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Abstract

This thesis provides a novel approach to using data mining for e-commerce. The

focus of our work is to apply association rule mining to collaborative recommender

systems, which recommend articles to a user on the basis of other users’ ratings for

these articles as well as the similarities between this user’s and other users’ tastes. In

this work, we propose a new algorithm for association rule mining specially tailored

for use in collaborative recommendation. We make recommendations by exploring

associations between users, associations between articles, and a combination of the

two. We experimentally evaluated our approach on real data for many different pa-

rameter settings and compared its performance with that of other approaches under

similar experimental conditions. Through our analysis and experiments, we have

found that association rules are quite appropriate for collaborative recommendation

domains and that they can achieve a performance that is comparable to current

state of the art in recommender systems research.
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Chapter 1

Introduction

1.1 Overview

Recommender systems try to recommend articles of potential interest to a user with

respect to the user’s individual preferences. Such recommender systems are the

focus of current interest in part because of their importance for electronic commerce.

Currently, online recommendation services span the areas of book, music, movie, web

page and restaurant recommendations, demonstrating the wide range of application

domains of existing recommender systems.

Almost all recommender systems fall into two categories: content-based recom-

mendation and collaborative recommendation. As mentioned in [BS97], content-

based recommendation tries to recommend articles similar to those articles the user

has liked, whereas collaborative recommendation tries to find some users who share

similar tastes with the given user and recommends articles they like to that user.

Content-based recommendation and collaborative recommendation both have their

own advantages and drawbacks. But collaborative recommendation is more pop-

ular than content-based recommendation, mainly because in many domains (such

1



as music, restaurants) it is hard to extract useful features from articles, which is

generally a step required for content-based recommendation.

Although there seems to be an increasing commercial demand for collaborative

recommendation techniques, both the number of available published techniques and

the information about their performance are quite limited. Hence it is of great

importance to explore more techniques for this domain. Through our analysis and

experiments, we have found that association rules are quite appropriate for this task

and they can achieve good performance.

Association rule mining was proposed in [HHC66, HH77] and later in [AIS93].

Given a set of transactions, where each transaction is a set of items, an association

rule is a rule of the form X ⇒ Y, where X and Y are sets of items (also called

itemsets). The meaning of this rule is that the presence of X in a transaction implies

the presence of Y in the same transaction. An example of an association rule in

the basket market analysis domain is: “90% of transactions that contain bread and

butter also contain milk; 30% of all transactions contain the three of them”. Here,

X = {bread, butter}, Y = {milk}, 90% is called the confidence of the rule, and

30% the support of the rule. The confidence of a rule measures the degree of the

correlation between itemsets, while the support of a rule measures the significance

of the correlation between itemsets. The problem of mining association rules is to

find all association rules that are above the user-specified minimum support and

minimum confidence.

The original motivation of association rules was to take advantage of massive

amounts of sales data, which stores items purchased on a per-transaction basis. It

aims to discover all significant associations between items. Some later work extended

the basic association rules to classification domains[SA96, LHM98]. Association

rules have also been widely used in web mining. They have been used to mine path
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traversal patterns and to facilitate the best design and organization of web pages

[CMS97, CSM97, CPY98] Recently, Fu, Budzik and Hammond[FBH00] developed

a good framework to mine association rules in navigation history for recommending

web pages. Actually, we developed our ideas independently. But they use the

original Apriori algorithm to mine rules. As we will discuss later, the traditional

association rule mining algorithms are not good enough for recommender systems.

Our motivation to mine association rules for recommender systems comes from

the following observation: Rules like “90% of users who like article A and article

B also like article C, 30% of all users like all of them” and “90% of articles liked

by user A and user B are also liked by user C, 30% of all articles are liked by the

three of them” are very useful for recommendation purposes. We refer to rules of

the first kind as article associations and rules of the second kind as user associations

in this thesis. Article associations represent relationships among articles and user

associations represent relationships among users. We can also explore article asso-

ciations and user associations on two levels (like and dislike) by using extensions of

the basic association rules. One example of two level user associations is “90% of

articles liked by user A and disliked by user B are liked by user C, 30% of all articles

are liked by user A and C and disliked by user B”.

The goal of this thesis is to explore approaches of applying association rules for

collaborative recommender systems and to evaluate the performance of those ap-

proaches. Towards this end, we have designed and implemented an adaptive-support

algorithm to mine association rules which is particularly tailored to collaborative rec-

ommender systems. We also implemented the process of making recommendations

by using user associations, article associations and a combination of the two. We

employed the cross-validation approach to evaluate their performance with various

parameter settings. Foremost among such parameters are the minimum confidence

3



and minimum support values used for mining rules. We used the EachMovie [McJ97]

dataset as our test-bed, which is provided by Digital Equipment Research Center

and publicly available on the web. Our results are analyzed and compared with

those of other systems. Our code is written in C++.

1.2 Our Approach

As we have mentioned above, we propose user associations and article associations

as useful for collaborative recommendations. Also, we explore associations on one

level (like) and two levels (like and dislike). Considering these two factors, we have

several options. For each option, there are two problems that need to be addressed:

• How to map users’ ratings for articles into “transactions”?

Association rules are mined from a set of “transactions”. For collaborative

recommendation, we usually have some users’ ratings for articles. How to

convert ratings to “transactions” is determined by which kind of associations

and how many levels of associations we want to discover.

• How to make recommendations by association rules?

Once that we have mined the associations from the transactions, we need to

determine how to use the association rules to produce good recommendations.

1.2.1 Mining Association Rules for Collaborative Recom-

mender Systems

Association rule mining is the basic part of our work. Our adaptive-support al-

gorithm to mine Association Rules for Collaborative Recommender Systems (AR-
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CRS) is adapted from the Apriori algorithm [AS94a] and the CBA-RG algorithm

[LHM98]. The adaptation is necessary for two main reasons:

1. In order to make recommendations to each user, we need to mine an appropri-

ate number of rules for each user or article. This is in some degree dependent

on the minimum support and minimum confidence specified for the mining

process. If the minimum support and minimum confidence are too high, we

can not obtain enough rules for recommendation, if they are too low, we will

be in danger of having an unacceptable long period of runtime. We could spec-

ify a minimum confidence, but because users’ tastes and articles’ popularities

vary widely, the appropriate minimum support for each user/article must be

chosen independently. To the best of our knowledge, previous algorithms do

not provide a mechanism to choose a proper minimum support for the given

minimum confidence and the desired range for the number of rules.

2. Since we are only interested in predicting articles that a given user would

like, we only need rules with one target item in the head. For example, for

a user usertarget with user associations, we only need rules with [usertarget:

like] in the head. Such rules could be mined more efficiently than the rules

with several targets. Considering sometimes we need to mine rules online, the

efficiency is of great importance.

1.2.2 User Associations

In order to obtain like associations among users, we have each user correspond to

an “item” and each article rated by users correspond to a “transaction”. If a user

likes an article, then the transaction corresponding to the article contains that user;

otherwise, the corresponding transaction does not contain the user. From here, we
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can mine like associations among users, for example, “90% of articles liked by user

A and user B are also liked by user C, 30% of all articles are liked by all of them”.

In order to mine like and dislike associations among users, we employed the

idea of mining categorical association rules (see Section 2.1.3) by extending each

user, say userk, to two “items”, one item corresponding to [userk: like] and another

item corresponding to [userk: dislike]. From here, we could mine rules like “90% of

articles liked by user A and disliked by user B are liked by user C, 30% of all articles

are liked by user A and C and disliked by user B”.

During our tests, for each given target user, we employ the 4-fold cross-validation

approach. First, we randomly divide all the articles this user has rated into 4 groups.

Then we run four rounds of test, each time choosing one group of articles as test

data and the other three groups as training data. So every article this user rated

will be used as a test article once.

With user associations, firstly we mine the association rules for the given user

on the fly by using his/her training data together with the chosen collaborative

users’ rating data, and then for each of his/her test articles, we decide if we should

recommend this article according to the rules we have just mined and the ratings on

this article from the collaborative users. The strategy is described in greater detail

in Section 4.2.

1.2.3 Article Associations

Similar to the user associations, in order to mine like associations among articles,

we have each article correspond to an “item” and each user correspond to a “trans-

action”. If a user likes an article, then the transaction corresponding to the user

contains the article; otherwise, the corresponding transaction does not contain the

article.
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During the training process, we use the ratings from collaborative users to mine

rules for each article, and store the rules in files. So the mining process can be done

offline. During the test process, we also use the 4-fold cross-validation approach to

run four tests for each user. For each test article of a given user, we read in the

rules for that article and decide if we should recommend this article according to

whether some rules are fired by the training articles. The strategy is described in

greater detail in Section 4.2.

1.2.4 Properties of Our Approach

After analyzing the characteristics of association rules, we found that our approach

has the following properties.

1. The confidence of a rule measures the degree of the correlation among users

or among articles, while the support of a rule measures the significance of the

correlation among users or among articles. So we have two useful measures to

evaluate the correlation indicated by a rule.

2. Instead of identifying some similar taste users for a given user, we use the

overlap of some users’ tastes to match one given user’s taste, which could in

some sense solve the problem of finding similar users for users with unique

tastes. For example, the rule “90% of articles liked by user A and user B are

also liked by user C” uses the overlap of user A’s and user B’s tastes to match

user C’s taste.

3. Our approach can achieve real-time recommendation. Although the traditional

association rule mining process is computationally expensive, the framework

we designed can mine the appropriate association rules in real time.
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1.3 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 introduces some necessary background knowledge. This includes the

concepts of the basic and extended association rules as well as the algorithms to

mine rules. It also discusses the current collaborative recommendation techniques.

Chapter 3 describes our new adaptive-support algorithm for mining association

rules for recommender systems and some implementation details.

Chapter 4 discusses our approaches to make recommendations via association

rules: user associations and article associations.

Chapter 5 shows the results of our experimental tuning and evaluations of user

associations, article associations, and a combination of the two.

Chapter 6 summarizes our findings and discusses possible future work.
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Chapter 2

Background and Related Work

This chapter describes basic and extended association rules as well as algorithms

to mine association rules. It also discusses current collaborative recommendation

techniques.

2.1 Association Rules

As mentioned in the introduction, association rules were independently introduced

by P. Hajek, et al. [HHC66, HH77] and by Agrawal, et al. [AIS93]. While [HHC66]

and [HH77] introduce association rule mining as a machine learning approach to

the logic of discovery, [AIS93] concentrates on the mining of associations over sales

data. One of the original motivations of the latter approach is to help supermar-

ket managers to analyze past transaction data and to improve their future business

decisions including catalog design, store layout design, coupon design and so on.

Given a large database of customer transactions with each transaction storing items

purchased by a customer during a visit, association rule mining aims to discover all

significant associations between items in the database. A large variety of association

rule mining algorithms have been published in the literature. Apriori [AS94a] and
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DIS [BMUT97] are two of them. One extension of the basic binary association rules,

called categorical association rules, [SA96] finds associations between attributes with

categorical values. An example is: “[Profession: Professor] and [Married: Yes] ⇒

[NumCars: 2]”. Categorical association rules have the potential to extend associa-

tion rules to general classification domains. Some results of adapting those rules to

classification tasks are shown in [LHM98, HH77]. [LHM98] presents the CBA-RG

algorithm (which is based on the Apriori algorithm) and a good framework to per-

form the so-called associative classification. Our adaptive-support algorithm to mine

association rules for recommender systems is adapted from the Apriori algorithm

and the CBA-RG algorithm.

2.1.1 Problem Description and Decomposition

Definitions

As mentioned in the introduction, given a set of transactions, where each transac-

tion is a set of items, an association rule is a rule of the form X⇒ Y, where X and Y

are sets of items. The meaning of this rule is that the presence of X in a transaction

implies the presence of Y in the same transaction. X and Y are respectively called

the body and the head of the rule. Each rule has two measures: confidence and

support. The confidence of the rule is the percentage of transactions that contain

Y among transactions that contain X; The support of the rule is the percentage of

transactions that contain both X and Y among all transactions in the input data

set. In other words, the confidence of a rule measures the degree of the correla-

tion between itemsets, while the support of a rule measures the significance of the

correlation between itemsets.

To consider an example, assume we have a database of transactions as listed in

10



Table 2.1, for association rule “{A} ⇒ {C}”, the confidence of the rule is 66%, and

the support of the rule is 50%.

Transaction Id Purchased Items
1 {A, B, C}
2 {A, D}
3 {A, C}
4 {B, E, F}

Table 2.1: Sample Transactions

There could be any number of items present in the body and in the head of a

rule. A user could also specify some rule constraints, for example, he/she might

only be interested in finding rules containing certain items.

Problem Description

The traditional association rule mining problem definition is: given a set of transac-

tions, where each transaction is a set of items, and a user-specified minimum support

and minimum confidence, the problem of mining association rules is to find all as-

sociation rules that are above the user-specified minimum support and minimum

confidence.

Traditional Problem Decomposition

We call a set of items an itemset. The support of an itemset is the percentage of

transactions that contain this itemset among all transactions. An itemset is frequent

if its support is greater than the user-specified minimum support. The problem of

discovering association rules could be decomposed into two subproblems:

1. Find all frequent itemsets.

11



2. Generate association rules from frequent itemsets: for example, if {a, b, c, d}

and {a, b} are frequent itemsets, then compute the ratio:

confidence =
support{a,b,c,d}
support{a,b}

If confidence is not less than the user-specified minimum confidence, then “{a,

b} ⇒ {c, d}” is one desired association rule. This rule satisfies the minimum

support constraint because {a, b, c, d} is a frequent itemset.

The second part of the process described above is relatively straightforward.

[AS94b] provides a fast algorithm for this process. But the process of discovering

frequent itemsets is computationally expensive, usually requiring multiple passes

over the whole database. The Apriori algorithm [AS94a] is an algorithm that is

widely used for this task.

2.1.2 Algorithm Apriori

The Apriori algorithm generates frequent itemsets by making multiple passes over

the transaction data. We use k-itemsets to denote itemsets of size k. The first pass

finds the frequent 1-itemsets. For pass k > 1, it generates the candidate frequent

k-itemsets using the frequent (k-1)-itemsets; then it scans all transactions to count

the actual supports of the candidate k-itemsets; at the end of pass k, it collects the

candidate k-itemsets whose supports are above the minimum support as the frequent

k-itemsets.

Candidate Generation

Candidate k-itemsets are generated by performing two operations on frequent (k-1)-

itemsets: join and prune. In the first join step, two different frequent (k-1)-itemsets

12



which share the first k-2 items are joined together to generate a candidate frequent

k-itemset. In the next prune step, we delete all candidate k-itemsets which have

non-frequent (k-1)-subset. These two steps are correct due to the fact that any

subset of a frequent itemset must also be frequent.

2.1.3 Categorical Association Rules

As mentioned in [SA96, LHM98], association rules can be easily extended so that

they can express mine associations among categorical attributes, which can take a

number of various values.

A transaction data set can be seen as a relational database table with boolean

valued attributes that correspond to items and records that correspond to transac-

tions. The value of an attribute for a given record is “1” if the corresponding item is

present in the corresponding transaction, “0” otherwise. For example, the transac-

tions contained in Table 2.1 can be expressed as Table 2.2. So the basic association

rules can be viewed as finding associations between the “1” values of those boolean

attributes.

Transaction Id A B C D E F
1 1 1 1 0 0 0
2 1 0 0 1 0 0
3 1 0 1 0 0 0
4 0 1 0 0 1 1

Table 2.2: Sample Transactions with Boolean Valued Attributes

For categorical attributes, instead of having just one field in the table for each

attribute, we want to have as many fields as the number of attribute values so that

we can mine associations among those values. For example, if we convert Table 2.3

to Table 2.4, we can perform the basic association rule algorithm to mine rules like

13



“[Profession: Professor] and [Married: Yes] ⇒ [NumCars: 2]”.

PersonId Profession Married NumCars
1 Professor No 1
2 Student No 0
3 Professor Yes 2
4 Student Yes 1
5 Student No 1

Table 2.3: Table with Categorical Attributes

PersonId [P: P] [P: S] [M: Y] [M: N] [NC: 0] [NC: 1] [NC: 2]
1 1 0 0 1 0 1 0
2 0 1 0 1 1 0 0
3 1 0 1 0 0 0 1
4 0 1 1 0 0 1 0
5 0 1 0 1 0 1 0

Table 2.4: Table with Only Boolean Attributes

2.1.4 Associative Classification

Association rules aim to discover all significant associations among items in a database.

There is no predetermined target before the mining process except for the minimum

support and minimum confidence constraints. In contrast, traditional classification

rules aim to find rules that classify data records into several predefined classes. Clas-

sification rules always have one predetermined target, the class. Liu, Hsu, and Ma

[LHM98] proposed associative classification, which integrates these two rule mining

techniques. Associative classification focuses on mining a special subset of asso-

ciation rules whose heads are restricted to the class attribute. Such rules can be

used for the purpose of classification. The algorithm they proposed to mine class

association rules (CARs) is called CBA-RG, and is shown in Figure 2.1.

14



Input: Transaction Data: D, targetClass, minConfidence, minSupport
Output: mined association rules with targetClass and its possible values in
the heads, and the minimum confidence and minimum support constraints
satisfied.

1) { }ruleitems-1frequent  1 =F ;

2)  );F ( 11 genRulesCAR =
3) for );;2( 1 ++∅≠= − kFk k  do Begin

4)  );F ( 1−= kk encandidateGC
5)  for each data record Dd ∈  do Begin
6)   dCdC k in  contained in  candidates all = ;

7)   for each candidate dCc ∈  do Begin

8)  c.condsupCount++;
9)  if d.class = c.class then c.rulesupCount++;
10)   end
11)  end

12)  { }tminsupCountrulsupCounckCckF ≥∈= .  ;

13)   ); ( kk FgenRulesCAR =
14) end

15) k
k

CARCARs �= ;

Figure 2.1: The CBA-RG Algorithm [Liu et al. 98]

CBA-RG is adapted from the Apriori Algorithm. In the algorithm, a ruleitem

has the form of < condset, y >, where condset is an itemset and y is a class label

(e.g. [NumCars: 2]). The support count of the condset (called condsupCount) is

the number of records in the transaction data D that contain the condset. The

support count of the ruleitem (called rulesupCount) is the number of records in

D that contain the condset and has class y. This ruleitem corresponds to a rule:

condset ⇒ y, whose support is the percentage of the data records that contain the

condset and has class y, i.e. (rulesupCount / sizeofDataset) * 100%, and whose

confidence is (rulesupCount / condsupCount) * 100%.

The main difference between Apriori and CBA-RG is that CBA-RG will only

mine rules for the target classes (e.g. [NumCars: 0], [NumCars: 1], [NumCars: 2],

...), and it could generate rules on the fly in the process of mining frequent ruleitems,

i.e., it combines the two steps of mining association rules into one.
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2.2 Recommender Systems

Recommender systems have recently attracted much research attention. The moti-

vation of recommender systems is to scan a large number of articles automatically so

as to recommend articles of potential interest to a given user on the basis of the user’s

taste. There are many online recommendation services available, which span the ar-

eas of book, music, movie, web page and restaurant recommendations. Examples of

such systems are FireFly (www.firefly.com), WiseWire (www.wisewire.com), Con-

tent Advisor (www.contentadvisor.com), Jester (shadow.ieor.berkeley.edu/humor),

Gustos (www.gustos.com), GroupLens (www.cs.umn.edu/Research/GroupLens). Some

popular online CD stores and bookstores (e.g. amazon.com) also provide recommen-

dation services.

2.2.1 Content-based and Collaborative Recommendation

There are currently two underlying categories of recommendation techniques: content-

based recommendation and collaborative recommendation [BS97]. Content-based

recommendation tries to recommend articles similar to those articles the user has

liked. Generally, a user’s profile is constructed by analyzing and extracting useful

features from the content of the articles that the user has rated. Then recommenda-

tions are made based on this user’s profiles. Content Advisor is a content-based web

page recommender, which stores the features of articles in databases and responds

to users’ searches for the content they desire. Collaborative recommendation makes

recommendations to a user based on the similarities and dissimilarities between

this user and other users. Generally, it tries to find a group of people who share

similar tastes with the given user and recommends articles they like to that user.

The similarities or dissimilarities between users are calculated from their article’s
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ratings. Gustos, GroupLens, FireFly and Jester are all examples of collaborative

recommender systems.

Content-based recommendation and collaborative recommendation both have

their own advantages and drawbacks. But collaborative recommendation is more

popular than content-based recommendation, mainly because in many domains

(such as music, restaurants) it is hard to extract useful features from articles, which

is generally a step required for content-based recommendation. Many research efforts

are invested in exploiting efficient algorithms for collaborative recommendation. But

despite the increasing commercial demand for collaborative recommendation tech-

niques, both the number of available published techniques and the evaluation of their

performance are limited. The next section describes some of the main collaborative

recommendation techniques.

2.2.2 Current Collaborative Recommendation Techniques

As mentioned in the introduction, many recommender systems use simple predictive

techniques to make recommendations. One such technique that is widely used is

the so called correlation-based method. Some other algorithms recently proposed

for recommender systems employ techniques from statistics and machine learning.

Examples of them could be found in [BP98, BHK98, SM95]. We briefly describe

some of those methods below.

The Correlation-based Method

The vast majority collaborative recommender systems use the correlation-based

method to model similarities between users, where they calculate the vote from

the active (or target) user (indicated with a subscript a) for article j, pa,j, as a

weighted sum of the votes of other users. The weights reflect correlations among
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users.

One example of the formula given in [RIS+94] is:

pa,j = va + k
n∑
i=1

w(a, i)(vi,j − vi)

where vi,j corresponds to the vote from user i on item j; vi corresponds to the

average vote from user i; n is the number of users in the collaborative database; k

is a normalizing factor such that the absolute values of the weights sum to one; and

the weights w(i, a) reflect the similarity between each user i and the active user, and

are calculated as:

w(a, i) =

∑
j(va,j − va)(vi,j − vi)√∑

j(va,j − va)2
∑
j(vi,j − vi)2

where the summations over j are over the articles for which both users a and i have

voted.

As mentioned in [BP98], such correlation-based methods suffer from several

drawbacks. Firstly, the significance of the correlations between users are not mea-

sured; Secondly, when no correlation is found between two users, some potentially

useful information about these two users is lost; Most importantly, if two users do

not rate articles in common, they can not be similar under the correlation method

even if they share common interests. Our approach can possibly overcome these

drawbacks.

Bayesian Classifier and Bayesian Network Model

Breese, Heckerman and Kadie [BHK98] list and test several algorithms for collab-

orative recommendations. They propose a new approach for finding dependences

among articles by using a Bayesian classifier and a Bayesian network model. The
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idea of this approach is similar to our article associations. But (1) they need to

calculate the conditional probabilities of all the possible ratings for an article given

all possible ratings for other articles, which is computationally expensive and (2)

they can not estimate how good a prediction they made is. Our approach (1) only

needs to find some significant dependences among articles, which is above a certain

minimum support and (2) we can evaluate a prediction according to the support

and confidence of the rule. Since we are only concerned with recommending a cer-

tain number of interesting articles, not predicting the ratings for all articles, the

significant dependencies are good enough.

Neural Networks Paired with Feature Reduction Techniques

Billsus and Pazzani [BP98] present a framework for applying machine learning al-

gorithms paired with feature reduction techniques, such as singular value decompo-

sition(SVD) or information gain, for collaborative recommendations. Firstly, they

use feature reduction techniques to reduce the dimension of the rating data, and

then neural networks are applied to the simplified data to construct a model for

recommendation. While this framework is good for neural networks, it is not so

appropriate for rule-based learning. For example, after the singular value decompo-

sition, the previous boolean valued matrix becomes a matrix containing continuous

numbers. So we need to discretize those continuous numbers in order to derive

rules from them, which is an additional problem. In Chapter 5, we compared our

approach with this approach as well as the correlation-based method under some

similar experimental conditions.
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Association Rules

Association rules have been widely used in web mining. They have been used to

mine path traversal patterns and to facilitate the best design and organization of

web pages [CMS97, CSM97, CPY98] Recently, Fu, Budzik and Hammond[FBH00]

developed a good framework to mine association rules in navigation history for

recommending web pages. Actually, we developed our ideas independently. But

they use the original Apriori algorithm to mine rules. As we will discuss later, the

traditional association rule mining algorithms are not good enough for recommender

systems. Also, they only test the performance of their system on some simple

artificial dataset.
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Chapter 3

Our Adaptive-support Algorithm

for Mining Association Rules

In this chapter we describe our algorithm to mine association rules (AR-CRS). The

association rule mining is the basic part of this thesis work. Our algorithm AR-CRS

(Association Rules for Collaborative Recommender System) is adapted from Apriori

[AS94a] and CBA-RG [LHM98]. This algorithm adjusts the minimum support of

the rules during mining in order to obtain an appropriate number of significant rules

for the target predicate.

The Apriori algorithm is a widely used algorithm to mine association rules.

It aims to find all the associations among items, i.e., given a set of transactions

(with each transaction containing a set of items), a specified minimum support and

minimum confidence, it tries to find all the association rules satisfying the minimum

support and the minimum confidence constraints. CBA-RG is an algorithm that

aims to mine association rules to predict the class of a data record. It focuses on

mining a special subset of association rules whose heads are restricted to the target

classes. Our algorithm AR-CRS is even more focused than CBA-RG in the sense
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that we are only interested in mining rules with one specified target value in the

head. Also, our algorithm adjusts the minimum support of the rules during mining

in order to obtain an appropriate number of significant rules for the target item.

3.1 Problem Description

Our mining algorithm focuses on mining rules for only one target user or article at

a time. This has the following advantages:

1. Since we are only interested in predicting articles that a target user would like,

in user associations, we only need rules with [usertarget: like] in the rule head.

Such rules could be mined more efficiently than the rules with arbitrary heads.

Since we need to mine user associations online, the efficiency of the process is

of great importance.

2. By mining article associations for one article at a time we are able to obtain

rules for articles that have only received a limited number of ratings, for exam-

ple a new movie. This would not be possible if we mined article associations

for all articles at once, because rules for new articles would fail to have the

necessary support.

3. A significant amount of runtime is saved by mining rules only over the subset

of the transaction data that is related to the target user or article instead of

over the whole data.

Also, we want to specify a high minimum confidence and, instead of a mini-

mum support, a range for the number of rules before the mining process. This

is because of the following reasons: The confidence reflects the degree of the cor-

relations among users or among articles, and the support reflects the significance

22



of the correlations. Hence, it is evident that they should both be very important

for making recommendations. We could expect that the higher the confidence and

the support, the higher the quality of the recommendations. But it is difficult to

choose a proper minimum confidence and support for each user/article before the

mining process, because users’ tastes and articles’ popularities vary widely. If the

minimum confidence and support are set too high, we can not obtain enough rules

for accurate recommendation; If they are set too low, we will be in danger of having

an unacceptable long period of runtime. Also, we feel that for each user/article, a

limited number of rules are good enough for recommendation, too many rules are

not necessary. Considering these factors, we think a best way is to specify a high

minimum confidence and a range for the number of rules, and let the system find

a proper minimum support that produces the desired number of rules. By doing

this, actually we choose only a small number of the most significant rules above the

specified minimum confidence for recommendation.

So our problem of mining association rules for recommender systems could be

described as follows:

Problem Definition

Given a transaction dataset, a target item, a specified minimum confidence and a

desired range [minRulenum,maxRulenum] for the number of rules, find association

rules with the target item in the heads of the rules such that the number of rules is

in the given range, the rules have the highest possible support, and the rules satisfy

the minimum confidence constraint.

Note. Since we use the same algorithm to mine user associations as well as article

associations, we use the term target item to denote “target user” in the case of user
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associations and “target article” in the case of article associations.

3.2 Algorithm Description

For the problem we described above, the development of a new algorithm was nec-

essary for the following two main reasons:

• Previous algorithms do not provide a mechanism to choose a proper mini-

mum support for the given minimum confidence and the desired range for the

number of rules.

• It is only necessary to mine rules for the target user/article. Although CBA-

RG has addressed the problem of mining rules only for target classes, our

algorithm is even more focussed since it mines rules for only one target class

value: [itemtarget : like].

Our AR-CRS algorithm solves the above problem. AR-CRS consists of two

parts: AR-CRS-1 and AR-CRS-2.

AR-CRS-1

In order to mine only a given number of most promising rules for each target item,

we use AR-CRS-1 to control the minimum support count and find the rules with

the highest supports. The minimum support count is the minimum number of

transactions that satisfy a rule in order to make that rule frequent, i.e., it is the

multiplication of the minimum support and the whole number of transactions. The

overall process is shown in detail in Figure 3.1. It consists of three parts:

1. AR-CRS-1 initializes the minimum support count according to the frequency

of the target item and calls AR-CRS-2 to mine rules.
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2. When AR-CRS-2’s output is returned, AR-CRS-1 will check first if the number

of rules returned is equal to maxRulenum (as we describe below, AR-CRS-2

terminates the mining process when the number of rules generated is equal to

maxRulenum). If it is, that means the minimum support count is low which

results in more than maxRulenum rules, so the AR-CRS-1 will keep increasing

the minimum support count and calling AR-CRS-2 until the number of rules

is less than maxRulenum.

3. Finally, AR-CRS-1 will check if the number of rules is less than minRulenum;

if it is, it will keep decreasing the minimum support count until the rule number

is greater than or equal to minRulenum.

Input: Transactions, targetItem, minConfidence, minRulenum, maxRulenum,
Output: mined association rules with targetItem in the heads. The number of
rules is in the range [minRulenum, maxRulenum], the rules have the highest
possible support, and satisfy the minimum confidence constraint.

1) Set initial minsupportCount based on targetItem’s like ratio;

2) R = AR-CRS-2();

3) while (R.rulenum = maxRulenum) do

4)  minsupportCount++;

5)  R1 = AR-CRS-2();

6)  if R1.rulenum > minRulenum then R = R1;

7)  else return R;

8) end

9) while (R.rulenum < minRulenum) do

10)  minsupportCount--;

11)  R = AR-CRS-2();

12) end

13) return R;

Figure 3.1: The AR-CRS-1 Algorithm

Within a given support, rules with shorter bodies are mined first. Hence, if

with minimum support count say 15 there is no rule available, but with minimum

support count 16 there are at least maxRulenum rules, then AR-CRS-1 will return
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the shortest maxRulenum rules with support count of at least 16.

AR-CRS-2

AR-CRS-2 is a variant of CBA-RG [LHM98] and therefore of the Apriori algorithm

[AS94a] as well. AR-CRS-2 is a variant of CBA-RG in the sense that instead of

mining rules for all target classes, it only mines rules for one target item. It differs

from CBA-RG in that it will only mine a number of rules within a certain range.

When it tries to generate a new rule after having obtained maxRulenum rules

already then it simply terminates its execution and returns the rules it has mined

so far.

Here we use k-condset to denote a set of items (or itemset) of size k which

could form a rule: k-condset ⇒ target-item. The support count of the k-condset

(called condsupCount) is the number of transactions that contain the k-condset.

The support count of the corresponding rule (also called rulesupCount of this k-

condset) is the number of transactions that contain the condset as well as the target

item.

AR-CRS-2 is very similar to CBA-RG. Association rules are generated by making

multiple passes over the transaction data. The first pass counts the rulesupCounts

and the condsupCounts of all the single items and finds the frequent 1-condsets.

For pass k > 1, it generates the candidate frequent k-condsets by using the frequent

(k−1)−condsets; then it scans all transactions to count the rulesupCounts and the

condsupCounts of all the candidate k-condsets; finally, it will go over all candidate

k-condsets, selecting those whose rulesup is above the minimum support as frequent

k-condsets and at the same time generating rules k-condset ⇒ target-item, if the

confidence of the rule is above the minimum confidence. The algorithm is presented

in Figure 3.2.
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Input: Transactions, targetItem, minConfidence, maxRulenum, minsupportCount
Output: mined association rules with targetItem in the heads. The number of
rules is in the range [0, maxRulenum], the rules satisfy the minimum
confidence and minimum support constraints.

1) { }condsets-1frequent  1 =F ;

2) )genRules( 1FR = ;

3) if R.rulenum = maxRulenum then return R ;

44))  for );;2( 1 ++∅≠= − kFk k  do Begin

5)  ); en(candidateG 1−= kk FC

6)  for each transaction nsTransactiot ∈  do Begin

7)    tC
t

C k in  contained  of condsets candidate all = ;

8)   for each candidate tCc ∈  do Begin

9)  c.condsupCount++;
10)  if t contains targetItem then c.rulesupCount++;
11)   end
12)  end

13)  { }Countminsupportc
k

Cc
k

F ≥∈= ntrulesupCou.  ;

14)   );(genRules   kFRR �=

15)  if R.rulenum = maxRulenum then return R ;

16) end
17) return R ;

Figure 3.2: The AR-CRS-2 Algorithm

3.3 Real-time recommendation

A requirement of many recommender systems is realtime response. Our algorithm

can satisfy the real time constraint for the following reasons:

• We mine rules offline for article associations;

• The training data to mine rules for one target user is only a small subset of

all the ratings, i.e., the ratings from training users and the target user for the

articles that the target user has rated. So the training data size is small;

• The mining process AR-CRS-2 will stop after it mines maxRulenum rules. If

the maxRulenum is small, it is very fast;
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• In the main process, we choose an initial minimum support count according

to the frequency of the target user. For most users, the main process only

needs to call the mining process two or three times. We can switch to article

associations for users who need more iterations.

3.4 Algorithm Implementation

3.4.1 Key Operations

According to the above descriptions, the main operations of this algorithm are the

following:

• subset test: how to find all candidate condsets that are contained in one

transaction;

• candidate generation - join step: how to find frequent condsets that could be

joined together;

• candidate generation - prune step: how to test if any (k-1)-subset of a candi-

date k-condset is a frequent (k-1)-condset;

3.4.2 Data Structures

Considering the possibility of large amounts of data, the above three key operations

could be very expensive. So it is very important to use nice data structures that

facilitate those operations. As mentioned in [AS94a], using a hash-tree to store

candidate itemsets and a bitmap to store a transaction could speed up the support

counting process.
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Bitmap

We use a bitmap to represent a transaction, each bit corresponding to an item. If

the transaction contains the item, then the value of the bit corresponding to the

item is 1, otherwise it is 0.

Hash-tree

A node of the hash-tree either contains a list of itemsets (a leaf node) or a hash

table (an interior node). In an interior node, each bucket of the hash table points to

another node. The root of the hash-tree is defined to be at depth 1. An interior node

at depth d points to nodes at depth d+1. Itemsets are stored in the leaves. When

we add an itemset c, we start from the root and go down the tree until we reach a

leaf. At an interior node at depth d, we decide which branch to follow by applying

a hash function to the dth item of the itemset. All nodes are initially created as leaf

nodes. When the number of itemsets in a leaf node exceeds a specified threshold,

the leaf node is converted to an interior node.

Set-tree

Since we will not use a database to store itemsets, we also need a data structure to

facilitate the join and prune operations on candidate itemsets. We found a hash-

tree also has some advantage for doing this. But a big problem is how to organize

a list of itemsets contained in a leaf node. To solve this problem we designed and

implemented a new tree structure: set-tree. An example of a set-tree is given in

Figure 3.3.

A set-tree stores a set of itemsets in a tree. Each node could point to a sibling

and a child. A node at depth n corresponds to the nth element of an itemset whose

elements are in order. For example, Figure 3.3 represents four itemsets: {1, 2, 3,
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Figure 3.3: Structure of a Set-tree

4}, {1, 2, 3, 5}, {3, 5, 6, 7} and {3, 7, 8, 9}.

Combining Set-trees with a Hash-tree

An interior node of a hash-tree is a hash table, while a leaf node of a hash-tree is a

set-tree. As shown in Figure 3.4, a hash-tree grows when we add more itemsets. At

first, the root node of a hash-tree points to a set-tree that contains all the itemsets.

It is converted to an interior node, a hash table that hashes on the first item of

the itemsets, when the number of itemsets is greater than a split threshold. A leaf

node is converted to an interior node when the number of itemsets it contains grows

above the threshold, and if the leaf node is on the nth level of the tree, after the

conversion, the corresponding hash table will hash on the nth item of itemsets.

Using a hash-tree plus set-trees to store itemsets facilitates the support counting

of candidate itemsets, the join operation, the looking up of an itemset and even

the prune operation. Figure 3.5 shows the join operation based on a set-tree. It is

very easy to locate the itemsets that could be joined together. Using set-trees also
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makes the conversion of an interior node to a leaf node very easy. The threshold

determines the maximum size of a set tree. By choosing the threshold, we can adjust

the tradeoff between memory space and running time.

Finally, we use these data structures to implement the following concepts:

• one transaction: a bitmap;

• all transactions: an array of transactions;

• candidate itemsets: a hash-tree with set-trees;

• frequent itemsets: a hash-tree with set-trees;

3.5 The Input Data

Our system takes in the target item ID and the transaction data related to the

target item and mines rules for the target item. The transaction data are stored
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in files. We have each transaction stored in one file, which is called a transaction

file. For each target item, there is one transaction list file containing the IDs of

transactions related to the target item. In the following, we give the examples of

transaction data for like user associations.

• As we have described in Section 1.2.2, in user associations each user corre-

sponds to an item and each article corresponds to a transaction. So each

transaction file contains the ratings for an article from the collaborative users

(the users whose tastes are used to match the target user’s taste). We give each

file a name that reflects the corresponding article, e.g., “article1.dat”, “arti-

cle5.dat”, “article14.dat”,... Each transaction file contains a bitmap, each bit

in the bitmap corresponding to one collaborative user, with value “1” repre-

senting that this user likes the article and value “0” representing dislike or not

rate.

• For each user, only articles that he/she has rated can be used to mine rules

for him/her. So we have a list file for each target user which contains all the
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articles he/she has rated. Its first line contains the total number of articles

the target user has rated. The rest of the file has two columns: the first

column is the article ID and the second column reflects if the target user

likes the article, where value “1” means he/she likes the article and value “0”

means he/she dislikes the article. For example, the transaction list file for

person70007 (named “person70007.dat”) is as follows:

‘‘108 articles rated.

1 1

5 0

14 0

...’’

Having transaction list files and transaction files, we can easily read in all the

transactions related to a target item.

3.6 The Output Rules

Examples of output rules of our system are shown below:

• With user associations, our system will mine association rules like:

“[person69: like] AND [person580: like]⇒ [person70007: like]” for like asso-

ciations, or

“[person358: like] AND [person677: dislike] ⇒ [person70007: like]” for like

and dislike associations;

• With article associations, it will mine association rules like:

“[movie30: like] AND [movie160: like] ⇒ [movie450: like]” for like associa-

tions, or
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“[movie70: like] AND [movie289: dislike] ⇒ [movie450: like]” for like and

dislike associations.

3.7 Summary

We have presented a new algorithm for mining association rules with a specific target

predicate in the heads of the rules. Such rules are needed in applications such as

recommender systems. Unlike most existing association rule mining algorithms,

which require that the minimum support of the rules to be mined be specified in

advance, our algorithm adjusts the minimum support during the mining process so

that the number of rules generated lies within a specified range. This keeps the

running time under control, and ensures that enough rules are available for the

target predicate.
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Chapter 4

Recommendation via Association

Rules

We have described our algorithm for mining association rules. This chapter describes

our approaches to use association rules for recommendation: user associations and

article associations. For these two types of associations, we basically employ the

same mining process (with different types of transaction data), but quite different

recommendation strategies.

4.1 The Training Data

Association rules are mined from a set of “transactions”. For collaborative recom-

mendation, we usually have users’ ratings of articles. How to convert ratings to

“transactions” is determined by which kind of associations and how many levels of

associations we want to discover.

35



4.1.1 User Associations

Firstly, we are interested in predicting if a user would like an item. Hence we map

the ratings for an item into two categories: like and dislike according to whether the

rating for the item is greater than or less than some threshold value.

Then we convert the like and dislike ratings into transactions by following the

process below:

• In order to obtain like associations among users, we have each user correspond

to an “item” and each article rated by users correspond to a “transaction”.

If a user, say userk, likes an article, then the transaction corresponding to

the article contains the item [userk : like]; If userk dislikes or did not rate the

article, then the corresponding transaction does not contain the corresponding

item. From here, we can mine like associations among users, for example,

“90% of articles liked by user A and user B are also liked by user C, 30% of

all articles are liked by all of them”, or simply denoted as “[usera : like] AND

[userb : like]⇒ [userc : like] with confidence 90% and support 30%”.

• In order to mine like and dislike associations among users, we employed the

idea of mining categorical association rules (see Section 2.1.3) by extending

each user, say userk, to two “items”, one item corresponding to [userk : like]

and another item corresponding to [userk : dislike]. If userk likes an article,

then the corresponding transaction contains the item [userk : like]; If userk

dislikes the article, the corresponding transaction contains the item [userk :

dislike]; If userk didn’t rate the article, the corresponding transaction doesn’t

contain either of these two items. From here, we could mine rules like “90% of

articles liked by user A and disliked by user B are liked by user C, 30% of all

articles are liked by user A and C and disliked by user B”, or simply denoted
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as “[usera : like] AND [userb : dislike] ⇒ [userc : like] with confidence 90%

and support 30%”

More specifically, the final training data for a target user is obtained as follows:

Firstly, split the articles this user has rated into training articles and test articles,

then have each training article correspond to one training transaction. So the num-

ber of training articles determines the total number of training transactions. We

also have each collaborative user correspond to one item for like associations and

two items for like and dislike associations. Whether a transaction contains an item

is determined as above. Also, the target user corresponds to one and only one item,

i.e., [usertarget : like], which is contained in a transaction if the target user likes the

corresponding article. Table 4.1 gives an example of the training data to mine like

and dislike user associations for a target user.

Article ID [C1: L] [C1: D] [C2: L] [C2: D] [C3: L] [C3: D] [Target U: L]
1 1 0 1 0 1 0 0
2 0 1 0 0 1 0 1
3 1 0 0 1 1 0 1
4 0 1 0 1 0 1 0
5 1 0 0 1 0 0 1

Table 4.1: Training Data for User Associations

Here [C1: L] means [collaborative user1 : like], [C1: D] means [collaborative user1 :

dislike]. So from the transaction data in the table, we can mine rules like: “[collaborative user1 :

like] AND [collaborative user2 : dislike] ⇒ [target user : like] with confidence

100% and support 40%.”
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4.1.2 Article Associations

In order to obtain like associations for a target article, we have each article corre-

spond to an “item” and each training user who rated the target item correspond to

a “transaction”. If a training user likes an article, then the transaction correspond-

ing to the user contains the item corresponding to the article; If the user dislikes

or did not rate the article, then the corresponding transaction does not contain

the corresponding item. From here, we can mine like associations among articles.

For example, Table 4.2 gives an example of the training data to mine like article

associations for a target article.

User ID [A1: L] [A2: L] [A3: L] [A4: L] [A5: L] [A6: L] [Target A: L]
1 1 0 0 0 1 0 0
2 0 1 0 0 1 0 1
3 1 0 0 1 1 0 1
4 0 1 1 1 0 1 0
5 1 0 0 1 0 0 1

Table 4.2: Training Data for Like Article Associations

Here [A1: L] means [article1 : like], and the first column corresponds to the

collaborative user ID. So from the transaction data in the table, we can mine rules

like: “[article1 : like] AND [article4 : like] ⇒ [target article : like] with confidence

100% and support 40%.”

4.2 Recommendation Strategy

4.2.1 User Associations

For user associations, basically we have rules vote for articles, where each vote is

weighted according to the quality of the rule (referred to as the score of the rule), if
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an article receives a score above a certain value, then that article is recommended.

The whole strategy is described in more detail below:

1. For user associations, the rules we have are in the form of: [collaborative user1 :

like] AND [collaborative user2 : dislike]⇒ [target user : like]. For a test ar-

ticle of the target user, if the collaborative user1 likes this article and the

collaborative user2 dislikes this article, then we say this rule fires for this

article.

2. We associate a score to each rule, which is the product of the support and the

confidence of the rule.

scorerulek = supportrulek ∗ confidencerulek

3. We assign a score to each test article, which is the sum of the scores of all the

rules that fire for this article. Assume a user has n rules, then the score of

one of his/her test articles articlei is calculated as below:

scorearticlei =
n∑
k=1

(scorerulek | rulek fires for articlei)

4. If scorearticlei is greater than a threshold, then we will recommend articlei to

the given user.

We use the product of the support and the confidence of a rule as this rule’s score,

because we believe that the support and the confidence represent the quality of a

rule, which will directly influence the success of the recommendations made by this

rule, i.e., the higher the support and the confidence, the better the recommendations

made by the rule. Our experiments verified this assumption (see Section 5.2.2).
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We employ a score threshold and only recommend articles whose scores are

above the threshold in order to in some degree reduce the influence of some noisy

rules (rules that overfit the training data and are not accurate for prediction). For

example, if there are only a small number of rules with low minimum support and

confidence which recommend an article, then the weighted vote to recommend this

article is not so strong. So by choosing an appropriate threshold, one can filter out

such kind of articles.

How to choose the score threshold is of great importance. We do not want to

recommend bad articles nor to filter out good articles. Basically, we considered

two kinds of choices: a constant threshold and a linear threshold (which is a linear

function of the number of rules obtained for a target user). By choosing a constant

threshold, we assume that if an article is recommended by a large enough number of

rules, this article should be recommended. But considering that the number of noisy

rules may grow as the total number of rules grows, it is hard to choose a constant

threshold that works for both large numbers of rules and small numbers of rules.

So we also tried thresholds that are linear functions of the number of rules. We ran

some tests on both of these two kinds of thresholds and the results are shown in

Section 5.2.2.

4.2.2 Article Associations

For article associations, we use a different strategy. Because not all the articles are

good for recommendation, we only recommend articles whose rules’ supports above

a support cutoff.

1. Given a rule: [article1 : like] AND [article2 : like] ⇒ [target article : like],

if the target user likes article1 and article2 (which can be known from the

training articles of the user), then we say this rule fires for this article.
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2. Specify a support cutoff.

3. For a test article of the target user, if there is a rule with support above

the specified support cutoff which fires for this article, then this article is

recommended.

After we have known which value is best for the support cutoff in the system

tuning process, we can only mine rules above the support cutoff during the mining

process. This may seem similar as Apriori or CBA in the sense that a minimum

support is specified in the mining process, but the difference is that we only mine

rules with the highest possible support for one article at a time and the number of

rules obtained lies within the specified range. Our mining process has the following

advantages:

• By mining article associations for one article at a time, only ratings related to

the target article are used for mining, which is only a small subset of the whole

rating data. The support of a rule is calculated over the small subset of the

whole rating data, which enables us to obtain rules for articles that have only

received a limited number of ratings, for example a new movie. This would

not be possible if we mined article associations for all articles at once, because

rules for new articles would fail to have the necessary support over the whole

rating data.

• A significant amount of runtime is saved by mining rules only over the subset

of the rating data that is related to the target article instead of over the whole

data. We have tried to use Intelligent Miner (IBM product) to mine article

associations for all articles at once. It usually took several days and still could

not terminate.
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4.3 Recommendation Modes

The system modes for user associations and article associations are different. For

user associations, we must mine rules online. This is because the ratings from the

target user are needed to mine associations between the target user and other users;

But for article associations, the mining process can be offline. This is because we

can mine associations between articles from the collaborative users, i.e., the ratings

from the target user are not necessary in the mining process. This difference results

in the different response time of these two approaches.
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Chapter 5

Experimental Tuning and

Evaluation

This chapter shows the results of the experiments we performed to tune our system

and to evaluate its performance. It includes the results for user associations, article

associations, and a combination of the two. A comparison with other systems under

somewhat similar experimental conditions is also given in the end of this chapter.

5.1 Experimental Protocol

5.1.1 The EachMovie Data Set

We use the EachMovie Dataset as the test-bed of our approaches. The EachMovie

data set is an online data source provided by the Systems Research Center of DEC

[McJ97]. It contains ratings from 72,916 users for 1,628 movies. The whole data set

are stored in three tables:

• Person provides optional, unaudited demographic data supplied by each per-

son;
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• Movie provides descriptive information about each movie;

• Vote is the ratings from persons for movies. User ratings were recorded on a

numeric six-point scale(0.0, 0.2, 0.4, 0.6, 0.8, 1.0).

5.1.2 Collaborative Users and Target Users

We performed two groups of experiments. In the first group of experiments, we

chose the first 1000 users in the EachMovie dataset who have rated more than 100

movies as collaborative users, and the first 100 users whose userIDs are greater than

70,000 and who have rated more than 100 movies as target users. Some people in

the database have only rated a couple of movies. Obviously, such ratings would not

be suitable to be training data. By choosing collaborative users who have rated

over 100 movies, we assume that those people have rated almost all the movies they

have seen and such ratings are useful to mine associations exhaustively. Also, to

choose target users who rated over 100 movies makes us have enough movies for

recommendation as well as for test.

In order to compare our approach with other approaches, we performed a second

group of experiments, for which we chose the first 2000 users in the database as

collaborative user group, and 91 random users whose like ratios are less than 0.75

and who have rated 50 to 100 movies as target users.

5.1.3 4-fold Cross-validation

During our tests, for each given target user, we employ the 4-fold cross-validation

approach. First, we randomly divide all the articles this user has rated into 4 groups.

Then we run four rounds of test, each time choosing one group of articles as test

data and the other three groups as training data. So every article this user rated
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will be used as a test article once.

5.1.4 Performance Measures

We use the accuracy, a commonly used performance measure in machine learning,

together with two standard information retrieval measures, precision and recall.

Accuracy is the percentage of correctly classified articles among all those classified

by the system; Precision is the percentage of articles recommended to a user that the

user likes; Recall is the percentage of articles liked by a user that are recommended

to him/her. More precisely,

accuracy =
correctly classified articles

total articles

precision =
correctly recommended articles

total recommended articles

recall =
correctly recommended articles

total articles liked by users

For recommendation tasks, precision is perhaps most significant because we are

more concerned about making high quality recommendations than about recom-

mending a large number of items. So our goal is to achieve a very high precision

with a reasonably high recall. But the accuracy reflects an implicit combination of

the precision and the recall. In this sense, the accuracy is also important.

5.2 Experimental Evaluation

In this section, we report results of our experiments. For all the experiments, we

employed the 4-fold cross-validation approach when evaluating the performance for

each test user, and reported the averaged performance over the 100 test users.
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5.2.1 Parameters

The main parameters for our approaches are listed below:

• the like and dislike threshold to split the ratings into like and dislike cate-

gories;

• the maximum length of rules;

• the minimum confidence of the association rules;

• the specified range for the number of rules, i.e., the minRulenum and the

maxRulenum;

• the score threshold for user associations;

• the support cutoff for article associations.

In order to choose appropriate parameters, we did some experiments. Some

interesting results are shown in the next section. Currently, we choose 0.7 as the

like threshold, i.e., if a user’s rating for an article is greater than 0.7, then we think

that user likes this article. By choosing this like threshold, the ratio of the number

of like movies over the total number of movies (called like ratio) of all the test users

is 0.45.

5.2.2 User Associations

Maximum Rule Length

We use rule length to refer to the number of the items present in the rule precedent.

Table 5.1 lists the performance of different maximum rule lengths. Here we choose

minimum confidence as 100% and rule number in the range of 5 to 100.
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Rule Length 2 4 6 8 10
Accuracy 0.693712 0.696117 0.695676 0.69759 0.694547
Precision 0.704357 0.724006 0.733482 0.737896 0.736086
Recall 0.572606 0.545425 0.528625 0.528411 0.520813

Table 5.1: Performance for Different Maximum Rule Length

From Table 5.1 we could see that when the maximum rule length is around 8, we

get the best performance. Generally, with a larger maximum rule length, we can get

more rules above a certain minimum support and minimum confidence. But actually,

there are very few rules with rule length greater than 8 which have a relatively high

support and confidence. Also, the long rules have the danger of overfitting data.

These are the main reasons why we can not achieve better performance with a rule

length 10.

From these results, we can choose the maximum rule length to be 8. We use this

maximum rule length for all the following experiments.

Minimum Confidence

We believe that the minimum support and minimum confidence are the two most

important factors that influence the performance. Since the minimum support for

each user is decided automatically during the mining process. It would be inter-

esting to study the performance for different minimum confidence. We tested the

performance when varying the minimum confidence. In our tests, we use two kinds

of score thresholds: a constant threshold and a linear threshold (which is a linear

function of the rule number). Their results are shown in Figure 5.1 and Figure 5.2.

From Figure 5.1 and Figure 5.2, we could see very clearly the following facts:

• The minimum confidence has a significant impact on the performance, i.e.,

the higher the minimum confidence, the higher the precision but the lower the
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Performance for Different Minimum Confidence 
(with score_threshold  = 0.15, num_rule = 5~100)

0.4

0.5

0.6

0.7

0.8

Minimum Confidence

Accuracy 0.683797 0.707652 0.720709 0.719482

Precision 0.761673 0.756937 0.719836 0.68863

Recall 0.452113 0.534189 0.640342 0.709042

1 0.95 0.9 0.85

Figure 5.1: Performance for Different Minimum Confidence with a Constant Score
Threshold

recall. We achieve the highest precision of 0.76 with a recall of 0.45 for the

minimum confidence of 100%. This is not surprising because the confidence

of a rule corresponds to the average precision of using this rule to recommend

training articles to the target user,

• When the minimum confidence is varied, there shows a tradeoff between the

precision and the recall. If we take accuracy as a measure that reflects both the

precision and the recall, we achieve the best combination of the precision and

the recall not with minimum confidence 100% but with minimum confidence

from 80% to 90%. This is because we have more like articles identified as like,

i.e., we have higher recalls.

• Also, we achieve a better combination of the precision and the recall by using

a linear threshold.

Even though we think the precision is the most important thing for a recom-
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Performance for Different Minimum Confidence (with 
score_threshold = 0.005 * num_rule, num_rule = 10~100)

0.4

0.5

0.6

0.7

0.8

0.9

Accuracy 0.683552 0.704511 0.723359 0.727041 0.729348 0.676991

Precision 0.764803 0.76103 0.743149 0.718678 0.693465 0.625

Recall 0.447833 0.518673 0.606528 0.665383 0.734724 0.855856

1 0.95 0.9 0.85 0.8 0.75

Figure 5.2: Performance for Different Minimum Confidence with a Linear Score
Threshold

mender system, the best combination of the precision and the recall is also important

in the sense that we can achieve both a higher precision and a higher recall from

there. Under this consideration (which is actually verified in the next sections),

we use linear thresholds and the minimum confidence of 0.9 for almost all the rest

experiments.

Range for the Number of Rules

In order to decide what is the appropriate range for the number of rules, we did

experiments with different rule set sizes. As shown in Figure 5.3, we achieve quite

similar performance for the number of rules within 100, 200 and 500. But considering

the much longer runtime required for larger rule numbers, we choose the range for

the number of rules to be from 10 to 100. This result also verifies our assumption

that it is enough to have a small number of rules, too many rules are not necessary.
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Performance for Different Rule Set Sizes 
(score_threshold = 0.1 + 0.0025 * num_rule)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Rules

Accuracy 0.722869 0.723654 0.720807

Precision 0.74224 0.736896 0.73676

Recall 0.606421 0.618299 0.608882

10~100 20~200 50~500

Figure 5.3: Performance for Different Rule Set Sizes

Score Threshold

Score threshold is also a very important parameter of our approach. We have decided

to use a linear threshold, but still need to decide the base value and the slope of the

linear function. Figure 5.4 and Figure 5.5 give the performance for different score

thresholds.

From these two figures, we could see a general fact that the score threshold has

a similar impact on the performance as the minimum confidence, i.e., the higher the

score threshold, the higher the precision but the lower the recall. When the score

threshold is varied, there shows a tradeoff between the precision and the recall.

Another important thing is: in Figure 5.4, we achieve a precision of 0.77 with a

recall of 0.53 for the score threshold equal to 0.01 ∗ rule num. Both the precision

and the recall are better than those with the minimum confidence of 100% and the

score threshold of 0.15 (Section 5.2.2). Please notice that this can not be achieved by

using the minimum confidence of 100%, because there is always a tradeoff between
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Performance for Different Score Thresholds
(with score_threshold = k  * num_rule) 

0.4

0.5

0.6

0.7

0.8

0.9

Score Thresholds

Accuracy 0.722083 0.723359 0.712315 0.698719 0.689147

Precision 0.715154 0.743149 0.77134 0.789597 0.806347

Recall 0.655003 0.606528 0.529909 0.467844 0.424184

0.0025*rule_num 0.005*rule_num 0.01*rule_num 0.015*rule_num 0.02*rule_num

Figure 5.4: Performance for Different Score Thresholds I

the precision and the recall. This verifies our statement that a better accuracy can

help us to find a more promising performance.

Performance Distribution

Noticing that with a score threshold of 0.02∗rule num we could get a very high pre-

cision, we are interested in understanding how many articles we have recommended

to each user with this score threshold. So we draw the distributions of the number of

target users over each precision interval and recall interval of length 0.1. Figure 5.6

presents the distribution with a score threshold of 0.02 ∗ rule num, and Figure 5.7

presents the distribution with a score threshold of 0.005 ∗ rule num.

When choosing a score threshold of 0.02∗rule num, many users receive very low

recalls. The situation is much better for a score threshold of 0.005 ∗ rule num.
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Performance for Different Score Thresholds 
(with score_threshold = b  + 0.005 * num_rule)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Score Threshold

Accuracy 0.723359 0.72012 0.716782

Precision 0.743149 0.750654 0.755394

Recall 0.606528 0.583735 0.565757

0.005*rule_num 0.05+0.005*rule_num 0.1+0.005*rule_num

Figure 5.5: Performance for Different Score Thresholds II

Different Like Ratios

Obviously, it is easier to do recommendation if a user’s prior probability of liking

an article is high. To understand by how much this will affect the performance,

we draw a histogram on the average precision of users with different ranges of like

ratios, which reflects a user’s prior probability of liking a movie. The results are

shown in Figure 5.8.

Even though the higher the like ratio, the higher the precision. Our recom-

mendations are always better than random recommendations, whose probability of

success is equal to the user’s prior probability of liking an article. Also, from here we

could predict the performance of choosing different like thresholds to map a rating

to like and dislike.
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Performance Distribution 
(with score_threshold = 0.02 * num_rule)
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Figure 5.6: Distribution for Number of Target Users with Score Threshold = 0.02

Like and Dislike Associations

In order to obtain both like and dislike associations, we map a rating into like and

dislike by using two thresholds: the like threshold and the dislike threshold. If a

rating is greater than the like threshold, then it is mapped to like; Otherwise, if

a rating is lower than the dislike threshold, it is mapped to dislike. So the like

associations we discussed before can be considered as choosing the dislike thresh-

old as 0. Figure 5.9 gives the comparison of the performance for different dislike

thresholds.

We can not see significant difference between the performance for different dislike

thresholds. So employing like and dislike associations does not outperform only

employing like associations.
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Performance Distribution 
(with score_threshold = 0.005 * num_rule)
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Figure 5.7: Distribution for Number of Target Users with Score Threshold = 0.005

5.2.3 Article Associations

In the experiments for article associations, we tested the performance for different

support cutoffs, i.e., we only use rules above a specified support cutoff for recom-

mendation during a test. The results are shown in Figure 5.10 and Figure 5.11.

We can see that the performance of article associations is not as good as that

of user associations. The best accuracy we can achieve is 0.68. But one advan-

tage of article associations is that the mining process can be offline and the whole

recommendation process takes very little time.

5.2.4 Combining User and Article Associations

Even though the performance of article associations is not as good as that of user

associations, we still feel it may be worthwhile to combine user associations with

article associations. From our observations, we found that when a target user’s
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Average Precision for Users with Different Like Ratios
(with score_threshold = 0.005 * num_rule)

0
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0(0) 0~0.1(2) 0.1~0.2(6) 0.2~0.3(13) 0.3~0.4(17) 0.4~0.5(21) 0.5~0.6(16) 0.6~0.7(10) 0.7~0.8(12) 0.8~0.9(3) 0.9~1(0)

Like Ratio (Number of Target Users)

Random Precision
Our Precision

Figure 5.8: Precision for Users with Different Like Ratios

minimum support determined by the mining process is very low, it takes a very

long time to mine rules for this user and at the same time the performance of using

those rules for recommendation is very bad. So we tried the following strategy to

combine user and article associations: If a user’s minimum support is greater than

a threshold, then we use user associations for recommendation, otherwise we use

article associations for recommendation. Table 5.2 lists the performance for user

associations, article associations and a combination of the two. We can see that

by combining these two associations, the performance decreases a little bit, but we

achieve a much faster response time, which makes the system realtime. So we think

it is a good strategy to combine these two associations.
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Performance for Different Disllike Thresholds 
(with score_threshold = 0.05 + 0.0025 * num_rule)

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Dislike Threshold

Accuracy 0.721936 0.724341 0.718549

Precision 0.725214 0.726137 0.717452

Recall 0.634029 0.640663 0.637453

0 0.3 0.7

Figure 5.9: Performance for Like and Dislike Associations

User Assoc Article Assoc Combined Combined
Threshold 0.075 0.1
Accuracy 0.720 0.611 0.717 0.712
Precision 0.751 0.754 0.745 0.723
Recall 0.584 0.226 0.582 0.602
Avg. Runtime 14.2s 0.06s 5.2s 4.6s

Table 5.2: Combining User and Article Associations

5.3 Comparison with other systems

Billsus and Pazzani [BP98] have tested the performance of three collaborative rec-

ommendation techniques on EachMovie dataset, which include the correlation-based

method, neural networks paired with Information Gain and neural networks paired

with Singular Value Decomposition. In their experiments, they choose the first 2000

users as the collaborative users, another 20 random users whose like ratios are less

than 0.75 as target users, and 50 random movies as training movies for each target

user. The accuracies that these three approaches achieved are listed in Table 5.3.
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Performance for Article Associations 
(min_confidence = 0.9)

0

0.2

0.4

0.6

0.8

1

Support Cutoff

Accuracy 0.636283 0.663574 0.652432 0.611103 0.577873

Precision 0.578678 0.650332 0.70537 0.75411 0.801619

Recall 0.761477 0.576565 0.416051 0.225789 0.105725

0.1 0.2 0.3 0.4 0.5

Figure 5.10: Performance for Article Associations I

Correlation InfoGain/ANN SVD/ANN
Accuracy 0.644 0.67 0.679

Table 5.3: Accuracy for Three Collaborative Approaches

In order to compare our approach with those approaches, we tested our approach

under similar experimental conditions. Firstly, we chose the same collaborative user

group as their tests, i.e., the first 2000 users in the database. Then, we chose 91

random users whose like ratios are less than 0.75 and who have rated 50 to 100

movies as target users and we employ the 4-fold cross-validation approach for our

tests, which results in that the average number of training movies for each user

is 53. The accuracy that our user associations achieved is 0.674, and the average

response time is 0.55s. So we can see our approach is at the same level of the current

state-of-the-art techniques.
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Performance for Article Associations 
(min_confidence = 0.8)

0

0.2

0.4

0.6

0.8

1

Support Cutoff

Accuracy 0.624012 0.666176 0.675846 0.65523 0.626417

Precision 0.56052 0.626971 0.686895 0.711809 0.757117

Recall 0.834992 0.672124 0.539005 0.417335 0.273194

0.1 0.2 0.3 0.4 0.5

Figure 5.11: Performance for Article Associations II

5.4 Summary

Some interesting results obtained through the experiments are summarized as fol-

lows:

• Our experiments verify our assumption that a limited number of rules is desir-

able for making recommendations to a user. Too many rules are not necessary

and might be even problematic.

• The minimum confidence of rules has a great impact on the performance. This

is not surprising because the confidence of a rule corresponds to the average

precision of using this rule to recommend training articles to the user.

• It is not necessary to exploit both like and dislike associations. It doesn’t

improve the performance but increase the running time.

• We can achieve a realtime response and still good performance by combining
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user associations and article associations.

• Our approach is at the same level of the current state-of-the-art collaborative

recommendation techniques.
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Chapter 6

Conclusions and Future Work

The main contribution of this thesis is the new framework it presents to apply

association rules for collaborative recommender systems. Through our extensive

experiments, we see the patterns of the influence of different parameters on the

performance of the system. Our experiments verify our hypothesis that a limited

number of rules is desirable for making recommendations to a user. Too many

rules are not necessary and might be even problematic. The confidence of a rule

has a great impact on the performance, but the highest confidence, or a confidence

of 100%, is not the best. By choosing a relatively high confidence, for example

85%, and an appropriate score threshold, we can achieve a better performance.

Also, it is not necessary to exploit both like and dislike associations, because it

does not improve the performance but increases the running time. Under similar

experimental conditions, the performance of user associations is better than that of

article associations.

We have found that our new approach can satisfy the realtime recommendation

requirement (especially when user and article associations are combined), and can

achieve very good performance, which is at the same level of the current state-of-
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the-art collaborative recommendation techniques.

We have also presented a new algorithm for mining association rules with a

specific target predicate in the heads of the rules. Unlike most existing association

rule mining algorithms, which require that the minimum support of the rules to be

mined be specified in advance, our algorithm adjusts the minimum support during

the mining process so that the number of rules generated lies within a specified

range. This keeps the running time under control, and ensures that enough rules

are available for the target predicate.

We only tested our approach on the EachMovie data set, which has been widely

used as a testbed for recommender systems. It will be interesting to see the perfor-

mance of our approach on some other data sets. In our recommendation strategy, we

assign a score to a rule as the product of the confidence and the support of the rule.

We may evaluate the quality of a rule or the quality of an article by using some other

ranking mechanism, which can give accurate top 3 or top 10 recommendations. In

our approach, we only use association rules to exploit the collaborative information.

Actually, association rules can also be used to exploit the content-based information.

We may achieve better performance by exploiting both. This is left as future work.
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