MCPHS Peer Review

A Major Qualifying Project

Submitted to the Faculty

Of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

Ву

Dillon O'Toole

April 17, 2012

Submitted To:

Professor Tahar El-Korchi

Professor Edward J. Swierz

Abstract

The objective of this MQP was to review the structural design of the superstructure of an office and academic building recently built for the Massachusetts College of Pharmacy and Health Studies. The design included post tensioned concrete slabs, as well as reinforced concrete columns, shear walls and a mat foundation. The design was reviewed using load resistance factor design, in accordance with the Commonwealth of Massachusetts state building code, and accounted for both gravity and lateral loads. The flooring system was also redesigned as an alternative steel design.

Acknowledgements

First and foremost I would like to thank my advisors for the project, Professor Edward J. Swierz and Professor Tahar El-Korchi for their feedback, guidance and support. I would also like to thank Souza, True and Partners Inc. and KSID for allowing me to access their design plans and architectural drawings.

Capstone Design Statement

The capstone design requirement of this project was met by proposing a redesign of the existing floor plan with structural steel and a concrete slab on metal decking instead of post tensioned concrete. WPI faculty and students would be interested in this comparison because it showcases the different shape and weight constraints and structural behavior brought about by differing building materials. Construction using steel can have a significant effect on the characteristics of a building in comparison to concrete. This project addressed the following realistic constraints: economic, constructability, social and political.

Economic

The cost of building a structure hinges upon the cost of building materials, as well as labor and other such expenses. Redesigning the flooring system with steel members as well as a concrete deck changes the weight of the building in a large way, but is not necessarily financially advantageous. The rising price of metals in the current economic climate also has a hand to play in the pricing of any proposed steel project.

Constructability

Constructability plays a large part in the selection of building materials and design. A scheme may be perfectly designed to bear the proper loads, but if the shaping is too exotic it cannot be created in a real world application. Concrete typically needs a formwork created beforehand in the shape of the desired member. The proposed redesign is advantageous for multiple reasons. Steel members are premade and shipped to a job site, eliminating the need for formwork to be made. The steel decking used for the floor slabs also serve as a mold for the concrete to be poured. The concrete slab proposed in the steel redesign also requires no post tensioning, so that step is eliminated from the construction schedule.

Social

The material used also has an effect on the social and current labor markets in the surrounding community. Any construction project has a positive boon to the surrounding community. In the New England area there is a strong steel labor force as well as concrete, so there is a positive effect with both material choices. Construction projects in general also provide a positive social impact to the community through increasing the amount of jobs and sales in the surrounding area.

Political

Political issues can arise for multiple reasons during construction. These issues are usually based on the effect construction has on the surrounding area, and not on the materials used in the construction phase. Because of this, a redesign would not have much if any effect on the political issues that arose from the building of this new structure.

Table of Contents

Abstract2
Acknowledgements
Capstone Design Statement4
Economic4
Constructability4
Social5
Political5
List of Tables9
Introduction
Background12
Academic and Office Building12
Location12
Description
Concrete14
Reinforced Concrete
Prestressed Concrete
Structural Steel17
Loading17
Prestressed Floor system
Columns

Shear Walls	28
Structural Steel Flooring System	
Results and Conclusions	
Appendix	
2 nd Floor slab design excel sheet	
6 th floor slab design excel spreadsheet	48
Second Floor Interior column Excel Spreadsheet	55
Second Floor Exterior Middle Column Excel Spreadsheet	58
2 nd Floor Edge	62
Shear Wall Excel Spreadsheet	69
5 th Floor Steel Beam and Girder Excel Spreadsheet	72
6 th Floor Steel Beam and Girder Excel Spreadsheet	76
5 inch Slab and Steel Decking for 5 th floor Excel Spreadsheet	80
5 inch Slab and Steel decking for 6 th floor Excel Spreadsheet	86
Fifth floor Girder Design Excel Spreadsheet	92
Sixth Floor Girder Design Excel Spreadsheet	94
Fifth Floor Spandrel Beam Excel Spreadsheet	96
Sixth Floor Spandrel Beam Excel Spreadsheet	
Fifth Floor Spandrel Girder Excel Spreadsheet	
Sixth Floor Spandrel Girder Excel Spreadsheet	

List of Figures

Figure 1: Street view of the west elevation of the MCPHS building during construction
Figure 2: Post tensioning cables laid before a concrete pour16
Figure 3: tendon layout for the 2nd through 5th floor slabs19
Figure 4: east-west and north-south tendon profile for the 2nd floor respectfully. The tendon reaches a
high point at the columns, and a low point at the midpoint of the slabs. The values are the depths of the
tendons at columns and midpoints. The above tendon profile is uniformly distributed while the lower
profile is banded

List of Tables

Table 1: Example Moment distribution calculations	21
Table 2: Factored shear and secondary moments for the fifth floor	22
Table 3: Factored shear and secondary moments for the sixth floor	22

Introduction

Throughout the design process, there are many decisions and calculations that affect the accuracy and viability of the project. The risk of inaccuracies and the high cost of such errors makes peer reviews a necessary and vital part of the design and permit process. These reviews may entail redesigning major aspects of the building to compensate for erroneous aspects, and more importantly to check that the engineer of record used the proper design processes and Code mandates. Calculation accuracy and design integrity are paramount to a safe and functional structure.

The Massachusetts College of Pharmacy and Health Sciences (MCPHS) is an accredited institution that is head quartered in Boston, MA. MCPHS is a graduate school that focuses on the medical field. The Worcester campus hosts the accelerated pharmacy programs as well as physician assistance studies. The Worcester campus of MCPHS is twelve years old, having been added in 2000. This expansion is necessary to accommodate an ever growing influx of students. MCPHS recently started building a new six story, reinforced concrete building for office, laboratory and lecture hall purposes. This building is being constructed at 10 Lincoln square, Worcester, MA.

This project centered on a peer review of the essential aspects of the superstructure. This report should help WPI academia understand more about the design aspects chosen for this building. The data needed to review this structure, such as the permit and construction set of drawings design and architectural drawings was provided by the construction management firm in charge of the stage two renovations Souza, True and Partners. Additional code and design information was provided by the American Concrete Institute's ACI 318-08 manual¹ and the American institute for Steel Construction's

¹ Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. Farmington Hills, MI: American Concrete Institute, 2008. Print.

steel design manual². The structural design and analysis knowledge learned from courses taken at WPI's department of Civil and Environmental Engineering were utilized for the completion of this project as well.

² Steel Construction Manual. Chicago, IL: American Institute of Steel Construction, 2007. Print.

Background

To complete this project, two major objectives were established. The first objective was to review the design of the MCPHS superstructure to check for the accuracy and validity of the design. The second was to redesign the flooring systems using structural steel as opposed to concrete. Before these two objectives could be achieved, information such as loading and usage, the original design and the applicable building codes were also needed. Once these items were obtained, the design could be reviewed, and found to be either adequate and ready for construction, or recommendations could be made that would make the building feasible and code compliant. In order to understand this project completely, this chapter on the background of the project is presented.

Academic and Office Building

The Massachusetts College of Pharmacy and Health studies recently needed to add a new building to its Worcester campus to accommodate larger demand for the college's programs. The Worcester campus hosts the accelerated pharmacy programs as well as physician assistance studies and other graduate studies. This upgrade of the campus should act as a boon to both the institution and surrounding areas of Worcester.

Location

MCPHS's new building is located on the same plot of land as another MCPHS building. The location is 10 Lincoln Square, in Worcester MA. This building is part of an effort to add more capacity to MCPHS's Worcester campus. The building can be seen at its Lincoln Square location in figure 1 below. This building should also allow for expansion of the accelerated programs offered in the Worcester campus.

Figure 1: Street view of the west elevation of the MCPHS building during construction.

Description

The MCPHS building is a six story cast-in-place concrete building located on 10 Lincoln square in downtown Worcester. The flooring system consists of post tensioned slabs and spandrel beams along the perimeter of the building. All prestressing steel is 7 wires, half inch diameter steel with an area of 0.153 square inches and an ultimate strength of 41.3 kips. The flooring system uses 5,000 psi concrete. The second floor framing system can be seen in Figure 3. The shear walls for the structure are reinforced concrete, as are the columns. The column specifications can be found in Figure 6. The shear walls

provide resistance for the lateral load demand. These members also are 5,000 psi concrete. The roofing is a pan joist and girder framing system. The foundation is a 3 foot thick, conventionally reinforced concrete mat foundation of 4,000 psi concrete. The building will hold a lecture hall on the main floor, as well as a large lobby, and laboratory space. The second floor will house office and administrative areas. The upper three floors will be used for similar programmatic needs. The sixth floor has a higher loading than the lower floors, so the slab is thicker. The façade is brick on the first floor, and glass from the second to the sixth, except for the shear walls.

Concrete

Modern concrete is made up of multiple ingredients at a specific ratio that determines the physical properties of the intended mix. Concrete is comprised of Portland cement, fine and coarse aggregates, water and admixtures. These four ingredients can be combined in any number of different ratios, which change the physical properties of the concrete. The strength of concrete can range anywhere from 3,000 pounds per square inch, to 16,000 pounds per square inch and higher in some markets.

Concrete is an excellent building material for anything that is under a compressive loading. Another positive aspect of concrete is its fluid state, because concrete can be poured into any shape imaginable, as long as the aggregate can fit and a proper mold is created. Concrete is relatively weak in tension however. In order to combat this, steel is placed within the concrete members to take the tensile load forces while the concrete handles compression. There are two different ways to achieve this balance of steel and concrete in modern concrete structures, Reinforced concrete, and Prestressed concrete.

Reinforced Concrete

Reinforced concrete is any concrete that has reinforcing bars to supply the required tensile strength for the concrete member. This technique is relatively low tech and has been in existence longer than prestressing. In reinforced concrete, the reinforcing cage is typically placed first, and then concrete is poured, creating a structure. Once the concrete is poured, it is left to cure for roughly a month, in order to achieve a useful strength. The reinforcement bars used in reinforced concrete are typically 60,000 psi yield strength bars, and are available in diameter increments of 1/8 of an inch. The largest bar that can typically be found is a #18 bar, which has a nominal diameter of 2 ¼ inches.

In the MCPHS structure, most members are reinforced concrete. The columns, shear walls and foundation are all made from reinforced concrete, whereas the floor framing is prestressed concrete.

Prestressed Concrete

Prestressed concrete is the other modern use of concrete in structural applications. Prestressed concrete makes use of wire strands of steel that are banded into steel tendons. These tendons are stressed either before or after the concrete is added, and that timing of the stressing is the key difference between prestressed and post tensioned concrete. For slab applications, the strands are usually placed in a parabolic shape through the slab, in a shape that is similar to the bending moment diagram of the given slab.

Pretensioning involves the strands being tensioned before the concrete is placed. Once the concrete is sufficiently hardened, the anchors holding the strands are released, and the resulting force adds compressive stress to the concrete. Because a strong anchoring point is needed, Pretensioning is usually done at a plant, and then the piece is shipped to a job site.

15

Post tensioning involves placing an unstressed tendon, and then the concrete is poured. Once the concrete hardens to certain strength, typically 3,000 psi, the steel tendons are tensioned. It is critical that the concrete reaches a strength that can support the tensioning, or else the tensioning anchorage will fail. This approach is advantageous when a large section is being cast, such as the floor systems in the MCPHS building. There are some extra losses of prestressed strength with this approach due to friction and other prestress losses.

Figure 2: Post tensioning cables laid before a concrete pour

Structural Steel

Structural steel provides certain advantages that concrete does not. Firstly, steel comes in standard industry sizes, unlike concrete that has to be molded to a certain shape. Steel can be purchased in many different shapes, but the shape used for the beams and girders in this report were wide flanged, or W beams. Since all the beams are manufactured to certain specifications, most properties can be easily found in the AISC manual. Structural steel can be quick to erect if the shipments from fabricators are timed well, and doesn't require the lengthy curing time of concrete

Loading

When designing a structure, a critical design value needed is the loading that the structure will undergo. The loading of any building can be broken into three groups: live loads, dead loads and environmental loads. Live loads are any loads that are not static, such as occupants. Dead loads can be defined as permanent loads that are typically part of the building itself. Environmental loads are any loads that occur from the environment, such as earthquake and snow loads.

Minimum loading conditions can be found through the Massachusetts State Building Code, or MSBC. Though the MSBC covers most loads, any loads that aren't covered can be found in the ASCE 7 standards. ASCE 7 is a reference material offered by the American Society of Civil Engineers in which minimum load provisions can be found. The only loads not given from MSBC and ASCE 7 are the selfload, which is calculated from the materials, used. These loads are factored with different values in order to add a factor of safety against limit states.

There are two different design approaches, LRFD and ASD, and each has their own load combinations and factors. For this project LRFD, or load resistance factor design, was used. There are multiple load combinations that can be used in different situations depending on what loads are acting on the member. For example, a floor system would have a higher load from a combination that has a

17

higher factor for dead and live loads, so they are to be used. Once the proper loads and load combination are found, the design of members could be performed.

Prestressed Floor system

According to the design drawings provided by the construction firm building the MCPHS structure, the flooring slabs were 90 feet by 93 feet overall and designed as post tensioned concrete slabs. The flooring was designed as a flat plate floor system, using techniques learned from CE 4017, prestressed concrete design. The strength of the concrete was given as 5,000 psi, and the values of the steel were found from design drawings.

The losses due to prestressing were found using lump sum losses, which were found in table 3.1 of Edward Nawy's text book "Prestressed Concrete" ³. Lump sum losses do not take loss due to friction into account, so that value had to be calculated independently and added to the lump sum losses. These losses were subtracted from the strength in prestressed reinforcement at nominal strength to find the stress after prestressing.

The trial thickness was found as the product of length of the slab divided by 45. Once a trial slab thickness was found, the loads acting on the slabs were calculated. The load combination chosen for slab design was 1.2*dead load + 1.6*live load. This combination was chosen for all six floors, as it had the largest load. The 2nd, 3rd, 4th And 5th floors are subjected to the same loading, so they were uniformly designed. The 6th floor was subject to a higher loading then those floors below it.

³ Nawy, Edward G. *Prestressed Concrete: A Fundamental Approach*. Upper Saddle River, NJ: Prentice Hall, 2000. Print.

The next step performed was identifying the tendon profile. The strands per bay were found to be 31 stands per bay. The strands were reverse parabolic with high points at the columns, and low points in between the columns. The net loads were then calculated.

Figure 4: east-west and north-south tendon profile for the 2nd floor respectfully. The tendon reaches a high point at the columns, and a low point at the midpoint of the slabs. The values are the depths of the tendons at columns and midpoints. The above tendon profile is uniformly distributed while the lower profile is banded.

The equivalent Frame characteristics were the next step in the design of the slab. The torsional stiffness of the slab at the column line, K_c and K_t were found, and the equivalent column stiffness K_{ec} was found using those two values. This process was repeated for interior columns. Once both exterior and interior columns were done, slab stiffness was found. These values were important because the distribution factors for moment distribution were found using them with the formula DF = $K_s/\Sigma K$.

The Design service load Moments and stresses were computed next. Fixed end moments, or FEM, were found for both the interior and interior spans, using the W_{net} from load balancing that was computed previously. The moment distribution of net load moments was calculated using the moment distribution method of analysis. That analysis method involves the fixed end moment being distributed and then carried over. This process was used multiple times to find moment distributions. In this instance, maximum net moment and midspan f_t were found. These values were found at the support as well as at the midspan.

A		В		С	
DF	0.36	0.27	0.27	0.27	0.27
COF	0.5	0.5	0.5	0.5	0.5
FEM	127.5	127.5	89.7	89.7	127.5
X10^3					
in-lb					
DIST	46.5	34.1	24.0	24.2	34.1
СО	17.0	23.3	12.1	12.0	
DIST	6.2	6.2	3.2	3.2	
Final					
Mnet	-70.2	178 6	-81.0		
*10^3	70.2	170.0	01.0		
per ft					

Table 1: Example Moment Distribution Calculations

The fixed end moments were calculated for interior and exterior spans. The distribution factors found previously were used again, and the same moment distribution was performed. Once the final M_{bal} was found, secondary moments were calculated for the spans. Secondary moments were found by subtracting M_1 , which was load multiplied by the eccentricity, from the M_{bal} found previously. A factored FEM_u was also found.

The FEM_u found were then subjected to moment distribution to find the final M_u. These moments were then used to calculate the design moments M_u. These M_u values were found for all locations on the slab. The shear at each of the locations on the slab was also found. The shear was calculated as W_uL/2 \pm the moment at the second column minus the moment at the first column divided by the length of the bay. Once the shear was found, required Mn was found as the centerline moment minus the secondary moment. A table of the shears found for both the 2nd-5th floors and the 6th floor can be found below. The first letter given references the column at which the slab section is starting at, and the second letter references the column the slab is heading toward. Slab section AB starts at the first column, which is the north most, and continues toward the next column, column b.

Table 2: fa	ctored shear	(lbs per foot) and secondary	moments	(ft-lb) fo	r the fifth floo	or
-------------	--------------	---------------	-----------------	---------	------------	------------------	----

Factored S	hear	Ms
ab	3649.8	37219.4
ba	4855.2	29231.9
bc	3240.0	13417.6

Table 3: factored shear (lbs per foot) and secondary moments (ft-lb) for the sixth floor

Factored SI	hear	Ms
ab	4120.9	48827.3
ba	5392.1	34734.3
bc	3624.0	10842.3

Once the moments were found, the non prestressed reinforcement steel needed to be designed. Once the area of steel was found, area per foot was calculated. Once a trial steel amount was found, the available moments had to be checked against the moment loads found earlier. If the available load capacity was found to be higher, no additional reinforcing steel was needed. This calculation was performed for both midsection of spans and interior support sections.

Once these values were completed, a reinforcement summary was written. The reinforcement summary details the amount of steel, both reinforced and prestressed, that would be needed for the design. Banding in the column regions would also need to be taken into consideration. The steel was then banded around the column. These calculations were performed twice: Once for the 2nd to 5th floors, and once for the 6th floor, which has different loading demands than the lower floors.

In order to check for strength, the nominal moment at both the positive and negative moment areas were compared to the ultimate moments. The ultimate moment is calculated as WL^2/8. The moments also need to be checked versus the ACI 318 allowable stresses. Negative moment stresses with the addition of nonprestressed reinforcement is limited to 6 Vf'c, and positive moment stresses is limited to 2Vf'c. The flooring system also contains spandrel beams at the perimeter of the post tensioned slab. These beams are reinforced concrete. The beams are 5,000 psi and 18 by 24 inch rectangular beams. The first step in the beam design was to find the factored load and moment and shear demand.

Once the load and moment values were calculated, the capacity of the section was checked. The maximum nominal moment is calculated first, and knowing bd^2, one can calculate rho and determine the required steel.

Once the compression and tension steel is found, the available moment capacity is found. If the moment capacity is higher than the moment found in the beginning of the design, no further check for moment capacity is needed.

The design needed to be checked for shear capacity as well. The shear strength of the concrete V_c is calculated and compared to the maximum shear Vu. If one half of the shear strength of the concrete is less than the ultimate shear, shear steel is needed. Two number 4 stirrups were placed with a spacing of 8 inches. Once the beam has been designed for shear and moment, deflection needs to be checked. If the deflection is less than the limit set by ACI 318, the beam is sufficiently designed.

Columns

The columns were the next members to be reviewed. The columns used in this design were not prestressed, but reinforced concrete. There were five different column designs used in this structure, according to the design drawings provided. Only five were used for constructability reasons. For the peer review, I checked three representative columns. These were one interior column, one column on the corner of the slabs, and one located at the end of a slab in the middle of the wall, not at either corner. These three different columns were sufficient to check the accuracy of the column design.

Figure 5: Column specifications

Column concrete strength was listed as 5,000 psi. Since columns support the entire building load above it, the first and second floor columns would have the highest loading, while columns on the 5th floor would be subject to much lower loading.

The first step towards review was finding the tributary area and loading. This was done simply by calculating the loads for each of the floors above the second, as well as the weight of the upper floor columns as well. The tributary area was found to be 31.5 X 30 feet for interior columns. With the loading found, the next step was to find the gross area of the columns, which was found using the formula Ag=Pu/ $\Phi^*\alpha^*$ (.85f'c+pg (Fy-.85f'c).

The columns had a K value of 1.0. The story height was also found to be less than 12 times h, so slenderness could be neglected. The area of steel was found next. The next steel that needed to be found was the ties. There are two different types of tie used in column design: lateral ties and spiral ties. For the columns in this design, lateral ties were used. The tie spacing cannot exceed the least column dimension, 48 tie bar diameters or 16 longitudinal bar diameters, whichever value is lowest. There is also moment in the column, which means there will be shear that will also act on the stirrups.

Once the column size and steel are designed, P-M diagrams needed to be created. P-M diagrams are created using 5 points on the load vs. moment graph. P-M diagrams also display the eccentricity at these points.

The first point of an interaction diagram is found when you set F_s equal to F_y . ϵ_u is assumed to be equal to .003 in this case. ϵ_y is found as the product of F_u/E_s , or the ultimate strength divided by the modulus of elasticity for the steel. The depth, d, is found as the length of a side of the column minus the cover minus the diameter of the steel tie and finally subtracting half the diameter of the reinforcing bar. C can be found once these values have been found. Once the value of C_b , or C balanced, has been found, C is found. C is equal to $.85f'_c*a*h$. C_b is the distance in the compression block where balanced failure happens. The nominal load P_n and nominal moment M_n are found after and plotted on the interaction diagram. The eccentricity is also marked on the interaction diagram, typically as a dashed line leading to the point. The next point on the diagram is found in a very similar fashion. The only difference is a smaller value is chosen in place of C_b . This means that the value is in the tension failure area of the interaction diagram. The same formulas are followed after this, and a new point can be added to the interaction diagram.

The third point on the diagram is found through a similar procedure. This time around, a C value higher than C_b was chosen, to see how the column reacted to compression failure. Since the column is made of concrete, it can be assumed that the values associated with compression failure would be higher than tension failure.

The fourth point is found when C is infinite. When C is infinite, the eccentricity will be 0. Under this condition, there will be no moment, only a load. This point is found on the Y axis of interaction diagrams. The final point is a pure moment load.

When an edge or side column is reviewed as opposed to an interior column, the tributary area will be lower. This means that the load becomes lower. This is counterbalanced however, with a much higher eccentricity. Another factor to take into account is constructability. It is much easier for a construction crew to create the same size column multiple times, instead of many different size columns. This helps account for the uniform nature of the columns found in this design.

Shear Walls

A shear wall is a member of a structure that is designed for the lateral load demands on the structure. These loads are typically wind and earthquakes. Similar to the columns in this structure, the shear walls are made of reinforced and not prestressed concrete. These walls work as a large cantilever beam jutting from the base of the building. This structure has three shear walls, one near the stairs, one near the elevator, and one in the north east corner of the structure. The review of shear walls was completed while using a journal article titled "Time Saving Design Aids for Reinforced Concrete.⁴"

Because shear walls are subject to more diverse loading, a new load combination was needed. Once the new load combination was found, the loads due to wind and earthquake needed to be calculated. The shear walls were a foot thick and 5,000 psi concrete. A new floor starts every 10.5 feet.

The shear load on the shear walls was first checked at the first floor. This floor was subject to the largest loading and therefore would have the highest demand for a shear wall. First, the total shear was calculated. Then the nominal shear, ϕV_c was found. Because the ultimate shear is higher than the nominal shear strength of the concrete, horizontal reinforcing steel was needed. The amount of required horizontal shear reinforcement is decided using table 6.5 from the guide referenced above. The required vertical reinforcement is then found. For the first floor, #6 bars at a spacing of 12 inches were calculated.

⁴ Fanella, David A. "Time Saving Design Aids for Reinforced Concrete." *Structural Engineer* (2001): 42-47. Web. https://engineering.purdue.edu/~frosch/CE576/Time%20Saving%20Design%20Tips/Time%20Saving-Columns&Walls.pdf>.

The second floor calculations were completed using the same methodology. First the horizontal shear reinforcement was found, followed by the vertical. The upper level floors were apparently given the same bar spacing as well, for the sake of constructability and simplicity. Though this simplifies the construction, it is a more costly option.

Shear walls resist overturning moment as well as shear forces. The overturning moment essentially is the force that attempts to destabilize the structure by lifting and overturning it. Shear walls need to be designed to withstand the moment that loading offers without overturning. In order to design the shear walls for overturning, moment load and axial load are calculated for each floor. The moment strength was then checked based on the required vertical shear reinforcement. The area of the steel, ω , α and c/lw were found in order to calculate the available moment. Once the available moment, ϕ Mn was found, it was compared to the ultimate moment. If the available moment was larger than the ultimate, no more reinforcement was needed for moment. This process was repeated for each floor.

Structural Steel Flooring System

In order to satisfy the capstone design requirement, the floor framing were redesigned as structural steel instead of post tensioned concrete. Structural steel offers advantages over concrete. The steel layout chosen is a beam and girder system with a metal deck and concrete poured onto the decking. The decking provides a mold for the concrete, and shear studs are welded to the deck to facilitate composite action. The beams and girders were both wide flanged, also referred to as W shape beams.

The steel scheme started like its concrete counterpart, with loads being calculated. Due to the smaller depth of the concrete, the dead load is much less for the steel scheme. The Scheme consists of 30 foot beams and 31.5 foot girders on the outer spans and 30 foot girders in the inner span. The beams were spaced at 10 foot intervals.

Figure 6: Beam and girder layout for the 5th and 6th floor respectfully. All beams are 30 feet long and are connected to girders on both ends. The numbers in parenthesis on the beams are the number of shear studs needed. Steel decking and 5 inch concrete slabs are to be placed atop this girder and beam layout.

The first calculation was a plastic capacity calculation for the beam. The ultimate moment due to loading was found initially. Then the moment was divided by ϕf_y to find the value of Z_x . Once Z_x was found, a trial size for the beams could be selected. This selection was from table 3.2 from the AISC steel

construction manual. Once the trial beam size was found, a new dead load was calculated taking selfweight of the beam into account. The beam choice was checked by comparing the new allowable moment to the new ultimate moment due to loading. This process needed to be repeated until the allowable moment was higher than the moment due to loading.

Once a beam size is selected, it needs to be checked against deflection. The deflection of a beam when only dead load is considered has to be below length over 360, whichever is smaller. This ensures the flooring won't be so slanted it causes issues. In order to calculate deflection, the moment of inertia I_x needed to be obtained from table 3.3 of the AISC manual. The beam chosen for the design scheme was found to be sufficient, but if it was not a new beam would be selected for a higher moment of inertia from table 3.3. After that deflection case was tested, a second case involving full dead load and half live load was tested. Since this had a higher load, the allowable deflections were higher as well. The new limits used were length divided by 240 or 1.5 inches, which ever was smaller.

After the beam was checked for deflection limit state, it was time to find a girder size. The method for finding a girder size is the same as for beams. The girders will naturally be larger than beams, because girders have to support the flooring and the beams, as well as self-weight. The final beam and girder sizings for the 6th and 5th floors can be found in the table below.

Once the girder and beam sizes were established, the decking and concrete flooring were designed. The depth of the concrete slab was designed as 5 inches. The concrete was 4000 psi concrete. The shear studs along the decking were ³/₄ inch diameter studs.

A composite beam was calculated next. In order to find a new beam, the value of B_e was found. B_e is twice the value of the lesser of length over 8 and beam spacing over two. In this case B_e was found to be 90 inches. The next value found was Y2. Y2 is the thickness of the concrete minus a/2. With these values, a new beam can be chosen from table 3-19 of the AISC steel manual. Once a new beam is

33

chosen, a and Y2 need to be recalculated. The shear capacity $\sum Q_n$ was then found for the beam, and with the shear capacity the moment capacity could be calculated. When compared to the moment load, it was found to be inadequate, so a new beam had to be chosen. The new beam was chosen for its $\sum Q_n$ value, so it was sufficient.

Figure 7: Steel decking before a concrete pour⁵

After these calculations the deflection of the new beam needed to be checked. The process was the same as detailed earlier. Once the deflection is checked the shear studs needed to be calculated. The capacity per stud was calculated. Once the limiting stud capacity was found, the shear capacity was divided by the capacity per stud to find the number of studs needed.

⁵ "Construction Work: DECKING INSTALLATION." *Construction Work*. Web. 18 Apr. 2012. http://www.teachconstruction.org/2011/05/decking-instalation.html.

The design needed to be checked for unshored construction loads next. This check makes sure the design won't be too weak to support the forces construction will put on it. The loads taken into account were the weight of wet concrete, and the beam weight and construction live load. The construction live load was assumed to be roughly 20 psf. A load and moment were calculated for these weights, and they were tested against the allowable moment for the beam found in table 3.2. Deflection during unshored construction was also calculated.

The next step in the process was to design for full composite. Composite is the term for the concrete slab and steel decking and beams working as one member. The principles behind can be compared to the principles behind the positioning of prestressing tendons. The steel is located on the bottom of the slab to handle tension forces, while the concrete handles compression forces. Full composite is typically less advantageous then its partial counterpart, as it is more cost effective than full composite, due to less materials and less welding. Partial composite is similar to full composite, but uses less shear studs to accomplish the same uses. Both full and partial composite is more cost effective than a non-composite design.

The first step in full composite calculations is calculating a new shear capacity ΣQ_n . The capacity per shear stud remains the same, so the number of studs does not change dramatically. In order to check if shear composite is possible, the value a needed to be calculated again. As long as "a " was not larger than the thickness of the concrete, full composite was possible.

The next step in the design was to check how much composite capacity was needed. This is checked by using table 3-19. This table shows the moment values at different levels of the partial neutral axis. The further down the steel the partial neutral axis is, the more steel is in tension. Once the partial neutral axis was located, a deflection check was performed. Once the deflection was found to be sufficient, the number of shear studs needed was calculated. The capacity per stud remained the same,

35

but the shear capacity $\sum Q_n$ was dramatically lower, allowing for fewer shear studs to be needed. The shear studs for the 6th floor, for example, went from 21 to 7 studs. Once the shear studs were found, the beam design was completed. The girders were designed for the decking slab next. The girders were designed as described previously.

Once the interior beams and girders were designed, spandrel beams and girders were designed. The spandrel beams and girders were designed separately, because they have higher loading due to the shear walls. The beams and girders were designed in the same way as the interior beams and girders, but they had half the tributary area and a much higher dead load. The final floor design layouts can be found in figure 6 above.
Results and Conclusions

The Massachusetts College of Pharmacy and Health Sciences peer review reviews a six story post tensioned concrete building currently being erected in Worcester, Massachusetts. Souza, True and Partners is the structural engineering firm responsible for the design of the building. The building was designed for office space, lecture halls, and laboratories. This post tensioned structure was reviewed for slab, column, and shear wall design. The design checked for both gravity and lateral loading. The loads were all supplied by the design plans. All designs were performed according to Load and resistance factor design, as well as the American Concrete Institute manual ACI 318 08, and American institute of steel construction CAPS manual.

The floor slabs were the first aspects reviewed. The 2nd through 5th floor slabs were uniform, and exposed to the same loading. The 6th floor had a higher live load and the first floor had higher loading as well. Due to this uniform loading, only the 6th and 5th floor slabs were reviewed. The slabs were found to be satisfactorily designed, and adequately resistant to both shear and moment.

The next aspect reviewed was the columns. These columns were comprised of reinforced concrete, as opposed to the post tensioned concrete used in other aspects of the building. The building only had 5 different configurations of columns, and only three were used frequently. One column type was used for interior columns, one for corner columns, and one for center exterior columns. The difference in columns can be attributed to a difference in the loading and tributary area. Though columns on the third floor had higher loads than columns on the fourth floor, the same sizes were used. This was mainly for ease of construction. Interaction diagrams were created for the columns.

The lateral loading for the building was handled by shear walls. These shear walls are effectively large cantilever beams, that take wind and earthquake loads with minimum displacement. These shear walls supply the rigidity for the structure.

An alternate design for the floor slabs using structural steel beams and girders was completed as well. The floor deck itself was a metal decking with a 5 inch thick concrete slab. The floor slab was checked for unshored construction, as well as full and partial composite action. The slab design was checked for deflection as well. The dead loading for this scheme was much lower than the post tensioned slab. This is due to the high weight of concrete as opposed to steel.

The superstructure peer review of MCPHS was a culmination of the design courses taken over the past few years. The building materials used included post tensioned concrete, reinforced concrete, and steel design. All aspects that were reviewed were found to be satisfactory. In some cases, such as the columns in the upper levels, the building is over designed for ease of construction and repeatability. Though not all aspects were checked, a sufficient amount of the design was investigated to assume that the engineer of record was competent and correct in his design process.

Appendix

2nd Floor slab design excel sheet

2nd floor Fl	oor slab.					
Givens						
Concrete			Steel			Dimensions
F'c	5000	PSI	As	0.153 28500000	in^2	93 X 90
F'ci	3333.33	PSI	Es, Eps	0	Psi	
Fy	60000	PSI	Fpu	270000		
Lump Sum I	Losses	33000	Psi			
Friction is n	ot included					
Assume a y	of roughly 9 ir	iches, becau	use it cannot	be found wi	thout kno K=	wing slab thickness.
x=30	alpha=8y/x		2.4	mu= .1	.00125	
prestress lo	ss due to fricti	on=	52447.5			
total prestro	ess loss=	85448				
fps=.7*fpu		189000	Psi			
Fpe		103553	Psi			
Fру		240000	Psi			
Max fc due	to stresses=.4	5f'c	2250			
Trial slab th	ickness					
h= (height X	(12)/2*(1/45)					
h=	8	Inches				
Ac=	96	in^2	per square	foot		
Loads						
Corridors			80	psf		
Elevator Ma	achine Rooms		150	psf		
Ceilings			5	psf		
DLS						
Service			10	psf		
Ceilings			5	psf		
Self-Weight			96.66	psf		
Total DL	111.66					
Total LL	85					
Total	196.66					

Load

Wu=1.2dead + 1.6 live Wu= 270 Psf Ln= 31 L (e-w)= 30 Ft Pe per strand= 15843 lb Assume a Fc of 170 unit F= 16320 Pe per strand= 15843 Fe=F*L 489600 Number of strands = Fe/Pe 30.9022 31 strands Pe=Fe=Pe* number of strands 491149 F=Fe*L 16371.65 fc=F/Ac 170.54 fc allow= 141.42 Definitely not acceptable fc, so a new thickness needs to be picked. Try a thickness of 10" new h= 10 Inches Ac= 120 in^2 New Fc= 136.43 Assumed starting tendon depth 5 in. Assumed midpoint tendon depth 9 in. Assumed tendon highpoint depth 1 in. a1=a3= 6 outside spans Wbal=8Fa/Ln^2 68.14 psf wnet=Ww-Wbal 128.52 Interior Span a2=low point - high point 8 inches Wbal=8Fa/L^2 97.02 wnet=Ww-Wbal 99.65 Equivalent frame characteristics Ks=4Eclc/(Ln-2h) where Ln=lu= 180 all columns are 24x24 c1=c2= 24 inches lc= 27648 Assume ec/es=1 total Kc=4Eclc/(Ln-2h) 691.2

From equat	ion 9.10b C=(1	63x/y)(x^3	Зу/З			
x=	10	Inches	y=	24	inches	
C=	5900					
torsional st	iffness of the s	ab at the co	olumn line			
Kt=sum(9Ec	csC/L2(1-C2/c1))				
Kt=	2177.02					
Kec=(1/Kc+	1/Kt)^-1					
Kec=	524.63					
Slab stiffne	SS					
Ks=4EcIc/(L	n-C1/2)	for interio	r Columns			
307.2						
Ks=4Eclc/(L	n-C1/2)	For exterio	or Columns			
317.7931						
DF for a = K	s/sum(K)					
DF for oute	r joint A slab		0.36			
DF for left j	oint B slab		0.267			
DF for right	joint B slab		0.267			
DF for left j	oint C slab		0.270			
Work Load	Check					
Fixed end n	noment for ext	erior spans				
FEM=WL^2	/12	•	Length for	exterior spar	IS	31.5
FEM=	127526.4		C	·		
Fixed end n	noment for inte	erior spans				
FEM=WL^2	/12	·	Length for	interior spar	IS	30
FEM=	89684.5		-	-		
COF =	0.5					
	A	E	3	С		
		0.26721	0.26721		0.26721	
DF	0.364662	8	8	0.269703	8	
COF	0.5	0.5	0.5	0.5	0.5	
		127.526	89.6845		127.526	
X10^3 in-	127.526392	4	3	89.684532	4	
lb						
DICT	46 5040204	34.0773	22.0652	24 400405	34.0773	
DIST	46.5040294	2 22 25 20	23.9653	24.188185	2	
0	17 0386621	25.2520	12.0940 Q	11 982652		
	17.0500021	6.21335	3.23175	11.302032		
DIST	6.21335261	3	7	3.231757		
Final		178.642	04.017			
	-70.197053	Δ	-81.0451			

*10^3 per

ft

Vc is equal to the lowest value of the next three equations

			according to figure
Vc=(2+4/beta)sqrt(f'c)bod	beta=	1	9-11
Vc=	bo=30	30	
Vc=(alphasD/bo +2)sqrt(f'c)bod	d=	5	
Vc=	alpha=	40	interior
Vc=4sqrt(f'c)bod		30	exterior
Vc= 42426.4			

Tensile stre	ngth at support	t			
Mnet=N	/Inet-Vc/3		b=	12	inches
Mnet=	56054.9175		height=	10	inches
S=bh^2/6	S=	200			
ft=-P/A-M/s	S=	143.84			
Allowable f	t=6sqrt(f'c)	424.26			
Tensile Stre	ngth at midpoi	nt			
Mnet,max= 53481	WL^2/8-FEM				
midspan					
ft	130.97				
Design Mor	nents Mu				
FEMbal=Wl	oal*L^2/12				
Span AB or	CD				
FEMbal=	67616.1				
Span BC					
FEMbal=	87315.47				
				_	
	A	E 26724	3	C	0.06704
DE	0 264662	0.26721	0.26721	0 260702	0.26/21
	0.304002	о О Г	о О Г	0.269703	ہ م
COF	0.5	0.5	0.5 87 2157	0.5	0.5
FEM X10^3 in- lb	67.6161081	1	7	87.315468	1

		18.0682	23.3322		18.0682
DIST	24.6570253	3	5	23.549241	3
		12.3285	11.7746		
CO	9.03411441	1	2	11.666124	

		3.29439	3.14638		
DIST Final	3.29439824	8	8	3.1463884	
Mnet *10^3 per ft	-37.219367	94.7184 5	-78.9042		
Span AB					
e=	0				
Mbal=	37219.36				
Ms=	37219.36				
FEMu=WuL	^2/12				
FEMu=	267907.5				
Span BA					
e=	4				
M1=PeE					
M1=	65486.6				
Mbal=	94718.45				
Ms=	29231.85				
Span BC					
e=	4				
M1=	65486.6				
Mbal=	78904.2				
Ms=	13417.6				
FEMu=	243000				
	А	E	3	C	
		0.26721	0.26721		0.26721
DF	0.364662	8	8	0.269703	8
COF	0.5	0.5	0.5	0.5	0.5
FEM	267 0075	267.907	2.42	242	267.907
X10^3 in-	267.9075	5	243	243	5
lb					
		71 5906	64 0220		71 5906
DIST	97 6956852	71.3890 6	04.9339	65 537822	۲۱.5090 ۲
	37103300032	48.8478	32.7689	001007022	U
со	35.7948287	4	1	32.466965	
		13.0530	8.75643		
DIST	13.0530139	1	7	8.7564369	
Final Mu *10^3 per ft	-147.47	375.292	-219.591		

Vab=WuL/2-(Mu@b-Mu@a)/2 4252.5 -602.7 Vab= 3649.79633 24 c= Centerline Mu=Mu-Ms 110250.6 Req. column face Mu 81052.26 90058.0697 reg. Mn= Joint B (BA) moment Vba= 4855.20367 24 c= 346060.14 Mu= Required column face Mu 307218.5 1 Required Mn 341353.9 Joint B (BC) Vbc=w*24/2 3240 Mu= 206173.79 180253.79 Reg. Mu Req. Mn 200281.99 Factored Shear Ms ab 3649.79 37219.3 4855.20367 ba 29231.8 3240 bc 13417.6 Maximum positive moment Span AB x=Vab/Wu 12 ft. Max positive Mu=VabX-WuX^2/2-Mu-+ms Mu= 66709.45 74121.6 Req. positive Mn= Maximum positive moment span BC Mu=Vbc*Ln/2-(Wu-L/2)*(L/4)Mu= 317700 Mn= 353000

Flexural Strength Mn As=.00075HLn 2.79 inches ^2 try #4 bars area= 0.196 14.21 needs 15 bars at .3 inches a piece As= 2.95 30 Ft panel 30 ft As per foot= 0.098 in^2 Pp=Aps/bd 0.00146 fps=Fpe+F'c/300Pp+10,000psi 124937.7 Fps=fps*Aps*strand number/L 19752.65 Fs=60,000*As/ft 5890.5 total force F/ft= 25643 a=AsFy+ApsFps/(.85*f'c*b) 0.502806 6 inches Bars and tendons should be placed at 12'-1', or 11 inch depth 11 inches available Mn= 275627 required Mn= 200282 so no more moment strength is needed a=Apsfps/.85f'cb 0.11 available -Mn=Apsfps(d-a/2) negative Mn= 216138.4 This is less than the required positive Mn, so it is unsatisfactory try adding a #5 bar As= 0.31 Asfy= 18407.8 a= 0.75 available +Mn 405487.9 satisfactory Add a number 5 bar at the bottom fiber, and number 4 bars at the top fiber Width of column strip 180 inches assume 70% of strands are banded

.7*31	21.7	
22 banded, 9 in the	middle strip	
22	9	
column strip momer	0.71	
Middle strip momen	0.29	
Max total -M at colu	178642	

Max total +M at midspan=

73080.9

6th floor slab design excel spreadsheet

6th floor Floor sla	ab.							
Givens								
Concrete			Steel			Dimensions		
F'c	5000	PSI	As	0.153	in^2	93	Х	90
F'ci	3333.3	PSI	Es, Eps	285000000	Psi			
Fy	60000	PSI	Fpu	270000				
Lump Sum Losses	5	33000	Psi					
Friction is not inc	luded							
Assume a y of rou	ughly 9 in	iches, becau	ise it cannot	be found wit	hout know K=	ving slab thicknes	SS.	
x=30 alph	a=8y/x		2.4	mu= .1	.00125			
prestress loss due	e to fricti	on=	52447.5					
total prestress los	ss=	85448						
fps=.7*fpu		189000	Psi					
Fpe		103553	Psi					
Fpy		240000	Psi					
Max fc due to str	esses=.45	ōf'c	2250					
Trial slab thicknes	SS							
h= (height X 12)/2	2*(1/45)		Use 93, be	cause it will g	ive the hig	her, and therefo	ore more	
h=	8	Inches	likely value	2				
Ac=	96	in^2	per square	e foot				
Loads								
6th floor live load	ł		100	psf				
Elevator Machine	Rooms		150	psf				
Ceilings			5	psf				
DLS								
Service			10	psf				
Ceilings			5	psf				
Self-Weight			96.6	psf				
Total DL	111.6							
Total LL	105							
Total Load	216.6							
Wu=1.2dead + 1.	6 live							
Wu=	302	Psf						
Ln=	31							

30 Ft L (e-w)= Pe per strand= 15843.53 lb Assume a Fc of 170 unit F= 16320 Pe per strand= 15843.53 Fe=F*L 489600 Number of strands = Fe/Pe 30.9 31 strands Pe=Fe=Pe* number of strands 491149.5 16371.65 F=Fe*L fc=F/Ac 170.54 fc allow= 141.42 Definitely not acceptable fc, so a new thickness needs to be picked. Try a thickness of 10" new h= 12 Inches Ac= 144 in^2 New Fc= 113.69 Assumed starting tendon depth 6 in. Assumed midpoint tendon depth 11 in. Assumed tendon highpoint depth 1 in. a1=a3= 7.5 outside spans Wbal=8Fa/Ln^2 85.18 psf wnet=Ww-Wbal 131.49 **Interior Span** a2=low point - high point 10 inches Wbal=8Fa/L^2 113.57 wnet=Ww-Wbal 103.09 Equivalent frame characteristics where Ln=lu= 180 Is=bh^3 Ks=4Eclc/(Ln-2h)51840 inches all columns are 24x24 c1=c2= 24 inches Ic= 27648 Assume ec/es=1 total Kc=4Eclc/(Ln-2h) 708.92308 From equation 9.10b $C=(1-.63x/y)(x^3y/3)$ x= 12 Inches 24 inches y= C= 9469.44 torsional stiffness of the slab at the column line Kt=sum(9EcsC/L2(1-C2/c1))

KL=	3494.1						
Kec=(1/Kc+	1/Kt)^-1						
Kec=	589.35						
Slab stiffnes	s						
Ks=4EcIc/(L	n-C1/2)	for interio	r Columns				
307.2							
Ks=4EcIc/(L	n-C1/2)	For exterio	or Columns				
317.7931							
DF for a = K	s/sum(K)						
DF for oute	r joint A slab		0.33				
DF for left j	oint B slab		0.25				
DF for right	joint B slab		0.25				
FDF for left	joint C slab		0.25				
Work Load	Check						
Fixed end m	noment for ext	erior spans					
FEM=WL^2	/12		Length for	exterior span	s	31.5	
FEM=	130467.36						
Fixed end m	noment for inte	erior spans					
FEM=WL^2	/12		Length for	interior span	S	30	
FEM=	92783.66						
COF =	0.5						
	A	I	3	C			
DF	A 0.3386459	ا 0.252976	3 0.252976	C 0.2552027	0.252976		
DF COF	A 0.3386459 0.5	ا 0.252976 0.5	3 0.252976 0.5	C 0.2552027 0.5	0.252976 0.5		
DF COF FEM	A 0.3386459 0.5 130.467365	0.252976 0.5 130.4674	3 0.252976 0.5 92.78366	C 0.2552027 0.5 92.783661	0.252976 0.5 130.4674		
DF COF FEM X10^3 in-	A 0.3386459 0.5 130.467365	ا 0.252976 0.5 130.4674	3 0.252976 0.5 92.78366	C 0.2552027 0.5 92.783661	0.252976 0.5 130.4674		
DF COF FEM X10^3 in- Ib	A 0.3386459 0.5 130.467365	ا 0.252976 0.5 130.4674	3 0.252976 0.5 92.78366	C 0.2552027 0.5 92.783661	0.252976 0.5 130.4674		
DF COF FEM X10^3 in- Ib DIST	A 0.3386459 0.5 130.467365 44.1822382	0.252976 0.5 130.4674 33.00517	3 0.252976 0.5 92.78366 23.47208	C 0.2552027 0.5 92.783661 23.678639	0.252976 0.5 130.4674 33.00517		
DF COF FEM X10^3 in- Ib DIST CO	A 0.3386459 0.5 130.467365 44.1822382 16.502586	0.252976 0.5 130.4674 33.00517 22.09112	3 0.252976 0.5 92.78366 23.47208 11.83932	C 0.2552027 0.5 92.783661 23.678639 11.736041	0.252976 0.5 130.4674 33.00517		
DF COF FEM X10^3 in- Ib DIST CO DIST	A 0.3386459 0.5 130.467365 44.1822382 16.502586 5.58853309	0.252976 0.5 130.4674 33.00517 22.09112 5.588533	3 0.252976 0.5 92.78366 23.47208 11.83932 2.995069	C 0.2552027 0.5 92.783661 23.678639 11.736041 2.9950691	0.252976 0.5 130.4674 33.00517		
DF COF FEM X10^3 in- Ib DIST CO DIST Final	A 0.3386459 0.5 130.467365 44.1822382 16.502586 5.58853309	0.252976 0.5 130.4674 33.00517 22.09112 5.588533	3 0.252976 0.5 92.78366 23.47208 11.83932 2.995069	C 0.2552027 0.5 92.783661 23.678639 11.736041 2.9950691	0.252976 0.5 130.4674 33.00517		
DF COF FEM X10^3 in- Ib DIST CO DIST Final Mnet	A 0.3386459 0.5 130.467365 44.1822382 16.502586 5.58853309 -75.371074	0.252976 0.5 130.4674 33.00517 22.09112 5.588533	 3 0.252976 0.5 92.78366 23.47208 11.83932 2.995069 -84.146 	C 0.2552027 0.5 92.783661 23.678639 11.736041 2.9950691	0.252976 0.5 130.4674 33.00517		
DF COF FEM X10^3 in- Ib DIST CO DIST Final Mnet *10^3 per	A 0.3386459 0.5 130.467365 44.1822382 16.502586 5.58853309 -75.371074	0.252976 0.5 130.4674 33.00517 22.09112 5.588533 179.9751	 3 0.252976 0.5 92.78366 23.47208 11.83932 2.995069 -84.146 	C 0.2552027 0.5 92.783661 23.678639 11.736041 2.9950691	0.252976 0.5 130.4674 33.00517		
DF COF FEM X10^3 in- Ib DIST CO DIST Final Mnet *10^3 per ft	A 0.3386459 0.5 130.467365 44.1822382 16.502586 5.58853309 -75.371074	0.252976 0.5 130.4674 33.00517 22.09112 5.588533 179.9751	 3 0.252976 0.5 92.78366 23.47208 11.83932 2.995069 -84.146 	C 0.2552027 0.5 92.783661 23.678639 11.736041 2.9950691	0.252976 0.5 130.4674 33.00517		
DF COF FEM X10^3 in- Ib DIST CO DIST Final Mnet *10^3 per ft Vc is equal to	A 0.3386459 0.5 130.467365 44.1822382 16.502586 5.58853309 -75.371074 to the lowest v	0.252976 0.5 130.4674 33.00517 22.09112 5.588533 179.9751 value of the	3 0.252976 0.5 92.78366 23.47208 11.83932 2.995069 -84.146	C 0.2552027 0.5 92.783661 23.678639 11.736041 2.9950691	0.252976 0.5 130.4674 33.00517		
DF COF FEM X10^3 in- Ib DIST CO DIST Final Mnet *10^3 per ft Vc is equal f	A 0.3386459 0.5 130.467365 44.1822382 16.502586 5.58853309 -75.371074 to the lowest v ta)sqrt(f'c)bod	0.252976 0.5 130.4674 33.00517 22.09112 5.588533 179.9751 value of the	3 0.252976 0.5 92.78366 23.47208 11.83932 2.995069 -84.146	C 0.2552027 0.5 92.783661 23.678639 11.736041 2.9950691	0.252976 0.5 130.4674 33.00517 beta=	1	according to figure 9-11
DF COF FEM X10^3 in- Ib DIST CO DIST Final Mnet *10^3 per ft Vc is equal to Vc=(2+4/bet Vc=	A 0.3386459 0.5 130.467365 44.1822382 16.502586 5.58853309 -75.371074 to the lowest v ta)sqrt(f'c)bod	0.252976 0.5 130.4674 33.00517 22.09112 5.588533 179.9751 value of the	3 0.252976 0.5 92.78366 23.47208 11.83932 2.995069 -84.146	C 0.2552027 0.5 92.783661 23.678639 11.736041 2.9950691	0.252976 0.5 130.4674 33.00517 beta= bo=30	1 30	according to figure 9-11
DF COF FEM X10^3 in- Ib DIST CO DIST Final Mnet *10^3 per ft Vc is equal to Vc (2+4/be Vc= Vc=(alphas)	A 0.3386459 0.5 130.467365 44.1822382 16.502586 5.58853309 -75.371074 to the lowest v ta)sqrt(f'c)bod	().252976 0.5 130.4674 33.00517 22.09112 5.588533 179.9751 value of the	3 0.252976 0.5 92.78366 23.47208 11.83932 2.995069 -84.146	C 0.2552027 0.5 92.783661 23.678639 11.736041 2.9950691	0.252976 0.5 130.4674 33.00517 33.00517 beta= bo=30 d=	1 30 6	according to figure 9-11
DF COF FEM X10^3 in- Ib DIST CO DIST Final Mnet *10^3 per ft Vc is equal to Vc=(2+4/bet Vc= Vc=(alphast Vc=	A 0.3386459 0.5 130.467365 44.1822382 16.502586 5.58853309 -75.371074 to the lowest v ta)sqrt(f'c)bod	4 0.252976 0.5 130.4674 33.00517 22.09112 5.588533 179.9751 value of the c)bod	3 0.252976 0.5 92.78366 23.47208 11.83932 2.995069 -84.146 next three et	C 0.2552027 0.5 92.783661 23.678639 11.736041 2.9950691	0.252976 0.5 130.4674 33.00517 33.00517 beta= bo=30 d= alpha=	1 30 6 40	according to figure 9-11 interior
DF COF FEM X10^3 in- Ib DIST CO DIST Final Mnet *10^3 per ft Vc is equal to Vc=(2+4/be) Vc= Vc=(alphas) Vc= Vc=4sqrt(for	A 0.3386459 0.5 130.467365 44.1822382 16.502586 5.58853309 -75.371074 to the lowest v ta)sqrt(f'c)bod D/bo +2)sqrt(f'c)	0.252976 0.5 130.4674 33.00517 22.09112 5.588533 179.9751 value of the c)bod	3 0.252976 0.5 92.78366 23.47208 11.83932 2.995069 -84.146	C 0.2552027 0.5 92.783661 23.678639 11.736041 2.9950691	0.252976 0.5 130.4674 33.00517 33.00517 beta= bo=30 d= alpha=	1 30 6 40 30	according to figure 9-11 interior exterior
DF COF FEM X10^3 in- Ib DIST CO DIST Final Mnet *10^3 per ft Vc is equal to Vc=(2+4/bet Vc= Vc=(alphast Vc= Vc=4sqrt(f'or Vc=	A 0.3386459 0.5 130.467365 44.1822382 16.502586 5.58853309 -75.371074 to the lowest v ta)sqrt(f'c)bod D/bo +2)sqrt(f'v 5)bod 50911.69	4 0.252976 0.5 130.4674 33.00517 22.09112 5.588533 179.9751 value of the c)bod	3 0.252976 0.5 92.78366 23.47208 11.83932 2.995069 -84.146	C 0.2552027 0.5 92.783661 23.678639 11.736041 2.9950691	0.252976 0.5 130.4674 33.00517 33.00517 beta= bo=30 d= alpha=	1 30 6 40 30	according to figure 9-11 interior exterior

Mnet=Mnet-Vc/3 b= 12 inches Mnet= 58400.51 height= 12 inches S=bh^2/6 S= 288 12 inches Allowable ft=6sqrt(f'c) 424.26 128 12 Tensile Strength at midpoint Mnet,max=WL^2/8-FEM 55029.524 14 midspan 77.38 Design Moments Mu FEMbal=Wbal*L^2/12 14 14 Span AB or CD FEMbal= 84520.1351 14 14 14 Span BC FEMbal= 102216.339 14 12 12 12 PF 0.3386459 0.252976 0.252976
Mnet= 58400.51 height= 12 inches S=bh^2/6 S= 288 (12) (12) (12) S=bh^2/6 S= 288 (12) (12) (12) Allowable ft=6sqrt(f'c) 424.26 (12) (12) (12) Tensile Strength at midpoint Mnet,max=WL^2/8-FEM (12) (12) (12) S5029.524 midspan (12) (12) (12) (12) midspan ft 77.38 (12)
S=bh^2/6 S= 288 ft=-P/A-M/s= 89.09 Allowable ft=6sqrt(f'c) 424.26 Tensile Strength at midpoint Mnet,max=WL^2/8-FEM 55029.524 midspan ft 77.38 Design Moments Mu FEMbal=Wbal*L^2/12 Span AB or CD FEMbal= 84520.1351 Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.2529207 0.252976
ft=-P/A-M/s= 89.09 Allowable ft=6sqrt(f'c) 424.26 Tensile Strength at midpoint Mnet,max=WL^2/8-FEM 55029.524 midspan ft 77.38 Design Moments Mu FEMbal=Wbal*L^2/12 Span AB or CD FEMbal= 84520.1351 Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.252976 0.2552027 0.252976
Allowable ft=6sqrt(f'c) 424.26 Tensile Strength at midpoint Mnet,max=WL^2/8-FEM 55029.524 midspan ft 77.38 Design Moments Mu FEMbal=Wbal*L^2/12 Span AB or CD FEMbal= 84520.1351 Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.252976 0.252027 0.252976
Tensile Strength at midpointMnet,max=WL^2/8-FEM 55029.524 midspanft77.38Design Moments MuFEMbal=Wbal*L^2/12Span AB or CDFEMbal=84520.1351Span BCFEMbal=102216.339ABCDF0.33864590.2529760.2529760.2529760.252976C
Mnet,max=WL^2/8-FEM 55029.524 midspan ft 77.38 Design Moments Mu FEMbal=Wbal*L^2/12 Span AB or CD FEMbal= 84520.1351 Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.252976 0.2552027 0.252976 CO 0 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5
55029.524 midspan ft 77.38 Design Moments Mu FEMbal=Wbal*L^2/12 Span AB or CD FEMbal= 84520.1351 Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.252976 0.252027 0.252976
midspan 77.38 Design Moments Mu FEMbal=Wbal*L^2/12 Span AB or CD EMbal= 84520.1351 Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.252976 0.252976
ft 77.38 Design Moments Mu FEMbal=Wbal*L^2/12 Span AB or CD FEMbal= 84520.1351 Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.252976 0.2552027 0.252976 CO5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.
Design Moments Mu FEMbal=Wbal*L^2/12 Span AB or CD FEMbal= 84520.1351 Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.252976 0.2552027 0.252976 COE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Design Moments Mu FEMbal=Wbal*L^2/12 Span AB or CD FEMbal= 84520.1351 Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.252976 0.2552027 0.252976 COE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
FEMbal=Wbal*L^2/12 Span AB or CD FEMbal= 84520.1351 Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.252976 0.2552027 0.252976
FEMbal=Wbal*L^2/12 Span AB or CD FEMbal= 84520.1351 Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.252976 0.2552027 0.252976 COE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Span AB or CD FEMbal= 84520.1351 Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.252976 0.252976 COF 0.5 0.5 0.5 0.5
FEMbal= 84520.1351 Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.252976 0.2552027 0.252976 COE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Span BC ID2216.339 A B C DF 0.3386459 0.252976 0.252976 0.252976 COF 0.5 0.5 0.5 0.5
Span BC FEMbal= 102216.339 A B C DF 0.3386459 0.252976 0.252976 0.2552027 0.252976 COF 0.5 0.5 0.5 0.5 0.5
A B C DF 0.3386459 0.252976 0.252976 0.2552027 0.252976
A B C DF 0.3386459 0.252976 0.252976 0.2552027 0.252976
DF 0.3386459 0.252976 0.252976 0.2552027 0.252976
LUF U.S U.S U.S U.S U.S
FEM 84.5201351 84.52014 102.2163 102.21634 84.52014
X10^3 in-
lb
DIST 28.6223972 21.3816 25.85833 26.085883 21.3816
CO 10.6908023 14.3112 13.04294 12.929164
DIST 3.62039635 3.620396 3.299557 3.2995572
Final
Mnet -48.827332 116.5925 -92.7005
*10^3 per
ft
Span AB
e= 0
Mbal= 48827.33
Ms= 48827.33
FEMu=WuL^2/12
FEMu= 299659.5
Span BA
e= 5

M1=PeE						
M1=	81858.25					
Mbal=	116592.54					
Ms=	34734.29					
Span BC						
e=	5					
M1=	81858.2513					
Mbal=	92700.51					
Ms=	10842.2587					
FEMu=	271800					
А		E	3	С		
DF	0.3386459	0.252976	0.252976	0.2552027	0.252976	
COF	0.5	0.5	0.5	0.5	0.5	
FEM	299.6595	299.6595	271.8	271.8	299.6595	
X10^3 in-						
lb						
DIST	101.478461	75.8068	68.759	69.364087	75.8068	
СО	37.9033996	50.73923	34.68204	34.379501		
DIST	12.8358309	12.83583	8.773741	8.7737406		
Final Mu *10^3 per ft	-173.11347	413.3697	-246.497			

Vab=WuL/2-(Mu@b-Mu@a)/2 4756.5 -635.6 Vab= 4120.9 c= 24 Centerline Mu=Mu-Ms 124286.14 Req. column face Mu 91318.926 req. Mn= 101465.473 Joint B (BA) moment Vba= 5392.1 24 c= Mu= 378635.4 Required column face Mu 335498.62 Required Mn 372776.24

Joint B (BC) Vbc=w*24/2 3624 Mu= 235654.524 Req. Mu 206662.524 Req. Mn 229625.026 **Factored Shear** Ms 4120.90151 48827.33 ab ba 5392.09849 34734.29 bc 3624 10842.26 Maximum positive moment Span AB x=Vab/Wu 12 ft. Max positive Mu=VabX-WuX^2/2-Mu-+ms 82505.0366 Mu= Req. positive Mn= 91672.26 Maximum positive moment span BC Mu=Vbc*Ln/2-(Wu-L/2)*(L/4)Mu= 359820 Mn= 399800 Flexural Strength Mn As=.00075HLn 3.348 inches ^2 try #4 0.196 bars area= 17.051224 needs 18 bars at .3 inches a piece As= 3.53 30 Ft panel 30 ft 0.118 in^2 As per foot= Pp=Aps/bd 0.0012 fps=Fpe+F'c/300Pp+10,000psi 127467.74 Fps=fps*Aps*strand number/L 20152.65 Fs=60,000*As/ft 7068.5835 total force F/ft= 27221.23 a=AsFy+ApsFps/(.85*f'c*b) 0.53 inches

Bars and tendons should be placed at 12'-1', or 11 inch depth available Mn= 292168.9 required Mn= 229625 so no more moment strength is needed

a=Apsfps/.85f'cb 0.14 available -Mn=Apsfps(d-a/2) negative Mn= 220282.58 This is less than the required positive Mn, so it is unsatisfactory try adding a #5 bar As= 0.31 Asfy= 18407.7 0.75608666 a= available +Mn 409587.11 satisfactory

11 inches

Add a number 5 bar at the bottom fiber, and number 4 bars at the top fiber Width of column strip 180 inches assume 70% of strands are banded 53114.29 19121.14 .7*31 21.7 22 banded, 9 in the middle strip 22 9 column strip moment factor = 0.709677 Middle strip moment factor= 0.290323 Max total -M at column face B= 179975.1 Max total +M at midspan= 73626.19

	Second Floor	Interior c	olumn	Excel	Spreadshee	t
--	--------------	------------	-------	-------	-------------------	---

Column De	sign		2nd floor interi	or				
length	1	.0.5	Ft					
f'c	5	000	psi(Assumed)					
				As		0.153	in^2	Phi=
F'ci	3333.	333	PSI	Es, Eps		2.85E+08	Psi	alpha=
Fy	60	000	PSI	Fpu		270000		pg=
fps=.7*fpu			189000	Psi				beta=
Effective ar	ea of s	uppo	ort					
31 ft by 30	ft		930	ft^2				
Roof load=			466.3	psf				
6th floor lo	ad=		358	psf				
6th floor co	olumn	weigh	nt=					
			6300	lbs				
5th floor lo	ad=		296	psf				
Column we	ight=		6300	lbs				
4th floor lo	ad=		296	psf				
Column we	ight=		6300	lbs				
	-							
3rd floor lo	ad=		296	psf				
Column we	ight=		6300	lbs				
	0							
total Pu=			1617639	lbs				
			1617.6	kips				
Trial size				·				
Ag=Pu/Φ*α	x*(.85f	'c+pg	;(Fy85f'c)					
-	-							
Ag=	525	.26	in^2		22.9	576		
assume a tr	rial size	e of 24	4 X 24, or 576 in	^2				
Ag=	!	576	in^2					
trial h=		24						
Short or sle	nder							
l/h=	5	.25						
short colum	าท							
assume a fi	xed fix	ed co	olumn, so K=1.0					
			> story height,	so slende	erness can	be neglecte	ed. (according to	PDC
12h=		288	handout)			-	-	

As= pg*area of the column 17.28 in^2 1.44 diameter of steel= 1.41 Nominal Area= 1.56 12 #11 bars use As= 18.72 Check using $\Phi Pn=.8*\Phi[.85*f'c(Ag-Ast)+fyAst]$.8*.65*(.85*5000*(576-18.72)+(60*18.72)) ΦPn= 1815.6 Kips 1617.6 so the section checks > use #4 lateral ties. diameter ties= 0.5 in 16 long. Diameters 22.56 48 tie bar diameters 24 Least Column dimension 25 tie spacing cannot exceed 22.56 in. **Clear spacing** 7.885 use cross ties, because spacing is greater than 6 inches P-M diagrams (Fs=Fy) assume εu= 0.003 $\epsilon y = Fu/Es =$ 0.0021053 d=h-cover-diameter of tie-1/2 diameter of reinforcing bar d'= 22.795 In Cb= 13.395 In depth a=.85*Cb 11.4 in f's= εu*Es(Cb-d')/Cb 77.8 60 ksi ≤ C=.85f'c*a*h 1161347 lbs As=4 1161.347 kips A's=4 Pn=.85*f'c*a*b+AsFs-A'sF's Pn= 1161.347 $Mn=Pn^{e}=.85^{f}c^{a}b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2)$ 12506.36 kip inches

1042.196 kip feet e= 10.76 Inches

Choose a C smaller than the previous C Cb= 5 In depth a=.85*Cb 4.25 in f's= εu*Es(Cb-d')/Cb 65 ≤ 60 ksi C=.85f'c*a*h 94828.13 lbs As=3 94.82 kips A's=3 Pn=.85*f'c*a*b+AsFs-A'sF's Pn= 433.5 Mn=Pn*e=.85*f'c*a*b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2) 920.81 kip inches 76.73 kip feet 2.124135 Inches e=

Choose a C larger than the previous C

24 In

Cb=

depth a=.8	5*Cb	20.4	4	in
fs= εu*Es(α	d'-C)/C			
-4.29281				
4.292812				
f's= εu*Es(Cb-d')/Cb			
56.9875	≤	60	0	ksi
C=.85f'c*a	*h			
2080800	lbs			As=3
2080.8	kips			A's=3
Pn=.85*f'c	*a*b+AsFs-A	\'sF's		
Pn=	2291.579			
Mn=Pn*e=	.85*f'c*a*b	(H/2-a/2)+a'sf'	ˈs(h	/2-d')+AsFs(d-h/2)
6686.895	kip inches			
557.2413	kip feet			
e=	2.91803	Inches		

Set C to infinite and e=0 Fs = 60 ksi Pn=.85*f'c*a*b+AsFs Pn= 3168

Column De	esign	2nd floor e	xterior cer	itered column		
length	10.5	Ft				
f'c	5000	psi(Assume	d)			
			As	0.153	in^2	Phi=
	3333.33					
F'ci	3	PSI	Es, Eps	2.85E+08	Psi	alpha=
Fy	60000	PSI	Fpu	270000		pg=
fps=.7*fpu		189000	Psi			beta=
Effective a	rea of sup	port				
				assume a value of	500 pour	nds per linear foot per floor for
17.5 ft by 3	30 ft	525	ft^2	outside façade		· · · · · · · · · · · ·
Roof load=		466.3	psf	60000		(16.75)*500*4 floors
6th floor lo	oad=	358	psf			
6th floor c	olumn wei	ght=				
		2275	lbs			
5th floor lo	oad=	296	psf			
Column we	eight=	6300	lbs			
4th floor lo	oad=	296	psf			
Column we	eight=	6300	lbs			
3rd floor lo	oad=	296	psf			
Column we	eight=	6300	lbs			
	0					
total						
Pu=		980132.5	lbs			
		980.1325	kips			
Trial						
SIZE	*/ 050					
Ag=Pu/Φ*	α*(.85f'C+	pg(Fy85f°c)				
Ag=	318.3	in^2	17.8	324		
assume a t	rial size of	24 X 24, or 5	76 in^2			
Ag=	324	in^2				
trial h=	18					
Short or sle	ender					
l/h=	7					
short colur	nn					
assume a f	ixed fixed	column. so K	=1.0			

Second Floor Exterior Middle Column Excel Spreadsheet

12h= 216 > story height, so slenderness can be neglected. (according to PDC handout)

```
As= pg*area of the column
   9.72 in^2
   0.81
diameter of steel=
                         1.27
Nominal Area=
                         1.27
use
                 8 #10 bars
As=
             10.16
Check using ΦPn=.8*Φ[.85*f'c(Ag-Ast)+fyAst]
          .8*.65*(.85*5000*(576-18.72)+(60*18.72))
ΦPn=
            1010.5 Kips
                                               980.1325 so the section checks
                            >
use #3 lateral ties.
diameter ties=
                        0.375 in
16 long. Diameters
  20.32
48 tie bar
diameters
     18
Least Column dimension
     18
tie spacing cannot exceed 18 in.
```

Clear spacing 8.095 in

use cross ties, because spacing is greater than 6 inches

P-M diagr	ams	(Fs=Fy)
assume ɛ	u=	0.003
εy=Fu/E		0.002105
S	=	3

d=h-cover-diameter of tie-1/2 diameter of reinforcing bar

in

ksi

As=4

d'=	16.99	In
Cb=	9.98	In
		8.486242
depth a=.8	5*Cb	3
f's= εu*Es(Cb-	
d')/Cb		
25.4673	≤	60

C=.85f'c*a*h 649197 lbs 649.2 kips A's=4 Pn=.85*f'c*a*b+AsFs-A'sF's Pn= 545.6 Mn=Pn*e=.85*f'c*a*b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2) 3596.5 kip inches 299.7 kip feet e= 6.59 Inches

Choose a	C smaller th	han the previ	ious C	
Cb=	8	In		
depth a=.	85*Cb	6.8	in	
f's= εu*Es	(Cb-			
d')/Cb				
10.58	≤	60	ksi	
C=.85f'c*a	a*h			
202300	lbs		As=3	
202.3	kips		A's=3	
Pn=.85*f'	c*a*b+AsFs	-A'sF's		
Pn=	520.2			
Mn=Pn*e	=.85*f'c*a*	b(H/2-a/2)+	a'sf's(h/2-c	l')+AsFs(d-h/2)
2510.9	kip inches			
209.2	kip feet			
e=	4.82689	Inches		

Choose	a C	larger	than	the	previous C	
CHOUSE	u C	IUISCI	than	the	picvious c	

Cb= 18 In

```
depth a=.85*Cb
                         15.3 in
fs= εu*Es(d'-C)/C
-4.7975
 4.7975
f's= εu*Es(Cb-
d')/Cb
36.6333
                           60 ksi
                 ≤
C=.85f'c*a*h
 117045
      0 lbs
                               As=3
1170.45 kips
                               A's=3
Pn=.85*f'c*a*b+AsFs-A'sF's
          1265.95
Pn=
                 8
Mn=Pn*e=.85*f'c*a*b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2)
   2323 kip inches
```

193.5 kip feet e= 1.83492 Inches

Set C to infinite and e=0 Fs = 60 ksi Pn=.85*f'c*a*b+AsFs Pn= 1857

2nd Floor Edge

Column De	esign	2nd floor e	dge				
length	10.5	ft					
f'c	5000	psi(Assume	ed)				
			As	0.153	in^2	Phi=	0.65
	3333.33						
F'ci	3	PSI	Es, Eps	2.85E+08	Psi	alpha=	0.8
Fy	60000	PSI	Fpu	270000		pg=	0.03
fps=.7*fpu	l	189000	Psi			beta=	1.2
Effective a	rea of sup	port					
				assume a valu	e of 500 pounds	s per linear foot per floor	for
17.5 ft by	16.75 ft	293.125	ft^2	outside façade	5		
Roof load=	=	466.3	psf	68500		(17.5+16.75)*500*4 flo	ors
6th floor lo	oad=	358	psf				
6th floor c	olumn wei	ght=					
		2275	lbs				
5th floor lo	oad=	296	psf				
Column w	eight=	6300	lbs				
4th floor lo	oad=	296	psf				
Column w	eight=	6300	lbs				
3rd floor lo	oad=	296	psf				
Column w	eight=	6300	lbs				
totol							
totai Du-		E01E02 /	lbc				
ru–		591592.4	lus				
Trial size		591.5924	kips				
	a*/ 05flau						
Ag=Pu/Ψ [·]	α (.851 C+	pg(Fy851 C)					
	192.094						
Ag=	3	in^2	13.85	196			
assume a f	trial size of	24 X 24, or 5	576 in^2				
Ag=	196	in^2					
trial h=	14						
Short or sl	ender						
l/h=	9						
short colu	mn						

assume a fixed fixed column, so K=1.0

12h= 168 > story height, so slenderness can be neglected. (according to PDC handout)

As= pg*area of the column 5.88 in^2 0.49 diameter of steel= 1.41 Nominal Area= 1.56 4 #4 bars use As= 6.24 Check using ΦPn=.8*Φ[.85*f'c(Ag-Ast)+fyAst] .8*.65*(.85*5000*(576-18.72)+(60*18.72)) ΦPn= 614.056 Kips 591.5929 so the section checks > use #3 lateral ties. diameter ties= 0.375 in 16 long. Diameters 22.56 48 tie bar diameters 18 Least Column dimension 14 tie spacing cannot exceed 14 in.

Clear spacing 7.885 use cross ties, because spacing is greater than 6 inches

P-M diagrams	(Fs=Fy)
assume εu=	0.003
εy=Fu/E	0.002105
s =	3

d=h-cover-diameter of tie-1/2 diameter of reinforcing bar

d'=	12.92	in		
Cb=	7.59215	in		
		6.453340		
depth a=.	85*Cb	2	in	
f's= εu*Es	s(Cb-			
d')/Cb				
39.2	≤	60	ksi	
C=.85f'c*	a*h			

383973. 7 lbs As=4 383.973 A's=4 7 kips Pn=.85*f'c*a*b+AsFs-A'sF's 185.416 Pn= 5 $Mn=Pn^{e}=.85^{f}c^{a}b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2)$ 1304.31 4 kip inches 108.692 9 kip feet 7 inches e= Choose a C smaller than the previous C Cb= 5 in depth a=.85*Cb 4.25 in f's= εu*Es(Cbd')/Cb -103.968 ≤ 60 ksi C=.85f'c*a*h 162562. 5 lbs As=3 162.562 A's=3 5 kips Pn=.85*f'c*a*b+AsFs-A'sF's Pn= -75.061 $Mn=Pn^{e}=.85^{f}c^{a}b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2)$ 447.234 kip inches 37.2695 kip feet 5.95829 inches e= Choose a C larger than the previous C Cb= 14 in depth a=.85*Cb 11.9 in $fs = \epsilon u^* Es(d'-C)/C$ -6.59571 6.59571 4

f's= εu*Es(Cbd')/Cb 12.5 60 ksi ≤ C=.85f'c*a*h 708050 lbs As=3 708.05 kips A's=3 Pn=.85*f'c*a*b+AsFs-A'sF's 719.887 Pn= 1 Mn=Pn*e=.85*f'c*a*b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2) 760.708 kip inches 63.3923 kip feet 1.05673 inches e=

Set C to infinite and e=0						
Fs	=	60	ksi			
Pn=.85*f'c*a*b+AsFs						
Pn=	1073					

Since the moment and Pn are negative for one value, a larger column is needed

Column Design 2nd floor e		dge					
length	10.5	ft					
f'c	5000	psi(Assume	ed)				
			As	0.153	in^2	Phi=	0.65
	3333.33						
F'ci	3	PSI	Es, Eps	2.85E+08	Psi	alpha=	0.8
Fy	60000	PSI	Fpu	270000		pg=	0.03
fps=.7*fpu		189000	Psi			beta=	1.2
Effective are	ea of supp	port					
				assume a valu	e of 500 p	oounds per linear foot p	er floor for
17.5 ft by 10	6.75 ft	293.125	ft^2	outside façade	2		
Roof load=		466.3	psf	68500		(17.5+16.75)*50	0*4 floors
6th floor loa	ad=	358	psf				
6th floor co	lumn wei	ght=					
		2275	lbs				

5th floor load= 296 psf lbs Column weight= 6300 4th floor load= 296 psf Column weight= 6300 lbs 3rd floor load= 296 psf Column weight= 6300 lbs total 591592.9 Pu= 4 lbs 591.5929 4 kips Trial size Ag=Pu/ $\Phi^*\alpha^*(.85f'c+pg(Fy-.85f'c))$ 13.859 Ag= 192.093 in^2 1 576 assume a trial size of 24 X 24, or 576 in^2 Ag= 576 in^2 trial h= 24 Short or slender l/h= 5.25 short column assume a fixed fixed column, so K=1.0 12h= 288 > story height, so slenderness can be neglected. (according to PDC handout) As= pg*area of the column 17.28 in^2 1.44 diameter of steel= 1.41 Nominal Area= 1.56 use 4 #4 bars As= 6.24 Check using ΦPn=.8*Φ[.85*f'c(Ag-Ast)+fyAst] .8*.65*(.85*5000*(576-18.72)+(60*18.72)) ΦPn= 1453 Kips > 591.5929 so the section checks use #3 lateral ties. diameter ties= 0.375 in 16 long. Diameters

22.56 48 tie bar diameters 18 Least Column dimension 14 tie spacing cannot exceed 14 in.

Clear spacing 7.885 use cross ties, because spacing is greater than 6 inches

P-M diagrams	(Fs=Fy)
assume εu=	0.003
εy=Fu/E	0.002105
s =	3

d=h-cover-diameter of tie-1/2 diameter of reinforcing bar

				-
d'=	22.92	in		
	13.4684			
Cb=	5	in		
depth a=.8	85*Cb		11.4	in
f's= εu*Es	(Cb-			
d')/Cb				
78.6439				
8	≤		60	ksi
C=.85f'c*a	a*h			
116771				
5	lbs			As=4
1167.71				
5	kips			A's=4
Pn= 85*f'	r*a*h+∆sFs	-Δ'sF's		
	1167 71	7151 5		
Dn-	5			
	0 ۲ *۴۰*۰*	k/11/2	- /2) ···	alafla(h /2 dl), Aara(d h /2)
NIN=Ph*e	=.85*1 C*a*	D(H/Z	-a/2)+	a si s(n/2-d)+AsFs(d-n/2)
9949.27	1.1.1.1.1.1.1			
1	kip inches			
829.105				
9	kip feet			
	8.5			
e=	1	inche	25	
				_

Choose a C smaller than the previous C

Cb= 5 in

depth a=.85*Cb 4.25 in f's= εu*Es(Cbd')/Cb 60 ksi 67.032 ≤ C=.85f'c*a*h 94828.1 3 lbs As=3 94.8281 A's=3 3 kips Pn=.85*f'c*a*b+AsFs-A'sF's Pn= 553.38 Mn=Pn*e=.85*f'c*a*b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2) 2600.8 kip inches 216.734 kip feet 4.69986 7 inches e= Choose a C larger than the previous C Cb= 24 in depth a=.85*Cb 20.4 in $fs = \epsilon u^* Es(d'-C)/C$ -3.8475 3.8475 f's= εu*Es(Cbd')/Cb 57.3 ≤ 60 ksi C=.85f'c*a*h 208080 lbs As=3 2080.8 kips A's=3 Pn=.85*f'c*a*b+AsFs-A'sF's 2187.70 5 Pn= Mn=Pn*e=.85*f'c*a*b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2) 5212.98 kip inches 434.415 kip feet 2.3 3 inches e=

Set C to infinite and e=0

Shear Wall Excel Spreadsheet

Shear wall design

https://engineering.purdue.edu/~frosch/

CE576/Time%20Saving%20Design%20Tips/Time%20Saving-Columns&Walls.pdf

Givens				
f'c	5000	psi		
Ss	0.24	Sds	0.256	g
S1	0.067	Sd1	0.107	g
R	1.5	at existi	ng 5	at addition
Cd	1.5	at existi	ng 4.5	at addition
high hazard o	ccupancy			
site class D				
importance fa	actor	1.	25	
over strength	factor	2	2.5	
fy of steel	60,000	psi		
Reinforced co	oncrete shea	ar walls		
tributary area	a for each sł	near wall		
945	square fee	t		
floor live load	1			
floor 2-5	80	psf		
floor 1,6	100	psf'		
Snow load	43	psf		
Floor dead lo	ad			
4 · - 6 · 1 · 6				
1st, 6th floor		<i>.</i>		
	150	psf		
+	15		165	
2-5th floor	125			
	125	psr	140	
+ Forthauskala	15		140	
8704.8	1st floor			
37497.6	2nd			
56246.4	3rd			
74995.2	4th			
93744	5th			
132580.8	6th			
	-			
Area per floo	r			
30	х	1().5	

315 sq ft

Earthquake load is much greater than wind, so the load combo used will be $1.2D \pm 1.0E + 0.5L + 0.2S$

First floor load	251.1918	kips
second	242.1846	kips
third	260.9334	kips
fourth	279.6822	kips
fifth	298.431	kips
6th	375.0678	kips

Check shear strength in 1st story 1707.4908 kips Vu=1.3*total shear 2219.73804 kips from table 6 ΦVc=30*12.4 762.6 kips ΦVs=AvFyd/s number 6 bars Av= 0.441786 60 Fy 9.6 d= 12 s= 16.9646 ΦVs

from table 5, use number 6 bars at a spacing of 12 inches

Check shear at 2nd story Vu=1.3* the floor loads except the 1st 1893.1887 still higher than Vc, so number 6 shear bars should be added at a spacing of 12 inches

Shear at 3rd floor Vu= 1578.34872 as above, use number 6 bars at a spacing of 12 inches, both horizontally and vertically

Shear at 4th floor Vu= 1239.1353

Use #6 bars at a spacing of 12 inches for each floor

Dead load and r	noment in	the	first floor
-----------------	-----------	-----	-------------

Pu=	1020600	1020.6	kips
Mu=	403768.8	403.7688	foot kips
2nd floor			•
Pu=	824040	824.04	kips
Mu=	395064	395.064	ft. Kips
3rd floor		0	
Pu=	627480	627.48	
Mu=	357566.4	357.5664	

Check moment strength based on required vertical reinforcement for shear

Ast=	13.25359	in^2
ω =	0.052594	
α=	0.084375	
c/lw=	0.174441	
φMn=	169993.8	in. kips
	14166.15	ft-kips

moment is sufficient

2nd floor moment strength

Ast=	13.25359
ω =	0.052594
α=	0.068125
c/lw=	0.153745
φMn=	76313.12
	6359.427

Moment is sufficient

3rd floor moment strength

Ast=	13.25359
ω =	0.052594
α=	0.051875
c/lw=	0.133049
φMn=	78179.41
	6514.95

Moment is sufficient

The moment values are quite higher than needed, so the wall is fine for moment and axial loads

5th Floor Steel Beam and Girder Excel Spreadsheet

Scheme 1					
DL	Slab	Services	Ceiling	Length	30
754.16	60.41667	10	5	Spacing	10
lbs/ft					
	l				
LL	Load				
525	70			50 DEAIVI	
lbs/ft					
PLASTIC CAPACIT	TY CALCULA	TIONS			
Load Combinatio	ons				
U=1.2D+1.6LL					
U	1745	lbs/ft			
Mu=wL^2/8					
Mu	196312.5				
Mu	196.3	ft/k			
Zx required					
Zx =Mu/Φfy					
Zx	52.35	in^3			
Off this we pick a	a W 18X35				
with :		~-			
weight per foot		35	lbs/ft		
Ζx		66.5	in^3		
New DL calculati	ons				
New DI =original		t of heam			
	789 16	lhs/ft			
	703.10	103/11			
Live load is the s	ame				
New U					
U=1.2D+1.6LL					
U	1787	lbs/ft			
		, -			
Mu=wL^2/8					
Mu	201037.5				
Mu	201	ft/k			
ФМр=ФZх*Fy ФМр 249.375

the beam is sufficient

DEFLECTION CH	HECK	
Case 1 LL only		
Beam	W 18X35	
Deflection mus	t be less than	L/360 or
Limit=L/360		
Limit	1	Inch
So the deflection	on limit is the	maximum
Δ=5wL^4/384E	lx	
Δ	0.32	Inch
So we are okay		
Case II Full DL +	- Half Live	
Limit=L/240		
Limit	1.5	Inch
Δ=5wL^4/384E	lx	
Δ	1.25	Inch

DL superimposed						
	Slab	Services	Ceiling		Length	З
75.416	60.41667	10	5		Spacing	

LL		Load					
	2100		70				
lbs/ft		-					
Girder lo	oad Appr	·ох.					
Wdl=(DL	_sp+(Bea	m weig	ht/b	eams pa	cing)) [;]	*Gird	er spacing
WDL		236	7.5				

PLASTIC CAPAC	ITY CALCULA	TIONS		
Load Combinati	ons			
U=1.2D+1.6LL				
U	6201	lbs/ft		
Mu=wL^2/8				
Mu	769117.8		_	
Mu	769.1	ft/k		
Zx required				
Zx =Mu/Φfy				
Zx	205.1	in^3		
			-	
Off this we pick	a W 24X84 g	girder		
with :				
weight per foot		84	lbs/ft	
Zx		224	in^3	
DEFLECTION CH	IECK			
Case 1 LL only				
Girdor	W 22V120			
UIIUEI	227120			
Deflection must	t he less than	n I /360 or 1	" whicheve	r is smal
Limit=1/360		, 500 01 1		. 15 511101
Limit	1.05	Inch		
So the deflection	n limit is the	maximum	1"	
So the denectio		maximum	. 1	

Δ=5wL^4/384EIx			Ix 2370 in^4	
Δ	0.3	Inch	from Table 3.3	

So we are okay			
Case II Full DL + I Limit=L/240	Half Live		
Limit	1.575	Inch	
Δ-3WL ⁻⁴ /304EIX			
Δ	1.067663	Inch	

W
18X35
W
24X84

6th Floor Steel Beam and Girder Excel Spreadsheet

Scheme 1				
DL	Slab	Services	Ceiling	Length 30
754.1667	60.41667	10	5	Spacing 10
lbs/ft	-			
LL	Load			
750				
1,000???	100			30 BEAIVI
lbs/ft				
PLASTIC CAPACIT	TY CALCULA	TIONS		
Load Combination	ons			
U=1.2D+1.6LL			I	
U	2105	lbs/ft		
Mu=wL^2/8				
Mu	236812.5		I	
Mu	236.8	ft/k		
Zx required				
Zx =Mu/Φfy			l	
Zx	63.15	in^3		
With :	a vv 18X35			
with . weight per foot		35	lbs/ft	
7x		66.5	in^3	
LA		00.5	in 5	
New DL calculati	ons			
New DL=original	DL + weigh	t of beam		
New DL	789.16	lbs/ft		
Live load is the s	ame			
New U				
U=1.2D+1.6LL			l	
U	2147	lbs/ft		
Mu=wL^2/8				

Mu 241537.5

ФМр=ФZх*Fy ФМр 249.375

the beam is sufficient

DEFLECTION CHECK

Case 1 LL only

Beam W 18X35

Deflection must be less than L/360 or 1" whichever is smaller

Limit=L/360

So the deflection limit is the maximum, 1"

Δ=5wL^4/384Elx			lx	510 in^4
Δ	0.46	Inch		from Table 3.3

So we are okay

Case II Full DL + Half LiveLimit=L/240Limit1.5 Δ =5wL^4/384EIx Δ 1.391417Inch

31.5' GIRDER															
DL superimposed															
	Slab	Services	Ceiling							Le	eng	th		3	1.5
75.416	60.416	10	5							S	pac	ing	S		30

LL		Load
	3000	100
lbs/ft		
Girder lo	ad Appr	ох.
Wdl=(DL	sp+(Bea	m weight/beams pacing))*Girder spacing
WDL		2367.5

PLASTIC CAPACITY CALCULATIONS	
Load Combinations	
U=1.2D+1.6LL	
U 7641 lbs/ft	
Mu=wL^2/8	
Mu 947722.8	
Mu 947.7 ft/k	
Zx required	
Zx =Mu/Фfy	
Zx 252.7 in^3	
Off this we pick a W 30X90 girder	
with :	
weight per foot 90 lbs/ft	
Zx 283 in^3	
DEFLECTION CHECK	
Case 1 LL only	
Girder W 30X90	
Deflection must be less than L/360 or 1" whichever is small	er
Limit=L/360	
Limit 1.05 inch	
So the deflection limit is the maximum, 1"	
Δ=5wL^4/384Elx	
Δ 0.32 inch	

3610 in^4 from Table 3.3

lх

So we are okay			
Case II Full DL + Half Limit=L/240	Live		
Limit	1.575	inch	
Δ=5wL^4/384Elx			
Δ	0.79	inch	

FINAL beam and girder size	
	W
Typical Beam	18X35
	W
Typical Girder	30X90

5 inch Slab and Steel Decking for 5th floor Excel Spreadsheet

Scheme 1: 5" Slab

GIVENS:

t concrete	5	inches	F'c	4	ksi	Es	29000	ksi
Beam Span	30	ft	Fy	50	ksi	Fu	65	ksi
Beam Spacing	10	ft	Stud Dia.	0.75				
			Stud As.	0.44	inches^2			
						•		
Super Imposed De	ead Load							
			Concrete	Services	ceilings	Туре		
Total DL Unfactored	754.16	plf	60.41667	10	5	Load		
			psf	psf	psf	Unit		
Total LL Unfactored	700	plf						
			plf=	pounds per line	ar foot			
Load Combinations								
U=1.2D+1.6LL	Governs		•					
U	2025	plf						
Mu=wL^2/8								
Mu	227812.5		7					
Mu	227.8	ft*k						
Picking a Preliminary Bea	m Size							
Assuming a=1	1							
Be Calculations	_							
Be/2≤L/8≤beamspacing/2	2							
L/8	3./5							
beams pacing/2	5 2 7 -							
DC/Z	3./5 7 E	ft						
Po	/.5	inches]					
DC	90	IIICHES	J					

Y2=t concrete-a/2

Y2		4.5
Y2		4.5

			_		
From table 3-19	Picked	W 12X22			
			Area		
Depth	12.3	inches	Steel	6.48	in^2
Weight	22	lbs/ft			
			-		
a Calculation]				
	 a=Fy*As/(.85*F'	c*Be)			
	a=	1.0	inches]	
	New Y2=	4.5		3	
	Section Still				
	Okay				
e Calculation]				
e=1/2(t concrete)+depth	of beam/2				
e=	8.65	inches			
			3		
ΣQn Calculation					
ΣQn=As*Fy					
ΣQn=	324	k			
			J		
Capacity Calculation	1				
	J				
Φ Mn=e 2Qn Φ	2522.24				
	2322.34	£+*1.	1		
Ψivin=	210.195	π*κ			
Section is inadequate					
Pick a new hoam					
VV 12720			Aroa	_	
Denth	12 3	inches	Steel	8 7 9	in^2
Weight	20	lhs/ft		5.75	=
weight	50	103/11	1		

a Calculation		
a=Fy*As/(.85*F'c*Be)		
a=	1.4	inches
New Y2=	4.3	

ΣQn Calculation

ΣQn=As*Fy						
ΣQn=	439.5	k				
ΦMn=e*ΣQn*Φ						
ФMn=	3421.5075		1			
ΦMn=	285.1	ft*k				
Beam is now Adequate						
Limit=	1	inches				
Max Limit	1	inch				
Llephle Limit	1	inch	1			
	L	Inch	l			
Deflection Color	lations	1				
Deflection Calcu	liations					
Δ=5wL^4/384Elx			Lower Bou	und I	I _{LB}	737 in^4
Δ	0.29	inch				from Table 3-20
r		1				
Design of Shea	r Studs					
Stud Capacity=.5*Area st	teel stud*sqrt(F'c*	*Ec)≤Area ste	el stud*Fu*	Rg*Rp		
Stud Capacity=	26.1	≤	21.5			
De	1	tor solid				
кg	T	siad for solid				
Rp	0.75	slab				
Ec=w^1.5*sqrt(F'c)			1			
Ec=	3492	ksi		w	145	pcf
			1			
So limiting stud capacity:	=	21.5	k]		
		21.5	Studs	1		
		20.4	Studs			
			51445			
Construction Canacity]					
Unshored Construction	1					
Unshored Construction	Room Woight	1				
Construction DI]			
Construction DL	30	рп	Constant			
	wet Concrete	(Constructi	ion LL		
Construction LL	60.416	pst	20	pst		
804.16						
plf	J					

Load Combinations]						
U=1.2D+1.6LL	Governs						
U	1322.66	lbs/ft					
			1				
Mu=wL^2/8							
Mu	148800						
Mu	148.8	ft*k					
For this Beam	ФМр=	162	ft*k				
	from table 3.2						
		I					
Check for Deflection Ser	viceability						
Live Load Deflection							
Limit=L/360							
Limit=	1	inches					
MaxLimit	1	inch					
Usable Limit	1	inch					
Usable Limit	1	inch]				
Usable Limit Deflection Calc	1 ulations	inch]				
Usable Limit Deflection Calc Δ=5wL^4/384Elx	1 ulations	inch	Lower Bound	11	lue.	1440	in/
Usable Limit Deflection Calc Δ=5wL^4/384Elx	ulations 0.35	inch	Lower Bound	11	I _{LB}	1440 from Ta	in ⁷ ble 3
Usable Limit Deflection Calco Δ=5wL^4/384Elx Δ	1 ulations 0.35	inch inch	Lower Bound	11	I _{LB}	1440 from Ta	in⁄ ble 3
Usable Limit Deflection Calco Δ=5wL^4/384Elx Δ Required Ix calculations	1 ulations 0.35	inch inch	Lower Bound	11	I _{LB}	1440 from Ta	in⁄ ble 3
Usable Limit Deflection Calc Δ=5wL^4/384Elx Δ Required Ix calculations	1 ulations 0.35	inch inch	Lower Bound	11	I _{LB}	1440 from Ta	in⁄ ble 3
Usable Limit Deflection Calco Δ=5wL^4/384Elx Δ Required Ix calculations Design shear and	1 ulations 0.35 hors for full compo	inch inch osite	Lower Bound	11	I _{LB}	1440 from Ta	in⁄ ble 3
Usable Limit Deflection Calco Δ=5wL^4/384Elx Δ Required Ix calculations Design shear and ΣQn Calculation	1 ulations 0.35 hors for full compo	inch inch osite	Lower Bound	11	I _{LB}	1440 from Ta	in ⁷ ble 3
Usable Limit Deflection Calco Δ=5wL^4/384Elx Δ Required Ix calculations Design shear anc ΣQn Calculation ΣQn=As*Fy	1 ulations 0.35 hors for full compo	inch inch osite	Lower Bound	11	I _{LB}	1440 from Ta	in^ ble 3
Usable Limit Deflection Calco Δ=5wL^4/384Elx Δ Required Ix calculations Design shear anc ΣQn Calculation ΣQn=As*Fy ΣQn=	1 ulations 0.35 hors for full compo 439.5	inch inch osite	Lower Bound	11	I _{LB}	1440 from Ta	in ⁷ ble 3
Usable Limit Deflection Calco Δ=5wL^4/384Elx Δ Required Ix calculations Design shear anc ΣQn Calculation ΣQn=As*Fy ΣQn=	1 ulations 0.35 hors for full compo 439.5	inch inch osite	Lower Bound	11	I _{LB}	1440 from Ta	in⁄ ble 3
Usable Limit Deflection Calco Δ=5wL^4/384Elx Δ Required Ix calculations Design shear and ΣQn Calculation ΣQn=As*Fy ΣQn=	1 ulations 0.35 hors for full compo 439.5	inch inch osite k	Lower Bound	11	I _{LB}	1440 from Ta	in^ ble 3
Usable Limit Deflection Calco Δ =5wL^4/384Elx Δ Required Ix calculations Design shear anc SQn Calculation Σ Qn=As*Fy Σ Qn= Stud Capacity is the Same	1 ulations 0.35 hors for full compo 439.5	inch inch osite k	Lower Bound	11	I _{LB}	1440 from Ta	in/ ble 3
Usable Limit Deflection Calco Δ =5wL^4/384Elx Δ Required Ix calculations Design shear and Σ Qn Calculation Σ Qn=As*Fy Σ Qn= Stud Capacity is the Same # of Studs=Qn/Stud Capacity	1 ulations 0.35 hors for full compo 439.5	inch inch osite k	Lower Bound	11	I _{LB}	1440 from Ta	in/ ble 3
Usable Limit Deflection Calco Δ =5wL^4/384Elx Δ Required Ix calculations Design shear anc Σ Qn Calculation Σ Qn=As*Fy Σ Qn= Stud Capacity is the Same # of Studs=Qn/Stud Capa # of Studs	1 ulations 0.35 hors for full compo 439.5 acity 20.40665636	inch inch osite k	Lower Bound	11	I _{LB}	1440 from Ta	in ⁷ ble 3

Check if full composite is possible

a=Fy*AS/.85*F'c*be

a=	1.4	inches
t concrete=	5	inches

So still okay with slab depth

Needed Composite	e Capacity						
Super Imposed Dead Loa	ıd	-	Concrete	Services	Ceilings	Beam	Туре
Total DL Unfactored	784.16	plf	60.41667	10	5	30	Load
			psf	psf	psf	plf	Unit
Total LL Unfactored	700	plf					
	_						
Load Combinations							
U=1.2D+1.6LL	Governs						
U	2061	lbs/ft					
Mu=wL^2/8							
Mu	231862.5		-				
Mu	231.8	ft*k					
a Calculation							
a=Fy*As/(.85*F'c*Be)							
a=	1.436	inches					
New Y2=	4.281	inches					

Using Table 3-19, in the W 12X30 column

We need an MU of231.8 ft*k

So a PNA location of : 6

will be sufficient for our needs

At location 7

ΦMn	238	ft*k
ΣQn	131	k

Check for Deflection Serviceability

Live Load Deflection Limit=L/360

Limit=	1	inches			
Max Limit	1	inch			
Usable Limit	1	inch			
Deflection Calcu	ulations				
Δ=5wL^4/384Elx			Lower Bound I	I _{LB}	452 in^4
Δ	0.486	inch			from Table 3-20
Beam is sufficient					
# of Studs Calculation					
Stud Capacity is t	he Same				
# of Studs=Qn/Stud Capa	acity				
# of Studs	6.08253011				
Boom	7	Studs			
			-		
Final Beam size					
W12X30 (14)					
3/4 inch studs					

5 inch Slab and Steel decking for $6^{\rm th}$ floor Excel Spreadsheet

Scheme 1: 5" Slab

GIVENS:

t concrete	5	inches	F'c	4	ksi	Es	29000	ksi
Beam Span	30	ft	Fy	50	ksi	Fu	65	ksi
Beam Spacing	10	ft	Stud Dia.	0.75				
			Stud As.	0.441786467	inches^2			
						•		
Super Imposed D	ead Load							
			Concrete	Services	ceilings	Туре		
Total DL Unfactored	754.1666667	plf	60.41667	10	5	Load		
			psf	psf	psf	Unit		
Total LL Unfactored	1000	plf		·		-	•	
			plf=	pounds per line	ar foot			
Load Combinations								
U=1.2D+1.6LL	Governs		_					
U	2505	plf						
Mu=wL^2/8								
Mu	281812.5		-					
Mu	281.8125	ft*k						
Picking a Preliminary Bea	am Size							
Assuming a=1	1							
	1							
Be Calculations								
Be/2≤L/8≤beamspacing/	2							
L/8	3.75							
beam spacing/2	5							
Be/2	3.75	6						
Ве	7.5	tt	1					
Ве	90	inches	J					

Y2=t concrete-a/2 Y2

4.5

From table 3-19	Picked	W 12X22			
	10.0		Area	6.40	
Depth	12.3	Inches	Steel	6.48	in^2
Weight	22	lbs/ft			
	1				
	/ QF*F'	c*Do)			
	a-ry As/(.65 r	1 050004	inchos		
	d- Now V2-	1.056624	inches		
	Section Still	4.470500			
	Okay				
	•				
e Calculation					
e=1/2(t concrete)+depth	of beam/2		1		
e=	8.65	inches			
ΣQn Calculation					
ZQN=AS*Fy	224	k]		
2011=	324	K			
Capacity Calculation	1				
	1				
ΦMn=c 2Qn Φ	2522.34				
ΦMn=	210.195	ft*k			
			1		
Section is inadequate					
Pick a new beam					
W 12X30			A.r.o.o.		
Depth	12.3	inches	Steel	8.79	in^2
Weight	30	lbs/ft			
			1		
	a Calculation				
	a=Fy*As/(.85*F'	c*Be)			
	a=	1.436275	inches		
	New Y2=	4.281863			
ΣQn Calculation					
2Qn=As*Fy	120 5	k]		
٤Qn=	439.5	К	J		

ΦMn=e*ΣQn*Φ							
ΦMn=	3421.5075		-				
ΦMn	= 285.125625	ft*k					
Beam is now Adequate	е						
Limit	= 1	inches					
	1	inch					
Usable Limit	1	inch]				
			1				
Deflection Ca	lculations						
Δ=5wL^4/384EIx			Lower Bou	ind I	I _{LB}	737	in^4
Δ	0.426355682	inch				from Tak	ole 3-20
			-				
Design of She	ear Studs						
Stud Capacity=.5*Area	steel stud*sqrt(F'c	*Ec)≤Area ste	el stud*Fu*	Rg*Rp			
Stud Capacity=	26.10678591	≤	21.53709				
D-	4	for solid					
ку	1	for solid					
Rp	0.75	slab					
Ec=w^1.5*sqrt(F'c)			_				_
Ec=	3492.062428	ksi		w	145	pcf	
			-				-
So limiting stud capacit	ty=	21.53709	k				
		20.40666	Studs				
		21	Studs				
	_						
Construction Capacity							
Unshored Construction	۱	1					
	Beam Weight		1				
Construction DL	30	plf			-		
	Wet Concrete		Constructi	on LL			
Construction LL	60.41666667	psf	20	psf			
804.166666	7						
р	f						
	_						
Load Combinations							

U=1.2D+1.6LL	Governs				
U	1322.666667	lbs/ft			
Mu=wL^2/8					
Mu	148800				
Mu	148.8	ft*k			
For this Beam	ФМр=	162	ft*k		
	from table 3.2				
Check for Deflection Serv	/iceability				
Live Load Deflection					
Limit=L/360					
Limit=	1	inches			
Max Limit	1	inch			
			l		
Usable Limit	1	inch			
Deflection Calcu	ulations				
Δ=5wL^4/384Elx			Lower Bound I	I _{LB}	1440 in^4
Δ=5wL^4/384EIx	0.350956358	inch	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
Δ=5wL^4/384EIx Δ	0.350956358	inch	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
Δ=5wL^4/384EIx Δ Required Ix calculations	0.350956358	inch	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
Δ=5wL^4/384EIx Δ Required Ix calculations	0.350956358	inch	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
Δ=5wL^4/384EIx Δ Required Ix calculations Design shear anch	0.350956358 nors for full compo	inch	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
Δ=5wL^4/384EIx Δ Required Ix calculations Design shear anch ΣQn Calculation	0.350956358 nors for full compo	inch osite	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
Δ=5wL^4/384EIx Δ Required Ix calculations Design shear anch ΣQn Calculation ΣQn=As*Fy	0.350956358 nors for full compo	inch osite	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
$\Delta = 5wL^4/384EIx$ Δ Required Ix calculations Design shear anch $\Sigma Qn \text{ Calculation}$ $\Sigma Qn = As^*Fy$ $\Sigma Qn =$	0.350956358 nors for full compo 439.5	inch osite k	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
$\Delta = 5wL^4/384EIx$ Δ Required Ix calculations $Design shear anch$ $\Sigma Qn Calculation$ $\Sigma Qn=As^*Fy$ $\Sigma Qn=$	0.350956358 nors for full compo 439.5	inch osite k	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
$\Delta = 5wL^4/384EIx$ Δ Required Ix calculations $Design shear anch$ $\Sigma Qn Calculation$ $\Sigma Qn=As^*Fy$ $\Sigma Qn=$ Stud Capacity is the	0.350956358 nors for full compo 439.5	inch osite k	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
$\Delta = 5wL^4/384EIx$ Δ Required Ix calculations Design shear anch $\Sigma Qn \text{ Calculation}$ $\Sigma Qn=As^*Fy$ $\Sigma Qn=$ Stud Capacity is the Same # of Stude=On (Stud Capacity)	0.350956358 nors for full compo 439.5	inch osite k	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
$\Delta = 5wL^4/384EIx$ Δ Required Ix calculations $Design shear anch$ $\Sigma Qn Calculation$ $\Sigma Qn=As^*Fy$ $\Sigma Qn=$ Stud Capacity is the Same # of Studs=Qn/Stud Capacity and Capaci	0.350956358	inch osite k	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
$\Delta = 5wL^4/384EIx$ Δ Required Ix calculations Design shear anch $\Sigma Qn \text{ Calculation}$ $\Sigma Qn=As^*Fy$ $\Sigma Qn=$ Stud Capacity is the Same # of Studs=Qn/Stud Capa # of Studs Rearm	0.350956358 nors for full compo 439.5 acity 20.40665636	inch osite k	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
$\Delta = 5wL^4/384EIx$ Δ Required Ix calculations Design shear anch $\Sigma Qn \text{ Calculation}$ $\Sigma Qn=As^*Fy$ $\Sigma Qn=$ Stud Capacity is the Same # of Studs=Qn/Stud Capa # of Studs Boom	0.350956358 nors for full compo 439.5 acity 20.40665636 21	inch osite k k Studs	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
$\Delta = 5wL^4/384EIx$ Δ Required Ix calculations Design shear anch ΣQn Calculation $\Sigma Qn=As^*Fy$ $\Sigma Qn=$ Stud Capacity is the Same # of Studs=Qn/Stud Capa # of Studs Boom	0.350956358 nors for full compo 439.5 acity 20.40665636 21	inch osite k k Studs	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
$\Delta = 5wL^4/384EIx$ Δ Required Ix calculations Design shear anch $\Sigma Qn \text{ Calculation}$ $\Sigma Qn = As^*Fy$ $\Sigma Qn =$ Stud Capacity is the Same # of Studs=Qn/Stud Capa # of Studs Boom Check if full compactive	0.350956358 nors for full compo 439.5 acity 20.40665636 21	inch osite k Studs	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
$\Delta = 5wL^4/384EIx$ Δ Required Ix calculations $Design shear anch$ $\Sigma Qn Calculation$ $\Sigma Qn=As^*Fy$ $\Sigma Qn=$ Stud Capacity is the Same # of Studs=Qn/Stud Capaa # of Studs Boom $Check if full composite Check if full compos$	0.350956358 nors for full compo 439.5 acity 20.40665636 21 te is possible	inch osite k Studs	Lower Bound I	I _{LB}	1440 in^4 from Table 3-20
$\Delta = 5wL^4/384EIx$ Δ Required Ix calculations Design shear anch $\Sigma Qn Calculation$ $\Sigma Qn = As^*Fy$ $\Sigma Qn =$ Stud Capacity is the Same # of Studs=Qn/Stud Capa # of Studs Boom Check if full composit a=Fy*AS/.85*F'c*be	0.350956358 nors for full compo 439.5 acity 20.40665636 21 te is possible	inch osite k k Studs	Lower Bound I	ILB	1440 in^4 from Table 3-20

t concrete=	5	inches

So still okay with slab depth

Needed Composit	e Capacity						
Super Imposed Dead Loa	d		Concrete	Services	Ceilings	Beam	Туре
Total DL Unfactored	784.1666667	plf	60.41667	10	5	30	Load
			psf	psf	psf	plf	Unit
Total LL Unfactored	700	plf					
	_						
Load Combinations							
U=1.2D+1.6LL	Governs						
U	2061	lbs/ft					
			_				
Mu=wL^2/8							
Mu	231862.5		•				
Mu	231.8625	ft*k					
a Calculation							
a=Fy*As/(.85*F'c*Be)			_				
a=	1.43627451	inches					
New Y2=	4.281862745	inches					
Using Table 3-19, in the W 12X30 column							
We need an MU of 231.8	ft*k						

So a PNA location of :

will be sufficient for our needs

At location 7

ΦMn	238	ft*k
ΣQn	131	k

6

Check for Deflection Serviceability		
Live Load Deflection		
Limit=L/360		
Limit=	1	inches
Max Limit	1	inch

Usable Limit	1	inch			
		1			
Deflection Calci	ulations				
Δ=5wL^4/384Elx			Lower Bound I	I _{LB}	452 in^4
Δ	0.486630302	inch			from Table 3-20
Beam is sufficient					
# of Studs Calculation Stud Capacity is t # of Studs=Qn/Stud Capa	he Same acity				
# of Studs	6.08253011				
Boom	7	Studs			
Final Beam size W12X30 (14) 3/4 inch studs					

Fifth floor Girder Design Excel Spreadsheet

 Mu
 313908.8

 Mu
 313.9088
 ft/k

ФМр=ФZx*Fy ФМр 357.75

the beam is sufficient

DEFLECTION CHECK

Case 1 LL only

Beam W 18X35

Deflection must be less than L/360 or 1" whichever is smaller

Limit=L/360

Limit 1 inch

So the deflection limit is the maximum, 1"

∆=5wl	.^4/384EIx		Ix	842 in^4
Δ	0.195924	inch		from Table 3.3

So we are okay

Case II Full DL + Half Live Limit=L/240 Limit 1.5 inch Δ =5wL^4/384EIx Δ 1.37613 inch

Sixth Floor Girder Design Excel Spreadsheet

 Mu
 354408.8

 Mu
 354.4088
 ft/k

ФМр=ФZx*Fy ФМр 357.75

the beam is sufficient

DEFLECTION CHECK

Case 1 LL only

Beam W 18X35

Deflection must be less than L/360 or 1" whichever is smaller

Limit=L/360

Limit 1 inch

So the deflection limit is the maximum, 1"

∆=5wl	_^4/384EIx		Ix	842 in^4
Δ	0.279891	inch		from Table 3.3

So we are okay

Case II Full DL + Half Live Limit=L/240 Limit 1.5 inch Δ =5wL^4/384EIx Δ 1.460097 inch

Fifth Floor Spandrel Beam Excel Spreadsheet

Scheme 1: 5" Slab

GIVENS:

t concrete	5	inches	F'c	4	ksi	Es	29000	ksi
Beam Span	30	ft	Fy	50	ksi	Fu	65	ksi
Beam Spacing	10	ft	Stud Dia.	0.75				
			Stud As.	0.441786467	inches^2			
						•		
Super Imposed D	ead Load							
			Concrete	Services	ceilings	Туре	shear w	valls
Total DL Unfactored	1069.166667	plf	60.41667	10	5	Load	315	
			psf	psf	psf	Unit		
Total LL Unfactored	700	plf				-		
			plf=	pounds per line	ar foot			
Load Combinations								
U=1.2D+1.6LL	Governs		-					
U	2403	plf						
Mu=wL^2/8								
Mu	270337.5		•					
Mu	270.3375	ft*k						
Picking a Preliminary Bea	ım Size							
Assuming a=1	1							
	1							
Be Calculations								
Be/2≤L/8≤beamspacing/	2							
L/8	3.75							
beam spacing/2	5							
Be/2	3.75	_						
Ве	7.5	ft	1					
Ве	90	inches						

Y2=t concrete-a/2 Y2

From table 3-19	Picked	W 18X40					
			Area				1
Depth	17.9	inches	Steel		11.8	in^2	J
Weight	40	lbs/ft					
a Calculation							
	a=Fy*As/(.85*F'	c*Be)		-			
	a=	1.928105	inches				
	New Y2=	4.035948					
	Section Still						
	Okay						
	1						
e=1/2(t concrete)+depth	of beam/2		1				
e=	11.45	inches					
SOn Coloulation							
ZQII-AS FY	E00	k	1				
2011=	590	К	l				
Capacity Calculation]						
	l						
ΦMn=e 2Qn Φ	6079 95						
ΦMn=	506 6625	ft*k]				
φiviii=	500.0025		l				
Limit=	1	inches					
Max Limit	1	inch					
			_				
Usable Limit	1	inch					
		_	-				
Deflection Calcu	ulations				_		
Δ=5wL^4/384Elx		-	Lower Bou	ind I		I _{LB}	1600 in^4
Δ	0.13747306	inch			L		from Table 3-20
			1				
Design of Shea	r Studs						
		I					
Stud Capacity=.5*Area st	teel stud*sqrt(F'c*	*Ec)≤Area ste	el stud*Fu*	Rg*Rp			
Stud Capacity=	26.10678591	≤	21.53709				
Rg	1	for solid					

		slab				
Pn	0.75	for solid				
$F_{c-wA1} = 5 + c_{c}$	0.75	5100	J			
E_{C}	3/02 062/28	ksi	1	W(1/15	ncf
LL-	3492.002428	KSI]	vv	145	рсі
So limiting stud capacity=		21.53709	k			
		27.3946	Studs	1		
		28	Studs			
Construction Capacity						
Unshored Construction						
	Beam Weight					
Construction DL	30	plf				
	Wet Concrete		Constructi	on LL		
Construction LL	60.41666667	psf	20	psf		
804.1666667						
plf						
Load Combinations						
U=1.2D+1.6LL	Governs		_			
U	1322.666667	lbs/ft				
Mu=wL^2/8						
Mu	148800		1			
Mu	148.8	ft*k				
For this Beam	ФМр=	289	ft*k			
	from table 3.2					
		1				
Check for Deflection Serv	viceability					
Live Load Deflection						
Linit=	1	inches				
Max Limit	1	inch				
	•					
	Ŧ	-				
Usable Limit	1	inch				
Usable Limit	1	inch]			

Δ 0.315860722 inch from Table 3-2	20
Required by calculations	
Poquired ty calculations	
Required ix calculations	
Design shear anchors for full composite	
ΣQn Calculation	
ΣQn=As*Fy	
<u>ΣQn=</u> 590 k	
Stud Capacity is the	
Same	
# of Studs=Qn/Stud Capacity	
# of Studs 27.39460126	
Boom 28 Studs	
Check if full composite is possible	
a=Fy*AS/.85*F'c*bE	
a= 1.928104575 inches	
t concrete= 5 inches	
So still okay with slab depth	
Needed Composite Capacity	
Super Imposed Dead Load Concrete Services Ceilings Beam Type	č
Total DL Unfactored 1131.166667 plf 60.41667 10 5 62 Load	ł
pst pst plf Unit	
Total LL Unfactored700 plf	
Load Combinations	
U=1.2D+1.6LL Governs	
U 2477.4 lbs/ft	
Viu 278 7075 ft*k	

a Calculation

a=Fy*As/(.85*F'c*Be)

а=	1.928104575	inches	
New Y2=	4.035947712	inches	

Using Table 3-19, in the W 18X40 column

We need an MU of278.70 ft*k

		-					
So a PNA location of :	7						
will be sufficient for our	needs						
At location 7							
ΦMn	412	ft*k					
ΣQn	148	k					
		1					
Check for Deflection	Serviceability						
Live Load Deflection							
Limit=L/360							
Limit=	1	inches					
Max Limit	1	inch					
			٦				
Usable Limit	1	inch					
		I					
Deflection Calco	ulations						
Δ=5wL^4/384Elx				Lower Bound I	Lower Bound I	Lower Bound I	Lower Bound I ILB 1600
Δ	0.13747306	inch					from Tab
Beam is sufficient							
	_						
# of Studs Calculation							
Stud Capacity is t	the Same						
# of Studs=Qn/Stud Capa	acity						
# of Studs	6.871866078						
Boom	7	Studs					
Final Beam size							
W18X40(14)							
3/4 inch studs							

Sixth Floor Spandrel Beam Excel Spreadsheet

GIVENS:

Beam Span 30 ft Fy 50 ksi Fu 65 Beam Spacing 10 ft Stud Dia. 0.75 0.44178646 inches^n 7 2 Super Imposed Dead Load 0.44178646 inches^n 7 2 shear Concret e Services ceilings Type walls Total DL Unfactored 7 plf 7 lo64 lo63 lo64 lo65	t concrete	5	inches	F'c	4	ksi	Es	29000
Beam Spacing 10 ft Stud Dia. 0.75 0.44178646 inches^A inches^A 7 2 Super Imposed Dead Load Concret e Services ceilings Type shear walls Total DL Unfactored 7 plf 10 5 Uad 315 Total DL Unfactored 1000 plf psf psf unit 101 Total LL Unfactored 1000 plf plf psf unit 101 Mu=wL^2/28 Mu 324337.5 The second s	Beam Span	30	ft	Fy	50	ksi	Fu	65
Stud As. 0.44178646 inches^h 7 2 Super Imposed Dead Load Concret e Services ceilings Type walls Total DL Unfactored 1069.16666 60.4166 10 5 Load 315 Total DL Unfactored 1000 plf psf psf Unit 315 Total LL Unfactored 1000 plf plf= pounds per linear foot Unit 106 10 5 Unit 106 10 106 106 10 106	Beam Spacing	10	ft	Stud Dia.	0.75			
Stud As. 7 2 Super Imposed Dead Load Concret e Services ceilings Type walls Total DL Unfactored 1069.16666 60.4166 10 5 Load 315 Total DL Unfactored 7 plf 7 100 5 Load 315 Total LL Unfactored 1000 plf psf psf psf unit 106 10 5 Load 315 Total LL Unfactored 0000 plf plf= pounds per linear foot 1000 10 <td< td=""><td>· · · · -</td><td></td><td></td><td></td><td>0.44178646</td><td>inches^</td><td></td><td></td></td<>	· · · · -				0.44178646	inches^		
Super Imposed Dead Load Concret cellings Type shear 1069.16666 60.4166 10 5 Load 315 Total DL Unfactored 1000 plf psf psf psf unt 1 Total LL Unfactored 1000 plf plf psf psf unt 1 Total LL Unfactored 1000 plf plf pounds per linear foot unt 1 Load Combinations U 22833 plf N				Stud As.	7	2		
Super Imposed Dead Load Concret celings Type walls 1069.16666 0 5 Load 315 Total DL Unfactored 1000 plf psf psf psf unit 315 Total LL Unfactored 1000 plf plf psf unit 1069.16666 10 5 Load 315 Total LL Unfactored 1000 plf psf psf unit 1 Load Combinations plf= pounds per linear foot Load Secondary Secondary <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>			-					
ConcretConcretServicesceilingsTypewalls1069.166667plf7105Dad315Total DL Unfactored1000plfpsfpsfDuit100315Total LL Unfactored1000plfplfpulsDuit100	Super Imposed D	ead Load						
e Services ceilings Type walls 1069.16666 7 plf 7 10 5 Load 315 Total DL Unfactored 1000 plf 7 psf psf psf U 315 Total LL Unfactored 1000 plf plf= pounds per linear foot Unit 1 <td></td> <td></td> <td></td> <td>Concret</td> <td></td> <td></td> <td></td> <td>shear</td>				Concret				shear
1069.16666 60.4166 10 5 Load 315 Total LL Unfactored 1000 plf psf psf Unit Unit 10 5 Load 315 Total LL Unfactored 1000 plf plf= pounds per linear foot Unit 10 5 Load 315 Load Combinations U 2883 plf 10 5 10 5 10 5 10<				е	Services	ceilings	Туре	walls
Total DL Unractored / pir / image: psf psf psf unit Load 315 Total LL Unfactored 1000 plf plf= pounds per linear foot Unit Image: pounds per linear foot Image: pounds per linear foot <t< td=""><td></td><td>1069.16666</td><td>. 10</td><td>60.4166</td><td>10</td><td>5</td><td></td><td>245</td></t<>		1069.16666	. 10	60.4166	10	5		245
psr psr psr ont Total LL Unfactored 1000 plf plf= pounds per linear foot Load Combinations	Total DL Unfactored	/	pir	/			Load	315
Total LL Unfactored 1000 plf plf= pounds per linear foot Load Combinations Governs U 2883 plf Mu=wL^2/8 Mu 324337.5 Mu 324337.5 Mu 324.3375 ft*k Picking a Preliminary Beam Size Assuming a=1 1 Be Calculations Be/2≤L/8sbeamspacing/2 5 Be/2 3.75 Be 7.5 Be 7.5 Be 90 inches				pst	pst	pst	Unit	
Image: point poin	Total LL Unfactored	1000	plf]		_		
Load Combinations U 2883 plf Mu=wL^2/8 Nu 324337.5 Mu 324.3375 ft*k Picking a Preliminary Beam Size Assuming a=1 1 Be Calculations Same Size Be/2sL/8sbeamspacing/2 5 L/8 3.75 Be 90 inches Y2=t concrete-a/2 45				plf=	pounds per li	near foot		
U 2883 plf Mu=wL^2/8 Mu 324337.5 Mu 324.3375 ft*k Picking a Preliminary Beam Size Assuming a=1 1 Be Calculations Be/2sL/8sbeamspacing/2 L/8 3.75 Beam spacing/2 5 Be/2 3.75 Be 7.5 ft Be 90 inches	Load Combinations	<u> </u>						
U 2883 pif Mu=wL^2/8 Mu 324337.5 Mu 324.3375 ft*k Picking a Preliminary Beam Size ft*k Assuming a=1 1 Be Calculations sum Size Be/2sL/8sbeamspacing/2 5 L/8 3.75 Beam spacing/2 5 Be/2 3.75 Be 7.5 ft Be 90 inches	U=1.2D+1.6LL	Governs		7				
Mu=wL^2/8Mu 324337.5 Mu 324.3375 ft*kPicking a Preliminary Beam SizeAssuming a=11Be CalculationsBe/2sL/8sbeamspacing/2L/8 3.75 beam spacing/25Be/2 3.75 Be7.5Be90inchesY2=t concrete-a/2Y245	U	2883	plf					
Mu=wL^2/8Mu 324337.5 Mu 324.3375 ft*kPicking a Preliminary Beam SizeAssuming a=11Be CalculationsBe/2sL/8≤beamspacing/2L/8 3.75 beam spacing/25Be/2 3.75 Be7.5Be90inchesY2=t concrete-a/2Y2 45								
Mu 324337.5 Mu 324.3375 Mu 324.3375 ft*k Picking a Preliminary Beam Size Assuming a=1 1 Be Calculations Be/2≤L/8≤beamspacing/2 L/8 3.75 beam spacing/2 5 Be/2 3.75 Be 90 Mu Y2=t concrete-a/2 Y2 4.5	Mu=wL^2/8							
Mu 324.3375 ft*k Picking a Preliminary Beam Size Assuming a=1 1 Be Calculations Be/2≤L/8≤beamspacing/2 L/8 3.75 beam spacing/2 5 Be/2 3.75 Be 7.5 Be 90 Y2=t concrete-a/2 4.5	Mu	324337.5		7				
Picking a Preliminary Beam Size Assuming a=1 Be Calculations Be/2≤L/8≤beamspacing/2 L/8 3.75 beam spacing/2 5 Be/2 3.75 Be 7.5 ft Be 90 inches	Mu	324.3375	ft*k					
Picking a Preliminary Beam Size Assuming a=1 1 Be Calculations Be/2≤L/8≤beamspacing/2 L/8 3.75 beam spacing/2 5 Be/2 3.75 Be 7.5 ft Be 90 inches			1					
Assuming a=1 1 Be Calculations $Be/2 \le L/8 \le beamspacing/2$ L/8 3.75 beam spacing/2 5 Be/2 3.75 Be 7.5 ft Be 90 inches Y2=t concrete-a/2	Picking a Preliminary	Beam Size						
Assuming a=1 1 Be Calculations Be/2 \leq L/8 \leq beamspacing/2 L/8 3.75 beam spacing/2 5 Be/2 3.75 Be 7.5 ft Be 90 inches Y2=t concrete-a/2 Y2 4.5								
Be CalculationsBe/2≤L/8≤beamspacing/2L/83.75beam spacing/25Be/23.75Be7.5Be90inches	Assuming a=1	1						
Be CalculationsBe/2 $\leq L/8 \leq beamspacing/2$ L/83.75beam spacing/25Be/23.75Be7.5ftBe90inches		1						
Be/2≤L/8≤beamspacing/2 L/8 3.75 beam spacing/2 5 Be/2 3.75 Be 7.5 Be 90 Y2=t concrete-a/2 Y2 4.5	Be Calculations]						
L/8 3.75 beam spacing/2 5 Be/2 3.75 Be 7.5 Be 90 inches	Be/2≤L/8≤beamspacir	1g/2						
Be/2 3.75 Be 7.5 Be 90 inches	L/8	3./5						
Be 7.5 ft Be 90 inches	Deam spacing/2	5 2 7 5						
Y2=t concrete-a/2 Y2 4 5		3./5	f+					
Y2=t concrete-a/2 Y2 4 5	De	7.5	IL In also is	1				
Y2=t concrete-a/2 Y2	ве	90	inches	J				
$\frac{12-1}{12-1} = \frac{12}{12}$	V_{2-t} concrete $\frac{1}{2}$							
	Y2-1 CONCIECE-d/2	4 5						

From table 3-19	Picked	W 18X46				_
		_	Area			
Depth	18.1	inches	Steel	13.5	5 in^2	
Weight	46	lbs/ft				
	1					
a Calculation	J					
	a=Fy*As/(.85*	F'c*Be)				
		2.20588				
	a=	2	inches			
	Nov. 1/2	3.89705				
	New YZ=	9				
	Okay					
	Okay					
e Calculation]					
e=1/2(t concrete)+der	I oth of beam/2					
	11 55	inches]			
L	11.55	menes	J			
ΣOn Calculation						
ΣΩn=As*Fv						
Σ0n=	675	k	1			
20(1	075	ĸ	1			
Capacity Calculation]					
ΦMn=e*ΣOn*Φ	1					
ΦMn=	7016 625					
ΦMn=	58/ 71875	ft*k]			
Φινιι-	504.71075		1			
Beam is now Adequat	te					
Limit=	1	inches				
Max Limit	1	inch				
Usable Limit	1	inch				
		-	1			
Deflection Calc	ulations	1				
		I	LowerDe	und I		710 :~^4
ц-эwl^4/ 584EIX	0 //132602		LOWER BOL		ILB	/12 111''4
Δ	0.44132005 6	inch				from Table 3-20
_	Ŭ		J			
Design of Shea	r Studs]				
Besign of Sheu		1				

Stud Capacity=.5*Area	a steel stud*sqr	't(F'c*Ec)≤A	rea steel stu	ud*Fu*Rg*Rp		
	26.1067859		21.5370			
Stud Capacity=	1	≤	9			
		for solid				
Rg	1	slab				
		for solid				
Rp	0.75	slab				
Ec=w^1.5*sqrt(F'c)						
	3492.06242					
Ec=	8	ksi		w	145	pcf
						•
		21 5370		1		
So limiting stud capac	itv=	21.JJ70 Q	k			
	ity-	21 2/12	ĸ	1		
		31.3412 لا	Studs			
		10	Stude			
		45	Sluus			
	1					
Construction						
Capacity	J					
Unshored Constructio	n	1				
	Beam					
	Weight					
Construction DL	30	plf				
	Wet					
	Concrete		Construct	ion LL		
	60.4166666					
Construction LL	7	psf	20	psf		
804.1666667					-	
nlf						
pn	1					
	1					
Load Combinations						
U=1.2D+1.6LL	Governs					
	1322.66666					
U	7	lbs/ft				
Mu=wL^2/8						
Mu	148800					
Μ	1 / 0 0	f+*レ				
IVIU	148.8	IL'K				
				1		
For this Beam	ФМр=	162	ft*k	J		
	from table 3.2					

		_			
Check for Deflection S	erviceability				
Live Load Deflection					
Limit=L/360					
Limit=	1	inches			
Max Limit	1	inch			
Usable Limit	1	inch]		
Deflection Calc	ulations]			
Defiection Calci]			
Δ=5wL^4/384Elx			Lower Bound I	I _{LB}	712 in^4
	0.70979937				(- - - - - - - - - -
Δ	5	INCh			from Table 3-20
		1			
Required Ix calculation	าร				
Design shear anch	ors for full com	posite			
ΣQn Calculation					
ΣQn=As*Fy					
ΣQn=	675	k			
Stud Capacity is the					
Same					
# of Studs=Qn/Stud Ca	apacity				
# of Studs	31.3412811				
Boom	32	Studs			
Check if full composi	te is possible				
a=Fv*AS/.85*F'c*bE	•	1			
, <u>,</u>	2.20588235				
a=	3	inches			
t concrete=	5	inches			
So still okay with slab	depth				
·	-				
Needed Composit	e Capacity				

			Concret				
Super Imposed Dead Load			е	Services	Ceilings	Beam	Туре
Total DL Unfactored	1131.16666	plf	60.4166	10	5	62	Load

	7		7				
			psf	psf	psf	plf	
Total LL Unfactored	700	plf					
	•						
Load Combinations							
U=1.2D+1.6LL	Governs		-				
U	2477.4	lbs/ft					
Mu=wL^2/8							
Mu	278707.5		1				
Mu	278.7075	ft*k					
	-						
a Calculation							
a=Fy*As/(.85*F'c*B							
e)			1				
	2.20588235						
a=	3	inches					
	3.89705882						
New Y2=	4	inches					

Using Table 3-19, in the W 18X46 column

We need an MU of278.70 ft*k

At location 7

ΦMn	475 ft*k
ΣQn	169 k

Check for Deflection		
Live Load Deflection		
Limit=L/360		
Limit=	1	inches
Max Limit	1	inch
Usable Limit	1	inch

Deflection Calculations

Δ=5wL^4/384Elx			Lower Bound I	I _{LB}	1170 in^4
	0.18799734				
Δ	7	inch			from Table 3-20
Beam is sufficient					
# of Studs					
Calculation					
Stud Capacity is t	he Same				
# of Studs=Qn/Stud Ca	apacity				
	7.84692815				
# of Studs	7				
Boom	8	Studs			
Final Beam size					
W18X46 (16)					
3/4 inch studs					

Fifth Floor Spandrel Girder Excel Spreadsheet

 Mu
 388293.8

 Mu
 388.2938
 ft/k

ФМр=ФZx*Fy ФМр 472.5

the beam is sufficient

DEFLECTION CHECK

Case 1 LL only

Beam W 18X35

Deflection must be less than L/360 or 1" whichever is smaller

Limit=L/360

Limit 1 inch

So the deflection limit is the maximum, 1"

∆=5wl	L^4/384Elx		Ix	1140	in^4
Δ	0.144708	inch		from Tabl	e 3.3

So we are okay

Case II Full DL + Half Live Limit=L/240 Limit 1.5 inch Δ =5wL^4/384EIx Δ 1.314091 inch
Sixth Floor Spandrel Girder Excel Spreadsheet

 Mu
 473793.8

 Mu
 473.7938
 ft/k

ФМр=ФZx*Fy ФМр 502.5

the beam is sufficient

DEFLECTION CHECK

Case 1 LL only

Beam W 24X55

Deflection must be less than L/360 or 1" whichever is smaller

Limit=L/360

Limit 1 inch

So the deflection limit is the maximum, 1"

Δ=5wL^4/384Elx			lx	1350	in^4
Δ	0.232759	inch		from Table 3.3	

So we are okay

Case II Full DL + Half Live Limit=L/240 Limit 1.5 inch Δ =5wL^4/384Elx Δ 1.220237 inch

So the current girder is sufficient by Deflection