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Abstract 
 The goal of this project is to develop indicators of a cyber-attack by applying a new data 

analysis technique known as Topological Data Analysis on synthetic cyber data. In particular, 

the research and work completed throughout this paper centers around an open-source 

implementation, called Python Mapper, that helps users globally view forensic data and gain 

qualitative insights from the shape of the data. To assist in these efforts, we developed tools to 

directly import data into Mapper from existing data sources. Due to the exploratory nature of the 

project and the method, the outcome of the work completed was not developing new cyber 

analytics of malicious activity but creating a stopping point in the research where future 

collaborators can build off of our work.  
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Executive Summary 
In this age of technological advances in computing and anonymous access to 

overwhelming amounts of information, cyber threats are prevalent on a national scale. In 2010, 

cyber security experts witnessed the first modern cyber warfare weapon called Stuxnet, a 

sophisticated cyber weapon that targeted a uranium enrichment plant in Natanz, Iran. With the 

upcoming release of the motion picture The Interview in 2015, there was a data breach within 

Sony Pictures that led to the release of employee confidential information and files for a number 

of Sony movies onto the Internet. There have been other cyber incidences such as the Office of 

Personnel Management (OPM) data breach and the cyber-attacks on Twitter and Netflix. With 

advanced persistent threats, malware, and phishing plaguing cyberspace, there is no all-

encompassing method to discern normal users from malicious actors. However, utilizing data 

analytics is an attempt to generalize such behaviors of suspicious activity in order to promote 

informed and efficient decision-making, otherwise known as cyber threat intelligence.  

Residing within the realm of Big Data, cyber data or event log data can be complex and 

highly dimensional consisting of host names, ID numbers, command-line commands, and 

various other fields. This complexity and high-dimensionality introduces many problems in 

addition to traditional roadblocks with large datasets. Topological Data Analysis (TDA) gives 

rise to methods that extract and highlight topological features in order to summarize the data. 

The idea is that data possesses shape that may convey meaningful information. With its origins 

from combinatorics, discrete geometry, linear algebra, and topology, TDA methods use three 

invariants studied in topology to capture the shape of the data [Chintakunta, 2016]. First 

introduced by Gurjeet Singh, Gunnar Carlsson, and Facundo Memoli, the Mapper algorithm is a 

method for Topological Data Analysis, emphasizing the goal of giving shape to data and 

interpreting this shape [Singh, 2007]. This method looks to build a compressed representation of 
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data to highlight the significant features. The Mapper algorithm achieves this result by using 

topological ideas that preserve closeness or similarities but alter distances of large magnitude. 

The Python Mapper is an implementation of the Mapper algorithm written with a graphical user 

interface that enables beginners to quickly acquaint themselves with its many features such as 

filter selection and node coloring options.  

The cyber data discussed throughout this paper is a product of the BRAWL project; 

BRAWL is an abbreviation for Blue versus Red Agent War-game Evaluation. As the name 

implies, there are two competitors in the cyber game; the red team agents simulate cyber 

intrusions while blue team agents have the task of detecting this malicious activity and 

developing analytics for that behavior. These games occur on a hyper-sensing network that 

generates data and records logs of network activity in real-time. After each BRAWL cyber game, 

the output is a multitude of indicators that highlight malicious behavior or by-products of red 

team activity. These indicators are stored in the Cyber Analytic Repository (CAR) for further 

study and testing, no matter how trivial or groundbreaking. The overall goal of applying the 

Mapper to this data was to gain qualitative understanding of the data from a different 

perspective. 

Methodology 

 The primary goal of this project is the design and implementation of a system that 

combined the capabilities of the Python Mapper with the ability to pull data directly from a cloud 

repository for forensic data. Once completed, carrying out case studies on the cyber data, testing 

different filters and observing the outcomes formed the general procedure in evaluating the 

software system. The final step, afterwards, was to explore the visualizations based on criteria 

tailored to this project.  
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Results and Conclusions 

 This work has been largely exploratory so far and the visualizations included in this 

report need careful study (based on TDA) to understand the results. There are four primary 

findings resulting from research and experimenting with the case studies.  

1. The dimensionality of the data can be reduced by removing all fields except the Data Model 

fields. Doing so does not result in the loss of information. 

2. Loops in the visualizations of each case study confirm some cyclic behavior prevalent in the 

cyber data.  

3. Often, there were too many noisy or non-malicious data points to conclude whether or not 

these loop features indicated malicious behavior.  

4. Further study of the TDA approach using the cyber data requires instances of malicious 

behavior in the data set. 

Future work should build upon these findings to progress towards developing cyber 

analytics for cyber threat intelligence. One direction for further study would be to incorporate 

machine learning into the Mapper workflow. In terms of filtering, a model trained using a 

machine-learning algorithm and labeled cyber data can act as a filter function for assigning 

numerical scores to each data point based on likelihood of malicious intent. Of course, data 

preparation should entail labeling each data point on whether or not it was a blue team or red 

team member. Once new indicators of attack have been created from analysis, a new model 

trained using these indicators would act as part of a cyber detection system. Another idea for 

future work is developing a better data transformation that would highlight the purpose of each 

data point and its impact on the network; the user should be able to each data point in relation to 

type and obtain a quick overview of network activity. Although transforming the data into 
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continuous vectors using available cyber analytics, this transformation was only one way of 

incorporating meaning into each data point   
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1 Introduction 
In this age of technological advances in computing and anonymous access to 

overwhelming amounts of information, cyber threats are prevalent on a national scale. In 2010, 

cyber security experts witnessed the first modern cyber warfare weapon called Stuxnet, a 

sophisticated cyber weapon that targeted a uranium enrichment plant in Natanz, Iran. Its mission 

was to search for specific software that monitored and controlled the programmable logic 

controllers of the nuclear centrifuges, intercept communication, and sabotage the centrifuges 

[Langner, 2011]. This program was the first of its kind to physically damage hardware while 

remaining undetected. In 2015, with the upcoming release of the motion picture The Interview, 

there was a cyber-attack on Sony Pictures that led to the release of employee confidential 

information and files for a number of Sony movies onto the Internet. After several days and 

various warnings/threats from a cyber terrorist group, the attacks took advantage of file-sharing 

hubs to distribute Sony files, film contracts, personal information on celebrities, and employee 

health records [Haggard, 2015]. There have been other incidents in which adversaries have 

stolen data without detection; these adversaries, however, hide within the network for long 

periods of time and steal much larger volumes of data. These attacks showcase the need to 

strengthen defenses against cyber threats. 

The European Union Agency of Network and Information Security (ENISA), a center of 

network and information security expertise, released a report titled ENISA Threat Landscape 

2015 to summarize the trends and prominence of current cyber threats. In ascending order, the 

top ten cyber threats of 2015 were malware, web-based attacks, web application attacks, botnets, 

denial of service, physical damage/theft, insider threat, phishing, spam, and exploit kits. As noted 

in the report, major actors for these threats consisted of cyber criminals and terrorists, insiders, 

online social hackers, nations/states, corporations, and hacktivists [Marinos, 2016]. Trends for 
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the top three threats were increasing in 2015. Aside from this report, other 

companies/corporations specializing in cyber security also released similar annual summaries 

that describe their findings of these attacks and provide a brief list of mitigation techniques for 

each one.   

The purpose of data analytics is to gain insight from information represented in the form 

of records, graphs, or text by observing and extracting important features. For example, a U.S 

retailer used analytic methods to observe consumer-purchasing behavior. Through this process, 

the retailer learned that among the major life events, the most profitable to its bottom line was 

pregnancy. Therefore, the retailer offered specific coupons and incentives for its pregnant 

shoppers, keeping in mind that some items would be in higher demand depending upon the 

individuals [Dietrich, 2015]. Most companies and corporations rely on data analytics to compete 

with each other. In addition to major contributions in industry and medicine, the application of 

data analytics can benefit many other facets of science and engineering, including cyber security. 

With attacks such as intrusion, advanced persistent threats, malware, and phishing plaguing 

cyberspace, there is no clear method to discern normal users from malicious actors. However, 

these attacks follow certain procedures that can be categorized. Utilizing data analytics is an 

attempt to generalize such behaviors of suspicious activity in order to promote informed and 

efficient decision-making, otherwise known as cyber threat intelligence.  

 In many papers pertaining to Topological Data Analysis (TDA), one of the common 

motivating factors for pursuing this method of analysis has been the increasing size and 

complexity of data. Improvements and optimizations in modern computing have allowed for the 

collection of massive amounts of data and its storage; such data could possibly reside in high (or 

infinite) dimensional spaces. Some examples include medical information from patients, gene 
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expressions from DNA, preferences/keywords from a search engine, and even data collected 

from a computer network. Additionally, several industries have taken the lead to exploit the data. 

Credit card companies collect transaction information to identify fraudulent purchases, and social 

media sites have become major data sources for both industry and academia [Dietrich, 2015]. 

The terminology used to describe data of this magnitude is unsurprisingly “Big Data”. 

Traditionally, analysts interpret data visually by charting or graphing data in two or even three 

dimensions to find trends or patterns; the shape of the data is significant to observe during data 

analysis. The problem that topological data analysis strives to solve is to provide generalizations 

and conclusions based on the shape of the data. 

 This paper begins with an overview of cyber threat intelligence and existing cyber 

threats. Next, the Problem chapter presents the obstacles in developing predictive analytics for 

cyber intrusions, while also posing Topological Data Analysis (TDA) as a possible solution to 

these challenges. Mathematics behind TDA and Overview of TDA chapters focus on introducing 

TDA, the Mapper method, and the mathematical concepts that support them. Additionally, a 

section in the Overview of TDA chapter also described the provided cyber data for analysis. 

Finally, the Methodology chapter outlines developing an application for automating an open-

source implementation of Mapper and applying the Mapper method to the cyber data. Results 

after applying Mapper can be found in the Results chapter. 
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2 Background 
2.1 Tactical Cyber Threat Intelligence 

 The goal of cyber threat intelligence is to understand existing cyber threats, to share 

information with the responsible parties, and to enable organizations in proactively defending 

against future attacks. There exist three levels of cyber intelligence including Strategic, 

Operational, and Tactical Cyber Intelligence. Since the research and effort of this paper pertains 

to developing indicators of adversarial behavior, this paper focuses on cyber threat intelligence at 

the tactical level. Tactical Cyber Intelligence (TCI) has the purpose of monitoring network 

activity, examining and assessing the strengths and vulnerabilities of an organization’s network 

defenses, and ascertaining patterns and techniques employed by adversaries. At this level, cyber 

threat intelligence positions the organization to progress towards a proactive cyber security 

posture that is both reactive and predictive in nature [INSA, 2015]. To reach this point, TCI 

provides context and relevance to terabytes of data and transform the data into actionable 

intelligence. Action intelligence, to be precise, “refers to information that has been integrated, 

processed, and analyzed from various sources so that customers can use it to meet their threat 

information needs” [INSA, 2015]. In doing so allows an organization to mitigate its enterprise 

risk, to gather threat information following a cyber intrusion in the form of indicators of 

compromise (IOC), and to better equip its cyber defenses against all adversaries. 

To defend against the increase in cyber-attacks and threats, several governments and private 

companies have developed cyber threat intelligence centers and updated cyber security measures. 

Each center is responsible for the research and mitigation of cyber threats, and the sharing of 

intelligence and collaboration between government-specific organizations [Dalziel, 2015]. A few 

examples of government-led cyber threat intelligence centers include the Cyber Threat 

Intelligence Integration Center (CTIIC) for the U.S., Australian Cyber Security Centre (ACSC), 
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and the European Union Agency for Network and Information Security (ENISA). Other 

organizations involved in cyber threat intelligence collection and haring include the National 

Security Agency, the Department of Defense Cyber Crime Center, the NSA/CSS Threat 

Operations Center and a wide array of other agencies. In keeping with the theme of cyber threat 

intelligence at the tactical level, the Cyber Intelligence Lifecycle section introduces the general 

process of developing actionable intelligence from the collection and analysis of raw data. 

Moving onto existing cyber threats, the next section introduces the cyber threat environment, a 

classification of the different, recorded cyber threats. Finally, to complete the discussion on 

cyber threat intelligence, the focus changes to Advanced Persistent Threats, a fast-growing cyber 

security concern.  

2.2 Cyber Intelligence Lifecycle 
The Cyber Intelligence Lifecycle outlines the necessary steps for the collection and 

collaboration of cyber threat intelligence. As a component of TCI, there are seven steps in the 

lifecycle that include specifying requirements, collection, process and exploitation, analysis and 

production, dissemination, consumption, and feedback [INSA, 2015]. The first step in the life 

cycle is identifying the information and data to collect based on designated requirements and 

formulate a plan to acquire this information. For instance, an organization seeks to ensure that its 

supply chain is secure, so its cyber intelligence team must gather information about its suppliers 

such as history of transactions or past cyber threat incidences. In collection, this step entails 

selecting relevant sources for information retrieval such as news feeds, whitepapers, technical 

reports, or cyber threat intelligence sharing venues; in the supply chain example, a possible data 

source could be customer reviews or consumer ratings. Next, the processing and exploitation 

stage suggests extracting insights and trends from the data to create a broader intelligence 

product for cyber threat intelligence and decision-making. Doing so requires “an analytic process 
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that is repeatable, easy to implement, and produce valuable information” [INSA, 2015]. The next 

step in the cyber intelligence lifecycle involves packaging and delivering any actionable 

intelligence or assessments produced in the previous stage to sponsors, management, or other 

relevant parties during analysis and production step. Examples of cyber intelligence products 

could include newly discovered vulnerabilities, cyber threat indicators, or general technical 

insights. During the dissemination step, the recipients of the information have analysts and senior 

executives review the actionable intelligence; understanding the findings from the analysis step 

would be essential for determining what actions to be taken afterwards. If the sponsor receiving 

this intelligence discovers that one of its suppliers does promote a good security posture, the 

sponsor may halt all transactions with this supplier. Consumption of information involves 

assessing how it affects the business and mission objects. Finally, the feedback phase of this 

lifecycle is very important for determining if the intelligence products met the customer’s 

needs/requirements and allowing cyber intelligence operators to improve methodologies for 

future intelligence collection.  

2.3 Cyber Threat Environment 

 Before describing the taxonomy of cyber threats, consider all the terms used to discuss 

cyber threats such as cyber adversaries, cyber-attacks, disruptions, and cyber security incidents. 

Formally, a cyber adversary is an individual or organization that carries out cyber-attacks, cyber-

crime, or cyber espionage. Examples of cyber adversaries can vary from foreign state-sponsored 

adversaries, organized criminals, or issue-motivated groups seeking attention to their causes. 

Cyber-attacks, building off of cyber adversaries, are “deliberate acts through cyber space to 

manipulate, destruct, deny, degrade, or destroy computers or networks in order to compromise 

national security, stability or prosperity” [ACSC, 2016]. The Stuxnet program and the incidents 

with the film The Interview would be examples of cyber-attacks; although cyber-attacks can be 
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impactful and damaging economically, cyber adversaries also conduct malicious activity that act 

as simply nuisances, hindering a system or organization but with minimal damage. Such activity, 

known as disruption of services or networks, includes denial of service, web defacement, and 

electronic graffiti. Hacktivists and issue-motivated groups utilize these methods to attract 

attention to themselves and their cause by disrupting social events, business dealings, and 

government activities; these adversaries usually take advantage of the vulnerabilities or poor 

security within a system in order to carry out their aims. Staying with this idea of compromises 

to a security system, a cyber security incident is “any activity that may threaten the security of a 

system or its information whereas a compromise is an incident where a system or its information 

was successfully harmed”; an example would be the extraction of information from a computer 

network [ACSC, 2016]. After understanding these terms, the next topic to discuss would be the 

taxonomy of cyber threats executed by these cyber adversaries.  

 At the top of the threat taxonomy, according to an ENISA threat report for 2015, the first 

cyber threat to discuss is malicious software or malware. Malware provides unauthorized access 

to a system, allowing adversaries to harm or disrupt the system depending on their goals [ACSC, 

2016]. The results are usually heavy costs and damages, affecting a single user in the best case or 

an entire country in the worst case. Cyber threats involving malware have been the most 

predominant cyber threat for the past two years according to both ACSC and ENISA. There is a 

program based in Australia called the Australian Internet Security Initiative (AISI) that provides 

daily notifications to its participants that alert them of IP addresses on their networks that are 

potentially vulnerable to or infected by malware [ACSC, 2016]. Between October 2014 and 

January 2015, the program has reported over 15,000 malware compromises daily to Australian 

Internet Service Providers. Aside from Australia, other malware incidents occur around the 
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world. The top five countries where malware has infected IT resources include Bangladesh, 

Vietnam, Pakistan, Mongolia, and Georgia whereas the United States, Russia, the Netherlands, 

Germany, and France are the top five countries hosting online malware resources [Marinos, 

2016]. Although malware has become a major cyber threat, the amount of malware appearing 

around the world is still increasing. According the ENISA 2015 Threat Report, malware 

continues to “increase by approximately one million samples every day and, by the publication 

of this report, this overall amount of malware would reach the 2 billion threshold”. Techniques 

for infecting through malware are only becoming more sophisticated; the use of malware is even 

migrating to mobile devices such as Android and iOS. One such delivery mechanism is through 

web-based attacks. 

 Web based attacks utilize the web as a medium to first detect exploits and then install its 

payload. Some examples of web-based attacks range from malicious URLs or compromised 

webpages to browser exploits. Malicious URLs refer to URLs that have been compromised, 

allowing cyber adversaries to leave malware on the site or redirect end-users to download 

malware onto their devices. This tactic in combination with social media and phishing tactics has 

become an alternative to sending malicious programs by e-mail. In fact, Kaspersky Lab’s web 

antivirus identified malicious URLs as the most active malicious object involved in online 

attacks, composing 37% of all attacks [Marinos, 2016]. A compromised webpage attack, also 

known as watering-hole attacks, is baited traps that target frequent visitors of the webpage. In 

2014, the Computer Emergency Response Team in Australia handled 8,100 cases involving 

compromised websites [ACSC, 2016]. Although there are many other cyber threats in cyber 

space, the final types of cyber threats that this paper will focus upon involve an adversary 

gaining access to confidential information. 
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 Continuing with the cyber threat taxonomy, cyber intrusions, cyber espionage, and data 

breaches all consist of similar end goals involving intelligence collection. However, there are 

slight distinctions between the terms. A cyber intrusion is an unauthorized access to a computer 

or system, leading to installation of malware, physical damage, or a data breach. Data 

breaches/data losses, a result of cyber intrusions, is the compromise of significant information 

such as trade secrets, business dealings, intellectual property, or any other data under the 

protection of an organization. Identity information, financial credentials, confidential data or 

intellectual property, and user credentials compose 90% of the types of stolen information; the 

loss of said information mainly affecting government, health, and technology sectors [Marinos, 

2016]. The U.S. Office of Personal management data breach provides a fitting example of how 

cyber threat actors affected government; in this incident, cyber adversaries gained access to the 

personal information of several personnel applying for security clearances. Cyber espionage 

entails collecting information/data from a victim’s computer network; however, the distinction 

from data breaches and cyber intrusions is that cyber espionage can be state-sponsored or 

motivated by industrial competition. There exists a broad range of other threat actors that may 

carry out cyber intrusions and data breaches such as lone cyber criminals, criminal organizations, 

and hacktivism groups. In contrast, state-sponsored threat agents have composed 87% of the 

cyber espionage incidents according the ENISA 2015 Threat Report. Some reported cases 

include the Sony and TV5Monde attacks, and the Bundestag hack. For most of these incidents, 

especially in the case of the Sony attack, adversaries were able to maintain a stable presence 

within the victim’s system for a period of time and remain undetected while stealing confidential 

data. This pattern is characteristic of a growing security concern often referred to as an Advanced 

Persistent Threat. 
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2.4 Advanced Persistent Threats 

 Advanced Persistent Threats (APTs) are a growing security concern for many agencies/ 

organizations; they are sophisticated, multistage cyber-attacks with the goal of stealing 

confidential information. In general, threat actors typically target government or military 

agencies as well as businesses. As a result of the intended targets and the level of sophistication 

supporting the attacks, many cyber security researchers attribute them to nation-states. 

Regardless of adversary, the sophistication of the attack lies in an APT’s attack stages in its 

lifecycle. These stages include choosing a victim, reconnaissance, delivery, exploitation, 

operation, data collection and exfiltration [Bere, 2015]. The first and second stages involve 

selecting a target and searching for an entry point into a system (usually an unsuspecting 

employee). Delivery is the stage in the attack where an APT can utilize several methods of 

penetration to gain access into the system; examples of methods include spear-phishing e-mails, 

memory-based attacks, and web-based click jacking. After entering the target’s network, 

exploitation is the stage where an APT executes its payload, exploiting vulnerabilities identified 

in reconnaissance and establishing a secure connection with the system. Once established, an 

APT reaches the operation stage where it can persistently remain within the system possibly over 

a long period of time. The threat searches for sensitive information, traversing through the 

system and collecting data along the way during this stage. Finally, in the data exfiltration stage, 

an APT gathers the acquired data, encrypts it, and sends the packaged data over an encrypted 

channel to multiple servers controlled by the adversary [Bere, 2015]. An APT can repeat any part 

of the lifecycle over again and can reside within the system undetected, leaving the victim 

system at its mercy. There are two real-life APTs known as APT1 and APT29 that illustrate how 

effectiveness of an APT in cyber espionage. 
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Figure 1: Industries Compromised by APT1 [Fireeye, 2013]  

 The first APT to discuss, codenamed APT1, has been one of the most persistent of 

China’s cyber threat actors, carrying out an extensive cyber espionage campaign possibly with 

government-support. Officials at Mandiant, a FireEye company that helps organizations bolster 

their cyber defenses or detect cyber intrusions, wrote an intelligence report outlining the details 

of APT1. Although known for its long-running campaign, according to Mandiant officials, APT1 

was a single organization of operators whose engagement in cyber espionage also led to the 

acquisition of large volumes of information. Since 2006, Mandiant has observed APT1 

compromise “141 companies spanning 20 major industries; of these victims, 87% of them were 

headquartered in countries where English is the native language” [Fireeye, 2013]. Observing the 

industries targeted by APT1, the five highly-valued targets included information technology, 

aerospace, public administration, satellite and telecommunications, and scientific research and 
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consulting. The choice in targets was not the distinguishing aspect of APT1, but the amount of 

time APT1 had access to those systems. Generally, APT1 maintained its connection with the 

victim’s network for an average of 356 days, whereas the longest time APT1 maintained access 

was four years and ten months [Fireeye, 2013]. Once APT1 infiltrated a network, the idea was to 

periodically revisit the victim’s system over a period of weeks or years to avoid attracting 

attention when stealing confidential data; this stolen intellectual property ranged from blueprints 

and source code to business plans and contact information. Mandiant officials have observed 

APT1 stealing “6.5 terabytes of information from a single organization over a time period of ten 

months” [Fireeye, 2013]. Given that APT1 was able to steal this volume of data from a single 

organization and APT1 has compromised at least 141 companies, there is a likely possibility that 

this threat group has stolen hundreds of terabytes of information.  

 The next group is known in cyber threat literature as APT29, a Russian Cyber Threat 

group. Detected in early 2015, stealthy malware titled HAMMERTOSS was responsible for 

relaying commands and extracting data from compromised networks for APT29, using cloud 

storage services and Twitter as places to hide and store the data. This tool had the ability to 

retrieve commands via Twitter and GitHub, to automatically visit different Twitter handles on a 

daily basis, to communicate within specific time periods, to obtain commands via images 

containing encrypted data. This tool could also extract information and upload the data to a cloud 

[Fireeye, 2015]. To summarize the procedure, there were five stages of operation beginning from 

finding a Twitter handle to uploading stolen data. Using an algorithm, HAMMERTOSS 

generates and searches for a Twitter handle; an example handle for the day could be 

“123Bob123”. If the handle is registered, the malware visits the Twitter page with that handle; 

otherwise, it waits another day and checks a different Twitter handle. The next stage involves 
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searching for a tweet with a URL and hashtag on the Twitter page that could possibly represent a 

location and file size. After this stage, the malware follows the URL to an image. This image 

uses steganography, the art of concealing a message in an image or document, to hide encrypted 

data. In the final stage, HAMMERTOSS decrypts the instructions from the image and executes 

them. Since the malware abilities range from reconnaissance to the transfer of data to a cloud 

storage service, these instructions may include any combination of the capabilities described 

previously [Fireeye, 2015]. APT29 was a capable cyber threat group and its effective tool only 

illustrates their ability to carry out cyber espionage campaigns while covering up any evidence of 

their presence.   

3 The Problem 
With the ever-present threat of adversaries compromising a U.S. government cyber 

system or network, there exist many countermeasures and means of protection such as firewalls, 

anti-virus software, and intrusion detection systems. However, such methods rely upon various 

indicators to assist in distinguishing malware and intrusions from normal user activity. To use an 

analogy, security personnel at a research facility can only allow trusted personnel to enter the 

building, but doing so without a list of employees and ID cards is nearly impossible; consider the 

identification and list of employees as proof of trusted personnel whereas individuals without 

these items to be intruders. Of course, creating finitely many rules that would always identify 

malicious activity is challenging, so modern systems continuously update their security based on 

known cyber threat trends. Thus, there is always a need to collect decision quality cyber threat 

intelligence in the form of cyber threat indicators. 

 As described in the section about Cyber Threat Intelligence, there are three levels of 

cyber intelligence. An indicator, precisely, is an inference mechanism based on historical data 
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and past occurrences that can be used to predict future occurrences within a similar setting. 

These indicators in the cyberspace context serve varying purposes at each level. At the Strategic 

level of cyber intelligence, cyber threat indicators include nation-state interest in innovative 

technology to obtain military advantage on a global scale. Operational cyber threat indicators, 

provide the understanding of adversary intent, capability, and likelihood of attack against fielded 

forces. Finally, Tactical cyber threat indicators find trends and patterns in the techniques, tactics, 

and procedures of employed by adversaries in order to predict malicious activity and help 

mission capabilities. Focusing on the tactical level, this problem posed in this paper revolves 

around predictive analytics and producing them through data analysis. 

Residing within the realm of Big Data, cyber data or event log data can be complex and 

highly dimensional consisting of host names, ID numbers, command-line commands, and 

various other fields. This complexity and high-dimensionality introduces a slew of problems in 

addition to traditional roadblocks with large datasets. To identify a few, there are missing values 

within the data, fields that repeat information from other fields, and an inability to visually 

observe the data in a graph or chart. The cyber data discussed in Section 4.5 contains 231 

fields/variables in its original form, but much of the data points were missing information and 

fields like host name and full domain query name represented similar information. Graphing or 

plotting 231-dimensional data in a way that humans can understand is still not possible.  

Aside from complexity, there is also the problem of identifying relationships within the 

data. Principle Component Analysis (PCA), multidimensional scaling (MDS), clustering 

methods are well-known for their applications in data science and machine learning. PCA and 

MDS “attempt to find non-linear maps to Euclidean space which preserve the distance functions 

on the data set”, producing useful two or three dimensional versions of the data if successful 



P a g e  | 26 

 

[Singh, 2007]. As a result, these methods do handle the complexity problem of the data. 

Concerning clustering methods, they produce distinct, unrelated groupings of the data; 

alternatively, clustering methods creates groups of points that are closer to each other in terms of 

some distance function. The drawback with these methods is these methodologies sometimes 

obscure geometric features. For example, a breast cancer study exploring a new data analysis 

method was able to identify a subgroup of breast cancer tumors that was characterized by high 

survivability in their patients. Researchers in the study tried validating this new subgroup using 

cluster analysis and discovered that clustering overlooked this subgroup of tumors because it had 

scattered points from the subgroups across many clusters [Nicolau, 2011]. One method that 

strives to solve these data complexity problem and sensitivity to large and small scale patterns is 

known as Topological Data Analysis. 

 Topological Data Analysis gives rise to methods that extract and highlight topological 

features in order to summarize the data. The idea is that data possesses shape that may convey 

meaningful information. Data analysts or even curious individuals naturally attempt to look for 

this shape in order to gain insight, but the complexity of the data prevents them from using basic 

methods like graphing in two or three dimensions. With its origins from combinatorics, discrete 

geometry, linear algebra, and topology, TDA methods utilize three invariants studied in topology 

in order to capture the shape of the data [Chintakunta, 2016]. The following section discusses 

these three invariants in detail. In addition, TDA methods derive relationships within the data by 

preserving a notion of nearness but distorting large scale distances; small distances can signify 

similarity whereas large distances possess little meaning [Singh, 2007]. One TDA method 

highlighted within this paper is called Mapper; Mapper essentially reduces high dimensional data 

sets into simplicial complexes or discrete combinatorial objects that globally represents the data. 
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The Python Mapper is an open-source implementation of the Mapper method that is limited in its 

capabilities but provides enough features as described in the method. Although a standalone 

Python application, the Python Mapper does not provide the capability to pull data or to analyze 

the data beyond visualization. This paper proposes designing and implementing a system to 

integrate these features into the Python Mapper as well as applying the Python Mapper to cyber 

data. 

 Along with the completion of this report, there are many criteria for the success of this 

project. One criterion is the completion of a TDA system that pulls information from a cloud 

storage service, cleans and parses the data, applies the Mapper method to the data, and allows for 

further analysis of the Mapper output. Another goal for the project is to develop cyber analytics 

or rules that help existing cyber detection systems to identify malicious activity. Finally, the last 

criterion for success is the continuation of the project with an emphasis of TDA being applied to 

machine learning and the additional research of persistent homology.  

4 Mathematics behind TDA 

 Topology is a branch of mathematics whose origin dates back to the time of Leonhard 

Euler, an 18th century Swiss mathematician well-known for many influential discoveries and 

contributions to mathematics. Topology is the mathematical study of properties unaltered by 

continuous deformations such as stretching or twisting on objects in space. To elaborate further, 

this notion of preservation after some deformation translates to a notion of equivalence. An 

example is the deformation of a donut to a coffee cup; both are topologically equivalent to each 

other. Until the development of topological data analysis, concepts and results produced in 

topology have resided solely in theory and pure mathematics. Thus, before introducing this new 

method of data analysis, the following sections focus on the supporting mathematics. Many of 
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these concepts and definitions can be found in references such as Morris’s Topology without 

Tears, Zomorodin’s Topology for Computing, and from lectures taught by Norman Wildberger 

and T. Dey. 

4.1 Topological Spaces 

 Beginning with some basic definitions, a set is a collection of objects that can be numbers 

or other sets; in this case, the objects are points. A metric computes the distance between two 

points in the set. A space is a set of points and any space with a metric is known as a metric 

space; the most familiar metric space is Euclidean space.  

Definition 4.1.1 A set X with a metric function d is called metric space. The metric or 
distance function d: 𝑋 × 𝑋 → 𝑅 is a function satisfying the following axioms:  

i. For all x, y in X, d (x, y) ≥ 0 

ii. If d (x, y) = 0, then x = y 
iii. For all x, y in X, d (x, y) = d (y, x) 
iv. For all x, y, z in X, d (x, y) + d (y, z) ≥ d (x, z) 

 
In a more general manner, metrics for any topological space reflect the notion of similarity or 

closeness. Since the points in a topological space are distinct and abstract entities, small or large 

distances between two points may signify similarity or dissimilarity, respectively. Coordinate 

invariance, a term defined later on, allows one to study the connectedness of a point set in a more 

general manner than with metric spaces that assigns distances based on coordinates. A 

topological space consists of the point set and a set of all subsets from this point set, but the 

formal definition is as follows: 

Definition 4.1.2 Let X be a non-empty set. A set τ of subsets of X is said to be a topology 
on X if:  

i. X and the empty set belong to τ. 
ii. The union of any (finite or infinite) number of sets in τ belongs to τ. 
iii. The intersection of any two sets in τ belongs to τ. 

 
Definition 4.1.3 The pair (X, τ) is a topological space, where X and τ are defined as 

before.  
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A fundamental question in topology is whether two topological spaces are equivalent. To do so 

requires that any topological properties in one topological space map to the other space. 

Elaborating on mapping, recall first that a function 𝑓: 𝑅 → 𝑅 is said to be continuous if for 𝑎 ∈

𝑅 and each positive real number ε, there exists a positive real number δ such that | 𝑥 − 𝑎| <  𝛿 

implies | 𝑓(𝑥) − 𝑓(𝑎)| <  휀. Alternatively, let X and Y be two topological spaces, a function that 

maps X to Y is continuous if the inverse image of an arbitrary open set in Y is open in X [Kraft, 

2016]. These continuous maps between topological spaces preserve key properties of space and 

help exhibit the notion of topological equivalence. One fundamental notion of equivalence in 

topology is a homeomorphism.  

Definition 4.1.4 Let X and Y be two topological spaces. A homeomorphism f: 𝑋 → 𝑌  is 

a bijective function, such that both f and the inverse of f are continuous. We say that X is 
homeomorphic to Y, 𝑋 ≈ 𝑌, and that X and Y are topologically equivalent.  

 

Referring back to the example of the donut (torus) and coffee cup, both objects are topologically 

equivalent, or more formally homeomorphic. One can apply continuous transformations on the 

donut to produce the cup and vice versa. Another more abstract example concerning 

homeomorphism pertains to the interval [0, 1] and the unit circle [Wildberger, 2012]. To 

intuitively show that these spaces are not homeomorphic to each other, imagine removing a point 

from the circle and removing a point from the interval. While the circle remains a singly 

connected component, the interval splits into two components. If the circle and closed interval 

were homeomorphic, they would share the same genus; the genus is the maximum number of 

cuttings on the surface without disconnecting it. Another notion of equivalence studied in 

topology is known as homotopy equivalence. Homotopy preserves some aspects of 

connectedness such as the number of connected components and the number of holes in space. 

Its definition and its requirements for equivalences are as follows: 
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Definition 4.1.5 Let g: 𝑋 → 𝑈 and h: 𝑋 → 𝑈 be maps. A homotopy is a map H: 𝑋 ×
[0,1] → 𝑈 such that H (*, 0) = g and H (*, 1) = h. Two maps are homotopic if there is a 

homotopy connecting them. 
 
Definition 4.1.6 Two topological space T and U are homotopy equivalent if there exists 

maps g: 𝑇 → 𝑈 and h: 𝑈 → 𝑇 such that ℎ°𝑔 is homotopic to the identity map iT: 𝑇 → 𝑇 
and 𝑔°ℎ is homotopic to the identity map iU: 𝑈 → 𝑈 

 

Alternatively, two spaces are considered homotopy equivalent if one space can be continuously 

deformed into the other space. Consider a loop in some space; shrinking the loop eventually 

turns the loop into a single point, so this loop would be homotopy equivalent to a point. These 

concepts of homeomorphisms and homotopic equivalence become involved in the discrete 

constructs and mathematical definitions supporting the Mapper output. In fact, Gurjeet Singh 

noted in his dissertation that these Mapper constructions were similar to Reeb graphs [Singh, 

2007]. The following definitions help describe these constructs.  

Definition 4.1.7 Let X and Z be topological spaces and let f: 𝑋 → 𝑍 be a continuous map. 

Let 𝑈 = {𝑈𝛼}𝛼∈𝐴 be a finite open covering of Z. Consider the cover f*(U) = 

{𝑓−1(𝑈𝛼 )}𝛼∈𝐴  of X, typically called the pull-back of U along f. The mapper construction 

resulting from the given dataset (X) is known as the nerve complex of the pull-back cover 

𝑀(𝑈, 𝑓) ∶= 𝑁(𝑓∗(𝑈)) [Kim, 2016]. 

 
Definition 4.1.8 Define a covering (projection) as a surjective open map from two 

topological spaces that is locally a homeomorphism. 
 

Definition 4.1.9 Given a finite covering 𝑈 = {𝑈𝛼 }𝛼∈𝐴 of a space X, define the nerve of 

the covering U to be the simplicial complex N(U) whose vertex set is the indexing set A, 

and where a family {a0,a1, . . . ,ak} spans a k-simplex in N(U) if and only if 𝑈𝛼0  ∩
𝑈𝛼1  ∩. . .∩ 𝑈𝛼𝑘 =  ∅ [Singh, 2007]. 

 
To utilize Mapper, the algorithm requires a metric space X (data), a filter function mapping 

X to Z, and a covering for Z as input. The following sections should give an overview of how the 

Mapper is able to summarize the shape of the data with a high degree of accuracy given these 

inputs.  
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4.2 Simplicial Complexes 

 To begin this section, suppose there is a set X composed of n points x1, …, xn that belong 

to Rd where d is the dimension for R. An affine combination can be any summation of these 

points in X, written as ∑ 𝜇𝑖𝑥𝑖 
𝑛
𝑖=1 , such that the summation of all coefficients 𝜇𝑖 totals to 1. If all 

the coefficients 𝜇𝑖 sum to 1 and each 𝜇𝑖 is nonnegative, then x = ∑ 𝜇𝑖𝑥𝑖 
𝑛
𝑖=1  is referred to as a 

convex combination of the 𝜇𝑖. Consequently, the convex hull is the set of all possible convex 

combination of these coefficients. Keeping these definitions in mind, simplexes are as follows: 

Definition 4.2.1 A k-simplex Ω is the convex hull of a set p of k+1 affinely independent 
points. A k-simplex has dimension k.  

 

Since the points belong to Rn, the k-simplex can be defined in terms of k+1 linearly independent 

points. Recall that a set S is linearly or affinely independent if no point in S is a linear (affine) 

combination of any other point in S. As a result, the two terms for independence are 

interchangeable. Now, some familiar simplexes include a point (0-simplex), a line segment (1-

simplex), a triangle (2-simplex), and a tetrahedron (3-simplex). Before moving onto simplicial 

complexes, given a k-simplex defined by a point set S, know that a face is a simplex defined by a 

nonempty subset of S. 

Definition 4.2.2 A simplicial complex K is a set containing finitely many simplexes that 

satisfy the following two restrictions: 
i. K contains every face of every simplex in K 

ii. For any two simplices σ, τ belonging to K, their intersection is either empty or a 
face of both σ and τ 

 

Simplicial complexes are combinatorial objects that represent spaces, encoding locations of 

points relative to nearby points and representing the connectedness of the space. These aspects 

are helpful in representing high-dimensional objects or highlighting specific topological 

properties in surfaces. To do so requires creating triangulations of the surface or high-

dimensional object. 
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Definition 4.2.3 A triangulation of topological space X is a simplicial complex K 
together with a homeomorphism between X and |K|, where |K| is the underlying space of 

K and |K| = ∪𝜎𝜖𝐾 𝜎. Note that |K| is itself a topological space. 

 
Take, for example, the surface of a sphere; the surface of a tetrahedron or 3-simplex is a 

triangulation of a sphere because they share similar properties like number of connected 

components and number of voids. Representing a sphere with a tetrahedron requires less 

resources and memory for a computer to process and display. This idea of constructing 

triangulations is evident in the Mapper method discussed in Section 5.2. With Mapper, 

triangulations create topological summaries of the complex data.  

4.3 Simplicial Homology and Betti Numbers 
Simplicial complexes can approximate all topological spaces. Building upon this concept, 

simplicial homology utilizes finitely generated Abelian groups to measure the number of n-

dimensional holes in a topological space. Algebraic topology is a branch of topology that 

provides simplicial homology the ability to construct algebraic tools called homology groups to 

quantify topological features in simplicial complexes [Dey, 2013]. Before formally defining 

homology groups for simplicial complexes, the following definitions introduce chains and 

boundaries. Consider a set X and a simplicial complex K on X. A p-chain c for K is a formal sum 

of p-simplices added with coefficients, that is, c = ∑ 𝛼𝑖𝜎𝑖
𝑘
𝑖=1  where 𝜎𝑖 are the p-simplices and 𝛼𝑖 

are the coefficients. P-chains can form a group under addition. 

Definition 4.3.1 The k th chain group of a simplicial complex K is 〈𝐶𝑘(𝐾),+〉, the free 

Abelian group on the oriented k-simplices, where the identity is the chain 0 = ∑ 0𝜎𝑖
𝑘
𝑖=1  

and the inverse of a chain c is c itself since c + c = 0. 
 

Figure 3 will help illustrate concepts for previous and consequent definitions. In this oriented 

graph, the 0-simplices (vertices) are X, Y, and Z; the 1-simplices (edges) are a, b, c, and d. The 

closed walk [abc] starting from X can be written as an addition of edges such as a + b + c. Since 

commutativity applies to this naming scheme, a + b + c is the same as b + c + a and c + a + b. In 
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this case, note that the closed walk a + b + c = (a + b + d) + (c - d) where (a + b + d) and (c - d) 

are the two smaller closed walks in the graph. Chain groups for this graph include C0 (the free 

abelian group on vertices in G) and C1 (free abelian group on directed edges). C0 contain 0-

dimensional chains that are integral linear combinations of the vertices (e.g. x – 6y + 8z). C1 

consists of 1-dimensional chains that are integral linear combinations of directed edges such as 

4a – 5b + 3c + 4d. 

 

 
Figure 2: Graph G Illustrating Chain groups [Wildberger, 2012] 

 

With the chain group defined as 𝐶𝑘(𝐾), choose an ordering on X and define the following 

sequence of homomorphism: 

 

Figure 3: Sequence of homomorphisms [Dey, 2013] 

Definition 4.3.2 If σ = [v0, …, vp] is a p-simplex, its boundary is 𝛿𝑝𝜎 =

∑ {𝑣0, … ,   𝑣�̂� ,…  ,𝑣𝑝}
𝑝
𝑖=0  where  𝑣�̂� indicates that the vertex  𝑣𝑖 omitted.  

 

The boundary operator, denoted 𝛿𝑝, defines a mapping between chain groups found in different 

dimensions. Specifically, given a p-simplex, the boundary operator returns the (p-1)-chain of its 

boundary (p-1)-simplices. An example would be that, given a tetrahedron, the boundary operator 
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would return the four triangle faces of the tetrahedron. For the figure above, the boundary 

operator describes the relationship between edges and vertices; the boundary of a directed edge 

in Graph G is written destination vertex – starting vertex. The boundary of directed edge a is y – 

x and the boundary of edge b is z - y, or alternatively 𝛿 (𝑎) = 𝑦 − 𝑥 and 𝛿(𝑏) = 𝑧 − 𝑦. In 

addition to boundaries and chains, a p-cycle c is a p-chain such that 𝛿𝑐 = 0. To see that the 

boundary operator returns 0 for cycles/loops, applying the operator boundary to a + b + c for the 

graph in Figure 2 results in 𝛿 (𝑎 + 𝑏 + 𝑐) =  𝛿 (𝑎) +  𝛿 (𝑏) +  𝛿 (𝑐) = 0 . Similar to chains and 

chain groups, p-cycles can form a p-cycle group. 

Definition 4.3.3 The k th cycle group is Zk = Kernel (δk). A chain that is an element of Zk 
is a k-cycle. The kth boundary group is Bk = Image (δk+1). A chain that is an element of 
Bk is a k-boundary. 

 
Define the Kernel of the boundary operator to be the elements of the kth cycle group that map to 

the identity element in the (k-1)th cycle group. Additionally, define the Image (δk+1) to be set of 

all elements in the (k-1)th cycle group that elements in kth cycle group can map to under the 

boundary operation. From here, a formal definition of a homology group follows from the 

previous definitions. 

 

Definition 4.3.4 The k th homology group is the quotient Kernel (δk) / Image (δk+1), 
denoted Hk = Zk / Bk. 

 

Related to homology groups, Betti numbers measure the number of connected components, 

cycle, voids, and their higher dimensional analogues [Kraft, 2016]. They essentially summarize 

homology groups by encapsulating properties of topological spaces as numerical values; in 

particular, Betti numbers refer to the number of n-dimensional holes on a topological surface or 

simplicial complex. More formally, the definition of a Betti number is as follows: 
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Definition 4.3.5 The k th Betti number, denoted βk, of a simplicial complex K is β(Hk), the 
rank of the free part of Hk. βk = rank (Hk) = rank (Zk) – rank (Bk) where Zk and Bk have 

been defined previously. 
 

The next section builds upon all the definitions discussed thus far and introduces a method for 

finding features in a topological space called persistent homology.  

4.4 Persistent Homology 

Creating triangulations of point cloud can summarize any topological features showcased 

in the data, but another approach known as Persistent homology goes a step further. The key idea 

in Persistent Homology is discovering the extent in which persistent (actual) topological features 

remain after introducing noise to the data. Observe in Figure 4 that the data set is a curve in R2 

with two loops. First, consider a noisy point cloud sampled from the curve; sampling points 

means selecting points with a probability distribution concentrated near the shape of the curve 

[Carlsson, 2009]. Let P denote the set of sampled data points. As illustrated in the figure below, 

the approach entails creating a complex from the union of balls of size ε > 0 around each data 

point in P, calculating the homology of the resulting construct, and observing which features 

persist while modifying ε. Figure 4 shows that increasing the radii (ε) of the balls centered on 

each data point eventually creates the two loops. When the size of ε is large enough, the two 

loops disappear in Figure 4D. These two loops must be significant topological features because 

they were able to persist longer than any other feature that might have existed. In summary, this 

example exhibits how persistent homology gives an overview of the homological information for 

all the different values of ε. 

From point cloud to complex, the process is essentially using the data points from the point 

cloud as vertices to output a combinatorial graph whose edges are based on proximity of data 

points. Modeling a point cloud data X by a simplicial complex serves to assist in computing its 
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topological invariants. In computational topology, there are various ways to convert X into a 

complex; the following definitions describe two such methods.  

Definition 4.3.6 Let ε > 0 be a real number. Define the Vietoris-Rips Complex, denoted 
𝑉(𝑋, 휀), to be a simplicial complex on the set X consisting of these subsets 𝜎 ⊂ 𝑋 where 

d (x, y) < ε for any x and y in 𝜎. Note that for 휀 ≤ 휀′ for some nonnegative real number 

휀′, 𝑉(𝑋, 휀)  ⊂  𝑉(𝑋, 휀′). 
Definition 4.3.7 Let ε > 0 be a real number. Define the Cech Complex, denoted 𝐶(𝑋, 휀), 

to be a simplicial complex on the set X consisting of these subsets 𝜎 ⊂ 𝑋 for which there 

is a 𝑦 ∈ 𝑋 such that 𝑑 (𝑥, 𝑦) <  휀 for any 𝑥 ∈ 𝜎. Note that for 휀 ≤ 휀′ for some 

nonnegative real number 휀′, 𝐶(𝑋, 휀)  ⊂  𝐶(𝑋, 휀′). 
 

Using either method to construct complexes from a point cloud, the result is a nested sequence of 

complexes that record the changes in homology as ε increases. This nested sequence is known as 

a filtration. 

Definition 4.3.8 Given a simplicial complex K, a filtration is a nested subsequence of 

complexes Ki of K, indexed by the nonnegative integers, such that if i ≤ j then 𝐾𝑖 ⊆ 𝐾𝑗. 
The total ordering itself is called a filter. 

 

Figure 4: Illustration of Persistent Homology [Dey, 2013] 
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Definition 4.3 In relation to persistence, the p-th persistent homology groups are the 

Images of homomorphism, 𝐻𝑝
𝑖𝑗 = 𝑖𝑚 𝑓𝑝

𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.  

 

Given a filtration, the i-th complex Ki has associated boundary operators 𝛿𝑘
𝑖  and groups such as 

𝐶𝑘
𝑖 ,  𝐵𝑘

𝑖 , 𝑍𝑘
𝑖 ,𝑎𝑛𝑑 𝐻𝑘

𝑖  for all 𝑖, 𝑘 ≥ 0. Note that the p-th persistent homology groups describe when 

a class is born and when it dies.  

Definition 4.3 (Birth and Death) Consider a simplicial complex 𝐾 and a function 𝑓: 𝐾 →
𝑅 on it (note 𝑓−1on some interval between −∞ and 𝑎 ∈ 𝑅 gives a filtration on K). A p-th 

homology class [c] is born at a simplicial complex 𝐾𝑖 if  [𝑐] ∈ 𝐻𝑝(𝐾𝑖), but [𝑐] ∉

 𝐻𝑝(𝐾𝑖−1). The p-th homology class dies entering 𝐾𝑗 if it merges with a class that is born 

earlier. Formally, 𝑓 𝑖,𝑗−1([𝑐]) ∉  𝐻𝑝
𝑖−1,𝑗−1 , but 𝑓 𝑖,𝑗 ([𝑐]) ∈  𝐻𝑝

𝑖−1,𝑗. 

 

Persistent diagrams are visual representations of the persistent homology that exhibit the 

evolution of topological features within the filtration. They are defined as “extended planes 

(ℝ ⋃{±∞ })2 on which a point with two coordinates represents a birth paired with a death” [Dey, 

2013]. In other words, the first coordinate corresponds to the starting index when the feature was 

created and the second point represents when it dies (persistence). Key invariants in persistence 

diagrams called barcodes “measure the significance of a feature based on its lifespan through a 

filtration” [Kraft, 2016]. The bars in a barcode record when a feature lives or dies at some 

particular value for ε; longer bars mean that a feature within a complex is persistent and gives 

meaning to statistical significance for a component of the complex such as a loop or void. On the 

other hand, smaller bars correspond to either noise within the data or noise introduced through 

sampling.  

Gunnar Carlsson’s Topology and Data, The Basic Theory of Persistent Homology by K. 

Wang, and lecture notes written by Tamal Dey provide a rigorous explanation of persistent 

homology using an algebraic construction. In terms of application of persistent homology, Fintan 

Hegarty’s doctoral dissertation, Computation Homology of Cubical and Permutahedral 
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Complexes, outlines various applications in topology estimation (finding topological features 

from a sampling of the original data set), image segmentation (changing an image’s 

representation for feature recognition), and in medicine [Hegarty, 2012]. The next chapter 

discusses research and advances in topological data analysis, focusing especially on Mapper and 

a company called Ayasdi that combined machine learning with an improved version of Mapper.  

5. Overview of TDA 

In terms of major difficulties with data, there are many challenges involved with Big 

Data. Advances in data management have allowed professionals to tackle the sheer volume of 

information associated with Big Data. However, the other major problem that this paper focuses 

upon is the high dimensionality and complexity of data. With the introduction of topological data 

analysis (TDA), research has leaned towards capturing the underlying shape of the data to 

uncover any meaningful phenomena hidden within the data. To be more precise, a given dataset 

creates a point cloud of data in possibly high dimension; within topology, the resulting shape 

refers to the features within the data that do not change under continuous deformations like 

shrinking or stretching [Chintakunta, 2016].  

Before discussing topological data analysis in general, the first section describes three 

invariants in topology that enable methods in topological data analysis to accurately and robustly 

obtain shapes of data. Software packages, such as the Python Mapper or JavaPlex, have taken 

advantage of these properties to create visualizations of high dimensional data. Utilizing the 

available TDA software, there have been several applications within medical research as well as 

in the social sciences; concerning medical research, TDA has assisted in identifying subgroups 

within breast cancer patients and diabetes patients. This application along with other examples 

appear in Section 5.4. Building upon these foundations, persistent homology and barcodes of 
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data have led to further advances in TDA as well as more robust algorithms for pattern 

recognition. Many publications like Robert Ghrist’s Barcodes and Gunnar Carlsson’s Topology 

and Data have a focus on persistent homology and its applications. 

5.1 Topological Invariants 

Stemming from ideas and concepts since the time of Leonhard Euler, topology has been 

an abstract field of mathematics that has solely been used to study abstractly defined shapes and 

surfaces [Lum, 2013]. With the introduction of topological data analysis, data scientists and 

researchers saw the potential of adapting topological concepts to large and complex data sets. 

The reason for its success with high dimensional data sets is due to three topological properties 

known as coordinate invariance, deformation invariance, and compressed representation. These 

properties give topology its ability to study shape in a robust manner. Coordinate invariance 

refers to how topological objects are independent of any specific representation in a coordinate 

system. Instead, the pairwise distances between points of the object are significant [Carlsson, 

2014]. In other words, these properties of shape remain unaltered after rotating the object or 

changing the coordinate system of the object, allowing for comparisons between objects residing 

in different dimensions. Deformation invariance refers to how topological properties of shape 

also remain unchanged if one stretches or shrinks the object in question without any tearing or 

gluing. For example, consider any letter of the English alphabet; most people can recognize this 

letter even in a different font or size. In topology, an ellipse and a circle in the 2-dimensional 

plane are topologically equivalent because they share similar characteristics like number of 

holes/loops. Finally, compressed representation refers to building simpler representations of 

shapes, capturing the topological features of the shape and losing the finer details [Carlsson, 

2014]. Considering a circle as an example, one topological feature defining the shape of a circle 

is its loop. Thus, a hexagon with the similar shape and loop can represent a circle; this 
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representation is more preferable compared to the infinite number of points in a circle because a 

hexagon consists of only six nodes and six edges [Lum, 2013]. The curvature of the circle is lost 

in the compression, but the representation preserves the major topological feature of a loop. 

Applications of topological data analysis have been wide-reaching, ranging from applications in 

medicine to business data analytics. However, in this paper, the case studies utilizing topological 

data analysis are going to focus on one method known as Mapper and its implementation called 

Python Mapper. 

5.2 Mapper 
 First introduced by Gurjeet Singh, Gunnar Carlsson, and Facundo Memoli, the Mapper 

algorithm is a method for topological data analysis, emphasizing the goal of giving shape to data 

and interpreting this shape [Singh, 2007]. Complex data can incorporate several attributes or 

features; for example, patient medical data consists of age, gender, blood pressure, etc. Singh 

states in a paper dedicated to introducing this method, “this new method for qualitative analysis, 

simplification, and visualization of high dimensional sets possesses the ability to reduce high 

dimensional data into simplicial complexes in order to capture topological and geometric 

features at a specified resolution” [Singh, 2007]. This method builds a compressed representation 

of data to highlight its significant features. The Mapper algorithm achieves this result by using 

topological ideas that preserve closeness or similarity but alter distances of large magnitude. This 

property fits into data analysis of high throughput biological data especially well, as noted in the 

application of Mapper sections.  

 Moving to the algorithm itself, it consists of multiple steps involving a distance/similarity 

metric, a filter function, a clustering algorithm, and the output visualization. Section 5.2.2 

provides an explanation of metrics and the criteria used for selecting one. Three assumptions of 

the algorithm are: only numerical values compose the given data set X, the user has chosen an 
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appropriate distance or similarity metric, and “computation of inter-point distance between 

points or even sets of points from the data is possible” [Singh, 2007].  

If the data set contains non-numeric strings, the user must transform these attributes in 

the data to numeric data by either encoding the information or dropping them from the data 

altogether. A filter function f: X → R refers to a real-valued function that maps data points in X 

to the real number line. Selecting this filter function is as significant as choosing a distance 

metric because this function determines the topological features to highlight; the user may select 

or integrate functions that reflect certain properties of the data. Keeping these instructions and 

advice in mind, the first step in the algorithm is finding the range of function restricted to the 

data points. The accompanying step is partitioning this range into smaller, overlapping intervals 

in order to create a covering space of the data points. Percentage of overlap and number of 

interval are both parameters that the user can tune or change. To illustrate this step, consider a 

closed interval [0, 2] partitioned into 3 smaller intervals with 50% overlap; the resulting intervals 

are [0, 1], [0.5, 1.5], [1, 2]. Now, within each interval, the algorithm forms sets of data points 

such that from the data set such that the function value of the data point lies within that interval 

and clusters the points based on distance [Singh, 2007]. More formally, the algorithm forms sets 

Xj = { 𝑥 ∈ 𝑋 | 𝑓𝑗 (𝑥) ∈ 𝐼𝑗} where j is an index into the set of intervals I. Although good 

clustering is also important to consider when visualizing the data, this algorithm does not place 

any restrictions on the clustering algorithm involved, so it promotes the use of user-defined and 

domain specific clustering algorithms. The authors introducing the Mapper algorithm have based 

their clustering algorithm on single-linkage clustering; this algorithm “returns a vector in 𝑅𝑁−1 

that holds the length of an added edge to reduce the number of clusters by one at each step of the 

algorithm” [Singh, 2007]. Once clustering is complete, the algorithm outputs a representative 
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simplicial complex of the data; the Python Mapper goes further to display this representation as a 

2-dimensional network of nodes. All edges between nodes/clusters in the graph indicate that their 

intersection is non-empty. This visualization additional has a coloring and labeling of each node; 

colors represent the average function value of the node and labels indicate the number of data 

points residing within a node. 

5.2.1 Python Mapper 
 The Python Mapper is an implementation of the Mapper algorithm written with Python 

and C++ bindings [Mullner, 2013]. In addition to implementing the algorithm, the software also 

consists of a graphical user interface that enables beginners to quickly acquaint themselves with 

its many features such as filter selection and node coloring options. Developers of the toolchain, 

David Mullner and Aravindakshan Babu, have provided this complete and extensible toolchain 

to the scientific community as open-source software in hopes of other researchers “extending, 

modifying, and applying the software for new ideas” [Mullner, 2013]. As of 2016, there have 

been numerous uses of Python Mapper on breast cancer patient data as well as employee 

information. Before discussing these applications in more detail, this section begins by 

elaborating on the Mapper algorithm further. 

5.2.2 Metrics  
 Since clustering contributes to the algorithm, there must be a measure of distance and/or 

similarity to determine the closeness of any two data points. The formal definition of similarity 

is, “the measure of how close to each other two instance are; the closer two instances are in 

comparison, the larger the similarity value”. In contrast, the dissimilarity measure determines 

how different two instances are. A distance metric is a measure of dissimilarity that obeys the 

conditions outlined in Definition above. 
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Utilizing one of these metrics to determine similarity/dissimilarity requires first that the 

fields within the data align with the criteria of that metric; matching the criteria allows for an 

accurate measure of closeness between two data points. To elaborate on this point, consider that 

attributes within the dataset can vary in type; attributes of the data can be nominal, cardinal, or 

ordinal. Cardinal or numerical data have a continuous scale of values like sale profits, time, or 

height, whereas ordinal data infers an order on the values and nominal or categorical data are 

discrete values. Examples of nominal data include gender, favorite color, and names. Comparing 

two data points composed of only nominal attributes with some real-valued metric like Euclidean 

distance would not provide any information on closeness; one cannot compare two names using 

Euclidean distance. However, the alternative is to use Hamming distance to determine the 

number of different/similar characters present in the two names. The Python Mapper 

implementation provides three distance metrics such as Euclidean, Minkowski, and Chebyshev. 

 Beginning with the Euclidean metric, Euclidean distance is the most well-known 

measurement for distance. Given any two points U, V in a two-dimensional space, the square 

root of summing (Ux - Vx)2 and (Uy – Vy)2 gives the distance between those two points. A 

generalization of this formula to an N-dimensional space is a summation of the squared 

differences between corresponding components of any two N-dimensional vectors. The 

Minkowski distance, on the other hand, is a generalized metric to measure the differences 

between absolute magnitude of differences between a pair of objects. Chebyshev Distance, also 

known as maximum value distance, “measures the absolute magnitude of difference between 

coordinates of a pair of objects” [Tabish, 2009]. The formulas for these metrics can be seen in 

Table 1.  
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Table 1: Distance functions 

 

Utilizing the filter function in the next step of the algorithm, these distance metrics allows this 

method to project data points onto R1; selecting the filter function is as important as selecting the 

metric because any interpretations of the output depends upon the choice of filter function. 

5.2.3 Filter Functions 

Crucial steps in the algorithm involve using a function to map data points to values in R1, 

partitioning the range of values restricted to this set of data, and devising a cover for this range. 

One important point to note is that this function relies on the ability to compute distances 

between points; again, the metric determines how this distance is computed. Focusing further on 

the filter function, the purpose of this function is to summarize all the relevant features of the 

input data. The outcome, as a result, becomes heavily dependent upon the filter function’s 

method of mapping the data points [Singh, 2007]. To illustrate this concept, consider the 

geometrical point cloud data and the two filter functions in Figure 5. Filter function f computes 

the height of a point from the input data, whereas filter function g summarizes the input data 

from a horizontal perspective. To understand the output, imagine first a horizontal plane moving 

from the top of the Y-shaped point cloud to the bottom. The intersections between the plane and 

point cloud result in the Y shape to the right of the point cloud. For the filter function g, consider 

a vertical plane that moves horizontally from left to right of the data. Beginning from the left, 

there is one connected component that results in one point of the corresponding loop in the 
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output. Continuing, the intersections become two lines on the plane, resulting in the top and 

bottom curves of the left loop in the output. The intersection between the middle section of point 

cloud and the plane is a connected component that allows the two curves to meet and create one 

loop. Symmetry of the point cloud indicates how the remaining section creates the right loop.  

 

Figure 5: Illustration of Filter Function Representing Input Data [Kim, 2015] 

Figure 6 illustrates the same concept but using an H-shaped point cloud. 

 

Figure 6: Another Example of Filter Functions [Bayless, 2015] 

 Provided in the Python Mapper, there are seven filter functions that represent or highlight 

different properties of the data. The first set of functions aim, “to understand a mathematical 

context surrounding the data points in the space” [Kim, 2015]. These functions, eccentricity and 

Gaussian density, highlight the geometry of the data set. For Gaussian density, the mapper 
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implementation utilizes a kernel density estimator with a multivariate, radially symmetric 

Gaussian kernel. Gaussian density assumes that all values within a data points are Euclidean data 

in order to compute the distribution of the data. Looking at the corresponding formula in Table 2, 

 

Table 2: Available Filter Functions 

epsilon controls the smoothness of the density estimate on the data set. Moving to eccentricity, 

the intuition is that this function determines which points in the data are different from the center 

of the data without designating a center point(s). Understanding how the functions compute 

distances, however, is meaningless if one cannot interpret the shape of the resulting mapper 

output.  

5.2.4 Interpretation of Visualizations 

Each filter function provides different meanings and interpretations of the data, so this 

section gives a brief summary of them. A possible interpretation that may originate from using 

the eccentricity filter function would be that low-valued nodes are closer to the center of the data 

and any high-valued nodes branching from this center infers anomalous behavior. In terms of the 

Gaussian density estimator, the resulting output should infer the distribution of distance values. 

For example, looking at Figure 5, one can infer that the data set is bi-modal; such an inference 

would indicate that the data points near the top of the network in Figure 5 showcase more unique 
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traits than the rest of the data. Although these functions are a subset of the available filters in the 

Python Mapper, this section reinforces the idea that the choice in filter function is essential in 

producing the desired output.  

5.3 Ayasdi 

 Perhaps the most prominent company at the forefront of topological data analysis 

research and application, Ayasdi is an advanced analytics company that has taken Mapper 

beyond simply visualizing data and has created a new product to help their clients solve complex 

data analytics challenges. Ayasdi’s product incorporates “the latest machine learning, statistical 

and geometric algorithms with topological data analysis and big data infrastructure” [Ayasdi, 

2016]. The aspects concerning topological data analysis constructs compressed representations 

of the data, from which data scientists and analysts search for variables that impact the patterns 

found in the representation. This process, consequently, results in features holding predictive 

power that lay the foundation for machine learning algorithms.  

5.4 Applications of Topological Data Analysis 

 In this section, the main topic of discussion is applying the Mapper algorithm to identify 

shape and to solve real problems. The first section describes the algorithm’s ability to capture the 

shape of a hand and other topological objects from sampled points. Afterwards, the second 

section discusses Mapper’s application within medicine and business. One application comes 

from breast cancer study and the other application involves employee information from a 

company.  

5.4.1 Mapper on 3-D Shapes 

 The first application is representing a two-dimensional picture of a human hand; the 

result was representing a data set of a thousand points by a network of 13 nodes and 12 edges 

[Lum, 2013].  Following the steps in the Mapper algorithm, the process begins with sampling 
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data points from the image in order to create point cloud data resembling a hand. After 

processing the data with a filter function and partitioning, clustering and network construction 

produces Visualization D in Figure 7. This output captures the overall shape of the hand in size 

and orientation as well as the position and length of the fingers and thumb. Additionally, the 

branches in the network reflect the location in which the fingers and thumbs extend from the 

palm of the hand.  

 

Figure 7: TDA Pipeline [Lum, 2013, Figure 1] 

 For the next few examples, each of the point cloud data resembles a topological object 

such as a circle, torus, and a knot. Beginning with Figure 8, the point cloud consists of a circle of 

data points and several other points that serve as noise. Using the Singular Vale Decomposition 

filter with the Euclidean metric, single-linkage clustering, and a balanced cover, the network to 

the right of the point cloud represents the circle as a loop in the network. The noisy data does not 

interfere in representing the circle; in fact, the algorithm places the noisy points along the path in 
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the network. Notice as well that the four clusters of red nodes each receive their own branches in 

the topological summary.  

 

Figure 8: Topological Summary of Noisy Circle [Kraft, 2016, Figure 4.7] 

From Figure 9, sampled data points from a three-dimensional torus compose the point cloud data 

for the next example. These summaries use the SVD filter functions, Euclidean metric, single 

linkage clustering, and a balanced cover. Focusing solely on the point cloud data, some initial 

topological features include a hole enclosed by several data points and, overall, one connected 

component. Both topological summaries reflect these features, even though they use the same 

filter function with different parameters. The top and bottom networks exhibit a single-connected 

topological object and a single loop. 
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Figure 9: Summary for torus using first SVD (Top) and Summary for torus using second SVD (bottom)  
[Kraft, 2016, Figure 4.7] 

Of course, these examples illustrate the algorithms ability to capture essential topological 

features and shape, but the data sets so far have been synthetic data samples that reside in two or 

three dimensional space. The next section touches upon real-life data sets collected from both 

industry and medical practice.  

5.4.2 Real-life Applications 
 In the following studies, researchers apply the Mapper on real-world data. The first 

application pertains to a breast cancer study whose usage of Mapper led to the discovery of a 

new subgroup of breast cancer tumors. Data used for the study comprised of Nederlands Kanker 

Institut (NKI) data composed of 295 tumors, Breast Cancer Normal (BCN) data consisting of 13 

normal breast tissue samples, and data from Ulleval University Hospital (ULL) containing 46 

tumors and HERSCH containing 188 primary breast tumors [Nicolau, 2011]. In the last 

application of Mapper, the problem was determining indicators of loyalty for customers buying 

two brands of orange juice. The available data set came from a marketing study of customer 

purchases of orange juice at five supermarkets consisting of 1070 observations on 17 predictors 
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[Kraft, 2016]. These applications should showcase how the Mapper method can be adapted for 

data from various sources.  

 Since the purpose of topological data analysis is to provide a global representation of the 

data, incorporating Mapper into the analysis of breast cancer data assisted in addressing the high 

dimensionality of the biological data. The paper referred to the resulting method of analysis as 

Progression Analysis of Disease (PAD); PAD was the study’s “approach to the data analysis of 

disease that unraveled the geometry of data sets and provided an easily accessible picture of the 

data through Mapper and Disease-Specific Genomic Analysis (DSGA)” [Nicolau, 2011]. This 

new method added an additional level of pre-processing before running the data through Mapper; 

the preprocessing entailed transforming the breast cancer data set into new vectors highlighting 

specific properties. Defined by a mathematical method known as DSGA, the transformation 

measures the extent of deviation between diseased tissue and healthy tissue. By transforming the 

data using DSGA, the new data brings out unique biology, allows for wide variability of normal, 

and emphasizes the degree of deviation from healthy tissue [Nicolau, 2011]. Doing so, in other 

words, customized the Mapper algorithm to fit the nature of the medical data. Once the 

transformation of the data is completed, PAD applied filter functions provided by Mapper to the 

transformed data set; in this study, researchers defined filter functions that computed the vector 

magnitude of the Lp norm. Applying PAD on the NKI data formed the graph shown in Figure 10. 

Note that, since the filter function highlighted the deviation from normal, blue-colored nodes 

would pertain to normal and normal-like tumors; red-colored nodes, consequently, indicate that 

the deviation from healthy tissue is large. In this figure, there are two progression arms or paths 

that branch out from the blue nodes. The progression arm with red nodes, as discovered in the 

study, identified a new subgroup of “Estrogen Receptor-positive breast cancers that express high 
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levels of c-MYB and a high survival rate in patients” [Nicolau, 2011]. Even though this new 

subgroup does not fit into previously identified breast cancers and exhibit these properties, the 

researchers were able identify the subgroup only with the help of Mapper. The next application 

only reinforces the idea that the Mapper algorithm strives to highlight certain topological 

information.   

 

Figure 10: PAD Analysis of NKI data [Nicolau, 2011] 

 In this study concerning marketing research data, the goal of the study was to understand 

which factors influence a customer’s decision to purchase between two brands of orange juice, 

Citrus Hill (CH) or Minute Maid (MM). Some variables utilized within the study include sale 

prices for each brand, price differences, discounts offered, week of purchases, and loyalty of 

customers. An initial statistical approach using penalized logistic regression with L1 penalty 

concluded that good predictors for purchasing CH were loyalty to CH, price difference between 

MM and CH products, and an indicator variable for a specific store. This store was a good 

predictor for purchases because, according to the data, it offered more special offers and the best 
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sale prices for CH [Kraft, 2016]. The study then went onto to find predictors by using a 

combination of Mapper and penalized logistic regression to validate predictors from the previous 

approach and possibly find new predictors. Figure 11 shows the resulting topological summaries 

of the data set colored by first SVD filter function (left), by whether or not the purchase was CH 

(center), and by whether or not the purchase was MM (right). 

 

Figure 11: Initial Colorings of Topological Summaries [Kraft, 2016] 

Observing the center and right topological summaries, customers purchasing CH gathered on the 

right side of the graph whereas most customers purchasing MM were localized in the left branch. 

Notice that the two nodes in the dotted black circle have similar colorings in both summaries; 

comparing the two groupings concluded that MM customers in the right nodes possessed distinct 

purchasing reasons differing from MM customers in the left side. In fact, penalized logistic 

regression again selected loyalty to CH, price difference, and Store 5 as the best predictors that 

distinguish two nodes on the right from the left branch. Figure 12 illustrates the colorings by 

these predictors.  

 

Figure 12: Topological Summaries colored by LoyalCH (left), PriceDiff (center), StoreID5 (right). [Kraft, 2016] 

One interpretation gained by these colorings would be that, within the two nodes designated by 

the arrows, customers are moderately loyal to CH but choose to buy MM when the price 
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difference (sale price MM – sale price CH) is low [Kraft, 2016]. Additionally, observe the two 

nodes in the dotted circle. These colorings indicate that these nodes contain customers who are 

moderately loyal to CH and high price differences between CH and MM; alternatively, these 

customers prefer lower sale prices from CH. With Mapper, researchers from these studies were 

able to understand the data intuitively and, then, guide their efforts for further study. The next 

section discusses the cyber data involved. 

5.5 Cyber Data and Analytics 
 In this section, the main focus is on the cyber data available and the cyber analytics used 

in both filtering and validation of the data. The cyber data is a product of the BRAWL project; 

BRAWL is an abbreviation for Blue versus Red Agent War-game Evaluation. One goal of this 

project is to generate and collect real-time synthetic data from within a computer network. 

Pertaining to cyber analytics, another project involves collecting analytics that indicate malicious 

activity and to storing them in a repository.  

5.5.1 BRAWL Data 
 Data collected through BRAWL is synthetic data capturing the simulation of an intrusion. 

To summarize the procedure of BRAWL in a sentence, two teams of cyber agents compete 

against each other; the blue team handles detection of red team activity whereas the red team 

simulates an adversary gaining access to the system [Wampler, C., personal communication, July 

2016]. These games occur on a hyper-sensing network that generates data and records logs of 

network activity in real-time. BRAWL data is essentially information from Windows event logs 

and, thus, conforms to an XML-based schema in its raw form. After parsing and extracting 

information from the event logs, the data takes on a Comma-Separated Values (CSV) format 

because data in this format are easier to read row-by-row and process. The resulting data set 

contains as much as 153 fields; however, much of these fields repeat information and only 
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contribute to the distribution of missing data. Fields found in the data include log type, host 

name, severity, keywords, process ID’s, group ID’s, source port, destination port, image path, 

command line, parent information, integrity level, executables, and hashes. The data is a record 

of activity from the red and blue team agents as well as from normal users on the network. With 

a list of red team activity used as ground truth, identifying the red team agent activity was one 

goal of this project. 

5.5.2 Cyber Analytics and Analytics Repository 

 After each BRAWL cyber game, the output is a multitude of indicators that highlight 

malicious behavior or by-products of red team activity. Each indicator, also referred to as a cyber 

analytic, no matter how trivial or groundbreaking goes into the Cyber Analytic Repository 

(CAR) for further study and testing. While in storage, additional information is necessary to 

describe the new cyber analytic; such information pertains to likelihood of malicious activity, 

stage of development, and related ATT&CK technique (Appendix 4). All cyber analytics begin 

as ideas and, after testing and validation, go onto further stages of development or become 

refuted. The indicators highlighted in this paper include Powershell execution, processes 

spawning CMD.exe, and Server Message Block Write requests. See Table 3 for summaries of 

each available analytic. 

Cyber Analytic Summaries 

Analytic 1 Typically, when a user runs a command prompt (cmd.exe), the parent 

process is explorer.exe or another instance of the prompt. Spawning the 
process cmd.exe from certain parent like Microsoft Outlook may be 
more indicative of malice. 

Analytic 2 Detects Powershell scripts. Powershell is a scripting environment 

included in Windows that is an easy way to circumvent security 
measures. 

Analytic 3 Detects SMB Write Requests. SMB provides a means for remotely 

managing a file system. SMB Write indicates lateral movement to a 
host. 

Table 3: Analytic Summaries 



P a g e  | 56 

 

5.5.3 Applying Mapper to Cyber Data 
 Implementing the aforementioned cyber analytics along with other analytics in the repository 

have accomplished the task of detecting red team intrusions, and most analytics in the repository have 

undergone improvements. The overall goal of applying the Mapper to this data was to gain qualitative 

understanding of the data from a different perspective. Rather than focus on a subset of the fields, the 

Mapper provides a global view of the data while still considering all the fields provided from the cleaned 

data set. Gunnar Carlsson, one of the researchers who co-founded Ayasdi and developed Mapper, stated 

that topological modeling can lead to taxonomy generation, hotspot outcome-based analysis, and 

geometry-based feature selection [Carlsson, 2015]. From this method, one desired outcome of applying 

Mapper was a taxonomy user activity or at least a distinction between malicious and benign user behavior 

on the network.  

6 Methodology 

 The overall goal of the project was to develop indicators of attack using Topological Data 

Analysis as well as to enhance the Python Mapper by designing a customizable base application to call 

Mapper functions. This chapter describes the design of the topological data analysis system, the 

cloud storage service that holds all the cyber data, and the case studies and their desired 

outcomes on the data. In addition, this chapter introduces the data analysis process that data 

scientists utilize when extracting generalizations and conclusions from the output of Mapper. 

The system overall consists of two layers of abstraction that begin with extracting data 

from a cloud storage service like ElasticSearch and ends with the analysis layer for the data. 

These two layers are referred to as the data extraction layer and the topological data analysis 

layer. As for the proposed experiments with the data, they consist of experimenting with filter 

functions, tweaking parameters within the TDA layer, and applying mapper on a different data 
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set. For the final section, most of the discussion pertains to the mathematical component of this 

paper. 

6.1 System Design 
 The Python Mapper implementation lacks two key aspects that limits the data analysis 

stage; these aspects are the ability to extract data directly from a source and the ability to analyze 

the data beyond creating visualizations. Extracting data directly from the source entails being 

able to take a subset from the data source, to clean it by removing any non-numeric attributes, 

and to package the cleaned data in a readable format such as a CSV-formatted file. Thus, 

integrating abstractions of these aspects with the implementation should improve its capability. 

Generally, for all following sections, the design aspect consists of brief descriptions of the 

classes involved. 

6.1.1 Data Extraction Layer 

 The main task of the data extraction layer is to pull in all requested data from a cloud and 

format the data into a readable file for the next layer, cleaning and parsing all the data in the 

process. In terms of structure, there are five main classes that include the ESManager class, File 

class, Parser class, JSONFile class, and CSVParser class. Both the File class and Parser class are 

parent classes for the JSONFile and CSVParser classes, respectively; the reason is that future 

versions of the system would have the freedom to implement additional format changes such as 

reading from a plain text file. Establishing a connection with the ElasticSearch cluster, querying 

for data, pulling the data are responsibilities of the ESManager. The ESManager is also 

responsible for reading in pre-configuration files containing server names or port numbers for 

designating the Elasticsearch cluster. As for the File and JSONFile classes, these classes have the 

task of reading in a data file formatted one way and outputting a file formatted according to user-

preference. Output from Elasticsearch uses JavaScript Object Notation (JSON), but the Mapper 
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toolchain requires Comma-Separated Values (CSV) format. Thus, the JSONFile class transfers 

the data to a CSV file as desired. The purpose of the Parser class and CSVParser class is to 

represent any non-numeric data as numerical values either by assigning integers for all possible 

values within a column or transforming each data point into a vector of continuous values. As 

with the file classes, the reason for using only numeric representations for the data is an 

implementation-specific requirement of the Mapper toolchain. Aside from structure, the process 

of data extraction follows five steps.  

 First, data extraction begins with an ESManager object pulling data from an 

ElasticSearch cluster. The output from this operation is, as stated before, a file formatted in 

JSON. Next, a JSONFile object would export all information from this file to a CSV-formatted 

file. A CSVParser object would then clean the data by removing extraneous columns or repeated 

columns from the file and parse the file. Again, parsing the file means assigning numerical 

values to all non-numeric data as well as categorical values like ID numbers. Finally, the last step 

in data extraction is compressing the cleaned and parsed CSV-formatted file into a .gz file. Now, 

the data would be ready for the next layer in the system, the topological data analysis layer. 

6.1.2 Topological Data Analysis Layer 

 The main purpose of this layer is to execute the steps in the Mapper algorithm and output 

both a visualization of the data and CSV-formatted files for further analysis. To accomplish this 

goal, the Mapper class inherits all methods from the mapper python module. The OutputManager 

class is responsible for showing a visualization for the data along with creating CSV-formatted 

files corresponding to each node in the visualization. In the first step of the procedure, the data 

analysis layer takes in an archived file (.gz extension) and reads in the data; as discussed in the 

algorithm, the system stores all the data points into a matrix. A Mapper object would go through 

all steps of the algorithm from filtering to clustering.  
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 One alternative way for implementing this TDA layer was to simply modify the source 

code for the Python Mapper, changing the GUI to incorporate more options and more filter 

functions. Instead, starting from scratch would be a more straightforward process since only 

certain methods from the mapper python module were required. In order to know which methods 

were necessary, the Python Mapper had a feature for generating standalone python scripts that 

would accomplish the same task as using its graphical user interface. Using these python scripts 

as a starting point would make the system more adaptive to future changes and allow integration 

to be more direct.  

6.2 ElasticSearch 

Originating from Windows Event Logs, the cyber analytic data had contained logs of 

process and user data recorded every second for the duration of a month. ElasticSearch, thus, was 

a suitable tool for searching through and storing this data. Essentially, ElasticSearch was a 

distributed search engine built for the cloud, providing features such as various API’s, long term 

persistency, full-text search in real time, and the functionality of Lucene [Dixit, 2016]. These 

features have attracted many large and small organizations to adopt ElasticSearch for not only a 

search tool but also a data storage tool. This section will discuss the inner workings of 

ElasticSearch by first introducing Lucene. 

6.2.1 Foundation of ElasticSearch: Lucene 

 Written in Java, Apache Lucene is a search engine library from which ElasticSearch 

inherits its functionality. ElasticSearch, as a result, is able to index documents and search them 

with its full text search capabilities [Dixit, 2016]. Before touching upon this functionality, there 

are a few terms to understand. A document is known as “the main data carrier used for indexing 

and search within ElasticSearch; alternatively, it is a JSON object that contains the actual data in 

key value pairs” [Dixit, 2016]. Having the data formatted in JSON allows for fast lookup 
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because one can reference values by keywords, similar to indexing in a Python Dictionary data 

structure or Hash table. Fields compose sections of documents, and they consist of a name and a 

value. Finally, terms are units of search representing a word from the text and a token represents 

“an occurrence of a term from the text of the field” [Kuc, 2015]. In other words, documents are 

containers of information, fields provide organization for the information held within documents, 

and terms are the indices involved in searching for documents.  

 Keeping those basic concepts in mind, one can now understand how ElasticSearch 

handles querying. Apache Lucene stores information using a data structure called inverted index; 

this data structure “maps the terms in the index to the documents” [Kuc, 2015]. As a result, the 

data in an inverted index relies heavily upon the terms rather than the documents, a major 

difference from relational databases. The process of mapping the data in the documents to the 

inverted index as well as changing the query text into terms for searching purposes is known as 

analysis in the realm of ElasticSearch. Analysis has an important role in indexing and querying. 

The analyzer, composed of a tokenizer and some number of filters, carries out this process. The 

tokenizer component has the responsibility of dividing the text from documents into tokens, 

preparing the tokens for filter processing [Kuc, 2015]. With Lucene at its roots, ElasticSearch is 

able to build upon these foundations and become not only a search tool but also a data storage 

tool. 

6.2.2 Key Concepts of ElasticSearch 

 To fully understand ElasticSearch, there are a few more concepts to learn in addition to 

documents, tokens, and terms. Utilizing a bottom-up approach, an index is the next concept in 

the structure of ElasticSearch architecture. An index is a “logical namespace under which 

ElasticSearch stores data and may be built with more than one Lucene index using shards” [Kuc, 

2015]. Similar to how data is read from and saved to databases, an index stores documents for 
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future queries. Shards, in turn, are containers that consist of Lucene segments; shards enable 

ElasticSearch to distribute the data within an index and allow for a vast amount of storage space. 

Moving up a level in the architecture, nodes represent a single instance of an ElasticSearch 

server where one or more shards can reside. Types of nodes include master nodes, data nodes, 

and tribe nodes. Finally, a set of ElasticSearch nodes is known as a cluster; with its distributed 

nature and the collaboration between clusters, ElasticSearch can manage a large volume of data 

and work done multimode clusters can go uninterrupted even during repairs or maintenance 

[Kuc, 2015]. The system for TDA will incorporate the capabilities of ElasticSearch with the 

Python Mapper in order for direct access to data. 

6.3 Data Scientist’s Workflow 

The main phases of the Data Analytics Lifecycle are discovery, data preparation, model 

planning, model building, communication of results, and operationalization [EMC, 2015]. As 

noted in an interview with an Ayasdi data scientist and various studies using Mapper, there is a 

similar workflow that data scientists from Ayasdi have adapted for interpreting Mapper’s 

constructed visualizations. This workflow begins with data conditioning and filtering and ends 

with topological summaries of the data; repeating the process can lead to gaining a better 

understanding of the data [Symonds, 2015]. The desired end result from following these steps is 

to uncover patterns and predictors for the given data.  

The first step before visualizing the data with the mapper is data preparation. Probably 

the most critical task or at least most labor-intensive, data preparation affects the next stages in 

data analysis because any data conditioning or data transforming would determine what patterns 

are shown in subsequent models or summaries. In fact, teams aside from Ayasdi have commonly 

spent 50% of a data science project’s time understanding the data and deciding how to represent 

the given information in a way that conforms to the requirements of the project [EMC, 2015]. A 
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good portion of the project was spent learning how to represent each data point as an event log 

from a host relaying messages within the network to the mapper. However, not all fields 

provided in the event log were necessary for data analysis. The attributes that would be good 

representatives of the data set were fields from the Data Model data structure.  

The Data Model was an organization of objects that encapsulate consistent fields 

throughout the event logs and possess both actions and specific fields. Some example objects 

included processes, flows, drivers, files, and modules. Note that fields associated with the data 

model object contained most if not all the information within the data set; the other fields 

duplicated this information. Although each data model object (e.g. flows or processes) had 

different actions and fields, the cleaned data set included all types of data model objects. In total, 

each point in the data set would consist of 47 fields of only data model fields, timestamp, and 

port number fields. In order to ensure that the amount of missing data after cleaning was much 

lower, the validation method selected was to pull four sample data sets and compare the 

percentage of blank cells in these samples with cleaned versions of the same four sample sets. 

Each sample set contained 500 data points from different time intervals. This method would 

quantify the amount of missing data in the process of cleaning.  

Understanding the underlying structure of the output was a challenge by itself, so any 

initial analysis resulted in more observations and questions rather than conclusions. Before 

starting the analysis process, the first step in the workflow was to select initial features from the 

data set. Then, using Mapper, the next step was to create topological summaries of the data based 

on the chosen features. Any non-trivial topological features like loops, flares, or connected 

components were significant features to highlight during analysis of the output. Additionally, any 

localizations of data points represented anomalous or interesting behavior. Afterwards, the next 
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and probably the most difficult step was to generalize the underlying reasons for both the 

structure of the output and the groupings of data points. Knowing the properties highlighted by 

the filter function also contributed to the understanding of the output. Once identifying the 

common features resulting from the localizations, the final steps were to utilize this information 

to develop a better topological summary and to repeat this process. The goal of the following 

case studies was to explore the cyber data and observe the Mapper implementation’s ability to 

represent the data. 

6.4 Case Studies with Data 
 Based on the numerous applications of TDA, the desired result with this data was a 

visualization that identified a distinction between malicious activity and benign events or a 

taxonomy of events on a network. To reach such a result required much experimenting with the 

data. Experiments consisted of changing filter functions, using a combination of filter functions, 

or even adjusting the parameters for each filter function.  

6.4.1 Continuous vs. Categorical 

As previously stated in the system design section, parsing of the data was either through 

enumeration of values within each column/attribute or by computing a vector of continuous 

values for each data point. By using both methods, the result was having two different data 

transformations on the original data set. Each would require its own measure of distance or 

similarity; for instance, the continuous values used Euclidean distance and data set with 

categorical data utilized the Hamming metric. In terms of filter functions, the case study would 

use the L-Infinity Eccentricity function in order to detect any data points distinct from the center 

of data. Comparing the resulting visualization should have indicated whether or not the Mapper 

algorithm was better equipped to finding malicious activity using only the enumeration or using 

another level of pre-processing.  
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6.4.2 L-Infinity vs. L-1 Filters 

 The difference between the L-Infinity and L-1 filter functions is that the L-Infinity 

function computes the maximum distance between a given data point and the center of data, 

whereas the L-1 filter function computes Euclidean distance between a given data point and the 

center. An alternative way to observe this difference is that the norm of a vector with p = 1 

differs from the infinity norm in a similar fashion. By comparing the output after filtering by 

both functions, there should be evidence supporting whether or not the L-1 filter overlooks any 

interesting groupings/topological features or vice versa.  

6.4.3 Experimenting with Resolution 

 Since the number of intervals and percentage of interval overlap affects the resolution of 

the data visualization, experimenting with these parameters would provide insight into how 

much of an impact these parameters have upon the output. Taking the resulting visualization 

from Figure 9, this brief case study focused on the 2-Torus because it is a well-known object 

studied in topology. Under the same filter and clustering method, the modifications to the 

parameters consist of increasing and decreasing only the intervals, increasing and decreasing 

only the overlap, and tweaking both parameters together. One possible outcome would be that 

decreasing the overlap should result in more disconnected components in the network.  

6.4.4 Applying Mapper to WBCD Data 

When testing the capabilities of the Mapper implementation, using the method on medical 

data seemed to be a good approach given its other applications in the field. The Wisconsin Breast 

Cancer Diagnostic (WBCD) data set was a good candidate since each data point had labels for 

ground truth and contained only real-valued features. Coming across the data set in Kaggle, there 

was already CSV-formatted file to parse on and allow the Mapper to process. There were 569 
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data points generated from 569 patients, 212 with cancer and 357 patients with fibrocystic breast 

masses (benign) [Wolberg, 1995].  

Features in the data included ID number, diagnosis (Boolean value for malignant or 

benign), and ten real-valued features computed from a digitalized image of a fine needle aspirate 

(FNA) of a breast mass. These ten features describe cell nuclei characteristics evident within the 

image; computed for each cell nucleus, they are radius, texture, perimeter, area, smoothness, 

compactness, concavity, concave points, symmetry, and fractal dimension [Wolberg, 1994 and 

Wolberg, 1995]. More information about these features can be found in both articles by W. H. 

Wolberg listed in the List of References, but essentially radius and area describe nuclear size of 

the cell and the rest refer to the nuclear shape. For each feature on each image, there is a mean, 

worst, and standard error value, resulting in a total of 30 features in addition to the ID number 

and diagnosis.  

In applying the Mapper method, 299 data points made up the testing set, consisting of 256 

benign points and 43 malignant points. The parameters involved were the Chebyshev metric, the 

Singular Value Decomposition filter function, and a balanced 1-dimensional cover. Coloring on 

different features showed how the method created groupings of the data. After finding these 

features, reading through relevant medical literature pertaining to this data set verified that these 

features were significant. The last step in this application of Mapper was to confirm any findings 

with a validation set composed of the remaining data points.  

6.5 Evaluation of Visualizations 

 Initial observations of the Mapper output could be confusing if not all factors are 

considered. Interpreting the visualization required understanding what the selected filter function 

conveys about the data, how transformations of the data change its meaning, how different 

colorings of the data may provide some insight into the data, and various other aspects. Since 
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working the synthetic cyber data had been an exploratory effort, evaluating the visualizations 

was a challenge, but there were three main aspects that determined whether or not the output was 

useful or meaningless. These aspects included localizations/groupings or malicious activity, 

number of significant topological features like loops or flares, and the persistence of shape 

evident in the visualization after a few perturbations in parameters.  

 For Mapper and other clustering methods, any localizations or groupings of red team 

activity would indicate that there were certain factors distinguishing them from normal user 

behavior; these factors/features would most likely be indicators of cyber-attack. Alternatively, if 

the chosen filter function highlighted the probability of malicious activity and the resulting 

visualization was able to group all adversarial activity in high-valued nodes, then that 

visualization should provide valuable insight into what are good cyber analytics for cyber threats. 

Thus, the accuracy or ability to create pure groupings within the visualization was an important 

component of a good visualization. 

 As previously stated about the Ayasdi data workflow, looking for topological features in 

the Mapper visualization would be essential in comprehending the meaning behind the shape of 

the data. These topological features may possibly highlight specific behavior within the data. 

Most notably, many applications of Mapper like the Breast Cancer study and study with diabetic 

patients have identified these special topological features to be loops (continuous circular 

segments) or flares (long linear segments) [Lum, 2013]. Loops in the Mapper output have 

typically inferred periodic behavior within the data. For example, a student used Ayasdi’s 

commercial product to represent four decades of macroeconomic and market data as a large 

circular loop; the student later discovered that this shape represented the economic cycle by 

identifying its distinct stages such as expansion, contraction, and recovery within the network 
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[Ramanan, 2016]. Flares, on the other hand, usually represent a taxonomy of subgroups within 

the data like in the Breast Cancer tumor study and market data study. Now, identifying 

topological features within the output composes a significant part of the analysis, but one must 

also validate the persistence of the feature.  

 The final method of evaluating a visualization was observing how the visualization 

changes after experimenting with the parameters. Such parameters included the number of 

intervals and the percentage of overlap. Increasing or decreasing the intervals controlled the 

resolution of the visualization, meaning that less intervals resulted in less nodes in the output but 

the nodes became larger. In contrast, more intervals led to several smaller nodes. Having a high-

resolution in the visualization could possibly allow the user to detect more topological features, 

but such features would be insignificant compared to some larger topological feature. 

Concerning overlap, this parameter controlled how much the intervals were allowed to intersect 

each other. An overlap greater than 50% could result in much denser visualizations where all 

nodes connect to more than one node, whereas an overlap less than 50% could lead to more 

disconnected networks. The next chapter will discuss the results of creating data visualizations 

based on the data sets and their evaluations. 
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7 Results 
 Before describing the work done on the cyber data and the output from the Python 

Mapper, note that this work has been largely exploratory so far and the following visualizations 

may not seem too interesting at first, but such is the nature of the methodology behind Mapper. 

The focus now is to highlight the progress of developing cyber analytics including work 

completed for data preparation and some initial case studies on the cyber data. Evaluation of the 

data visualizations will consist of the three components of a useful visualization described in the 

previous chapter.  

7.1 Minimizing Missing Data 
 As part of understanding data and the fields, one of the first steps to conditioning the 

cyber data was selecting the data model fields to keep consistency throughout the data set. Table 

4 and Table 5 show the results from the brief study described in the Methodology Chapter. 

Particularly, Table 4 displays the number of blank cells contained in the data before and after 

cleaning as well as the percentage of missing data of the whole data set. Each sample data set, 

originating from a simulation occurring from March 1, 2016 and March 2, 2016, had 230 

columns/fields and 500 data points, resulting in 115,000 cells in total. According to Table 5, the 

average percentage of blank cells before conditioning was 73.5% and the average percentage 

afterwards was 51.4%, an average drop of 22.1% in missing data.  

Missing Data Results 

 Subset1 Subset2 Subset3 Subset4 

Number of Blanks Cells (Before) 84291 84762 84238 84755 

Percentage of Blank Cells (Before) 73.296 73.706 73.25 73.7 

Number of Blank Cells (Cleaned) 12996 13266 12919 13206 

Percentage of Blank Cells (Cleaned) 50.964 52.023 50.662 51.788 

Percentage Difference 22.332 21.683 22.588 21.912 
Table 4 Missing Data Amounts and Percentages 
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Population Means and Std. Dev. 

Average Number of Blanks (Before) 84511.5 

Avg. Percentage of Blanks (Before) 73.5 

Average Number of Blanks (Cleaned) 13096.8 

Avg. Percentage of Blanks (Cleaned) 51.4 

Average Percentage Difference 22.1 

SDEV Number of Blanks (Before) 286.0 

SDEV Number of Blanks (Cleaned) 165.7 

SDEV Percentage of Blanks (Before) 0.249 

SDEV of Percentage Difference 0.407 

Table 5: Missing Data Means and Std. Dev. 

The data sets that trimmed off any non-data model field were left with 51 attributes where four 

of these fields held blank columns. Even so, missing values composed approximately half of data 

samples; the reason, again, was that each set contained various data model object that only 

possessed values for a distinct collection of fields. For example, flow object typically had values 

for IP address fields and port name fields. When transforming the data, the Data Extraction 

Layer section explains how it handles missing values. Aside from the percentage of missing 

values after conditioning, these results still reinforce the motivation to remove all fields except 

data model fields. 

7.2 Applying Mapper to WDBC Data  

The results from applying Mapper to this data set were good in terms of creating groupings 

of benign and malignant data points. Based on previous research and applications of mapper, 

flares or branches of one color typically indicated clear distinctions/groupings defined by the 

Mapper. With a one-dimensional balanced cover of 15 intervals and 50% overlap, Biggest Gap 

cut-off, and single-linkage clustering, the Mapper created a network (tree) of three flares. Figure 

13 shows this result, exhibiting how Mapper grouped all benign points in the right branch 

(shown in blue) and created two other branches for malignant data points (shown in red).  
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Figure 13:  Default Coloring (Left), Coloring by Diagnosis (Right) 

 After coloring the graph by each of the 30 features separately, three good features that 

colored the malignant and benign branches differently were the mean texture, worst area, and 

worst smoothness. Observe in Figure 14 that the branch containing benign data points have low 

values for the three features, whereas the other branches/flares have a combination of low and 

high values. In particular, the middle flare contains data points with high values for worst 

smoothness, but low values for the other two features. According to an article citing this dataset 

titled Computer-Derived Nuclear Features Distinguish Malignant from Benign Breast Cytology, 

an inductive machine learning model using these three features achieved a cross-validation 

classification accuracy of 97.5% [Wolberg, 1994].  

 

Figure 14: Coloring by Mean Texture (A), Coloring by Worst Area (B), and Coloring by Worst Smoothness (C)  
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Figure 15: Validation Set; Default Coloring (Left), Coloring by Diagnosis (Right)  

In addition to these three features, the branch containing benign data points had high values in 

the following features: Standard deviation Smoothness, Standard deviation Symmetry, and 

fractal dimension. Characteristics of the left branch (Figure 14) containing malignant points were 

high values for worst radius and worst parameter. 

In the validation set consisting of 270 data points, shown in Figure 15, there is a similar 

structure of three flares as in Figure 14. The resulting output has the same parameters as the 

previous figure; notice again that in the coloring by diagnosis, benign and malignant data points 

have been separated into different branches. However, in this case, the middle branch has a 

mixture of benign and malignant data points.  

7.3 Visualizations on Cyber Data 
 The data set utilized held 4,687 data points that recorded activity from both red team 

agents, blue team agents, and neutral hosts. Data points consisted of event logs that helped 

monitor the network for intrusions, credential escalation, logins, and error reports. For this 

simulation, there were in total 69 events where the red team agents were successful in carrying 

out an assigned task; these data points imitated malicious events on the network. However, only 

11 out of 69 red team data points appeared in the 4,687 data points. The following sections 

describe and evaluate visualizations using different filter functions and parameters on the cyber 

data set. 
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7.3.1 Continuous vs. Categorical  

 Since the fields in the data set were mostly composed of nominal data types like process 

ID’s or event codes, an initial visualization should check if malicious activity could be localized 

by the differences for each field. The first visualization utilized the L-Infinity eccentricity filter 

function with the Hamming metric and single-linkage clustering. For the resolution, this 

visualization used 60 intervals and 50% overlap. Figure 16 and Figure 17 exhibit the output from 

Mapper colored by default values, Analytic 1, Analytic 2, and Analytic 3. Knowing which data 

points were red team agents, the blue region on the left side of the network had no malicious data 

points. The turquoise region excluding nodes in the loops contained two processes executed by 

the same red team host. In the turquiose loops, there was a powershell command executed by the 

same red team host and a net command under another red team host. A net command, used in the 

command prompt, manages many aspects of a network. 3 unknown processes executed by red 

team agents and 6 powershell commands composed the malicious activity located in the yellow 

region. Finally, the orange region contained 1 unknown process under a red team agent and, 

specifically, the orange loop contained 1 powershell command.  

 

Figure 16: Default Coloring (Top) and Coloring by Analytic 1 (Bottom) 
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Overall, there were three loops in the output and 22 disjoint components located in the middle of 

the network. Also, notice that the coloring by Analytic 1 (Figure 16) and Analytic 2 (Figure 17) 

have a concentration of likely malicious activity in the corresponding turquoise region of the 

default coloring.  

 

Figure 17: Coloring by Analytic 2 (Top) and Analytic 3 (Bottom) 

 The next set of visualizations were from transforming each data point into continuous 

vectors whose components were based on some likelihood of malicious activity. As stated in the 

Case Studies with Data section, this transformation was a way to incorporate meaning to each 

data point instead of an enumeration of values. Each of these visualizations used a specific field 

as a filter function rather than any filters defined in the implementation. For example, 

considering the first visualization based on Analytic 1, the correspodning filter function would be 

a mapping between a data point and its score for Analytic 1. Again, the parameters included 60 

intervals, 50% overlap, and single- linkage clustering. 
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Figure 18: Coloring by Default (Top), Analytic 2 (Middle), and Analytic 3 (Bottom) 

Again, Analytic 1 detects processes that spawn a command prompt. Most notably, Figure 18 

shows that the visualization for Analytic 1 possesses two large circular loops and three other 

smaller loops. Reviewing the data points in the first large loop on the left side of the output, there 

were two unknown processes under two different red team host and 7 instances of non-malicious 

powershell commands. The second largest loop had 2 unknown processes by two different red 

team hosts and 2 net commands. For both smaller loops on the right side, there were no 

malicious data points. There were, however, 2 powershell commands by a red team agent in the 

smallest loop on the left.  
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Figure 19: Coloring by Default (Top), Analytic 1 (Middle), and Analytic 3 (Bottom) 

Next, Analytic 2 involved detecting powershell executions. Its resulting visualization had a 

similar structure to the first categorical visualization. The first large loop contained 2 unknown 

processes by two different red team agents, 1 net command instance, and 1 powershell execution. 

Both loops beside each other shared a red team data point and 1 instance of a powershell 

execution, but the smaller loop on the right had another powershell execution and another 

unknown process. As for the smaller loops on the right side of the graph, the first loop from the 

left held 2 unknown processes and 3 instances of net command whereas the last loop contained 

no malicious activity. Observing the red region in Analytic 2 visualization revealed that there 

were 3 red team powershell executions.  



P a g e  | 76 

 

 

Figure 20: Coloring by Default (Top), Analytic 1 (Middle), and Analytic 2 (Bottom) 

Finally, this visualization pertained to Analytic 3; Analytic 3 had the purpose of detecting 

Session Message Block write requests. Figure 20 shows that there was 1 large loop and 4 other 

smaller loops scattered along the graph. Starting with the largest loop, there was only 1 instance 

of a powershell execution. Moving from right to left, the next loop contained 1 unknown process 

and a net command, whereas the third loop had 1 unknown process and 2 powershell executions. 

There was 1 net command in the fourth loop, but the fifth loop held no malicious data points. 

Concerning the red region of the default coloring, there were two instances of unknown 

processes under the same red team agent. One observation about the loops in all data 

visualizations was that the part of the loop with smaller nodes typically consisted of logins, 

logoffs, and processes spawned from a network monitoring program. Note that the network 

monitoring program, called Splunk, was not indicative of malicious activity. After comparing the 

categorical and continuous filters, the next step outlined in the Methodology chapter was 

exploring the difference in visualizations between eccentricity filters. 
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7.3.2 L-Infinity vs. L-1 Filter Functions 

 The visualizations for this section involved using both L-Infinity and L-1 eccentricity 

filters and comparing them to showcase any differences in structure or localizations of data. 

Pertaining to the transformed data used, only the categorical version of the cyber data by value 

enumeration was necessary for this case study. Intervals and overlap were fixed at 60 and 50%, 

respectively.  

 

Figure 21: Visualization using L1-Eccentricity Filter 

As one can see from Figure 21, the structure of the graph is different from the one found in 

Figure 16. There was only one loop in this visualization and the color scheme only goes from 

blue to light green; in contrast, the visualization in Figure 11 had four loops and its color scheme 

spanned the whole color spectrum (i.e. red to blue).  

7.3.3 Results for Modifying Parameters 

  The following graph outputs from Mapper were results for the brief case study of 

experimenting with intervals and the number of overlap amount. In addition to using sampled 

data points of 2-Torus, choices for filter function and metric remain the same as outlined in 

Section 4.4.1. Some features to observe would be that loops in the output mostly occur in the 

same colored regions where the single large loop in Figure 9 resided.  
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Figure 22: Visualization from Section 4.4 

 

Figure 23: Intervals: 30 and Overlap: 40% 
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Figure 24: Intervals: 10, Overlap: 40% 

From Figure 23 and Figure 24, these visualizations were the outcomes of increasing and 

decreasing the number of intervals. The increase in intervals seemed to have split the network 

into two components. Figure 24, in contrast, has remained as one connected component but has 

fewer nodes in the graph. 

 

Figure 25: Intervals: 18, Overlap: 80% 
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Figure 26: Intervals 18, Overlap: 20 

Exhibited in Figure 25 and Figure 26, the visualizations were showcasing the result of increasing 

and decreasing percentage overlap. Both graphs can be seen to be one connected component, but 

the visualization from Figure 25 is much denser as a result of the 80% overlap. The loop from 

the default parameters remained within the visualization from Figure 25 but does not appear with 

an overlap of 20.  

 

 

Figure 27: Intervals: 30, Overlap:10% 
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The purpose of this last visualization was observing the deviations from the original graph after 

increasing the intervals but decreasing the percentage overlap. Looking at Figure 27, one can 

clearly see that there are multiple connected components; two components that stand out were 

the blue and red subgraphs. After reviewing all of these data visualizations, one final observation 

from Figure 23, Figure 26, and Figure 27 would be that color regions where nodes branch off of 

each other are the same color regions where the loop occurs in the other visualizations.  
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8 Conclusions and Future Work 
 After reading about the successes of the Mapper on various data sets, the visualizations 

based on the cyber data should have created distinct groupings of malicious and benign behavior 

or track malicious activity and lateral movement. The next steps afterwards should have been to 

interpret the underlying reason for that behavior and develop new cyber analytics. Due to the 

exploratory nature of the research, unfortunately, none of the analysis on the visualizations 

provided evidence of such phenomena. Any number of factors, like insufficient amount time 

spent on data preparation or inadequate choices in filter functions, could have led to this 

outcome. However, there were other findings and conclusions that resulted from progress done 

in the Results chapter.  

8.1 Finding 1: Fields Besides Data Model Can Be Removed 

 After analyzing the distribution of the missing data from four sample data sets of the 

same size, the conclusion was that the data set extracted directly from the cloud storage service 

could reduce its dimensionality further without loss of information. Removing any fields other 

than data model variables, timestamps, and port numbers would be one way of doing so. In 

addition to contributing to an approximate 22% drop in missing values in the data set, removing 

these fields would also rid the data of duplicated information. Another hidden benefit of leaving 

out these fields would be a reduction in waiting time for extracting the data from the cloud; not 

requesting for these fields would be an optimization decision.  

8.2 Finding 2: Similar Structures in Categorical vs. Continuous Comparisons  

 Similar to transformations in the Breast Cancer study, using the analytics to transform the 

data points into vectors of probabilities was a worthwhile data transformation. Going back to the 

data visualizations in the Results chapter, notice that they have similar structures in that each one 

has 3-4 loops. Each visualization had different filter functions that highlighted different 
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properties on the same data set, but there were loops in all of them with parameters for intervals 

and overlap fixed. Coincidence or not, the loops in each visualization confirm some cyclic 

behavior prevalent in the cyber data. What cyclic behavior specifically would require further 

analysis and a more time spent in data preparation.  

8.3 Finding 3: Loops in the Visualizations were not Indicators of Attack  

 Although the analytic-based visualization consisted of loops that contained some 

malicious data points, there were several other benign and noisy data points accompanying them. 

The data set had much fewer red team data points in comparison to the rest of the data. Even if 

malicious data points appeared in any of the loops, it was quite challenging to infer the 

underlying reasons as to why these point became grouped together. Thus, whether or not these 

circular loops represented any malicious behavior was inconclusive. However, the existence of 

these loops in all visualizations of the cyber data was significant. This notion of having fewer 

malicious data points leads to the next finding.  

8.4 Finding 4: Data Requires More Malicious Points 

 As stated in the previous finding, the number of normal user and blue team data points far 

outnumber the red team data points. Of course, this situation would replicate a real-world 

scenario where adversarial activity can be lost in a wave of network activity. However, the 

problem with this proportion of red team data to normal data was that any groupings of the data 

did not provide any evidence for a cyber analytic. Other applications of the Mapper noted in web 

blog posts by Gunnar Carlsson and Ramanan drew upon sufficient proportions of all possible 

subgroups within the data. For example, the data used to represent the economic cycle originated 

from Macroeconomic data spanning 1972 to 2015, touching upon different stages of the 

economic cycle. In order for the Mapper to incorporate similar localizations of malicious data 
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points, future applications of Mapper on cyber data should require more instances of malicious 

activity.  

8.5 Future Work 
 Future work should build upon the findings and work done in this project and progress 

towards developing cyber analytics for cyber threat intelligence. One direction for further study 

would the incorporation of machine learning into the Mapper workflow. In terms of filtering, a 

model trained using a machine learning algorithm and labeled cyber data can act as a filter 

function for assigning numerical scores to each data point based on likelihood of malicious 

intent. Of course, data preparation should entail labeling each data point on whether or not it was 

a blue team or red team member. Once new indicators of attack have been created from analysis, 

a new model trained using these indicators would act as part of a cyber detection system. 

Another idea for future work is developing a better data transformation that would highlight the 

purpose of each data point and its impact on the network. Although transforming the data into 

continuous vectors using available cyber analytics was interesting notion to experiment with the 

Mapper, this transformation was only one way of incorporating meaning into each data point   
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Appendices 
Appendix 1 – Install Python Mapper Guide 

Requirements for Python Mapper 
 Python 2.6 or higher. The GUI needs Python 2 since it depends on wxPython and 

PyOpenGL; Python Mapper itself can be run under Python 2 and Python 3. Recommended to 
install pip if it is not already included in Python distribution. (Without pip, replace all 

instances of pip in the instructions with easy_install) 

 NumPy and SciPy 

 Matplotlib 

 Graphviz 

 Optionally, cmappertools (Mullner’s Python module written in C++) that replaces slower 
Python routines with fast, parallelized C++ algorithms.  

 Fastcluster is another Python module written in C++ for fast hierarchical clustering. 

Standard installation 

Simply type 

$ pip install mapper --user 

on a command line. If everything worked, you may stop here and start using Mapper. The steps 

below describe alternatives and optional steps. 

 

Windows Installation 

 
Here are step-by-step instructions to install Python Mapper and all its dependencies in Windows. 
If there are errors with rejected connections, look to the Troubleshooting section. Keep in mind 

that Python Mapper does not contain any platform-specific code and depends only on cross-
platform packages. 

1. Download and install Python 2. 

Go to https://www.python.org/downloads/windows/. Go to “Latest Python 2 Release”. 

Download the “Windows x86-64 MSI installer”. Start the installer and follow the 

instructions. 

2. Download and install wxPython from http://wxpython.org/download.php. Make sure to 

match your Python version and architecture (32/64bit). 

3. Download the Windows NumPy package 

from http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy. You’ll need the package later. 

Again, make sure to match your Python version and architecture. 

Note: Download version with 27 if Python 2.7, 34 if Python 3.4 

https://www.python.org/downloads/windows/
http://wxpython.org/download.php
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
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4. Download the Windows SciPy package 

from http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy. 

Note: Download version with 27 if Python 2.7, 34 if Python 3.4 

5. Download and install Graphviz from http://www.graphviz.org/Download.php. 

6. Open a Command Prompt. 

7. The directory with the Graphviz executables must be appended to the PATH environment 

variable. There are lots of tutorials for this step in the internet, look at section below. 

(On my system, the directory is C:\Program Files (x86)\Graphviz2.38\bin.) 

8. Close the command prompt and open a new one to process the changes in 

the PATH variable. 

9. Check that the search path is configured correctly by typing: 

neato -? 

If Graphviz’s “neato” program responds with a help message, everything is alright. 

10.  Go to the Scripts folder in your Python installation, eg.: 

cd /d C:\Python27\Scripts 

11. Type: (If the following command does not work because of SSL certificates or rejected 

connection, include SSL certificates in C:\Python27\Lib\site-packages\pip\_vendor\requests) 

pip install wheel 

12. Install the downloaded NumPy and SciPy packages as follows: 

pip install C:\Users\MYUSERNAME\Downloads\numpy-A.B.C+mkl-cp2X-none-

win_amd64.whl 

pip install C:\Users\MYUSERNAME\Downloads\scipy-A.B.C-cp2X-none-

win_amd64.whl 

13. Install the remaining Python packages: 

pip install matplotlib 

pip install pyopengl 

pip install fastcluster 

pip install mapper 

pip install cmappertools 

14. The Mapper GUI should work now: 

http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy
http://www.graphviz.org/Download.php
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C:\Python27\Scripts\MapperGUI.py 

I recommend to always execute the GUI from the command line. This way, debugging 

information is displayed on the terminal if an error occurs. 

15.  Optional: You may want to add the Python Scripts directory to the search path, in the same way 

as you did it for Graphviz. On my system, it is C:\Python27\Scripts. This way, the Mapper GUI 

can be started by the command MapperGUI.py from any directory. 

Editing PATH variable for Windows: 
1. Go to My Computer > System Properties > Advanced System Settings > Click on 

Environment variables 
2. Look for Path in System Variables > Select > Click on Edit…  
3. To add in another path, append a semi-colon to the last entry and paste in the path to your 

desired directory (which contains .exe or other file). 

 

Installation: Ubuntu 
Note that installation has been tested with Ubuntu 14.04, 15.04, and 16.04. 

1. If you have not already done so, go to “System Settings” -> “Software and Update” and 
activate the item “Community-maintained free and open-sourced software (universe)” 
 

WARNING: The universe component is a snapshot of the free, open-source, and Linux 
world. It houses almost every piece of open-source software, all built from a range of public 
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sources. Canonical does not provide a guarantee of regular security updates for software in 
the universe component, but will provide these where they are made available by the 

community. Users should understand the risk inherent in using these packages.  
2. Open a terminal and enter the following commands: 

$ sudo apt-get install python-numpy python-scipy python-matplotlib python-

wxtools \ 

python-opengl python-pip graphviz libboost-all-dev 

$ pip install fastcluster --user 

$ pip install mapper --user 

$ pip install cmappertools --user 

3. Optional: Add the directory $HOME/.local/bin to the search path so that the Mapper GUI can 

be started more conveniently. 

To do so, open the file .bashrc in your home directory, e.g. by  

$ gedit ~/.bashrc 

and insert the following lines at the end: 

# set PATH so that it includes user's private bin if it exists 

if [ -d "$HOME/.local/bin" ] ; then 

    PATH="${PATH+$PATH:}$HOME/.local/bin" 

fi 

Now save the file and type 

$ source ~/.bashrc 

in the terminal window to read the modified file in. 

4. Try Mapper out by typing MapperGUI.py into the command line. 
 

Mac OS 
 There are no installation instructions for Mac OS as of October 2016 

 You can find installation tips at: http://danifold.net/mapper/index.html 
 

  

http://danifold.net/mapper/index.html
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Appendix 2 – User Guide for TDA System 

About 
The Mapper algorithm is a method for topological data analysis invented by Gurjeet Singh, 

Facundo Mémoli and Gunnar Carlsson. The Mapper method is the key part of a processing chain 

with (minimally) filter functions, the Mapper algorithm itself and visualization of the results. 

Python Mapper is a realization of this toolchain, written by Daniel Müllner and Aravindakshan 

Babu. It is open source software and is released under the GNU GPLv3 license.  

Elastic Mapper is a tool that incorporates automation to the Python Mapper. First, Elastic 

Mapper allows the user to pull data directly from a cloud storage service and parses the data into 

a readable-format for the Python Mapper. Then, Elastic Mapper outputs a visualization of the 

data where the user can interact with the nodes of the visualization; this interactivity is inherited 

from Python Mapper.   

Requirements 

 Python 2.7 or greater 

 Installation of Python Mapper allows this system to user Mapper module and wxPython 

module 

 Directories that should be Elastic Mapper’s working directory are Nodelist, DATA, 

ES_preconfig, and Mapper_preconfig 

 Python Mapper only accepts .gz files of CSV-formatted files (values within CSV files 

must all be float data types) 

Begin invoking the application by either double-clicking TDA_Sys_GUI.py or running 

TDA_Sys_GUI.py in the same directory with all the source code files. 

Data Extraction 
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Starting from Scratch 

1. In order to pull from the Elasticsearch cluster, either press on one of the pre-

configurations or press the Browser button to select another configuration for the 

parameters. User can also generate a blank configuration file and replace Null keywords 

with desired input. 

 

The parameters in the configuration files are parameters used to select the desired 

Elasticsearch server, desired cluster, and information used for querying results. 

Http – The node in Elasticsearch cluster to connect to. 

Port – port number of the host 
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Index – describes further where you are pulling data from 

Format – format you want the data in before preparing the data (Currently does not 

matter) 

Start_time – Beginning of the time interval of the data  

End_time – End of the time interval 

Is_continuous – Boolean variable for determining if you want the data parsed into 

continuous values 

Is_categorical – Boolean variable for determining if you want the data parsed into 

categorical but numerical values (Enumerating through all values and assigning a 

number)] 

2. Once configurations have been selected, press the Begin Data Extraction to begin pulling 

data from the cloud and storing all the data in CSV-formatted files. 

Beginning with clean data 

1. If you already have cleaned data set in CSV-formatted file (if in different format, be sure 

to define your own Parser object in the user_defined.py file), select the file by pressing 

the Browser button in the Immediate Parsing section. 

Important: Make sure that data file is in DATA directory 

2. Press Parse and the resulting file can be found in DATA directory. 

Mapper Layer 
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Starting from Scratch 

1. Select the Gzipped file of your parsed data. 

2. Select the original version of your dataset (The exact same dataset before parsing or 

cleaning). Otherwise, select a version of the dataset that provides you with the most 

meaning. For example, you can output node lists that contain the indices of the data 

points corresponding to the row in the CSV-file.  

3. Select metric, filter function, cutoff algorithm, and then press the Generate Params 

Config button. 
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4. Find the blank configuration file in the Mapper_preconfig directory and fill in the fields. 

The parameters that appear in this file depends on your choice in filter, metric, and 

clustering algorithm. 

 

Clustering – clustering algorithm for partial clustering in Mapper method 

Filter_info – filter function arguments 

Cover – Choice for various covers of the filter range. Choices include 

cube_cover_primitive and balanced_cover_1d. 

Overlap – The percentage of overlap between intervals 

Cutoff_params – Parameters for the cutoff algorithms 

Intervals – Number of intervals to partition the range, controls resolution. 

5. Select the new configuration file by pressing the Browser button under the Mapper 

Parameters Section 

6. Press Perform Mapper button to begin the process of running the Mapper algorithm and 

outputting a visualization. 

Quick Start 
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1. Press either Mapper Param 1 or Mapper Param 2 to select preconfigured parameters. 

You may also use these pre-configurations as examples. Mapper Param 1 locks in the 

Euclidean metric, Eccentricity filter, and Big Gap 2 cutoff. Mapper Param 2 fixes the 

same parameters to the same values except for choice in filters; Mapper Param 2 fixes its 

filter to the Singular Value Decomposition function.  

 

Figure 28: Mapper Parameter Configurations, Mapper Param 1(Top) and Mapper Param 2 (Bottom)  

2. Press Perform Mapper button. 

Analysis 

After beginning the Mapper algorithm, the system carries out two tasks. First, the system stores 

CSV-formatted files composed of data points for all nodes in the visualization; the user can look 

at the data points residing in a specific node. In the Mapper Output Window, the user can also 

select a single node or a group of nodes and save the corresponding node list to some directory.   
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Pass the Ticket PowerShell Data from 
Network 
Shared 
Drive 

Exfiltration Over 
Alternative Protocol 

Component 
Firmware 

Exploitation of 
Vulnerability 

DLL Injection Input Capture Network 
Service 
Scanning 

Remote 
Desktop 
Protocol 

Process 
Hollowing 

Data from 
Removable 
Media 

Exfiltration Over 
Command and 
Control Channel 

Component 
Object Model 
Hijacking 

Legitimate 
Credentials 

DLL Search 
Order Hijacking 

Network 
Sniffing 

Peripheral 
Device 
Discovery 

Remote File 
Copy 

Regsvcs/Regas
m 

Email 
Collection 

Exfiltration Over 
Other Network 
Medium 

DLL Search 
Order Hijacking 

Local Port 
Monitor 

DLL Side-
Loading 

Two-Factor 
Authentication 
Interception 

Permission 
Groups 
Discovery 

Remote 
Services 

Regsvr32 Input 
Capture 

Exfiltration Over 
Physical Medium 



P a g e  | 99 

 
Hypervisor New Service Disabling 

Security Tools 
  Process 

Discovery 
Replication 
Through 
Removable 
Media 

Rundll32 Screen 
Capture 

Scheduled Transfer 

Legitimate 
Credentials 

Path 
Interception 

Exploitation of 
Vulnerability 

  Query Registry Shared 
Webroot 

Scheduled Task     

Local Port 
Monitor 

Scheduled Task File Deletion   Remote System 
Discovery 

Taint Shared 
Content 

Scripting     

Logon Scripts Service File 
Permissions 
Weakness 

File System 
Logical Offsets 

  Security 
Software 
Discovery 

Third-party 
Software 

Service 
Execution 

    

Modify Existing 
Service 

Service Registry 
Permissions 
Weakness 

Indicator 
Blocking 

  System 
Information 
Discovery 

Windows 
Admin Shares 

Third-party 
Software 

    

New Service Web Shell Indicator 
Removal from 
Tools 

  System 
Owner/User 
Discovery 

Windows 
Remote 
Management 

Windows 
Management 
Instrumentatio
n 

    

Path 
Interception 

  Indicator 
Removal on 
Host 

  System Service 
Discovery 

  Windows 
Remote 
Management 

    

Redundant 
Access 

  InstallUtil             

Registry Run 
Keys / Start 
Folder 

  Legitimate 
Credentials 

            

Scheduled Task   Masquerading             

Security 
Support 
Provider 

  Modify Registry             



P a g e  | 100 

 
Service File 
Permissions 
Weakness 

  NTFS Extended 
Attributes 

            

Service Registry 
Permissions 
Weakness 

  Obfuscated 
Files or 
Information 

            

Shortcut 
Modification 

  Process 
Hollowing 

            

Web Shell   Redundant 
Access 

            

Windows 
Management 
Instrumentatio
n Event 
Subscription 

  Regsvcs/Regas
m 

            

Winlogon 
Helper DLL 

  Regsvr32             

    Rootkit             

    Rundll32             

    Scripting             

    Software 
Packing 

            

    Timestomp             



P a g e  | 101 

 


