
P a g e | 1

Application of Data Analytics to Cyber Forensic Data

A Major Qualifying Project Report

submitted to the Faculty

of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the
Degree of Bachelor of Science

By

Yao Yuan Chow

Date: October 13, 2016

Approved:

Professor: George T. Heineman, Computer Science Advisor

Professor: Randy C. Paffenroth, Mathematical Sciences Advisor

Sponsored by:

MITRE Corporation

P a g e | 2

Table of Contents
Table of Figures..4

Table of Tables...5

Abstract ...6

Acknowledgements..7

Executive Summary..8

1 Introduction ... 12

2 Background .. 15

2.1 Tactical Cyber Threat Intelligence ... 15

2.2 Cyber Intelligence Lifecycle... 16

2.3 Cyber Threat Environment ... 17

2.4 Advanced Persistent Threats .. 21

3 The Problem ... 24

4 Mathematics behind TDA.. 27

4.1 Topological Spaces ... 28

4.2 Simplicial Complexes.. 31

4.3 Simplicial Homology and Betti Numbers .. 32

4.4 Persistent Homology .. 35

5. Overview of TDA... 38

5.1 Topological Invariants .. 39

5.2 Mapper ... 40

5.2.1 Python Mapper .. 42

5.2.2 Metrics .. 42

5.2.3 Filter Functions... 44

5.2.4 Interpretation of Visualizations ... 46

5.3 Ayasdi ... 47

5.4 Applications of Topological Data Analysis .. 47

5.4.1 Mapper on 3-D Shapes.. 47

5.4.2 Real-life Applications .. 50

5.5 Cyber Data and Analytics .. 54

5.5.1 BRAWL Data ... 54

5.5.2 Cyber Analytics and Analytics Repository ... 55

5.5.3 Applying Mapper to Cyber Data... 56

P a g e | 3

6 Methodology .. 56

6.1 System Design ... 57

6.1.1 Data Extraction Layer .. 57

6.1.2 Topological Data Analysis Layer ... 58

6.2 ElasticSearch ... 59

6.2.1 Foundation of ElasticSearch: Lucene .. 59

6.2.2 Key Concepts of ElasticSearch ... 60

6.3 Data Scientist’s Workflow... 61

6.4 Case Studies with Data ... 63

6.4.1 Continuous vs. Categorical .. 63

6.4.2 L-Infinity vs. L-1 Filters .. 64

6.4.3 Experimenting with Resolution .. 64

6.4.4 Applying Mapper to WBCD Data .. 64

6.5 Evaluation of Visualizations .. 65

7 Results ... 68

7.1 Minimizing Missing Data .. 68

7.2 Applying Mapper to WDBC Data ... 69

7.3 Visualizations on Cyber Data... 71

7.3.1 Continuous vs. Categorical .. 72

7.3.2 L-Infinity vs. L-1 Filter Functions .. 77

7.3.3 Results for Modifying Parameters .. 77

8 Conclusions and Future Work.. 82

8.1 Finding 1: Fields Besides Data Model Can Be Removed .. 82

8.2 Finding 2: Similar Structures in Categorical vs. Continuous Comparisons 82

8.3 Finding 3: Loops in the Visualizations were not Indicators of Attack 83

8.4 Finding 4: Data Requires More Malicious Points .. 83

8.5 Future Work .. 84

9 List of References.. 85

Appendices .. 88

Appendix 1 – Install Python Mapper Guide ... 88

Appendix 2 – User Guide for TDA System ... 92

Appendix 3 – ATT&CK Model ... 98

P a g e | 4

Table of Figures
Figure 1: Industries Compromised by APT1 [Fireeye, 2013] .. 22

Figure 2: Graph G Illustrating Chain groups [Wildberger, 2012] ... 33

Figure 3: Sequence of homomorphisms [Dey, 2013] ... 33

Figure 4: Illustration of Persistent Homology [Dey, 2013] .. 36

Figure 5: Illustration of Filter Function Representing Input Data [Kim, 2015] .. 45

Figure 6: Another Example of Filter Functions [Bayless, 2015] ... 45

Figure 7: TDA Pipeline [Lum, 2013, Figure 1]... 48

Figure 8: Topological Summary of Noisy Circle [Kraft, 2016, Figure 4.7].. 49

Figure 9: Summary for torus using first SVD (Top) and Summary for torus using second SVD (bottom) .. 50

Figure 10: PAD Analysis of NKI data [Nicolau, 2011] .. 52

Figure 11: Initial Colorings of Topological Summaries [Kraft, 2016] .. 53

Figure 12: Topological Summaries colored by LoyalCH (left), PriceDiff (center), StoreID5 (right). [Kraft,

2016] ... 53

Figure 13: Default Coloring (Left), Coloring by Diagnosis (Right) .. 70

Figure 14: Coloring by Mean Texture (A), Coloring by Worst Area (B), and Coloring by Worst Smoothness

(C) ... 70

Figure 15: Validation Set; Default Coloring (Left), Coloring by Diagnosis (Right) 71

Figure 16: Default Coloring (Top) and Coloring by Analytic 1 (Bottom) ... 72

Figure 17: Coloring by Analytic 2 (Top) and Analytic 3 (Bottom) ... 73

Figure 18: Coloring by Default (Top), Analytic 2 (Middle), and Analytic 3 (Bottom)................................ 74

Figure 19: Coloring by Default (Top), Analytic 1 (Middle), and Analytic 3 (Bottom)................................ 75

Figure 20: Coloring by Default (Top), Analytic 1 (Middle), and Analytic 2 (Bottom)................................ 76

Figure 21: Visualization using L1-Eccentricity Filter ... 77

Figure 22: Visualization from Section 4.4.. 78

Figure 23: Intervals: 30 and Overlap: 40% .. 78

Figure 24: Intervals: 10, Overlap: 40% .. 79

Figure 25: Intervals: 18, Overlap: 80% .. 79

Figure 26: Intervals 18, Overlap: 20.. 80

Figure 27: Intervals: 30, Overlap:10% ... 80

Figure 28: Mapper Parameter Configurations, Mapper Param 1(Top) and Mapper Param 2 (Bottom).... 97

P a g e | 5

Table of Tables
Table 1: Distance functions ... 44

Table 2: Available Filter Functions.. 46

Table 3: Analytic Summaries.. 55

Table 4 Missing Data Amounts and Percentages ... 68

Table 5: Missing Data Means and Std. Dev. .. 69

P a g e | 6

Abstract
 The goal of this project is to develop indicators of a cyber-attack by applying a new data

analysis technique known as Topological Data Analysis on synthetic cyber data. In particular,

the research and work completed throughout this paper centers around an open-source

implementation, called Python Mapper, that helps users globally view forensic data and gain

qualitative insights from the shape of the data. To assist in these efforts, we developed tools to

directly import data into Mapper from existing data sources. Due to the exploratory nature of the

project and the method, the outcome of the work completed was not developing new cyber

analytics of malicious activity but creating a stopping point in the research where future

collaborators can build off of our work.

P a g e | 7

Acknowledgements
 Without the assistance of various individuals, this Major Qualifying Project would not

have been possible. The amount of support and available resources I received throughout the

project was invaluable. I would like to thank Dr. Alan Evans, my MITRE mentor, for his

guidance throughout the project, his experience in data analysis, and knowledge of algebraic

geometry. His assistance helped me meet necessary points of contact for the forensic data as well

as guided me in the process of creating meaningful data visualizations. Also at the MITRE

Corporation, I would like to thank Phillip Mothon who was the Project Lead responsible for

ensuring that my time at MITRE was as productive and enriching as possible. I would also like

to acknowledge Craig Wampler, Michael Kemmerer, and Ross Wolf for their involvement in

accessing and pulling the cyber data and answering questions about BRAWL. Concerning the

graphical user interface for the tool, I want to thank Shawn Chin for providing his feedback on

the UI design. Last but not least, I would like to acknowledge Dr. Stanley Barr and Reid Gilman

for their input on conditioning the data. I greatly appreciate their willingness to take time away

from their projects to help me.

 Throughout the mathematical component of this project, Professor Padraig Cathain’s

assistance was much appreciated. He answered any questions I had involving group theory and

homology.

 Finally, I would like to thank my project advisers for directing my efforts and keeping me

on track. Professor George Heineman offered many suggestions regarding software design and

customization of the tool. His help in reviewing this report and organizing the structure of the

paper were also appreciated. In terms of data science, I would like to thank Professor Randy

Paffenroth because his expertise in the field guided the efforts in the mathematical component of

the project.

P a g e | 8

Executive Summary
In this age of technological advances in computing and anonymous access to

overwhelming amounts of information, cyber threats are prevalent on a national scale. In 2010,

cyber security experts witnessed the first modern cyber warfare weapon called Stuxnet, a

sophisticated cyber weapon that targeted a uranium enrichment plant in Natanz, Iran. With the

upcoming release of the motion picture The Interview in 2015, there was a data breach within

Sony Pictures that led to the release of employee confidential information and files for a number

of Sony movies onto the Internet. There have been other cyber incidences such as the Office of

Personnel Management (OPM) data breach and the cyber-attacks on Twitter and Netflix. With

advanced persistent threats, malware, and phishing plaguing cyberspace, there is no all-

encompassing method to discern normal users from malicious actors. However, utilizing data

analytics is an attempt to generalize such behaviors of suspicious activity in order to promote

informed and efficient decision-making, otherwise known as cyber threat intelligence.

Residing within the realm of Big Data, cyber data or event log data can be complex and

highly dimensional consisting of host names, ID numbers, command-line commands, and

various other fields. This complexity and high-dimensionality introduces many problems in

addition to traditional roadblocks with large datasets. Topological Data Analysis (TDA) gives

rise to methods that extract and highlight topological features in order to summarize the data.

The idea is that data possesses shape that may convey meaningful information. With its origins

from combinatorics, discrete geometry, linear algebra, and topology, TDA methods use three

invariants studied in topology to capture the shape of the data [Chintakunta, 2016]. First

introduced by Gurjeet Singh, Gunnar Carlsson, and Facundo Memoli, the Mapper algorithm is a

method for Topological Data Analysis, emphasizing the goal of giving shape to data and

interpreting this shape [Singh, 2007]. This method looks to build a compressed representation of

P a g e | 9

data to highlight the significant features. The Mapper algorithm achieves this result by using

topological ideas that preserve closeness or similarities but alter distances of large magnitude.

The Python Mapper is an implementation of the Mapper algorithm written with a graphical user

interface that enables beginners to quickly acquaint themselves with its many features such as

filter selection and node coloring options.

The cyber data discussed throughout this paper is a product of the BRAWL project;

BRAWL is an abbreviation for Blue versus Red Agent War-game Evaluation. As the name

implies, there are two competitors in the cyber game; the red team agents simulate cyber

intrusions while blue team agents have the task of detecting this malicious activity and

developing analytics for that behavior. These games occur on a hyper-sensing network that

generates data and records logs of network activity in real-time. After each BRAWL cyber game,

the output is a multitude of indicators that highlight malicious behavior or by-products of red

team activity. These indicators are stored in the Cyber Analytic Repository (CAR) for further

study and testing, no matter how trivial or groundbreaking. The overall goal of applying the

Mapper to this data was to gain qualitative understanding of the data from a different

perspective.

Methodology

 The primary goal of this project is the design and implementation of a system that

combined the capabilities of the Python Mapper with the ability to pull data directly from a cloud

repository for forensic data. Once completed, carrying out case studies on the cyber data, testing

different filters and observing the outcomes formed the general procedure in evaluating the

software system. The final step, afterwards, was to explore the visualizations based on criteria

tailored to this project.

P a g e | 10

Results and Conclusions

 This work has been largely exploratory so far and the visualizations included in this

report need careful study (based on TDA) to understand the results. There are four primary

findings resulting from research and experimenting with the case studies.

1. The dimensionality of the data can be reduced by removing all fields except the Data Model

fields. Doing so does not result in the loss of information.

2. Loops in the visualizations of each case study confirm some cyclic behavior prevalent in the

cyber data.

3. Often, there were too many noisy or non-malicious data points to conclude whether or not

these loop features indicated malicious behavior.

4. Further study of the TDA approach using the cyber data requires instances of malicious

behavior in the data set.

Future work should build upon these findings to progress towards developing cyber

analytics for cyber threat intelligence. One direction for further study would be to incorporate

machine learning into the Mapper workflow. In terms of filtering, a model trained using a

machine-learning algorithm and labeled cyber data can act as a filter function for assigning

numerical scores to each data point based on likelihood of malicious intent. Of course, data

preparation should entail labeling each data point on whether or not it was a blue team or red

team member. Once new indicators of attack have been created from analysis, a new model

trained using these indicators would act as part of a cyber detection system. Another idea for

future work is developing a better data transformation that would highlight the purpose of each

data point and its impact on the network; the user should be able to each data point in relation to

type and obtain a quick overview of network activity. Although transforming the data into

P a g e | 11

continuous vectors using available cyber analytics, this transformation was only one way of

incorporating meaning into each data point

P a g e | 12

1 Introduction
In this age of technological advances in computing and anonymous access to

overwhelming amounts of information, cyber threats are prevalent on a national scale. In 2010,

cyber security experts witnessed the first modern cyber warfare weapon called Stuxnet, a

sophisticated cyber weapon that targeted a uranium enrichment plant in Natanz, Iran. Its mission

was to search for specific software that monitored and controlled the programmable logic

controllers of the nuclear centrifuges, intercept communication, and sabotage the centrifuges

[Langner, 2011]. This program was the first of its kind to physically damage hardware while

remaining undetected. In 2015, with the upcoming release of the motion picture The Interview,

there was a cyber-attack on Sony Pictures that led to the release of employee confidential

information and files for a number of Sony movies onto the Internet. After several days and

various warnings/threats from a cyber terrorist group, the attacks took advantage of file-sharing

hubs to distribute Sony files, film contracts, personal information on celebrities, and employee

health records [Haggard, 2015]. There have been other incidents in which adversaries have

stolen data without detection; these adversaries, however, hide within the network for long

periods of time and steal much larger volumes of data. These attacks showcase the need to

strengthen defenses against cyber threats.

The European Union Agency of Network and Information Security (ENISA), a center of

network and information security expertise, released a report titled ENISA Threat Landscape

2015 to summarize the trends and prominence of current cyber threats. In ascending order, the

top ten cyber threats of 2015 were malware, web-based attacks, web application attacks, botnets,

denial of service, physical damage/theft, insider threat, phishing, spam, and exploit kits. As noted

in the report, major actors for these threats consisted of cyber criminals and terrorists, insiders,

online social hackers, nations/states, corporations, and hacktivists [Marinos, 2016]. Trends for

P a g e | 13

the top three threats were increasing in 2015. Aside from this report, other

companies/corporations specializing in cyber security also released similar annual summaries

that describe their findings of these attacks and provide a brief list of mitigation techniques for

each one.

The purpose of data analytics is to gain insight from information represented in the form

of records, graphs, or text by observing and extracting important features. For example, a U.S

retailer used analytic methods to observe consumer-purchasing behavior. Through this process,

the retailer learned that among the major life events, the most profitable to its bottom line was

pregnancy. Therefore, the retailer offered specific coupons and incentives for its pregnant

shoppers, keeping in mind that some items would be in higher demand depending upon the

individuals [Dietrich, 2015]. Most companies and corporations rely on data analytics to compete

with each other. In addition to major contributions in industry and medicine, the application of

data analytics can benefit many other facets of science and engineering, including cyber security.

With attacks such as intrusion, advanced persistent threats, malware, and phishing plaguing

cyberspace, there is no clear method to discern normal users from malicious actors. However,

these attacks follow certain procedures that can be categorized. Utilizing data analytics is an

attempt to generalize such behaviors of suspicious activity in order to promote informed and

efficient decision-making, otherwise known as cyber threat intelligence.

 In many papers pertaining to Topological Data Analysis (TDA), one of the common

motivating factors for pursuing this method of analysis has been the increasing size and

complexity of data. Improvements and optimizations in modern computing have allowed for the

collection of massive amounts of data and its storage; such data could possibly reside in high (or

infinite) dimensional spaces. Some examples include medical information from patients, gene

P a g e | 14

expressions from DNA, preferences/keywords from a search engine, and even data collected

from a computer network. Additionally, several industries have taken the lead to exploit the data.

Credit card companies collect transaction information to identify fraudulent purchases, and social

media sites have become major data sources for both industry and academia [Dietrich, 2015].

The terminology used to describe data of this magnitude is unsurprisingly “Big Data”.

Traditionally, analysts interpret data visually by charting or graphing data in two or even three

dimensions to find trends or patterns; the shape of the data is significant to observe during data

analysis. The problem that topological data analysis strives to solve is to provide generalizations

and conclusions based on the shape of the data.

 This paper begins with an overview of cyber threat intelligence and existing cyber

threats. Next, the Problem chapter presents the obstacles in developing predictive analytics for

cyber intrusions, while also posing Topological Data Analysis (TDA) as a possible solution to

these challenges. Mathematics behind TDA and Overview of TDA chapters focus on introducing

TDA, the Mapper method, and the mathematical concepts that support them. Additionally, a

section in the Overview of TDA chapter also described the provided cyber data for analysis.

Finally, the Methodology chapter outlines developing an application for automating an open-

source implementation of Mapper and applying the Mapper method to the cyber data. Results

after applying Mapper can be found in the Results chapter.

P a g e | 15

2 Background
2.1 Tactical Cyber Threat Intelligence

 The goal of cyber threat intelligence is to understand existing cyber threats, to share

information with the responsible parties, and to enable organizations in proactively defending

against future attacks. There exist three levels of cyber intelligence including Strategic,

Operational, and Tactical Cyber Intelligence. Since the research and effort of this paper pertains

to developing indicators of adversarial behavior, this paper focuses on cyber threat intelligence at

the tactical level. Tactical Cyber Intelligence (TCI) has the purpose of monitoring network

activity, examining and assessing the strengths and vulnerabilities of an organization’s network

defenses, and ascertaining patterns and techniques employed by adversaries. At this level, cyber

threat intelligence positions the organization to progress towards a proactive cyber security

posture that is both reactive and predictive in nature [INSA, 2015]. To reach this point, TCI

provides context and relevance to terabytes of data and transform the data into actionable

intelligence. Action intelligence, to be precise, “refers to information that has been integrated,

processed, and analyzed from various sources so that customers can use it to meet their threat

information needs” [INSA, 2015]. In doing so allows an organization to mitigate its enterprise

risk, to gather threat information following a cyber intrusion in the form of indicators of

compromise (IOC), and to better equip its cyber defenses against all adversaries.

To defend against the increase in cyber-attacks and threats, several governments and private

companies have developed cyber threat intelligence centers and updated cyber security measures.

Each center is responsible for the research and mitigation of cyber threats, and the sharing of

intelligence and collaboration between government-specific organizations [Dalziel, 2015]. A few

examples of government-led cyber threat intelligence centers include the Cyber Threat

Intelligence Integration Center (CTIIC) for the U.S., Australian Cyber Security Centre (ACSC),

P a g e | 16

and the European Union Agency for Network and Information Security (ENISA). Other

organizations involved in cyber threat intelligence collection and haring include the National

Security Agency, the Department of Defense Cyber Crime Center, the NSA/CSS Threat

Operations Center and a wide array of other agencies. In keeping with the theme of cyber threat

intelligence at the tactical level, the Cyber Intelligence Lifecycle section introduces the general

process of developing actionable intelligence from the collection and analysis of raw data.

Moving onto existing cyber threats, the next section introduces the cyber threat environment, a

classification of the different, recorded cyber threats. Finally, to complete the discussion on

cyber threat intelligence, the focus changes to Advanced Persistent Threats, a fast-growing cyber

security concern.

2.2 Cyber Intelligence Lifecycle
The Cyber Intelligence Lifecycle outlines the necessary steps for the collection and

collaboration of cyber threat intelligence. As a component of TCI, there are seven steps in the

lifecycle that include specifying requirements, collection, process and exploitation, analysis and

production, dissemination, consumption, and feedback [INSA, 2015]. The first step in the life

cycle is identifying the information and data to collect based on designated requirements and

formulate a plan to acquire this information. For instance, an organization seeks to ensure that its

supply chain is secure, so its cyber intelligence team must gather information about its suppliers

such as history of transactions or past cyber threat incidences. In collection, this step entails

selecting relevant sources for information retrieval such as news feeds, whitepapers, technical

reports, or cyber threat intelligence sharing venues; in the supply chain example, a possible data

source could be customer reviews or consumer ratings. Next, the processing and exploitation

stage suggests extracting insights and trends from the data to create a broader intelligence

product for cyber threat intelligence and decision-making. Doing so requires “an analytic process

P a g e | 17

that is repeatable, easy to implement, and produce valuable information” [INSA, 2015]. The next

step in the cyber intelligence lifecycle involves packaging and delivering any actionable

intelligence or assessments produced in the previous stage to sponsors, management, or other

relevant parties during analysis and production step. Examples of cyber intelligence products

could include newly discovered vulnerabilities, cyber threat indicators, or general technical

insights. During the dissemination step, the recipients of the information have analysts and senior

executives review the actionable intelligence; understanding the findings from the analysis step

would be essential for determining what actions to be taken afterwards. If the sponsor receiving

this intelligence discovers that one of its suppliers does promote a good security posture, the

sponsor may halt all transactions with this supplier. Consumption of information involves

assessing how it affects the business and mission objects. Finally, the feedback phase of this

lifecycle is very important for determining if the intelligence products met the customer’s

needs/requirements and allowing cyber intelligence operators to improve methodologies for

future intelligence collection.

2.3 Cyber Threat Environment

 Before describing the taxonomy of cyber threats, consider all the terms used to discuss

cyber threats such as cyber adversaries, cyber-attacks, disruptions, and cyber security incidents.

Formally, a cyber adversary is an individual or organization that carries out cyber-attacks, cyber-

crime, or cyber espionage. Examples of cyber adversaries can vary from foreign state-sponsored

adversaries, organized criminals, or issue-motivated groups seeking attention to their causes.

Cyber-attacks, building off of cyber adversaries, are “deliberate acts through cyber space to

manipulate, destruct, deny, degrade, or destroy computers or networks in order to compromise

national security, stability or prosperity” [ACSC, 2016]. The Stuxnet program and the incidents

with the film The Interview would be examples of cyber-attacks; although cyber-attacks can be

P a g e | 18

impactful and damaging economically, cyber adversaries also conduct malicious activity that act

as simply nuisances, hindering a system or organization but with minimal damage. Such activity,

known as disruption of services or networks, includes denial of service, web defacement, and

electronic graffiti. Hacktivists and issue-motivated groups utilize these methods to attract

attention to themselves and their cause by disrupting social events, business dealings, and

government activities; these adversaries usually take advantage of the vulnerabilities or poor

security within a system in order to carry out their aims. Staying with this idea of compromises

to a security system, a cyber security incident is “any activity that may threaten the security of a

system or its information whereas a compromise is an incident where a system or its information

was successfully harmed”; an example would be the extraction of information from a computer

network [ACSC, 2016]. After understanding these terms, the next topic to discuss would be the

taxonomy of cyber threats executed by these cyber adversaries.

 At the top of the threat taxonomy, according to an ENISA threat report for 2015, the first

cyber threat to discuss is malicious software or malware. Malware provides unauthorized access

to a system, allowing adversaries to harm or disrupt the system depending on their goals [ACSC,

2016]. The results are usually heavy costs and damages, affecting a single user in the best case or

an entire country in the worst case. Cyber threats involving malware have been the most

predominant cyber threat for the past two years according to both ACSC and ENISA. There is a

program based in Australia called the Australian Internet Security Initiative (AISI) that provides

daily notifications to its participants that alert them of IP addresses on their networks that are

potentially vulnerable to or infected by malware [ACSC, 2016]. Between October 2014 and

January 2015, the program has reported over 15,000 malware compromises daily to Australian

Internet Service Providers. Aside from Australia, other malware incidents occur around the

P a g e | 19

world. The top five countries where malware has infected IT resources include Bangladesh,

Vietnam, Pakistan, Mongolia, and Georgia whereas the United States, Russia, the Netherlands,

Germany, and France are the top five countries hosting online malware resources [Marinos,

2016]. Although malware has become a major cyber threat, the amount of malware appearing

around the world is still increasing. According the ENISA 2015 Threat Report, malware

continues to “increase by approximately one million samples every day and, by the publication

of this report, this overall amount of malware would reach the 2 billion threshold”. Techniques

for infecting through malware are only becoming more sophisticated; the use of malware is even

migrating to mobile devices such as Android and iOS. One such delivery mechanism is through

web-based attacks.

 Web based attacks utilize the web as a medium to first detect exploits and then install its

payload. Some examples of web-based attacks range from malicious URLs or compromised

webpages to browser exploits. Malicious URLs refer to URLs that have been compromised,

allowing cyber adversaries to leave malware on the site or redirect end-users to download

malware onto their devices. This tactic in combination with social media and phishing tactics has

become an alternative to sending malicious programs by e-mail. In fact, Kaspersky Lab’s web

antivirus identified malicious URLs as the most active malicious object involved in online

attacks, composing 37% of all attacks [Marinos, 2016]. A compromised webpage attack, also

known as watering-hole attacks, is baited traps that target frequent visitors of the webpage. In

2014, the Computer Emergency Response Team in Australia handled 8,100 cases involving

compromised websites [ACSC, 2016]. Although there are many other cyber threats in cyber

space, the final types of cyber threats that this paper will focus upon involve an adversary

gaining access to confidential information.

P a g e | 20

 Continuing with the cyber threat taxonomy, cyber intrusions, cyber espionage, and data

breaches all consist of similar end goals involving intelligence collection. However, there are

slight distinctions between the terms. A cyber intrusion is an unauthorized access to a computer

or system, leading to installation of malware, physical damage, or a data breach. Data

breaches/data losses, a result of cyber intrusions, is the compromise of significant information

such as trade secrets, business dealings, intellectual property, or any other data under the

protection of an organization. Identity information, financial credentials, confidential data or

intellectual property, and user credentials compose 90% of the types of stolen information; the

loss of said information mainly affecting government, health, and technology sectors [Marinos,

2016]. The U.S. Office of Personal management data breach provides a fitting example of how

cyber threat actors affected government; in this incident, cyber adversaries gained access to the

personal information of several personnel applying for security clearances. Cyber espionage

entails collecting information/data from a victim’s computer network; however, the distinction

from data breaches and cyber intrusions is that cyber espionage can be state-sponsored or

motivated by industrial competition. There exists a broad range of other threat actors that may

carry out cyber intrusions and data breaches such as lone cyber criminals, criminal organizations,

and hacktivism groups. In contrast, state-sponsored threat agents have composed 87% of the

cyber espionage incidents according the ENISA 2015 Threat Report. Some reported cases

include the Sony and TV5Monde attacks, and the Bundestag hack. For most of these incidents,

especially in the case of the Sony attack, adversaries were able to maintain a stable presence

within the victim’s system for a period of time and remain undetected while stealing confidential

data. This pattern is characteristic of a growing security concern often referred to as an Advanced

Persistent Threat.

P a g e | 21

2.4 Advanced Persistent Threats

 Advanced Persistent Threats (APTs) are a growing security concern for many agencies/

organizations; they are sophisticated, multistage cyber-attacks with the goal of stealing

confidential information. In general, threat actors typically target government or military

agencies as well as businesses. As a result of the intended targets and the level of sophistication

supporting the attacks, many cyber security researchers attribute them to nation-states.

Regardless of adversary, the sophistication of the attack lies in an APT’s attack stages in its

lifecycle. These stages include choosing a victim, reconnaissance, delivery, exploitation,

operation, data collection and exfiltration [Bere, 2015]. The first and second stages involve

selecting a target and searching for an entry point into a system (usually an unsuspecting

employee). Delivery is the stage in the attack where an APT can utilize several methods of

penetration to gain access into the system; examples of methods include spear-phishing e-mails,

memory-based attacks, and web-based click jacking. After entering the target’s network,

exploitation is the stage where an APT executes its payload, exploiting vulnerabilities identified

in reconnaissance and establishing a secure connection with the system. Once established, an

APT reaches the operation stage where it can persistently remain within the system possibly over

a long period of time. The threat searches for sensitive information, traversing through the

system and collecting data along the way during this stage. Finally, in the data exfiltration stage,

an APT gathers the acquired data, encrypts it, and sends the packaged data over an encrypted

channel to multiple servers controlled by the adversary [Bere, 2015]. An APT can repeat any part

of the lifecycle over again and can reside within the system undetected, leaving the victim

system at its mercy. There are two real-life APTs known as APT1 and APT29 that illustrate how

effectiveness of an APT in cyber espionage.

P a g e | 22

Figure 1: Industries Compromised by APT1 [Fireeye, 2013]

 The first APT to discuss, codenamed APT1, has been one of the most persistent of

China’s cyber threat actors, carrying out an extensive cyber espionage campaign possibly with

government-support. Officials at Mandiant, a FireEye company that helps organizations bolster

their cyber defenses or detect cyber intrusions, wrote an intelligence report outlining the details

of APT1. Although known for its long-running campaign, according to Mandiant officials, APT1

was a single organization of operators whose engagement in cyber espionage also led to the

acquisition of large volumes of information. Since 2006, Mandiant has observed APT1

compromise “141 companies spanning 20 major industries; of these victims, 87% of them were

headquartered in countries where English is the native language” [Fireeye, 2013]. Observing the

industries targeted by APT1, the five highly-valued targets included information technology,

aerospace, public administration, satellite and telecommunications, and scientific research and

P a g e | 23

consulting. The choice in targets was not the distinguishing aspect of APT1, but the amount of

time APT1 had access to those systems. Generally, APT1 maintained its connection with the

victim’s network for an average of 356 days, whereas the longest time APT1 maintained access

was four years and ten months [Fireeye, 2013]. Once APT1 infiltrated a network, the idea was to

periodically revisit the victim’s system over a period of weeks or years to avoid attracting

attention when stealing confidential data; this stolen intellectual property ranged from blueprints

and source code to business plans and contact information. Mandiant officials have observed

APT1 stealing “6.5 terabytes of information from a single organization over a time period of ten

months” [Fireeye, 2013]. Given that APT1 was able to steal this volume of data from a single

organization and APT1 has compromised at least 141 companies, there is a likely possibility that

this threat group has stolen hundreds of terabytes of information.

 The next group is known in cyber threat literature as APT29, a Russian Cyber Threat

group. Detected in early 2015, stealthy malware titled HAMMERTOSS was responsible for

relaying commands and extracting data from compromised networks for APT29, using cloud

storage services and Twitter as places to hide and store the data. This tool had the ability to

retrieve commands via Twitter and GitHub, to automatically visit different Twitter handles on a

daily basis, to communicate within specific time periods, to obtain commands via images

containing encrypted data. This tool could also extract information and upload the data to a cloud

[Fireeye, 2015]. To summarize the procedure, there were five stages of operation beginning from

finding a Twitter handle to uploading stolen data. Using an algorithm, HAMMERTOSS

generates and searches for a Twitter handle; an example handle for the day could be

“123Bob123”. If the handle is registered, the malware visits the Twitter page with that handle;

otherwise, it waits another day and checks a different Twitter handle. The next stage involves

P a g e | 24

searching for a tweet with a URL and hashtag on the Twitter page that could possibly represent a

location and file size. After this stage, the malware follows the URL to an image. This image

uses steganography, the art of concealing a message in an image or document, to hide encrypted

data. In the final stage, HAMMERTOSS decrypts the instructions from the image and executes

them. Since the malware abilities range from reconnaissance to the transfer of data to a cloud

storage service, these instructions may include any combination of the capabilities described

previously [Fireeye, 2015]. APT29 was a capable cyber threat group and its effective tool only

illustrates their ability to carry out cyber espionage campaigns while covering up any evidence of

their presence.

3 The Problem
With the ever-present threat of adversaries compromising a U.S. government cyber

system or network, there exist many countermeasures and means of protection such as firewalls,

anti-virus software, and intrusion detection systems. However, such methods rely upon various

indicators to assist in distinguishing malware and intrusions from normal user activity. To use an

analogy, security personnel at a research facility can only allow trusted personnel to enter the

building, but doing so without a list of employees and ID cards is nearly impossible; consider the

identification and list of employees as proof of trusted personnel whereas individuals without

these items to be intruders. Of course, creating finitely many rules that would always identify

malicious activity is challenging, so modern systems continuously update their security based on

known cyber threat trends. Thus, there is always a need to collect decision quality cyber threat

intelligence in the form of cyber threat indicators.

 As described in the section about Cyber Threat Intelligence, there are three levels of

cyber intelligence. An indicator, precisely, is an inference mechanism based on historical data

P a g e | 25

and past occurrences that can be used to predict future occurrences within a similar setting.

These indicators in the cyberspace context serve varying purposes at each level. At the Strategic

level of cyber intelligence, cyber threat indicators include nation-state interest in innovative

technology to obtain military advantage on a global scale. Operational cyber threat indicators,

provide the understanding of adversary intent, capability, and likelihood of attack against fielded

forces. Finally, Tactical cyber threat indicators find trends and patterns in the techniques, tactics,

and procedures of employed by adversaries in order to predict malicious activity and help

mission capabilities. Focusing on the tactical level, this problem posed in this paper revolves

around predictive analytics and producing them through data analysis.

Residing within the realm of Big Data, cyber data or event log data can be complex and

highly dimensional consisting of host names, ID numbers, command-line commands, and

various other fields. This complexity and high-dimensionality introduces a slew of problems in

addition to traditional roadblocks with large datasets. To identify a few, there are missing values

within the data, fields that repeat information from other fields, and an inability to visually

observe the data in a graph or chart. The cyber data discussed in Section 4.5 contains 231

fields/variables in its original form, but much of the data points were missing information and

fields like host name and full domain query name represented similar information. Graphing or

plotting 231-dimensional data in a way that humans can understand is still not possible.

Aside from complexity, there is also the problem of identifying relationships within the

data. Principle Component Analysis (PCA), multidimensional scaling (MDS), clustering

methods are well-known for their applications in data science and machine learning. PCA and

MDS “attempt to find non-linear maps to Euclidean space which preserve the distance functions

on the data set”, producing useful two or three dimensional versions of the data if successful

P a g e | 26

[Singh, 2007]. As a result, these methods do handle the complexity problem of the data.

Concerning clustering methods, they produce distinct, unrelated groupings of the data;

alternatively, clustering methods creates groups of points that are closer to each other in terms of

some distance function. The drawback with these methods is these methodologies sometimes

obscure geometric features. For example, a breast cancer study exploring a new data analysis

method was able to identify a subgroup of breast cancer tumors that was characterized by high

survivability in their patients. Researchers in the study tried validating this new subgroup using

cluster analysis and discovered that clustering overlooked this subgroup of tumors because it had

scattered points from the subgroups across many clusters [Nicolau, 2011]. One method that

strives to solve these data complexity problem and sensitivity to large and small scale patterns is

known as Topological Data Analysis.

 Topological Data Analysis gives rise to methods that extract and highlight topological

features in order to summarize the data. The idea is that data possesses shape that may convey

meaningful information. Data analysts or even curious individuals naturally attempt to look for

this shape in order to gain insight, but the complexity of the data prevents them from using basic

methods like graphing in two or three dimensions. With its origins from combinatorics, discrete

geometry, linear algebra, and topology, TDA methods utilize three invariants studied in topology

in order to capture the shape of the data [Chintakunta, 2016]. The following section discusses

these three invariants in detail. In addition, TDA methods derive relationships within the data by

preserving a notion of nearness but distorting large scale distances; small distances can signify

similarity whereas large distances possess little meaning [Singh, 2007]. One TDA method

highlighted within this paper is called Mapper; Mapper essentially reduces high dimensional data

sets into simplicial complexes or discrete combinatorial objects that globally represents the data.

P a g e | 27

The Python Mapper is an open-source implementation of the Mapper method that is limited in its

capabilities but provides enough features as described in the method. Although a standalone

Python application, the Python Mapper does not provide the capability to pull data or to analyze

the data beyond visualization. This paper proposes designing and implementing a system to

integrate these features into the Python Mapper as well as applying the Python Mapper to cyber

data.

 Along with the completion of this report, there are many criteria for the success of this

project. One criterion is the completion of a TDA system that pulls information from a cloud

storage service, cleans and parses the data, applies the Mapper method to the data, and allows for

further analysis of the Mapper output. Another goal for the project is to develop cyber analytics

or rules that help existing cyber detection systems to identify malicious activity. Finally, the last

criterion for success is the continuation of the project with an emphasis of TDA being applied to

machine learning and the additional research of persistent homology.

4 Mathematics behind TDA

 Topology is a branch of mathematics whose origin dates back to the time of Leonhard

Euler, an 18th century Swiss mathematician well-known for many influential discoveries and

contributions to mathematics. Topology is the mathematical study of properties unaltered by

continuous deformations such as stretching or twisting on objects in space. To elaborate further,

this notion of preservation after some deformation translates to a notion of equivalence. An

example is the deformation of a donut to a coffee cup; both are topologically equivalent to each

other. Until the development of topological data analysis, concepts and results produced in

topology have resided solely in theory and pure mathematics. Thus, before introducing this new

method of data analysis, the following sections focus on the supporting mathematics. Many of

P a g e | 28

these concepts and definitions can be found in references such as Morris’s Topology without

Tears, Zomorodin’s Topology for Computing, and from lectures taught by Norman Wildberger

and T. Dey.

4.1 Topological Spaces

 Beginning with some basic definitions, a set is a collection of objects that can be numbers

or other sets; in this case, the objects are points. A metric computes the distance between two

points in the set. A space is a set of points and any space with a metric is known as a metric

space; the most familiar metric space is Euclidean space.

Definition 4.1.1 A set X with a metric function d is called metric space. The metric or
distance function d: 𝑋 × 𝑋 → 𝑅 is a function satisfying the following axioms:

i. For all x, y in X, d (x, y) ≥ 0

ii. If d (x, y) = 0, then x = y
iii. For all x, y in X, d (x, y) = d (y, x)
iv. For all x, y, z in X, d (x, y) + d (y, z) ≥ d (x, z)

In a more general manner, metrics for any topological space reflect the notion of similarity or

closeness. Since the points in a topological space are distinct and abstract entities, small or large

distances between two points may signify similarity or dissimilarity, respectively. Coordinate

invariance, a term defined later on, allows one to study the connectedness of a point set in a more

general manner than with metric spaces that assigns distances based on coordinates. A

topological space consists of the point set and a set of all subsets from this point set, but the

formal definition is as follows:

Definition 4.1.2 Let X be a non-empty set. A set τ of subsets of X is said to be a topology
on X if:

i. X and the empty set belong to τ.
ii. The union of any (finite or infinite) number of sets in τ belongs to τ.
iii. The intersection of any two sets in τ belongs to τ.

Definition 4.1.3 The pair (X, τ) is a topological space, where X and τ are defined as

before.

P a g e | 29

A fundamental question in topology is whether two topological spaces are equivalent. To do so

requires that any topological properties in one topological space map to the other space.

Elaborating on mapping, recall first that a function 𝑓: 𝑅 → 𝑅 is said to be continuous if for 𝑎 ∈

𝑅 and each positive real number ε, there exists a positive real number δ such that | 𝑥 − 𝑎| < 𝛿

implies | 𝑓(𝑥) − 𝑓(𝑎)| < 휀. Alternatively, let X and Y be two topological spaces, a function that

maps X to Y is continuous if the inverse image of an arbitrary open set in Y is open in X [Kraft,

2016]. These continuous maps between topological spaces preserve key properties of space and

help exhibit the notion of topological equivalence. One fundamental notion of equivalence in

topology is a homeomorphism.

Definition 4.1.4 Let X and Y be two topological spaces. A homeomorphism f: 𝑋 → 𝑌 is

a bijective function, such that both f and the inverse of f are continuous. We say that X is
homeomorphic to Y, 𝑋 ≈ 𝑌, and that X and Y are topologically equivalent.

Referring back to the example of the donut (torus) and coffee cup, both objects are topologically

equivalent, or more formally homeomorphic. One can apply continuous transformations on the

donut to produce the cup and vice versa. Another more abstract example concerning

homeomorphism pertains to the interval [0, 1] and the unit circle [Wildberger, 2012]. To

intuitively show that these spaces are not homeomorphic to each other, imagine removing a point

from the circle and removing a point from the interval. While the circle remains a singly

connected component, the interval splits into two components. If the circle and closed interval

were homeomorphic, they would share the same genus; the genus is the maximum number of

cuttings on the surface without disconnecting it. Another notion of equivalence studied in

topology is known as homotopy equivalence. Homotopy preserves some aspects of

connectedness such as the number of connected components and the number of holes in space.

Its definition and its requirements for equivalences are as follows:

P a g e | 30

Definition 4.1.5 Let g: 𝑋 → 𝑈 and h: 𝑋 → 𝑈 be maps. A homotopy is a map H: 𝑋 ×
[0,1] → 𝑈 such that H (*, 0) = g and H (*, 1) = h. Two maps are homotopic if there is a

homotopy connecting them.

Definition 4.1.6 Two topological space T and U are homotopy equivalent if there exists

maps g: 𝑇 → 𝑈 and h: 𝑈 → 𝑇 such that ℎ°𝑔 is homotopic to the identity map iT: 𝑇 → 𝑇
and 𝑔°ℎ is homotopic to the identity map iU: 𝑈 → 𝑈

Alternatively, two spaces are considered homotopy equivalent if one space can be continuously

deformed into the other space. Consider a loop in some space; shrinking the loop eventually

turns the loop into a single point, so this loop would be homotopy equivalent to a point. These

concepts of homeomorphisms and homotopic equivalence become involved in the discrete

constructs and mathematical definitions supporting the Mapper output. In fact, Gurjeet Singh

noted in his dissertation that these Mapper constructions were similar to Reeb graphs [Singh,

2007]. The following definitions help describe these constructs.

Definition 4.1.7 Let X and Z be topological spaces and let f: 𝑋 → 𝑍 be a continuous map.

Let 𝑈 = {𝑈𝛼}𝛼∈𝐴 be a finite open covering of Z. Consider the cover f*(U) =

{𝑓−1(𝑈𝛼)}𝛼∈𝐴 of X, typically called the pull-back of U along f. The mapper construction

resulting from the given dataset (X) is known as the nerve complex of the pull-back cover

𝑀(𝑈, 𝑓) ∶= 𝑁(𝑓∗(𝑈)) [Kim, 2016].

Definition 4.1.8 Define a covering (projection) as a surjective open map from two

topological spaces that is locally a homeomorphism.

Definition 4.1.9 Given a finite covering 𝑈 = {𝑈𝛼 }𝛼∈𝐴 of a space X, define the nerve of

the covering U to be the simplicial complex N(U) whose vertex set is the indexing set A,

and where a family {a0,a1, . . . ,ak} spans a k-simplex in N(U) if and only if 𝑈𝛼0 ∩
𝑈𝛼1 ∩. . .∩ 𝑈𝛼𝑘 = ∅ [Singh, 2007].

To utilize Mapper, the algorithm requires a metric space X (data), a filter function mapping

X to Z, and a covering for Z as input. The following sections should give an overview of how the

Mapper is able to summarize the shape of the data with a high degree of accuracy given these

inputs.

P a g e | 31

4.2 Simplicial Complexes

 To begin this section, suppose there is a set X composed of n points x1, …, xn that belong

to Rd where d is the dimension for R. An affine combination can be any summation of these

points in X, written as ∑ 𝜇𝑖𝑥𝑖
𝑛
𝑖=1 , such that the summation of all coefficients 𝜇𝑖 totals to 1. If all

the coefficients 𝜇𝑖 sum to 1 and each 𝜇𝑖 is nonnegative, then x = ∑ 𝜇𝑖𝑥𝑖
𝑛
𝑖=1 is referred to as a

convex combination of the 𝜇𝑖. Consequently, the convex hull is the set of all possible convex

combination of these coefficients. Keeping these definitions in mind, simplexes are as follows:

Definition 4.2.1 A k-simplex Ω is the convex hull of a set p of k+1 affinely independent
points. A k-simplex has dimension k.

Since the points belong to Rn, the k-simplex can be defined in terms of k+1 linearly independent

points. Recall that a set S is linearly or affinely independent if no point in S is a linear (affine)

combination of any other point in S. As a result, the two terms for independence are

interchangeable. Now, some familiar simplexes include a point (0-simplex), a line segment (1-

simplex), a triangle (2-simplex), and a tetrahedron (3-simplex). Before moving onto simplicial

complexes, given a k-simplex defined by a point set S, know that a face is a simplex defined by a

nonempty subset of S.

Definition 4.2.2 A simplicial complex K is a set containing finitely many simplexes that

satisfy the following two restrictions:
i. K contains every face of every simplex in K

ii. For any two simplices σ, τ belonging to K, their intersection is either empty or a
face of both σ and τ

Simplicial complexes are combinatorial objects that represent spaces, encoding locations of

points relative to nearby points and representing the connectedness of the space. These aspects

are helpful in representing high-dimensional objects or highlighting specific topological

properties in surfaces. To do so requires creating triangulations of the surface or high-

dimensional object.

P a g e | 32

Definition 4.2.3 A triangulation of topological space X is a simplicial complex K
together with a homeomorphism between X and |K|, where |K| is the underlying space of

K and |K| = ∪𝜎𝜖𝐾 𝜎. Note that |K| is itself a topological space.

Take, for example, the surface of a sphere; the surface of a tetrahedron or 3-simplex is a

triangulation of a sphere because they share similar properties like number of connected

components and number of voids. Representing a sphere with a tetrahedron requires less

resources and memory for a computer to process and display. This idea of constructing

triangulations is evident in the Mapper method discussed in Section 5.2. With Mapper,

triangulations create topological summaries of the complex data.

4.3 Simplicial Homology and Betti Numbers
Simplicial complexes can approximate all topological spaces. Building upon this concept,

simplicial homology utilizes finitely generated Abelian groups to measure the number of n-

dimensional holes in a topological space. Algebraic topology is a branch of topology that

provides simplicial homology the ability to construct algebraic tools called homology groups to

quantify topological features in simplicial complexes [Dey, 2013]. Before formally defining

homology groups for simplicial complexes, the following definitions introduce chains and

boundaries. Consider a set X and a simplicial complex K on X. A p-chain c for K is a formal sum

of p-simplices added with coefficients, that is, c = ∑ 𝛼𝑖𝜎𝑖
𝑘
𝑖=1 where 𝜎𝑖 are the p-simplices and 𝛼𝑖

are the coefficients. P-chains can form a group under addition.

Definition 4.3.1 The k th chain group of a simplicial complex K is 〈𝐶𝑘(𝐾),+〉, the free

Abelian group on the oriented k-simplices, where the identity is the chain 0 = ∑ 0𝜎𝑖
𝑘
𝑖=1

and the inverse of a chain c is c itself since c + c = 0.

Figure 3 will help illustrate concepts for previous and consequent definitions. In this oriented

graph, the 0-simplices (vertices) are X, Y, and Z; the 1-simplices (edges) are a, b, c, and d. The

closed walk [abc] starting from X can be written as an addition of edges such as a + b + c. Since

commutativity applies to this naming scheme, a + b + c is the same as b + c + a and c + a + b. In

P a g e | 33

this case, note that the closed walk a + b + c = (a + b + d) + (c - d) where (a + b + d) and (c - d)

are the two smaller closed walks in the graph. Chain groups for this graph include C0 (the free

abelian group on vertices in G) and C1 (free abelian group on directed edges). C0 contain 0-

dimensional chains that are integral linear combinations of the vertices (e.g. x – 6y + 8z). C1

consists of 1-dimensional chains that are integral linear combinations of directed edges such as

4a – 5b + 3c + 4d.

Figure 2: Graph G Illustrating Chain groups [Wildberger, 2012]

With the chain group defined as 𝐶𝑘(𝐾), choose an ordering on X and define the following

sequence of homomorphism:

Figure 3: Sequence of homomorphisms [Dey, 2013]

Definition 4.3.2 If σ = [v0, …, vp] is a p-simplex, its boundary is 𝛿𝑝𝜎 =

∑ {𝑣0, … , 𝑣�̂� ,… ,𝑣𝑝}
𝑝
𝑖=0 where 𝑣�̂� indicates that the vertex 𝑣𝑖 omitted.

The boundary operator, denoted 𝛿𝑝, defines a mapping between chain groups found in different

dimensions. Specifically, given a p-simplex, the boundary operator returns the (p-1)-chain of its

boundary (p-1)-simplices. An example would be that, given a tetrahedron, the boundary operator

P a g e | 34

would return the four triangle faces of the tetrahedron. For the figure above, the boundary

operator describes the relationship between edges and vertices; the boundary of a directed edge

in Graph G is written destination vertex – starting vertex. The boundary of directed edge a is y –

x and the boundary of edge b is z - y, or alternatively 𝛿 (𝑎) = 𝑦 − 𝑥 and 𝛿(𝑏) = 𝑧 − 𝑦. In

addition to boundaries and chains, a p-cycle c is a p-chain such that 𝛿𝑐 = 0. To see that the

boundary operator returns 0 for cycles/loops, applying the operator boundary to a + b + c for the

graph in Figure 2 results in 𝛿 (𝑎 + 𝑏 + 𝑐) = 𝛿 (𝑎) + 𝛿 (𝑏) + 𝛿 (𝑐) = 0 . Similar to chains and

chain groups, p-cycles can form a p-cycle group.

Definition 4.3.3 The k th cycle group is Zk = Kernel (δk). A chain that is an element of Zk
is a k-cycle. The kth boundary group is Bk = Image (δk+1). A chain that is an element of
Bk is a k-boundary.

Define the Kernel of the boundary operator to be the elements of the kth cycle group that map to

the identity element in the (k-1)th cycle group. Additionally, define the Image (δk+1) to be set of

all elements in the (k-1)th cycle group that elements in kth cycle group can map to under the

boundary operation. From here, a formal definition of a homology group follows from the

previous definitions.

Definition 4.3.4 The k th homology group is the quotient Kernel (δk) / Image (δk+1),
denoted Hk = Zk / Bk.

Related to homology groups, Betti numbers measure the number of connected components,

cycle, voids, and their higher dimensional analogues [Kraft, 2016]. They essentially summarize

homology groups by encapsulating properties of topological spaces as numerical values; in

particular, Betti numbers refer to the number of n-dimensional holes on a topological surface or

simplicial complex. More formally, the definition of a Betti number is as follows:

P a g e | 35

Definition 4.3.5 The k th Betti number, denoted βk, of a simplicial complex K is β(Hk), the
rank of the free part of Hk. βk = rank (Hk) = rank (Zk) – rank (Bk) where Zk and Bk have

been defined previously.

The next section builds upon all the definitions discussed thus far and introduces a method for

finding features in a topological space called persistent homology.

4.4 Persistent Homology

Creating triangulations of point cloud can summarize any topological features showcased

in the data, but another approach known as Persistent homology goes a step further. The key idea

in Persistent Homology is discovering the extent in which persistent (actual) topological features

remain after introducing noise to the data. Observe in Figure 4 that the data set is a curve in R2

with two loops. First, consider a noisy point cloud sampled from the curve; sampling points

means selecting points with a probability distribution concentrated near the shape of the curve

[Carlsson, 2009]. Let P denote the set of sampled data points. As illustrated in the figure below,

the approach entails creating a complex from the union of balls of size ε > 0 around each data

point in P, calculating the homology of the resulting construct, and observing which features

persist while modifying ε. Figure 4 shows that increasing the radii (ε) of the balls centered on

each data point eventually creates the two loops. When the size of ε is large enough, the two

loops disappear in Figure 4D. These two loops must be significant topological features because

they were able to persist longer than any other feature that might have existed. In summary, this

example exhibits how persistent homology gives an overview of the homological information for

all the different values of ε.

From point cloud to complex, the process is essentially using the data points from the point

cloud as vertices to output a combinatorial graph whose edges are based on proximity of data

points. Modeling a point cloud data X by a simplicial complex serves to assist in computing its

P a g e | 36

topological invariants. In computational topology, there are various ways to convert X into a

complex; the following definitions describe two such methods.

Definition 4.3.6 Let ε > 0 be a real number. Define the Vietoris-Rips Complex, denoted
𝑉(𝑋, 휀), to be a simplicial complex on the set X consisting of these subsets 𝜎 ⊂ 𝑋 where

d (x, y) < ε for any x and y in 𝜎. Note that for 휀 ≤ 휀′ for some nonnegative real number

휀′, 𝑉(𝑋, 휀) ⊂ 𝑉(𝑋, 휀′).
Definition 4.3.7 Let ε > 0 be a real number. Define the Cech Complex, denoted 𝐶(𝑋, 휀),

to be a simplicial complex on the set X consisting of these subsets 𝜎 ⊂ 𝑋 for which there

is a 𝑦 ∈ 𝑋 such that 𝑑 (𝑥, 𝑦) < 휀 for any 𝑥 ∈ 𝜎. Note that for 휀 ≤ 휀′ for some

nonnegative real number 휀′, 𝐶(𝑋, 휀) ⊂ 𝐶(𝑋, 휀′).

Using either method to construct complexes from a point cloud, the result is a nested sequence of

complexes that record the changes in homology as ε increases. This nested sequence is known as

a filtration.

Definition 4.3.8 Given a simplicial complex K, a filtration is a nested subsequence of

complexes Ki of K, indexed by the nonnegative integers, such that if i ≤ j then 𝐾𝑖 ⊆ 𝐾𝑗.
The total ordering itself is called a filter.

Figure 4: Illustration of Persistent Homology [Dey, 2013]

P a g e | 37

Definition 4.3 In relation to persistence, the p-th persistent homology groups are the

Images of homomorphism, 𝐻𝑝
𝑖𝑗 = 𝑖𝑚 𝑓𝑝

𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.

Given a filtration, the i-th complex Ki has associated boundary operators 𝛿𝑘
𝑖 and groups such as

𝐶𝑘
𝑖 , 𝐵𝑘

𝑖 , 𝑍𝑘
𝑖 ,𝑎𝑛𝑑 𝐻𝑘

𝑖 for all 𝑖, 𝑘 ≥ 0. Note that the p-th persistent homology groups describe when

a class is born and when it dies.

Definition 4.3 (Birth and Death) Consider a simplicial complex 𝐾 and a function 𝑓: 𝐾 →
𝑅 on it (note 𝑓−1on some interval between −∞ and 𝑎 ∈ 𝑅 gives a filtration on K). A p-th

homology class [c] is born at a simplicial complex 𝐾𝑖 if [𝑐] ∈ 𝐻𝑝(𝐾𝑖), but [𝑐] ∉

 𝐻𝑝(𝐾𝑖−1). The p-th homology class dies entering 𝐾𝑗 if it merges with a class that is born

earlier. Formally, 𝑓 𝑖,𝑗−1([𝑐]) ∉ 𝐻𝑝
𝑖−1,𝑗−1 , but 𝑓 𝑖,𝑗 ([𝑐]) ∈ 𝐻𝑝

𝑖−1,𝑗.

Persistent diagrams are visual representations of the persistent homology that exhibit the

evolution of topological features within the filtration. They are defined as “extended planes

(ℝ ⋃{±∞ })2 on which a point with two coordinates represents a birth paired with a death” [Dey,

2013]. In other words, the first coordinate corresponds to the starting index when the feature was

created and the second point represents when it dies (persistence). Key invariants in persistence

diagrams called barcodes “measure the significance of a feature based on its lifespan through a

filtration” [Kraft, 2016]. The bars in a barcode record when a feature lives or dies at some

particular value for ε; longer bars mean that a feature within a complex is persistent and gives

meaning to statistical significance for a component of the complex such as a loop or void. On the

other hand, smaller bars correspond to either noise within the data or noise introduced through

sampling.

Gunnar Carlsson’s Topology and Data, The Basic Theory of Persistent Homology by K.

Wang, and lecture notes written by Tamal Dey provide a rigorous explanation of persistent

homology using an algebraic construction. In terms of application of persistent homology, Fintan

Hegarty’s doctoral dissertation, Computation Homology of Cubical and Permutahedral

P a g e | 38

Complexes, outlines various applications in topology estimation (finding topological features

from a sampling of the original data set), image segmentation (changing an image’s

representation for feature recognition), and in medicine [Hegarty, 2012]. The next chapter

discusses research and advances in topological data analysis, focusing especially on Mapper and

a company called Ayasdi that combined machine learning with an improved version of Mapper.

5. Overview of TDA

In terms of major difficulties with data, there are many challenges involved with Big

Data. Advances in data management have allowed professionals to tackle the sheer volume of

information associated with Big Data. However, the other major problem that this paper focuses

upon is the high dimensionality and complexity of data. With the introduction of topological data

analysis (TDA), research has leaned towards capturing the underlying shape of the data to

uncover any meaningful phenomena hidden within the data. To be more precise, a given dataset

creates a point cloud of data in possibly high dimension; within topology, the resulting shape

refers to the features within the data that do not change under continuous deformations like

shrinking or stretching [Chintakunta, 2016].

Before discussing topological data analysis in general, the first section describes three

invariants in topology that enable methods in topological data analysis to accurately and robustly

obtain shapes of data. Software packages, such as the Python Mapper or JavaPlex, have taken

advantage of these properties to create visualizations of high dimensional data. Utilizing the

available TDA software, there have been several applications within medical research as well as

in the social sciences; concerning medical research, TDA has assisted in identifying subgroups

within breast cancer patients and diabetes patients. This application along with other examples

appear in Section 5.4. Building upon these foundations, persistent homology and barcodes of

P a g e | 39

data have led to further advances in TDA as well as more robust algorithms for pattern

recognition. Many publications like Robert Ghrist’s Barcodes and Gunnar Carlsson’s Topology

and Data have a focus on persistent homology and its applications.

5.1 Topological Invariants

Stemming from ideas and concepts since the time of Leonhard Euler, topology has been

an abstract field of mathematics that has solely been used to study abstractly defined shapes and

surfaces [Lum, 2013]. With the introduction of topological data analysis, data scientists and

researchers saw the potential of adapting topological concepts to large and complex data sets.

The reason for its success with high dimensional data sets is due to three topological properties

known as coordinate invariance, deformation invariance, and compressed representation. These

properties give topology its ability to study shape in a robust manner. Coordinate invariance

refers to how topological objects are independent of any specific representation in a coordinate

system. Instead, the pairwise distances between points of the object are significant [Carlsson,

2014]. In other words, these properties of shape remain unaltered after rotating the object or

changing the coordinate system of the object, allowing for comparisons between objects residing

in different dimensions. Deformation invariance refers to how topological properties of shape

also remain unchanged if one stretches or shrinks the object in question without any tearing or

gluing. For example, consider any letter of the English alphabet; most people can recognize this

letter even in a different font or size. In topology, an ellipse and a circle in the 2-dimensional

plane are topologically equivalent because they share similar characteristics like number of

holes/loops. Finally, compressed representation refers to building simpler representations of

shapes, capturing the topological features of the shape and losing the finer details [Carlsson,

2014]. Considering a circle as an example, one topological feature defining the shape of a circle

is its loop. Thus, a hexagon with the similar shape and loop can represent a circle; this

P a g e | 40

representation is more preferable compared to the infinite number of points in a circle because a

hexagon consists of only six nodes and six edges [Lum, 2013]. The curvature of the circle is lost

in the compression, but the representation preserves the major topological feature of a loop.

Applications of topological data analysis have been wide-reaching, ranging from applications in

medicine to business data analytics. However, in this paper, the case studies utilizing topological

data analysis are going to focus on one method known as Mapper and its implementation called

Python Mapper.

5.2 Mapper
 First introduced by Gurjeet Singh, Gunnar Carlsson, and Facundo Memoli, the Mapper

algorithm is a method for topological data analysis, emphasizing the goal of giving shape to data

and interpreting this shape [Singh, 2007]. Complex data can incorporate several attributes or

features; for example, patient medical data consists of age, gender, blood pressure, etc. Singh

states in a paper dedicated to introducing this method, “this new method for qualitative analysis,

simplification, and visualization of high dimensional sets possesses the ability to reduce high

dimensional data into simplicial complexes in order to capture topological and geometric

features at a specified resolution” [Singh, 2007]. This method builds a compressed representation

of data to highlight its significant features. The Mapper algorithm achieves this result by using

topological ideas that preserve closeness or similarity but alter distances of large magnitude. This

property fits into data analysis of high throughput biological data especially well, as noted in the

application of Mapper sections.

 Moving to the algorithm itself, it consists of multiple steps involving a distance/similarity

metric, a filter function, a clustering algorithm, and the output visualization. Section 5.2.2

provides an explanation of metrics and the criteria used for selecting one. Three assumptions of

the algorithm are: only numerical values compose the given data set X, the user has chosen an

P a g e | 41

appropriate distance or similarity metric, and “computation of inter-point distance between

points or even sets of points from the data is possible” [Singh, 2007].

If the data set contains non-numeric strings, the user must transform these attributes in

the data to numeric data by either encoding the information or dropping them from the data

altogether. A filter function f: X → R refers to a real-valued function that maps data points in X

to the real number line. Selecting this filter function is as significant as choosing a distance

metric because this function determines the topological features to highlight; the user may select

or integrate functions that reflect certain properties of the data. Keeping these instructions and

advice in mind, the first step in the algorithm is finding the range of function restricted to the

data points. The accompanying step is partitioning this range into smaller, overlapping intervals

in order to create a covering space of the data points. Percentage of overlap and number of

interval are both parameters that the user can tune or change. To illustrate this step, consider a

closed interval [0, 2] partitioned into 3 smaller intervals with 50% overlap; the resulting intervals

are [0, 1], [0.5, 1.5], [1, 2]. Now, within each interval, the algorithm forms sets of data points

such that from the data set such that the function value of the data point lies within that interval

and clusters the points based on distance [Singh, 2007]. More formally, the algorithm forms sets

Xj = { 𝑥 ∈ 𝑋 | 𝑓𝑗 (𝑥) ∈ 𝐼𝑗} where j is an index into the set of intervals I. Although good

clustering is also important to consider when visualizing the data, this algorithm does not place

any restrictions on the clustering algorithm involved, so it promotes the use of user-defined and

domain specific clustering algorithms. The authors introducing the Mapper algorithm have based

their clustering algorithm on single-linkage clustering; this algorithm “returns a vector in 𝑅𝑁−1

that holds the length of an added edge to reduce the number of clusters by one at each step of the

algorithm” [Singh, 2007]. Once clustering is complete, the algorithm outputs a representative

P a g e | 42

simplicial complex of the data; the Python Mapper goes further to display this representation as a

2-dimensional network of nodes. All edges between nodes/clusters in the graph indicate that their

intersection is non-empty. This visualization additional has a coloring and labeling of each node;

colors represent the average function value of the node and labels indicate the number of data

points residing within a node.

5.2.1 Python Mapper
 The Python Mapper is an implementation of the Mapper algorithm written with Python

and C++ bindings [Mullner, 2013]. In addition to implementing the algorithm, the software also

consists of a graphical user interface that enables beginners to quickly acquaint themselves with

its many features such as filter selection and node coloring options. Developers of the toolchain,

David Mullner and Aravindakshan Babu, have provided this complete and extensible toolchain

to the scientific community as open-source software in hopes of other researchers “extending,

modifying, and applying the software for new ideas” [Mullner, 2013]. As of 2016, there have

been numerous uses of Python Mapper on breast cancer patient data as well as employee

information. Before discussing these applications in more detail, this section begins by

elaborating on the Mapper algorithm further.

5.2.2 Metrics
 Since clustering contributes to the algorithm, there must be a measure of distance and/or

similarity to determine the closeness of any two data points. The formal definition of similarity

is, “the measure of how close to each other two instance are; the closer two instances are in

comparison, the larger the similarity value”. In contrast, the dissimilarity measure determines

how different two instances are. A distance metric is a measure of dissimilarity that obeys the

conditions outlined in Definition above.

P a g e | 43

Utilizing one of these metrics to determine similarity/dissimilarity requires first that the

fields within the data align with the criteria of that metric; matching the criteria allows for an

accurate measure of closeness between two data points. To elaborate on this point, consider that

attributes within the dataset can vary in type; attributes of the data can be nominal, cardinal, or

ordinal. Cardinal or numerical data have a continuous scale of values like sale profits, time, or

height, whereas ordinal data infers an order on the values and nominal or categorical data are

discrete values. Examples of nominal data include gender, favorite color, and names. Comparing

two data points composed of only nominal attributes with some real-valued metric like Euclidean

distance would not provide any information on closeness; one cannot compare two names using

Euclidean distance. However, the alternative is to use Hamming distance to determine the

number of different/similar characters present in the two names. The Python Mapper

implementation provides three distance metrics such as Euclidean, Minkowski, and Chebyshev.

 Beginning with the Euclidean metric, Euclidean distance is the most well-known

measurement for distance. Given any two points U, V in a two-dimensional space, the square

root of summing (Ux - Vx)2 and (Uy – Vy)2 gives the distance between those two points. A

generalization of this formula to an N-dimensional space is a summation of the squared

differences between corresponding components of any two N-dimensional vectors. The

Minkowski distance, on the other hand, is a generalized metric to measure the differences

between absolute magnitude of differences between a pair of objects. Chebyshev Distance, also

known as maximum value distance, “measures the absolute magnitude of difference between

coordinates of a pair of objects” [Tabish, 2009]. The formulas for these metrics can be seen in

Table 1.

P a g e | 44

Table 1: Distance functions

Utilizing the filter function in the next step of the algorithm, these distance metrics allows this

method to project data points onto R1; selecting the filter function is as important as selecting the

metric because any interpretations of the output depends upon the choice of filter function.

5.2.3 Filter Functions

Crucial steps in the algorithm involve using a function to map data points to values in R1,

partitioning the range of values restricted to this set of data, and devising a cover for this range.

One important point to note is that this function relies on the ability to compute distances

between points; again, the metric determines how this distance is computed. Focusing further on

the filter function, the purpose of this function is to summarize all the relevant features of the

input data. The outcome, as a result, becomes heavily dependent upon the filter function’s

method of mapping the data points [Singh, 2007]. To illustrate this concept, consider the

geometrical point cloud data and the two filter functions in Figure 5. Filter function f computes

the height of a point from the input data, whereas filter function g summarizes the input data

from a horizontal perspective. To understand the output, imagine first a horizontal plane moving

from the top of the Y-shaped point cloud to the bottom. The intersections between the plane and

point cloud result in the Y shape to the right of the point cloud. For the filter function g, consider

a vertical plane that moves horizontally from left to right of the data. Beginning from the left,

there is one connected component that results in one point of the corresponding loop in the

P a g e | 45

output. Continuing, the intersections become two lines on the plane, resulting in the top and

bottom curves of the left loop in the output. The intersection between the middle section of point

cloud and the plane is a connected component that allows the two curves to meet and create one

loop. Symmetry of the point cloud indicates how the remaining section creates the right loop.

Figure 5: Illustration of Filter Function Representing Input Data [Kim, 2015]

Figure 6 illustrates the same concept but using an H-shaped point cloud.

Figure 6: Another Example of Filter Functions [Bayless, 2015]

 Provided in the Python Mapper, there are seven filter functions that represent or highlight

different properties of the data. The first set of functions aim, “to understand a mathematical

context surrounding the data points in the space” [Kim, 2015]. These functions, eccentricity and

Gaussian density, highlight the geometry of the data set. For Gaussian density, the mapper

P a g e | 46

implementation utilizes a kernel density estimator with a multivariate, radially symmetric

Gaussian kernel. Gaussian density assumes that all values within a data points are Euclidean data

in order to compute the distribution of the data. Looking at the corresponding formula in Table 2,

Table 2: Available Filter Functions

epsilon controls the smoothness of the density estimate on the data set. Moving to eccentricity,

the intuition is that this function determines which points in the data are different from the center

of the data without designating a center point(s). Understanding how the functions compute

distances, however, is meaningless if one cannot interpret the shape of the resulting mapper

output.

5.2.4 Interpretation of Visualizations

Each filter function provides different meanings and interpretations of the data, so this

section gives a brief summary of them. A possible interpretation that may originate from using

the eccentricity filter function would be that low-valued nodes are closer to the center of the data

and any high-valued nodes branching from this center infers anomalous behavior. In terms of the

Gaussian density estimator, the resulting output should infer the distribution of distance values.

For example, looking at Figure 5, one can infer that the data set is bi-modal; such an inference

would indicate that the data points near the top of the network in Figure 5 showcase more unique

P a g e | 47

traits than the rest of the data. Although these functions are a subset of the available filters in the

Python Mapper, this section reinforces the idea that the choice in filter function is essential in

producing the desired output.

5.3 Ayasdi

 Perhaps the most prominent company at the forefront of topological data analysis

research and application, Ayasdi is an advanced analytics company that has taken Mapper

beyond simply visualizing data and has created a new product to help their clients solve complex

data analytics challenges. Ayasdi’s product incorporates “the latest machine learning, statistical

and geometric algorithms with topological data analysis and big data infrastructure” [Ayasdi,

2016]. The aspects concerning topological data analysis constructs compressed representations

of the data, from which data scientists and analysts search for variables that impact the patterns

found in the representation. This process, consequently, results in features holding predictive

power that lay the foundation for machine learning algorithms.

5.4 Applications of Topological Data Analysis

 In this section, the main topic of discussion is applying the Mapper algorithm to identify

shape and to solve real problems. The first section describes the algorithm’s ability to capture the

shape of a hand and other topological objects from sampled points. Afterwards, the second

section discusses Mapper’s application within medicine and business. One application comes

from breast cancer study and the other application involves employee information from a

company.

5.4.1 Mapper on 3-D Shapes

 The first application is representing a two-dimensional picture of a human hand; the

result was representing a data set of a thousand points by a network of 13 nodes and 12 edges

[Lum, 2013]. Following the steps in the Mapper algorithm, the process begins with sampling

P a g e | 48

data points from the image in order to create point cloud data resembling a hand. After

processing the data with a filter function and partitioning, clustering and network construction

produces Visualization D in Figure 7. This output captures the overall shape of the hand in size

and orientation as well as the position and length of the fingers and thumb. Additionally, the

branches in the network reflect the location in which the fingers and thumbs extend from the

palm of the hand.

Figure 7: TDA Pipeline [Lum, 2013, Figure 1]

 For the next few examples, each of the point cloud data resembles a topological object

such as a circle, torus, and a knot. Beginning with Figure 8, the point cloud consists of a circle of

data points and several other points that serve as noise. Using the Singular Vale Decomposition

filter with the Euclidean metric, single-linkage clustering, and a balanced cover, the network to

the right of the point cloud represents the circle as a loop in the network. The noisy data does not

interfere in representing the circle; in fact, the algorithm places the noisy points along the path in

P a g e | 49

the network. Notice as well that the four clusters of red nodes each receive their own branches in

the topological summary.

Figure 8: Topological Summary of Noisy Circle [Kraft, 2016, Figure 4.7]

From Figure 9, sampled data points from a three-dimensional torus compose the point cloud data

for the next example. These summaries use the SVD filter functions, Euclidean metric, single

linkage clustering, and a balanced cover. Focusing solely on the point cloud data, some initial

topological features include a hole enclosed by several data points and, overall, one connected

component. Both topological summaries reflect these features, even though they use the same

filter function with different parameters. The top and bottom networks exhibit a single-connected

topological object and a single loop.

P a g e | 50

Figure 9: Summary for torus using first SVD (Top) and Summary for torus using second SVD (bottom)
[Kraft, 2016, Figure 4.7]

Of course, these examples illustrate the algorithms ability to capture essential topological

features and shape, but the data sets so far have been synthetic data samples that reside in two or

three dimensional space. The next section touches upon real-life data sets collected from both

industry and medical practice.

5.4.2 Real-life Applications
 In the following studies, researchers apply the Mapper on real-world data. The first

application pertains to a breast cancer study whose usage of Mapper led to the discovery of a

new subgroup of breast cancer tumors. Data used for the study comprised of Nederlands Kanker

Institut (NKI) data composed of 295 tumors, Breast Cancer Normal (BCN) data consisting of 13

normal breast tissue samples, and data from Ulleval University Hospital (ULL) containing 46

tumors and HERSCH containing 188 primary breast tumors [Nicolau, 2011]. In the last

application of Mapper, the problem was determining indicators of loyalty for customers buying

two brands of orange juice. The available data set came from a marketing study of customer

purchases of orange juice at five supermarkets consisting of 1070 observations on 17 predictors

P a g e | 51

[Kraft, 2016]. These applications should showcase how the Mapper method can be adapted for

data from various sources.

 Since the purpose of topological data analysis is to provide a global representation of the

data, incorporating Mapper into the analysis of breast cancer data assisted in addressing the high

dimensionality of the biological data. The paper referred to the resulting method of analysis as

Progression Analysis of Disease (PAD); PAD was the study’s “approach to the data analysis of

disease that unraveled the geometry of data sets and provided an easily accessible picture of the

data through Mapper and Disease-Specific Genomic Analysis (DSGA)” [Nicolau, 2011]. This

new method added an additional level of pre-processing before running the data through Mapper;

the preprocessing entailed transforming the breast cancer data set into new vectors highlighting

specific properties. Defined by a mathematical method known as DSGA, the transformation

measures the extent of deviation between diseased tissue and healthy tissue. By transforming the

data using DSGA, the new data brings out unique biology, allows for wide variability of normal,

and emphasizes the degree of deviation from healthy tissue [Nicolau, 2011]. Doing so, in other

words, customized the Mapper algorithm to fit the nature of the medical data. Once the

transformation of the data is completed, PAD applied filter functions provided by Mapper to the

transformed data set; in this study, researchers defined filter functions that computed the vector

magnitude of the Lp norm. Applying PAD on the NKI data formed the graph shown in Figure 10.

Note that, since the filter function highlighted the deviation from normal, blue-colored nodes

would pertain to normal and normal-like tumors; red-colored nodes, consequently, indicate that

the deviation from healthy tissue is large. In this figure, there are two progression arms or paths

that branch out from the blue nodes. The progression arm with red nodes, as discovered in the

study, identified a new subgroup of “Estrogen Receptor-positive breast cancers that express high

P a g e | 52

levels of c-MYB and a high survival rate in patients” [Nicolau, 2011]. Even though this new

subgroup does not fit into previously identified breast cancers and exhibit these properties, the

researchers were able identify the subgroup only with the help of Mapper. The next application

only reinforces the idea that the Mapper algorithm strives to highlight certain topological

information.

Figure 10: PAD Analysis of NKI data [Nicolau, 2011]

 In this study concerning marketing research data, the goal of the study was to understand

which factors influence a customer’s decision to purchase between two brands of orange juice,

Citrus Hill (CH) or Minute Maid (MM). Some variables utilized within the study include sale

prices for each brand, price differences, discounts offered, week of purchases, and loyalty of

customers. An initial statistical approach using penalized logistic regression with L1 penalty

concluded that good predictors for purchasing CH were loyalty to CH, price difference between

MM and CH products, and an indicator variable for a specific store. This store was a good

predictor for purchases because, according to the data, it offered more special offers and the best

P a g e | 53

sale prices for CH [Kraft, 2016]. The study then went onto to find predictors by using a

combination of Mapper and penalized logistic regression to validate predictors from the previous

approach and possibly find new predictors. Figure 11 shows the resulting topological summaries

of the data set colored by first SVD filter function (left), by whether or not the purchase was CH

(center), and by whether or not the purchase was MM (right).

Figure 11: Initial Colorings of Topological Summaries [Kraft, 2016]

Observing the center and right topological summaries, customers purchasing CH gathered on the

right side of the graph whereas most customers purchasing MM were localized in the left branch.

Notice that the two nodes in the dotted black circle have similar colorings in both summaries;

comparing the two groupings concluded that MM customers in the right nodes possessed distinct

purchasing reasons differing from MM customers in the left side. In fact, penalized logistic

regression again selected loyalty to CH, price difference, and Store 5 as the best predictors that

distinguish two nodes on the right from the left branch. Figure 12 illustrates the colorings by

these predictors.

Figure 12: Topological Summaries colored by LoyalCH (left), PriceDiff (center), StoreID5 (right). [Kraft, 2016]

One interpretation gained by these colorings would be that, within the two nodes designated by

the arrows, customers are moderately loyal to CH but choose to buy MM when the price

P a g e | 54

difference (sale price MM – sale price CH) is low [Kraft, 2016]. Additionally, observe the two

nodes in the dotted circle. These colorings indicate that these nodes contain customers who are

moderately loyal to CH and high price differences between CH and MM; alternatively, these

customers prefer lower sale prices from CH. With Mapper, researchers from these studies were

able to understand the data intuitively and, then, guide their efforts for further study. The next

section discusses the cyber data involved.

5.5 Cyber Data and Analytics
 In this section, the main focus is on the cyber data available and the cyber analytics used

in both filtering and validation of the data. The cyber data is a product of the BRAWL project;

BRAWL is an abbreviation for Blue versus Red Agent War-game Evaluation. One goal of this

project is to generate and collect real-time synthetic data from within a computer network.

Pertaining to cyber analytics, another project involves collecting analytics that indicate malicious

activity and to storing them in a repository.

5.5.1 BRAWL Data
 Data collected through BRAWL is synthetic data capturing the simulation of an intrusion.

To summarize the procedure of BRAWL in a sentence, two teams of cyber agents compete

against each other; the blue team handles detection of red team activity whereas the red team

simulates an adversary gaining access to the system [Wampler, C., personal communication, July

2016]. These games occur on a hyper-sensing network that generates data and records logs of

network activity in real-time. BRAWL data is essentially information from Windows event logs

and, thus, conforms to an XML-based schema in its raw form. After parsing and extracting

information from the event logs, the data takes on a Comma-Separated Values (CSV) format

because data in this format are easier to read row-by-row and process. The resulting data set

contains as much as 153 fields; however, much of these fields repeat information and only

P a g e | 55

contribute to the distribution of missing data. Fields found in the data include log type, host

name, severity, keywords, process ID’s, group ID’s, source port, destination port, image path,

command line, parent information, integrity level, executables, and hashes. The data is a record

of activity from the red and blue team agents as well as from normal users on the network. With

a list of red team activity used as ground truth, identifying the red team agent activity was one

goal of this project.

5.5.2 Cyber Analytics and Analytics Repository

 After each BRAWL cyber game, the output is a multitude of indicators that highlight

malicious behavior or by-products of red team activity. Each indicator, also referred to as a cyber

analytic, no matter how trivial or groundbreaking goes into the Cyber Analytic Repository

(CAR) for further study and testing. While in storage, additional information is necessary to

describe the new cyber analytic; such information pertains to likelihood of malicious activity,

stage of development, and related ATT&CK technique (Appendix 4). All cyber analytics begin

as ideas and, after testing and validation, go onto further stages of development or become

refuted. The indicators highlighted in this paper include Powershell execution, processes

spawning CMD.exe, and Server Message Block Write requests. See Table 3 for summaries of

each available analytic.

Cyber Analytic Summaries

Analytic 1 Typically, when a user runs a command prompt (cmd.exe), the parent

process is explorer.exe or another instance of the prompt. Spawning the
process cmd.exe from certain parent like Microsoft Outlook may be
more indicative of malice.

Analytic 2 Detects Powershell scripts. Powershell is a scripting environment

included in Windows that is an easy way to circumvent security
measures.

Analytic 3 Detects SMB Write Requests. SMB provides a means for remotely

managing a file system. SMB Write indicates lateral movement to a
host.

Table 3: Analytic Summaries

P a g e | 56

5.5.3 Applying Mapper to Cyber Data
 Implementing the aforementioned cyber analytics along with other analytics in the repository

have accomplished the task of detecting red team intrusions, and most analytics in the repository have

undergone improvements. The overall goal of applying the Mapper to this data was to gain qualitative

understanding of the data from a different perspective. Rather than focus on a subset of the fields, the

Mapper provides a global view of the data while still considering all the fields provided from the cleaned

data set. Gunnar Carlsson, one of the researchers who co-founded Ayasdi and developed Mapper, stated

that topological modeling can lead to taxonomy generation, hotspot outcome-based analysis, and

geometry-based feature selection [Carlsson, 2015]. From this method, one desired outcome of applying

Mapper was a taxonomy user activity or at least a distinction between malicious and benign user behavior

on the network.

6 Methodology

 The overall goal of the project was to develop indicators of attack using Topological Data

Analysis as well as to enhance the Python Mapper by designing a customizable base application to call

Mapper functions. This chapter describes the design of the topological data analysis system, the

cloud storage service that holds all the cyber data, and the case studies and their desired

outcomes on the data. In addition, this chapter introduces the data analysis process that data

scientists utilize when extracting generalizations and conclusions from the output of Mapper.

The system overall consists of two layers of abstraction that begin with extracting data

from a cloud storage service like ElasticSearch and ends with the analysis layer for the data.

These two layers are referred to as the data extraction layer and the topological data analysis

layer. As for the proposed experiments with the data, they consist of experimenting with filter

functions, tweaking parameters within the TDA layer, and applying mapper on a different data

P a g e | 57

set. For the final section, most of the discussion pertains to the mathematical component of this

paper.

6.1 System Design
 The Python Mapper implementation lacks two key aspects that limits the data analysis

stage; these aspects are the ability to extract data directly from a source and the ability to analyze

the data beyond creating visualizations. Extracting data directly from the source entails being

able to take a subset from the data source, to clean it by removing any non-numeric attributes,

and to package the cleaned data in a readable format such as a CSV-formatted file. Thus,

integrating abstractions of these aspects with the implementation should improve its capability.

Generally, for all following sections, the design aspect consists of brief descriptions of the

classes involved.

6.1.1 Data Extraction Layer

 The main task of the data extraction layer is to pull in all requested data from a cloud and

format the data into a readable file for the next layer, cleaning and parsing all the data in the

process. In terms of structure, there are five main classes that include the ESManager class, File

class, Parser class, JSONFile class, and CSVParser class. Both the File class and Parser class are

parent classes for the JSONFile and CSVParser classes, respectively; the reason is that future

versions of the system would have the freedom to implement additional format changes such as

reading from a plain text file. Establishing a connection with the ElasticSearch cluster, querying

for data, pulling the data are responsibilities of the ESManager. The ESManager is also

responsible for reading in pre-configuration files containing server names or port numbers for

designating the Elasticsearch cluster. As for the File and JSONFile classes, these classes have the

task of reading in a data file formatted one way and outputting a file formatted according to user-

preference. Output from Elasticsearch uses JavaScript Object Notation (JSON), but the Mapper

P a g e | 58

toolchain requires Comma-Separated Values (CSV) format. Thus, the JSONFile class transfers

the data to a CSV file as desired. The purpose of the Parser class and CSVParser class is to

represent any non-numeric data as numerical values either by assigning integers for all possible

values within a column or transforming each data point into a vector of continuous values. As

with the file classes, the reason for using only numeric representations for the data is an

implementation-specific requirement of the Mapper toolchain. Aside from structure, the process

of data extraction follows five steps.

 First, data extraction begins with an ESManager object pulling data from an

ElasticSearch cluster. The output from this operation is, as stated before, a file formatted in

JSON. Next, a JSONFile object would export all information from this file to a CSV-formatted

file. A CSVParser object would then clean the data by removing extraneous columns or repeated

columns from the file and parse the file. Again, parsing the file means assigning numerical

values to all non-numeric data as well as categorical values like ID numbers. Finally, the last step

in data extraction is compressing the cleaned and parsed CSV-formatted file into a .gz file. Now,

the data would be ready for the next layer in the system, the topological data analysis layer.

6.1.2 Topological Data Analysis Layer

 The main purpose of this layer is to execute the steps in the Mapper algorithm and output

both a visualization of the data and CSV-formatted files for further analysis. To accomplish this

goal, the Mapper class inherits all methods from the mapper python module. The OutputManager

class is responsible for showing a visualization for the data along with creating CSV-formatted

files corresponding to each node in the visualization. In the first step of the procedure, the data

analysis layer takes in an archived file (.gz extension) and reads in the data; as discussed in the

algorithm, the system stores all the data points into a matrix. A Mapper object would go through

all steps of the algorithm from filtering to clustering.

P a g e | 59

 One alternative way for implementing this TDA layer was to simply modify the source

code for the Python Mapper, changing the GUI to incorporate more options and more filter

functions. Instead, starting from scratch would be a more straightforward process since only

certain methods from the mapper python module were required. In order to know which methods

were necessary, the Python Mapper had a feature for generating standalone python scripts that

would accomplish the same task as using its graphical user interface. Using these python scripts

as a starting point would make the system more adaptive to future changes and allow integration

to be more direct.

6.2 ElasticSearch

Originating from Windows Event Logs, the cyber analytic data had contained logs of

process and user data recorded every second for the duration of a month. ElasticSearch, thus, was

a suitable tool for searching through and storing this data. Essentially, ElasticSearch was a

distributed search engine built for the cloud, providing features such as various API’s, long term

persistency, full-text search in real time, and the functionality of Lucene [Dixit, 2016]. These

features have attracted many large and small organizations to adopt ElasticSearch for not only a

search tool but also a data storage tool. This section will discuss the inner workings of

ElasticSearch by first introducing Lucene.

6.2.1 Foundation of ElasticSearch: Lucene

 Written in Java, Apache Lucene is a search engine library from which ElasticSearch

inherits its functionality. ElasticSearch, as a result, is able to index documents and search them

with its full text search capabilities [Dixit, 2016]. Before touching upon this functionality, there

are a few terms to understand. A document is known as “the main data carrier used for indexing

and search within ElasticSearch; alternatively, it is a JSON object that contains the actual data in

key value pairs” [Dixit, 2016]. Having the data formatted in JSON allows for fast lookup

P a g e | 60

because one can reference values by keywords, similar to indexing in a Python Dictionary data

structure or Hash table. Fields compose sections of documents, and they consist of a name and a

value. Finally, terms are units of search representing a word from the text and a token represents

“an occurrence of a term from the text of the field” [Kuc, 2015]. In other words, documents are

containers of information, fields provide organization for the information held within documents,

and terms are the indices involved in searching for documents.

 Keeping those basic concepts in mind, one can now understand how ElasticSearch

handles querying. Apache Lucene stores information using a data structure called inverted index;

this data structure “maps the terms in the index to the documents” [Kuc, 2015]. As a result, the

data in an inverted index relies heavily upon the terms rather than the documents, a major

difference from relational databases. The process of mapping the data in the documents to the

inverted index as well as changing the query text into terms for searching purposes is known as

analysis in the realm of ElasticSearch. Analysis has an important role in indexing and querying.

The analyzer, composed of a tokenizer and some number of filters, carries out this process. The

tokenizer component has the responsibility of dividing the text from documents into tokens,

preparing the tokens for filter processing [Kuc, 2015]. With Lucene at its roots, ElasticSearch is

able to build upon these foundations and become not only a search tool but also a data storage

tool.

6.2.2 Key Concepts of ElasticSearch

 To fully understand ElasticSearch, there are a few more concepts to learn in addition to

documents, tokens, and terms. Utilizing a bottom-up approach, an index is the next concept in

the structure of ElasticSearch architecture. An index is a “logical namespace under which

ElasticSearch stores data and may be built with more than one Lucene index using shards” [Kuc,

2015]. Similar to how data is read from and saved to databases, an index stores documents for

P a g e | 61

future queries. Shards, in turn, are containers that consist of Lucene segments; shards enable

ElasticSearch to distribute the data within an index and allow for a vast amount of storage space.

Moving up a level in the architecture, nodes represent a single instance of an ElasticSearch

server where one or more shards can reside. Types of nodes include master nodes, data nodes,

and tribe nodes. Finally, a set of ElasticSearch nodes is known as a cluster; with its distributed

nature and the collaboration between clusters, ElasticSearch can manage a large volume of data

and work done multimode clusters can go uninterrupted even during repairs or maintenance

[Kuc, 2015]. The system for TDA will incorporate the capabilities of ElasticSearch with the

Python Mapper in order for direct access to data.

6.3 Data Scientist’s Workflow

The main phases of the Data Analytics Lifecycle are discovery, data preparation, model

planning, model building, communication of results, and operationalization [EMC, 2015]. As

noted in an interview with an Ayasdi data scientist and various studies using Mapper, there is a

similar workflow that data scientists from Ayasdi have adapted for interpreting Mapper’s

constructed visualizations. This workflow begins with data conditioning and filtering and ends

with topological summaries of the data; repeating the process can lead to gaining a better

understanding of the data [Symonds, 2015]. The desired end result from following these steps is

to uncover patterns and predictors for the given data.

The first step before visualizing the data with the mapper is data preparation. Probably

the most critical task or at least most labor-intensive, data preparation affects the next stages in

data analysis because any data conditioning or data transforming would determine what patterns

are shown in subsequent models or summaries. In fact, teams aside from Ayasdi have commonly

spent 50% of a data science project’s time understanding the data and deciding how to represent

the given information in a way that conforms to the requirements of the project [EMC, 2015]. A

P a g e | 62

good portion of the project was spent learning how to represent each data point as an event log

from a host relaying messages within the network to the mapper. However, not all fields

provided in the event log were necessary for data analysis. The attributes that would be good

representatives of the data set were fields from the Data Model data structure.

The Data Model was an organization of objects that encapsulate consistent fields

throughout the event logs and possess both actions and specific fields. Some example objects

included processes, flows, drivers, files, and modules. Note that fields associated with the data

model object contained most if not all the information within the data set; the other fields

duplicated this information. Although each data model object (e.g. flows or processes) had

different actions and fields, the cleaned data set included all types of data model objects. In total,

each point in the data set would consist of 47 fields of only data model fields, timestamp, and

port number fields. In order to ensure that the amount of missing data after cleaning was much

lower, the validation method selected was to pull four sample data sets and compare the

percentage of blank cells in these samples with cleaned versions of the same four sample sets.

Each sample set contained 500 data points from different time intervals. This method would

quantify the amount of missing data in the process of cleaning.

Understanding the underlying structure of the output was a challenge by itself, so any

initial analysis resulted in more observations and questions rather than conclusions. Before

starting the analysis process, the first step in the workflow was to select initial features from the

data set. Then, using Mapper, the next step was to create topological summaries of the data based

on the chosen features. Any non-trivial topological features like loops, flares, or connected

components were significant features to highlight during analysis of the output. Additionally, any

localizations of data points represented anomalous or interesting behavior. Afterwards, the next

P a g e | 63

and probably the most difficult step was to generalize the underlying reasons for both the

structure of the output and the groupings of data points. Knowing the properties highlighted by

the filter function also contributed to the understanding of the output. Once identifying the

common features resulting from the localizations, the final steps were to utilize this information

to develop a better topological summary and to repeat this process. The goal of the following

case studies was to explore the cyber data and observe the Mapper implementation’s ability to

represent the data.

6.4 Case Studies with Data
 Based on the numerous applications of TDA, the desired result with this data was a

visualization that identified a distinction between malicious activity and benign events or a

taxonomy of events on a network. To reach such a result required much experimenting with the

data. Experiments consisted of changing filter functions, using a combination of filter functions,

or even adjusting the parameters for each filter function.

6.4.1 Continuous vs. Categorical

As previously stated in the system design section, parsing of the data was either through

enumeration of values within each column/attribute or by computing a vector of continuous

values for each data point. By using both methods, the result was having two different data

transformations on the original data set. Each would require its own measure of distance or

similarity; for instance, the continuous values used Euclidean distance and data set with

categorical data utilized the Hamming metric. In terms of filter functions, the case study would

use the L-Infinity Eccentricity function in order to detect any data points distinct from the center

of data. Comparing the resulting visualization should have indicated whether or not the Mapper

algorithm was better equipped to finding malicious activity using only the enumeration or using

another level of pre-processing.

P a g e | 64

6.4.2 L-Infinity vs. L-1 Filters

 The difference between the L-Infinity and L-1 filter functions is that the L-Infinity

function computes the maximum distance between a given data point and the center of data,

whereas the L-1 filter function computes Euclidean distance between a given data point and the

center. An alternative way to observe this difference is that the norm of a vector with p = 1

differs from the infinity norm in a similar fashion. By comparing the output after filtering by

both functions, there should be evidence supporting whether or not the L-1 filter overlooks any

interesting groupings/topological features or vice versa.

6.4.3 Experimenting with Resolution

 Since the number of intervals and percentage of interval overlap affects the resolution of

the data visualization, experimenting with these parameters would provide insight into how

much of an impact these parameters have upon the output. Taking the resulting visualization

from Figure 9, this brief case study focused on the 2-Torus because it is a well-known object

studied in topology. Under the same filter and clustering method, the modifications to the

parameters consist of increasing and decreasing only the intervals, increasing and decreasing

only the overlap, and tweaking both parameters together. One possible outcome would be that

decreasing the overlap should result in more disconnected components in the network.

6.4.4 Applying Mapper to WBCD Data

When testing the capabilities of the Mapper implementation, using the method on medical

data seemed to be a good approach given its other applications in the field. The Wisconsin Breast

Cancer Diagnostic (WBCD) data set was a good candidate since each data point had labels for

ground truth and contained only real-valued features. Coming across the data set in Kaggle, there

was already CSV-formatted file to parse on and allow the Mapper to process. There were 569

P a g e | 65

data points generated from 569 patients, 212 with cancer and 357 patients with fibrocystic breast

masses (benign) [Wolberg, 1995].

Features in the data included ID number, diagnosis (Boolean value for malignant or

benign), and ten real-valued features computed from a digitalized image of a fine needle aspirate

(FNA) of a breast mass. These ten features describe cell nuclei characteristics evident within the

image; computed for each cell nucleus, they are radius, texture, perimeter, area, smoothness,

compactness, concavity, concave points, symmetry, and fractal dimension [Wolberg, 1994 and

Wolberg, 1995]. More information about these features can be found in both articles by W. H.

Wolberg listed in the List of References, but essentially radius and area describe nuclear size of

the cell and the rest refer to the nuclear shape. For each feature on each image, there is a mean,

worst, and standard error value, resulting in a total of 30 features in addition to the ID number

and diagnosis.

In applying the Mapper method, 299 data points made up the testing set, consisting of 256

benign points and 43 malignant points. The parameters involved were the Chebyshev metric, the

Singular Value Decomposition filter function, and a balanced 1-dimensional cover. Coloring on

different features showed how the method created groupings of the data. After finding these

features, reading through relevant medical literature pertaining to this data set verified that these

features were significant. The last step in this application of Mapper was to confirm any findings

with a validation set composed of the remaining data points.

6.5 Evaluation of Visualizations

 Initial observations of the Mapper output could be confusing if not all factors are

considered. Interpreting the visualization required understanding what the selected filter function

conveys about the data, how transformations of the data change its meaning, how different

colorings of the data may provide some insight into the data, and various other aspects. Since

P a g e | 66

working the synthetic cyber data had been an exploratory effort, evaluating the visualizations

was a challenge, but there were three main aspects that determined whether or not the output was

useful or meaningless. These aspects included localizations/groupings or malicious activity,

number of significant topological features like loops or flares, and the persistence of shape

evident in the visualization after a few perturbations in parameters.

 For Mapper and other clustering methods, any localizations or groupings of red team

activity would indicate that there were certain factors distinguishing them from normal user

behavior; these factors/features would most likely be indicators of cyber-attack. Alternatively, if

the chosen filter function highlighted the probability of malicious activity and the resulting

visualization was able to group all adversarial activity in high-valued nodes, then that

visualization should provide valuable insight into what are good cyber analytics for cyber threats.

Thus, the accuracy or ability to create pure groupings within the visualization was an important

component of a good visualization.

 As previously stated about the Ayasdi data workflow, looking for topological features in

the Mapper visualization would be essential in comprehending the meaning behind the shape of

the data. These topological features may possibly highlight specific behavior within the data.

Most notably, many applications of Mapper like the Breast Cancer study and study with diabetic

patients have identified these special topological features to be loops (continuous circular

segments) or flares (long linear segments) [Lum, 2013]. Loops in the Mapper output have

typically inferred periodic behavior within the data. For example, a student used Ayasdi’s

commercial product to represent four decades of macroeconomic and market data as a large

circular loop; the student later discovered that this shape represented the economic cycle by

identifying its distinct stages such as expansion, contraction, and recovery within the network

P a g e | 67

[Ramanan, 2016]. Flares, on the other hand, usually represent a taxonomy of subgroups within

the data like in the Breast Cancer tumor study and market data study. Now, identifying

topological features within the output composes a significant part of the analysis, but one must

also validate the persistence of the feature.

 The final method of evaluating a visualization was observing how the visualization

changes after experimenting with the parameters. Such parameters included the number of

intervals and the percentage of overlap. Increasing or decreasing the intervals controlled the

resolution of the visualization, meaning that less intervals resulted in less nodes in the output but

the nodes became larger. In contrast, more intervals led to several smaller nodes. Having a high-

resolution in the visualization could possibly allow the user to detect more topological features,

but such features would be insignificant compared to some larger topological feature.

Concerning overlap, this parameter controlled how much the intervals were allowed to intersect

each other. An overlap greater than 50% could result in much denser visualizations where all

nodes connect to more than one node, whereas an overlap less than 50% could lead to more

disconnected networks. The next chapter will discuss the results of creating data visualizations

based on the data sets and their evaluations.

P a g e | 68

7 Results
 Before describing the work done on the cyber data and the output from the Python

Mapper, note that this work has been largely exploratory so far and the following visualizations

may not seem too interesting at first, but such is the nature of the methodology behind Mapper.

The focus now is to highlight the progress of developing cyber analytics including work

completed for data preparation and some initial case studies on the cyber data. Evaluation of the

data visualizations will consist of the three components of a useful visualization described in the

previous chapter.

7.1 Minimizing Missing Data
 As part of understanding data and the fields, one of the first steps to conditioning the

cyber data was selecting the data model fields to keep consistency throughout the data set. Table

4 and Table 5 show the results from the brief study described in the Methodology Chapter.

Particularly, Table 4 displays the number of blank cells contained in the data before and after

cleaning as well as the percentage of missing data of the whole data set. Each sample data set,

originating from a simulation occurring from March 1, 2016 and March 2, 2016, had 230

columns/fields and 500 data points, resulting in 115,000 cells in total. According to Table 5, the

average percentage of blank cells before conditioning was 73.5% and the average percentage

afterwards was 51.4%, an average drop of 22.1% in missing data.

Missing Data Results

 Subset1 Subset2 Subset3 Subset4

Number of Blanks Cells (Before) 84291 84762 84238 84755

Percentage of Blank Cells (Before) 73.296 73.706 73.25 73.7

Number of Blank Cells (Cleaned) 12996 13266 12919 13206

Percentage of Blank Cells (Cleaned) 50.964 52.023 50.662 51.788

Percentage Difference 22.332 21.683 22.588 21.912
Table 4 Missing Data Amounts and Percentages

P a g e | 69

Population Means and Std. Dev.

Average Number of Blanks (Before) 84511.5

Avg. Percentage of Blanks (Before) 73.5

Average Number of Blanks (Cleaned) 13096.8

Avg. Percentage of Blanks (Cleaned) 51.4

Average Percentage Difference 22.1

SDEV Number of Blanks (Before) 286.0

SDEV Number of Blanks (Cleaned) 165.7

SDEV Percentage of Blanks (Before) 0.249

SDEV of Percentage Difference 0.407

Table 5: Missing Data Means and Std. Dev.

The data sets that trimmed off any non-data model field were left with 51 attributes where four

of these fields held blank columns. Even so, missing values composed approximately half of data

samples; the reason, again, was that each set contained various data model object that only

possessed values for a distinct collection of fields. For example, flow object typically had values

for IP address fields and port name fields. When transforming the data, the Data Extraction

Layer section explains how it handles missing values. Aside from the percentage of missing

values after conditioning, these results still reinforce the motivation to remove all fields except

data model fields.

7.2 Applying Mapper to WDBC Data

The results from applying Mapper to this data set were good in terms of creating groupings

of benign and malignant data points. Based on previous research and applications of mapper,

flares or branches of one color typically indicated clear distinctions/groupings defined by the

Mapper. With a one-dimensional balanced cover of 15 intervals and 50% overlap, Biggest Gap

cut-off, and single-linkage clustering, the Mapper created a network (tree) of three flares. Figure

13 shows this result, exhibiting how Mapper grouped all benign points in the right branch

(shown in blue) and created two other branches for malignant data points (shown in red).

P a g e | 70

Figure 13: Default Coloring (Left), Coloring by Diagnosis (Right)

 After coloring the graph by each of the 30 features separately, three good features that

colored the malignant and benign branches differently were the mean texture, worst area, and

worst smoothness. Observe in Figure 14 that the branch containing benign data points have low

values for the three features, whereas the other branches/flares have a combination of low and

high values. In particular, the middle flare contains data points with high values for worst

smoothness, but low values for the other two features. According to an article citing this dataset

titled Computer-Derived Nuclear Features Distinguish Malignant from Benign Breast Cytology,

an inductive machine learning model using these three features achieved a cross-validation

classification accuracy of 97.5% [Wolberg, 1994].

Figure 14: Coloring by Mean Texture (A), Coloring by Worst Area (B), and Coloring by Worst Smoothness (C)

P a g e | 71

Figure 15: Validation Set; Default Coloring (Left), Coloring by Diagnosis (Right)

In addition to these three features, the branch containing benign data points had high values in

the following features: Standard deviation Smoothness, Standard deviation Symmetry, and

fractal dimension. Characteristics of the left branch (Figure 14) containing malignant points were

high values for worst radius and worst parameter.

In the validation set consisting of 270 data points, shown in Figure 15, there is a similar

structure of three flares as in Figure 14. The resulting output has the same parameters as the

previous figure; notice again that in the coloring by diagnosis, benign and malignant data points

have been separated into different branches. However, in this case, the middle branch has a

mixture of benign and malignant data points.

7.3 Visualizations on Cyber Data
 The data set utilized held 4,687 data points that recorded activity from both red team

agents, blue team agents, and neutral hosts. Data points consisted of event logs that helped

monitor the network for intrusions, credential escalation, logins, and error reports. For this

simulation, there were in total 69 events where the red team agents were successful in carrying

out an assigned task; these data points imitated malicious events on the network. However, only

11 out of 69 red team data points appeared in the 4,687 data points. The following sections

describe and evaluate visualizations using different filter functions and parameters on the cyber

data set.

P a g e | 72

7.3.1 Continuous vs. Categorical

 Since the fields in the data set were mostly composed of nominal data types like process

ID’s or event codes, an initial visualization should check if malicious activity could be localized

by the differences for each field. The first visualization utilized the L-Infinity eccentricity filter

function with the Hamming metric and single-linkage clustering. For the resolution, this

visualization used 60 intervals and 50% overlap. Figure 16 and Figure 17 exhibit the output from

Mapper colored by default values, Analytic 1, Analytic 2, and Analytic 3. Knowing which data

points were red team agents, the blue region on the left side of the network had no malicious data

points. The turquoise region excluding nodes in the loops contained two processes executed by

the same red team host. In the turquiose loops, there was a powershell command executed by the

same red team host and a net command under another red team host. A net command, used in the

command prompt, manages many aspects of a network. 3 unknown processes executed by red

team agents and 6 powershell commands composed the malicious activity located in the yellow

region. Finally, the orange region contained 1 unknown process under a red team agent and,

specifically, the orange loop contained 1 powershell command.

Figure 16: Default Coloring (Top) and Coloring by Analytic 1 (Bottom)

P a g e | 73

Overall, there were three loops in the output and 22 disjoint components located in the middle of

the network. Also, notice that the coloring by Analytic 1 (Figure 16) and Analytic 2 (Figure 17)

have a concentration of likely malicious activity in the corresponding turquoise region of the

default coloring.

Figure 17: Coloring by Analytic 2 (Top) and Analytic 3 (Bottom)

 The next set of visualizations were from transforming each data point into continuous

vectors whose components were based on some likelihood of malicious activity. As stated in the

Case Studies with Data section, this transformation was a way to incorporate meaning to each

data point instead of an enumeration of values. Each of these visualizations used a specific field

as a filter function rather than any filters defined in the implementation. For example,

considering the first visualization based on Analytic 1, the correspodning filter function would be

a mapping between a data point and its score for Analytic 1. Again, the parameters included 60

intervals, 50% overlap, and single- linkage clustering.

P a g e | 74

Figure 18: Coloring by Default (Top), Analytic 2 (Middle), and Analytic 3 (Bottom)

Again, Analytic 1 detects processes that spawn a command prompt. Most notably, Figure 18

shows that the visualization for Analytic 1 possesses two large circular loops and three other

smaller loops. Reviewing the data points in the first large loop on the left side of the output, there

were two unknown processes under two different red team host and 7 instances of non-malicious

powershell commands. The second largest loop had 2 unknown processes by two different red

team hosts and 2 net commands. For both smaller loops on the right side, there were no

malicious data points. There were, however, 2 powershell commands by a red team agent in the

smallest loop on the left.

P a g e | 75

Figure 19: Coloring by Default (Top), Analytic 1 (Middle), and Analytic 3 (Bottom)

Next, Analytic 2 involved detecting powershell executions. Its resulting visualization had a

similar structure to the first categorical visualization. The first large loop contained 2 unknown

processes by two different red team agents, 1 net command instance, and 1 powershell execution.

Both loops beside each other shared a red team data point and 1 instance of a powershell

execution, but the smaller loop on the right had another powershell execution and another

unknown process. As for the smaller loops on the right side of the graph, the first loop from the

left held 2 unknown processes and 3 instances of net command whereas the last loop contained

no malicious activity. Observing the red region in Analytic 2 visualization revealed that there

were 3 red team powershell executions.

P a g e | 76

Figure 20: Coloring by Default (Top), Analytic 1 (Middle), and Analytic 2 (Bottom)

Finally, this visualization pertained to Analytic 3; Analytic 3 had the purpose of detecting

Session Message Block write requests. Figure 20 shows that there was 1 large loop and 4 other

smaller loops scattered along the graph. Starting with the largest loop, there was only 1 instance

of a powershell execution. Moving from right to left, the next loop contained 1 unknown process

and a net command, whereas the third loop had 1 unknown process and 2 powershell executions.

There was 1 net command in the fourth loop, but the fifth loop held no malicious data points.

Concerning the red region of the default coloring, there were two instances of unknown

processes under the same red team agent. One observation about the loops in all data

visualizations was that the part of the loop with smaller nodes typically consisted of logins,

logoffs, and processes spawned from a network monitoring program. Note that the network

monitoring program, called Splunk, was not indicative of malicious activity. After comparing the

categorical and continuous filters, the next step outlined in the Methodology chapter was

exploring the difference in visualizations between eccentricity filters.

P a g e | 77

7.3.2 L-Infinity vs. L-1 Filter Functions

 The visualizations for this section involved using both L-Infinity and L-1 eccentricity

filters and comparing them to showcase any differences in structure or localizations of data.

Pertaining to the transformed data used, only the categorical version of the cyber data by value

enumeration was necessary for this case study. Intervals and overlap were fixed at 60 and 50%,

respectively.

Figure 21: Visualization using L1-Eccentricity Filter

As one can see from Figure 21, the structure of the graph is different from the one found in

Figure 16. There was only one loop in this visualization and the color scheme only goes from

blue to light green; in contrast, the visualization in Figure 11 had four loops and its color scheme

spanned the whole color spectrum (i.e. red to blue).

7.3.3 Results for Modifying Parameters

 The following graph outputs from Mapper were results for the brief case study of

experimenting with intervals and the number of overlap amount. In addition to using sampled

data points of 2-Torus, choices for filter function and metric remain the same as outlined in

Section 4.4.1. Some features to observe would be that loops in the output mostly occur in the

same colored regions where the single large loop in Figure 9 resided.

P a g e | 78

Figure 22: Visualization from Section 4.4

Figure 23: Intervals: 30 and Overlap: 40%

P a g e | 79

Figure 24: Intervals: 10, Overlap: 40%

From Figure 23 and Figure 24, these visualizations were the outcomes of increasing and

decreasing the number of intervals. The increase in intervals seemed to have split the network

into two components. Figure 24, in contrast, has remained as one connected component but has

fewer nodes in the graph.

Figure 25: Intervals: 18, Overlap: 80%

P a g e | 80

Figure 26: Intervals 18, Overlap: 20

Exhibited in Figure 25 and Figure 26, the visualizations were showcasing the result of increasing

and decreasing percentage overlap. Both graphs can be seen to be one connected component, but

the visualization from Figure 25 is much denser as a result of the 80% overlap. The loop from

the default parameters remained within the visualization from Figure 25 but does not appear with

an overlap of 20.

Figure 27: Intervals: 30, Overlap:10%

P a g e | 81

The purpose of this last visualization was observing the deviations from the original graph after

increasing the intervals but decreasing the percentage overlap. Looking at Figure 27, one can

clearly see that there are multiple connected components; two components that stand out were

the blue and red subgraphs. After reviewing all of these data visualizations, one final observation

from Figure 23, Figure 26, and Figure 27 would be that color regions where nodes branch off of

each other are the same color regions where the loop occurs in the other visualizations.

P a g e | 82

8 Conclusions and Future Work
 After reading about the successes of the Mapper on various data sets, the visualizations

based on the cyber data should have created distinct groupings of malicious and benign behavior

or track malicious activity and lateral movement. The next steps afterwards should have been to

interpret the underlying reason for that behavior and develop new cyber analytics. Due to the

exploratory nature of the research, unfortunately, none of the analysis on the visualizations

provided evidence of such phenomena. Any number of factors, like insufficient amount time

spent on data preparation or inadequate choices in filter functions, could have led to this

outcome. However, there were other findings and conclusions that resulted from progress done

in the Results chapter.

8.1 Finding 1: Fields Besides Data Model Can Be Removed

 After analyzing the distribution of the missing data from four sample data sets of the

same size, the conclusion was that the data set extracted directly from the cloud storage service

could reduce its dimensionality further without loss of information. Removing any fields other

than data model variables, timestamps, and port numbers would be one way of doing so. In

addition to contributing to an approximate 22% drop in missing values in the data set, removing

these fields would also rid the data of duplicated information. Another hidden benefit of leaving

out these fields would be a reduction in waiting time for extracting the data from the cloud; not

requesting for these fields would be an optimization decision.

8.2 Finding 2: Similar Structures in Categorical vs. Continuous Comparisons

 Similar to transformations in the Breast Cancer study, using the analytics to transform the

data points into vectors of probabilities was a worthwhile data transformation. Going back to the

data visualizations in the Results chapter, notice that they have similar structures in that each one

has 3-4 loops. Each visualization had different filter functions that highlighted different

P a g e | 83

properties on the same data set, but there were loops in all of them with parameters for intervals

and overlap fixed. Coincidence or not, the loops in each visualization confirm some cyclic

behavior prevalent in the cyber data. What cyclic behavior specifically would require further

analysis and a more time spent in data preparation.

8.3 Finding 3: Loops in the Visualizations were not Indicators of Attack

 Although the analytic-based visualization consisted of loops that contained some

malicious data points, there were several other benign and noisy data points accompanying them.

The data set had much fewer red team data points in comparison to the rest of the data. Even if

malicious data points appeared in any of the loops, it was quite challenging to infer the

underlying reasons as to why these point became grouped together. Thus, whether or not these

circular loops represented any malicious behavior was inconclusive. However, the existence of

these loops in all visualizations of the cyber data was significant. This notion of having fewer

malicious data points leads to the next finding.

8.4 Finding 4: Data Requires More Malicious Points

 As stated in the previous finding, the number of normal user and blue team data points far

outnumber the red team data points. Of course, this situation would replicate a real-world

scenario where adversarial activity can be lost in a wave of network activity. However, the

problem with this proportion of red team data to normal data was that any groupings of the data

did not provide any evidence for a cyber analytic. Other applications of the Mapper noted in web

blog posts by Gunnar Carlsson and Ramanan drew upon sufficient proportions of all possible

subgroups within the data. For example, the data used to represent the economic cycle originated

from Macroeconomic data spanning 1972 to 2015, touching upon different stages of the

economic cycle. In order for the Mapper to incorporate similar localizations of malicious data

P a g e | 84

points, future applications of Mapper on cyber data should require more instances of malicious

activity.

8.5 Future Work
 Future work should build upon the findings and work done in this project and progress

towards developing cyber analytics for cyber threat intelligence. One direction for further study

would the incorporation of machine learning into the Mapper workflow. In terms of filtering, a

model trained using a machine learning algorithm and labeled cyber data can act as a filter

function for assigning numerical scores to each data point based on likelihood of malicious

intent. Of course, data preparation should entail labeling each data point on whether or not it was

a blue team or red team member. Once new indicators of attack have been created from analysis,

a new model trained using these indicators would act as part of a cyber detection system.

Another idea for future work is developing a better data transformation that would highlight the

purpose of each data point and its impact on the network. Although transforming the data into

continuous vectors using available cyber analytics was interesting notion to experiment with the

Mapper, this transformation was only one way of incorporating meaning into each data point

P a g e | 85

9 List of References

Australian Cyber Security Centre (ACSC) (2016). ACSC threat report 2015. Canberra:

Australian Cyber Security Centre. Retrieved from
https://www.acsc.gov.au/publications/ACSC_Threat_Report_2015.pdf.

Ayasdi (2016). The Leader in Topological Data Analysis. Retrieved from
https://www.ayasdi.com/company/

Bayless, R. (2015). Topological analysis of MOBILIZE Boston data (Doctoral dissertation,
 California State Polytechnic University, Pomona).

Bere, M., Bhunu-Shava, F., Gamundani, A., & Nhamu, I. (2015). How Advanced Persistent

Threats Exploit Humans. International Journal of Computer Science Issues (IJCSI),
12(6), 170.

Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society, 46(2),
255-308.

Carlsson, G. (2015, Aug. 31). Topological Modeling and its Use [Web Blog Post].

Retrieved from https://www.ayasdi.com/blog/www-ayasdi-comblogpredictive-analytic

 s/topological-modeling-and- its-uses/

Carlsson, G. (2014). Topological pattern recognition for point cloud data. Acta Numerica, 23, pp

289-368. DOI:10.1017/S0962492914000051

Chintakunta, H., Robinson, M., & Krim, H. (2016, March). Introduction to the special session on
Topological Data Analysis, ICASSP 2016. In 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (pp. 6410-6414). IEEE.

Dalziel, H., & Books24x7 IT Pro Collection. (2015). How to define and build an effective cyber

threat intelligence capability. Waltham, Massachusetts: Syngress.

Dey, T. (2013, August). Computational Topology and Data Analysis [PDF documents].

Retrieved from http://web.cse.ohio-state.edu/~tamaldey/course/CTDA/CTDA.html

Dietrich, D., Heller, B., Yang, B., Books24x7 IT Pro Collection, EMC Education Services,
& Safari Books Online. (2015). Data science & big data analytics: Discovering,
analyzing, visualizing and presenting data (1st ed.). Indianapolis, IN: Wiley.

Dixit, B., & Safari Books Online. (2016). ElasticSearch essentials (1st ed.). Birmingham: Packt

Publishing, Limited.

Edelsbrunner, H., & Harer, J. (2010). Computational topology: an introduction. American

Mathematical Soc..

EMC. (2015). Data science & big data analytics: Discovering, analyzing, visualizing and

P a g e | 86

presenting data. (Data science & big data analytics.) Indianapolis, Indiana: Wiley.

Fireeye (2013, February) APT1: Exposing One of China’s Cyber Espionage Units. Retrieved
from

https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-
report.pdf

Fireeye (2015, July). (APT29) Hammertoss: Stealthy Tactics Define a Russian Cyber Threat
Group. Retrieved from https://www2.fireeye.com/APT29-HAMMERTOSS-WEB-2015-

RPT.html
Ghrist, R. (2008). Barcodes: the persistent topology of data. Bulletin of the American

Mathematical Society, 45(1), 61-75.

Haggard, S., & Lindsay, J. R. (2015). North Korea and the Sony Hack: exporting instability

through cyberspace. East-West Center.

Hegarty, F. (2012). Computational Homology of cubical and permutahedral complexes

(Doctoral dissertation, National University of Ireland, Galway).

Kim, H. E. (2015). Evaluating Ayasdi’s Topological Data Analysis for Big Data. Frankfurt,
Germany: Goethe University Frankfurt. Retrieved from http://www.bigdata.uni-
frankfurt.de/wp-content/uploads/2015/10/Evaluating-Ayasdi%E2%80%99s-Topological-

Data-Analysis-For-Big-Data_HKim2015.pdf

Kraft, R. (2016). Illustrations of Data Analysis Using the Mapper Algorithm and Persistent

Homology.

Kuc, R., Rogozinski, M., Hussain, A., Youe, R., Srivastava, S., Siddiqui, S.. Safari Books
Online. (2015). Mastering elasticsearch: Further your knowledge of the elasticsearch
server by learning more about its internals, querying, and data handling (Second ed.).

Mumbai, [India]; Birmingham, England; Packt Publishing.

Langner, R. (2011)."Stuxnet: Dissecting a Cyberwarfare Weapon," in IEEE Security & Privacy,
vol. 9, No. 3, pp. 49-51. DOI: 10.1109/MSP.2011.67. Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5772960&isnumber=5772950

Lum, P. Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M., ... &

Carlsson, G. (2013). Extracting insights from the shape of complex data using topology.
Scientific reports, 3.

Marinos, L., Rekleitis, E., Belmonte, M. A., & European Union. (2016 January). ENISA Threat
Landscape 2015. Heraklion: ENISA. Retrieved from:

https://www.enisa.europa.eu/publications/etl2015

Morris, S. A., & University of New England. (1989). Topology without tears.

Armidale [N.S.W.]: University of New England.

https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www2.fireeye.com/APT29-HAMMERTOSS-WEB-2015-RPT.html
https://www2.fireeye.com/APT29-HAMMERTOSS-WEB-2015-RPT.html
http://www.bigdata.uni-frankfurt.de/wp-content/uploads/2015/10/Evaluating-Ayasdi%E2%80%99s-Topological-Data-Analysis-For-Big-Data_HKim2015.pdf
http://www.bigdata.uni-frankfurt.de/wp-content/uploads/2015/10/Evaluating-Ayasdi%E2%80%99s-Topological-Data-Analysis-For-Big-Data_HKim2015.pdf
http://www.bigdata.uni-frankfurt.de/wp-content/uploads/2015/10/Evaluating-Ayasdi%E2%80%99s-Topological-Data-Analysis-For-Big-Data_HKim2015.pdf
http://ieeexplore.ieee.org.ezproxy.wpi.edu/stamp/stamp.jsp?tp=&arnumber=5772960&isnumber=5772950
https://www.enisa.europa.eu/publications/etl2015

P a g e | 87

Müllner, Daniel and Babu, Aravindakshan (2013). Python Mapper: An open-source toolchain for
data exploration, analysis and visualization. Retrieved from http://danifold.net/mapper.

Nicolau, M., Levine, A. J., & Carlsson, G. (2011). Topology based data analysis identifies a

subgroup of breast cancers with a unique mutational profile and excellent survival.
Proceedings of the National Academy of Sciences, 108(17), 7265-7270.

Ramanan, D. (2016, May 11). Student Finds Shape Has Meaning with Four Decades of
Macroeconomic Data [Web Blog Post]. Retrieved from

https://www.ayasdi.com/blog/financial-services/student-finds-shape-meaning-four-
decades-economic-data/

Singh, G., Mémoli, F., & Carlsson, G. E. (2007, September). Topological Methods for the
Analysis of High Dimensional Data Sets and 3D Object Recognition. In SPBG (pp. 91-

100). Retrieved from https://research.math.osu.edu/tgda/mapperPBG.pdf

Symonds, Jonathan (2015, April). KDnuggets InterviewL Anthony Bak, Ayasdi on How to Get

Started on Topology [Blog Post]. Retrieved from
https://www.ayasdi.com/blog/culture/kdnuggets-interview-anthony-bak-ayasdi-get-

started-topology/

Tabish, S. M., Shafiq, M. Z., & Farooq, M. (2009, June). Malware detection using statistical

analysis of byte-level file content. In Proceedings of the ACM SIGKDD Workshop on
CyberSecurity and Intelligence Informatics (pp. 23-31). ACM.

Wang, K. G. (2012). The Basic Theory of Persistent Homology. Retrieved from

http://math.uchicago.edu/~may/REU2012/REUPapers/WangK.pdf

Wildberger, Norman [njwildberger]. (2012) Algebraic Topology [Youtube Lecture series].

Retrieved from https://www.youtube.com/playlist?list=PL6763F57A61FE6FE8.

Wolberg, W. H., Street, W. N., & Mangasarian, O. L. (1994). Machine learning techniques to

diagnose breast cancer from image-processed nuclear features of fine needle

aspirates. Cancer letters, 77(2), 163-171.

Wolberg, W. H., Street, W. N., Heisey, D. M., & Mangasarian, O. L. (1995). Computer-derived

nuclear features distinguish malignant from benign breast cytology. Human

Pathology, 26(7), 792-796.

Zomorodian, A. J. (2005). Topology for computing. Cambridge, UK: Cambridge University

Press.

http://danifold.net/mapper
http://danifold.net/mapper
https://research.math.osu.edu/tgda/mapperPBG.pdf
https://research.math.osu.edu/tgda/mapperPBG.pdf

P a g e | 88

Appendices
Appendix 1 – Install Python Mapper Guide

Requirements for Python Mapper
 Python 2.6 or higher. The GUI needs Python 2 since it depends on wxPython and

PyOpenGL; Python Mapper itself can be run under Python 2 and Python 3. Recommended to
install pip if it is not already included in Python distribution. (Without pip, replace all

instances of pip in the instructions with easy_install)

 NumPy and SciPy

 Matplotlib

 Graphviz

 Optionally, cmappertools (Mullner’s Python module written in C++) that replaces slower
Python routines with fast, parallelized C++ algorithms.

 Fastcluster is another Python module written in C++ for fast hierarchical clustering.

Standard installation

Simply type

$ pip install mapper --user

on a command line. If everything worked, you may stop here and start using Mapper. The steps

below describe alternatives and optional steps.

Windows Installation

Here are step-by-step instructions to install Python Mapper and all its dependencies in Windows.
If there are errors with rejected connections, look to the Troubleshooting section. Keep in mind

that Python Mapper does not contain any platform-specific code and depends only on cross-
platform packages.

1. Download and install Python 2.

Go to https://www.python.org/downloads/windows/. Go to “Latest Python 2 Release”.

Download the “Windows x86-64 MSI installer”. Start the installer and follow the

instructions.

2. Download and install wxPython from http://wxpython.org/download.php. Make sure to

match your Python version and architecture (32/64bit).

3. Download the Windows NumPy package

from http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy. You’ll need the package later.

Again, make sure to match your Python version and architecture.

Note: Download version with 27 if Python 2.7, 34 if Python 3.4

https://www.python.org/downloads/windows/
http://wxpython.org/download.php
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy

P a g e | 89

4. Download the Windows SciPy package

from http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy.

Note: Download version with 27 if Python 2.7, 34 if Python 3.4

5. Download and install Graphviz from http://www.graphviz.org/Download.php.

6. Open a Command Prompt.

7. The directory with the Graphviz executables must be appended to the PATH environment

variable. There are lots of tutorials for this step in the internet, look at section below.

(On my system, the directory is C:\Program Files (x86)\Graphviz2.38\bin.)

8. Close the command prompt and open a new one to process the changes in

the PATH variable.

9. Check that the search path is configured correctly by typing:

neato -?

If Graphviz’s “neato” program responds with a help message, everything is alright.

10. Go to the Scripts folder in your Python installation, eg.:

cd /d C:\Python27\Scripts

11. Type: (If the following command does not work because of SSL certificates or rejected

connection, include SSL certificates in C:\Python27\Lib\site-packages\pip_vendor\requests)

pip install wheel

12. Install the downloaded NumPy and SciPy packages as follows:

pip install C:\Users\MYUSERNAME\Downloads\numpy-A.B.C+mkl-cp2X-none-

win_amd64.whl

pip install C:\Users\MYUSERNAME\Downloads\scipy-A.B.C-cp2X-none-

win_amd64.whl

13. Install the remaining Python packages:

pip install matplotlib

pip install pyopengl

pip install fastcluster

pip install mapper

pip install cmappertools

14. The Mapper GUI should work now:

http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy
http://www.graphviz.org/Download.php

P a g e | 90

C:\Python27\Scripts\MapperGUI.py

I recommend to always execute the GUI from the command line. This way, debugging

information is displayed on the terminal if an error occurs.

15. Optional: You may want to add the Python Scripts directory to the search path, in the same way

as you did it for Graphviz. On my system, it is C:\Python27\Scripts. This way, the Mapper GUI

can be started by the command MapperGUI.py from any directory.

Editing PATH variable for Windows:
1. Go to My Computer > System Properties > Advanced System Settings > Click on

Environment variables
2. Look for Path in System Variables > Select > Click on Edit…
3. To add in another path, append a semi-colon to the last entry and paste in the path to your

desired directory (which contains .exe or other file).

Installation: Ubuntu
Note that installation has been tested with Ubuntu 14.04, 15.04, and 16.04.

1. If you have not already done so, go to “System Settings” -> “Software and Update” and
activate the item “Community-maintained free and open-sourced software (universe)”

WARNING: The universe component is a snapshot of the free, open-source, and Linux
world. It houses almost every piece of open-source software, all built from a range of public

P a g e | 91

sources. Canonical does not provide a guarantee of regular security updates for software in
the universe component, but will provide these where they are made available by the

community. Users should understand the risk inherent in using these packages.
2. Open a terminal and enter the following commands:

$ sudo apt-get install python-numpy python-scipy python-matplotlib python-

wxtools \

python-opengl python-pip graphviz libboost-all-dev

$ pip install fastcluster --user

$ pip install mapper --user

$ pip install cmappertools --user

3. Optional: Add the directory $HOME/.local/bin to the search path so that the Mapper GUI can

be started more conveniently.

To do so, open the file .bashrc in your home directory, e.g. by

$ gedit ~/.bashrc

and insert the following lines at the end:

set PATH so that it includes user's private bin if it exists

if [-d "$HOME/.local/bin"] ; then

 PATH="${PATH+$PATH:}$HOME/.local/bin"

fi

Now save the file and type

$ source ~/.bashrc

in the terminal window to read the modified file in.

4. Try Mapper out by typing MapperGUI.py into the command line.

Mac OS
 There are no installation instructions for Mac OS as of October 2016

 You can find installation tips at: http://danifold.net/mapper/index.html

http://danifold.net/mapper/index.html

P a g e | 92

Appendix 2 – User Guide for TDA System

About
The Mapper algorithm is a method for topological data analysis invented by Gurjeet Singh,

Facundo Mémoli and Gunnar Carlsson. The Mapper method is the key part of a processing chain

with (minimally) filter functions, the Mapper algorithm itself and visualization of the results.

Python Mapper is a realization of this toolchain, written by Daniel Müllner and Aravindakshan

Babu. It is open source software and is released under the GNU GPLv3 license.

Elastic Mapper is a tool that incorporates automation to the Python Mapper. First, Elastic

Mapper allows the user to pull data directly from a cloud storage service and parses the data into

a readable-format for the Python Mapper. Then, Elastic Mapper outputs a visualization of the

data where the user can interact with the nodes of the visualization; this interactivity is inherited

from Python Mapper.

Requirements

 Python 2.7 or greater

 Installation of Python Mapper allows this system to user Mapper module and wxPython

module

 Directories that should be Elastic Mapper’s working directory are Nodelist, DATA,

ES_preconfig, and Mapper_preconfig

 Python Mapper only accepts .gz files of CSV-formatted files (values within CSV files

must all be float data types)

Begin invoking the application by either double-clicking TDA_Sys_GUI.py or running

TDA_Sys_GUI.py in the same directory with all the source code files.

Data Extraction

P a g e | 93

Starting from Scratch

1. In order to pull from the Elasticsearch cluster, either press on one of the pre-

configurations or press the Browser button to select another configuration for the

parameters. User can also generate a blank configuration file and replace Null keywords

with desired input.

The parameters in the configuration files are parameters used to select the desired

Elasticsearch server, desired cluster, and information used for querying results.

Http – The node in Elasticsearch cluster to connect to.

Port – port number of the host

P a g e | 94

Index – describes further where you are pulling data from

Format – format you want the data in before preparing the data (Currently does not

matter)

Start_time – Beginning of the time interval of the data

End_time – End of the time interval

Is_continuous – Boolean variable for determining if you want the data parsed into

continuous values

Is_categorical – Boolean variable for determining if you want the data parsed into

categorical but numerical values (Enumerating through all values and assigning a

number)]

2. Once configurations have been selected, press the Begin Data Extraction to begin pulling

data from the cloud and storing all the data in CSV-formatted files.

Beginning with clean data

1. If you already have cleaned data set in CSV-formatted file (if in different format, be sure

to define your own Parser object in the user_defined.py file), select the file by pressing

the Browser button in the Immediate Parsing section.

Important: Make sure that data file is in DATA directory

2. Press Parse and the resulting file can be found in DATA directory.

Mapper Layer

P a g e | 95

Starting from Scratch

1. Select the Gzipped file of your parsed data.

2. Select the original version of your dataset (The exact same dataset before parsing or

cleaning). Otherwise, select a version of the dataset that provides you with the most

meaning. For example, you can output node lists that contain the indices of the data

points corresponding to the row in the CSV-file.

3. Select metric, filter function, cutoff algorithm, and then press the Generate Params

Config button.

P a g e | 96

4. Find the blank configuration file in the Mapper_preconfig directory and fill in the fields.

The parameters that appear in this file depends on your choice in filter, metric, and

clustering algorithm.

Clustering – clustering algorithm for partial clustering in Mapper method

Filter_info – filter function arguments

Cover – Choice for various covers of the filter range. Choices include

cube_cover_primitive and balanced_cover_1d.

Overlap – The percentage of overlap between intervals

Cutoff_params – Parameters for the cutoff algorithms

Intervals – Number of intervals to partition the range, controls resolution.

5. Select the new configuration file by pressing the Browser button under the Mapper

Parameters Section

6. Press Perform Mapper button to begin the process of running the Mapper algorithm and

outputting a visualization.

Quick Start

P a g e | 97

1. Press either Mapper Param 1 or Mapper Param 2 to select preconfigured parameters.

You may also use these pre-configurations as examples. Mapper Param 1 locks in the

Euclidean metric, Eccentricity filter, and Big Gap 2 cutoff. Mapper Param 2 fixes the

same parameters to the same values except for choice in filters; Mapper Param 2 fixes its

filter to the Singular Value Decomposition function.

Figure 28: Mapper Parameter Configurations, Mapper Param 1(Top) and Mapper Param 2 (Bottom)

2. Press Perform Mapper button.

Analysis

After beginning the Mapper algorithm, the system carries out two tasks. First, the system stores

CSV-formatted files composed of data points for all nodes in the visualization; the user can look

at the data points residing in a specific node. In the Mapper Output Window, the user can also

select a single node or a group of nodes and save the corresponding node list to some directory.

P a g e | 98

Appendix 3 – ATT&CK Model
Persistence Privilege

Escalation
Defense
Evasion

Credential
Access

Discovery Lateral
Movement

Execution Collection Exfiltration

Accessibility
Features

Accessibility
Features

Binary Padding Brute Force Account
Discovery

Application
Deployment
Software

Command-Line
Interface

Automated
Collection

Automated
Exfiltration

AppInit DLLs AppInit DLLs Bypass User
Account
Control

Credential
Dumping

Application
Window
Discovery

Exploitation of
Vulnerability

Execution
through API

Clipboard
Data

Data Compressed

Basic
Input/Output
System

Bypass User
Account
Control

Code Signing Credential
Manipulation

File and
Directory
Discovery

Logon Scripts Graphical User
Interface

Data
Staged

Data Encrypted

Bootkit DLL Injection Component
Firmware

Credentials in
Files

Local Network
Configuration
Discovery

Pass the Hash InstallUtil Data from
Local
System

Data Transfer Size
Limits

Change Default
File Association

DLL Search
Order Hijacking

Component
Object Model
Hijacking

Exploitation of
Vulnerability

Local Network
Connections
Discovery

Pass the Ticket PowerShell Data from
Network
Shared
Drive

Exfiltration Over
Alternative Protocol

Component
Firmware

Exploitation of
Vulnerability

DLL Injection Input Capture Network
Service
Scanning

Remote
Desktop
Protocol

Process
Hollowing

Data from
Removable
Media

Exfiltration Over
Command and
Control Channel

Component
Object Model
Hijacking

Legitimate
Credentials

DLL Search
Order Hijacking

Network
Sniffing

Peripheral
Device
Discovery

Remote File
Copy

Regsvcs/Regas
m

Email
Collection

Exfiltration Over
Other Network
Medium

DLL Search
Order Hijacking

Local Port
Monitor

DLL Side-
Loading

Two-Factor
Authentication
Interception

Permission
Groups
Discovery

Remote
Services

Regsvr32 Input
Capture

Exfiltration Over
Physical Medium

P a g e | 99

Hypervisor New Service Disabling

Security Tools
 Process

Discovery
Replication
Through
Removable
Media

Rundll32 Screen
Capture

Scheduled Transfer

Legitimate
Credentials

Path
Interception

Exploitation of
Vulnerability

 Query Registry Shared
Webroot

Scheduled Task

Local Port
Monitor

Scheduled Task File Deletion Remote System
Discovery

Taint Shared
Content

Scripting

Logon Scripts Service File
Permissions
Weakness

File System
Logical Offsets

 Security
Software
Discovery

Third-party
Software

Service
Execution

Modify Existing
Service

Service Registry
Permissions
Weakness

Indicator
Blocking

 System
Information
Discovery

Windows
Admin Shares

Third-party
Software

New Service Web Shell Indicator
Removal from
Tools

 System
Owner/User
Discovery

Windows
Remote
Management

Windows
Management
Instrumentatio
n

Path
Interception

 Indicator
Removal on
Host

 System Service
Discovery

 Windows
Remote
Management

Redundant
Access

 InstallUtil

Registry Run
Keys / Start
Folder

 Legitimate
Credentials

Scheduled Task Masquerading

Security
Support
Provider

 Modify Registry

P a g e | 100

Service File
Permissions
Weakness

 NTFS Extended
Attributes

Service Registry
Permissions
Weakness

 Obfuscated
Files or
Information

Shortcut
Modification

 Process
Hollowing

Web Shell Redundant
Access

Windows
Management
Instrumentatio
n Event
Subscription

 Regsvcs/Regas
m

Winlogon
Helper DLL

 Regsvr32

 Rootkit

 Rundll32

 Scripting

 Software
Packing

 Timestomp

P a g e | 101

