MCPHS Peer Review

A Major Qualifying Project
Submitted to the Faculty
Of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Dillon O'Toole

April 17, 2012

Submitted To:

Professor Tahar El-Korchi

Professor Edward J. Swierz

Abstract

The objective of this MQP was to review the structural design of the superstructure of an office and academic building recently built for the Massachusetts College of Pharmacy and Health Studies. The design included post tensioned concrete slabs, as well as reinforced concrete columns, shear walls and a mat foundation. The design was reviewed using load resistance factor design, in accordance with the Commonwealth of Massachusetts state building code, and accounted for both gravity and lateral loads. The flooring system was also redesigned as an alternative steel design.

Acknowledgements

First and foremost I would like to thank my advisors for the project, Professor Edward J. Swierz and Professor Tahar El-Korchi for their feedback, guidance and support. I would also like to thank Souza, True and Partners Inc. and KSID for allowing me to access their design plans and architectural drawings.

Capstone Design Statement

The capstone design requirement of this project was met by proposing a redesign of the existing floor plan with structural steel and a concrete slab on metal decking instead of post tensioned concrete. WPI faculty and students would be interested in this comparison because it showcases the different shape and weight constraints and structural behavior brought about by differing building materials. Construction using steel can have a significant effect on the characteristics of a building in comparison to concrete. This project addressed the following realistic constraints: economic, constructability, social and political.

Economic

The cost of building a structure hinges upon the cost of building materials, as well as labor and other such expenses. Redesigning the flooring system with steel members as well as a concrete deck changes the weight of the building in a large way, but is not necessarily financially advantageous. The rising price of metals in the current economic climate also has a hand to play in the pricing of any proposed steel project.

Constructability

Constructability plays a large part in the selection of building materials and design. A scheme may be perfectly designed to bear the proper loads, but if the shaping is too exotic it cannot be created in a real world application. Concrete typically needs a formwork created beforehand in the shape of the desired member. The proposed redesign is advantageous for multiple reasons. Steel members are premade and shipped to a job site, eliminating the need for formwork to be made. The steel decking used for the floor slabs also serve as a mold for the concrete to be poured. The concrete slab proposed in the steel redesign also requires no post tensioning, so that step is eliminated from the construction schedule.

Social

The material used also has an effect on the social and current labor markets in the surrounding community. Any construction project has a positive boon to the surrounding community. In the New England area there is a strong steel labor force as well as concrete, so there is a positive effect with both material choices. Construction projects in general also provide a positive social impact to the community through increasing the amount of jobs and sales in the surrounding area.

Political

Political issues can arise for multiple reasons during construction. These issues are usually based on the effect construction has on the surrounding area, and not on the materials used in the construction phase. Because of this, a redesign would not have much if any effect on the political issues that arose from the building of this new structure.

Table of Contents

Abstract 2
Acknowledgements 3
Capstone Design Statement 4
Economic 4
Constructability 4
Social 5
Political 5
List of Tables 9
Introduction 10
Background 12
Academic and Office Building 12
Location. 12
Description 13
Concrete 14
Reinforced Concrete 15
Prestressed Concrete 15
Structural Steel 17
Loading 17
Prestressed Floor system 18
Columns 24
Shear Walls 28
Structural Steel Flooring System 30
Results and Conclusions 37
Appendix 39
$2^{\text {nd }}$ Floor slab design excel sheet 39
$6^{\text {th }}$ floor slab design excel spreadsheet 48
Second Floor Interior column Excel Spreadsheet 55
Second Floor Exterior Middle Column Excel Spreadsheet 58
$2^{\text {nd }}$ Floor Edge. 62
Shear Wall Excel Spreadsheet 69
$5^{\text {th }}$ Floor Steel Beam and Girder Excel Spreadsheet 72
$6^{\text {th }}$ Floor Steel Beam and Girder Excel Spreadsheet 76
5 inch Slab and Steel Decking for $5^{\text {th }}$ floor Excel Spreadsheet 80
5 inch Slab and Steel decking for $6^{\text {th }}$ floor Excel Spreadsheet 86
Fifth floor Girder Design Excel Spreadsheet 92
Sixth Floor Girder Design Excel Spreadsheet 94
Fifth Floor Spandrel Beam Excel Spreadsheet 96
Sixth Floor Spandrel Beam Excel Spreadsheet 101
Fifth Floor Spandrel Girder Excel Spreadsheet 107
Sixth Floor Spandrel Girder Excel Spreadsheet 109

List of Figures

Figure 1: Street view of the west elevation of the MCPHS building during construction. 13
Figure 2: Post tensioning cables laid before a concrete pour 16
Figure 3: tendon layout for the 2nd through 5th floor slabs 19
Figure 4: east-west and north-south tendon profile for the 2 nd floor respectfully. The tendon reaches ahigh point at the columns, and a low point at the midpoint of the slabs. The values are the depths of thetendons at columns and midpoints. The above tendon profile is uniformly distributed while the lowerprofile is banded.20
Figure 5: Column specifications 25
Figure 6: Beam and girder layout for the $5^{\text {th }}$ and $6^{\text {th }}$ floor respectfully. All beams are 30 feet long and areconnected to girders on both ends. The number in parenthesis on the beams are the number of shear
studs needed 32
Figure 7: Steel decking before a concrete pour 34

List of Tables

Table 1: Example Moment distribution calculations 21
Table 2: Factored shear and secondary moments for the fifth floor. 22
Table 3: Factored shear and secondary moments for the sixth floor 22

Introduction

Throughout the design process, there are many decisions and calculations that affect the accuracy and viability of the project. The risk of inaccuracies and the high cost of such errors makes peer reviews a necessary and vital part of the design and permit process. These reviews may entail redesigning major aspects of the building to compensate for erroneous aspects, and more importantly to check that the engineer of record used the proper design processes and Code mandates. Calculation accuracy and design integrity are paramount to a safe and functional structure.

The Massachusetts College of Pharmacy and Health Sciences (MCPHS) is an accredited institution that is head quartered in Boston, MA. MCPHS is a graduate school that focuses on the medical field. The Worcester campus hosts the accelerated pharmacy programs as well as physician assistance studies. The Worcester campus of MCPHS is twelve years old, having been added in 2000. This expansion is necessary to accommodate an ever growing influx of students. MCPHS recently started building a new six story, reinforced concrete building for office, laboratory and lecture hall purposes. This building is being constructed at 10 Lincoln square, Worcester, MA.

This project centered on a peer review of the essential aspects of the superstructure. This report should help WPI academia understand more about the design aspects chosen for this building. The data needed to review this structure, such as the permit and construction set of drawings design and architectural drawings was provided by the construction management firm in charge of the stage two renovations Souza, True and Partners. Additional code and design information was provided by the American Concrete Institute's ACI 318-08 manual ${ }^{1}$ and the American institute for Steel Construction's

${ }^{1}$ Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. Farmington

 Hills, MI: American Concrete Institute, 2008. Print.steel design manual ${ }^{2}$. The structural design and analysis knowledge learned from courses taken at WPI's department of Civil and Environmental Engineering were utilized for the completion of this project as well.

[^0]
Background

To complete this project, two major objectives were established. The first objective was to review the design of the MCPHS superstructure to check for the accuracy and validity of the design. The second was to redesign the flooring systems using structural steel as opposed to concrete. Before these two objectives could be achieved, information such as loading and usage, the original design and the applicable building codes were also needed. Once these items were obtained, the design could be reviewed, and found to be either adequate and ready for construction, or recommendations could be made that would make the building feasible and code compliant. In order to understand this project completely, this chapter on the background of the project is presented.

Academic and Office Building

The Massachusetts College of Pharmacy and Health studies recently needed to add a new building to its Worcester campus to accommodate larger demand for the college's programs. The Worcester campus hosts the accelerated pharmacy programs as well as physician assistance studies and other graduate studies. This upgrade of the campus should act as a boon to both the institution and surrounding areas of Worcester.

Location

MCPHS's new building is located on the same plot of land as another MCPHS building. The location is 10 Lincoln Square, in Worcester MA. This building is part of an effort to add more capacity to MCPHS's Worcester campus. The building can be seen at its Lincoln Square location in figure 1 below. This building should also allow for expansion of the accelerated programs offered in the Worcester campus.

Figure 1: Street view of the west elevation of the MCPHS building during construction.

Description

The MCPHS building is a six story cast-in-place concrete building located on 10 Lincoln square in downtown Worcester. The flooring system consists of post tensioned slabs and spandrel beams along the perimeter of the building. All prestressing steel is 7 wires, half inch diameter steel with an area of 0.153 square inches and an ultimate strength of 41.3 kips. The flooring system uses 5,000 psi concrete. The second floor framing system can be seen in Figure 3. The shear walls for the structure are reinforced concrete, as are the columns. The column specifications can be found in Figure 6. The shear walls
provide resistance for the lateral load demand. These members also are 5,000 psi concrete. The roofing is a pan joist and girder framing system. The foundation is a 3 foot thick, conventionally reinforced concrete mat foundation of 4,000 psi concrete. The building will hold a lecture hall on the main floor, as well as a large lobby, and laboratory space. The second floor will house office and administrative areas. The upper three floors will be used for similar programmatic needs. The sixth floor has a higher loading than the lower floors, so the slab is thicker. The façade is brick on the first floor, and glass from the second to the sixth, except for the shear walls.

Concrete

Modern concrete is made up of multiple ingredients at a specific ratio that determines the physical properties of the intended mix. Concrete is comprised of Portland cement, fine and coarse aggregates, water and admixtures. These four ingredients can be combined in any number of different ratios, which change the physical properties of the concrete. The strength of concrete can range anywhere from 3,000 pounds per square inch, to 16,000 pounds per square inch and higher in some markets.

Concrete is an excellent building material for anything that is under a compressive loading. Another positive aspect of concrete is its fluid state, because concrete can be poured into any shape imaginable, as long as the aggregate can fit and a proper mold is created. Concrete is relatively weak in tension however. In order to combat this, steel is placed within the concrete members to take the tensile load forces while the concrete handles compression. There are two different ways to achieve this balance of steel and concrete in modern concrete structures, Reinforced concrete, and Prestressed concrete.

Reinforced Concrete

Reinforced concrete is any concrete that has reinforcing bars to supply the required tensile strength for the concrete member. This technique is relatively low tech and has been in existence longer than prestressing. In reinforced concrete, the reinforcing cage is typically placed first, and then concrete is poured, creating a structure. Once the concrete is poured, it is left to cure for roughly a month, in order to achieve a useful strength. The reinforcement bars used in reinforced concrete are typically 60,000 psi yield strength bars, and are available in diameter increments of $1 / 8$ of an inch. The largest bar that can typically be found is a \#18 bar, which has a nominal diameter of $21 / 4$ inches.

In the MCPHS structure, most members are reinforced concrete. The columns, shear walls and foundation are all made from reinforced concrete, whereas the floor framing is prestressed concrete.

Prestressed Concrete

Prestressed concrete is the other modern use of concrete in structural applications. Prestressed concrete makes use of wire strands of steel that are banded into steel tendons. These tendons are stressed either before or after the concrete is added, and that timing of the stressing is the key difference between prestressed and post tensioned concrete. For slab applications, the strands are usually placed in a parabolic shape through the slab, in a shape that is similar to the bending moment diagram of the given slab.

Pretensioning involves the strands being tensioned before the concrete is placed. Once the concrete is sufficiently hardened, the anchors holding the strands are released, and the resulting force adds compressive stress to the concrete. Because a strong anchoring point is needed, Pretensioning is usually done at a plant, and then the piece is shipped to a job site.

Post tensioning involves placing an unstressed tendon, and then the concrete is poured. Once
the concrete hardens to certain strength, typically 3,000 psi, the steel tendons are tensioned. It is critical that the concrete reaches a strength that can support the tensioning, or else the tensioning anchorage will fail. This approach is advantageous when a large section is being cast, such as the floor systems in the MCPHS building. There are some extra losses of prestressed strength with this approach due to friction and other prestress losses.

Figure 2: Post tensioning cables laid before a concrete pour

Structural Steel

Structural steel provides certain advantages that concrete does not. Firstly, steel comes in standard industry sizes, unlike concrete that has to be molded to a certain shape. Steel can be purchased in many different shapes, but the shape used for the beams and girders in this report were wide flanged, or W beams. Since all the beams are manufactured to certain specifications, most properties can be easily found in the AISC manual. Structural steel can be quick to erect if the shipments from fabricators are timed well, and doesn't require the lengthy curing time of concrete

Loading

When designing a structure, a critical design value needed is the loading that the structure will undergo. The loading of any building can be broken into three groups: live loads, dead loads and environmental loads. Live loads are any loads that are not static, such as occupants. Dead loads can be defined as permanent loads that are typically part of the building itself. Environmental loads are any loads that occur from the environment, such as earthquake and snow loads.

Minimum loading conditions can be found through the Massachusetts State Building Code, or MSBC. Though the MSBC covers most loads, any loads that aren't covered can be found in the ASCE 7 standards. ASCE 7 is a reference material offered by the American Society of Civil Engineers in which minimum load provisions can be found. The only loads not given from MSBC and ASCE 7 are the selfload, which is calculated from the materials, used. These loads are factored with different values in order to add a factor of safety against limit states.

There are two different design approaches, LRFD and ASD, and each has their own load combinations and factors. For this project LRFD, or load resistance factor design, was used. There are multiple load combinations that can be used in different situations depending on what loads are acting on the member. For example, a floor system would have a higher load from a combination that has a
higher factor for dead and live loads, so they are to be used. Once the proper loads and load combination are found, the design of members could be performed.

Prestressed Floor system

According to the design drawings provided by the construction firm building the MCPHS structure, the flooring slabs were 90 feet by 93 feet overall and designed as post tensioned concrete slabs. The flooring was designed as a flat plate floor system, using techniques learned from CE 4017, prestressed concrete design. The strength of the concrete was given as $5,000 \mathrm{psi}$, and the values of the steel were found from design drawings.

The losses due to prestressing were found using lump sum losses, which were found in table 3.1 of Edward Nawy's text book "Prestressed Concrete" 3. Lump sum losses do not take loss due to friction into account, so that value had to be calculated independently and added to the lump sum losses. These losses were subtracted from the strength in prestressed reinforcement at nominal strength to find the stress after prestressing.

The trial thickness was found as the product of length of the slab divided by 45. Once a trial slab thickness was found, the loads acting on the slabs were calculated. The load combination chosen for slab design was 1.2^{*} dead load $+1.6^{*}$ live load. This combination was chosen for all six floors, as it had the largest load. The $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ And $5^{\text {th }}$ floors are subjected to the same loading, so they were uniformly designed. The $6^{\text {th }}$ floor was subject to a higher loading then those floors below it.

[^1]The next step performed was identifying the tendon profile. The strands per bay were found to be 31 stands per bay. The strands were reverse parabolic with high points at the columns, and low points in between the columns. The net loads were then calculated.

Figure 3: tendon layout for the 2nd through 5th floor slabs

Figure 4: east-west and north-south tendon profile for the 2 nd floor respectfully. The tendon reaches a high point at the columns, and a low point at the midpoint of the slabs. The values are the depths of the tendons at columns and midpoints. The above tendon profile is uniformly distributed while the lower profile is banded.

The equivalent Frame characteristics were the next step in the design of the slab. The torsional stiffness of the slab at the column line, K_{c} and K_{t} were found, and the equivalent column stiffness K_{ec} was found using those two values. This process was repeated for interior columns. Once both exterior and interior columns were done, slab stiffness was found. These values were important because the distribution factors for moment distribution were found using them with the formula $\mathrm{DF}=\mathrm{K}_{\mathrm{s}} / \Sigma \mathrm{K}$.

The Design service load Moments and stresses were computed next. Fixed end moments, or FEM, were found for both the interior and interior spans, using the $\mathrm{W}_{\text {net }}$ from load balancing that was computed previously. The moment distribution of net load moments was calculated using the moment distribution method of analysis. That analysis method involves the fixed end moment being distributed and then carried over. This process was used multiple times to find moment distributions. In this instance, maximum net moment and midspan f_{t} were found. These values were found at the support as well as at the midspan.

Table 1: Example Moment Distribution Calculations

A		B		C	
DF	0.36	0.27	0.27	0.27	0.27
COF	0.5	0.5	0.5	0.5	0.5
FEM X10^3 in-lb	127.5	127.5	89.7	89.7	127.5
CO	176.5	34.1	24.0	24.2	34.1
DIST	6.2	23.3	12.1	12.0	
Final Mnet *10^3 per ft	-70.2	178.6	-81.0	3.2	3.2

The fixed end moments were calculated for interior and exterior spans. The distribution factors found previously were used again, and the same moment distribution was performed. Once the final $\mathrm{M}_{\text {bal }}$ was found, secondary moments were calculated for the spans. Secondary moments were found by subtracting M_{1}, which was load multiplied by the eccentricity, from the $\mathrm{M}_{\text {bal }}$ found previously. A factored $\mathrm{FEM}_{\mathrm{u}}$ was also found.

The $\mathrm{FEM}_{\mathrm{u}}$ found were then subjected to moment distribution to find the final M_{u}. These moments were then used to calculate the design moments M_{u}. These M_{u} values were found for all locations on the slab. The shear at each of the locations on the slab was also found. The shear was calculated as $\mathrm{W}_{\mathrm{u}} \mathrm{L} / 2 \pm$ the moment at the second column minus the moment at the first column divided by the length of the bay. Once the shear was found, required Mn was found as the centerline moment minus the secondary moment. A table of the shears found for both the 2nd-5th floors and the 6th floor can be found below. The first letter given references the column at which the slab section is starting at, and the second letter references the column the slab is heading toward. Slab section $A B$ starts at the first column, which is the north most, and continues toward the next column, column b.

Table 2: factored shear (lbs per foot) and secondary moments (ft-lb) for the fifth floor

Factored Shear		Ms	
ab	3649.8	37219.4	
ba	4855.2	29231.9	
bc	3240.0	13417.6	

Table 3: factored shear (lbs per foot) and secondary moments (ft-lb) for the sixth floor

Factored Shear		Ms
ab	4120.9	48827.3
ba	5392.1	34734.3
bc	3624.0	10842.3

Once the moments were found, the non prestressed reinforcement steel needed to be designed. Once the area of steel was found, area per foot was calculated. Once a trial steel amount was found, the available moments had to be checked against the moment loads found earlier. If the available load capacity was found to be higher, no additional reinforcing steel was needed. This calculation was performed for both midsection of spans and interior support sections.

Once these values were completed, a reinforcement summary was written. The reinforcement summary details the amount of steel, both reinforced and prestressed, that would be needed for the design. Banding in the column regions would also need to be taken into consideration. The steel was then banded around the column. These calculations were performed twice: Once for the $2^{\text {nd }}$ to $5^{\text {th }}$ floors, and once for the $6^{\text {th }}$ floor, which has different loading demands than the lower floors.

In order to check for strength, the nominal moment at both the positive and negative moment areas were compared to the ultimate moments. The ultimate moment is calculated as $\mathrm{WL} \wedge 2 / 8$. The moments also need to be checked versus the ACI 318 allowable stresses. Negative moment stresses with the addition of nonprestressed reinforcement is limited to $6 \mathrm{Vf}^{\prime} \mathrm{c}$, and positive moment stresses is limited to $2 \mathrm{vf}^{\prime} \mathrm{c}$.

The flooring system also contains spandrel beams at the perimeter of the post tensioned slab. These beams are reinforced concrete. The beams are 5,000 psi and 18 by 24 inch rectangular beams. The first step in the beam design was to find the factored load and moment and shear demand.

Once the load and moment values were calculated, the capacity of the section was checked. The maximum nominal moment is calculated first, and knowing $b d^{\wedge} 2$, one can calculate rho and determine the required steel.

Once the compression and tension steel is found, the available moment capacity is found. If the moment capacity is higher than the moment found in the beginning of the design, no further check for moment capacity is needed.

The design needed to be checked for shear capacity as well. The shear strength of the concrete V_{c} is calculated and compared to the maximum shear Vu . If one half of the shear strength of the concrete is less than the ultimate shear, shear steel is needed. Two number 4 stirrups were placed with a spacing of 8 inches. Once the beam has been designed for shear and moment, deflection needs to be checked. If the deflection is less than the limit set by ACI 318 , the beam is sufficiently designed.

Columns

The columns were the next members to be reviewed. The columns used in this design were not prestressed, but reinforced concrete. There were five different column designs used in this structure, according to the design drawings provided. Only five were used for constructability reasons. For the peer review, I checked three representative columns. These were one interior column, one column on the corner of the slabs, and one located at the end of a slab in the middle of the wall, not at either corner. These three different columns were sufficient to check the accuracy of the column design.

Figure 5: Column specifications
Column concrete strength was listed as 5,000 psi. Since columns support the entire building load above it, the first and second floor columns would have the highest loading, while columns on the $5^{\text {th }}$ floor would be subject to much lower loading.

The first step towards review was finding the tributary area and loading. This was done simply by calculating the loads for each of the floors above the second, as well as the weight of the upper floor columns as well. The tributary area was found to be 31.5×30 feet for interior columns. With the loading found, the next step was to find the gross area of the columns, which was found using the formula $\mathrm{Ag}=\mathrm{Pu} / \Phi^{*} \alpha^{*}\left(.85 \mathrm{f}^{\prime} \mathrm{c}+\mathrm{pg}\right.$ (Fy-.85f'c).

The columns had a K value of 1.0. The story height was also found to be less than 12 times h , so slenderness could be neglected. The area of steel was found next. The next steel that needed to be found was the ties. There are two different types of tie used in column design: lateral ties and spiral ties. For the columns in this design, lateral ties were used. The tie spacing cannot exceed the least column dimension, 48 tie bar diameters or 16 longitudinal bar diameters, whichever value is lowest. There is also moment in the column, which means there will be shear that will also act on the stirrups.

Once the column size and steel are designed, P-M diagrams needed to be created. P-M diagrams are created using 5 points on the load vs. moment graph. P-M diagrams also display the eccentricity at these points.

The first point of an interaction diagram is found when you set F_{s} equal to $F_{y} . \epsilon_{u}$ is assumed to be equal to .003 in this case. ϵ_{v} is found as the product of F_{u} / E_{s}, or the ultimate strength divided by the modulus of elasticity for the steel. The depth, d, is found as the length of a side of the column minus the cover minus the diameter of the steel tie and finally subtracting half the diameter of the reinforcing bar. C can be found once these values have been found. Once the value of C_{b}, or C balanced, has been found, C is found. C is equal to $.85 \mathrm{f}_{\mathrm{c}}{ }^{*} \mathrm{a}^{*}{ }^{*}$. C_{b} is the distance in the compression block where balanced failure happens. The nominal load P_{n} and nominal moment M_{n} are found after and plotted on the interaction diagram. The eccentricity is also marked on the interaction diagram, typically as a dashed line leading to the point.

The next point on the diagram is found in a very similar fashion. The only difference is a smaller value is chosen in place of C_{b}. This means that the value is in the tension failure area of the interaction diagram. The same formulas are followed after this, and a new point can be added to the interaction diagram.

The third point on the diagram is found through a similar procedure. This time around, a C value higher than C_{b} was chosen, to see how the column reacted to compression failure. Since the column is made of concrete, it can be assumed that the values associated with compression failure would be higher than tension failure.

The fourth point is found when C is infinite. When C is infinite, the eccentricity will be 0 . Under this condition, there will be no moment, only a load. This point is found on the Y axis of interaction diagrams. The final point is a pure moment load.

When an edge or side column is reviewed as opposed to an interior column, the tributary area will be lower. This means that the load becomes lower. This is counterbalanced however, with a much higher eccentricity. Another factor to take into account is constructability. It is much easier for a construction crew to create the same size column multiple times, instead of many different size columns. This helps account for the uniform nature of the columns found in this design.

Shear Walls

A shear wall is a member of a structure that is designed for the lateral load demands on the structure. These loads are typically wind and earthquakes. Similar to the columns in this structure, the shear walls are made of reinforced and not prestressed concrete. These walls work as a large cantilever beam jutting from the base of the building. This structure has three shear walls, one near the stairs, one near the elevator, and one in the north east corner of the structure. The review of shear walls was completed while using a journal article titled "Time Saving Design Aids for Reinforced Concrete. ${ }^{4 "}$

Because shear walls are subject to more diverse loading, a new load combination was needed. Once the new load combination was found, the loads due to wind and earthquake needed to be calculated. The shear walls were a foot thick and 5,000 psi concrete. A new floor starts every 10.5 feet.

The shear load on the shear walls was first checked at the first floor. This floor was subject to the largest loading and therefore would have the highest demand for a shear wall. First, the total shear was calculated. Then the nominal shear, $\phi \mathrm{V}_{\mathrm{c}}$ was found. Because the ultimate shear is higher than the nominal shear strength of the concrete, horizontal reinforcing steel was needed. The amount of required horizontal shear reinforcement is decided using table 6.5 from the guide referenced above. The required vertical reinforcement is then found. For the first floor, \#6 bars at a spacing of 12 inches were calculated.
${ }^{4}$ Fanella, David A. "Time Saving Design Aids for Reinforced Concrete." Structural Engineer (2001): 42-47. Web. [https://engineering.purdue.edu/~frosch/CE576/Time\ Saving\ Design\ Tips/Time\ SavingColumns\&Walls.pdf](https://engineering.purdue.edu/~frosch/CE576/Time%5C%20Saving%5C%20Design%5C%20Tips/Time%5C%20SavingColumns%5C&Walls.pdf).

The second floor calculations were completed using the same methodology. First the horizontal shear reinforcement was found, followed by the vertical. The upper level floors were apparently given the same bar spacing as well, for the sake of constructability and simplicity. Though this simplifies the construction, it is a more costly option.

Shear walls resist overturning moment as well as shear forces. The overturning moment essentially is the force that attempts to destabilize the structure by lifting and overturning it. Shear walls need to be designed to withstand the moment that loading offers without overturning. In order to design the shear walls for overturning, moment load and axial load are calculated for each floor. The moment strength was then checked based on the required vertical shear reinforcement. The area of the steel, ω, α and $c / l w$ were found in order to calculate the available moment. Once the available moment, $\phi \mathrm{Mn}$ was found, it was compared to the ultimate moment. If the available moment was larger than the ultimate, no more reinforcement was needed for moment. This process was repeated for each floor.

Structural Steel Flooring System

In order to satisfy the capstone design requirement, the floor framing were redesigned as structural steel instead of post tensioned concrete. Structural steel offers advantages over concrete. The steel layout chosen is a beam and girder system with a metal deck and concrete poured onto the decking. The decking provides a mold for the concrete, and shear studs are welded to the deck to facilitate composite action. The beams and girders were both wide flanged, also referred to as W shape beams.

The steel scheme started like its concrete counterpart, with loads being calculated. Due to the smaller depth of the concrete, the dead load is much less for the steel scheme. The Scheme consists of 30 foot beams and 31.5 foot girders on the outer spans and 30 foot girders in the inner span. The beams were spaced at 10 foot intervals.

Figure 6: Beam and girder layout for the $5^{\text {th }}$ and $6^{\text {th }}$ floor respectfully. All beams are 30 feet long and are connected to girders on both ends. The numbers in parenthesis on the beams are the number of shear studs needed. Steel decking and 5 inch concrete slabs are to be placed atop this girder and beam layout.

The first calculation was a plastic capacity calculation for the beam. The ultimate moment due to loading was found initially. Then the moment was divided by ϕf_{y} to find the value of Z_{x}. Once Z_{x} was found, a trial size for the beams could be selected. This selection was from table 3.2 from the AISC steel
construction manual. Once the trial beam size was found, a new dead load was calculated taking selfweight of the beam into account. The beam choice was checked by comparing the new allowable moment to the new ultimate moment due to loading. This process needed to be repeated until the allowable moment was higher than the moment due to loading.

Once a beam size is selected, it needs to be checked against deflection. The deflection of a beam when only dead load is considered has to be below length over 360, whichever is smaller. This ensures the flooring won't be so slanted it causes issues. In order to calculate deflection, the moment of inertia I_{x} needed to be obtained from table 3.3 of the AISC manual. The beam chosen for the design scheme was found to be sufficient, but if it was not a new beam would be selected for a higher moment of inertia from table 3.3. After that deflection case was tested, a second case involving full dead load and half live load was tested. Since this had a higher load, the allowable deflections were higher as well. The new limits used were length divided by 240 or 1.5 inches, which ever was smaller.

After the beam was checked for deflection limit state, it was time to find a girder size. The method for finding a girder size is the same as for beams. The girders will naturally be larger than beams, because girders have to support the flooring and the beams, as well as self-weight. The final beam and girder sizings for the $6^{\text {th }}$ and $5^{\text {th }}$ floors can be found in the table below.

Once the girder and beam sizes were established, the decking and concrete flooring were designed. The depth of the concrete slab was designed as 5 inches. The concrete was 4000 psi concrete. The shear studs along the decking were $3 / 4$ inch diameter studs.

A composite beam was calculated next. In order to find a new beam, the value of B_{e} was found. B_{e} is twice the value of the lesser of length over 8 and beam spacing over two. In this case B_{e} was found to be 90 inches. The next value found was $Y 2$. $Y 2$ is the thickness of the concrete minus $a / 2$. With these values, a new beam can be chosen from table 3-19 of the AISC steel manual. Once a new beam is
chosen, a and Y 2 need to be recalculated. The shear capacity $\sum \mathrm{Q}_{\mathrm{n}}$ was then found for the beam, and with the shear capacity the moment capacity could be calculated. When compared to the moment load, it was found to be inadequate, so a new beam had to be chosen. The new beam was chosen for its $\sum Q_{n}$ value, so it was sufficient.

Figure 7: Steel decking before a concrete pour ${ }^{5}$
After these calculations the deflection of the new beam needed to be checked. The process was the same as detailed earlier. Once the deflection is checked the shear studs needed to be calculated.

The capacity per stud was calculated. Once the limiting stud capacity was found, the shear capacity was divided by the capacity per stud to find the number of studs needed.

5 "Construction Work: DECKING INSTALLATION." Construction Work. Web. 18 Apr. 2012. http://www.teachconstruction.org/2011/05/decking-instalation.html.

The design needed to be checked for unshored construction loads next. This check makes sure the design won't be too weak to support the forces construction will put on it. The loads taken into account were the weight of wet concrete, and the beam weight and construction live load. The construction live load was assumed to be roughly 20 psf. A load and moment were calculated for these weights, and they were tested against the allowable moment for the beam found in table 3.2. Deflection during unshored construction was also calculated.

The next step in the process was to design for full composite. Composite is the term for the concrete slab and steel decking and beams working as one member. The principles behind can be compared to the principles behind the positioning of prestressing tendons. The steel is located on the bottom of the slab to handle tension forces, while the concrete handles compression forces. Full composite is typically less advantageous then its partial counterpart, as it is more cost effective than full composite, due to less materials and less welding. Partial composite is similar to full composite, but uses less shear studs to accomplish the same uses. Both full and partial composite is more cost effective than a noncomposite design.

The first step in full composite calculations is calculating a new shear capacity $\sum \mathrm{Q}_{n}$. The capacity per shear stud remains the same, so the number of studs does not change dramatically. In order to check if shear composite is possible, the value a needed to be calculated again. As long as "a " was not larger than the thickness of the concrete, full composite was possible.

The next step in the design was to check how much composite capacity was needed. This is checked by using table 3-19. This table shows the moment values at different levels of the partial neutral axis. The further down the steel the partial neutral axis is, the more steel is in tension. Once the partial neutral axis was located, a deflection check was performed. Once the deflection was found to be sufficient, the number of shear studs needed was calculated. The capacity per stud remained the same,
but the shear capacity $\sum \mathrm{Q}_{\mathrm{n}}$ was dramatically lower, allowing for fewer shear studs to be needed. The shear studs for the $6^{\text {th }}$ floor, for example, went from 21 to 7 studs. Once the shear studs were found, the beam design was completed. The girders were designed for the decking slab next. The girders were designed as described previously.

Once the interior beams and girders were designed, spandrel beams and girders were designed. The spandrel beams and girders were designed separately, because they have higher loading due to the shear walls. The beams and girders were designed in the same way as the interior beams and girders, but they had half the tributary area and a much higher dead load. The final floor design layouts can be found in figure 6 above.

Results and Conclusions

The Massachusetts College of Pharmacy and Health Sciences peer review reviews a six story post tensioned concrete building currently being erected in Worcester, Massachusetts. Souza, True and Partners is the structural engineering firm responsible for the design of the building. The building was designed for office space, lecture halls, and laboratories. This post tensioned structure was reviewed for slab, column, and shear wall design. The design checked for both gravity and lateral loading. The loads were all supplied by the design plans. All designs were performed according to Load and resistance factor design, as well as the American Concrete Institute manual ACI 318 08, and American institute of steel construction CAPS manual.

The floor slabs were the first aspects reviewed. The $2^{\text {nd }}$ through $5^{\text {th }}$ floor slabs were uniform, and exposed to the same loading. The $6^{\text {th }}$ floor had a higher live load and the first floor had higher loading as well. Due to this uniform loading, only the $6^{\text {th }}$ and $5^{\text {th }}$ floor slabs were reviewed. The slabs were found to be satisfactorily designed, and adequately resistant to both shear and moment.

The next aspect reviewed was the columns. These columns were comprised of reinforced concrete, as opposed to the post tensioned concrete used in other aspects of the building. The building only had 5 different configurations of columns, and only three were used frequently. One column type was used for interior columns, one for corner columns, and one for center exterior columns. The difference in columns can be attributed to a difference in the loading and tributary area. Though columns on the third floor had higher loads than columns on the fourth floor, the same sizes were used. This was mainly for ease of construction. Interaction diagrams were created for the columns.

The lateral loading for the building was handled by shear walls. These shear walls are effectively large cantilever beams, that take wind and earthquake loads with minimum displacement. These shear walls supply the rigidity for the structure.

An alternate design for the floor slabs using structural steel beams and girders was completed as well. The floor deck itself was a metal decking with a 5 inch thick concrete slab. The floor slab was checked for unshored construction, as well as full and partial composite action. The slab design was checked for deflection as well. The dead loading for this scheme was much lower than the post tensioned slab. This is due to the high weight of concrete as opposed to steel.

The superstructure peer review of MCPHS was a culmination of the design courses taken over the past few years. The building materials used included post tensioned concrete, reinforced concrete, and steel design. All aspects that were reviewed were found to be satisfactory. In some cases, such as the columns in the upper levels, the building is over designed for ease of construction and repeatability. Though not all aspects were checked, a sufficient amount of the design was investigated to assume that the engineer of record was competent and correct in his design process.

Appendix

$2^{\text {nd }}$ Floor slab design excel sheet

2nd floor Floor slab.
Givens

Concrete		Steel		Dimensions		
F'c	5000	PSI	As	0.153	in^2	93
				X 90		
F'ci	3333.33	PSI	Es, Eps	0	Psi	
Fy	60000	PSI	Fpu	270000		
Lump Sum Losses	33000	Psi				

Friction is not included
Assume a y of roughly 9 inches, because it cannot be found without knowing slab thickness.

$x=30 \quad$ alpha= $8 \mathrm{y} / \mathrm{x}$		
prestress loss due to friction= 524		
total prestress loss=	85448	
$\mathrm{fps}=.7 * \mathrm{fpu}$	189000	Psi
Fpe	103553	Psi
Fpy	240000	Psi

Max fc due to stresses=. $45 f^{\prime} \mathrm{c}$
2250

Trial slab thickness
$h=($ height $\times 12) / 2^{*}(1 / 45)$
$h=8$ Inches
$\mathrm{Ac}=\quad 96 \mathrm{in}^{\wedge} 2 \quad$ per square foot
Loads
Corridors
80 psf
Elevator Machine Rooms
150 psf
Ceilings
5 psf
DLS
Service
10 psf
Ceilings
Self-Weight
5 psf
96.66 psf

Total DL 111.66
Total LL 85

Total
196.66

Load

From equation 9.10b $\mathrm{C}=(1-.63 \mathrm{x} / \mathrm{y})\left(\mathrm{x}^{\wedge} 3 \mathrm{y} / 3\right.$				
$\mathrm{x}=10$	Inches	$y=$	24	inches
$\mathrm{C}=\quad 5900$				
torsional stiffness of the slab at the column line				
$\mathrm{Kt=sum}(9 \mathrm{EcsC} / \mathrm{L} 2(1-\mathrm{C} 2 / \mathrm{c} 1)$)				
Kt= 2177.02				
Kec=(1/Kc+1/Kt)^-1				
Kec= 524.63				
Slab stiffness				
Ks=4Eclc/(Ln-C1/2)	for interior Columns			
307.2				
Ks=4Eclc/(Ln-C1/2)	For exterior Columns			
317.7931				
DF for a $=\mathrm{Ks} /$ sum (K)				
DF for outer joint A slab		0.36		
DF for left joint B slab		0.267		
DF for right joint B slab		0.267		
DF for left joint C slab		0.270		
Work Load Check				

Fixed end moment for exterior spans

$\mathrm{FEM}=\mathrm{WL} \wedge 2 / 12$	
$\mathrm{FEM}=$	127526.4

Fixed end moment for interior spans

$\mathrm{FEM}=\mathrm{WL} \wedge 2 / 12$	
$\mathrm{FEM}=$	89684.5

$\mathrm{COF}=\quad 0.5$

	A		B		C	
		0.26721	0.26721		0.26721	
DF	0.364662	8	8	0.269703	8	
COF	0.5	0.5	0.5	0.5	0.5	
\quad FEM		127.526	89.6845		127.526	
X10^3 in-	127.526392	4	3	89.684532	4	
\quad lb						
		34.0773			34.0773	
DIST	46.5040294	2	23.9653	24.188185	2	
		23.2520	12.0940			
CO	17.0386621	1	9	11.982652		
		6.21335	3.23175			
DIST	6.21335261	3	7	3.231757		
\quad Final	-70.197053	178.642	-81.0451			
\quad Mnet		4				

*10^3 per
ft
$V c$ is equal to the lowest value of the next three equations
$V c=(2+4 /$ beta $)$ sqrt $\left(f^{\prime} c\right)$ bod
$V c=$
$V c=($ alphasD $/$ bo +2$)$ sqrt $\left(f^{\prime} c\right)$ bod
$V c=$
$V c=4 s q r t\left(f^{\prime} c\right)$ bod
$V c=\quad 42426.4$

Tensile strength at support
beta=
bo=30
$\mathrm{d}=$
alpha=
according to figure

1 9-11

30
5
40 interior
30 exterior

Mnet=Mnet-Vc/3 b
Mnet= 56054.9175
$\mathrm{S}=\mathrm{bh}$ ^2/6 $\mathrm{S}=$ 200
$\mathrm{ft}=-\mathrm{P} / \mathrm{A}-\mathrm{M} / \mathrm{s}=$
Allowable ft=6sqrt(f'c)
143.84
424.26

Tensile Strength at midpoint
Mnet,max=WL^2/8-FEM 53481
midspan
ft $\quad 130.97$

Design Moments Mu

FEMbal=Wbal*L^2/12
Span AB or CD
FEMbal= 67616.1

Span BC
FEMbal= 87315.47

	A		B		C	
		0.26721	0.26721		0.26721	
DF	0.364662	8	8	0.269703	8	
COF	0.5	0.5	0.5	0.5	0.5	
FEM	67.6161081	67.6161	87.3154		67.6161	
X10^3 in-						
lb		1	7	87.315468	1	
		18.0682	23.3322		18.0682	
DIST	24.6570253	3	5	23.549241	3	
		12.3285	11.7746			
CO	9.03411441	1	2	11.666124		

		3.29439	3.14638	
DIST	3.29439824	8	8	3.1463884
\quad Final				
Mnet $* 10^{\wedge} 3$ per ft	-37.219367	94.7184	-78.9042	
\quad				

Span AB					
e=	0				
Mbal=	37219.36				
Ms=	37219.36				
FEMu=WuL^2/12					
FEMu=	267907.5				
Span BA					
e=	4				
M1=PeE					
M1=	65486.6				
Mbal=	94718.45				
Ms=	29231.85				
Span BC					
e=	4				
M1 $=$	65486.6				
Mbal=	78904.2				
Ms=	13417.6				
FEMu=	243000				
	A	B		C	
		0.26721	0.26721		0.26721
DF	0.364662	8	8	0.269703	8
COF	0.5	0.5	0.5	0.5	0.5
		267.907			267.907
	267.9075	5	243	243	5
$\mathrm{X} 10^{\wedge} 3 \mathrm{in}-$ lb					
		71.5896	64.9339		71.5896
DIST	97.6956852	6	3	65.537822	6
		48.8478	32.7689		
CO	35.7948287	4	1	32.466965	
		13.0530	8.75643		
DIST	13.0530139	1	7	8.7564369	
$\begin{gathered} \text { Final } \mathrm{Mu} \\ { }^{*} 10^{\wedge} 3 \text { per } \\ \mathrm{ft} \end{gathered}$					
	-147.47	375.292	-219.591		

```
Vab=WuL/2-(Mu@b-Mu@a)/2
    4252.5 - 602.7
Vab= 3649.79633
C= 24
Centerline Mu=Mu-Ms
    110250.6
Req. column face Mu
    81052.26
req. Mn= 90058.0697
Joint B (BA) moment
Vba= 4855.20367
    c= 24
Mu= 346060.14
Required column face Mu
    307218.5
        1
Required Mn
    341353.9
        Joint B (BC)
Vbc=w*24/2
    3240
Mu= 206173.79
Req. Mu 180253.79
Req. Mn 200281.99
\begin{tabular}{lrr}
\multicolumn{2}{l}{ Factored Shear } & Ms \\
ab & 3649.79 & 37219.3 \\
ba & 4855.20367 & 29231.8 \\
bc & 3240 & 13417.6
\end{tabular}
Maximum positive moment Span \(A B\)
x=Vab/Wu
    1 2 ~ f t .
Max positive Mu=VabX-WuX^2/2-Mu-+ms
Mu= 66709.45
Req. positive Mn= 74121.6
Maximum positive moment span BC
Mu=Vbc*Ln/2-(Wu-L/2)*(L/4)
Mu= 317700
Mn= 353000
```

```
Flexural Strength Mn
As=.00075HLn
    2.79 inches ^2
try #4
bars area= 0.196
    14.21 needs }15\mathrm{ bars at . 3 inches a piece
As=
2.95
As per foot= 0.098 in^2
Pp=Aps/bd
    0 . 0 0 1 4 6
fps=Fpe+F'c/300Pp+10,000psi
    124937.7
Fps=fps*Aps*strand number/L
    19752.65
Fs=60,000*As/ft
    580.5
total force F/ft= 25643
a=AsFy+ApsFps/(.85*f'c*b)
    0 . 5 0 2 8 0 6
        6 inches
Bars and tendons should be placed at 12'-1', or 11 inch depth 11 inches
available Mn= 275627
required Mn= 200282
so no more moment strength is needed
a=Apsfps/.85f'cb 0.11
available -Mn=Apsfps(d-a/2)
negative Mn=
    216138.4
This is less than the required positive Mn, so it is unsatisfactory
try adding a #5 bar
As= 0.31
Asfy= 18407.8
a= 0.75
available +Mn
    4 0 5 4 8 7 . 9
satisfactory
```

Add a number 5 bar at the bottom fiber, and number 4 bars at the top fiber Width of column strip

```
    1 8 0 \text { inches}
```

assume 70% of strands are banded
.7*31 21.7
22 banded, 9 in the middle strip 22

9
column strip moment factor $=$
0.71

Middle strip moment factor=
0.29

Max total -M at column face $\mathrm{B}=$

6th floor slab design excel spreadsheet

6th floor Floor slab.
Givens

Concrete			Steel	Dimensions				
F'c	5000	PSI	As	0.153	in^2	93	X	90
F'ci	3333.3	PSI	Es, Eps	285000000	Psi			
Fy	60000	PSI	Fpu	270000				

Lump Sum Losses 33000 Psi

Friction is not included
Assume a y of roughly 9 inches, because it cannot be found without knowing slab thickness.
$\mathrm{K}=$

$\mathrm{x}=30$ alpha=8y/x prestress loss due to friction= total prestress loss $=$	85448	
fps=.7*fpu	189000	Psi
Fpe	103553	Psi
Fpy	240000	Psi

Max fc due to stresses=.45f'c 2250

Trial slab thickness

Total DL 111.6
Total LL 105
Total Load 216.6
$\begin{array}{crr}W u=1.2 \text { dead }+1.6 \text { live } & \\ W u= & 302 & \text { Psf } \\ L n= & 31 & \end{array}$
$2.4 \mathrm{mu}=.1$. 00125
$\begin{array}{lr}\mathrm{x}=30 \quad 2.4 \\ \text { prestress loss due to friction= } & 52447.5\end{array}$
total prestress loss= 85448

Use 93, because it will give the higher, and therefore more likely value per square foot

100 psf
150 psf
5 psf

10 psf
96.6 psf


```
Kt=
                3494.1
Kec=(1/Kc+1/Kt)^-1
Kec= 589.35
Slab stiffness
Ks=4Eclc/(Ln-C1/2) for interior Columns
307.2
Ks=4Eclc/(Ln-C1/2) For exterior Columns
317.7931
DF for a = Ks/sum(K)
DF for outer joint A slab 0.33
DF for left joint B slab 0.25
DF for right joint B slab 0.25
FDF for left joint C slab 0.25
Work Load Check
```

Fixed end moment for exterior spans
FEM=WL^2/12 Length for exterior spans 31.5
FEM= 130467.36

Fixed end moment for interior spans

$\mathrm{FEM}=\mathrm{WL} \mathrm{\wedge} 2 / 12$	Length for interior spans	30
$\mathrm{FEM}=$	92783.66	

$\mathrm{COF}=\quad 0.5$

	A			B	
DF	0.3386459	0.252976	0.252976	0.2552027	0.252976
COF	0.5	0.5	0.5	0.5	0.5
\quad FEM	130.467365	130.4674	92.78366	92.783661	130.4674
X10^3 in-					
\quad lb					
DIST	44.1822382	33.00517	23.47208	23.678639	33.00517
CO	16.502586	22.09112	11.83932	11.736041	
DIST	5.58853309	5.588533	2.995069	2.9950691	
\quadFinal Mnet	-75.371074	179.9751	-84.146		
*10^3 per					
\quad ft					

$V c$ is equal to the lowest value of the next three equations
Vc=(2+4/beta)sqrt(f'c)bod
$V c=$
$V c=($ alphasD/bo +2$)$ sqrt $\left(f^{\prime} c\right)$ bod
$V c=$
$V c=4 s q r t\left(f^{\prime} c\right)$ bod
$V c=50911.69$

beta $=$	1	according to figure 9-11
bo $=30$	30	
d=	6	
alpha $=$	40	interior
	30	exterior

Slab concrete tensile stress at support

Tensile strength at support					
Mnet=Mnet-Vc/3			$\mathrm{b}=$	12	inches
Mnet=	58400.51		height=	12	inches
$\mathrm{S}=\mathrm{bh}{ }^{\wedge} 2 / 6$	$\mathrm{S}=$	288			
$\mathrm{ft}=-\mathrm{P} / \mathrm{A}-\mathrm{M} / \mathrm{s}$		89.09			
Allowable ft	ft=6sqrt(f'c)	424.26			
Tensile Strength at midpoint					
Mnet, max $=$ WL^2/8-FEM					
55029.524					
ft					
Design Moments Mu					
FEMbal $=$ Wbal ${ }^{*}{ }^{\text {^^2 } 2 / 12 ~}$					
Span AB or CD					
FEMbal $=84520.1351$					
Span BC					
FEMbal $=102216.339$					
A		B		C	
DF	0.3386459	0.252976	0.252976	0.2552027	0.252976
COF	0.5	0.5	0.5	0.5	0.5
FEM	84.5201351	84.52014	102.2163	102.21634	84.52014
$\begin{gathered} \text { X10^3 in- } \\ \text { lb } \end{gathered}$					
DIST	28.6223972	21.3816	25.85833	26.085883	21.3816
CO	10.6908023	14.3112	13.04294	12.929164	
DIST	3.62039635	3.620396	3.299557	3.2995572	
Final Mnet					
*10^3 perft					
Span AB					
e= 0					
Mbal= 48827.33					
Ms= 48827.33					
FEMu=WuL^2/12					
FEMu= 299659.5					
Span BA					
$\mathrm{e}=$	5				

M1 $=$ PeE					
M1 $=$	81858.25				
Mbal=	116592.54				
$\mathrm{Ms}=$	34734.29				
Span BC					
e=	5				
M1 $=$	81858.2513				
Mbal=	92700.51				
$\mathrm{Ms}=$	10842.2587				
FEMu=	271800				
	A	B		C	
DF	0.3386459	0.252976	0.252976	0.2552027	0.252976
COF	0.5	0.5	0.5	0.5	0.5
FEM	299.6595	299.6595	271.8	271.8	299.6595
$\begin{aligned} & \text { X10^3 in- } \\ & \text { lb } \end{aligned}$					
DIST	101.478461	75.8068	68.759	69.364087	75.8068
CO	37.9033996	50.73923	34.68204	34.379501	
DIST	12.8358309	12.83583	8.773741	8.7737406	
Final Mu					
${ }^{*} 10^{\wedge} 3 \text { per }$	-173.11347	413.3697	-246.497		


```
Bars and tendons should be placed at \(12^{\prime}-1\) ', or 11 inch depth available \(\mathrm{Mn}=\quad 292168.9\)
required \(\mathrm{Mn}=\) 229625
so no more moment strength is needed
\(\begin{array}{ll}\text { a=Apsfps/.85f'cb } & 0.14\end{array}\)
available \(-\mathrm{Mn}=\operatorname{Apsfps}(\mathrm{d}-\mathrm{a} / 2)\)
negative \(\mathrm{Mn}=\)
220282.58
This is less than the required positive Mn , so it is unsatisfactory
try adding a \#5 bar
As= \(\quad 0.31\)
Asfy= \(\quad 18407.7\)
\(a=\quad 0.75608666\)
available +Mn
409587.11
satisfactory
```

Add a number 5 bar at the bottom fiber, and number 4 bars at the top fiber Width of column strip

180 inches
assume 70% of strands are banded
$53114.29 \quad 19121.14$
.7*31
21.7

22 banded, 9 in the middle strip
22
9
column strip moment factor $=\quad 0.709677$
Middle strip moment factor= 0.290323

Max total -M at column face B= $\quad 179975.1$
Max total +M at midspan= $\quad 73626.19$

Second Floor Interior column Excel Spreadsheet

Column Design	2nd floor interior					
length 10.5	Ft					
f'c 5000	psi(Assumed)					
		As	0.153	$\mathrm{in}^{\wedge} 2$	Phi=	
F'ci 3333.333	PSI	Es, Eps	$2.85 \mathrm{E}+08$	Psi	alpha=	
Fy 60000	PSI	Fpu	270000		pg=	
$\mathrm{fps}=.7$ *fpu	189000	Psi			beta=	
Effective area of support						
31 ft by 30 ft	930	$\mathrm{ft}^{\wedge} 2$				
Roof load=	466.3					
6th floor load=	358					
6th floor column weight=						
	6300	lbs				
5th floor load=	296					
Column weight=	6300					
4th floor load=		psf				
Column weight=	6300					
3rd floor load=						
Column weight=	6300					
total $\mathrm{Pu}=$	1617639					
	1617.6					
Trial size						
Ag=Pu/ $\Phi^{*} \alpha^{*}\left(.85 f^{\prime} \mathrm{c}+\mathrm{pg}\right.$ (Fy-.85f'c)						
$\mathrm{Ag}=\quad 525.26$	$\mathrm{in}^{\wedge} 2$	22.9	576			
assume a trial size of 24×24, or $576 \mathrm{in}^{\wedge} 2$						
$\mathrm{Ag}=\quad 576 \mathrm{in}$ ^2						
trial $\mathrm{h}=\quad 24$						
Short or slender						
$\begin{array}{ll} \mathrm{l} / \mathrm{h}= & 5.25 \\ \text { short column } \end{array}$						
assume a fixed fixed colur	lumn, so K=1.0					

[^2]$\mathrm{As}=\mathrm{pg}^{*}$ area of the column
17.28 in^2
1.44
diameter of steel= $\quad 1.41$
Nominal Area= 1.56
use $\quad 12$ \#11 bars
As= $\quad 18.72$
Check using Φ Pn $=.8^{*} \Phi\left[.85^{*} f^{\prime} c(A g-A s t)+f y A s t\right]$ $.8^{*} .65 *(.85 * 5000 *(576-18.72)+(60 * 18.72))$
ФPn= 1815.6 Kips $\quad 1617.6$ so the section checks use \#4 lateral ties.
diameter ties= 0.5 in
16 long. Diameters
22.56

48 tie bar diameters
24
Least Column dimension
25
tie spacing cannot exceed 22.56 in.
Clear spacing
7.885
use cross ties, because spacing is greater than 6 inches

P-M diagrams	$(\mathrm{Fs}=\mathrm{Fy})$
assume $\varepsilon u=$	0.003
$\varepsilon y=\mathrm{Fu} / \mathrm{Es}=$	0.0021053

d=h-cover-diameter of tie-1/2 diameter of reinforcing bar
d'= $\quad 22.795$ In
$\mathrm{Cb}=13.395 \mathrm{In}$
depth $\mathrm{a}=.85^{*} \mathrm{Cb} \quad 11.4$ in
$\mathrm{f}^{\prime} \mathrm{s}=\varepsilon \mathrm{u}^{*} \mathrm{Es}\left(\mathrm{Cb}-\mathrm{d}^{\prime}\right) / \mathrm{Cb}$
$77.8 \leq 60 \mathrm{ksi}$
C=.85f'c*a*h
1161347 lbs As=4
1161.347 kips A's=4

Pn=.85*f'c*a*b+AsFs-A'sF's
$\mathrm{Pn}=\quad 1161.347$
$\mathrm{Mn}=\mathrm{Pn}{ }^{*} \mathrm{e}=.85 * \mathrm{f}^{\prime} \mathrm{c}^{*} \mathrm{a}$ *b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2)
12506.36 kip inches

Second Floor Exterior Middle Column Excel Spreadsheet

Column Design		2nd floor exterior centered column				
length	10.5	Ft				
$\mathrm{f}^{\prime} \mathrm{c}$	5000	psi(Assumed)				
			As	0.153	in^2	Phi=
	3333.33					
F'ci	3	PSI	Es, Eps	$2.85 \mathrm{E}+08$	Psi	alpha=
Fy	60000	PSI	Fpu	270000		$\mathrm{pg}=$
fps=. 7 *fpu		189000	Psi			beta=

Effective area of support

17.5 ft by 30 ft	525	$\mathrm{ft} \wedge 2$
Roof load=	466.3	psf
6th floor load=	358	psf
6th floor column weight=		
	2275	lbs
5th floor load=	296	psf
Column weight=	6300	lbs
4th floor load=	296	psf
Column weight=	6300	lbs
3rd floor load=	296	psf
Column weight=	6300	lbs

total
Pu= 980132.5 lbs 980.1325 kips

Trial
size
$\mathrm{Ag}=\mathrm{Pu} / \Phi^{*} \alpha^{*}\left(.85 \mathrm{f}^{\prime} \mathrm{c}+\mathrm{pg}\left(\mathrm{Fy}-.85 \mathrm{f}^{\prime} \mathrm{c}\right)\right.$

$\mathrm{Ag}=$	318.3	$\mathrm{in} \wedge$	17.8	324

assume a trial size of 24×24, or 576 in^2
$\mathrm{Ag}=\quad 324 \mathrm{in}^{\wedge} 2$
trial $\mathrm{h}=18$
Short or slender
l/h= 7
short column
assume a fixed fixed column, so $K=1.0$
$12 h=$ 216 > story height, so slenderness can be neglected. (according to PDC handout)

```
As= pg*area of the column
    9.72 in^2
    0 . 8 1
diameter of steel= 1.27
Nominal Area= 1.27
use 8 #10 bars
As= 10.16
```

Check using Φ Pn $=.8 * \Phi\left[.85^{*} \mathrm{f}^{\prime} \mathrm{c}(\mathrm{Ag}-\mathrm{Ast})+\mathrm{fyAst}\right]$
$.8 * .65 *(.85 * 5000 *(576-18.72)+(60 * 18.72))$
ФPn= 1010.5 Kips > 980.1325 so the section checks
use \#3 lateral ties.
diameter ties= 0.375 in
16 long. Diameters
20.32
48 tie bar
diameters
18
Least Column dimension
18
tie spacing cannot exceed 18 in.
Clear spacing
8.095 in
use cross ties, because spacing is greater than 6 inches

P-M diagrams	(Fs=Fy)
assume $\varepsilon u=$	0.003
$\varepsilon y=F u / E$	0.002105
s	3

d=h-cover-diameter of tie-1/2 diameter of reinforcing bar
d'= $\quad 16.99$ In
$\mathrm{Cb}=\quad 9.98 \mathrm{In}$
8.486242
depth $\mathrm{a}=.85^{*} \mathrm{Cb}$
3 in
f's= $\varepsilon u^{*} \mathrm{Es}(\mathrm{Cb}-$
d')/Cb
$25.4673 \quad \leq 0$ ksi
C=.85f'c*a*h
649197 lbs
$A s=4$

$$
\begin{array}{ll}
193.5 & \text { kip feet } \\
\mathrm{e}= & 1.83492 \text { Inches }
\end{array}
$$

Set C to infinite and e=0
Fs $\quad=\quad 60 \quad \mathrm{ksi}$
$\mathrm{Pn}=.85 * \mathrm{f}^{\prime} \mathrm{c}^{*} \mathrm{a} * \mathrm{~b}+\mathrm{AsFs}$
$\mathrm{Pn}=\quad 1857$

2nd Floor Edge

Column Design		2nd floor edge					
length	10.5	ft					
$\mathrm{f}^{\prime} \mathrm{c}$	5000	psi(Assumed)					
			As	0.153	in^2	Phi=	0.65
	3333.33						
F'ci	3	PSI	Es, Eps	$2.85 \mathrm{E}+08$	Psi	alpha=	0.8
Fy	60000	PSI	Fpu	270000		$\mathrm{pg}=$	0.03
fps=. $7 *$ fpu		189000	Psi			beta=	1.2

Effective area of support
17.5 ft by $16.75 \mathrm{ft} \quad 293.125 \mathrm{ft}^{\wedge} 2$

Roof load= 466.3 psf
6th floor load= 358 psf
6th floor column weight=
2275 lbs
5th floor load= 296 psf
Column weight= 6300 lbs

4th floor load= 296 psf
Column weight= 6300 lbs

3rd floor load=	296	psf
Column weight $=$	6300	lbs

total
Pu= 591592.4 lbs
591.5924 kips

Trial size
$\mathrm{Ag}=\mathrm{Pu} / \Phi^{*} \alpha^{*}\left(.85 f^{\prime} \mathrm{c}+\mathrm{pg}\left(\mathrm{Fy}-.85 f^{\prime} \mathrm{c}\right)\right.$
192.094
$\mathrm{Ag}=\quad 3 \mathrm{in}{ }^{2} \quad 13.85$
196
assume a trial size of 24×24, or 576 in^2
$\mathrm{Ag}=196 \mathrm{in}^{\wedge} 2$
trial $\mathrm{h}=\quad 14$
Short or slender
l/h=
9
short column
assume a value of 500 pounds per linear foot per floor for outside façade

68500
$(17.5+16.75) * 500 * 4$ floors
assume a fixed fixed column, so $K=1.0$
$12 \mathrm{~h}=168>$ story height, so slenderness can be neglected. (according to PDC handout)

As $=p g^{*}$ area of the column
$5.88 \mathrm{in}^{\wedge} 2$
0.49
diameter of steel= $\quad 1.41$
Nominal Area= 1.56
use 4 \#4 bars
As=
6.24

Check using $\Phi P n=.8^{*} \Phi\left[.85^{*} f^{\prime} \mathrm{c}(\mathrm{Ag}-\mathrm{Ast})+\mathrm{fy}\right.$ Ast $]$
.8*.65*(.85*5000*(576-18.72)+(60*18.72))
ФPn= 614.056 Kips $\quad>91.5929$ so the section checks
use \#3 lateral ties.
diameter ties= 0.375 in
16 long. Diameters
22.56

48 tie bar
diameters
18
Least Column dimension
14
tie spacing cannot exceed 14 in.

Clear spacing

7.885
use cross ties, because spacing is greater than 6 inches

P-M diagrams	$(\mathrm{Fs}=\mathrm{Fy})$
assume $\varepsilon u=$	0.003
$\varepsilon y=F u / E$	0.002105
$\mathrm{~s}=$	3

$d=h$-cover-diameter of tie-1/2 diameter of reinforcing bar
$d^{\prime}=\quad 12.92$ in
$\mathrm{Cb}=7.59215$ in

```
                                    6.453340
depth a=.85*Cb 2 in
f's= \varepsilonu*Es(Cb-
d')/Cb
    39.2 \leq 60 ksi
C=.85f'c*a*h
```

```
    383973.
        7 \text { lbs As=4}
    383.973
        7 kips A's=4
Pn=.85*f'c*a*b+AsFs-A'sF's
                185.416
    Pn= 5
    Mn=Pn*e=.85*f'c*a*b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2)
    1304.31
        4 kip inches
        108.692
            9 kip feet
        e= 7 inches
        Choose a C smaller than the previous C
Cb}
                5 in
depth a=.85*Cb 4.25 in
f's= \varepsilonu*Es(Cb-
d')/Cb
    103.968 \leq 60 ksi
C=.85f'c*a*h
    162562.
        5 ~ l b s ~ A s = 3
        162.562
            5 kips A's=3
Pn=.85*f'c*a*b+AsFs-A'sF's
Pn= -75.061
Mn=Pn*e=.85*f'c*a*b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2)
    447.234 kip inches
    37.2695 kip feet
e= 5.95829 inches
Choose a C larger than the previous C
Cb}=14 i
depth a=.85*Cb 11.9 in
fs= \varepsilonu*Es(d'-C)/C
6 . 5 9 5 7 1
6 . 5 9 5 7 1
    4
```

```
f's= \varepsilonu*Es(Cb-
d')/Cb
    12.5 \leq 60 ksi
C=.85f'c*a*h
    7 0 8 0 5 0 ~ l b s ~ A s = 3
    708.05 kips A's=3
Pn=.85*f'c*a*b+AsFs-A'sF's
        719.887
Pn=
Mn=Pn*e=.85*f'c*a*b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2)
    760.708 kip inches
    63.3923 kip feet
    e= 1.05673 inches
Set C to infinite and e=0
Fs = 60 ksi
Pn=.85*f'c*a*b+AsFs
Pn= 1073
```

Since the moment and Pn are negative for one value, a larger column is needed

Column Design		2nd floor edge					
length	10.5	ft					
$f^{\prime} \mathrm{c}$	5000	psi(Assumed)					
			As	0.153	in^2	Phi=	0.65
	3333.33						
F'ci	3	PSI	Es, Eps	$2.85 \mathrm{E}+08$	Psi	alpha=	0.8
Fy	60000	PSI	Fpu	270000		$\mathrm{pg}=$	0.03
$\mathrm{fps}=.7$ fpu		189000	Psi			beta=	1.2

Effective area of support
17.5 ft by $16.75 \mathrm{ft} 293.125 \mathrm{ft} \wedge$ Roof load= 466.3 psf 6th floor load= 358 psf
6th floor column weight=
2275 lbs
assume a value of 500 pounds per linear foot per floor for outside façade

68500
$(17.5+16.75) * 500 * 4$ floors

22.56

48 tie bar
diameters
18
Least Column dimension
14
tie spacing cannot exceed 14 in.

Clear spacing
7.885
use cross ties, because spacing is greater than 6 inches

P-M diagrams	(Fs=Fy)
assume $\varepsilon u=$	0.003
$\varepsilon y=F u / E$	0.002105
s	3

d=h-cover-diameter of tie-1/2 diameter of reinforcing bar
d'= 22.92 in
13.4684
$\mathrm{Cb}=\quad 5$ in
depth $\mathrm{a}=.85^{*} \mathrm{Cb} \quad 11.4$ in
$f^{\prime} s=\varepsilon u^{* E s}(C b-$
d')/Cb
78.6439
$8 \quad \leq \quad 60 \mathrm{ksi}$
C=.85f'c*a*h
116771
5 lbs As=4
1167.71

5 kips A's=4
Pn=.85*f'c*a*b+AsFs-A'sF's
1167.71
$\mathrm{Pn}=$
5
$\mathrm{Mn}=\mathrm{Pn}$ *e=. $85^{*} \mathrm{f}^{\prime} \mathrm{c}^{*} \mathrm{a}$ *b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2)
9949.27

1 kip inches
829.105

9 kip feet
8.5
$e=\quad 1$ inches

Choose a C smaller than the previous C
$\mathrm{Cb}=\quad 5$ in

```
depth a=.85*Cb 4.25 in
f's= \varepsilonu*Es(Cb-
d')/Cb
    67.032 \leq 60 ksi
C=.85f'c*a*h
94828.1
        3 lbs As=3
    94.8281
        3 kips A's=3
Pn=.85*f'c*a*b+AsFs-A'sF's
Pn= 553.38
Mn=Pn*e=.85*f'c*a*b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2)
    2600.8 kip inches
216.734 kip feet
                    4 . 6 9 9 8 6
e= 7 inches
Choose a C larger than the previous C
Cb= 24 in
depth a=.85*Cb 20.4 in
fs= \varepsilonu*Es(d'-C)/C
    -3.8475
    3.8475
f's= \varepsilonu*Es(Cb-
d')/Cb
    57.3 \leq 60 ksi
C=.85f'c*a*h
    208080 lbs As=3
    2080.8 kips A's=3
Pn=.85*f'c*a*b+AsFs-A'sF's
                2187.70
Pn= 5
Mn=Pn*e=.85*f'c*a*b(H/2-a/2)+a'sf's(h/2-d')+AsFs(d-h/2)
5212.98 kip inches
434.415 kip feet
                            2.3
e= 3 inches
Set \(C\) to infinite and \(e=0\)
```


Shear Wall Excel Spreadsheet

```
Shear wall design
https://engineering.purdue.edu/~frosch/
CE576/Time\%20Saving\%20Design\%20Tips/Time\%20Saving-Columns\&Walls.pdf
```

Givens

1st, 6th floor

150	psf	
15		165

2-5th floor

	125 psf	
+	15	140

Earthquake loads
8704.8 1st floor
37497.6 2nd
56246.4 3rd
74995.2 4th

93744 5th
132580.8 6th

Area per floor

315 sq ft

Earthquake load is much greater than wind, so the load combo used will be $1.2 \mathrm{D} \pm 1.0 \mathrm{E}+0.5 \mathrm{~L}+0.2 \mathrm{~S}$

First floor load	251.1918	kips
second	242.1846	kips
third	260.9334	kips
fourth	279.6822	kips
fifth	298.431	kips
6th	375.0678	kips

Check shear strength in 1st story
1707.4908 kips
$\mathrm{Vu}=1.3^{*}$ total shear
2219.73804 kips
from table 6
ФVc=30*12.4
762.6 kips
$\Phi V s=A v F y d / s$
number 6 bars

$A v=$	0.441786
$F y$	60
$d=$	9.6
$s=$	12
ФVs	16.9646

from table 5 , use number 6 bars at a spacing of 12 inches

Check shear at 2nd story
$\mathrm{Vu}=1.3^{*}$ the floor loads except the 1st
1893.1887
still higher than Vc , so number 6 shear bars should be added at a spacing of 12 inches

Shear at 3rd floor
Vu=
1578.34872
as above, use number 6 bars at a spacing of 12 inches, both horizontally and vertically

Shear at 4th floor
Vu=
1239.1353

Use \#6 bars at a spacing of 12 inches for each floor

$\mathrm{Pu}=$	1020600	1020.6	kips
			foot
$\mathrm{Mu}=$	403768.8	403.7688	kips
2nd floor			
$\mathrm{Pu}=$	824040	824.04	kips
$\mathrm{Mu}=$	395064	395.064	ft. Kips
3rd floor		0	
$\mathrm{Pu}=$	627480	627.48	
$\mathrm{Mu}=$	357566.4	357.5664	

Check moment strength based on required vertical reinforcement for shear
Ast $=13.25359 \mathrm{in}^{\wedge} 2$
$\omega=\quad 0.052594$
$\alpha=\quad 0.084375$
c/lw= 0.174441
$\phi \mathrm{Mn}=\quad 169993.8$ in. kips
14166.15 ft -kips
moment is sufficient

2nd floor moment strength
Ast= $\quad 13.25359$
$\omega=\quad 0.052594$
$\alpha=\quad 0.068125$
c/lw= $\quad 0.153745$
$\phi M n=\quad 76313.12$ 6359.427

Moment is sufficient

3rd floor moment strength
Ast= $\quad 13.25359$
$\omega=\quad 0.052594$
$\alpha=\quad 0.051875$
c/lw= $\quad 0.133049$
$\phi M n=\quad 78179.41$
6514.95

Moment is sufficient

The moment values are quite higher than needed, so the wall is fine for moment and axial loads

5th Floor Steel Beam and Girder Excel Spreadsheet

Scheme 1

Off this we pick a W 18X35
with:

weight per foot	35	$\mathrm{lbs} / \mathrm{ft}$
Zx	66.5	$\mathrm{in}^{\wedge} 3$

New DL calculations
New DL=original DL + weight of beam

New DL	789.16	$\mathrm{lbs} / \mathrm{ft}$

Live load is the same

New U
$\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL}$

U	1787	$\mathrm{lbs} / \mathrm{ft}$

Mu=wL^2/8

| $M u$ | 201037.5 |
| :--- | ---: | :--- |
| $M u$ | $201 \mathrm{ft} / \mathrm{k}$ |

```
ФMp=ФZx*Fy
ФMp 249.375
```

the beam is sufficient

DEFLECTION CHECK

Case 1 LL only

Beam W 18X35

Deflection must be less than L/360 or 1 " whichever is smaller
Limit=L/360
Limit 1 Inch

So the deflection limit is the maximum, 1"

$\Delta=5 \mathrm{wL} \wedge 4 / 384 E l x$	
Δ	0.32

Ix
0.32 Inch

So we are okay

Case II Full DL + Half Live
Limit=L/240
Limit 1.5 Inch
$\Delta=5 w L^{\wedge} 4 / 384 E l x$
Δ
1.25 Inch

So the current beam is sufficient by Deflection

LL	Load
2100	70
lbs/ft	
Girder load Approx.	
Wdl=(DLsp+(Bea	weight/beams pacing))*Girder spacing

PLASTIC CAPACITY CALCULATIONS
Load Combinations
U=1.2D+1.6LL

| U | $6201 \mathrm{lbs} / \mathrm{ft}$ |
| :--- | :--- | :--- |

$\mathrm{Mu}=\mathrm{wL}$ ^2/8
Mu

Mu	769117.8	

$Z x$ required
Zx =Mu/Фfy
Zx $205.1 \quad \mathrm{in}^{\wedge} 3$

Off this we pick a W 24×84 girder with :
weight per foot $\quad 84 \mathrm{lbs} / \mathrm{ft}$

DEFLECTION CHECK

Case 1 LL only

	W
Girder	33×130

Deflection must be less than $\mathrm{L} / 360$ or $1^{\prime \prime}$ whichever is smaller
Limit=L/360
Limit 1.05 Inch

So the deflection limit is the maximum, $1^{\prime \prime}$

$\Delta=5 \mathrm{wL} \wedge 4 / 384 \mathrm{Elx}$	
Δ	0.3 Inch

Ix 2370 in^4 from Table 3.3

So we are okay
Case II Full DL + Half Live
Limit=L/240

| Limit |
| :--- | ---: | :--- |
| $\Delta=5 \mathrm{wL} \wedge 4 / 384 E l x ~$ |

Δ	1.575	Inch

So the current girder is sufficient by Deflection

FINAL beam and girder size	
	W
Typical Beam	18×35
	W
Typical Girder	24×84

6th Floor Steel Beam and Girder Excel Spreadsheet

Scheme 1

$M u=w L^{\wedge} 2 / 8$

Mu	236812.5
Mu	$236.8 \mathrm{ft} / \mathrm{k}$

Zx required
Zx =Mu/Фfy
Zx 63.15 in^3

Off this we pick a W 18×35
with :

weight per foot	35	$\mathrm{lbs} / \mathrm{ft}$
Zx	66.5	$\mathrm{in}^{\wedge} 3$

New DL calculations
New DL=original DL + weight of beam

New DL	789.16	$\mathrm{lbs} / \mathrm{ft}$

Live load is the same

New U

| $U=1.2 \mathrm{D}+1.6 \mathrm{LL}$ | |
| :--- | :--- | :--- |
| U | $2147 \mathrm{lbs} / \mathrm{ft}$ |

$M u=w L \wedge 2 / 8$
$\mathrm{Mu} \quad 241537.5$

Mu	241.5
ФMp= Φ Zx*Fy	
$\Phi M p$	249.375

the beam is sufficient

DEFLECTION CHECK

Case 1 LL only

Beam W 18X35

Deflection must be less than $\mathrm{L} / 360$ or $1^{\prime \prime}$ whichever is smaller Limit=L/360
Limit 1 Inch

So the deflection limit is the maximum, $1^{\prime \prime}$
$\Delta=5 \mathrm{wL} \wedge 4 / 384$ Elx

Δ	0.46	Inch

Ix 510 in^4
from Table 3.3

So we are okay

Case II Full DL + Half Live
Limit=L/240
Limit 1.5 Inch
$\Delta=5 \mathrm{wL}$ ^4/384Elx
$\Delta \quad 1.391417$ Inch

So the current beam is sufficient by Deflection

$31.5^{\prime} \mathrm{GIRDER}$					
DL superimposed	Slab	Services	Ceiling		
				Length	31.5
75.416	60.416	10	5	Spacing	30

LL	Load
3000	100
lbs/ft	
Girder load App	
Wdl=(DLsp+(Beam	weight/beams pacing))*Girder spacing
WDL	2367.5

PLASTIC CAPACITY CALCULATIONS

Load Combinations
$\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL}$

U	7641	$\mathrm{lbs} / \mathrm{ft}$

$\mathrm{Mu}=\mathrm{wL} \wedge 2 / 8$
Mu

Mu	947722.8	

Zx required
Zx =Mu/Фfy

Zx	252.7	$\mathrm{in} \wedge 3$

Off this we pick a W 30X90 girder with :

weight per foot	90	$\mathrm{lbs} / \mathrm{ft}$
Zx	283	$\mathrm{in}^{\wedge} 3$

DEFLECTION CHECK

Case 1 LL only

Girder W 30X90

Deflection must be less than $\mathrm{L} / 360$ or 1 " whichever is smaller
Limit=L/360
Limit 1.05 inch

So the deflection limit is the maximum, $1^{\prime \prime}$
$\Delta=5 \mathrm{wL}$ ^4/384Elx

So we are okay

Case II Full DL + Half Live		
Limit=L/240		
Limit	1.575	inch
$\Delta=5 \mathrm{wL}$ ^4/384Elx		
Δ	0.79	inch

So the current girder is sufficient by Deflection

FINAL beam and girder size	
	W
Typical Beam	18×35
	W
Typical Girder	30×90

5 inch Slab and Steel Decking for 5th floor Excel Spreadsheet

Scheme 1: 5" Slab

GIVENS:

Super Imposed Dead Load			Concrete	Services	ceilings	Type Load Unit
Total DL Unfactored	754.16	plf	60.41667	10	5	
			psf	psf	psf	
Total LL Unfactored	700	plf	plf=	pounds per linear foot		
	Governs					
Load Combinations						
$\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL}$						
U	2025	plf				

$\mathrm{Mu}=\mathrm{wL} \wedge 2 / 8$
Mu

| Mu | 227812.5 |
| :--- | ---: | :--- |

Picking a Preliminary Beam Size

Assuming $a=1$

Be Calculations		
Be/2 L / 8 beamspacing/2		
L/8	3.75	
beams pacing/2	5	
Be/2	3.75	
Be	7.5 ft	
Be	90	inches

$Y 2=t$ concrete-a/2
Y2
4.5

	Picked	W 12X22		
Depth	12.3	inches	Area	
Steel	$6.48 \quad$ in^2			
Weight	22	lbs/ft		

\square
e Calculation
$e=1 / 2$ (t concrete) + depth of beam/2

$e=$	8.65 inches

Q Qn Calculation $\Sigma Q n=A s * F y$
$\Sigma Q n=$
324 k

Section is inadequate

Pick a new beam
W 12X30

			Area				
Depth	12.3 inches	Steel	$8.79 \quad$ in^2				
Weight	30						

a Calculation
a=Fy*As/(.85*F'c*Be)

$\mathrm{a}=$	1.4	inches
New Y2=	4.3	

¿Qn Calculation

$\Sigma Q n=A s * F y$		
$\Sigma \mathrm{Qn}=$	439.5	k
$\Phi M n=e^{*} \Sigma Q n * \Phi$		
ФMn=	3421.5075	
ФMn=	285.1	ft*k

Beam is now Adequate

\(\left.\begin{array}{lll|} \& Limit= \& 1

inches

Max Limit \& 1 \& inch\end{array}\right]\)| Usable Limit | 1 inch |
| :--- | :--- |

Deflection Calculations	
$\Delta=5 \mathrm{WL} \wedge 4 / 384 \mathrm{Elx}$	
Δ	0.29

I_{LB}	737 in^4

Design of Shear Studs

Stud Capacity=.5*Area steel stud*sqrt(F'c*Ec) \leq Area steel stud*Fu*Rg*Rp

So limiting stud capacity $=$	21.5	k
	20.4	Studs
21	Studs	

Construction Capacity			
Unshored Construction			
	Beam Weight		
Construction DL	30	plf	
	Wet Concrete		Construction LL
Construction LL	60.416	psf	20 psf
804.16 plf			

Check for Deflection Serviceability			
Live Load Deflection			
Limit=L/360			
Limit=	1	inches	
Max Limit	1	inch	
Usable Limit	1	inch	
Deflection Calculations			
$\Delta=5 \mathrm{wL}$ ^4/384Elx			Lower Bound I
Δ	0.35	inch	

| I_{LB} | 1440 | in^4 |
| :--- | :--- | :--- | from Table 3-20

Required Ix calculations

Design shear anchors for full composite		
EQn Calculation		
$\Sigma \mathrm{Qn}=\mathrm{As} * F y$		
¿Qn=	439.5	k

Stud Capacity is the
Same
\# of Studs=Qn/Stud Capacity
\# of Studs
20.40665636
Boom

a=Fy*AS/.85*F'c*be		
a=	1.4 inches	
t concrete $=$	5	inches

So still okay with slab depth

Needed Composite Capacity			Concrete	Services	Ceilings	Beam	Type
Super Imposed Dead Load							
Total DL Unfactored	784.16		60.41667	10	5	30	Load
			psf	psf	psf	plf	Unit
Total LL Unfactored							

Load Combinations

$\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL}$	Governs	
U	$2061 \mathrm{lbs} / \mathrm{ft}$	

$M u=w L^{\wedge} 2 / 8$
$\mathrm{Mu} \quad 231862.5$
$\mathrm{Mu} \quad 231.8 \mathrm{ft}^{*} \mathrm{k}$

```
a Calculation
\(\mathrm{a}=\mathrm{Fy}\) *As/(.85*F'c*Be)
```

$a=$	1.436	inches
New Y2 $=$	4.281 inches	

Using Table 3-19, in the W 12X30 column

We need an MU of231.8 ft*k

So a PNA location of :
6
will be sufficient for our needs

At location 7

$\Phi M n$	238
ft*k	
IQn	131

Check for Deflection Serviceability
Live Load Deflection
Limit=L/360

	Limit $=$	1
inches		
Max Limit	1	inch

Usable Limit	1 inch

Deflection Calculations		Lower Bound I			
$\Delta=5 \mathrm{wL}$ ^4/384Elx			$\mathrm{I}_{\text {LB }}$	452	in^4
Δ	0.486 inch			m Tab	e 3-20

\# of Studs Calculation
Stud Capacity is the Same
\# of Studs=Qn/Stud Capacity
\# of Studs 6.08253011
Boom
7 Studs
Final Beam size
W12X30 (14)
3/4 inch studs

5 inch Slab and Steel decking for 6th floor Excel Spreadsheet

Scheme 1: 5" Slab

GIVENS:

Super Imposed Dead Load			Concrete	Services	ceilings	Type
Total DL Unfactored	754.1666667	plf	60.41667	10	5	Load
			psf	psf	psf	Unit
Total LL Unfactored	1000		plf=	pounds per linear foot		
Load Combinations						
$\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL}$	Governs					
U	2505					

$M u=w L^{\wedge} 2 / 8$

Mu	281812.5	
Mu	281.8125	$\mathrm{ft}^{*} \mathrm{k}$

Picking a Preliminary Beam Size

Assuming a=1

Be Calculations

Be/2ธL/8 \leq beamspacing/2
L/8
beam spacing/2
3.75

Be/2
3.75

Be	7.5 ft	
Be	90	inches

Y2=t concrete-a/2
Y2
4.5

	From table 3-19	Picked	W 12X22	
			Area	
Depth	12.3	inches	Steel	$6.48 \quad$ in^2
Weight	22	lbs/ft		

e Calculation
$e=1 / 2(t$ concrete) + depth of beam/2

$e=$
8.65 inches

EQn Calculation
$\Sigma \mathrm{Qn}=A s^{* F y}$
$\Sigma Q n=\quad 324$ k

| Capacity Calculation |
| ---: | ---: |
|
 $\Phi M n=e^{*} \Sigma \mathrm{Qn}^{*} \Phi$
 $\Phi M n=$ 2522.34
 $\Phi M n=$ $210.195 \mathrm{ft}^{*} \mathrm{k}$ |

Section is inadequate

Pick a new beam
W 12X30

| | | Area | | |
| :--- | ---: | :--- | :--- | :--- | :--- |
| Depth | 12.3 | inches | Steel | $8.79 \quad$ in^2 |
| Weight | 30 | $\mathrm{lbs} / \mathrm{ft}$ | | |
| | | | | |

a Calculation
a=Fy*As/(.85*F'c*Be)

$\mathrm{a}=$	1.436275 inches
New Y2 $=$	4.281863

¿Qn Calculation
$\Sigma \mathrm{Qn}=A s^{*}$ Fy
£Qn= $\quad 439.5 \mathrm{k}$

Beam is now Adequate

	Limit $=$
Max Limit	1
inches	
1	inch

Usable Limit 1 inch

Deflection Calculations

| $\Delta=5 \mathrm{wL} \wedge 4 / 384$ Elx | |
| :--- | :--- | :--- |
| Δ | 0.426355682 inch |

LB	737 in^4

from Table 3-20

Design of Shear Studs

Stud Capacity=.5*Area steel stud*sqrt(F'c*Ec) \leq Area steel stud*Fu*Rg*Rp

Stud Capacity $=$	26.10678591	\leq
$R g$		for solid
Rp	1	slab
	for solid Rp	

Ec=w^1.5*sqrt(F'c)
$\mathrm{Ec}=\mathrm{ll\mid} \quad 3492.062428 \mathrm{ksi} \quad \mathrm{w} \quad 145 \mathrm{pcf}$

So limiting stud capacity $=$	21.53709	k
20.40666	Studs	
21	Studs	

Construction Capacity
Unshored Construction

	Beam Weight		
Construction DL	30	plf	
	Wet Concrete		Construction LL
Construction LL	60.41666667	psf	20 psf
804.1666667 plf			

[^3]| $\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL} \quad$ Governs | | |
| :---: | :---: | :---: |
| U | 1322.666667 | $\mathrm{lbs} / \mathrm{ft}$ |
| $\mathrm{Mu}=\mathrm{wL}^{\wedge} 2 / 8$ | | |
| Mu | 148800 | |
| Mu | 148.8 | $\mathrm{ft}^{*} \mathrm{k}$ |
| For this Beam | ФMp= | 162 |
| | from table 3.2 | |
| Check for Deflection Serviceability | | |
| Live Load Deflection | | |
| Limit=L/360 | | |
| Limit= | 1 | inches |
| Max Limit | 1 | inch |
| Usable Limit | 1 | inch |

I_{LB}	$1440 \quad$ in^4

Required Ix calculations

Design shear anchors for full composite		
£Qn Calculation		
$\Sigma \mathrm{Qn}=\mathrm{As*Fy}$		
$\Sigma \mathrm{Qn}=$	439.5	k

Stud Capacity is the
Same
\# of Studs=Qn/Stud Capacity

\# of Studs	20.40665636	
	21	Studs

Check if full composite is possible	
$\mathrm{a}=\mathrm{Fy}$ *AS/.85*F'c*be	
$\mathrm{a}=$	1.43627451
inches	

t concrete $=$	5 inches

So still okay with slab depth

Needed Composite Capacity			Concrete	Services	Ceilings	Beam	Type
Super Imposed Dead							
Total DL Unfactored	784.1666667	plf	60.41667	10	5	30	Load
			psf	psf	psf	plf	Unit
Total LL Unfactored		plf					
Load Combinations							
$\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL}$	Governs						
U	2061	lbs/ft					

$M u=w L^{\wedge} 2 / 8$
Mu 231862.5

Mu	231.8625
$\mathrm{ft} * \mathrm{k}$	

a Calculation	
$\mathrm{a}=\mathrm{Fy*As/(.85*F'c*Be)}$	
$\mathrm{a}=$	1.43627451 inches
New Y2=	4.281862745 inches

Using Table 3-19, in the W 12X30 column

We need an MU of231.8 ft*k

So a PNA location of :
will be sufficient for our needs

At location 7

DMn	238	$\mathrm{ft}^{*} \mathrm{k}$
$\Sigma \mathrm{Qn}$	131	k

Check for Deflection Serviceability

Live Load Deflection
Limit=L/360
Limit= 1 inches
Max Limit
1 inch

Usable Limit	1 inch

Deflection Calculations			Lower Bound I			
$\Delta=5 \mathrm{wL}$ ^4/384Elx				$\mathrm{I}_{\text {LB }}$	452	in^4
Δ	0.486630302	inch			m Ta	e 3-20

```
# of Studs Calculation
```

 Stud Capacity is the Same
 \# of Studs=Qn/Stud Capacity
 \# of Studs
 6.08253011
 Boom
 7 Studs
 [^4]
Fifth floor Girder Design Excel Spreadsheet

Scheme
1

DL	Slab	Services	Ceiling	Beam		Length	
				DL	Wall		30
1581.25	60.41667	10	5	30		Spacing	15
$\mathrm{lbs} / \mathrm{ft}$							

$M u=w L^{\wedge} 2 / 8$

| Mu | 307968.8 |
| :--- | :--- | :--- |
| Mu | $307.9688 \mathrm{ft} / \mathrm{k}$ |

$Z x$ required
Zx =Mu/Фfy
Zx $82.125 \mathrm{in}^{\wedge} 3$

Off this we pick a W 21X44
with :

weight per foot	44	$\mathrm{lbs} / \mathrm{ft}$
Zx	95.4	$\mathrm{in}^{\wedge} 3$

New DL calculations
New DL=original DL + weight of beam
New DL $1625.25 \mathrm{lbs} / \mathrm{ft}$

Live load is the same

New U
$\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL}$
$\begin{array}{lll}\mathrm{U} & 2790.3 \mathrm{lbs} / \mathrm{ft}\end{array}$
$M u=w L^{\wedge} 2 / 8$

Mu	313908.8	
Mu	313.9088	ft / k

ФMp=$=$ ФZx*Fy
ФMp $\quad 357.75$
the beam is sufficient

DEFLECTION CHECK

Case 1 LL only

Beam W 18X35

Deflection must be less than L/360 or 1 " whichever is smaller
Limit=L/360
Limit 1 inch

So the deflection limit is the maximum, 1"

$\Delta=5 \mathrm{WL}^{\wedge} 4 / 384 \mathrm{Elx}$	Ix	842 $\Delta$$\quad 0.195924$ inch
Δ		from Table 3.3

So we are okay

Case II Full DL + Half Live
Limit=L/240
Limit 1.5 inch
$\Delta=5 w L^{\wedge} 4 / 384$ Elx
$\Delta \quad 1.37613$ inch

So the current girder is sufficient by Deflection

Sixth Floor Girder Design Excel Spreadsheet

Scheme

1

DL	Slab	Services	Ceiling	Beam	Wall		
				DL		Length	30
1581.25	60.41667	10		30		Spacing	15
$\mathrm{lbs} / \mathrm{ft}$							

LL	Load	
750	100	
$\mathrm{lbs} / \mathrm{ft}$		
PLASTIC CAPACITY CALCULATIONS		
Load Combinations		
U=1.2D+1.6LL		
U	3097.5	lbs/ft
$\mathrm{Mu}=\mathrm{wL}$ ^2/8		
Mu	348468.8	
Mu	348.4688	
Zx required		
$\mathrm{Zx}=\mathrm{Mu} /$ ¢fy		
Zx	92.925	in^3

Off this we pick a W 21X44
with :
weight per foot $\quad 44 \mathrm{lbs} / \mathrm{ft}$

New DL calculations
New DL=original DL + weight of beam

| New DL | 1625.25 | $\mathrm{lbs} / \mathrm{ft}$ |
| :--- | :--- | :--- | :--- |

Live load is the same
New U
U=1.2D+1.6LL

U	3150.3	$\mathrm{lbs} / \mathrm{ft}$

Mu	354408.8	
Mu	354.4088	ft / k

```
ФMp=ФZx*Fy
ФMp 357.75
```

the beam is sufficient

DEFLECTION CHECK

Case 1 LL only

Beam W 18X35

Deflection must be less than L/360 or 1 " whichever is smaller
Limit=L/360
Limit 1 inch

So the deflection limit is the maximum, 1"

$\Delta=5 \mathrm{WL}^{\wedge} 4 / 384 \mathrm{Elx}$	Ix	842 $\Delta$$\quad 0.279891$ inch
Δ		from Table 3.3

So we are okay

Case II Full DL + Half Live
Limit=L/240
Limit 1.5 inch
$\Delta=5 \mathrm{wL}$ ^4/384Elx
$\Delta \quad 1.460097$ inch

So the current girder is sufficient by Deflection

Fifth Floor Spandrel Beam Excel Spreadsheet

Scheme 1: 5" Slab

GIVENS:

Super Imposed Dead Load			Concrete	Services	ceilings	Type Load Unit	shear walls315
Total DL Unfactored	1069.166667	plf	60.41667	10	5		
			psf	psf	psf		
Total LL Unfactored	700	plf					
			plf=	pounds p	foot		
Load Combinations							
$\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL}$	Governs						
U	2403	plf					

$M u=w L^{\wedge} 2 / 8$

Mu	270337.5	
Mu	270.3375	$\mathrm{ft}^{*} \mathrm{k}$

Picking a Preliminary Beam Size

Assuming a=1

Be Calculations	
Be/2ธL/8sbeamspacing/2	
L/8	3.75
beam spacing/2	5
Be/2	3.75
Be	7.5 ft
Be	90 inches

Y2=t concrete-a/2
Y2
4.5

From table 3-19	Picked	W 18X40		
			Area	
Depth	17.9	inches	Steel	$11.8 \quad$ in^2
Weight	40	lbs/ft		

e Calculation
$e=1 / 2$ (t concrete) + depth of beam/2

$\mathrm{e}=$
11.45 inches

IQn Calculation
2 Qn=As*Fy
$\mathrm{EQn}=\quad 590 \mathrm{k}$

Capacity Calculation	
ФMn=e*乏Qn*Ф	
ФMn=	6079.95
ФMn=	$506.6625 \mathrm{ft}^{*} \mathrm{k}$

	Limit=	1 inches
Max Limit	1 inch	
Usable Limit	1 inch	

Deflection Calculations	
$\Delta=5 \mathrm{wL}$ ^4/384Elx	
Δ	0.13747306

I_{LB}	$1600 \quad$ in^4
	from Table 3-20

Design of Shear Studs

Stud Capacity=.5*Area steel stud*sqrt(F'c*Ec)		
SArea steel stud*Fu*Rg*Rp Stud Capacity $=$ 26.10678591 \leq		
21.53709		
Rg	1 for solid	

		slab
Rp	for solid	
Rp	0.75	slab

$\mathrm{Ec}=\mathrm{w}^{\wedge} 1.5^{*} \operatorname{sqrt}\left(\mathrm{~F}^{\prime} \mathrm{c}\right)$		
$\mathrm{Ec}=$	3492.062428	ksi

w	145 pcf

So limiting stud capacity $=$	21.53709	k
27.3946	Studs	
28	Studs	

Construction Capacity
Unshored Construction

	Beam Weight			
Construction DL	30	plf		
Construction LL	Wet Concrete	Construction LL		
804.1666667	60.41666667	psf	$20 \quad$ psf	
plf				

Load Combinations	
	Governs
$\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL}$	1322.666667
U	$\mathrm{lbs} / \mathrm{ft}$

$M u=w L^{\wedge} 2 / 8$ $M u$	148800	
Mu	148.8	$\mathrm{ft} * \mathrm{k}$

For this Beam $\quad \Phi \mathrm{Mp}=\quad 289 \mathrm{ft}^{*} \mathrm{k}$
from table 3.2

Check for Deflection Serviceability	
Live Load Deflection	
Limit=L/360 Limit=	1 inches
Max Limit	1 inch
Usable Limit	1 inch

Deflection Calculations
$\Delta=5 \mathrm{wL}$ ^4/384Elx

I_{LB}	$1600 \quad$ in^4

Required Ix calculations

Design shear anchors for full composite	
Σ Qn Calculation $\Sigma Q n=A s * F y$	
$\Sigma Q n=$	

Stud Capacity is the
Same
\# of Studs=Qn/Stud Capacity
\# of Studs
27.39460126

Boom
28 Studs

So still okay with slab depth

Needed Composite Capacity			Concrete	Services	Ceilings	Beam	Type
Super Imposed Dead Load							
Total DL Unfactored	1131.166667	plf	60.41667	10	5	62	Load
			psf	psf	psf	plf	Unit
Total LL Unfactored	700	plf					
Load Combinations							
$\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL}$	Governs						
U	2477.4	$\mathrm{lbs} / \mathrm{ft}$					

$\mathrm{Mu}=\mathrm{wL}^{\wedge} 2 / 8$
Mu
Mu

| a Calculation
 a=Fy*As/(.85*F'c*Be) |
| :--- | :--- |
| $\mathrm{a}=$ 1.928104575 inches
 New Y2 4.035947712
 inches |

Using Table 3-19, in the W 18X40 column

We need an MU of278.70 ft*k

So a PNA location of : 7
will be sufficient for our needs

At location 7

ФMn	412	$\mathrm{ft}^{*} \mathrm{k}$
$\Sigma \mathrm{Qn}$	148	k

Deflection Calculations	
$\Delta=5 \mathrm{wL} \wedge 4 / 384 \mathrm{Elx}$	
Δ	0.13747306

I_{LB}	$1600 \quad$ in^4
	from Table 3-20

Beam is sufficient

```
# of Studs Calculation
```

Stud Capacity is the Same
\# of Studs=Qn/Stud Capacity
\# of Studs
6.871866078

Boom 7 Studs

[^5]
Sixth Floor Spandrel Beam Excel Spreadsheet

GIVENS:

t concrete	5 inches	F'c Fy Stud Dia.	4 ksi 50 ksi 0.75	Es	29000
Beam Span	30 ft			Fu	65
Beam Spacing	10 ft				
		Stud As.	$7 \quad 2$		

Picking a Preliminary Beam Size
Assuming $a=1$

Be Calculations	
$\mathrm{Be} / 2 \leq \mathrm{L} / 8 \leq$ beamspacing $/ 2$	
L/8	3.75
beam spacing/2	5
$\mathrm{Be} / 2$	3.75
Be	7.5 ft
Be	$90 \quad$ inches

$Y 2=t$ concrete-a/2
Y2 4.5

From table 3-19	Picked	W 18X46			
Depth	18.1	inches	Area		
Steel	13.5	in^2			
Weight	46	lbs/ft			

e Calculation		
e=1/2(t concrete)+depth of beam/2		
$\mathrm{e}=$	11.55	inches

£Qn Calculation
$\Sigma Q n=A s * F y$
$\Sigma Q n=\quad 675 \mathrm{k}$

Capacity Calculation	
ФMn=e* 2 Qn* Φ	
ФMn=	7016.625
ФMn=	$584.71875 \mathrm{ft} * \mathrm{k}$

Beam is now Adequate

	Limit $=$
Max Limit	1
inches	
	inch

Usable Limit	1 inch

Deflection Calculations $\Delta=5 \mathrm{wL} \wedge 4 / 384 \mathrm{Elx}$ $\quad 0.44132603$

Lower Bound I

I_{LB}	712	in^4

from Table 3-20

Design of Shear Studs

Load Combinations	Governs	
U=1.2D+1.6LL		
	1322.66666	
U	7	$\mathrm{lbs} / \mathrm{ft}$

$M u=w L^{\wedge} 2 / 8$

| Mu | 148800 |
| :--- | ---: | :--- |
| Mu | $148.8 \mathrm{ft}^{*} \mathrm{k}$ |

For this Beam
ФМр= $\quad 162 \quad \mathrm{ft}{ }^{*} \mathrm{k}$
from table 3.2

Check for Deflection Serviceability	
Live Load Deflection	
Limit=L/360	
Max Limit	1

Deflection Calculations		
$\Delta=5 \mathrm{wL}$ ^4/384Elx		
	0.70979937	
Δ	5	inch

Lower Bound I

5 inch

from Table 3-20

Required Ix calculations

Design shear anchors for full composite		
£Qn Calculation		
£Qn=As*Fy		
¿Qn=		k

Stud Capacity is the
Same
\# of Studs=Qn/Stud Capacity
\# of Studs 31.3412811
Boom
32 Studs
Check if full composite is possible
a=Fy*AS/.85*F'c*bE

	2.20588235	
$a=$	3	inches
t concrete $=$	5	inches

So still okay with slab depth

Needed Composite Capacity

Super Imposed Dead Load			Concret e	Services	Ceilings	Beam	
Total DL Unfactored	1131.16666	plf	60.4166	10	5	62	

	7		7	psf	psf	plf
			psf			
Total LL Unfactored	700	plf				

Load Combinations

$\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL} \quad$ Governs

U	$2477.4 \mathrm{lbs} / \mathrm{ft}$

| $\mathrm{Mu} u=\mathrm{LL}^{\wedge} 2 / 8$
 Mu 278707.5
 Mu 278.7075 $\mathrm{ft} * \mathrm{k}$ |
| :--- | :--- | :--- |

a Calculation
$\mathrm{a}=\mathrm{Fy}{ }^{*} \mathrm{As} /\left(.85^{*} \mathrm{~F}^{\prime} \mathrm{c}^{* B}\right.$

e)

$a=$	2.20588235	
	3	inches
New Y2 $=$	3.89705882	

Using Table 3-19, in the W 18X46 column

We need an MU of278.70 ft*k

So a PNA location of	
:	7

will be sufficient for our needs

At location 7

ФMn	$475 \mathrm{ft}^{*} \mathrm{k}$	
IQn	169	k

Check for Deflection Serviceability Live Load Deflection Limit=L/360 Limit= 1 Max Limit 1 inches Usable Limit 1

Deflection Calculations
$\Delta=5 w L^{\wedge} 4 / 384$ Elx

$I_{L B}$	1170	in^4

	0.18799734	
Δ	7	

from Table 3-20
Beam is sufficient

```
# of Studs
Calculation
```

Stud Capacity is the Same
\# of Studs=Qn/Stud Capacity
7.84692815
\# of Studs
7
Boom
8 Studs

Final Beam size
W18X46 (16)
3/4 inch studs

Fifth Floor Spandrel Girder Excel Spreadsheet

Scheme

1

DL	Slab	Services	Ceiling	Beam	Wall	Length	
				DL			30
2121.25	60.41667	10	5	45	315	Spacing	15
$\mathrm{lbs} / \mathrm{ft}$							

$Z x$ required
Zx =Mu/Фfy
Zx $101.565 \quad \mathrm{in}^{\wedge} 3$

Off this we pick a W 21X55
with :
weight per foot $\quad 55 \mathrm{lbs} / \mathrm{ft}$
Zx
126 in^3

New DL calculations
New DL=original DL + weight of beam

| New DL | 2176.25 | $\mathrm{lbs} / \mathrm{ft}$ |
| :--- | :--- | :--- | :--- |

Live load is the same

New U
$\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL}$
$\begin{array}{lll}\mathrm{U} & 3451.5 \mathrm{lbs} / \mathrm{ft}\end{array}$
$M u=w L^{\wedge} 2 / 8$

Mu	388293.8	
Mu	388.2938	ft / k

ФMp= ФZx* $^{*} \mathrm{Fy}$
ФMp
the beam is sufficient

DEFLECTION CHECK

Case 1 LL only

Beam W 18X35

Deflection must be less than L/360 or 1 " whichever is smaller
Limit=L/360
Limit 1 inch

So the deflection limit is the maximum, 1"

$\Delta=5 \mathrm{wL}$ ^4/384Elx			Ix	$1140 \quad \text { in^4 }$
Δ	0.144708	inch		

So we are okay

Case II Full DL + Half Live
Limit=L/240
Limit 1.5 inch
$\Delta=5 \mathrm{wL}$ ^4/384Elx
$\Delta \quad 1.314091$ inch

So the current girder is sufficient by Deflection

Sixth Floor Spandrel Girder Excel Spreadsheet

Scheme

1

DL	Slab	Services	Ceiling	Beam	Wall	Length	
							30
2121.25	60.41667	10	5	45	315	Spacing	15
$\mathrm{lbs} / \mathrm{ft}$							

LL	Load	
1000	100	
$\mathrm{lbs} / \mathrm{ft}$		
PLASTIC CAPACITY CALCULATION		
Load Combinations		
U=1.2D+1.6LL		
U	4145.5	lbs/ft
$\mathrm{Mu}=\mathrm{wL}$ ^2/8		
Mu	466368.8	
Mu	466.3688	ft / k

$Z x$ required
$\mathrm{Zx}=\mathrm{Mu} / \Phi \mathrm{fy}$

Zx	124.365	in^3 $^{\wedge}$

Off this we pick a W 24X55
with :

weight per foot	55	$\mathrm{lbs} / \mathrm{ft}$
Zx	134	in^3

New DL calculations
New DL=original DL + weight of beam

| New DL | 2176.25 | $\mathrm{lbs} / \mathrm{ft}$ |
| :--- | :--- | :--- | :--- |

Live load is the same

New U
$\mathrm{U}=1.2 \mathrm{D}+1.6 \mathrm{LL}$
U $\quad 4211.5 \mathrm{lbs} / \mathrm{ft}$

Mu	473793.8	
Mu	473.7938	ft / k

ФMp=${ }^{2} Z^{*}{ }^{*} \mathrm{Fy}$
ФMp $\quad 502.5$
the beam is sufficient

DEFLECTION CHECK

Case 1 LL only

Beam W 24X55

Deflection must be less than L/360 or 1 " whichever is smaller
Limit=L/360
Limit 1 inch

So the deflection limit is the maximum, 1"

$\Delta=5 \mathrm{WL}^{\wedge} 4 / 384 \mathrm{Elx}$	Ix	$1350 \quad$ in^4 Δ 0.232759
inch		from Table 3.3

So we are okay

Case II Full DL + Half Live
Limit=L/240
Limit 1.5 inch
$\Delta=5 \mathrm{wL}$ ^4/384Elx
$\Delta \quad 1.220237$ inch

So the current girder is sufficient by Deflection

[^0]: ${ }^{2}$ Steel Construction Manual. Chicago, IL: American Institute of Steel Construction, 2007. Print.

[^1]: ${ }^{3}$ Nawy, Edward G. Prestressed Concrete: A Fundamental Approach. Upper Saddle River, NJ: Prentice Hall, 2000. Print.

[^2]: > story height, so slenderness can be neglected. (according to PDC
 $12 h=$ 288 handout)

[^3]: Load Combinations

[^4]: Final Beam size
 W12X30 (14)
 3/4 inch studs

[^5]: Final Beam size
 W18X40(14)
 3/4 inch studs

