of our game together. Synergizing 
gameplay and artstyle allows us to create a more immersive experience for the player and highlight our 
pillars of design. 

 The character needed to be interesting and relatable and represented as such through the art and 
animations that come with it. In order to do this we exaggerated pieces of the character and animations to 
make them easily understood and so they can resonate easier with players. This tied together with the 
device and the HUD once again create this contrast with the environment and the assets of the game, this 
time allowing them to easily pop. 

  

4.2 BLEND SHAPES 
 Blend Shapes were essential to the main mechanics of Lifespan.  When the player needs to age or 
de-age an object, the model needs to change to reflect that.  In order to get a smooth transition between 
states of an object, we employed Blend Shapes on every dynamic object. 

4.2.1 PROCEDURE 
 To make models Blend Shape ready (or “dynamic”), we started by modeling one state of the 
model.  After making this model, and accounting for any requirements that other states may have, we 
duplicated the state we already modeled and altered the duplicates only by moving vertices (Figure 5).  
The team took into consideration the dimensions and pivot points of each state of the model, because an 
off-center pivot or strange transformations on one state of a blend shape could cause odd animations.   

 



30 

 

FIGURE 5: THE FLOWER DYNAMIC MODEL, SHOWN WITH ITS STATES LEFT TO RIGHT: REVERSE (YOUNGEST), NORMAL 
(MIDDLE), FORWARD (OLDEST) 

Once we had made each stage of the model, we used Maya’s blend shapes tool to test the 
animation between states, and then used a Maya Embedded Language (MEL) script that converted the 
blend shape into a Unity accessible blend shape. After the MEL scripts were run, the blend shape was 
exported out as an FBX model and then imported into Unity. It was necessary that when being imported 
into Unity, the normal smoothing was calculated and turned up to 180 because without that option set the 
vertex counts between the different blend shapes were off. After being imported, the blend shape scripts 
are attached to the model and the State Control scripts added as well. The blend shape would then be 
ready for use within Unity and the game. 

4.2.2 TREES 
 Making dynamic trees requires two additional steps compared to other dynamic objects (Figure 
6).  Leaves need to be modeled separately in order to make a natural looking tree that morphs easily and 
well.  The leaf model is created in the same way as any other dynamic model, and then is brought into 
Unity and set as a child object to the tree trunk so they both deform at the same time (Figure 7).  This is 
also present with the vine dynamic model, which has leaves and smaller connecting vines added after the 
main model. 

 

FIGURE 6: AN EARLY ATTEMPT AT MAKING A REALISTIC LOOKING TREE DID NOT GO WELL. 



31 

 

 Second, trees that are state forwarded into old trees fall down and leave a stump behind for the 
player to interact with.  To get this to work properly, a second tree dynamic model needs to be made by 
taking the forward state model and turning it into a stump.  In Unity, the original tree model is replaced 
with a stump when the player knocks it over, allowing them to use both the knocked over tree and the 
newly created stump in their puzzle solving. 

 

FIGURE 7: OUR FINALIZED DYNAMIC TREES. 

4.2.3 GLASS TO SAND 
 The glass to sand dynamic model had an additional piece to give it another dimension and make it 
as real as possible.  In Unity, a particle effect (made out of the sand texture) was made to be played as the 
glass is morphed, which helps give the feeling that the sand is made up of little grains rather than just one 
single block. 

 Another thing that the team did, in order to get the glass to look like glass and the sand to look 
like sand, was blending the textures as the model morphed. Our tech team used a custom-written shader to 
crossfade between two textures in order to get the transition between states of the object to look good. 

4.3 MODULARITY 
Scale is a very important part of the game development process. Proper scaling helped different 

individuals to work on separate GameObjects and environments.  This helped make everything in the 
scene to be the same size so that the player would feel as if it was real life. Since the entire team used 
Maya, the FBX exporting options to Unity were fairly simple.  Depending on the artist, the export and 
Maya settings were one of these three (Figure 8): 

 



32 

 

FIGURE 8: PROPER PROCEDURE FOR CONVERTING UNITS BETWEEN AUTODESK MAYA AND UNITY3D 

 Gridding is essential in creating a modular environment.  Gridding allows a model to be designed 
to snap to a grid within the modeling environment or game engine. For a game modeler the “rule of two” 
is a golden law. All pieces should be within the range of: 

● 2 x 2 

● 4 x 4 

● 4 x 6 

 The pieces should be set to multiples of two and even numbers.  The multiples can be in meters or 
centimeters.  The only real difference is the decimal point and import scale number.  When we modeled 
the environment pieces it was important to keep the boundaries of the model polygons with in the grid.  
This was so that other pieces could line up easily and stop tiny gaps from appearing when the pieces were 
tiled. 

 With the creation of modular game pieces came the task of creating textures.  Since the game 
assets for the environment were meant to seamlessly fit together, tiling textures are a necessity (Figure 9). 
These textures are hard to create because they cannot contain seams, thus allowing different pieces to be 
joined together and look like they would exist in the real world. The other benefit about tiling textures is 
that they made UV mapping GameObjects simple. The artists did not have to worry about seams and 
overlapping unwanted lines nearly as much as textures that do not tile (Figure 10). 



33 

 

FIGURE 9: EXAMPLE TILING TEXTURE (DIFFUSE/BUMP) 

 

FIGURE 10: TILED IN GAME MANY TIMES 

 Modeling the game environment was a very long and iterative process.  We started prototyping 
the game over the summer of 2012.  The designs of our level were greatly affected by this modular 
system. Every iteration we refined the models and our level concepts.  When our environment was 
completed we put different things into prefabs, which allowed us to change the layout of our level from 
feedback received during playtesting.  Early on, the process to redesign the levels took us hours, but in the 
end it only took us 20 minutes to perform the redesign. 

4.4 CHARACTER 
 Jacques is the main character of Lifespan, a suave French-Canadian super thief that has broken 
into the N.E. Corporation to steal the device. Jacques motivations are purely for money and personal gain; 
he has no concerns for what happens after each job is completed as long as he gets paid. 



34 

 The design of this character was heavily influenced by secret agents, such as James Bond or 
Archer. Many of his features were very much exaggerated in the original concepts, though the final 
design of the character was far more grounded in reality. This idea of realism stretched throughout the rest 
of the design of assets ingame and began to define the previously mentioned three pillars of design. 

4.4.1 DESIGN 
 Jacques character design is very much inspired by that of Archer from the show of the same 
name. He dons a black turtleneck sweater and black cargo pants along with his slicked-back black hair 
and combat boots. Although the player can only see the arms of the character, the original design concept 
had the entire outfit in mind to give the character a bit more style. Using what we had, such as the gloves 
and the sweater, we tried to define the character in a minimalistic way. 

 The device is divided into three separate pieces, each one serving a unique purpose and function. 
The device’s backpack houses the supercomputer which calculates the data for each object it manipulates 
based on pre-existing data it has recorded. The supercomputer has been condensed into a backpack design 
to make it easier for subjects to carry around, allowing testing to leave the confines of the labs.  

The visor has a built in heads up display allowing subjects to see what power they are using 
currently and what objects they can manipulate using the device. The main purpose of this piece of the 
device is helping the user to easily manipulate objects and give them an understanding of what object they 
are affecting and how.  

The glove allows the user to interact and select which power they would like to use, along with 
allowing them to target objects using the projector on the base of the palm. Opening the palm and 
pointing it towards an object allows the user to manipulate the object by using the currently selected 
power. All of the devices pieces work synergistically to allow users to manipulate the different states and 
locations in easy way. 

4.4.2 MODEL 
The model for Jacques is of just the arms. It is rigged with the entire body in mind, however. 

From a design standpoint, the arms needed to show something that represented the character well. Only 
modeling the arms was a design choice to save on polycount, as there were over three million triangles in 
the biodome alone. Any place we could cut polygons we did. Displayed on both arms is Jacques’ 
trademark black turtleneck sweater while on the left arm he is wearing a brown leather glove, showing his 
style and taste. On his right arm is the device itself, with the turtleneck sweater arm rolled up to 
accommodate the size of the device. 

Animation 

 Creating a full body rig for the model allowed animations to feel natural and professional. This 
rig incorporated a full range of movement to the arms and allowed the animations to look like they are 
coming from a larger model. An example where the full body rig was useful is when  the arms first come 
up after obtaining the device. It was much easier to have the recoil animated when there was control of 
more than just the arms. Animations where the whole body is involved in the action, like most movement, 
was far easier when a full body rig can be utilized (Figure 11). 



35 

 

FIGURE 11: THE FULL BODY CHARACTER RIG. 

 The animations themselves were based on many different references. The biggest video game 
influence for the animations was the Half-Life series. Along with using different videos and games as 
reference for how an animation looks, the animators used their own arms and bodies to simulate the 
animations. The idle animations are almost entirely based on the motions of the head animator. Using 
many references allowed the animations to mimic and at times exaggerate real life to make them feel 
realistic to the player. 

  



36 

4.5 ENVIRONMENT 
 The art style of Lifespan is founded on three distinct pillars: realism, science, and nature. Each 
pillar defines the art, sound and feel of Lifespan. These pillars represent a goal for the art team to create 
something new and interesting in a market saturated with puzzle games of similar styles. 

 Realism is the focus of our art assets; the assets needed to feel like they were grounded in reality. 
The art style aimed for immersion and helped players suspend their disbelief while engaging themselves 
in the experience of Lifespan. This decision was inspired by gorgeous games such as Crysis – similar 
artistic choices can make games far more appealing to players in the current generation of games. 

 Nature and science work together in contrast to give our game a unique style and feel. Science is 
the idea of clean-cut and artificial looking assets displayed mostly in our facility level. These assets are 
scattered through our biodome as well, creating a contrasting look that sets it apart from other games in 
the same genre. While nature influences the organic and vibrant assets, such as our trees and flowers 
inside the biodome, these differing facets of style, with our placements, create a nice contrast that sets us 
apart from one of our biggest inspirations, Portal. The natural assets together with an overarching feeling 
of science – a giant glass dome and walls – remind the players that while they might be more free, they 
are still contained within the N.E. Corporation. Creating a unique and appealing art style was a key part of 
our development to separate our game from the other first person puzzle games on the market. 

 Each of these pillars are represented in the environments of our two levels: the facility which is 
more scientific and oppressive, and our biodome, which is grounded more in nature and freeing. Both 
levels are unique and are reflected in the art, sound and music. 

4.5.1 FACILITY 
 The game starts in the Facility level, where players obtain the device, get acclimated to it, and 
make their way out using its powers for the first time.  Many of the assets in the Facility were designed 
primarily with science in mind (Figure 12). 

 

 

FIGURE 12: AN EXTERIOR VIEW OF THE MAIN AREAS OF THE FACILITY. 

  



37 

Test Rooms 
Our test chambers are a big part of the facility level.  They are the rooms that teach the player 

about our five unique device powers.  The rooms were heavily modeled after the rooms in Portal.  We 
wanted to give the test rooms a dark and sterile feel.  This was to give the player a sense that he is being 
observed and used as a rat in a maze. 

Office Rooms 
Throughout the facility level there are various rooms that emulate a typical workplace.  These 

rooms are filled with cubicles or are high executive suites, which are furnished with standard office 
furniture. We designed these rooms to look like the employees in them got up and left in a hurry. 

Lab Rooms 
 The lab rooms were the rooms that held all the extra resources that would go into the testing 
rooms. This included items such as trees, steel grates, and boxes.  These rooms have a feeling of sterility, 
use, and storage. 

Hallways 
 The facility is laid out in a typical grid pattern.  In between each room there are two different 
kinds of hallways.  The main hallways, which are bright and colorful, are made for heavy traffic (Figure 
13).  Connecting the main hallways are smaller service corridors which have low emergency lighting, 
making them dark and dank.  Our hallways all look similar to give off a conformist feeling, but have 
various pieces of clutter to keep players from getting lost. The elevator is an open lift in a shaft with an up 
and down button to traverse the many floors of the facility. 

 

FIGURE 13: THE HALLWAYS OF THE FACILITY. 

  



38 

4.5.2 BIODOME 
 The second level of the game consists of the much more open and sandbox-like biodome, where 
the player activates four switches to open a massive door and escape. Compared to the facility, the 
biodome is bright, vibrant, and shows off the natural quality of art in Lifespan (Figure 14). 

 

 

FIGURE 14: AN EXTERIOR VIEW OF THE MAIN AREAS OF THE BIODOME. 

Elevator 
 After activating the elevator at the end of the Facility level, the player is transported into the 
biodome, so the the elevator is the first part of the level that the player encounters.  The ride up is an 
opportunity for the player to get a sweeping, grand view of the entire level, as well as visual clues about 
how to proceed. 

 The biodome elevator shaft is a massive glass tube, ringed by a spiraling ramp leading to ground 
level.  At the top of the elevator is the first of four circuit breaker switches, which open the massive 
biodome door at the far end of the level.  A cable with red lights connects the switch to the biodome wall, 
and runs along the wall to the indicator lights above the door. 

The elevator itself was a tricky piece to make.  Being made mostly of glass – so the player could 
see through it into the rest of the biodome during the ascent – each piece of the elevator needed to be 
separated into metal and glass components.  As a concave, round model, using a convex mesh collider did 
not fit the model, so hundreds of separate box colliders were made to fit the elevator separately. 

River 
 Directly blocking the player’s path across the biodome is a river, flowing from the Observation 
Room on the high ground to the low ground, where a grate blocks the Maintenance Room section from 
the biodome proper. 



39 

 The main mass of the river was made in Maya by exporting the terrain as an .obj file and making 
a mesh on top of it.  The part of the river at the high ground, the waterfall, was modeled separately.  Both 
were imported into Unity as .fbx files.  The water material – a standard Pro Water shader – was applied to 
the meshes which gave the appearance of flowing water, and a particle effect was made for the waterfall 
section and the rapids section towards the middle of the river to give the appearance of water foaming 
after hitting rocks quickly. 

 The waterfall section is the first section where the team used a cliff face model, put on top of the 
terrain for sections where the terrain looked too rounded or smooth to be realistic. 

Observation Room 
 A room built into one side of the Biodome wall is one of the highest points of elevation in the 
game, and the location of the second circuit breaker switch. The Observation Room is relatively square 
from the outside, but ringed with a glass catwalk.  By using a tree stump in front of the observation room 
or climbing a series of vines on the cliff faces to the right, the player can use the catwalk to enter through 
a window (by state reversing it into a pile of sand). 

 Inside, the Observation Room is in a state of disarray, much like the facility.  Chairs are 
overturned as employees fled and work is abandoned mid-process.  When the switch in pulled, every 
monitor in the room shows the biodome door, the player’s ultimate goal, and the lights above it, which 
indicate how much progress the player has made in opening it. 

Forest 
 The forest area to the right of the elevator is a lightly wooded area with trees and boulders for the 
player to play with or bring to other areas of the biodome to use during puzzle solving. 

Jungle 
 In the jungle, situated across the river from the elevator, the plant life is visibly different from the 
ones in the forest.  The trees are much taller, with a canopy of leaves only at the top, and the grass is 
thicker and taller. 

Plateau 
 Slightly beyond the jungle area a plateau supports the third circuit breaker switch.  By climbing 
some vines growing off of the plateau, the player can access the switch attached to a massive biodome 
relay.  The relay has three curved monitors suspended from its side and a large transmission antenna 
extending from the center. 

River Grate/Maintenance Room 
 Following the glowing cables running along the walls of the biodome reveals that the fourth and 
final switch controlling the biodome door lies beyond a rusty grate blocking the player from freely going 
into a river runoff area. 

 After breaking the grate with an accelerated boulder, the player moves through a small cave into a 
sewer, and from there goes into a maintenance room with the last switch in it. This area was designed to 
be a service and security center for the biodome (Figure 15).  It is used as a proper drain and water 



40 

recycle center for the river.  Like the Observation Room monitors, the monitors here show the biodome 
door when the switch is pulled. 

 

 

FIGURE 15: THE SEWER AND MAINTENANCE ROOM IN THE BIODOME. 

Biodome Door 
 Preventing the player’s easy escape from the N.E. Corporation is a massive locked metal door.  
The door is constructed using heavy steel plates held together with rivets, and locked with a spinning 
mechanism in the center and two large steel bolts screwing the doors into each other (Figure 16).   

Above the door is a series of four lights, illuminated with big red X marks.  Cables fitted with red 
lights run along the walls to the circuit breaker switches situated in other parts of the biodome.  As the 
player flips these switches, the red lights on the cables and above the door turn green. 

Once all four switches are flipped and the player makes their way to the door, the containment 
bolts unscrew, the center lock spins and unlocks, and the door itself slowly opens to reveal a huge storage 
room with another door that opens in a similar fashion, allowing the player to step outside into a wooded 
area, where the game ends. 

 



41 

 

FIGURE 16: THE BIODOME DOOR PREVENTS ESCAPE UNTIL ALL FOUR CIRCUIT BREAKER SWITCHES HAVE BEEN FOUND. 

 

4.6 GUI 
 The GUI for Lifespan was designed to resemble a graphical overlay the time manipulation device 
is projecting onto a visor.  This display has tools for monitoring the device’s powers, the current target 
and a console with information on the inner workings of the device. GUI elements include Power Tray 
Icons, Object Camera, Reticle, and Console Messages. 

4.6.1 DESIGN 
 The time manipulation device was built by the N.E. Corporation and uses much of their imagery 
in its GUI.  The central theme of the design is its red glowing lines, creating the borders of each piece.  
Each element has dark but semi-transparent background to make anything in front of it stand out more, 
while simultaneously not obscuring anything directly behind it.  The corporate logo is visible in many 
GUI elements. 

4.6.2 POWER TRAY ICONS 
 

 

FIGURE 17: THE FIVE POWER ICONS REPRESENTING ABILITIES PLAYERS CAN USE. 

 Centered horizontally and aligned with the bottom of the player’s screen is the Power Tray.  The 
player looks here to know what power they have selected, as well as know what other powers they can 
use on any given object.   

The power icons have a gray background and either a red or black highlight, depending on 
whether the power is selected on unselected respectively (Figure 17).  Powers that the player can use on 



42 

the targeted object are fully opaque on the UI, while powers that cannot be used on that object are faded 
and semitransparent. 

Each of the five powers has a unique icon meant to symbolize what it does.  Finding icons that 
were simple yet descriptive enough was difficult, but invaluable in assisting the player’s understanding of 
how they can interact with the world.  Some powers were easy to make icons for, such as stasis – 
represented by a common pause symbol.  The simplest way of demonstrating the difference between 
reverse and forward, regardless of the distinction of state or location, was to have an arrow pointing either 
left for reverse or right for forward.  From there, the team decided an arrow next to a line best represented 
a location-based power, and a double arrow best represented a state-based power. 

4.6.3 OBJECT CAMERA 
 The player has the ability to lock onto an object when targeting it in order to use a power on it 
while not directly looking at it.  A small window in the bottom right corner shows the targeted object, 
along with a lock symbol when the object is locked-on or an unlocked symbol when the player’s target is 
free.  This feature helps the player differentiate between what object they are targeting or locked on to, 
especially in a large group of objects or from across the level. 

4.6.4 RETICLE 
 Resembling a normal crosshair when not in use, the reticle is an important way to give player 
feedback.  When the player is targeting an object they are able to affect, the reticle expands, creating a 
box around the targeted object.  This is the most obvious visual cue available to the player that they can 
use one of their powers on any given object. 

4.6.5 CONSOLE MESSAGES 
 Console messages in the lower right part of the screen show up when important game events 
happen.  These messages let the player know a bit more about the game world and how the device works 
in-universe, but are otherwise impractical. 

4.7 CHALLENGES 
 An array of challenges came with creating a game in full 3D from polycount to art style, and all 
of them had a hand in defining the final version of Lifespan. These issues are no different from that of 
AAA studios; instead of letting the concerns change our concept they were embraced and worked on to 
create our final product. This philosophy of asset creation allowed the final product to look clean and 
polished without too many issues such as jagged geometry or texture blurring. 

Polycount 
 Polycount is an issue in many games and is a huge concern for titles who are trying to go for a 
more realistic style and feel. An example of this in game is the arms; the original concept was to have a 
fully created character and then animate it from a first person perspective. Though to do this we would 
need to create a high polygon model that would have taken significant time and processing to have 
ingame. The team sat down and thought of the places where a player would be able see a reflection of the 
character. There were too few areas of reflection to prioritize a fully fleshed out model, thus it was scoped 
down to just the arm models. This also allowed for a higher poly mesh of the arms as well, giving more 
detail to the players perspective. Scoping decisions such as these defined the way we thought about the art 



43 

in our game allowed us to create a polished and semi-realistic look to our game without straining the 
computers too heavily. 

Creating beautiful assets with a restrictive polycount relies on a nice art style that embraces those 
restrictions. While creating assets, the artists needed to conform to the semi-realistic look so that the 
player felt like the universe was grounded in reality. Approaching this issue the team needed to use 
different reference images to create each asset. These reference images were used to create artistic assets 
grounded in reality. There were some textures that were created using pictures of actual items such as the 
carpet; manipulating this in Photoshop allowed for a really clean and crisp texture detail. 

4.7.1 BLEND SHAPES 
Blend Shapes had some specific rules to be followed to get the right effect.  A Blend Shape had to 

be made of multiple models with the exact same vertex count, and the vertices needed to all be in the 
same order.  The easiest way to deal with these issues was to make one model, then duplicate and alter it.  
However, once the first model is made, no changes to the geometry can be made except for moving 
vertices. 

 If vertices were too close to each other, even though they were separate vertices in Maya, Unity 
would optimize and merge them together, causing the Blend Shape scripts to fail due to uneven numbers 
of vertices.  The simplest workaround that the team found was to make sure any close-together vertices 
were spaced far enough apart that Unity would not optimize them away.  This was tested in Maya by 
automatically merging any vertices within a certain distance (usually 0.001 units) of each other.  If no 
vertices were merged, the model was safe for Unity. 

 When creating dynamic models in Maya, the “Fill Hole” and “Bridge” tools were unsafe to use.  
Even when the blend shape animation worked correctly in Maya, they would often have strange visual 
issues while animating in Unity.  The team found no fix to this issue, and instead tried to avoid using 
those tools in conjunction with blend shapes. 

4.7.2 GUI 
 One concern that the team had about the GUI is its reliance on color.  With red being one of the 
more common difficulties for colorblind people, we needed to make sure elements used light and dark 
more than saturated and unsaturated colors in order to be colorblind-friendly. 

 Design of the GUI elements was an early concern that the team had to work through.  Originally 
elements were much squarer, which looked unprofessional.  The newer GUI was designed with rounded 
corners in mind and looks more polished as a result. 

4.7.3 TRANSPARENT MODELS 
 Due to the way transparent models are rendered in the Unity engine, a semi-transparent model 
won’t show up behind another model with transparency.  This creates visual issues with water and water 
particles, which flicker when new particles are created, or two sets of glass doors across the hall from 
each other.  A feature called sorting fudge on particle systems let the waterfall particles either always 
show up in front of the water mesh or always be invisible behind it, which was usually enough of a fix to 
keep the waterfall from looking strange. 



44 

 When thick models had both transparent and opaque parts, such as the biodome elevator, the 
player could be positioned such that they could see through the model completely.  This was unrealistic 
and looked bad, so every model that had both transparent and opaque parts needed to be separated into 
two models, and holes needed to be filled to make the glass look realistic. 

4.7.4 CONCAVE MODELS 
Models with concave parts had issues with Unity’s built-in physics, so these models needed to 

use convex colliders.  This worked fine for subtle concave pieces that didn’t really matter, such as the 
bumpy faces of boulders or the slits in grates, but for models that the player needed to walk through or 
punch objects through, like the elevator or the cave at the bottom of the river, the convex colliders caused 
physics issues.  For these models, individual box colliders needed to be created, made invisible, and 
applied over the visible models to let physics work within those areas. 

4.7.5 LIGHTING 
Lighting in Unity is odd – it has different levels of importance. Importance values can be 

assigned to lights to change how they behave with one another.  They tell the lights how to light an area 
based on the other lights around it.  When we were lighting it was difficult to tell how the lights affected 
each other, so we found a setting – differed lighting – that enabled us to set every light to important, 
which made them all behaved the same with one another.   

Lights in Unity bleed through objects. If you have an entire modular environment pieced together, 
even though the objects are touching and snapping together, light will go through the seams and into the 
environment behind it. This gave us trouble with any form of color lighting and any lights large enough to 
keep a room at the same luminosity without having too many light objects. Normal maps in Unity are also 
troublesome because they are only active when a non-baked light in shining on them. Any baking 
flattened the normal maps in our game and made it not look as good. 

4.7.6 GRID/SNAPPING 
 In Unity there is not a way to keep grid snapping on automatically.  Developers need to 
continuously hold down the control button to engage grid snapping.  Then there was the problem that 
Unity has one generic grid setting and there is no way to change it in any of the settings.  The tech team 
wrote a script to change the grid, but then it still did not matter because the snapping did not change to the 
newer modified grid.  This meant that our placement of objects smaller than the standard grid unit was 
imprecise. 

  



45 

5. SOUND 
 Michael Pelissari, Nick Silvia and Collin Ogren made up the sound team of the project.  The 
sound team was responsible for all of the auditory aspects of the game, including sound effects, from 
collision to static, music, and many other aspects that went into defining the soundscape of Lifespan. 

5.1 DIRECTION 
 When we started the project, as a team we agreed upon that our game would excel in all 
categories so sound would be a big focus included in our MQP.  We strived to create a real and full 
soundscape. We achieve said soundscape through the style of our music, sound effects, and ambience. 
This was all to create a sense of movement in our game.  A full soundscape keeps the player involved and 
allows them to think the game environment is not empty and sterile. Creating crunchy and interesting 
sounds that resonate with the players was the design philosophy behind all of the sounds of our game. 

5.2 EFFECTS 
 Sound effects set a scene and tie together elements in an environment.  Almost every object that 
can be manipulated in game has some sort of collision sound or a rolling sound, while static objects rely 
on sounds emanating from them for them to feel like there is still motion and a liveliness to them. All of 
these sounds combined with the ambience of our scenes create the soundscape for Lifespan. 

Collision 

 When a boulder flies against a wall a player needs to hear that impact so they can further suspend 
disbelief. With concepts of immersion in mind the team used the SoundManager to vary the pitch of these 
sounds within a predefined range. This allowed us to fill our soundscape in a smaller period of time 
without annoying repetition with each asset. Each of these sounds is attached to an object and move with 
them so they have location based volume; this allowed each object to move without the player being 
berated with sounds from all around the room. 

Static 

 The static sounds allow scenes to feel more full and vibrant, so in Lifespan we use them to 
accentuate areas of the environment such as computer whirs in the offices or the sound of the water 
flowing in the river. There are two different forms of static sounds that we use in Lifespan, ambient and 
object based. The difference between ambient and object sounds is that ambient sounds will fill an entire 
area while the object sounds are attached to objects in an environment.  Ambient sound in our game 
comes from two major sources: machines and nature.  This ranges from fans running in the servers to the 
window rustling in the forest.  We found from testing that when ambience was added to the game it added 
a new level of depth that kept the player engaged in the game.  Some comments we received were: 

●  “Wow, it sounds like I am outside.” 

● “The facility really sounds barren.” 

● “That’s a waterfall!” 

These sounds are all combined to create full sounding scenes, such as the waterfall in the biodome. 



46 

5.3 MUSIC 
 All music in Lifespan is original, drawing inspiration from films and computer games. The music 
uses real-world instrument sounds exclusively to create a soothing yet emotional and natural atmosphere 
for the game. Music was composed and synthesized in Sibelius before getting spliced and mixed in 
Audacity. 

5.3.1 COMPOSITION 
The music for the facility and the biodome is split into minor keys and major keys respectively. 

Themes for the facility emphasize solitude and apprehension while themes for the biodome play casually 
to relax the player. The musical themes for the biodome fall under “easy listening”, encouraging the 
player to spend lots of time in the level. In contrast, the tenser themes in the facility level provide more 
emotional support to the story. 

Music in Lifespan for the most part used strings and made frequent use of the string quartet, 
consisting of two violins, a viola, and a cello. This sound unifies the varying styles of music in the game 
and creates a very natural feeling that comes to the forefront in the biodome. 

Facility 
The facility uses two pieces, the test rooms piece titled “HVAC” and the halls piece titled 

“Alarming Desolation”. “HVAC” used g and d minor while “Alarming Desolation” used f# minor. The 
tempo stayed the same throughout both pieces of 100 beats per minute (bpm) with long drawn out bass 
lines. “HVAC” uses pan pipes to emulate an HVAC system, providing ambience and an empty feeling 
that matches the empty facility. A clarinet plays a somber melody on top of this to emphasize the 
loneliness of the place. “Alarming Desolation” tweaks the theme a bit by adding tension through the use 
of oscillating flute notes in an alarm-like fashion and a triangle that increases tempo before cutting out. A 
violin plays two squeaky notes in the second bar of a two bar phrase to startle the player, adding anxiety 
to the atmosphere. This piece continues playing with different elements that mimic alarms until it ends in 
a climax at the end where the triangle chimes ridiculously fast and a timpani pounds twice in succession. 
This finale originally signalled that the player was dead at the end of the ten minute time limit we had set, 
but even without the timer, it serves as a great tension builder that fails to resolve, leaving the player 
feeling very anxious. 

Biodome 
The biodome uses several pieces. “The Biodome” opens flourish when the player enters on the 

elevator. After the piece finishes, “Plateaus and Plains” begins. “Cheery Avians” plays in the forest, “The 
River” plays along the river, and “Jungle Fever” plays in the jungle area with the tall grass and the tall 
trees. When the player walks out of the biodome into the outside, “Winning Freedom” plays to close the 
game with a congratulatory exaltation. 

When the player enters the biodome from the dark, underground, and empty facility, he or she is 
greeted with a beautiful scene of pristine artificial wilderness. “The Biodome” is supposed to support that 
breath of fresh air that the player should feel when entering this level. The G major piece starts out low 
with a bass line and then begins a drum roll on the timpani to increase anticipation. The player is 
rewarded with a splash of a cymbal as the player’s view peeks above the ground. The stings rise with the 
player to not only follow the motion of the elevator, but also support the player’s rising spirits. This ends 



47 

in a regal climax accompanied by a trumpet to highlight the grandeur of the environment. The emotion is 
elating and refreshing. This piece plays at 100 bpm. 

After “The Biodome” completes, “Plateaus and Plains” plays Allegro in D major. The melody of 
the string quartet is written in pentatonic scale, giving the themes a feeling of traversing the highlands 
with wide open space, much like the plateau and sunflower field where the piece plays. Inspiration for 
some of these themes comes from the soundtrack for The Lord of the Rings. 

In front of the player, a river flows across the biodome. Upon approaching this stream, a gentle 
string quartet plays long chords as a flute accompaniment plays a soft melody. The melody changes 
between a fluttering, bubbling brook and a meandering stream. The fluttering melody is inspired by the 
opening of “Die Moldau” by Smetana. The D major and A major piece is calm and relaxed at 80 bpm like 
the water in the river. 

To the right of the player as he leaves the elevator, he can see a grove of trees that form a man-
made forest. The music that plays here also contains long chords from a string quartet, but the 
accompaniment comes from a duo of flutes instead of the solo in the river piece. Together, they play 
alternating notes to mimic the songs of birds that one finds in a forest. This piece in D and G major is also 
calm, but the flutes are faster at some points to liven the forest. The piece therefore plays at an Andante 
pace with no specific metronome mark given. 

The other area in the biodome with a concentration of trees is across the river, called the jungle. 
To give a jungle-like atmosphere, the music uses only percussion instruments and a recorder. Percussion 
instruments included a whistle, castanets, two guiros and a set of four congas. The percussion provided 
background rhythms while the recorder played long notes on top in C major and G major. While the 
recorder plays in these keys, the piece is largely atonal and is meant to have little formal structure other 
than a steady rhythm. Most of the piece is in 4-4 like the other pieces, but one part is in 3-4. In addition, 
rainstick recordings were mixed in during post-production in some parts of the piece to emulate the 
rustling of leaves in the wind and the trickling of rain. The idea behind these sounds it to create an exotic 
atmosphere reminiscent of a jungle. 

The final piece of the biodome comes at the very end and is technically not in the biodome at all. 
This is the endgame piece of four bars. A string quartet plays rising G major chords with Violin I playing 
four rising quarter notes in the first bar. These four notes introduce the trumpet and timpani for the next 
three bars. The trumpet doubles Violin I, and the timpani beats on the down in the second and third bar 
and twice in succession at the end of the fourth bar. This creates an escalation followed by an exhalation, 
much like a triumphant sigh of relief to illustrate the breath of fresh air that comes with escaping and 
finishing the game. 

5.3.2 DESIGN 
 Music in Lifespan is dynamic. Each piece described above is a set of music tracks that can play 
continuously into the other tracks in the set. When the player enters a trigger, the attached trigger script 
instructs the Sound Manager to look up the associated tracks and randomly pick one. When that track 
nears the end, the Sound Manager randomly picks another track from a list that is tied to the currently 
playing track. In this way, we can control what tracks can follow the current track, enabling some control 
over the flow of the music while keeping it dynamic. 



48 

 One exception to the track set is in the hallways of the facility. In this one location, one music 
track plays continuously for ten minutes. This reflected an initial design decision that the play would die 
after spending ten minutes in the area if he did not move on. This decision was reversed however, so the 
track now repeats itself once it finishes. 

 The data for the music resides in XML files that the Scene Manager loads into the game with the 
scene. Each scene event contains a sound sub-event that holds the list of tracks. Each track holds its own 
list of tracks that specify which tracks can follow it. The tracks also contain data for fade-in and fade-out 
times, volume, and pitch. 

 While the XML contains track data, the triggers in the scene control silence. Silence, specifically 
the absence of music, occurs in several places in the game. When the game first starts, the player is in a 
server room where the only sound comes from ambience. Music does not begin playing until the player 
encounters the first trigger when he obtains the device. Silence also occurs in the biodome when the 
player enters less natural areas like the observation room, the maintenance tunnel, and the loading dock. 
This silence occurs because the player enters a trigger with no tracks specified, but the trigger does call an 
event which fades out all music in the level. Music starts playing again when he enters a trigger that 
specifies a set of music tracks. 

 Music triggers do more than simply specify the track to play. In the facility, the trigger for the 
hallway music disables the music for the test chambers. This reflects the irreversible activation of the 
alarms in the facility and allows the whole piece to play through. In the biodome, triggers precisely 
control the opening sequence by crossfading from one track to the next as the elevator raises the player 
upwards. These triggers act as cues for the sequence, much like music for a film is cued in each scene. 
These cues were necessary over simply timing one whole track because the variation in frame rate can 
change the speed of the rising elevator. The triggers therefore rely on player position rather than time. 

5.4 CHALLENGES 

5.4.1 SOUND EFFECTS 
 Creating the sound effects was a relatively simplistic process due to having access to a full sound 
library. The main issue was finding sounds that could fit our needs by going through and listening to each 
one in the library. Listening to each sound became extremely repetitive but allowed us to find sounds that 
could be used for something completely different, such as an ambient track that we could speed up to 
make a device noise. In the beginning, each sound was created by either using Foley or synthesizing them 
in programs. This whole process of sound creation was a large time sink and luckily access to the sound 
library alleviated the burden later on in the project.  

Other issues we faced were in balancing the volume of each sound but due to the SoundManager 
this process was exceedingly easy and took little time. Within the Unity engine there is a unique 
limitation with putting in ambient environment or music sounds.  Sound objects in Unity propagate from 
the direct center, as if coming from a radio.  This causes problems with trying to place ambient sounds in 
the facility and biodome so the same level of volume can be heard everywhere or conformed to square 
halls and rooms. The challenges of sound ended up being solved mostly with creativity and cunning use 
of what we had at our disposal. 



49 

5.4.2 MUSIC 
 The major challenge with music involved making the music flow. As each piece consisted of 
randomly selected tracks, each track had to transition harmonically and melodically into the other tracks 
in the set. Controlling which tracks could follow a track helped make this easier so that a track did not 
have to transition well into every other track. Tracks also tended to either start and end on the tonic chord 
of the scale, which happens with the river music, or a track would end on a dominant chord and the next 
track would start on the tonic chord. These are common chord progressions that sound very satisfying to 
the human ear, which is why they were used in transitions. To make transitions even smoother, the music 
pieces make frequent use of strings for background chords. Another element that helped music transition, 
especially between sets of tracks was crossfading them in-game. This created smoother transitions 
between different styles of music. 

  



50 

6. PROJECT MANAGEMENT 
 Michael Grossfeld and Matt Tomson were the producers for the development of Lifespan. They 
assisted team members by providing instruction, managing content, and other administrative tasks. 

6.1 SCOPE 
 After the initial mechanic design, we came up with many locations and environments that the 
game would be interesting to play in. We came up with roughly five levels, mostly taking place in the 
jungles of Brazil. Making all of these levels would not be feasible in the time-frame available, so the 
game needed to be scoped down. This led to two levels, one inside and one outside. We then needed to 
populate these levels, so we came up with lists of assets that we needed and wanted. We started creation 
of the game in the fall and quickly realized that there was too many assets we wanted to create and that 
we only had enough time and people to do some of them. We then discussed prioritizing the assets at the 
start of B Term to better allow us to scope our game. We were able to cut several sections of the biodome 
from the bottom of the list, knowing we did not have the time to complete them and that they were the 
least interesting and important sections of the level. The facility also underwent scoping, as many of the 
assets we had planned to create ended up cut due to time constraints. 

6.2 PLANNING 
 Despite having an above average size team, we were able to complete the game we set out to 
make with minimal complications through a set of project management tools that allowed the producers 
to plan out the game on a weekly basis. One of the tools that we utilized was a priority list for art assets 
kept in Google Docs (Figure 18). These lists contained all of the assets that we could want to put in the 
game. Created in B Term, we were able to add and remove items from this list. Items at the bottom were 
scoped out as time passed and sections needed to be cut. During development, new assets came to mind 
and were added to the list in an appropriate position. Artists were able to check what assets needed to be 
created next without having to check with a producer or the lead artist. In order to make sure only one 
artist was working on a specific asset at a time, a column in which an artist could claim an asset was 
added to the spreadsheet. These priority lists proved invaluable in the later portions of development where 
assets needed to be cut due to time constraints. 



51 

 

FIGURE 18: THE ART PRIORITY LIST. 

 Another tool used for managing the team was weekly timesheets (Figure 19). After any member 
of the group worked on something related to the implementation or the design of the game, they would 
log their hours into the timesheet. These timesheets also kept track of the tasks that each team member 
had spent time on. The producers could then check to see who was working and what was being worked 
on, and then adjust for the next week. For example, if one person was working much less than the rest of 
the team, the producers could inform said team member and get them to put in more hours in the 
following week. If a member spent many hours working only on one asset, it could be that the asset was 
far too complicated than originally planned, and had to be adjusted in the priority list. 

 

FIGURE 19: EXAMPLE TIMESHEET. 



52 

 Group work sessions were another important part of completing Lifespan. The whole team 
meeting in the same room to work had many benefits. First, it allowed for better communication. The 
whole team was able to discuss any issues that arose as well as make design choices. Work sessions also 
led to better feedback. Team members could get opinions on the assets that they were creating while they 
were creating them. Productivity was also increased during the work session – as a team, we worked 
much more efficiently and effectively together in the work sessions than separately. 

6.3 CHALLENGES 
During the course of development, the producers faced many challenges. Most of the issues were 

found with enough time to either correct the mistake or change the production strategy to work better. 
There were also some challenges that although noted, were not able to be solved in time. 

6.3.1 EARLY TIME MANAGEMENT 
Time management of the team was probably the most difficult challenge, as wrangling six people 

into getting work done is never an easy task, especially when each person has a number of courses they 
need to pass each term in order to graduate. Initially, we assigned people to tasks, gave them a soft due 
date, and had them work on the task on their own. Very quickly we realized this was not the best practice, 
as most of our work was being done only when the entire team met together. Starting towards the end of 
A Term we began three weekly work session – two mandatory, one voluntary. This enabled us to get the 
most out of our team, as we produced more work when working with one another. 

6.3.2 PRIORITY LISTS 
 Additionally, task structure was a difficulty we faced. In the beginning, tasks were routed through 
the producers arbitrarily and then assigned to whomever would produce the work efficiently. 
Unfortunately this meant that tasks, such as creating specific assets or coding certain scripts, were not 
stored in some prioritized list. When someone finished a task, they didn’t often know what came next 
until a producer told them, which meant that there were periods of time that no content was being 
produced.  

Starting towards the end of B Term, prioritized lists were put up on the Google Drive folder. 
These lists were color coded to let the entire team know which assets how far along the pipeline each 
asset was. This helped figure out exactly what assets were lagging behind and to also show what was the 
cause of their delay. There were times where an asset had been created but the art integration team had 
not been informed – this meant that the asset was just sitting in the repository, waiting to be used. 

6.3.3 TIMESHEETS 
 Aside from priority lists, we also used timesheets to monitor and track the team’s progress. These 
timesheets were by user input; if a team member forgot to insert their hours, they would often not end up 
on the timesheet. While the timesheets were meant as a way for our advisors and the producers to keep 
track of weekly work, it ended up only being used as a metric for competition. More of us valued the 
timesheets as a quick study of who was working the most on Lifespan in a given week, and then attempt 
to put in more hours than that person. The timesheets ended up being mostly useless and a burden for the 
team to remember to fill out, which was time that could have been spent on other things. 

6.3.4 COMMUNICATION 



53 

 Communication also proved to be troublesome. Our main form of communication was via email, 
which was not being checked constantly by all members, nor replied to immediately. Gaps in knowledge 
quickly formed as some people had read emails and others hadn’t. These gaps were rectified during work 
sessions, however. Other forms of communication included text messaging, which was faster than emails 
but more difficult to execute due to there being six different members to communicate with individually 
and no group option available. The best form of communication was face-to-face discussion in our work 
sessions. These allowed us to deliver quick feedback and information to the entire team without having to 
wait on anybody in particular. Face-to-face discussion was our preferred method of communication but 
unfortunately not always available. 

6.3.5 SCOPE 
 Another challenge we faced that wasn’t team related was our scoping of the project. Initially in 
our design the facility consisted multiple floors and the biodome was a number of modular outdoor pieces 
that would be randomly arranged for the player to escape from. This was quickly scoped down to be just 
the facility with two levels and a biodome level. We continued to scope downwards, but that initial, larger 
scope proved to be difficult to shake for quite a while. This led to us developing some systems and assets 
we didn’t end up using which was a case of poor project management on the part of the producers. 

  



54 

7. PLAYTESTING 
One crucial phase of this MQP was playtesting sessions. About a dozen people playtested the 

game, giving feedback, finding issues, and proposing changes. The playtesters came from varied 
backgrounds, but most were students of Worcester Polytechnic Institute. There were men, women, 
gamers, and non-gamers. These playtests were run during the early beta phase of development, after the 
biodome had been roughly implemented in C term. This gave the players a full game to play, with the 
exception of the final room that the game now contains. 

7.1 PROCEDURE 
 Playtests were set up to be run by one group member and one tester. The group member read an 

introduction to the tester about Lifespan and the ideas behind it. The tester would then start playing, 
talking aloud during gameplay with thoughts, comments, concerns, and suggestions. The group member 
would write down these notes in a notebook. After completing the game, the tester filled out a survey of 
questions pertaining to the gameplay experience. 

7.2 FACILITY 
One issue that was found during playtesting is that players had trouble understanding what the 

powers were doing when they first encountered them in the test chambers of our facility, which served as 
a tutorial section. This was remedied by adding text explanations printed out by the device on the user 
interface. These text explanations tried to give players a short yet informative passage explaining the 
power and how to use it.  

An issue encountered during the first playtests was that players were unsure how to navigate the 
facility.  Players would run around in circles without realizing that they were in the same places they had 
been before. The walls, floors, and doors are the same material throughout the facility, so there were no 
distinguishing characteristics. Adding exit signs and distinguishing clutter to some of the doors, halls and 
ceilings led to players following the signs to reach the exit. This allowed players to more easily find the 
exit to the level, but also made them less likely to explore the rooms that were contained in the level. 
Seeing as the biodome was the more important level in the team’s opinion, we decided that this was a 
tradeoff we were willing to make. 

7.3 BIODOME 
 Navigating the biodome to find the four switches proved to be a issue with the game as well. 

Players could find the first switch, but had some trouble locating the other three. The team fixed this by 
adding lit cables that the player could follow, stretching from the door at the end to switches.  These 
cables were lit red for switches that still needed to be activated or green for already activated switches. At 
any time the player could look at the walls of the biodome to determine where they’ve been or where they 
need to go next.   

Some players confused the first switch for an elevator switch (to raise/lower the elevator) but 
when we added a different model that the players used to activate the elevator, this confusion was no 
longer an issue. 

 



55 

7.4 POWERS 
Some more issues encountered during playtesting concerned the functionality of two location-

based powers: forward and freeze.  

Players were confused as to why the location forward power did nothing on a object that wasn’t 
already moving. The reason for this previously was that location forward amplified an object’s current 
trajectory, so multiplying a velocity of zero by anything would still lead to zero. This was not made clear 
to the players and they expected differently. Therefore, the mechanic was changed so that when an object 
is not moving, it is given a velocity in the direction that the player is facing. When an object is already 
moving, location forward behaves the same as before, moving it faster in the same direction. 

Location Freeze was the other power that had issues with its design. Before playtesting, players 
would freeze an object, then activate one of the other location powers on it. This caused the object to 
become unfrozen. The other two location powers did not act on the object. This was not a design decision 
made by the team, but rather an oversight by the team which was never handled until it was found during 
playtesting. Players expected that reversing an object while it was frozen would move it back. With the 
redesigned location forward, players expected the object to move forward when location forward was 
activated on the object when it was frozen. We then changed it to work as players expected, such that 
activating a location forward or reverse on a frozen object will both unfreeze it and activate the selected 
power on it. 

7.5 RESULTS 
Opinions of the game were generally positive. Players enjoyed playing the game and thought that 

the mechanics and puzzles were interesting and engaging. 

Making playtesting a high priority for us proved to be beneficial to the design and development of 
Lifespan. The project would not be where it is without the playtests that we conducted. We have a deep 
appreciation for the playtesters who took the time to run through our game – anywhere between twenty 
and fifty minutes for a testing session. Lifespan would not be nearly as polished if it weren’t for those 
hours spent by our playtesting volunteers.  



56 

8. POST-MORTEM 
 Looking back at Lifespan, there are numerous things we did well, we could have done better, and 
we would definitely do differently next time. 

8.1 WHAT WENT WELL 

8.1.1 TEAM DYNAMICS 
 There were a number of things that went quite well for us during the development process for 
Lifespan. Chief among them was our team dynamic – despite being a six-person team, we all knew and 
worked well with one another. This allowed us to get work done more quickly and efficiently than it 
would have been had we not worked so well together. Additionally, each individual person’s strengths 
were known and recognized which allowed for task assignment to go smoothly without any wasted time. 

8.1.2 UNITY 
 Unity worked well for us as a team. Most of us had familiarity with Unity from IMGD 
4000/4500, which meant that we could jump right into work as soon as the MQP started. The Maya-like 
interface and forgiving asset integration workflow was friendly for the artists and easy to use for the 
techs, as opposed to other engines such as UDK. Only one member of the team wasn’t familiar with Unity 
before the start of the project, and he spent some time researching it and working on tutorials in order to 
come to the rest of the team’s level of understanding. 

 Unity also has a good amount of documentation with their API’s, which meant that features 
previously unused could quickly be researched in full and then implemented. Features such as AudioClips 
get and set data functions were invaluable to the music playback in the SoundManager and were 
previously unknown features to the tech team. 

8.1.3 PLANNING 
 Our early start on planning, in our Junior year, helped us get a decent amount of the work out the 
way. Design work, such as fleshing out the environment, characters, and the world of Lifespan, was done 
in D Term of 2012 and allowed us to get started on actual development in the following A Term. This 
meant that we had an extra seven weeks of development time that was spent getting systems up and 
running before the majority of our assets came down the pipeline. 

 It also helped that we were able to get our initial systems up quickly. The major hurdle for 
Lifespan was the blend shape controller in Unity, which allowed for the real-time morphing of our 
objects. Without this system, half of our mechanics would not have worked, so it was very beneficial for 
this system to have been functional before A Term. 

8.1.4 PLAYTESTING 
 During the actual development process, it proved useful for us to have continual playtesting. 
These playtests reaffirmed numerous concepts of ours, such as the “fun” rating of our game and how well 
the players understood the various abilities. The playtests also showed us the flaws – certain aspects of the 
mechanics needed to be tweaked to follow better with the flow of the game and with the players’ 
expectations. These repeated playtests allowed us to iteratively change our game for our target players 
and in doing so make a better game. 



57 

8.1.5 SCOPE 
 We also continued to adjust our scope as we developed. As mentioned earlier, our initial designs 
for Lifespan included more floors to the facility and a variety of outdoor areas. These were cut early on, 
and more sections and levels were redesigned and adjusted as time went on so that we could produce a 
quality product. This process of design, develop, scope, and then iterate left us with most of our original 
game cut or changed, but left us with a focused product. 

8.2 WHAT COULD HAVE GONE BETTER 

8.2.1 UNITY 
 Despite the number of things that went well, there were also things that could have gone better. 
For instance, while Unity was familiar to us, Unity did not prove to be the best choice with everything. 
Lighting in Unity isn’t as nice as the lighting in another engine, such as UDK. Lights that are placed too 
close together in Unity games select only one to render by turning off the other lights nearby. For small 
areas in our facility, it meant that there were a number of lights that provided marginal help but still 
helped with performance issues. Additionally, because of the modular development of our levels, the 
pieces didn’t always connect perfectly. Lights bled through those seams which caused incorrect color 
flooding in some of the rooms in the facility. 

 Prefabs, which are prefabricated objects in Unity, also did not work how we expected them to. 
Our belief was that prefabs worked hierarchically so that prefabs in other prefabs would update properly. 
This was an incorrect assumption of ours and it cost us time when we realized our misunderstanding. A 
prefab in a prefab is assimilated by the parent and loses its connection to the original. The new prefab 
loses the ability to auto-update, which meant that when each room in the facility was made into a prefab, 
all of the building pieces and objects lost their connections to the original prefabs and instead became 
separated instances of that prefab. When we made a change to those prefabs we would have to go to each 
room and swap out the older objects for the newer objects. Had we known how prefabs actually worked, 
we would have structured our project better. 

8.2.2 UNUSED ASSETS 
 In the end, we accumulated scores of assets ranging from models and textures to sounds, but not 
every one of them ended up in game. These assets were created before their purpose was cut due to scope. 
Any leftover assets became wasted time which could have been spent on more useful things. Had we 
planned better and scoped things out earlier, these assets would not have been created, and the time would 
have been allocated to something else. 

8.2.3 ART INTEGRATION 
The assets we did create were more difficult to get into game than we assumed. There ended up 

being a number of both art and technical steps that were necessary to integrate a single art asset, and our 
communication regarding the integration process wasn’t as good as it could have been. Generally, an art 
asset was created and placed into the repository for integration. The next time the entire team met, the 
new art asset was discussed and then a member of the tech team would spend the time to integrate it. If 
there were any problems with the integration, the tech would relate it to the art team, who would then go 
to fix it. This process would repeat until the final version of the asset was in-game. This pipeline often 
caused a number of delays and became extremely inefficient with specific assets, such as blend shapes.  



58 

Blend shapes required steps within Maya, such as binding the model as a skin to a joint, that were 
generally forgotten and then had to be done by the tech team, often after many other steps had been 
already completed. Backtracking would then have to be done, which spent more time than necessary. 
Then once the blend shape was in Unity there might be some tweaks or fixes that would have to be done 
and the process would repeat again. 

8.2.4 PLAYTESTING 
Playtesting was an integral portion of Lifespan. It allowed us to iteratively design our game to be 

more fun and interesting to the players. One thing that we would have done differently regarding 
playtesting was getting more playtesters and starting earlier. We only tested our full game, when we could 
have just as easily tested parts of the game with playtesters. This would have solved both issues that arose 
from playtesting. Since our game was long, slightly under an hour for the average playthrough, some 
testers were unable to devote the time necessary to complete whole playtests. Testing only the biodome or 
only the facility would cut playtime down to allow users to complete the test quicker. Another part of 
playtesting our game was that the full build was not up until late in development. The facility was done 
much earlier in the year, which should have been playtested separately of the biodome. We were only 
able to get a few playtests of the facility before the biodome. More testing should have been done while 
waiting for the implementation of the biodome to reach a playable state. 

8.3 WHAT WE WOULD DO DIFFERENTLY NEXT TIME 

8.3.1 UNITY 
 Learning from the things that could have gone better, there were a number of things we would 
have changed or done differently if we were to go back in time and do this project again. With Unity, we 
would have spent more of our free time over D Term 2012 and the summer to research the many benefits 
and faults within the Unity API. Knowing how coroutines actually worked would have allowed us to 
avoid using them for sound capacity early on instead of requiring us to refactor the code to use threads. 
Early on, we would have stressed importance values with Unity lighting had we known of their existence 
and value. Additionally, the difference between streamed and memory-loaded audio files would have 
been useful. Even though you can select to load an audio file as memory-loaded, if it is any file-type other 
than a WAV, it is streamed in by Unity and therefore cannot be directly manipulated by the AudioClip 
class. 

 Knowing these different things about Unity might have even led us to use a different engine 
altogether. The idea of using UDK was floated around for a while, but our relative unfamiliarity with it 
was the decision not to use it. Another engine we inspected was HeroEngine, but for the same reason as 
UDK we decided to forgo using it. Despite our grievances with Unity, we would have still chosen to use 
the engine regardless. However, we would have taken the time to upgrade Unity from 3.5, which is the 
version we started the project with, to 4.0, which has a number of features. One such feature is the ability 
to bake normal maps into lightmaps, which was a reason we never used baked lights and was one of our 
biggest problems with Unity lighting. 

8.3.2 BLEND SHAPES 
 With the extra research we would have also tried to find an easier and better implementation for 
Blend Shapes. The number of steps in getting blend shapes to work were tiring and complicated when 



59 

there wasn’t any need for it to be. The first version of controlling blend shapes from Maya to Unity was 
the one we stuck with because it was the only implementation we found that we could work with. More 
research would have been spent finding alternative methods of moving vertices in Unity and getting the 
vertex movement data from Maya into a format that we could utilize easily. 

8.3.3 SCOPE 
 As one of our largest problems, we would take a closer look into the scope of our project from the 
start and effectively scope down much earlier on in the process. While our lofty goals drove us to deliver 
a final product that exceeded all of our expectations and the expectations of the public, we could have 
further increased our product quality with better scoping. We should have looked to get the minimum 
vital product completed first, and then expanded from there. That would have allowed us to create smaller 
system and then iterate on them, increasing our productivity and ensuring that we would have less unused 
assets in the end. 

  



60 

APPENDIX A: CONCEPT ART 

 

FIGURE 20: CONCEPT ART FOR THE MECHANICS OF LIFESPAN. 

 

FIGURE 21: CONCEPT ART FOR THE SCRAPPED CAVE AREA IN THE BIODOME. 



61 

 

FIGURE 22: FIRST CONCEPT FOR THE FIRST FLOOR OF THE FACILITY. 



62 

 

FIGURE 23: SECOND CONCEPT FOR THE FIRST FLOOR OF THE FACILITY. 



63 

 

FIGURE 24: CONCEPT FOR THE UPPER FLOORS OF THE FACILITY, WHICH INCLUDED AN ATRIUM AND MONORAIL. 



64 

 

FIGURE 25: EXPANDED CONCEPT ART OF THE ATRIUM IN THE FACILITY. 



65 

 

FIGURE 26: CONCEPT OF THE BIODOME’S WATERFALL. 



66 

 

FIGURE 27: VERY EARLY CONCEPT OF THE BIODOME’S LAYOUT. 

 

FIGURE 28: AN UPDATED CONCEPT ON THE LEVEL FLOW OF THE FACILITY. 



67 

 

FIGURE 29: CONCEPT OF THE DEVICE PEDESTAL/DISPLAY. 

 

 

FIGURE 30: CONCEPT OF THE STYLE OF THE FACILITY HALLWAYS. 



68 

 

FIGURE 31: JACQUES CONCEPT ART. 

 

FIGURE 32: ADDITIONAL JACQUES CONCEPT ART. 



69 

 

FIGURE 33: FACILITY BLAST DOOR CONCEPT ART. 

 

FIGURE 34: FACILITY EXECUTIVE DESK CONCEPT ART. 



70 

 

FIGURE 35: CONCEPT ART FOR A SCRAPPED FEMALE CHARACTER. 

 

FIGURE 36: CONCEPT ART FOR SCRAPPED ASSETS. 



71 

 

FIGURE 37: CONCEPT ART FOR SCRAPPED SCAN PAD ASSET. 



72 

 

FIGURE 38: CONCEPT ART FOR THE GUI. 



73 

 

FIGURE 39: CONCEPT ART FOR SCRAPPED VILLAIN. 



74 

 

FIGURE 40: LIFESPAN CONCEPT LOGO. 



75 

 

FIGURE 41: LIFESPAN CONCEPT LOGO. 



76 

 

FIGURE 42: LIFESPAN CONCEPT LOGO. 

 

 



77 

 

FIGURE 43: CONCEPT ART FOR THE DEVICE BACKPACK. 

 

FIGURE 44: LOCATION POWER TRAY ICON CONCEPTS. 

 

FIGURE 45: STATE POWER TRAY ICON CONCEPTS. 

 

 



78 

 

FIGURE 46: POWER TRAY ICON CONCEPTS. 

 

  



79 

APPENDIX B: PROMOTIONAL MATERIALS 

 

FIGURE 47: LIFESPAN PROMOTIONAL LOGO. 

 

FIGURE 48: WALLPUNCH STUDIOS PROMOTIONAL LOGO. 

 

 

FIGURE 49: PAX EAST LIFESPAN PROMOTIONAL BUTTONS. 

 



80 

APPENDIX C: LEVEL EDITOR DESIGN DOCUMENT 
 

Level Editor Design Document 

 

Developer 

Colin Ogren 

 

MQP Team 

Michael Grossfeld 

Nick Silvia 

Matt Tomson 

Mike Pelissari 

Will Stockinger 

 

Started May 25, 2012 

Version 2.0 

 

 

 

 

 

 

  



81 

Overview 

 The Level Editor is a set of custom components and Inspector modifications of the 
Unity Game Engine Editor designed to accelerate the creation of scenes in the Unity Editor. Its 
specific purpose is for developers of the Lifespan Major Qualifying Project, or MQP, team to 
build puzzles quickly for the computer game Lifespan. The interface of the Level Editor exists 
partially as a modification to the Inspector’s Transform component, and partially as a 
components that constrains the selected GameObjects. The controls on the interface call scripts 
written in C# (see-sharp) which call the Unity API to activate features in the Level Editor. Such 
features include snapping objects together, locking properties of objects, and importing from and 
exporting to prefabs. 

  



82 

Concepts 

Goals 

 The completion of the Level Editor is in partial fulfillment of the requirements for the 
Major Qualifying Project at Worcester Polytechnic Institute. In doing so, the Level Editor will 
enable developers to build three-dimensional sets easily and more quickly than in the base Unity 
Editor. Each set will save as a prefab. A prefab is a connected group of three dimensional 
models, images, sounds, scripts, and settings stored in one file. The Level Editor will also open 
such prefabs. 

 The Level Editor will integrate directly into the standard Unity Editor, utilizing the full 
extent of Unity’s scripting API. 

Assumptions 

 The main motivation behind the Level Editor’s creation is that the sets created with the 
Level Editor are intended primarily for a player character in a computer game to interact with. 
As such, the Level Editor will have to make sure to preserve any interactivity they would have 
with the player. 

Technical Requirements 

Hardware Constraints 

 As the Level Editor will run in Unity 3.5, the user’s computer must have the necessary 
hardware to support Unity. The Unity website specifies the requirements as follows: 

● Windows XP with Service Pack 2 or later, Mac OS X with an Intel CPU and Leopard 
10.5 or later. 

● A graphics card with 64MB of VRAM and pixel shaders or four texture units. Almost all 
modern graphics cards meet this criteria. 

● If using occlusion culling, the user also needs a GPU with Occlusion Query support 
(“System Requirements,” 2012). 

Constraints of Unity 

 As the Level Editor uses the Unity API to carry out the user’s actions, the limits imposed 
by Unity must be considered. Unity can parse scripts in three different languages, Javascript, 
Boo, and C# (“Scripting Overview,” 2012). As the MQP team has decided to use C# for the main 



83 

project, this language will also use C# in all scripts. The C# language also functions more closely 
to formal compiled programming languages than Javascript and is more familiar to the developer 
than Boo which makes it the most suitable candidate for satisfying the Computer Science 
requirement in the MQP. 

 Unity also contains an extensive API to write extensions to the Unity Editor’s 
functionality. Classes dealing with GUIs and assets will prove most critical to the 
implementation of the Level Editor. Full documentation of the Unity API can be found at 
http://unity3d.com/support/documentation/ScriptReference/index.html. 

Unity Integration 

Interface 

 The graphical user interface, or GUI, will draw to the Inspector and constraint component 
in the Unity Editor. Components will follow the Unity graphical style and color scheme. 

Backend 

 Controls on the interface will activate C# scripts which will in turn make calls to the 
Unity editor to achieve the necessary functionality. 

  

http://unity3d.com/support/documentation/ScriptReference/index.html
http://unity3d.com/support/documentation/ScriptReference/index.html
http://unity3d.com/support/documentation/ScriptReference/index.html


84 

Specifications 

Interface 

 
FIGURE 50: LEVEL EDITOR INTERFACE 

 

 The interface exists as a part of the Inspector. The data in the Level Editor reflects the 
currently selected object. The first section is the modified Transform component for 
GameObjects, but each value has a button next to it to toggle the lock on the value that allows 
the user from modifying the value. 

 The second section is a component that holds a scrollable list of constraints. The context 
menu allows users to add constraints, and when clicked over a constraint, the menu allows the 
user to remove it. Each constraint selects from a drop-down list. Depending on the constraint, the 
numeric input field can accept either a floating-point number or an integer. 



85 

 

 For Mating, the input accepts a floating point number as the offset. The GameObject field 
next to it accepts the GameObject that the currently selected GameObject is mated to. The 
context menu allows the user to clear the GameObject field. 

 For Groups, the input field only accepts integers as the number of GameObjects in the 
group. The number causes the collapsible list of GameObjects in the group to expand or contract 
as necessary. Note that decreasing the number removes GameObjects from the group starting at 
the bottom. That is why the context menu allows the user to remove GameObjects in the middle 
of the list, which automatically decreases the list length. Remove All completely removes the 
constraint. 

 

 

FIGURE 51: LEVEL EDITOR MENU 

 The File Menu contains an option to export the entire scene as a prefab. This option 
creates a prefab, but it does not place it in the scene. 

 
  



86 

Features 

GameObject Mating 

 When the user has a GameObject selected, he or she can then select one of three 
constraints: mate to x, mate to y, or mate to z. Dragging a second GameObject into the 
constraint’s GameObject field will attempt to move the first selected GameObject along the 
chosen axis to the second selected GameObject and mate them on one side with a user-specified 
offset. Dragging the GameObject will translate the GameObject freely in the other two 
dimensions but when dragging the object in the constrained dimension, the mated GameObject 
will follow it if possible. Note that mated objects cannot rotate. The exact algorithm is explained 
below in the Backend section. 

 The user can also orbit GameObject revolutions around other objects in the x, y, or z axis. 
The first selected GameObject acts as the revolving GameObject, and the second selected 
GameObject acts as the reference axis. This allows the first GameObject to revolve around the 
second GameObject instead of translating along the linear axes. Dragging the mouse to the left 
will revolve the object clockwise from the user’s perspective, and dragging the mouse right will 
revolve the object counterclockwise from the user’s perspective. The user can also specify the 
radius of the revolution. 

GameObject Grouping 

 Multiple GameObjects can be grouped together. These objects will translate and rotate as 
a prefab. To group objects, the user selects a GameObject, creates a group constraint and adds 
other GameObjects to the group from the Projects pane. The user can ungroup a group by 
removing GameObjects from the group constraint list via the context menu. The group will have 
its own Level Editor Component displaying the group constraint with its members along with the 
constraints on the group which are separate from the objects contained within the group. 

Position Locking 

 When the user has selected a GameObject, he or she can select to lock the position of a 
GameObject along the x, y, and/or z axis, or the user can lock the angle bearing of the 
GameObject around the x, y, and/or z axis. Dragging the object will move it in the remaining 
free dimensions but will not move the GameObject from its locked position. In an angle lock, the 
GameObject can only rotate around the free axes. In a scale lock, the GameObject can only scale 
in the free axes. 

Undo/Redo 

 A user can undo the creation and removal of constraints and value changes, including the 
assignment of GameObjects. The user can also redo these actions. 



87 

Export to Prefab 

 The Level Editor can save a scene to a prefab file. 

Backend 

GameObject Mating 

 Mating GameObjects requires both GameObjects to possess a transform component. The 
first GameObject that was selected before choosing the Mate option will attempt to move next to 
the second selected GameObject. If the first GameObject cannot move, the second GameObject 
will attempt to move next to the first GameObject. If this is not possible, the user will receive a 
notification and an error bell will sound. When mating GameObjects, the GameObjects will mate 
at the nearest point. 

 When translating mated GameObjects, the selected GameObject will move the second 
GameObject as it moves. 

 Creating revolutions flags the first GameObject with a reference to the GameObject 
containing the axis of revolution. The Level Editor detects an attempt to translate the 
GameObject and instead revolves it around the axis of revolution with the given radius, either 
clockwise or counterclockwise, depending on the direction of the mouse. 

 Constrained GameObjects will daisy-chain to maintain the constraints. The constraints 
form a network, so for each GameObject, the Level Editor component will use the constraints on 
the object to determine if the object can move in the necessary direction. The Level Editor will 
then check the GameObjects tied to the constraints, marking the constraint as checked. 

Object Grouping 

 Grouping GameObjects places them in a prefab and re-imports them into the scene, 
storing the prefab in a “Groups” folder. The Unity Editor takes care of all the translations and 
rotations. Ungrouping GameObjects removes the GameObjects from the prefab, destroys the 
prefab, and creates a new prefab with the remaining GameObjects. If no GameObjects are left to 
group with the selected GameObject, the constraint is deleted. Adding GameObjects to the group 
extracts the GameObjects in the group, deletes the old prefab and creates a new prefab with the 
new GameObject. 

Position Locking 

 Locked GameObjects are flagged as such and any attempts to change the flagged value is 
ignored in the scene pane or in the Level Editor inspector. 

 



88 

Specify Coordinates and Rotations 

 This feature simply modifies the GameObjects transform component to reflect the new 
value after checking for any flags on the values changed. 

Undo/Redo 

 The creation and removal of constraints are logged along with value changes and 
GameObject assignments. The user’s place in the log is marked. 

Export to Prefab 

 The components will all save into a prefab file. If a prefab file exists with the same name, 
it will ask the user if they want to replace it. The user can cancel the question and choose to 
rename the file or cancel the save. 

Coding Practices 

 All C# classes will have a commented description of the class’s function. All methods 
will have a commented description of the method’s function, including descriptions of 
parameters and return values. Properties will have a line comment indicating their purpose unless 
the purpose is self-evident. Also, complex algorithms will also have at least a line comment 
describing their function. 

 This project will not use paired programming, but it will use test-driven development. 
Tests will use NUNIT, a testing software written in C# for C#, using a setup similar to JUnit. 
Tests will aim to cover one-hundred percent of the code. 

Distribution and Installation 

 The scripts pertaining to running the Level Editor and Unity expansions will get bundled 
into a Unity Package, which users can import into their projects in order to use the Level Editor. 
Users will have to import the package for each project where they want to use the Level Editor. 
New versions of the Level Editor will all distribute in Unity Packages. Users will have to clear 
out the old scripts so the package can import the new files. 

Open Issues 

 The distribution method could take another route with a packaged installer. However, as 
the developer does not yet have this skill and this is not a priority, this option will come as an 
afterthought, if at all. 



89 

Legal 

 Scripts will be developed under an educational Unity license. As such, the Level Editor 
will be free of charge to anyone, but the MQP team owns all rights to all materials. In fulfillment 
of WPI’s MQP requirements, WPI retains a nonexclusive license to distribute the Level Editor 
scripts and all associated documentation, including this Design Document. 

Revisions to this Document 

 The current version of this document is 2.0 and was drafted on August 2, 2012. Only 
Colin Ogren is authorized to edit this document, but members of the Lifespan MQP team are 
encouraged to read this document and add comments on the side. Minor revisions will increment 
the digits after the decimal point, and major revisions will increment the digits before the 
decimal point. All revisions are listed below in descending order. 

 

Revision 2.0 August 2, 2012 

Revision 1.5 June 26, 2012 

Revision 1.4 June 19, 2012 

Revision 1.2 June 6, 2012 

Revision 1.1 June 4, 2012 

Revision 1.0 June 4, 2012 

  



90 

Glossary 

● Application Programming Interface (API) - A coding collection that provides an 
abstraction between the computer’s kernel and the source code (“Application,” 2012). 

● asset - A model, texture, audio, script, or other file external to the Unity Engine code that 
the Unity Engine links to (“3D platformer,” p. 9). 

● Component - Functionality that a user can add to a GameObject, such as lighting, scripts, 
sound, etc. (“3D Platformer,” p. 9). 

● Game Engine - A software development kit that provides base code and an API for 
common tasks performed in digital games (Ward, 2008). 

● GameObject - The basic building block in Unity. A GameObject contains a collection of 
components that give it functionality (“3D platformer,” p. 8). 

● Graphical User Interface (GUI) - An interface based on the manipulation of text and 
image-based controls (“Graphical,” 2012). 

● Graphics Processing Unit (GPU) - A processor that computes graphical images alongside 
the computer’s main processor (“Graphics,” 2012). 

● Inspector - A utility of Unity that exposes properties of GameObject components. 

● Major Qualifying Project (MQP) - Worcester Polytechnic Institute’s capstone project that 
allows students to demonstrate their knowledge in their major area of study (“Projects 
program,” 2009). 

● occlusion culling - The process that determines what parts are visible in an image 
rendering (“Occlusion culling algorithms,” 1999). 

● prefab - An asset that serves as a template for a GameObject (“3D platformer,” p. 9). 

● script - code that defines how GameObjects and their components interact (“3D 
platformer,” p. 6). 

● Unity Editor - An asset-centric application for developing computer games with the Unity 
Game Engine (“3D platform,” p. 8). 

● Unity Package - A compressed collection of assets for use in Unity projects. 

● Video RAM (VRAM) - Memory that is specially used for graphics cards (“VRAM,” 
2012). 

  



91 

Bibliography 

3D platformer tutorial. Retrieved 6/2, 2012, from 
http://download.unity3d.com/support/resources/files/3DPlatformTutorial.pdf 

Application program interface. (2012). Retrieved 6/2, 2012, from 
http://dictionary.reference.com/browse/Application+Program+Interface 

Extending the editor. (2010). Retrieved 6/2, 2012, from 
http://unity3d.com/support/documentation/Components/gui-ExtendingEditor.html 

Graphical user interface. (2012). Retrieved 6/2, 2012, from 
http://dictionary.reference.com/browse/graphical+user+interface 

Graphics processing unit (GPU). (2012). Retrieved 6/2, 2012, from 
http://www.nvidia.com/object/gpu.html 

Occlusion culling algorithms. (1999). Retrieved 6/2, 2012, from 
http://www.gamasutra.com/view/feature/3394/occlusion_culling_algorithms.php 

Projects program. (2009). Retrieved 6/2, 2012, from http://www.wpi.edu/Academics/Projects/ 

Scripting overview. (2012). Retrieved 6/2, 2012, from 
http://unity3d.com/support/documentation/ScriptReference/index.html 

System requirements. (2012). Retrieved 6/2, 2012, from http://unity3d.com/unity/system-
requirements 

Unity script reference - GameObject. Retrieved 6/2, 2012, from 
http://unity3d.com/support/documentation/ScriptReference/GameObject.html 

VRAM. (2012). Retrieved 6/3, 2012, from http://www.webopedia.com/TERM/V/VRAM.html 

Ward, J. (2008). What is a game engine? Retrieved 6/2, 2012, from 
http://www.gamecareerguide.com/features/529/what_is_a_game_.php 

 

 

 

http://download.unity3d.com/support/resources/files/3DPlatformTutorial.pdf
http://download.unity3d.com/support/resources/files/3DPlatformTutorial.pdf
http://download.unity3d.com/support/resources/files/3DPlatformTutorial.pdf
http://dictionary.reference.com/browse/Application+Program+Interface
http://dictionary.reference.com/browse/Application+Program+Interface
http://dictionary.reference.com/browse/Application+Program+Interface
http://unity3d.com/support/documentation/Components/gui-ExtendingEditor.html
http://unity3d.com/support/documentation/Components/gui-ExtendingEditor.html
http://unity3d.com/support/documentation/Components/gui-ExtendingEditor.html
http://dictionary.reference.com/browse/graphical+user+interface
http://dictionary.reference.com/browse/graphical+user+interface
http://dictionary.reference.com/browse/graphical+user+interface
http://www.nvidia.com/object/gpu.html
http://www.nvidia.com/object/gpu.html
http://www.nvidia.com/object/gpu.html
http://www.gamasutra.com/view/feature/3394/occlusion_culling_algorithms.php
http://www.gamasutra.com/view/feature/3394/occlusion_culling_algorithms.php
http://www.gamasutra.com/view/feature/3394/occlusion_culling_algorithms.php
http://www.wpi.edu/Academics/Projects/
http://www.wpi.edu/Academics/Projects/
http://unity3d.com/support/documentation/ScriptReference/index.html
http://unity3d.com/support/documentation/ScriptReference/index.html
http://unity3d.com/support/documentation/ScriptReference/index.html
http://unity3d.com/unity/system-requirements
http://unity3d.com/unity/system-requirements
http://unity3d.com/unity/system-requirements
http://unity3d.com/support/documentation/ScriptReference/GameObject.html
http://unity3d.com/support/documentation/ScriptReference/GameObject.html
http://unity3d.com/support/documentation/ScriptReference/GameObject.html
http://www.webopedia.com/TERM/V/VRAM.html
http://www.webopedia.com/TERM/V/VRAM.html
http://www.gamecareerguide.com/features/529/what_is_a_game_.php
http://www.gamecareerguide.com/features/529/what_is_a_game_.php
http://www.gamecareerguide.com/features/529/what_is_a_game_.php

	Abstract
	Acknowledgements
	Table of Contents
	Table of Figures
	Authorship
	1. Introduction
	2. Game Design
	2.1 Genesis
	2.2 Gameplay

	3. Tech
	3.1 Managers
	3.1.1 XML
	Scripts
	Sounds
	Environments

	3.1.2 SceneManager
	3.1.3 EnvironmentManager
	3.1.4 ScriptManager
	3.1.5 SoundManager
	Sound Effects
	Music
	Coroutines vs. Threads


	3.2 Control
	3.3 RigidbodyFPSWalker
	3.3.1 Walking and Running
	3.3.2 Jumping
	3.3.3 Head Bobbing
	3.3.4 Vine Climbing
	3.3.5 Tree Tossing

	3.4 GUI
	3.4.1 Reticle
	3.4.2 Power Icons
	3.4.3 Object Camera
	3.4.4 Menu

	3.5 Level Editor
	3.5.1 Development Cycle
	3.5.2 Design Requirements

	3.6 Challenges
	3.6.1 RigidbodyFPSWalker
	Hill Sliding
	Collisions on a Stationary Player
	Wall Debouncing

	3.6.2 Reticle
	3.6.3 Level Editor
	Requirements
	Implementation



	4. Art
	4.1 Direction
	4.2 Blend Shapes
	4.2.1 Procedure
	4.2.2 Trees
	4.2.3 Glass to Sand

	4.3 Modularity
	4.4 Character
	4.4.1 Design
	4.4.2 Model

	4.5 Environment
	4.5.1 Facility
	Test Rooms
	Office Rooms
	Lab Rooms
	Hallways

	4.5.2 Biodome
	Elevator
	River
	Observation Room
	Forest
	Jungle
	Plateau
	River Grate/Maintenance Room
	Biodome Door


	4.6 GUI
	4.6.1 Design
	4.6.2 Power Tray Icons
	4.6.3 Object Camera
	4.6.4 Reticle
	4.6.5 Console Messages

	4.7 Challenges
	4.7.1 Blend Shapes
	4.7.2 GUI
	4.7.3 Transparent Models
	4.7.4 Concave Models
	4.7.5 Lighting
	4.7.6 Grid/Snapping


	5. Sound
	5.1 Direction
	5.2 Effects
	5.3 Music
	5.3.1 Composition
	Facility
	Biodome

	5.3.2 Design

	5.4 Challenges
	5.4.1 Sound Effects
	5.4.2 Music


	6. Project Management
	6.1 Scope
	6.2 Planning
	6.3 Challenges
	6.3.1 Early Time Management
	6.3.2 Priority Lists
	6.3.3 Timesheets
	6.3.4 Communication
	6.3.5 Scope


	7. Playtesting
	7.1 Procedure
	7.2 Facility
	7.3 Biodome
	7.4 Powers
	7.5 Results

	8. Post-Mortem
	8.1 What Went Well
	8.1.1 Team Dynamics
	8.1.2 Unity
	8.1.3 Planning
	8.1.4 Playtesting
	8.1.5 Scope

	8.2 What Could Have Gone Better
	8.2.1 Unity
	8.2.2 Unused Assets
	8.2.3 Art Integration
	8.2.4 Playtesting

	8.3 What We Would Do Differently Next Time
	8.3.1 Unity
	8.3.2 Blend Shapes
	8.3.3 Scope


	Appendix A: Concept Art
	Appendix B: Promotional Materials
	Appendix C: Level Editor Design Document

