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Abstract 

The solubility of cellobiose in 18 organic liquids and water was measured at 20°C. 

Hydrogen bond acceptors were the most effective solvents. Three models were analyzed to 

evaluate their accuracy and to understand factors that affect cellobiose solubility: Hansen solubility 

parameters (HSP), linear free energy relationship (LFER), and UNIQUAC functional-group 

activity coefficients (UNIFAC). The HSP of cellobiose were determined and the model was able 

to distinguish between most good and poor solvents, however, proved to be occasionally unreliable 

due to a false negative. The LFER model produced an empirical equation involving contributions 

from solvent molar refraction, polarizability, acidity, basicity, and molar volume, which predicted 

cellobiose solubilities to within ±2 log units. LFER indicated that good solvents were highly 

polarizable and had low molar volume, which was consistent with the good solvents found for 

cellobiose. A modified version of UNIFAC that includes an association term (A-UNIFAC) 

predicted the solubility of cellobiose in water and alcohols to within ±0.6 log units, indicating that 

A-UNIFAC can be used to predict the solubility of cellobiose and other carbohydrates provided 

additional data to extend the model to solvents other than water and alcohols. 
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1. Introduction 

Lignocellulosic biomass is an abundant renewable resource that can be used as a source of 

carbon to produce liquid fuels and organic materials [1,2]. Cellulose, the major component of 

lignocellulosic biomass, is a polysaccharide composed of chains of glucose units linked by β-1,4-

glycosidic bonds. Degradation of cellulose is desired for energy extraction and production of 

useful products for chemical applications [2-4]. However, cellulose is resistant to degradation and, 

therefore, severe conditions are required to break down cellulose. The conversion of cellulose has 

been studied for decades to find ways to improve product yields and reduce costs [2,4]. 

The selection of a solvent to act as a reaction medium for the conversion of cellulose is one 

of the most important steps to consider. Dissolving cellulose into the liquid phase allows for 

homogeneous reactions that are easier to control and less energy intensive than heterogeneous 

reactions [5]. Additionally, solvents can participate in the conversion of sugars and, therefore, 

careful solvent selection can control reaction pathways to obtain desired products [6]. However, 

common solvents are ineffective at dissolving cellulose because the size and crystallinity of 

cellulose affect its solubility [5,7]. Several effective solvent systems for cellulose have been known 

for many years, but finding new solvent systems for novel applications, especially those that do 

not degrade cellulose, remains an important topic to pursue. 

Solubility data is the first step in finding new solvents because it provides an insight on 

solute-solvent molecular interactions. Organic solvents, despite their weak ability to dissolve 

cellulose alone [8,9], remain an important class of solvents to study because they are still used in 

a variety of solvent systems to dissolve cellulose [10-11]. Understanding how different functional 

groups and properties of various organic solvents are related to their ability to dissolve cellulose 

can lead to an understanding of the molecular interactions involving cellulose. In order to minimize 
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the size and crystallinity factors on cellulose solubility, this study will focus on cellobiose, a 

disaccharide composed of two glucose units linked by the same β-1,4-glycosidic bond. Cellobiose 

is often considered the smallest unit of cellulose [5,7,12] and, therefore, can act as a representative 

model for cellulose that is not affected by size or crystallinity factors. Furthermore, Jóndóttir et al. 

[13] reported different values for the solubility of cellobiose in water compared to the isomers 

maltose and trehalose. These isomers contain different glycosidic bonds, indicating that this 

glycosidic bond is an important factor to consider for solubility. As a result, cellobiose may be 

more representative of cellulose than glucose despite glucose being a smaller unit of cellulose than 

cellobiose. 

There are limited solubility data of carbohydrates available in the literature and existing 

data are often not in agreement due to factors such as different equilibration times and different 

procedures [14]. In order to address the lack of reliable solubility data, predictive models can be 

used to estimate the solubility of carbohydrates. However, it is difficult to construct an accurate 

model due to the variability in literature data. Several models have been proposed and specifically 

fitted to available literature data. Kononenko and Herstein [14] used a linear relation with respect 

to temperature with two parameters fitted to their own solubility data of sucrose in non-aqueous 

solvents. More recently, activity coefficient models such as the universal quasi-chemical 

(UNIQUAC) and UNIQUAC functional-group activity coefficients (UNIFAC) models have been 

used to describe carbohydrate solubility, primarily in water, alcohols, and water-alcohol mixtures. 

Various modifications to these models have been proposed specifically for carbohydrates [15-20], 

but use parameters available only for a limited number of functional groups and require more 

experimental data for higher accuracy. Useful models can also help identify factors that affect a 
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solvent’s ability to dissolve cellobiose and will be helpful in finding additional solvents that can 

be used for cellobiose, similar carbohydrates, or new cellulose solvent systems. 

In this study, the solubilities of cellobiose in 18 organic solvents and water were evaluated 

at room temperature (20°C). The predictive abilities of three commonly used solubility models 

were also evaluated: Hansen solubility parameters (HSP), linear free energy relationship (LFER), 

and UNIFAC. Each model has a slightly different approach to predict solubility, so each model 

can provide their own insight on important factors that affect cellobiose solubility. These models 

can be used to predict the dissolution ability of other solvents for cellobiose as well as other 

carbohydrates. 

2. Solubility Models 

2.1. Hansen Solubility Parameters (HSP) 

Hansen’s solubility theory utilizes solubility parameters to provide an analysis on the 

solubility of a solute in a solvent or the miscibility of liquids. Based on the principle “like dissolves 

like,” two components with similar solubility parameters are expected to be miscible. These 

solubility parameters, sometimes called the cohesion energy parameters, are derived from the 

energy of vaporization, which measures the total cohesive energy that hold molecules together in 

the liquid phase. Hansen’s solubility theory builds on the Hildebrand solubility parameter (δt) 

which is defined in Eq. (1), where E is the total cohesion energy and V is the molar volume. 

 𝛿𝑡 = (𝐸/𝑉)1/2 (1) 

The total cohesion energy is calculated from the molar heat of vaporization (ΔHv) in Eq. (2), where 

R is the gas constant and T is the absolute temperature. 

 𝐸 = Δ𝐻𝑣 − 𝑅𝑇 (2) 
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The single Hildebrand solubility parameter is not descriptive enough to always accurately predict 

miscibility because it cannot account for the association between molecules that arises from polar 

and hydrogen-bonding interactions [21]. In order to attempt to solve the issues of the Hildebrand 

solubility parameter, Hansen divides the total cohesion energy into three factors to describe the 

three major types of interactions: London dispersion, polar (dipole-dipole), and hydrogen-bonding 

interactions, represented by the subscripts D, P, and H, respectively. 

 𝐸 = 𝐸𝐷 + 𝐸𝑃 + 𝐸𝐻 (3) 

Combining Eq. (3) with Hildebrand’s solubility parameter in Eq. (1) gives Hansen’s three 

solubility parameters based on the three types of interactions. 

 𝛿𝑡
2 = 𝛿𝐷

2 + 𝛿𝑃
2 + 𝛿𝐻

2  (4) 

Solubility parameters have been widely used for many applications and are, therefore, 

available in the literature for many common compounds. For compounds with unknown solubility 

parameters, experimental procedures and calculations are reliable for obtaining these unknown 

parameters. The calculation for δD is detailed by Blanks and Prausnitz [22]. δP is calculated by a 

simplified version of the Böttcher Equation, shown in Eq. (5), where µ is the dipole moment in 

Debye and V is the molar volume [21]. 

 𝛿𝑃 =
37.4𝜇

𝑉
1
2

 [𝑀𝑃𝑎
1

2] (5) 

δH can either be calculated by subtracting the dispersion and polar energies from the total energy 

of vaporization or by using group-contribution methods. One group-contribution method that can 

be used for all three of Hansen’s solubility parameters has been developed by Stefanis and 

Panayiotou [23]. Alternatively, each solubility parameter can be calculated using statistical 

mechanics as outlined by Hansen [21]. 
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In order to describe the “like dissolves like” principle, the “distance” between the solubility 

parameters of a solvent (1) and a solute (2), Ra, can be calculated using Eq. (6), where the constant 

“4” is a geometric mean that differentiates between atomic and molecular interactions. This 

constant was found experimentally, but is theoretically predicted by the Prigogine corresponding 

states theory of polymer solutions [21]. 

 𝑅𝑎 = [4(𝛿𝐷1 − 𝛿𝐷2)2 + (𝛿𝑃1 − 𝛿𝑃2)2 + (𝛿𝐻1 − 𝛿𝐻2)2]1/2 (6) 

A smaller distance between the solubility parameters of two components means the interaction 

forces between the components are more similar and, therefore, expected to have higher 

miscibility. The solubility analysis can be visually represented by plotting each solvent as a point 

in a 3-D plot of δD vs. δP vs. δH. A sphere with radius Ro can be constructed centered at the solute 

of interest in order to predict the ability of a solvent to dissolve the solute. Good solvents will lie 

within the HSP sphere and poor solvents will lie outside the HSP sphere. The HSP sphere allows 

solubility to be predicted through the relative energy difference (RED), calculated as the ratio of 

the distance between the HSP of the solvent and solute to the HSP sphere radius. If RED ≤ 1, then 

the solvent lies inside the sphere and has high affinity for the solute. If RED > 1, then the solvent 

lies outside of the sphere and has lower affinity for the solute. 

 𝑅𝐸𝐷 =
𝑅𝑎

𝑅𝑜
 (7) 

 Interestingly, good solvent mixtures can be formed by mixing two bad solvents. HSP for 

solvent mixtures are calculated using Eq. (8), where 𝜙 is the volume fraction of each solvent in 

the mixture and the subscript i represents the dispersion, polar, and hydrogen-bonding interactions 

[24]. 

 𝛿𝑖 = 𝜙1𝛿𝑖1 + 𝜙2𝛿𝑖2 (8) 
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Solvent mixtures will not be considered for this study, however, it is worth mentioning the idea 

because solvent mixtures are common for dissolving cellulose. 

2.2. Linear Free Energy Relationship (LFER) 

The LFER model, or linear solvation energy relationship (LSER), uses five descriptors to 

model a solvation property. It views the process of transferring a solute into a solvent as a three-

step process. First, a cavity of the correct size and shape for the solute within the solvent must 

form. This requires breaking the intermolecular bonds between the solvent molecules, which is 

always thermodynamically unfavorable. Next, a solute molecule fills the cavity without interacting 

with the solvent. Finally, the solute-solvent interactions activate and “charge” the solute. This is a 

simplified view of the solvation process that does not explicitly take the entropy of solution or free 

volume effects into account, although they may be implicitly included within the cavity term 

because they vary with solute size [25]. 

The most recent LFER model [26] for solids and liquids is given in Eq. (9), where SP is 

any property of a series of solvents or solutes for a compound of interest and E, S, A, B, and V are 

the descriptors for the series of solvents or solutes. The coefficients e, s, a, b, and v and the system 

constant c are determined by multiple linear regression. 

 𝑆𝑃 = 𝑐 + 𝑒𝐸 + 𝑠𝑆 + 𝑎𝐴 + 𝑏𝐵 + 𝑣𝑉 (9) 

The excess molar refraction E is a measure of the polarizable electrons in a molecule. It is 

calculated as the difference between the molar refraction of the compound and the molar refraction 

of an alkane of the same volume, which is represented in Eq. (10) where MRx is the molar refraction 

of the compound and V is McGowan’s characteristic molar volume [27].  

 𝐸 = 𝑀𝑅𝑥 − 2.83195𝑉 + 0.52553 (10) 
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MRx is defined in Eq. (11), where η is the refractive index of the compound as a pure liquid at 20°C 

[26]. 

 𝑀𝑅𝑥 = 10 [
(𝜂2−1)

𝜂2+2
] 𝑉 (11) 

S is the polarizability/dipolarity descriptor, A is the overall hydrogen bond acidity, and B is the 

overall hydrogen bond basicity. S, A, and B are usually obtained from experimental 

chromatography data and water-solvent partition coefficients [28]. The V descriptor is McGowan’s 

characteristic molar volume in cm3mol-1/100, which is a measure of the cavity formation in the 

solvation process. It is very simple to calculate V for compounds with known molecular structures; 

the calculation is described by Abraham and McGowan [27]. LFER descriptors for many common 

compounds are available in the literature and group-contribution methods, such as the one by Platts 

et al. [29], are also available for estimations of unknown descriptor values. 

The regressed coefficients represent the complimentary effect of the compound of interest. 

e is the tendency of the compound to interact with solvents or solutes through π- or n- electron 

pairs. This value is often positive, but can be negative for phases containing fluorine atoms [29,30]. 

s is the compound’s tendency to interact with polarizable/dipolar solvents or solutes. a is the 

compound’s hydrogen bond basicity because acidic compounds interact with basic compounds. 

Similarly, b is the hydrogen bond acidity of the compound. v describes the cavity effects during 

the solvation process. The sign and magnitude of each regressed coefficient reflects the importance 

of its corresponding descriptor. A larger coefficient value represents greater influence of its 

descriptor to the solvation property while a zero or near-zero coefficient value represents minimal 

influence of its descriptor to the solvation property. 
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2.3. Solid-Liquid Equilibrium (SLE) and UNIFAC 

The solubility of a solid solute in a liquid solvent is derived from Eq. (12), which describes 

the equilibrium between the solid and liquid phases of the solute. 

 𝑓2
𝑠 = 𝑓2

𝐿 = 𝑥2𝛾2𝑓2
𝑜 (12) 

𝑓2
𝑠 is the fugacity of the solute (component 2) in the solid phase, 𝑓2

𝐿 is the fugacity of the solute in 

the liquid phase, 𝑥2 is the solubility of the solute in the solvent in mole fraction, 𝛾2 is the liquid 

phase activity coefficient, and 𝑓2
𝑜 is the standard state fugacity to which the activity coefficient 

refers, which is normally taken as the pure subcooled liquid of the solute at the solution 

temperature and at the saturation pressure because it can be accurately calculated in those 

conditions. For solids, a thermodynamic cycle involving a phase change through the triple point 

temperature may be used to define the ratio of 𝑓2
𝑜 to 𝑓2

𝑠; the step-by-step derivation is detailed by 

Prausnitz et al. [31]. The derived relationship, shown in Eq. (13), is used to calculate the solubility 

of a solute in any given solvent, which depends only on the solute properties (Δℎ𝑓𝑢𝑠, Tt, and Δ𝑐𝑝) 

and not the solvent properties. The ideal solubility can be calculated by setting the activity 

coefficient to unity. 

 ln
𝑓2

𝑜

𝑓2
𝑠 = ln

1

𝑥2𝛾2
=

Δℎ𝑓𝑢𝑠

𝑅𝑇𝑡
(

𝑇𝑡

𝑇
− 1) −

Δ𝑐𝑝

𝑅
(

𝑇𝑡

𝑇
− 1) +

Δ𝑐𝑝

𝑅
ln

𝑇𝑡

𝑇
 (13) 

Eq. (13) is frequently simplified in two ways. First, the melting temperature (Tm) is often 

used in place of the triple point temperature (Tt) because there is little difference between Tm and 

Tt for most substances and the enthalpy of fusion (Δℎ𝑓𝑢𝑠) data is more commonly available at Tm. 

Second, the two latter terms are often neglected because they tend to cancel each other out, 

especially if the solution temperature T is close to Tm or Tt [31]. In this study, Tm will be used in 

place of Tt, but no terms will be neglected because each term has a significant contribution to the 

solubility calculation for cellobiose. 
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Cellobiose is expected to form non-ideal solutions with many solvents due to dissimilar 

molecular structures, therefore, activity coefficients (which describe intermolecular forces 

between the solute and solvent) are required to calculate the actual solubility. If the activity 

coefficient is greater than unity, then dispersion forces dominate and the actual solubility is less 

than ideal. If the activity coefficient is less than unity, then polar forces play an important role and 

the actual solubility is greater than ideal [31]. UNIFAC is a widely used, relatively simple, and 

predictive method for activity coefficient estimations. It combines equations from the UNIQUAC 

activity coefficient model with a group-contribution method. In the UNIFAC model, the activity 

coefficient of each component in a solution consists of a combinatorial part (𝛾𝑖
𝐶), describing the 

differences in size and shape of the molecules in the solution, and a residual part (𝛾𝑖
𝑅), describing 

the intermolecular forces occurring in the mixture. The details of calculating each part of the 

activity coefficient is described by Fredenslund et al. [32] and outlined in Appendix B. 

 ln 𝛾𝑖 = ln 𝛾𝑖
𝐶 + ln 𝛾𝑖

𝑅 (14) 

UNIFAC considers physical properties of each compound as a sum of contributions by its 

functional groups. Interaction parameters between every pair of groups in a mixture are evaluated 

from experimental phase equilibrium data, which can then be used to predict activity coefficients 

for mixtures with unknown phase equilibrium data if given the functional groups within the 

mixture. As a result, the accuracy of UNIFAC depends on the accuracy and availability of the 

interaction parameters. This study uses interaction parameters available from the Dortmund Data 

Bank [33-38]. 

Modified UNIFAC models have been proposed to improve the model’s accuracy, such as 

the modified UNIFAC (Dortmund) [39] and modified UNIFAC (Lyngby) [40] models. The more 

recent modified UNIFAC (NIST) [41] was evaluated in this study because a more complete set of 
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interaction parameters was available. The modified UNIFAC (NIST) model uses the same 

equations as the modified UNIFAC (Dortmund) model with interaction parameters derived from 

the NIST database. These two models use a slightly different volume fraction calculation for the 

combinatorial part and include a temperature dependence to the interaction parameters for the 

residual part. 

 𝜙𝑖
′ =

𝑟𝑖
3/4

∑ 𝑥𝑗𝑟
𝑗
3/4

𝑗

 (15) 

 ln 𝛾𝑖
𝐶 = 1 − 𝜙𝑖

′ + ln 𝜙𝑖
′ − 5𝑞𝑖 (1 −

𝜙𝑖

𝜃𝑖
+ ln

𝜙𝑖

𝜃𝑖
) (16) 

 𝜓𝑛𝑚 = exp(−(𝑎𝑛𝑚 + 𝑏𝑛𝑚𝑇 + 𝑐𝑛𝑚𝑇2)/𝑇) (17) 

Other modifications have been proposed specifically to model the solubility of 

carbohydrates, primarily in water and alcohols. One of these modified model is A-UNIFAC, 

proposed by Mengarelli et al. [42] and adapted by Ferreira et al. [17], which adds an association 

part to the activity coefficient that takes hydrogen bonding into account and attempts to solve self- 

and cross-association problems in mixtures. 

 ln 𝛾𝑖 = ln 𝛾𝑖
𝐶 + ln 𝛾𝑖

𝑅 + ln 𝛾𝑖
𝐴 (18) 

The combinatorial and residual parts are calculated the same way as the original UNIFAC model 

by Fredenslund et al. [32]. The calculation for the association part is detailed by Ferreira et al. [17] 

and outlined in Appendix B. Additionally, new groups were defined to better represent the 

carbohydrate compounds and distinguish differences between isomers: the pyranose ring (PYR), 

the furanose ring (FUR), the hydroxyl group attached to the ring (OHring), and the osidic bond (-

O-). Interaction parameters between these new groups and the groups already defined for alcohols 

and water (CH3, CH2, OH, H2O, CH3OH) have been estimated by Ferreira et al. [17] from 

regressing experimental phase equilibrium data of glucose, sucrose, and fructose. These interaction 
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parameters were revised by Montañés et al. [43] to fit a larger database of solubility data and those 

revised parameters were used in this study. These modifications allow A-UNIFAC to predict 

carbohydrate solubility in alcohols and water more accurately than the original UNIFAC. 

There are other proposed modifications to the UNIFAC model for carbohydrates, such as 

the S-UNIFAC [20] that defines different groups to describe the sugar molecules, the Bio-

UNIFAC [18] that is based on an asymmetric activity coefficient model, the P&M UNIFAC [19] 

that modifies the calculation for the combinatorial part, and the modified UNIFAC [16] that 

modifies the calculation for both the combinatorial and residual parts. These models were not used 

in this study because A-UNIFAC is the most recently published model and showed promising 

results when Gong et al. [44] applied it to sugars in aqueous solutions. 

3. Materials and Methods 

Materials: Cellobiose >98% was obtained from Sigma Aldrich. Ethanol ACS grade was obtained 

from Fisher Scientific, ethylbenzene >99% was obtained from Fluka, aniline >98% was obtained 

from Tokyo Chemical Industry, and the remaining solvents (all >98%) were obtained from Sigma 

Aldrich. DI water was used. All the materials were used as delivered; all solvents were delivered 

in the liquid state. 

Solubility Measurements: 2 mL of solvent and cellobiose in excess of the expected saturation 

concentration were added to a tube with an agitator operating at approximately 200 rpm and placed 

in a water bath at room temperature (20 ± 1°C). The tube was covered with Parafilm and was then 

allowed to reach equilibrium over 24 hours. The temperature of the water bath was monitored with 

a thermocouple throughout the mixing time. The solution was centrifuged at 1500 rpm for 30 

minutes. The liquid portion of the solution containing the saturated amount of cellobiose was 

recovered, filtered, and then analyzed using an Agilent 1200 series high-performance liquid 
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chromatography (HPLC) with a 5 mM sulfuric acid solution as the mobile phase. Solubility results 

were averaged from at least two runs. Standard deviation reached up to ~10% for solvents that 

dissolved at least 0.1 g L-1 of cellobiose and up to 45% for solvents that dissolved less than 0.1 g 

L-1. 

Solubility Calculations: Cellobiose concentrations obtained from HPLC were calibrated to units 

of g L-1. It is more useful to express solubility in mole fraction (mol cellobiose/mol solution), 

especially for the UNIFAC model. The conversion from g L-1 to mole fraction requires the density 

of the solution (ρsoln), which was unfortunately not measured. For low cellobiose solubilities, the 

density of solution can be assumed to be nearly equivalent to the density of the pure solvent 

(ρsolvent). For higher solubilities, this assumption is not valid. Montañés et al. [43] reports the 

difference between the density of solution and density of pure solvent for carbohydrate-alcohol 

mixtures to be nearly 11% for a solubility of approximately 230 g L-1. Additionally, Taylor [45] 

reports a 16% difference between the density of cellobiose-water solution and the density of pure 

water at 0.03 mole fraction. In this study, densities of cellobiose solutions were estimated as a 

weighted average of the pure solvent density and pure cellobiose density (ρc). Cellobiose density 

is predicted to be approximately 1.8 g mL-1 by the ACD/Labs Percepta Platform. The cellobiose 

weight factor was estimated using the cellobiose concentration (CC). 

 𝜌𝑠𝑜𝑙𝑛 =
𝐶𝐶

𝜌𝑠𝑜𝑙𝑣𝑒𝑛𝑡+𝐶𝐶
𝜌𝐶 + (1 −

𝐶𝐶

𝜌𝑠𝑜𝑙𝑣𝑒𝑛𝑡+𝐶𝐶
) 𝜌𝑠𝑜𝑙𝑣𝑒𝑛𝑡 (19) 

Estimated densities of cellobiose solutions using Eq. (19) matched the previously mentioned 

trends: the difference between the density of cellobiose-dimethyl sulfoxide (DMSO) solution (220 

g L-1) and the density of pure DMSO was nearly 11%. Therefore, this estimation was considered 

sufficient for this study. 
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The average absolute deviation (AAD) and average relative deviation (ARD) were used in 

this study to compare the accuracy of LFER, UNIFAC, and their variations. AAD and ARD were 

calculated using Eqs. (20) and (21) [44], where Sn is the solubility of cellobiose in log units (mole 

fraction), superscripts expt and calc are experimental values and calculated values, respectively, 

and NDP is the number of experimental data points. Log units were used for these calculations in 

order to weigh each data point more evenly. Lower values for AAD and ARD are desirable; AAD 

and ARD of 0% would indicate that the model is 100% accurate. 

 𝐴𝐴𝐷 =
∑ |𝑆𝑛

𝑒𝑥𝑝𝑡
−𝑆𝑛

𝑐𝑎𝑙𝑐|𝑛

𝑁𝐷𝑃
× 100% (20) 

 𝐴𝑅𝐷 =
∑ |

𝑆𝑛
𝑒𝑥𝑝𝑡

−𝑆𝑛
𝑐𝑎𝑙𝑐

𝑆𝑛
𝑒𝑥𝑝𝑡 |𝑛

𝑁𝐷𝑃
× 100% (21) 

All models were evaluated using the MATLAB (R2019a) software: Gharagheizi [46] 

presented an improved HSP algorithm, the function fitlm was used for the LFER model, and the 

algorithm for the UNIFAC model was modified from a code developed by Saeed Mardani [47]. 

4. Results and Discussion 

4.1. Cellobiose Solubility 

Solvents are often classified into three categories: polar aprotic, polar protic, and nonpolar 

solvents. These categories differentiate between hydrogen bond acceptors and hydrogen bond 

donors (and nonpolar solvents), which will facilitate our understanding of factors that affect 

cellobiose solubility. Multiple solvents in each of the three solvent categories were selected to 

dissolve cellobiose. DMSO and N,N-dimethylformamide (DMF) were selected because they are 

often used for cellulose solvent systems [9,11] so they were expected to be good solvents for 

cellobiose. Morpholine was selected because Kononenko and Herstein [14] reported morpholine 
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to be a good solvent for sucrose and therefore was expected to also be a good solvent for cellobiose. 

Aniline was selected for the Hansen solubility analysis, which will be further discussed in the next 

section. It was also important to test commonly-used solvents, including water, formamide, acetic 

acid, methanol, and ethanol. As a result, the other alcohols and carboxylic acids were selected to 

compare differences in size and functional groups to the common solvents. Additionally, 

dichloroacetic acid was important for the LFER analysis because its set of LFER descriptors were 

different from all other solvents in this study (high values for both S and A). Finally, three nonpolar 

solvents were selected to test aliphatic and aromatic structures. The experimental solubility of 

cellobiose in various organic solvents and water at 20 ± 1°C are listed in Table 1. It is well-known 

that temperature has a strong effect on solubility, so data was collected for only one temperature 

because this study will focus primarily on the solvent factors that affect solubility rather than 

temperature factors. 
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Table 1. Experimental solubilities and activity coefficients of cellobiose in select organic solvents and water. 

Solvent Solubility (g L-1) 
Solubility 

(mole fraction×10-3) 
𝜸𝟐

𝒔𝒂𝒕 

Polar aprotic (hydrogen bond acceptors) 

Dimethyl sulfoxide 220 ± 10 48 ± 3 0.019 ± 0.001 

Dimethylformamide 4.6 ± 0.2 1.03 ± 0.07 0.88 ± 0.06 

Morpholine 162 ± 3 42 ± 1 0.0216 ± 0.0006 

Aniline 0.83 ± 0.08 0.22 ± 0.03 4.1 ± 0.5 

Polar protic (hydrogen bond donors) 

Water 177 ± 1 9.78 ± 0.09 0.0924 ± 0.0009 

Formamide 42 ± 4 4.9 ± 0.7 0.18 ± 0.03 

Acetic acid 0.475 ± 0.009 0.079 ± 0.002 11.4 ± 0.3 

Dichloroacetic acid 40 ± 7 10 ± 2 0.09 ± 0.02 

Propionic acid 0.04 ± 0.01 0.010 ± 0.004 90 ± 40 

Methanol 0.44 ± 0.02 0.052 ± 0.003 17 ± 1 

Ethanol 0.14 ± 0.01 0.024 ± 0.004 38 ± 6 

1-Propanol 0.0315 ± 0.0004 0.0069 ± 0.0001 131 ± 2 

1-Butanol 0.018 ± 0.008 0.005 ± 0.003 200 ± 100 

1-Pentanol 0.010 ± 0.002 0.0031 ± 0.0009 290 ± 90 

Benzyl alcohol 0.012 ± 0.002 0.0036 ± 0.0007 250 ± 50 

Ethylene glycol 8.3 ± 0.4 1.36 ± 0.08 0.67 ± 0.04 

Nonpolar 

1-Octene ≤ 0.001 ≤ 0.0005 ≥ 2000 

Ethylbenzene ≤ 0.001 ≤ 0.0004 ≥ 2000 

p-Xylene ≤ 0.001 ≤ 0.0004 ≥ 2000 

 

Based on the trends in Table 1, polar aprotic solvents generally performed better than polar 

protic and nonpolar solvents with DMSO as notably the best solvent out of the ones tested in this 

study. Certain polar protic solvents also work quite well at dissolving cellobiose: water and 

formamide are good polar protic solvents possibly because they also have the ability to accept 
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hydrogen bonds (making them amphiprotic solvents) while dichloroacetic acid and ethylene glycol 

are good polar protic solvents likely because they have high polarity. Unsurprisingly, cellobiose is 

essentially insoluble in nonpolar solvents. Each of the three nonpolar solvents that were evaluated 

dissolved trace amounts of cellobiose that could not be detected by HPLC, which was enough to 

suggest that other nonpolar solvents follow a similar trend. The insolubility of cellobiose in 

nonpolar solvents is also important information to report because they can be useful in certain 

reactions in which the desired products are soluble in nonpolar solvents [48]. 

Comparing solubilities between the alcohols in Table 1 suggests that a smaller molecular 

size correlates with a higher cellobiose solubility. Solubility is greatest for methanol and decreases 

as the alcohol size increases to 1-pentanol and benzyl alcohol. This correlation is also seen when 

comparing propionic acid to acetic acid and DMF to formamide. Propionic acid is a slightly larger 

compound compared to acetic acid as it contains an additional CH2 group, which is likely the major 

reason it cannot dissolve cellobiose as well as acetic acid. Similarly, DMF is a slightly larger 

compound than formamide and dissolves less cellobiose than formamide. However, other factors 

such as polarity are also important to consider in order to explain differences in solubilities 

between DMF and formamide. 

4.2. HSP Analysis 

In order to construct a HSP sphere for cellobiose, each solvent must be classified as a 

“good” solvent with a score of 1 or a “poor” solvent with a score of 0. Table 2 lists the HSP and 

score for each solvent. The criteria to be a good solvent is to be able to dissolve more than the 

calculated ideal solubility of cellobiose at room temperature (i.e. 𝛾2
𝑠𝑎𝑡 < 1). DMSO, DMF, 

morpholine, water, formamide, dichloroacetic acid, and ethylene glycol were able to meet the 

criteria and received a score of 1, however, water was excluded from the analysis as recommended 
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by Hansen due to the unpredictability of its behavior [21]. The HSP sphere and the solubility 

parameters for cellobiose were calculated by a method proposed by Gharagheizi and Angaji [46], 

which uses the Nelder-Mead method [49] as a minimization algorithm to improve Hansen’s fitting 

procedure. Figure 1 shows the HSP sphere constructed for cellobiose. 

Table 2. Hansen solubility parameters and solubility score of select organic solvents. HSP values were obtained 

from Hansen [21]. 

Solvent δD (MPa½)  δP (MPa½) δH (MPa½) δt (MPa½) Score 

Dimethyl sulfoxide 18.4 16.4 10.2 26.7 1 

Dimethylformamide 17.4 13.7 11.3 24.9 1 

Morpholine 18.8 4.9 9.2 21.5 1 

Aniline 19.4 5.1 10.2 22.5 0 

Formamide 17.2 26.2 19 36.7 1 

Acetic acid 14.5 8 13.5 21.4 0 

Dichloroacetic acid 18.2 8.1 12.2 23.4 1 

Propionic acid 14.7 5.3 12.4 19.9 0 

Methanol 15.1 12.3 22.3 29.6 0 

Ethanol 15.8 8.8 19.4 26.5 0 

1-Propanol 16 6.8 17.4 24.6 0 

1-Butanol 16 5.7 15.8 23.2 0 

1-Pentanol 15.9 5.9 13.9 21.9 0 

Benzyl alcohol 18.4 6.3 13.7 23.8 0 

Ethylene glycol 17 11 26 33.0 1 

1-Octene 15.3 1 2.4 15.5 0 

Ethylbenzene 17.8 0.6 1.4 17.9 0 

p-Xylene 17.6 1 3.1 17.9 0 
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(a) (b)  

Figure 1. HSP sphere for cellobiose with 18 solvents as (a) 3D view and (b) 2D view of δH vs. δP. Polar aprotic 

solvents are shown as red diamonds, polar protic solvents are shown as white triangles, nonpolar solvents are 

shown as black squares, and formamide (can act as either hydrogen bond acceptor or donor) is shown as a blue 

circle. The green circle represents the center of the sphere. 

The HSP for cellobiose were calculated as the following values: δD = 20.8 MPa1/2, δP = 

17.7 MPa1/2, δH = 18.2 MPa1/2, δt = 32.8 MPa1/2, Ro = 12.9 MPa1/2. These values are close to the 

HSP calculated for amorphous cellulose (δD = 24.3 MPa1/2, δP = 19.9 MPa1/2, δH = 22.5 MPa1/2) 

and sucrose (δD = 23.4 MPa1/2, δP = 18.4 MPa1/2, δH = 20.8 MPa1/2) by Hansen [21], so the 

calculated cellobiose HSP are reasonable. However, the HSP calculation method forced a 100% 

data fit, so morpholine had to be excluded from the sphere during the fitting procedure (score = 0) 

because it could not fit into the sphere without also including poor solvents such as aniline. 

Additionally, morpholine (δD = 18.8 MPa1/2, δP = 4.9 MPa1/2, δH = 9.2 MPa1/2) and aniline (δD = 

19.4 MPa1/2, δP = 5.1 MPa1/2, δH = 10.2 MPa1/2) could be considered similar compounds based on 

their similar solubility parameters, however, they do not perform similarly in their abilities to 

dissolve cellobiose. This false negative indicates that the HSP model may not be descriptive 

enough to differentiate between certain compounds and, therefore, is not always reliable to predict 

good solvents for cellobiose. 
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HSP can still be used as a rough approximation for cellobiose solubility. Interestingly, 

RED, which describes how similar a solvent is to cellobiose, can be moderately correlated to 

cellobiose solubility. Figure 2 shows that a smaller RED value generally means a higher solubility 

while a larger RED value generally means a lower solubility. The best fit equation for the data is 

given in Eq. (22a) and the best fit equation for the data excluding morpholine is given in Eq. (22b), 

where SC is the solubility of cellobiose in mole fraction. The R2 values are 0.28 and 0.54 

respectively. The solvents along the RED = 1 line appear to deviate the most from the linear 

correlation, which further suggests that the HSP model is missing important parameters necessary 

to accurately predict solubility. For example, benzyl alcohol (δD = 18.4 MPa1/2, δP = 6.3 MPa1/2, 

δH = 13.7 MPa1/2) lies close to the edge of the HSP sphere (RED = 1.02) because its solubility 

parameters are similar to dichloroacetic acid (δD = 18.2 MPa1/2, δP = 8.1 MPa1/2, δH = 12.2 MPa1/2) 

although their molecular structures and their cellobiose dissolving abilities are very different. 

 log10 𝑆𝐶 = −4.12(𝑅𝐸𝐷) + 0.69 (22a) 

 log10 𝑆𝐶 = −5.34(𝑅𝐸𝐷) + 1.76 (22b) 
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Figure 2. Correlation between RED and cellobiose solubility. The best fit line for all data points is shown as the 

dashed line and the best fit line excluding morpholine (shown as the red star) is shown as the solid line. The RED = 

1 line is also displayed to differentiate between good and poor solvents. Polar aprotic solvents are red diamonds, 

polar protic solvents are white triangles, and formamide is the blue circle. 

4.3. LFER Analysis 

LFER is similar to HSP in the fact that both models use multiple parameters based on 

intermolecular forces to predict solubility. LFER descriptors for the solvents that were used in this 

study were found in the literature and listed in Table 3. 
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Table 3. LFER descriptors of the selected solvents. 

Solvent E S A B V 

Dimethyl sulfoxidea 0.522 1.74 0.00 0.88 0.6130 

Dimethylformamidea,b 0.367 1.31 0.00 0.74 0.6468 

Formamideb,c 0.468 1.30 0.62 0.60 0.3650 

Morpholinec 0.434 0.79 0.06 0.91 0.7221 

Anilineb 0.955 0.96 0.26 0.41 0.8162 

Acetic acida 0.265 0.65 0.61 0.45 0.4648 

Dichloroacetic acidc,d 0.481 1.20 0.90 0.27 0.7096 

Propionic acidb,c 0.233 0.65 0.60 0.45 0.6057 

Methanola,c 0.278 0.44 0.43 0.47 0.3082 

Ethanola,c 0.246 0.42 0.37 0.48 0.4491 

1-Propanola,c 0.236 0.42 0.37 0.48 0.5900 

1-Butanola,c 0.224 0.42 0.37 0.48 0.7309 

1-Pentanola,c 0.219 0.42 0.37 0.48 0.8718 

Benzyl alcohola,c 0.803 0.87 0.33 0.56 0.9160 

Ethylene glycolb 0.460 0.76 0.60 0.69 0.5078 

Watera,c 0.000 0.45 0.82 0.35 0.1673 

1-Octenea,c 0.094 0.08 0.00 0.07 1.1928 

Ethylbenzenea 0.613 0.51 0.00 0.15 0.9982 

p-Xylenea 0.613 0.52 0.00 0.16 0.9982 

a[50] 
b[30] 
c[51] 
d[52]  

 

The LFER equation that was obtained from multiple linear regression is shown in Eq. (23), where 

SC is the solubility of cellobiose in mole fraction. Table 4 shows the statistical analysis of the 

regressed coefficients and Table 5 shows the covariance of the descriptors. The moderate 

correlations between E and S, E and V, S and B, A and B, and A and V are important to note because 

they likely contributed to the large error of each coefficient. 
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 log10 𝑆𝐶 = −6.98 + 0.14𝐸 + 2.11𝑆 + 2.07𝐴 + 3.99𝐵 − 2.39𝑉 (23) 

The LFER equation shows that the most important descriptor is the hydrogen bond basicity 

(B) as it has the largest regressed coefficient (3.99). This is unsurprising because the polar aprotic 

solvents, which have larger B values, generally perform better than the other solvents. The 

polarizability (S) and molar volume (V) are also important: a larger polarizability and a smaller 

molar volume generally indicate a larger cellobiose solubility. The negative correlation with V 

agrees with the previously discussed trend of larger-sized alcohols resulting in lower cellobiose 

solubility. The hydrogen bond acidity (A) also appears to be important, but its high coefficient 

value may be due to two reasons: many more polar protic solvents (with moderate A values) were 

evaluated compared to polar aprotic solvents (with small A values) and dichloroacetic acid, one of 

the only good solvents with a large A value, may have singlehandedly enlarged the A coefficient. 

However, as seen in Table 5, A and B negatively co-vary, so it would actually be more desirable 

to have a solvent with a lower A value if it also meant a larger B value. The three nonpolar solvents 

are predicted to be poor solvents (dissolving 10-10 to 10-7 mole fraction of cellobiose) because they 

have low S, A, and B values and high V values. 
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Table 4. Regressed coefficients for LFER for 4 different scenarios: (a) using all data and all descriptors; (b) using 

all data and two descriptors; (c) using the data excluding morpholine and all descriptors; (d) using all data and 

nonlinear descriptors. 

    Regressed coefficient values with uncertainties 

no. data 

points 

AAD ARD Adj. R2 c e s a b v 

16a 66% 27% 0.50 

-6.98 

±2.4 

0.14 

±1.7 

2.11 

±0.94 

2.07 

±1.8 

3.99 

±2.7 

-2.39 

±1.8 

16b 71% 30% 0.53 

-3.89 

±0.90 

 

2.65 

±0.66 

  

-3.13 

±1.3 

15c 46% 16% 0.75 

-4.26 

±1.8 

-0.22 

±1.1 

3.11 

±0.69 

0.94 

±1.2 

-0.88 

±2.3 

-3.22 

±1.2 

16d 31% 10% 0.90 

-4.03 

±0.84 

2.20 

±0.62 

-7.42 

±1.9 

11.19 

±1.8 

4.13 

±0.96 

-2.50 

±0.69 

 

Table 5. Correlation coefficient table for LFER descriptors of 16 solvents. 

 E S A B V 

E 1     

S 0.53 1    

A -0.31 -0.29 1   

B 0.20 0.48 -0.74 1  

V 0.57 0.16 -0.43 0.14 1 

 

A parity plot was constructed to compare predicted LFER solubilities to experimental 

solubilities and is shown in Figure 3(a). LFER is able to predict solubilities relatively well for most 
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solvents. However, morpholine is greatly under-predicted because its descriptors do not fit the 

LFER trend: its polarizability descriptor is not as large as other good solvents and its molar volume 

is larger than most other good solvents. Two additional LFER regressions were performed to 

confirm the analysis of the LFER descriptors and morpholine: one regression was performed using 

only the S and V descriptors and another regression was performed using all five descriptors for 

the data excluding morpholine. The parity plots for these tests are presented in Figures 3(b) and 

3(c), respectively. 

The first test using only the S and V descriptors was reached by sequentially removing 

descriptors with the least impact on LFER predictions and then rerunning the regression analysis 

(removed E, then A, and then B). The AAD and ARD, shown in Table 4, are comparable to the 

complete LFER analysis, which further supports the conclusion that S and V are the most important 

descriptors necessary for predicting cellobiose solubility in most solvents. Despite excluding the 

B descriptor in this test, it is evident from the parity plots that B is still important to improve 

predictions for certain outliers such as morpholine. 

(a) (b)  
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(c)  

Figure 3. Parity plot comparing LFER predictions to experimental solubilities (a) for all data points in this study, 

(b) for all data points using only two LFER descriptors (S and V), and (c) for all data points excluding morpholine. 

Polar aprotic solvents are red diamonds, polar protic solvents are white triangles, amphiprotic solvents (formamide 

and water) are blue circles, and morpholine is shown as a red star. 

The second test using all five descriptors for the data excluding morpholine was performed 

to observe the impact of morpholine on the LFER equation. Predictions are improved for this test; 

the AAD and ARD, shown in Table 4, are lower compared to the two previous LFER analyses. 

The new regressed coefficients for this test are also shown in Table 4. S and V have increased 

importance with greater certainty compared to the complete LFER analysis with all data points. A 

has less importance, suggesting that polar protic solvents such as dichloroacetic acid and ethylene 

glycol are good solvents because they also have high S values. B lost its importance because there 

are too few polar aprotic solvents compared to the number of polar protic solvents in the analysis, 

so this new coefficient does not carry any meaning. The large changes in each coefficient from 

removing one data point has two possible implications: more data is necessary for a more reliable 

equation and morpholine has unique properties not captured by the LFER model (and the HSP 

model) that are important factors that affect solubility. The molecular structure of morpholine is 

suspected to be a major contributor to its ability to dissolve cellobiose because tertiary amine 
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oxides such as N-methylmorpholine-N-oxide (NMMO), were specifically found to be good 

solvents for cellulose when mixed with water [53-55] while similar compounds such as aniline 

may not have the same ability to dissolve cellulose (hypothesized based on its weak ability to 

dissolve cellobiose). 

It is slightly disappointing that the LFER model is not accurate for all solvents. Fortunately, 

a more complex empirical equation can be constructed based on the LFER descriptors to improve 

the accuracy of the model while also including morpholine. Nonlinear (squared) terms were 

introduced; Eq. (24) was one of the more successful models that best fit the experimental data and 

the regressed coefficients are listed in Table 4. There are likely many more possible equations that 

can fit the experimental data as well as Eq. (24), especially if more higher-order terms are included, 

however, the focus of this study is not to explore the infinite possible combinations of complex 

terms for an accurate empirical equation. 

 log10 𝑆𝐶 = 𝑐 + 𝑒𝐸2 + 𝑠𝐴 + 𝑎𝐴2 + 𝑏𝐵2 + 𝑣𝑉2 (24) 

These nonlinear terms were not derived from any theory; they were used simply to develop an 

accurate model that may be used to predict cellobiose solubility with less worry for outliers such 

as morpholine. Figure 4 shows the parity plot of the nonlinear model. The AAD is 31% and the 

ARD is 10%. Surprisingly, S is not included in this model, however, it is likely that it is implicitly 

included within the other descriptors once again due to the covariance, especially between E and 

S and between S and B. 
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Figure 4. Parity plot comparing the nonlinear equation predictions to experimental solubilities. Polar aprotic 

solvents are red diamonds, polar protic solvents are white triangles, and amphiprotic solvents are blue circles. 

4.4. UNIFAC and Modifications to UNIFAC 

In order to calculate solubility using the SLE equation shown by Eq. (13), values for 

cellobiose properties (Δℎ𝑓𝑢𝑠, Tm, and Δ𝑐𝑝) are required. Table 6 lists the selected values for these 

properties from the literature or group-contribution methods and also includes the calculated ideal 

solubility of cellobiose (γ2 = 1) at 20°C using these property values. Sensitivity analyses were 

performed for each property due to the large range or unreliability of reported literature values. 

The justification of the selection of each property value is presented in Appendix A. 

Table 6. Cellobiose properties and calculated ideal solubility. 

𝚫𝒉𝒇𝒖𝒔 (kJ/mol) [56] Tm (K) [57] 𝚫𝒄𝒑 (J/mol/K) [58] 
Ideal solubility at 20°C  

(mole fraction×10-3) 

73.9 510 263 0.904 

 

UNIFAC is a useful model to study because it is semi-empirical; it can predict cellobiose 

solubility without experimental data. However, as mentioned previously, the accuracy of UNIFAC 
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depends on the accuracy of the interaction parameters regressed from equilibrium data. Many 

interaction parameters are currently unavailable or unreliable, which is likely one of the reasons 

for the low accuracy of UNIFAC for carbohydrate solubility. The parity plot comparing the 

predicted cellobiose solubilities from UNIFAC to experimental solubilities is presented in Figure 

5(a). It shows that UNIFAC generally over-predicts most solvents to be better than what was found 

experimentally for cellobiose. The AAD is 130% and the ARD is 38%. Although UNIFAC could 

be used as a rough approximation for cellobiose solubility, it is much less accurate than the LFER 

model. UNIFAC predicts cellobiose solubility to be on the order of 10-15 to 10-13 mole fraction for 

the three nonpolar solvents, so UNIFAC has the ability to predict that cellobiose is insoluble in 

nonpolar solvents although it is unknown if the magnitude of the predicted value is close to the 

real value. 

The modified UNIFAC (NIST) model was also evaluated because it is a more recently 

published model with more interaction parameters available [41]. This model is slightly less 

accurate than the original UNIFAC and it generally under-predicts most solvents to be worse than 

what was found experimentally. The AAD is 140% and the ARD is 49%. The large differences 

between the predictions of the UNIFAC models show the importance of the availability of reliable 

interaction parameters. 

Given that the original UNIFAC generally over-predicts solubility while modified 

UNIFAC (NIST) generally under-predicts solubility, it would be interesting to try to counteract 

each model’s inaccuracies by combining the two UNIFAC models. The combined model was 

constructed by simply taking an average of the results of the two models as shown in Eq. (25), 

where SUNIFAC is the predicted solubility from the original UNIFAC, SNIST is the predicted solubility 

from modified UNIFAC (NIST), and SCombined is the predicted solubility of the combined model.  
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 ln 𝑆𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =
ln 𝑆𝑈𝑁𝐼𝐹𝐴𝐶+ln 𝑆𝑁𝐼𝑆𝑇

2
 (25) 

The AAD of the combined model is 73% and the ARD is 27%. Although this combined model is 

comparable to the LFER model, it does not solve the problems of UNIFAC’s inability to 

distinguish between carbohydrate isomers and its usage of unreliable interaction parameters. 

(a) (b)  

(c)   

Figure 5. Parity plot comparing (a) UNIFAC predictions (b) modified UNIFAC (NIST) predictions and (c) 

combined (averaged UNIFAC and modified UNIFAC (NIST)) predictions to experimental solubilities. Polar aprotic 

solvents are red diamonds, polar protic solvents are white triangles, and amphiprotic solvents are blue circles. 
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 A-UNIFAC, which is a modification of UNIFAC specifically for carbohydrates, provides 

more promising results, but only applies to water and alcohols. A comparison of UNIFAC, 

modified UNIFAC (NIST), and A-UNIFAC solubility predictions for applicable solvents are 

shown in Table 7. Benzyl alcohol was not able to be defined by the groups available for A-

UNIFAC and was excluded in the comparison. Ethylene glycol, however, was included in the 

comparison because it can be defined by the alcohol groups (CH2, OH). vOH for ethylene glycol 

was set to 1. 

Table 7. Comparison of UNIFAC, modified UNIFAC (NIST), and A-UNIFAC predictions for cellobiose solubility in 

alcohols and water. Solubilities are in mole fraction×10-3. 

Solvent Experimental Solubility UNIFAC Mod. UNIFAC (NIST) A-UNIFAC 

Methanol 0.0524 34.9 0.0557 0.197 

Ethanol 0.0237 1.70 0.000816 0.0181 

1-Propanol 0.00688 0.264 0.000128 0.00676 

1-Butanol 0.00476 0.0539 0.0000301 0.00314 

1-Pentanol 0.00309 0.0138 0.00000934 0.00160 

Ethylene Glycol 1.36 2.73 0.126 0.00124 

Water 9.78 75.7 0.00185 19.9 

 

As mentioned previously, the original UNIFAC generally over-predicts cellobiose 

solubilities. The AAD and ARD for UNIFAC for only alcohols and water (excluding ethylene 

glycol) are 150% and 35%. A-UNIFAC is able to predict solubilities in alcohols and water more 

accurately, which is expected due to the fitting procedure of A-UNIFAC and the extra association 

term to account for the self- and cross-associations in mixtures [17]. Ethylene glycol, however, is 

better predicted by the original UNIFAC. A-UNIFAC cannot be extended to glycols and is 
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therefore limited to simple alcohols and water. The AAD and ARD for A-UNIFAC excluding 

ethylene glycol are 25% and 6.7%, respectively. Although the A-UNIFAC parameters were not fit 

to cellobiose solubility data, it was able to reasonably predict cellobiose solubility. 

A-UNIFAC was evaluated for ten additional carbohydrates to verify its ability to predict 

carbohydrate solubility. Experimental data for these carbohydrates were extracted from the 

literature at 18-25°C in water, methanol, and ethanol [13,20,43,44,59-62]. Property values (Δℎ𝑓𝑢𝑠, 

Tm, and Δ𝑐𝑝) for each carbohydrate are listed in Appendix A. Figure 6 shows the parity plot for A-

UNIFAC, which indicates that it works well for many carbohydrates and is therefore the most 

promising solubility model. The AAD is 22% and the ARD is 10%. 

 

Figure 6. Parity plot comparing A-UNIFAC predictions for carbohydrate solubility in water and alcohols (primarily 

methanol and ethanol) to experimental solubilities found in the literature. Monomers are in red, dimers are in blue, 

and cellobiose data (from this study) are in green. 

Additional work is required to extend the UNIFAC and A-UNIFAC models to accurately 

predict cellobiose solubility in other solvents. A much larger solubility database for cellobiose in 

additional solvents and at various temperatures will allow new interaction parameters between the 

new sugar groups in A-UNIFAC and more functional groups to be defined. 
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4.5. Model Predictions 

This study contains a limited dataset for cellobiose solubility, so it may be useful to list a 

few additional organic compounds that could be good solvents for cellobiose based on the 

literature and predictions from HSP, LFER, and UNIFAC. The solubility of most carbohydrates is 

hypothesized to be similar or related, so solvent systems for cellulose are also expected to work 

well for cellobiose and other similar carbohydrates. One notable solvent system for cellulose is a 

solution of lithium chloride (LiCl) and dimethylacetamide (DMA or DMAc). N-methyl-2-

pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), and hexamethylphosphoric triamide 

(HMPT) are a few compounds that can substitute DMAc in the solvent system [11,55]. Tertiary 

amine oxides were also found to be good solvents for cellulose when mixed with water. Examples 

include N-methylmorpholine-N-oxide (NMMO), N,N-dimethylethanolamine-N-oxide, and N-

methylpiperidine-N-oxide [53-55]. Table 8 lists available HSP and LFER parameters for 11 

additional organic solvents that are predicted to dissolve cellobiose well based on their use in the 

literature and Table 9 lists cellobiose solubility predictions for these organic solvents using the 

HSP, LFER, and UNIFAC models. It is important to note that pyridine, piperidine, and piperazine 

have similar structures (and HSP and LFER parameters) to morpholine, so these models may not 

be able to accurately predict solubilities for these compounds. 
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Table 8. HSP and LFER parameters for additional organic solvents. 

Solvent 
δD

a 

(MPa½)  

δP
a 

(MPa½) 

δH
a 

(MPa½) 

E S A B V 

N-methyl-2-

pyrrolidone 
18.0 12.3 7.2 - - - - - 

1,3-dimethyl-2-

imidazolidinone 
- - - - - - - - 

Hexamethylphosphoric 

triamide 
18.5 8.6 11.3 - - - - - 

Dimethylacetamide 16.8 11.5 10.2 0.363b 1.33b 0b 0.78b 0.788b 

Ethanolamine 17.0 15.5 21.2 - - - - - 

Butylamine 16.2 4.5 8.0 0.224c 0.35c 0.16c 0.61c 0.772c 

1,3-Butanediol 16.6 10.0 21.5 - - - - - 

Diethylene glycol 16.6 12.0 20.7 - - - - - 

Pyridine 19.0 8.8 5.9 0.631c 0.84c 0c 0.52c 0.675c 

Piperidine 17.6 4.5 8.9 0.422c 0.46c 0.10c 0.69c 0.804c 

Piperazine 18.1 5.6 8.0 0.57b 0.83b 0.11b 1.14b 0.763b 

a[21] 
b[30] 
c[52] 
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Table 9. Predicted solubility of cellobiose in additional organic solvents in mole fraction×10-3. For HSP 

predictions, Eq. (22a) was used and RED values are in parentheses. For LFER predictions, Eq. (23) was used. 

Solvent HSP LFER UNIFAC Mod. UNIFAC (NIST) 

N-methyl-2-pyrrolidone 0.256 (1.04) - 112 13.3 

1,3-dimethyl-2-imidazolidinone - - 68.1 41.6 

Hexamethylphosphoric triamide 0.591 (0.95) - - - 

Dimethylacetamide 0.391 (0.99) 1.28 58.7 0.0501 

Ethanolamine 10.1 (0.65) - 29.3 16.1 

Butylamine 
0.00420 

(1.47) 
0.0051 3.18 0.103 

1,3-Butanediol 5.49 (0.72) - 0.676 0.0136 

Diethylene glycol 2.33 (0.81) - 1.15 0.0264 

Pyridine 0.0527 (1.21) 0.0220 5.70 0.0383 

Piperidine 0.0143 (1.34) 0.0123 0.00485 0.0047 

Piperazine 0.0231 (1.29) 6.36 4.44 51.4 

 

4.6. Correlation with Cellulose Swelling 

Good solvents for cellobiose do not directly translate to good solvents for cellulose because 

the crystallinity of cellulose is a major contributor to its resistance to dissolution [7,10]. Therefore, 

it is also important to study the intra-crystalline and inter-crystalline swelling of cellulose, a 

phenomenon in which the solvent penetrates and expands cellulose fibers without dissolution, 

which reduces cellulose crystallinity [63]. Both cellulose dissolution and swelling involve the 

disruption of the supramolecular structure and are therefore controlled by the same cellulose-

solvent interactions [64]. Therefore, a correlation between cellobiose solubility and cellulose 

swelling would be quite useful for future work involving cellulose. 

Swelling data for α-cellulose (one of two distinct crystalline forms of cellulose) was found 

in the literature [63-66] for 13 of the solvents used in this study. There is some disagreement on 
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the degree of swelling in water, which also affects the swelling data point for morpholine because 

Onyianta et al. [66] only reported cellulose swelling in morpholine to be approximately 130% of 

that in water. The larger literature value for water was selected for a better correlation. Figure 7 

shows a strong correlation between cellobiose solubility and cellulose swelling. The best fit line is 

given in Eq. (26), where %Sw is the percentage of swelling of cellulose. The R2 value is 0.85. 

 %𝑆𝑤 = 37.6 log10 𝑆𝐶 + 243 (26) 

 
Figure 7. Correlation between cellobiose solubility and cellulose swelling. 

This correlation supports the idea that solubility and swelling are related. Good solvents for 

cellobiose tend to also be able to swell cellulose. It is helpful to predict and find solvents that swell 

cellulose because disrupting the crystalline structure improves cellulose reactivity [4]. 

5. Conclusions and Future Work 

Solubility of cellobiose in various organic solvents and water were determined. Polar 

aprotic solvents performed better than polar protic and nonpolar solvents, with DMSO as the best 

solvent out of the ones tested in this study. The HSP of cellobiose were calculated to be the 

following values: δD = 20.8 MPa1/2, δP = 17.7 MPa1/2, δH = 18.2 MPa1/2, δt = 32.8 MPa1/2, Ro = 12.9 
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MPa1/2. A linear relation between solubility and RED was proposed as a rough numerical 

prediction for the HSP model. The LFER model is the most accurate model of the three that were 

evaluated in this work. The regressed equation shows that a more polar and a smaller-sized solvent 

will tend to dissolve cellobiose well. The AAD is 66% and the ARD is 27%. UNIFAC and 

modified UNIFAC (NIST) are much less accurate in its cellobiose solubility predictions with AAD 

values of 130% and 140%, respectively, and ARD values of 38% and 49%, respectively. A-

UNIFAC is more accurate, but only applies to water and alcohols. The AAD is 25% and the ARD 

is 6.7%. These modifications to UNIFAC show that it is the model with the most potential. Future 

modifications to the UNIFAC equations and interaction parameters will continuously improve its 

accuracy in SLE predictions. Cellobiose solubility was found to have a strong correlation with 

cellulose swelling. Solvents that are predicted to be good for cellobiose may therefore be used in 

future work to improve processes involving cellulose depolymerization. 

In the future, it is also recommended to perform a time study to verify or improve the 

procedure for measuring solubility. 24 hours was assumed to be sufficient to reach equilibrium for 

each solvent, however, the time it takes to reach equilibrium is different for each solvent. 

Morpholine was observed to be slower at dissolving cellobiose than other solvents such as DMSO. 

In order to confirm that equilibrium is reached, cellobiose-solvent mixtures should be analyzed 

after every 12-hour interval starting at 24 hours. If the concentration of the mixture remains 

constant for each time frame after 24 hours, then it would be acceptable to assume equilibrium has 

been reached after 24 hours. Additionally, it is important to measure the solution density in order 

to convert solubility from g L-1 to mole fraction. 
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7.1. Appendix A: Sensitivity Analysis for Cellobiose Properties 

Most literature values for Tm of cellobiose range between 498 K and 522 K [57,60,67,68]. 

Raemy and Schweizer [69] report 468 K as the onset temperature and 493 K as the peak 

temperature, but this source will be excluded as an outlier. Group-contribution methods estimate 

Tm to be 513 K [56] and 768 K [70]. The sensitivity range was chosen to be 495 K to 525 K. For 

Δℎ𝑓𝑢𝑠 = 73.9 kJ/mol and Δ𝑐𝑝 = 263 J/mol/K, the ideal solubility (mole fraction) of cellobiose varies 

from 7.81×10-4 at Tm = 495 K to 1.11×10-3 at Tm = 525 K. Tm has only a small effect on ideal 

solubility, so it was sufficient to select Tm = 510 K [57] because it is at the midpoint of the range 

of literature values and closely matches the group-contribution estimation by Marrero and Gani 

[56] of 513 K, which uses a third-order approximation. 

The literature reports Δ𝑐𝑝 to be 263 J/mol/K [58] for cellobiose. Additionally, Δ𝑐𝑝 was 

reported to be 132.2 J/mol/K [57] for the glass transition and was estimated to be 130 J/mol/K 

using a group-contribution method by Wu et al. [71]. The sensitivity range was chosen to be 0 to 

300 J/mol/K to compare these values to the ideal (and often assumed) value of Δ𝑐𝑝 = 0. For Tm = 

510 K and Δℎ𝑓𝑢𝑠 = 73.9 kJ/mol, the ideal solubility (mole fraction) of cellobiose varies from 

2.52×10-6 at Δ𝑐𝑝 = 0 J/mol/K to 2.07×10-3 at Δ𝑐𝑝 = 300 J/mol/K. Ideal solubility is quite sensitive 

to Δ𝑐𝑝, therefore, Δ𝑐𝑝 = 0 cannot be assumed for cellobiose. Δ𝑐𝑝 = 263 J/mol/K was reasonable to 

use because it is the only available literature value; Δ𝑐𝑝 = 132.2 J/mol/K was reported for the glass 

transition and not the solid-liquid phase change. 

Δℎ𝑓𝑢𝑠 for cellobiose and other saccharides with more than one monosaccharide unit is 

difficult to measure experimentally because they often decompose easily before melting [13,57]. 

The literature reports two different values for the enthalpy of fusion for cellobiose: 31.1 kJ/mol 

[60,72] and 54.8 kJ/mol [13,69]. Several group-contribution methods [56,70,73,74] were 



51 

 

performed and ranged from 55.7 kJ/mol [74] to 96.5 kJ/mol [73]. The sensitivity range was chosen 

to be 30 to 100 kJ/mol. For Tm = 510 K and Δ𝑐𝑝 = 263 J/mol/K, the ideal solubility (mole fraction) 

varies from 1.92 at Δℎ𝑓𝑢𝑠 = 30 kJ/mol to 9.52×10-6 at Δℎ𝑓𝑢𝑠 = 100 kJ/mol. Ideal solubility is most 

sensitive to Δℎ𝑓𝑢𝑠, so it is important to select a reasonable value for Δℎ𝑓𝑢𝑠. The ideal solubility 

exceeded 1 for low Δℎ𝑓𝑢𝑠 values, therefore, the literature value of 31.1 kJ/mol was unreasonable 

to use. 

Another way to calculate Δℎ𝑓𝑢𝑠 is to use the entropy of fusion (Δ𝑠𝑓𝑢𝑠) in the following 

relation [60,73]: 

 Δℎ𝑓𝑢𝑠 = 𝑇𝑚Δ𝑠𝑓𝑢𝑠 (A.1) 

Δ𝑐𝑝 has also been proposed to be related to Δ𝑠𝑓𝑢𝑠 at the melting temperature [71,75]. Pappa et al. 

[75] proposed an empirical correlation between Δ𝑐𝑝 and Δ𝑠𝑓𝑢𝑠 for each group of compounds 

(alkanes, alcohols, etc.). Assuming that a similar correlation can be found for most carbohydrates, 

literature values for Δ𝑐𝑝 and Δ𝑠𝑓𝑢𝑠 for a few common carbohydrates were found in order to 

determine an empirical correlation. Property values of common carbohydrates are listed in Table 

A.1. Δ𝑐𝑝 is approximately twice the value of Δ𝑠𝑓𝑢𝑠 for each of the four listed carbohydrates. If this 

correlation also applies to cellobiose, then the literature value of 54.8 kJ/mol is most likely too low 

because the Δ𝑐𝑝-to-Δ𝑠𝑓𝑢𝑠 ratio would be 2.45. 

The group-contribution method using a third-order approximation by Marrero and Gani 

[56] estimates Δℎ𝑓𝑢𝑠 to be 73.9 kJ/mol for cellobiose. This estimated value is the best fit for the 

Δ𝑐𝑝 and Δ𝑠𝑓𝑢𝑠 correlation with a ratio of 1.82 and is therefore an acceptable value to use for 

cellobiose solubility calculations. However, it is important to note that the group-contribution 

method cannot distinguish between carbohydrate isomers and does not account for the effect of 

the glycosidic bond and therefore may not be accurate. Nevertheless, this value will be used 
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because the group-contribution method was able to closely estimate Tm and therefore may also be 

able to estimate close to the actual Δℎ𝑓𝑢𝑠 value. Additionally, Jónsdóttir et al. [13] suspected that 

54.8 kJ/mol was an inaccurate value because it did not fit well in the UNIQUAC model they used 

and found that 70 kJ/mol was a better fit to the model. Similarly, the UNIFAC model used in this 

study found 73.9 kJ/mol as a better fit than 54.8 kJ/mol. 

Table A.1 shows two additional trends. First, it appears that a larger Tm value tends to 

correlate with a larger Δℎ𝑓𝑢𝑠 value. Second, Δ𝑐𝑝 for monosaccharides (glucose and fructose) 

appear to have similar values near 130 J/mol/K and Δ𝑐𝑝 for disaccharides (sucrose and maltose) 

appear to have similar values near 250 J/mol/K. Due to the large Tm value of cellobiose compared 

to other carbohydrates, it is reasonable to expect a Δℎ𝑓𝑢𝑠 value larger than the Δℎ𝑓𝑢𝑠 value for 

sucrose, which further supports the use of the Δℎ𝑓𝑢𝑠 = 73.9 kJ/mol. It is also reasonable to use Δ𝑐𝑝 

= 263 J/mol/K because it is similar to Δ𝑐𝑝 values for other disaccharides. 
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Table A.1. Properties of common carbohydrates. 

 
Δℎ𝑓𝑢𝑠 

(J/mol) 
Tm (K) 

Δ𝑐𝑝 

(J/mol/K) 

Δ𝑠𝑓𝑢𝑠 =
Δℎ𝑓𝑢𝑠

𝑇𝑚
 

(J/mol/K) 

Δ𝑐𝑝

Δ𝑠𝑓𝑢𝑠
 

Glucose 32 248a 423.15b 138c 76.2 1.81 

Fructose 26 030d,e 378.15d,e 135a 68.9 1.96 

Sucrose 57 000f 459.15f 254d,g 124.1 2.05 

Maltose 45 400d 379.15d 231d,g 119.7 1.93 

Trehalose 48 048d 368.15d 241d,g 130.5 1.85 

Xylose 31 700h 416.15h 97h 76.2 1.27 

Galactose 43 778d 436.15d 139h 100.4 1.38 

Arabinose 35 700i 433.15i 120j 82.4 1.46 

Mannose 24 687d 407.15d 130a 60.6 2.15 

Lactose 75 306d 474.15d 239d,g 158.8 1.51 

Cellobiose 73 900k 510l 263g 144.9 1.82 

a[76] 
b[19] 
c[77] 
d[17] 
e[61] 
f[20] 
g[58] 
h[13] 
i[60] 
j[78] 
k[56] 
l[57] 
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Figure A.1. Sensitivity of the melting temperature Tm on the solubility of cellobiose. 

 

Figure A.2. Sensitivity of the heat capacity Δcp on the solubility of cellobiose. 
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Figure A.3. Sensitivity of the heat of fusion Δhfus on the solubility of cellobiose. 
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7.2. Appendix B: UNIFAC Equations and Parameters 

7.2.1. Original UNIFAC Equations 

The activity coefficient consists of a combinatorial part and a residual part in the UNIFAC model. 

Eqs. (B.1-3) are used to calculate the combinatorial part, where xi is the mole fraction of component 

i in the mixture, θi is the area fraction, and Φi is the segment fraction (similar to the volume 

fraction). 

 ln 𝛾𝑖
𝐶 = ln

Φ𝑖

𝑥𝑖
+

𝑧

2
𝑞𝑖 ln

𝜃𝑖

Φ𝑖
+ 𝑙𝑖 −

Φ𝑖

𝑥𝑖
∑ 𝑥𝑗𝑙𝑗𝑗  (B.1) 

 𝑙𝑖 =
𝑧

2
(𝑟𝑖 − 𝑞𝑖) − (𝑟𝑖 − 1) (B.2) 

 𝑧 = 10 (B.3) 

Eqs. (B.4-5) show the calculations for θi and Φi, where ri is the molecular (van der Waals) volume 

parameter and qi is the molecular surface area parameter. 

 𝜃𝑖 =
𝑞𝑖𝑥𝑖

∑ 𝑞𝑗𝑥𝑗𝑗
 (B.4) 

 Φ𝑖 =
𝑟𝑖𝑥𝑖

∑ 𝑟𝑗𝑥𝑗𝑗
 (B.5) 

ri and qi are calculated by group-contribution volume and surface area parameters Rk and Qk, 

respectively, where 𝜈𝑘
𝑖  is the number of groups of type k in molecule i. 

 𝑟𝑖 = ∑ 𝜈𝑘
𝑖 𝑅𝑘𝑘  (B.6) 

 𝑞𝑖 = ∑ 𝜈𝑘
𝑖 𝑄𝑘𝑘  (B.7) 

Rk and Qk are calculated from the van der Waals group volume and surface areas 𝑉𝑤𝑘 and 𝐴𝑤𝑘, 

respectively, which are given by Bondi [79]. Rk and Qk are available in the literature and listed in 

the Dortmund Databank. 

 𝑅𝑘 =
𝑉𝑤𝑘

15.17
 (B.8) 
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 𝑄𝑘 =
𝐴𝑤𝑘

2.5×109 (B.9) 

The residual part of the activity coefficient is calculated by Eq. (B.10), where Γ𝑘 is the functional 

group residual activity coefficient and Γ𝑘
𝑖  is the activity coefficient of group k in a reference 

solution containing only molecules of type i. Γ𝑘
𝑖  is necessary to have the activity coefficient γi reach 

unity as xi approaches 1.  

 ln 𝛾𝑖
𝑅 = ∑ 𝜈𝑘

𝑖  [ln Γ𝑘 − ln Γ𝑘
𝑖]𝑘  (B.10) 

Eq. (B.11) is used to calculate Γ𝑘 and Γ𝑘
𝑖 , where Θm is the area fraction of group m and is calculated 

similarly to θi with Xm as the mole fraction of group m in the mixture. 

 ln Γ𝑘 = 𝑄𝑘 [1 − ln ∑ Θ𝑚Ψ𝑚𝑘𝑚 − ∑ (
Θ𝑚Ψ𝑘𝑚

∑ Θ𝑛Ψ𝑛𝑚𝑛
)𝑚 ] (B.11) 

 Θ𝑚 =
𝑄𝑚𝑋𝑚

∑ 𝑄𝑛𝑋𝑛𝑛
 (B.12) 

The group interaction parameter Ψmn is given in Eq. (B.13), where Umn is a measure of energy of 

interaction between groups m and n. amn and anm, where amn ≠ anm, represent the two group 

interaction parameters for a binary mixture, which is evaluated from experimental phase 

equilibrium data and is often tabulated. 

 Ψ𝑚𝑛 = exp [− (
𝑈𝑚𝑛−𝑈𝑛𝑛

𝑅𝑇
)] = exp (−

𝑎𝑚𝑛

𝑇
) (B.13) 

7.2.2. A-UNIFAC Equations and Parameters 

The expression to calculate the activity coefficient for component i using the A-UNIFAC model 

is given in Eq. (B.14). 

 ln 𝛾𝑖 = ln 𝛾𝑖
𝐶 + ln 𝛾𝑖

𝑅 + ln 𝛾𝑖
𝐴 (B.14) 

The combinatorial and residual parts are calculated the same way as the original UNIFAC model 

by Fredenslund et al. [32]. The association part is calculated using Eq. (B.15), where vOH,i is the 

number of OH associating groups in component i. 
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 ln 𝛾𝑖
𝐴 = 𝜈𝑂𝐻,𝑖 [2 ln (

𝑋𝑂𝐻

𝑋𝑂𝐻,𝑖
) + (𝑋𝑂𝐻,𝑖 − 𝑋𝑂𝐻)] − (1 − 𝑋𝑂𝐻)(𝜈𝑂𝐻,𝑖 − 𝑟𝑖𝜌𝑂𝐻) (B.15) 

The fraction of nonbonded sites in the mixture (XOH) and the fraction of nonbonded sites in pure 

component i (XOH,i) are calculated by Eqs. (B.16-17). 

 𝑋𝑂𝐻 =
−1+√1+4𝜌𝑂𝐻Δ𝑂𝐻

2𝜌𝑂𝐻Δ𝑂𝐻
 (B.16) 

 𝑋𝑂𝐻,𝑖 =
1+√1+4(𝜌𝑂𝐻)𝑖Δ𝑂𝐻

2(𝜌𝑂𝐻)𝑖Δ𝑂𝐻
 (B.17) 

𝜌𝑂𝐻 is the concentration of the associating group in the mixture and (𝜌𝑂𝐻)𝑖 is the concentration of 

the associating group in pure component i. Eqs. (B.18-19) are used to calculate these parameters, 

where xi is the molar fraction of component i in the mixture and ri is the UNIQUAC molecular 

volume of component i, which is calculated by summing the UNIQUAC volumes of each 

functional group in component i. 

 𝜌𝑂𝐻 =
∑ 𝜈𝑂𝐻,𝑖𝑥𝑖

𝑁𝐶
𝑖=1

∑ 𝑟𝑖𝑥𝑖
𝑁𝐶
𝑖=1

 (B.18) 

 (𝜌𝑂𝐻)𝑖 =
𝜈𝑂𝐻,𝑖

𝑟𝑖
 (B.19) 

ΔOH, the dimensionless association strength, is a function of the energy of association (𝜖𝑂𝐻/𝑘) and 

the volume of association (𝜅𝑂𝐻). For OH and H2O self-associations and cross-association, 𝜅𝑂𝐻 = 

0.0062 and 𝜖𝑂𝐻/𝑘 = 3125 K [17,80]. 

 Δ𝑂𝐻 = 𝜅𝑂𝐻 [exp (
𝜖𝑂𝐻

𝑘𝑇
) − 1] (B.20) 

vOH is another parameter that was estimated simultaneously with the group interaction parameters. 

This parameter for cellobiose was set to the same value as sucrose of 4.3 due to the lack of available 

data, as suggested by Ferreira et al. [17]. vOH was reasonably set to 1 for water, methanol, and 

ethanol and vOH was set to 0.5 for propanol, butanol, and pentanol because Montañés et al. [43] 
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had to use a value of 0.5 for vOH for 1-propanol and isopropanol. vOH was set to 1 (rather than 2) 

for ethylene glycol simply because it was a slightly better fit to the experimental data. 

Table B.1. Volume and area parameters for the new sugar groups and existing alcohol groups. 

 𝑅𝑘 𝑄𝑘 

PYR1 

PYR2 

FUR1 

FUR2 

2.4784 1.380 

2.7059 1.692 

1.8041 0.924 

2.0315 1.152 

-O- 0.2439 0.240 

OHring 1.0000 1.200 

CH3 0.9011 0.8480 

CH2 0.6744 0.5400 

OH 1.0000 1.2000 

CH3OH 1.4311 1.4320 

H2O 0.9200 1.4000 

 

Table B.2. Functional group composition of each compound. 

 PYR1 -O- CH3 CH2 OH CH3OH OHring H2O 

Cellobiose 2 1 0 2 0 0 8 0 

Water 0 0 0 0 0 0 0 1 

Methanol 0 0 0 0 0 1 0 0 

Ethanol 0 0 1 1 1 0 0 0 

1-Propanol 0 0 1 2 1 0 0 0 

1-Butanol 0 0 1 3 1 0 0 0 

1-Pentanol 0 0 1 4 1 0 0 0 

Ethylene 

glycol 
0 0 0 2 2 0 0 0 
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Table B.3. Group interaction parameters (K) [43]. 

anm PYR/FUR -O- CH2/CH3 OH CH3OH H2O OHring 

PYR/FUR 0.0 0.0 0.0 176.5 -33.8 -154.3 0.0 

-O- 0.0 0.0 0.0 -721.0 -323.5 -508.0 0.0 

CH2/CH3 0.0 0.0 0.0 50.4 122.7 308.5 -60.2 

OH 387.4 -876.6 387.4 0.0 110.9 -127.3 72.2 

CH3OH -197.2 -278.7 -19.78 60.2 0.0 -167.6 31.9 

H2O 108.4 155.3 136.8 70.7 251.2 0.0 87.8 

OHring 0.0 0.0 703.4 715.1 681.8 -174.4 0.0 
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7.3. Appendix C: HPLC Chromatograms for Cellobiose Solubility 

 

Figure C.1. HPLC chromatogram for formamide samples. Chromatograms for other solvents such as DMSO, DMF, 

etc. were similar and not included. Cellobiose peak is at t = 8.3 min. 

 

Figure C.2. HPLC chromatogram for 1-pentanol samples. Baselines were not perfect, but still provided reasonable 

results. Chromatograms for 1-propanol, 1-butanol, and benzyl alcohol also had slightly imperfect baselines and 

were not included. Cellobiose peak is at t = 8.3 min. 

-50000

0

50000

100000

150000

200000

0 5 10 15 20

Si
gn

al

Time (min)

-1500

-1300

-1100

-900

-700

-500

-300

-100

100

300

500

0 5 10 15 20

Si
gn

al

Time (min)



62 

 

 

Figure C.3. HPLC chromatogram for dichloroacetic acid samples. Cellobiose peak is at t = 12.4 min; HPLC flow 

rate was lowered to separate the cellobiose and solvent peaks. 
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