

Cloud Motion Vector Sensor System
Monitoring and Predicting Output Power of a Photovoltaic

System in Real-Time

Worcester Polytechnic Institute
Department of Electrical and Computer Engineering

Major Qualifying Project

Authors:

Ferreira, Jonathan

Lewis, Tim

Sauter, Evan

Advisor:

Prof. Mughal, Maqsood A.

A Major Qualifying Project submitted to the faculty of Worcester Polytechnic Institute in partial

fulfillment of the requirements of the Degree of Bachelor of Science.

This report represents the work of one or more WPI undergraduate students submitted to the

faculty as evidence of completion of a degree requirement. WPI routinely publishes these

reports on the web without editorial or peer review.

03/25/22

1

Acknowledgements:

We would like to thank Worcester Polytechnic Institute for allowing us the use of lab space,

the rapid prototyping labs, and the use of an on-campus site for the implementation and testing of

the CMVS system. We are also grateful for the assistance of the graduate students, Habeebullah

Adua and Mahammad Hammad Uddin, helping with design and modeling of the CMVS system.

Most of all, we are sincerely grateful to Dr. Maqsood Ali Mughal for advising this project,

providing us with materials, and for the insight and guidance which facilitated the completion of

this project. We would also like to thank William Appleyard, the Technician in the Electrical and

Computer Engineering department, for facilitating the acquisition of components for the project.

Furthermore, we would also like to thank the technical support team at Eversource for their

continuous feedback on the project.

2

Abstract:

Transient weather conditions often decrease the deliverable output power of photovoltaic

(PV) arrays and threaten the ability of the PV array to provide power to meet load demands, which

leads to utility companies to provide backup energy sources to supplement the remaining demand.

The switch from PV to backup power is not instantaneous, so it is important to predict the PV

system output power to prevent energy shortages. We refined an ambient light sensor system to

predict this output power. The system uses measured irradiance to compute cloud motion

parameters such as cloud size, speed, and direction, to predict changes in power generation due to

cloud cover. The system will enable grid operators to better understand the effects of PV power

variability on the grid.

3

Executive Summary:

Around the world, distributed PV power generation systems are being deployed at a rapid

pace. This is causing technical problems across the utility sector as reverse power flows and

voltage fluctuation occurs more in distribution feeders. There is also a rise in real and reactive

power transients that affect the operation of the bulk transmission system. Traditional voltage

control devices such as line voltage regulators or switched capacitor banks can alleviate slow-

moving fluctuations, but these devices need to operate more frequently than usual when PV

generation fluctuates due to cloud cover. For example, the output of PV systems can drop from

100% to 20% in a matter of seconds and return back to 100% within the same time frame. Utility

companies fear that frequent operation will impact the life expectancy of voltage control devices

[1, 2]. In order to fully understand and address these problems, utility companies like Eversource

are seeking solutions to this problem.

This work is a continuation of the work done by a group in the previous year. The goal of

the project was to design and construct a light sensor array to detect and analyze cloud cover

approaching a PV site. This device would enable utility companies that make extensive usage of

PV generation in their grid networks to have a more reliable and consistent output as they would

be able to predict future power generation given forecasted cloud cover. The last team set the

foundations of the project including code, circuit diagrams, and knowledge that allowed us to

quickly determine what needed to be improved. This system utilizes an array of nine separate light

sensors to forecast the direction a cloud is traveling, the time it would arrive at the PV site, and

predict the power generated by the PV grid. Eight of the sensors are placed around the system with

the ninth sensor being placed in the center of the device, which forms a Cloud Motion Vector

Sensor (CMVS) system. Our goal this year was to revise the previous year’s sensor system design,

improve the code, and test at a PV site.

We have designed and implemented several improvements across all parts of the CMVS

system. The structure of the physical array was modified to improve its sturdiness. The

weatherproofing of the system was improved using tangle and water-resistant wire sheaths to

protect the wires. These were connected to a central enclosure that protected the Arduino

microcontroller and central light sensor, as well as the eight radial sensor enclosures. Additionally,

snap-fit enclosures were designed in Solidworks and 3D-printed to allow for rapid assembly.

 Although the foundation of the electrical system remains relatively unchanged from the

design used in the past, it has been improved and iterated upon. We have gone through several

stages of prototyping the electronics. This ranged from basic breadboarding to experimenting with

several potential PCB layouts and configurations in order to find an ideal medium for this project.

This process has enabled us to create a recommended PCB for further revisions and improvements

to the project.

The software element of the model also received significant changes. Initially, the

MATLAB algorithm had errors within it. These errors were debugged, and repetitive, bulky

elements of the code were reduced and simplified to improve the overall efficiency of the model.

We also added several quality-of-life changes with features such as an added progress bar and

4

documentation of all code being incorporated. The newly added computations to obtain additional

cloud parameters were first incorporated into MATLAB and then these changes were added into

ThingSpeak: the online IoT platform that we use to process our collected irradiance data. The

newly implemented parameters were estimated time of arrival, cloud size, and depth. These

parameters, in addition to the date and time that the histograms were computed, was all done in

real-time.

Determining the predicted power output required the use of additional software systems.

The initial method to determine the predicted power output relied on calculating the alpha values

during the day across the span of year to create a database of alpha values at known irradiance

values. This would enable easy determination of predicted power by referencing the alpha values.

We shifted to a different method involving Simulink because product delays made the initial plan

implausible within our timeframe. This Simulink model has two inputs, irradiance and

temperature, and outputs the predicted power. For this model, a pyranometer and temperature

sensor were required at the PV site and were connected to a separate microcontroller from the one

used in our CMVS system. These sensors did not support direct interfacing with the Simulink

model, so Python was used as an intermediate interface between the two. Currently, the predicted

power projection model needs to be further refined.

While many improvements were made over the course of this project, there still is ample

room for future refinement of the system. The system is in need of better weatherproofing to enable

it to function more effectively across temperature ranges. While the electronics are well protected

from weather conditions such as rain and snow, the wire connections did not maintain their

integrity in sub-freezing temperatures. Additionally, a new more compact and spatially efficient

central PCB design is recommended. Finally, there are select segments of the code that could be

made more efficient or refined. The Simulink model needs to be updated to be able to integrate

into the rest of the system, and the efficiency and annotation in the MATLAB code should be

reflected in that on ThingSpeak. It should be noted that the cloud size and depth have not been

retroactively implemented into the MATLAB code.

5

Table of Contents
Acknowledgements: .. 1

Abstract: .. 2

Executive Summary: ... 3

1 Introduction ... 7

1.1 Problem .. 7

1.3 Current Solutions and Technology ... 7

1.4 Our Solution and Technology .. 8

2 System Design and Modifications ... 9

2.1 Mechanical Design ... 10

2.2 Electronics Design.. 14

2.3 Software Design ... 19

3 Results ... 23

3.1 CMVS Model ... 23

3.2 I-Corps Program ... 26

4 Conclusions ... 28

4.1 Recommendations .. 28

4.1.1 Hardware Recommendations .. 28

4.1.2 Electronics Recommendations ... 29

4.1.3 Software Recommendations ... 30

Bibliography: .. 31

Appendices:... 32

Project Code: ... 32

The Revised MATLAB Algorithm: .. 33

Python Scripts for Power Output Prediction: .. 40

MATLAB Script for Power Output Prediction: .. 41

Arduino Script for Power Output Prediction: ... 42

Revised ThingSpeak Algorithm: ... 43

Recommended PCB Schematic:.. 52

Additional Figures: .. 53

6

Table of Figures:

Figure 1: .. 9

Figure 2: .. 10

Figure 3: .. 11

Figure 4 ... 13

Figure 5: .. 14

 Figure 6: .. 15

Figure 7: .. 16

Figure 8: .. 17

Figure 9: .. 18

 Figure 10: .. 19

Figure 11: .. 22

Figure 12: .. 24

Figure 13: .. 25

 Figure 14: .. 26

Figure 15: .. 29

Figure 16: .. 30

Figure 17: .. 52

Figure 18: .. 53

 Figure 19: .. 53

Figure 20: .. 54

Figure 21: .. 54

7

1 Introduction

As the environmental drawbacks of fossil fuel reliant forms of power generation become

more apparent, alternatives such as renewable energies become more attractive as long-term

investments. Photovoltaic systems are limited by weather, such as cloud cover, PV irradiance, and

humidity. These can impede the maximum power output of a PV array. Thereby potentially

causing the PV array to fall below the load demand of the local grid. Our work is a continuation

of the work done by a group in the previous year. The goal was to design and construct a light

sensor array to detect and analyze cloud cover approaching a PV site. This array would forecast

the direction a cloud is traveling, the time it would arrive at the PV site, and predict the power

generated by the system. The previous group produced a baseline sensor array and code to run it.

Our goals for the project were to improve the array design, the code, and the accuracy of the model.

Additionally, the model needed to be tested at a PV site.

1.1 Problem

Around the world, distributed PV power generation systems are being deployed at a rapid

pace. This is causing technical problems across the utility sector as reverse power flows and

voltage fluctuation occurs more in distribution feeders. There is also a rise in real and reactive

power transients that affect the operation of the bulk transmission system. Traditional voltage

control devices such as line voltage regulators or switched capacitor banks can alleviate slow-

moving fluctuations, but these devices need to operate more frequently than usual when PV

generation fluctuates due to cloud cover. For example, the output of PV systems can drop from

100% to 20% in seconds and return back to 100% in the same time frame [1]. The utility sector

fears that such frequent operation will impact the life expectancy of these voltage control devices.

In order to fully understand and address these problems, utility companies like Eversource are

seeking solutions to this problem. Such a solution would require extensive computer simulation

and data analytics studies to properly address the issue [2].

For further perspective, Massachusetts alone has had a large increase in its integrated PV

power within the last decade. The state possessed roughly 1000 MW of PV power generation in

2015 and had the goal of reaching 1600 MW by 2020. As of 2019, the state has had a cumulative

capacity of 2752 MW, which is more than double what it had only four years before [3]. This

further displays the need for systems that can improve the resiliency of PV systems. As the grid

becomes more dependent on PV arrays, loss of power due to cloud cover becomes more impactful

and adds more stress to the system.

1.3 Current Solutions and Technology

Throughout our research we have encountered several contemporary solutions to the

problem identified. All of them in some way serve to forecast weather or monitor outputs from a

8

PV system. One possible solution is the Total Sky Imager (TSI) product, which periodically takes

photos of the sky to measure how much cloud cover there is. Preliminary testing has been done on

its application as a tool for short-term solar irradiance forecasting [2]. This could in the future

prove useful for managing PV systems, but TSIs are not widely installed, with only a few sites

established around the world. Another solution, the Smart Monitoring Device (SMD), utilizes

several algorithms to connect PV arrays into an Internet of Things (IoT) system [3]. This product

also uses irradiance sensors combined with image capture to forecast cloud coverage. This product

is the most similar to our own that we have seen so far. One final solution we investigated is the

Cloud Shadow Positioning System (CSPS). This system uses a stationary camera to take pictures

of passing clouds. These pictures are then analyzed by their cloud detecting system, called SIFT,

by selecting various points on the clouds and comparing their position to the next image captured

five minutes later. The estimated arrival time is then computed based on the clouds’ speed [4].

1.4 Our Solution and Technology

The major drawback of all of these current solutions is the cost of implementation.

Additionally, some of these contemporary solutions are only used in a small number of locations

or are still in the testing phase. In contrast, our CMVS system will be easier and cheaper to integrate

into pre-existing arrays and is capable of capturing irradiance data using an array of light sensors

at high resolution and measuring solar irradiance with high accuracy. The model can also produce

high accuracy irradiance values due to its close proximity to the PV array and is favorable for

short-term solar forecasting. These measurements are conducted much faster than what is

traditionally possible, only taking two seconds at its fastest, compared to approximately 15

minutes. Eventually, our light sensor array will be marketed as an easily installable DIY-kit, which

removes the need for a third party or technician to install. The CMVS Model can also be integrated

into Synergi, a distributed feeder simulation software used by the majority of Utility companies.

The addition of shape, size, and speed of clouds into the system will be useful in making real-time

decisions to prevent frequent switching of voltage-controlled devices. As mentioned previously

this frequent switching may shorten the life expectancy of these devices and ultimately increase

operating costs.

9

2 System Design and Modifications

The CMVS system can be divided into three sections: the hardware section, the electrical

section, and the software section. The hardware section concerns the enclosure that protects the

electronics from the elements as well as the other steps we took to properly weatherproof our

design. The electrical section details the components used. While the Software section details the

improvements that were made to the algorithm. The diagram representing the CMVS can be seen

below. The physical construction of the array constitutes the section on the far left, while the

software side of the project is the three sections on the right. The real-time data collection and

conversion consists of the Arduino code uploading data to ThingSpeak. The weather data analysis

section processes the collected data and outputs the generated parameters. The visualization and

energy management section involves the process of automatically updating the histograms on

ThingSpeak. It also accounts for the future work of connecting up a generator to the system, should

PV generation fall beneath load demands.

Figure 1. High-level block diagram of CMVS system concept.

The figure below displays the PV array as it is connected to the LED signboard as a load, as well

as the hardware configuration for the pyranometer used in predicted output power computation. These

electronics were configured at the site, on top of the East Hall Parking Garage. The LED signboard was

configured and programmed within the lab to display various short animations, then was transported to the

site. The Pyranometer was used to obtain the irradiance values at the PV panels, these values were then

inputted into the Simulink model used to determine the predicted power output.

10

Figure 2. Block diagram of the PV system and power prediction model.

2.1 Mechanical Design

As this project is a continuation from a previous year, most of the physical layout of the

system had been designed in advance. The inherited design relies on a total of nine irradiance

sensors and a central microcontroller and is elaborated upon in the electrical subsection. While the

basic design remains largely unchanged from previous iterations, heavy emphasis was placed this

year on designing and constructing a more rugged system that could withstand non-ideal weather

conditions, improper care, and repeated usage.

2.1.1 Wire Connectors & Connections

One major issue that we encountered throughout working on the various prototypes of the

CMVS system were the wire connectors. These were the connectors between the wires of the

irradiance sensors and those from the central PCB. In the prototyping phase, prior to designing a

PCB, the array was constructed on a breadboard. This was done to assure that the connected

sensors functioned properly, because of this connection pins were mounted onto the stripped ends

of the wires. In later prototypes, Molex wire-to-wire connectors were implemented into the design

to aid in the construction, deconstruction, and transport of the array. These connectors are

waterproof, insulated, and weather resistant snap joints between wires. These were configured at

the central PCB such that it could be easily isolated from the sensors for transport. These Molex

junctions connected the wires that were mounted to the PCB to the 12-foot-long cables to the

sensors. Between all wire-to-wire connections involving a change in wire gauge, heat-shrinking

was used to provide additional security. The tips of the adjoining wires were stripped then joined

within the heat-shrink sleeve.

As mentioned, the connection that provided the most difficulty was the wire connectors

between the PCB and the Molex connectors. These connectors were also the one that changed the

most across different iterations of prototypes. Initially, the wires from the Molex were soldered

11

directly to the port holes on the PCB. In a later prototype, the design was changed to incorporate

screw terminal connectors onto the PCB. These screw terminals were soldered to the board and

operated by inserting the adjoining wire into the terminal, then fastening the wire in place with the

screw. These terminals were challenging to work with because wires kept slipping out, snapping,

or refusing to connect at all. This was especially frustrating and cumbersome when testing in below

freezing weather conditions. This could be attributed to the lack of dexterity and fine control of

the wires and terminals. This led to the desire for an improved wire connector such as the type

discussed in “Section 5.1 – Recommendations”.

2.1.2 System Weatherproofing

The system’s weather resistance was improved with the addition of tangle resistant wire

sheaths and quartz glass panes. This weather proofing is critical to ensure that the electronics do

not become damaged due to inclement rain or snow. That said, on days where the conditions were

this poor, we still packed up the array and terminated the testing. Each sensor required a pair of

I2C cables to properly transmit the data and receive power.

Figure 3. Light sensor in 3D printed enclosure connected to wires with ribbed sheathing.

The introduction of the black tangle resistant wire sheaths provided two benefits. One of

which was that the wires connecting the sensor enclosures to the central enclosure became better

protected against rainfall, and the tangle resistant quality prevented the array from becoming an

unusable nest of wires when stored away.

12

The transparent quartz panes were obtained to protect the formerly exposed sensors from

potential non-ideal weather conditions. The PCB enclosure was designed such that the panes could

be mounted over the light sensor to weatherproof it.

2.1.3 PCB Enclosures

3D-printed enclosures were designed to protect the sensitive electronics in conjunction

with quartz glass. Like the previous year, enclosures for the central microcontroller and the radial

sensors were designed in Solidworks. However, we significantly improved these designs relative

to the previous year. Naturally, there were a few prototypes prior to the finalized designs shown

below. In designs, unnecessary material in these enclosures were eliminated, they became snap-fit

enclosures, and stabilizing arms with screw holes were implemented.

Separate designs were created for sensors that are positioned at the circumference of the

array compared to the central enclosure holding the PCB and the ninth sensor. As mentioned, the

shared characteristics of these models include a snap-fit closure between the cover and baseplate,

wire and pin slots in the cover, as well as screw holes located on the baseplate. As seen on the

figure above, there is a slot in the walls of the enclosure that allows the wires to connect to the

sensor. These screw holes at the end of radial arms allow the enclosure to be securely mounted to

a piece of wood, elevating it off of the ground. This then provides additional weatherproofing

against rain and snow. The following figures show the 3-D printed enclosures that were designed:

Figures 4a, 4b, 4c, 4d. Solidworks models designed for the CMVS system, with dimensions in

millimeters.

Figure 4a (top left) - The cover of the plastic sensor enclosures.

Figure 4b (top right) - The spacer that holds glass above the sensor on enclosure cover.

4c (bottom left) - Base of plastic sensor enclosures.

4d (bottom right) - Fully assembled model of the light sensor enclosure.

13

14

2.2 Electronics Design

The electrical system allows the CMVS system to collect the irradiance values needed to

predict cloud cover. A diagram of the electrical system can be seen below in figure 5.

Figure 5. The block diagram of the CMVS electronics.

Nine individual TSL2591 light sensors are used to collect irradiance values at different

points around the CMVS system. One light sensor is placed in the center, while the remaining

eight light sensors are placed twelve feet away from the center in 45º increments from one another

radially. These light sensors are connected to a central Arduino Huzzah32-ESP32 Feather

microcontroller with the I2C protocol. As their I2C address is unalterable, a TCA9548A I2C

multiplexer is used to assign the light sensors different addresses. In the past, two separate

multiplexers were used to change the addresses of all nine sensors. We discovered it is possible to

use a single multiplexer to change the address of eight sensors and maintain the default I2C address

for the ninth.

The TSL2591 light sensor was specifically chosen as it is a direct improvement from the

now-outdated TSL2561 that was utilized in the design made by the previous year’s team. Whereas

the TSL2561 had a dynamic range of 0.1 to 40k Lux, the TSL2591 has a dynamic range of 188u

to 88k Lux. This radical improvement in sensitivity for sensing lux values allows for the CMVS

system to collect more accurate values that can improve the quality of predictions made.

The Arduino Huzzah32-ESP32 Feather microcontroller was specifically chosen for its

WiFi connectivity and battery charging capabilities. The lux values collected by the Arduino are

sent to an IoT platform, i.e., ThingSpeak, where they are processed to predict incoming cloud

cover. This step requires the system to have an internet connection, which the ESP32 Feather can

support. Additionally, this board has built-in battery charging capabilities that allows it to be

powered off of a LiPoly battery which improves the portability and reliability of the system. This

allows for testing to not have to depend on proximity to an external power source as it can be

powered by an included battery. The microcontroller used by the previous group was the

BeagleBone Black, which introduced unnecessary additional complexity and lacked these

additional features.

15

2.2.1 PCB Prototypes

Initial testing of the CMVS system was done on a breadboard. While the previous year’s

team left behind an intact model for our usage, it proved too fragile and entangled for us to use for

testing. The following figure shows the schematic of last year’s CMVS system that was followed

in assembling that initial breadboard:

Figure 6. The circuit schematic for Arduino Uno with nine light sensors and two multiplexers.

The first breadboarded system proved to function well and allowed us to collect cloud

cover data. While this breadboarded prototype worked well initially, it proved cumbersome and

frustrating for long term usage. In order to resolve this, a graduate student that was working with

us on the project designed a PCB for us to use instead. It is functionally identical to the

breadboarded system as it follows the electrical schematic shown in Figure 6. This PCB is shown

in the following figure:

16

Figures 7a, 7b, 7c, 7d. The first PCB iteration that was designed.

Figures 7a and 7b (Top) – PCB with mounted components, in and out of the central enclosure.

Figures 7c and 7d (Bottom) - Front and back of the blank PCB.

After assembly, this PCB was much better suited for long-term testing as the connections

were much sturdier than the previous breadboarded system. However, there were some issues with

the design as the WiFi module was nonfunctional and a misplaced connection had to be manually

scratched out to disconnect it. The undergraduate team designed another PCB to fix these issues.

Like the other system prototypes, this new PCB is functionally identical to the original schematic

given in Figure 5. This new PCB is shown in the following figure:

17

Figures 8a and 8b. Front and back of RJ45 PCB.

This new CMVS system PCB resolved many of the shortcomings of the previous PCB by

removing the faulty connection, using a WiFi-enabled microcontroller, and using RJ45 connectors

to connect the light sensors to the Arduino. The usage of RJ45 connectors allowed for the

connection from the light sensors to be fully weatherproofed and easily connectable to the CMVS

system. While this solution worked well at first, issues arose as the light sensors would

unpredictably disconnect after periods of extended use. Due to time constraints, we did not have

the time to properly debug this issue and chose to use another PCB designed by the graduate

student who designed the PCB shown below:

18

Figures 9a, 9b, 9c, and 9d. Large PCB wire screw terminals designed by graduate student.

Figures 9a and 9b (Top) - The top and bottom of the blank PCB, respectively.

Figures 9c and 9d (Bottom) - The assembled PCB in the scaled-up enclosure.

While improving the issues faced with the PCB shown in Figure 7, this PCB had several

issues which hindered its adoption. The external battery did not work, the WiFi module was still

nonfunctional, and the SD card that was intended to be used for storing collected data locally ended

up being unnecessary as all our collected data was being uploaded to ThingSpeak. After these

multiple attempts to have a functional PCB, we decided to go back to the simple breadboarded

CMVS system as it allowed us to quickly make changes if something broke or was not working as

expected. The updated breadboarded CMVS system can be seen in the following figure:

19

Figure 10. The breadboard design used for testing when wires could not be connected to a PCB

due to cold weather.

Despite being one of our simplest designs, the updated breadboarded CMVS system

performed extremely well and offered us the most flexibility with collected cloud cover data. We

did not have to deal with unwieldy wire connectors, and we were able to make quick adjustments

to the system as needed. Additionally, we made the switch over to the Arduino Huzzah32-ESP32

Feather microcontroller board as it was WiFi-enabled and had built-in battery support. While

lacking the convenience and ruggedness of the other PCB solutions, its performance was much

more reliable and predictable.

2.3 Software Design

The software for this project can be divided into three distinct categories: data collection,

data processing for visualization, and simulations. The data collection is done locally on the CMVS

array that we tested. The CMVS system uses an Arduino C script to send collected light intensity

values from the sensors via the microcontroller to ThingSpeak, an online analytics service that

allows uploaded data to be remotely aggregated, visualized, and analyzed. Once the collected data

about the current cloud cover is on ThingSpeak, it is then processed through two different

separation methods to determine the forecasted parameters regarding the incoming cloud cover.

The code can be locally run through MATLAB; however, it does not have the auto-update

functionality that ThingSpeak has. Please note that all code used in this project can be found in the

Appendices.

20

2.3.1 Data Collection

The Arduino code primarily served to initiate the microcontroller such that data sampling

could be conducted. Initially, the primary usage of the Arduino code was to confirm the proper

configuration of the sensors, which was assured from viewing the output data.

 The Arduino code was not modified extensively. As mentioned, the functionality of this

code was limited to collecting the light intensity values from the nine sensors and then to

automatically upload this data to ThingSpeak. This was able to reliably occur in two second

intervals. Because of this code, large quantities of data could be measured and operated remotely.

Given the location that the array was operated in was just beyond the range of WPI’s wireless

network, an issue that was encountered was that the microcontroller was unable to access Wi-Fi.

This was solved by creating a cellular hotspot at the site.

2.3.2 Cloud Cover Prediction

The MATLAB code was the origin for the other types of code used in the project. It was

also the version that experienced the greatest change due to the revisions made. Although

MATLAB was the starting platform, the project desired automatic updates which could not be

provided directly, so ThingSpeak was used. This was a simple enough change since ThingSpeak

is also owned by MathWorks therefore the MATLAB script could easily be integrated. MATLAB

and ThingSpeak are used to process the light intensity values such that the cloud cover parameters

and predicted output power can be calculated.

The MATLAB code was thoroughly examined for a better understanding of how the cloud

motion vector speed and direction were being calculated. This was necessary, as it initially

produced errors when run. Furthermore, the MATLAB scripts were optimized and refactored to

make it more maintainable, easier to build additional features, and to debug any glitches that may

occur. One feature that was added was a progress bar. The inclusion of the progress bar enables

the operator to be able to monitor the status of the scripts while the gradient matrix video is

generated. In this step, the length of time to complete the computations scales proportionally with

the number of data samples used.

Improvements were also made to the generation, labeling, and saving of the histograms

produced by the code. The most prominent modification to the code was to include titles and labels

to the axes to the histograms, as these would provide more ease in understanding the generated

outputs. Additionally, the histograms were saved in separate image files and were understood to

be representative of two separate ways of calculating the probability of shadow direction. The

following revisions to the graphing of the polar histograms were made to aid in the understanding

and comparison of these two models: both methods were graphed on the same histogram, each

method was graphed individually on a smaller histogram the side for better scaling should there

be a large discrepancy between the two models, and the three histograms described above were

placed on tiled layout on the same image. It should be noted that both methods of the MATLAB

21

script use a Savitzky-Golay filter to smooth the data samples and use a sliding window to parse

through the entire data set. The data set is then normalized with a method based on probability,

placed into respective bins, and then graphed on the histograms. The differences in the methods

are as follows. Method One specifies the maximum number of bins to be 10, while not specifying

the angle of these projections. In other words, each bin can be considered a “slice of a pie chart”

on the histogram generated. While Method Two provides the fixed edges to these bins. Meaning a

fixed width and orientation for a given sector area should it be populated with a cloud's direction.

The generation of the histograms were intended to show the probability that the cloud’s shadow is

moving in any given direction. The histograms have been changed to have the normalization

method based on probability. In this case, the radial axis is scaled from zero to one. This greatly

increases the clarity of the information that was conveyed and is the case for the MATLAB script.

When integrated onto ThingSpeak, the graphs are scaled proportional to the maximum values

within the data set, rather than the fixed graphical range on MATLAB. Additionally, the calculated

direction, speed, and time of arrival of the cloud to the PV array is printed at the bottom of the

tiled histogram. For easy reference, like the calculated values, the date and time that the algorithm

was computed at is also printed on the histogram.

2.3.3 Power Output Prediction

As the goal of the CMVS system was to use predicted cloud cover as a way to predict the

generated power output of a PV array, we also need to find a way to predict that output power.

One of the graduate students who was working with us created a Simulink model for our usage

that could take the current irradiance and temperature data collected from the solar PV site and

process them to get the predicted power of the PV array as an output. The figure below shows what

the model looks like:

22

Figure 11. A sample of the Simulink model used to calculate predicted output power. The two

blocks on the left connected to the orange block are the inputs. Both blocks continuously report a

constant value, while the top block provides irradiance at 1000 W/m2 and the bottom provides

temperature at 25 °C.

 The PV system simulation is developed in Simulink using MATLAB functions. The PV

system consists of a PV module, DC-DC converter, maximum power point tracking (MPPT)

algorithm, and load. The power is supplied by a PV model using irradiance and ambient

temperature measured at the PV array. We used a pyranometer LI-200R for irradiance input and

Temperature Sensor LM 35 for Temperature input. The function of the MPPT algorithm is to

calculate maximum power at a given PV irradiance and temperature. We have used the Perturb &

Observe MPPT algorithm for maximum power tracking. A Buck Converter is used as a DC-DC

converter. A pulse width modulator set to 5 kHz was used to generate the duty cycle the model

depends on. The Buck Converter is used to step down the PV voltage to the battery or load. This

simulation model has been tested and verified in literature [7,8].

In order to have inputs that reflect real-world conditions, the undergraduate team built a

second system that utilized an Arduino Uno along with specific types of sensors to collect these

values. After analysis into which sensors would work best for our specific application, we settled

on the Adafruit DHT22 Temperature-Humidity Sensor and a LI-COR 2420-BNC Light Sensor

Amplifier. The DHT22 uses two internal sensors, a capacitive humidity sensor and a thermistor,

to measure the surrounding air and then provide a digital signal detailing measured values. This

specific sensor was chosen due to the amount of documentation on its usage, as well as its

widespread adoption in hobbyist projects. As for irradiance sensing, we chose the 2420-BNC due

to its compatibility with the LI-200R Pyranometer that we use at the testing site to measure global

23

solar radiation. The 2420-BNC converts the current (μA) signal from the solar radiation sensor

into a voltage that can be measured by a data logger.

Our first attempt to get live data from the Arduino relied on the “Simulink Support Package

for Arduino” library to try to interface with the Arduino directly. Despite carefully going through

the installation process, we were unable to get the DHT22 and 2420-BNC sensor to work

consistently within Simulink. In order to overcome this setback, we chose an alternative workflow

that involved logging data with the Arduino, tracking the data going to the COM output port with

Python, and then running the Python script within a MATLAB script that Simulink could interface

with. While this approach worked initially and we were able to get collected data from the Arduino

system all the way to MATLAB, we were not able to make the final step into Simulink due to the

script relying on a function that Simulink did not support. While we have addressed this in more

depth in Section 5.1.3 Software Recommendations, this is an issue that needs to be resolved in the

future.

3 Results

3.1 CMVS Model

As the CMVS system is meant to operate throughout weather conditions, we tested in a

variety of weather environments ranging from temperate fall days with minimal cloud cover to

cold winter days with little sun. Regardless of the weather conditions, the steps needed to test the

CMVS system model were the same. The system had to be laid out in a cleared region near the PV

array installed on the top of the East Hall parking garage. This involved shoveling out snow in the

winter and working around puddles in the fall and spring to not compromise the integrity of our

device or jeopardize the quality of collected data. The eight radial sensors were subsequently

placed around the central enclosure containing the PCB and the ninth sensor. Due to the

university’s Wi-Fi not reaching this location, the system depended on a cellular hotspot connection

such that the Arduino could upload collected data. As the system was able to upload data remotely,

we were able to monitor performance and generate histograms while away from the testing site.

Although the sensors could reliably send measured data at a two second interval, the team

collectively decided to maintain a five-minute refresh rate for the histograms. This was done

initially due to a separate hardware constraint, but later maintained as it was estimated cloud cover

would not change significantly over the chosen time period.

By conducting the testing stated above we were able to garner some results. These results

primarily consist of the histograms generated from the MATLAB and ThingSpeak scripts. The

data used to generate these histograms were collected over several days in January and February.

This data was collected over the course of three hours from 11:00 AM to 2:00 PM each day during

a five-day work week. Figure 16 shows an example of a histogram generated directly in

ThingSpeak. The orange and blue sectors show the direction the cloud is traveling based on the

two methods explained previously. Additionally, the text at the bottom of these histograms

24

displays the calculated cloud parameters: the time of arrival, speed, direction in terms of theta, the

length and depth of the cloud, and the date and time that this data was computed.

Figure 12. A histogram generated from collected data using code on ThingSpeak.

We downloaded the data and ran it through the same scripts on MATLAB to verify that

the code on ThingSpeak was producing histograms correctly. An example of a histogram generated

with MATLAB can be seen below in Figure 12. There is a slight difference in the detail and

positioning of the text due to minor differences in the functions between MATLAB and

ThingSpeak. Additionally, the calculations to compute the cloud size and depth were not

retroactively added to MATLAB. The two examples of histograms displayed were not computed

using the same data set; however, if the histograms were generated using matching data sets,

equivalent projections would be generated.

25

Figure 13. Example of a histogram generated by importing collected data to MATLAB.

When initially verifying if the histograms produced accurate projections, we manually

covered select sensors to simulate cloud clover in a particular direction. For example, we would

cover the three sensors on the eastern side of the array for 30 seconds, followed by the three in the

center column 30 seconds later, then cover three sensors that make up the column on the west side

30 seconds after that. We repeated the process when removing the cinder blocks that were used to

cast the shade. This process allowed us to know which direction the “cloud” should appear to be

moving in the histograms, and to manually calculate the cloud’s speed. Using different variations

of “cloud” direction and time intervals we were able to verify that the scripts were correctly

performing calculations. It should be noted that a large volume of data was still collected from

genuine cloud cover passing above the array.

At the completion of this undergraduate project, the Simulink model used to predict the

output power of the area had not been fully functional. However, when this model is completed in

the future the resulting calculations can be verified by comparing them to system data shown

below. This data is accessible online because of MATE3, a system controller connected to the

battery of the PV system. The following two figures display the power generated and consumed

on two different days, as well as the current power consumed by the load at the time the image

was recorded:

26

Figures 14a and 14b. Bar graph displaying power generated by the PV system on different dates.

Figure 14a (Top) - Power generated on March 18th.

Figure 14b (Bottom) - Power generated and consumed on March 20th.

3.2 I-Corps Program

One other major result of this project was the work done in I-Corps. Our group opted to

participate in the WPI I-Corps program to build upon this previous foundation. The full program

takes place over several months and consists of two parts. The first part is a collaboration between

WPI and the Massachusetts Institute of Technology (MIT). Two lectures were given by MIT staff

and participants were asked to complete 12 interviews over four weeks. Participants also attended

two office hours with advisors from MIT to assist with the interview process. This part of the

program focused primarily on customer discovery and establishing value propositions. After this

27

part the remainder of the program was conducted with exclusively WPI associates and sought to

reinforce the customer segments found in the previous part. By the end of the program, it was

expected teams would complete 30 total interviews and have refined their product idea to the

minimum viable product.

We applied to the program with the intention of identifying who our target market would

be should our project be commercialized in the future. We also sought to further confirm the need

for a product such as ours and gain insight into features necessary to transform our prototype into

a marketable product. As of the submission of this project the program is still ongoing, however

the interviews conducted up to this point still provide further insight into the issues we wanted to

explore.

Early in the program, we identified our primary customer segment to be utility companies

that make use of photovoltaic systems. Through speaking to companies ranging from major

utilities, residential solar providers operating in the Northeastern United States, and research

laboratories that focus on renewable energy and renewable integration, we were able to confirm

that utility companies would be our main market.

Throughout conducting interviews, we were able to reach several conclusions and confirm

previous research. First, we found that passing clouds can cause issues in delivering power, but

not nearly as frequently as we expected. This issue is called Voltage Flicker and is the term for

when there is a noticeable change in illumination in equipment caused by a fluctuation in voltage

within power systems. While Voltage Flickers do cause problems on the grid, other things need to

be considered as well, such as the ramp rate of energy storage. Energy storage was another major

topic that came up repeatedly. Having local energy storage at sites provides much faster switching

times than some traditional generators. Because of this, we were informed that a lot of research is

currently being invested in this area. We also discovered that our project would not be financially

viable if marketed towards residential PV arrays. In particular since the sensor array would be an

additional cost on top of that of the PV arrays, where the primary function would be to provide a

fluid switch to supplemental power. Additionally, we were told any monetary losses caused by

cloud cover for home solar were inconsequential compared to large-scale commercial farms.

28

4 Conclusions

As this project is a continuation of previous work, we had several goals to achieve based

on the work previously done. It sought to improve the system design and code, as well as improve

the accuracy of the model. The physical design of the sensor array has been upgraded with newly

designed, weatherproof sensor enclosures, anti-tangle wire sheaths, and a new PCB design for the

central processing hub. The code was cleaned up, so it is easier to read, then added to such that it

provides more information about the characteristics of detected clouds. It also updates generated

histograms in real time. As for improving the accuracy of the model, more testing and research

would need to be done in this area to confirm. More detail regarding recommendations for future

work can be found in the following sections.

4.1 Recommendations

Given the many challenges we have faced and overcome throughout work on the CMVS

system, we have several recommendations for continuing work on this project.

4.1.1 Hardware Recommendations

One major issue this year’s team encountered was how to properly weatherproof the device

against the cold. Protecting against weather conditions, such as rain and snow, was easy as

individual quartz glass covers were used to shield the light sensors. Additionally, 3D printed

enclosures and plastic cord covers safely housed the sensitive electronics and wires. The real issues

with weatherproofing were encountered in trying to work around the subfreezing temperatures in

the winter.

The large circular PCB that was used for collecting cloud cover parameters depended on

screw terminals to connect the light sensors to the Arduino. As the light sensors had to be placed

12 feet away from the Arduino, wires had to be carefully stripped, soldered, and heat shrunk to the

light sensors to prepare them for usage. The end that connects to the Arduino was left bare, so that

the exposed wire could be connected to the screw terminal. Unfortunately, the extreme winter cold

frequently jammed the screw from tightening to the point where a solid electrical connection could

not be made. This caused testing to slow down considerably as the team had to find an alternate

way to connect the light sensors to Arduino.

We recommend investing in proper connectors that are rated to work in subfreezing

temperatures to avoid this from happening in future designs. The female-end of these connectors

should be used on the PCB, whereas the male-end should be used in the light sensor. This will

ensure system reliability in testing across various weather conditions and temperatures. This will

also speed up the time needed to set up the system as the light sensors can be quickly connected to

the CMVS PCB.

29

4.1.2 Electronics Recommendations

The biggest issue that this year’s team encountered was confusion on which components

to use. Between using multiple multiplexers and working with several different single-board

microcontrollers, trying to keep track of all the different components was difficult and frustrating.

In order to avoid the same frustrations and complications that we faced, we recommend carefully

evaluating the current components available to you and other alternatives that you may use to

determine which is best suited for the project. After using many different single-board

microcontrollers, we found the Arduino Huzzah32-ESP32 Feather microcontroller to be the best-

suited device for the specific application of the project.

This year’s team also designed a PCB that incorporates all the improvements we have made

to the initial design as a starting point for future hardware development. It uses the suggested

Arduino Huzzah32-ESP32 Feather microcontroller, 6-pin weatherproof JST connectors, and a

reset button to restore default device operation. The recommended PCB can be seen below and the

schematics can be seen in the Appendix.

Figure 15. The front and back of the proposed PCB design

Additionally, an electrical block diagram of this proposed PCB can be seen in the following

figure:

30

Figure 16. The electrical block diagram of the proposed PCB.

The main difference between this finalized electrical block diagram and the initial one in

Figure 5 is the usage of only one multiplexer and the inclusion an external battery. As previously

mentioned, the second multiplexer was removed after we realized it’s unnecessary and the added

battery was used due to compatibility with the new ESP32 Feather.

4.1.3 Software Recommendations

The most critical aspect of the code that needs improvement is the Simulink model. In

particular, the segment of the code that is responsible for obtaining live sensor data and

implementing this into the predictive power model on Simulink. The workflow that we developed

this year did not work completely as intended and we believe that handling everything within

Simulink will lead to better results.

Additionally, we propose that the MATLAB code be adapted slightly so that it can be

utilized on ThingSpeak, instead of the current version. This is because the MATLAB code is better

documented and refined. This would require retroactively implementing the cloud size and depth

parameters to the MATLAB code. One additional recommendation for the code is to account for

the case when the histograms occasionally display “NaN” for various cloud parameters. This likely

is a result of a cloud not passing above the central sensor.

31

Bibliography:

[1] Rahimi, Kaveh, et al. “Computation of Voltage Flicker with Cloud Motion Simulator.”

IEEE Transactions on Industry Applications, vol. 54, no. 3, IEEE, May 2018, pp. 2628–

36, doi:10.1109/TIA.2017.2787621.

[2] Chengrui Cai, and Aliprantis, Dionysios C. “Cumulus Cloud Shadow Model for Analysis

of Power Systems With Photovoltaics.” IEEE Transactions on Power Systems, vol. 28,

no. 4, IEEE, Nov. 2013, pp. 4496–506, doi:10.1109/TPWRS.2013.2278685.

[3] “ Renewable Energy Snapshot: Amount of solar, wind and combined heat and power

(CHP) installed in Massachusetts,” Mass.gov. [Online]. Available:

https://www.mass.gov/info-details/renewable-energy-snapshot.

[4] A. Ryu, M. Ito, H. Ishii and Y. Hayashi, "Preliminary Analysis of Short-term Solar

Irradiance Forecasting by using Total-sky Imager and Convolutional Neural Network,"

2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia),

2019, pp. 627-631, doi: 10.1109/GTDAsia.2019.8715984.

[5] A. S. Spanias, "Solar energy management as an Internet of Things (IoT) application,"

2017 8th International Conference on Information, Intelligence, Systems & Applications

(IISA), 2017, pp. 1-4, doi: 10.1109/IISA.2017.8316460.

[6] Y. Najera, D. R. Reed and W. M. Grady, "Image processing methods for predicting the

time of cloud shadow arrivals to photovoltaic systems," 2011 37th IEEE Photovoltaic

Specialists Conference, 2011, pp. 000188-000191, doi: 10.1109/PVSC.2011.6185877.

[7] Motsoeneng, P., Bamukunde, J. and Chowdhury, S., 2019, March. “Comparison of

Perturb & Observe and Hill Climbing MPPT schemes for pv plant under cloud cover and

varying load”. In 2019 10th International Renewable Energy Congress (IREC) (pp. 1-6).

IEEE.

[8] M. H. Uddin, M. A. Baig and M. Ali, "Comparison of ‘perturb & observe’ and

‘incremental conductance’, maximum power point tracking algorithms on real

environmental conditions," 2016 International Conference on Computing, Electronic and

Electrical Engineering (ICE Cube), 2016, pp. 313-317, doi:

10.1109/ICECUBE.2016.7495244.lar plant site.

32

Appendices:

Project Code:

 All the code that was used in this project can be accessed on a GitHub repository linked

below. The code on this GitHub includes the code from the previous year that has been revised

as well as that which was newly rewritten. Within GitHub is the MATLAB, Simulink,

ThingSpeak, Python, and the Arduino codes and algorithms.

The code can be downloaded from the following link: https://github.com/Natste/CMVS

#include <Adafruit_Sensor.h>
#include <Wire.h>
#include <stdio.h>

#include "Adafruit_TSL2591.h"

#define MUX1_ADDR 0x70
#define MUX2_ADDR 0X71
#define NUM_SENSORS 2
#define NUM_CH_PER_MUX 8
#define NUM_MUXES 2
#define RD_WIDTH 16
#define RD_DLY 100

Adafruit_TSL2591 tsl = Adafruit_TSL2591(2591);

void i2cMultiplexSignal(uint8_t addr, uint8_t bus) {
 Wire.beginTransmission(addr); // TCA9548A address is 0x70
 Wire.write(1 << bus); // send byte to select bus
 Wire.endTransmission();
}

void configureSensor(void) {
 tsl.setGain(TSL2591_GAIN_MED); // 25x gain
 tsl.setTiming(TSL2591_INTEGRATIONTIME_300MS);
}

void setup(void) {
 configureSensor();
 Serial.begin(9600);
 delay(RD_DLY);
}

void readSensors(void) {
 char irstr[NUM_SENSORS * RD_WIDTH];
 uint16_t ir;

 for (uint8_t i = 0; i < NUM_CH_PER_MUX * NUM_MUXES; ++i) {
 if (i == NUM_SENSORS) break;

https://github.com/Natste/CMVS

33

 delay(RD_DLY);
 if (i < NUM_CH_PER_MUX) {
 Wire.beginTransmission(MUX1_ADDR);
 Wire.write(1 << i);
 } else {
 Wire.beginTransmission(MUX2_ADDR);
 Wire.write(1 << (i - NUM_CH_PER_MUX));
 }
 Wire.endTransmission();
 ir = tsl.getLuminosity(TSL2591_INFRARED);
 sprintf(irstr, "%6u, ", ir);
 Serial.print(irstr);
 }

}

void loop(void) {
 readSensors();
 Serial.println();

}

The Revised MATLAB Algorithm:

clear frames paddedData;
clear; clc;
DATA_FILE = '../Data/11-9-sensors-only.csv';
OUTPUT_DIR = '11-9-output';
% OUTPUT_DIR = 'output';
MATRIX_TYPE = 'normalized';
THRESHOLD = 0.03;
PEAK_DISTANCE = 50;
PEAK_PROMINENCE = 0.15;%0.016;
PEAK_WIDTH = 15;
SENSOR_ORDER = [5 4 6 8 7 9 2 1 3]; % Northwest to Southeast
DATA_ORDER = [9 4 8 3 5 1 7 2 6]; % Northwest to Southeast
FILL_ORDER = [4 1 8 9 6 2 5 3 7]; % N S W E NE SW NW SE O
CREATE_VIDEO = false;
CREATE_PLOTS = true;
% SENSOR_ORDER = FILL_ORDER;
if ispc % Check to see if operating system is Windows
 DELIMITER = '\';
else % otherwise, use unix-style path delimiters.
 DELIMITER = '/';
end
figure_setup;
load figure_setup SENSOR_STRINGS FIGURE_STRINGS FMT BIN_EDGES SCALE TILE;
if ~isfile(DATA_FILE)
 [DATA_FILE, DATA_FILE_PATH] = uigetfile('*.csv;*.txt;*.dat',...
 'Select Input CSV Data', 'data.csv');
 DATA_FILE = [DATA_FILE_PATH, DATA_FILE];

34

end
if ~isfolder(OUTPUT_DIR)
 OUTPUT_DIR = uigetdir('.', 'Select Output Directory');
end
% Read and transfer raw lux data to new array
data = readmatrix(DATA_FILE, OutputType='string');
if ~isempty(regexp(data, '[a-fx]', 'once')) % Check if data is hex
 data = hex2dec(data); % If hex, convert to decimal
end
data = uint32(data);
%%%%%% THINGSPEAK
% i = 0;
% lastMat = 0;
% T = thingSpeakRead(1552033, ... % Get table from TSpeak
% Fields=1, ...
% NumPoints=1661, ...
% ReadKey='AD8ZB04MFD6HIYI8', ...
% OutputFormat='table');
% dataCol = T(:, {'cmvsData'}); % time & data cols -> data col
% dataCol = rowfun(@string, dataCol); % char table -> str table
% data = dataCol{:,:}; % str table -> str array
% data = arrayfun(@(x) uint32(str2num(x)), data, ...
% uniform=false); % str array -> uint32 cell array
% data = cell2mat(data); % uint32 cell array -> uint32 array
%%%%%%
nNotNan = sum(~isnan(data),2); % count number of valid values in each row
nSensors = round(mean(nNotNan)); % Use mean to get number of sensors
data = data(nNotNan == nSensors, :); % Get rows with a reading for each sensor
data = rmmissing(data, 2); % Exclude any remaining columns that contain a Nan
iLoop = 1;
% iDataStart = 660;
% iDataEnd = 770;
% iDataStart = 1;
% iDataEnd = 101;
iDataStart = 840; % 10 ft/ 30 s -- whole array
iDataEnd = 940;
% iDataStart = 1030 + 24; % 10 ft / 10 s -- whole array
% iDataEnd = 1130 - 24;
iDelta = iDataEnd - iDataStart;
dataWindow = 10; % specifies sliding window length for moving sum
filterWindow = 11; % specifies smoothing window length
%% Validate, Normalize, and Smooth Data
if dataWindow > length(data)
 dataWindow = length(data);
 dataWindowWarn = sprintf("dataWindow exceeds length of data and has been
trimmed");
else
 dataWindowWarn = sprintf('');
end
if filterWindow > length(data)
 filterWindow = length(data);
 filterWindowWarn = sprintf("filterWindow exceeds length of data and has been
trimmed");
else

35

 filterWindowWarn = sprintf('');
end
if iDataEnd > length(data)
 iDataEnd = length(data);
 iDataStart = max(iDataEnd - iDelta, 1);
 dataEndWarn = sprintf("iDataEnd exceeds length of data. Range parameters have been
changed");
else
 dataEndWarn = sprintf('');
end
if ~ismissing([dataWindowWarn, filterWindowWarn, dataEndWarn])
 warning('\n\t%s\n\t%s\n\t%s', dataWindowWarn, filterWindowWarn, dataEndWarn);
end
if nSensors < 9
 % paddedData = padarray(data', 9 - width(data), nan, 'post')';
 paddedData = NaN(length(data), 9);
 if mod(nSensors, 2)
 fillOrder = [FILL_ORDER(1:nSensors) FILL_ORDER(end)];
 else
 fillOrder = FILL_ORDER;
 end
 for iSensor = 1:nSensors
 paddedData(:, fillOrder(iSensor)) = data(:, iSensor);
 end
 % paddedData(:, floor(linspace(1,9,nSensors))) = data;
 data = fillmissing(paddedData, 'movmean', max(9 - nSensors,2), 2, ...
 EndValues='nearest');
 warning("%d sensors detected. Missing data is being interpolated, and may be
inaccurate.", ...
 nSensors);
 nSensors = 9;
end
% while iDataStart + iDelta < height(dataCol)
% Tsl = Sensor;
% data = calculate_lux(Tsl, data);
iDataEnd = iDataStart + iDelta;
dataSample = get_sample_range(data, iDataStart, iDataEnd);
dataSample = dataSample(:, DATA_ORDER);
dataSampleNorm = get_norm(dataSample);
smoothSample = smoothdata(dataSample, 'sgolay', filterWindow);
smoothSampleNorm = smoothdata(dataSampleNorm, 'sgolay', filterWindow);
%% Plot Sensor Data
plotSets = {
 data
 dataSample
 smoothSample
 smoothSampleNorm
 };
if CREATE_PLOTS
 figure(FMT.FIG);
 dataPlotFmt.LineWidth = 2;
 for iPlotSet = 1:length(plotSets)
 dataPlot = plot(plotSets{iPlotSet});
 for iSensor = 1:nSensors

36

 dataPlotFmt.DisplayName = SENSOR_STRINGS(iSensor, :);
 set(dataPlot(iSensor), dataPlotFmt);
 end % iSensor = 1:nSensors
 legend('show');
 dataAx = gca;
 xlabel('Time Elapsed (milliseconds)');
 ylabel('Irradiance (W/m^2)');
 dataAx.XTickLabel = arrayfun(@(x) sprintf('%d', SCALE * x), dataAx.XTick,...
 'un', 0);
 set(dataAx, FMT.AX);
 saveas(gca, fullfile(OUTPUT_DIR, FIGURE_STRINGS(iPlotSet, :)), 'fig');
 saveas(gca, fullfile(OUTPUT_DIR, FIGURE_STRINGS(iPlotSet, :)), 'png');
 close
 end % iPlotSet = 1:length(plotSets)
end % CREATE_PLOTS
%% Find peaks and dips
t = (iDataStart:iDataEnd); %/ Fs
peakArr = zeros(nSensors, 1);
peakLocArr = zeros(nSensors, 1);
dipArr = zeros(nSensors, 1);
dipLocArr = zeros(nSensors, 1);
% Peak and dip parameters
dipFmt.MinPeakDistance = PEAK_DISTANCE;
dipFmt.MinPeakProminence = PEAK_PROMINENCE;
dipFmt.NPeaks = PEAK_WIDTH;
% Plot local maxima and minima
if CREATE_PLOTS
 sensorPlot = repelem(0, nSensors);
 figure(FMT.FIG);
 hold on
 for iSensor = 1:nSensors
 sensorInv = 1 ./ smoothSampleNorm(:, iSensor);
 [dip, dipLoc] = findpeaks(sensorInv, dipFmt);
 if isempty(dipLoc)
 dipLocArr(iSensor) = 0;
 else
 dipLocArr(iSensor) = dipLoc(1);
 end
 sensorPlot(iSensor) = plot(t, smoothSampleNorm(:, iSensor), ...
 DisplayName='Origin Sensor', LineWidth=2);
 set(sensorPlot(iSensor), dataPlotFmt);
 plot(t(dipLoc), 1 / dip, 'rs', 'MarkerSize', 10);
 end
 hold off
 sensorAx = gca;
 set(sensorAx, FMT.AX);
 xlabel('Time Elapsed (milliseconds)');
 ylabel('Normalized Irradiance');
 sensorAx.XTickLabel = arrayfun(@(x) sprintf('%d', SCALE * x), sensorAx.XTick,
'un', 0);
 saveas(gca, fullfile(OUTPUT_DIR, 'CMV_Sample_Norm'), 'fig');
 saveas(gca, fullfile(OUTPUT_DIR, 'CMV_Sample_Norm'), 'png');
end % CREATE_PLOTS
if strcmp(MATRIX_TYPE, 'normalized')

37

 smoothSampleNorm2 = get_norm(smoothSample); % FIXME: Why is the normalization of
smooth sample being defined differently here?
 luxMatrix = get_matrix(smoothSampleNorm2(:, SENSOR_ORDER), dataWindow);
else
 luxMatrix = get_matrix(smoothSample(:, SENSOR_ORDER), dataWindow);
end
pages = length(luxMatrix); % find maxnumber of frames
imData = luxMatrix(:, :, 1:pages); % set dataset to be analyzed
[imageRow, imageCol, ~] = size(imData);
theta = zeros(imageRow, imageCol, pages);
magnitude = zeros(imageRow, imageCol, pages);
%% Prepare Frames
clear XLim yLim
frames(pages) = struct('cdata',[],'colormap',[]);
figure(FMT.FIG);
% set(gcf, Visible = false);
progressBar = waitbar(0, '1', Name='Populating Frames');
qFigs = nan(1, pages);
for iFrame = 1:(pages)
 waitbar(iFrame/pages, progressBar, sprintf("Frame %4d / %4d\n%3d%% complete",
iFrame, pages, ceil(iFrame/pages * 100)));
 [gx, gy] = imgradientxy(imData(:, :, iFrame), 'sobel'); % Find cmv direction
using Gradient Matrix Method
 [gmag, gdir] = imgradient(gx, gy);
 theta(:, :, iFrame) = gdir;
 magnitude(:, :, iFrame) = gmag;
 if CREATE_VIDEO
 figure(FMT.FIG);
 q = quiver(gx, -gy); %invert to correct visual vector orientation
 xAbsPos = [floor(q.XData + q.UData); ceil(q.XData + q.UData)];
 [xLim(1), xLim(2)] = bounds(xAbsPos, 'all');
 yAbsPos = [floor(q.YData - q.VData); ceil(q.YData - q.VData)];
 [yLim(1), yLim(2)] = bounds(yAbsPos, 'all');
 qFigs(iFrame) = gcf;
 end % if CREATE_VIDEO
end
delete(progressBar);
%% Create Video
if CREATE_VIDEO
 vidDir = 'Gradient Matrix Animations';
 [~, ~] = mkdir([OUTPUT_DIR, DELIMITER, vidDir]);
 videoFmt = 'MPEG-4';
 videoTitle = string([OUTPUT_DIR, DELIMITER, vidDir, DELIMITER, '∇Mat',
char(datetime('now', Format='yy-MM-dd_HH-mm-ss'))]);
 v = VideoWriter(videoTitle, videoFmt);
 v.FrameRate = 30;
 open(v);
 txt = sprintf('dataWindow = %d filterWindow = %d\n', dataWindow, filterWindow);
 progressBar = waitbar(0, '1', Name='Creating Video');
 for iFrame = 1:(pages)
 waitbar(iFrame/pages, progressBar, sprintf("Frame %4d / %4d\n%3d%% complete",
iFrame, pages, ceil(iFrame/pages * 100)));
 ax = gca(qFigs(iFrame));
 % xlim(ax, [0, xLim(2)]);

38

 xlim(ax, [0, 5]);
 % ylim(ax, [0, yLim(2)]);
 ylim(ax, [0, 5]);
 textWrapper(txt, ax);
 frames(cast(iFrame, 'uint16')) = getframe(qFigs(iFrame));
 writeVideo(v, frames(iFrame));
 end % iFrame = 1:(pages)
 close(v);
 delete(progressBar);
end % if CREATE_VIDEO
%% Create Polar Histograms
mtd1.shadow = struct;
mtd2.shadow = struct;
mtd1.shadow.ang = get_csd(magnitude, theta,
THRESHOLD); %correct raw angles
[mtd2.shadow.mag, mtd2.shadow.ang] = get_resultant_vec(magnitude, theta);
figure(99);
set(gcf, FMT.FIG);
tlo = tiledlayout(TILE.ROWS, TILE.COLS);
title(tlo, 'Shadow Direction Probability');
set(tlo,FMT.TLO);
nexttile(TILE.POS(1), TILE.LARGE_SPAN); % Large Left Tile BEGIN
 mtd1.phistBig = polarhistogram(mtd1.shadow.ang, 10, Normalization="probability");
 hold on;
 mtd2.phistBig = polarhistogram(mtd2.shadow.ang, BIN_EDGES,
Normalization="probability");
 legendLabels(1) = "Method One";
 legendLabels(2) = "Method Two";
 % Plot dotted projection lines
 mtd1.phistBigProj = polarhistogram(mtd1.shadow.ang, 10, ...
 Normalization="count", EdgeColor=FMT.COLORORDER(1, :), ...
 FaceColor='none', LineStyle=':');
 mtd2.phistBigProj = polarhistogram(mtd2.shadow.ang, BIN_EDGES, ...
 Normalization="count", EdgeColor=FMT.COLORORDER(2, :), ...
 FaceColor='none', LineStyle=':');
 % Find bins w/ probability >= 5% and extend to edges
 mtd1.phistBigProj.BinCounts(mtd1.phistBig.Values >= 0.05) = 1;
 mtd2.phistBigProj.BinCounts(mtd2.phistBig.Values >= 0.05) = 1;
 % Set bins w/ probablility < 5% to zero
 mtd1.phistBigProj.BinCounts(mtd1.phistBig.Values < 0.05) = 0;
 mtd2.phistBigProj.BinCounts(mtd2.phistBig.Values < 0.05) = 0;
 bothMtds.polarAx = gca;
 set(bothMtds.polarAx, FMT.POLAX);
 FMT.RTICKSET();
 the = 0:45:315;
 rho = repmat(gca().RLim, 1, length(the));
 the = repelem(deg2rad(the), 2);
 for iTheta = 1:2:(length(the)-1)
 polarplot(the(iTheta:iTheta+1), rho(iTheta:iTheta+1), ...
 LineWidth=1, LineStyle='-', Color=[0 0 0 0.25]);
 end
 hold off;
 legendLabels(3:length(gca().Children)) = repelem("", length(gca().Children) - 2);
 legend(bothMtds.polarAx, legendLabels, ...

39

 Location='northoutside', Orientation='horizontal');
 set(gca, Children=flipud(gca().Children));
% Large Left Tile END
nexttile(TILE.POS(2)); % Upper Right Tile BEGIN
 mtd1.phist = polarhistogram(mtd1.shadow.ang, 10, Normalization="probability");
 mtd1.polarAx = gca;
 mtd1.phist.FaceColor = FMT.COLORORDER(1,:);
 set(mtd1.polarAx, FMT.POLAX);
 FMT.RTICKSET();
% Upper Right Tile END
nexttile(TILE.POS(3)); % Lower Right Tile BEGIN
 mtd2.phist = polarhistogram(mtd2.shadow.ang, BIN_EDGES,
Normalization="probability");
 mtd2.polarAx = gca;
 mtd2.phist.FaceColor = FMT.COLORORDER(2,:);
 set(mtd2.polarAx, FMT.POLAX);
 FMT.RTICKSET();
% Upper Left Tile END
cmvDirection1 = get_cmv_direction(mtd1.shadow.ang, mtd1.phist, 1);
cmvDirection2 = get_cmv_direction(mtd2.shadow.ang, mtd2.phist, 2);
cmvSpeed1 = get_cmv_speed(cmvDirection1, dipLocArr);
cmvSpeed2 = get_cmv_speed(cmvDirection2, dipLocArr);
cmvSpeed1 = fillmissing(cmvSpeed1, "nearest", EndValues='nearest');
cmvSpeed2 = fillmissing(cmvSpeed2, "nearest", EndValues='nearest');
pvSite_dist = 5; % Distance the sensor cluster is from the PV Site. Units??
pvSite_phi = 30; %The angle from the site?
TOA = TimeOfArrival(pvSite_dist,pvSite_phi,cmvSpeed1,cmvDirection1);
cmv = [TOA cmvDirection1 cmvSpeed1 cmvDirection2 cmvSpeed2];
clk_raw = clock; %Outputs the [Year Month Day Hour Min Sec]
clk = fix(clk_raw); %Rounds each entry in clock matrix, only impacts
seconds
% tlo.OuterPosition = tlo.OuterPosition .* [1 1 1 1 + 0.125];
% tlo.InnerPosition = tlo.InnerPosition .* [1 1 1 1 + 0.125];
clk_txt = sprintf('%g/%g/%g %g:%g:%g', clk);
txt = sprintf('TOA(s)=%6.5g Dir1(θ)=% 6.5g Speed1(m/s)=% 6.5g <> Dir2(θ)=% 6.5g
Speed2(m/2)=% 6.5g', cmv);
textWrapper(txt, gca, [1.13 -0.18]);
textWrapper(clk_txt, gca, [0.90 2.55]); %Displays the time in the top right
figure(gcf);
% saveas(gcf, fullfile(OUTPUT_DIR, 'cmv_histogram'),
'fig'); %save figure
saveas(gcf, fullfile(OUTPUT_DIR, 'cmv_histogram'),
'png'); %save image
iLoop = iLoop + 1;
iDataStart = iDataEnd;
% end % while iDataStart + iLoop * iDelta < height(dataCol)
%% Find the optical flow
% OpF = get_optical_flow(imData);
% get_vid(OpF, strcat(OUTPUT_DIR, 'OpticalFlow')); %save
OpF run as .AVI file
fileID = fopen(strcat(OUTPUT_DIR, 'cmv.txt'), 'w');
fprintf(fileID, '%6s %6s %6s %6s\n', 'CMV_Direction1', 'CMV_Direction2',
'CMV_Speed1', 'CMV_Speed2');
fprintf(fileID, '%0.2f %0.2f %0.2f %0.2f\n', cmv);

40

fclose(fileID);
%% Calculate time of arrival
function TOA = TimeOfArrival(d,phi,v,theta)
 TOA = d/(v*cos(deg2rad(phi-theta)));
end

Python Scripts for Power Output Prediction:

readSerial-dependent.py
import serial.tools.list_ports
import time

def readCOMport():
 ports = serial.tools.list_ports.comports()
 serialInst = serial.Serial()

 portList = []

 for onePort in ports:
 portList.append(str(onePort))
 print(str(onePort))

 portVar = "COM6" # CHANGE THIS VALUE TO THE COM PORT LISTED IN THE ARDUINO
EDITOR

 serialInst.baudrate = 9600
 serialInst.port = portVar
 serialInst.open()

 print("---")

 time.sleep(5)
 packet = serialInst.readline()
 sensorReading = packet.decode("utf").rstrip("\n")
 print(sensorReading)

 return sensorReading

output = readCOMport()

%% readSerial-independent.py
import serial.tools.list_ports
import time

def readCOMport():
 ports = serial.tools.list_ports.comports()
 serialInst = serial.Serial()

 portList = []

41

 for onePort in ports:
 portList.append(str(onePort))
 print(str(onePort))

 val = input("Select Port: COM")

 for x in range(0,len(portList)):
 if portList[x].startswith("COM" + str(val)):
 portVar = "COM" + str(val)
 print(portList[x])

 serialInst.baudrate = 9600
 serialInst.port = portVar
 serialInst.open()

 print("---")

 while True:
 time.sleep(1)
 print(serialInst.in_waiting)
 if serialInst.in_waiting:
 packet = serialInst.readline()
 print(packet.decode('utf').rstrip('\n'))

readCOMport()

MATLAB Script for Power Output Prediction:

%% Clear
clear all
clc
%% Check to see if python environment is detected
% pyenv

%% Run Python script
% Get raw python string
output = pyrunfile("readSerial-dependent.py","output");

% Convert to a regular string
output = string(output);
splitOutput = split(output);

% Pull temperature and irradiance values from output
temperature = splitOutput(3)
irradiance = splitOutput(9)

42

Arduino Script for Power Output Prediction:

// Sketch for reading temperature and irradiance values
// Written by Jonathan Ferreira (ECE 2022), with help from Tim Lewis
(ECE 2022)

// REQUIRES the following Arduino libraries:
// - DHT Sensor Library: https://github.com/adafruit/DHT-sensor-
library
// - Adafruit Unified Sensor Lib:
https://github.com/adafruit/Adafruit_Sensor

#include "DHT.h"

#define DHTPIN 2 // Digital pin connected to the DHT sensor
#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321
DHT dht(DHTPIN, DHTTYPE);

void setup() {
 Serial.begin(9600);
 dht.begin(); // Required to use the DHT22 sensor
 int gain = 0.325;
}

void loop() {
 // Wait a few seconds between measurements.
 delay(1000);

 // DHT SENSOR READING
 // Read temperature as Celsius (the default)
 float t = dht.readTemperature();

 // Check if any reads failed and exit early (to try again).
 if (isnan(t)) {
 Serial.println(F("Failed to read from DHT sensor!"));
 return;
 }

 Serial.print("Temperature (°C): ");
 Serial.print(t);

 // LICOR SENSOR READING
 int lowValue = analogRead(A0);
 int highValue = analogRead(A4);

43

 int irradiance = highValue * gain;

 // Print values
 Serial.print(" Low: ");
 Serial.print(lowValue);
 Serial.print(" High: ");
 Serial.print(highValue);
 Serial.print(" Irradiance: ");
 Serial.println(irradiance);
}

Revised ThingSpeak Algorithm:

% Enter your MATLAB code below
data1 =
thingSpeakRead(1248525,'Fields',[1,2,3,4,5,6,7,8],'NumPoints',200,'ReadKey','EQ4MUC
OL8YTU4EBS');
data2 =
thingSpeakRead(1307045,'Fields',1,'NumPoints',200,'ReadKey','74F6BCQ36JV3K1EF');
data = [data1,data2];

%while size(data,1)==200
data1 =
thingSpeakRead(1248525,'Fields',[1,2,3,4,5,6,7,8],'NumPoints',200,'ReadKey','EQ4MUC
OL8YTU4EBS');
data2 =
thingSpeakRead(1307045,'Fields',1,'NumPoints',200,'ReadKey','74F6BCQ36JV3K1EF');
data = [data1,data2];
data_sample = data;

%% Set test parameters
matrix_type = 'I_norm';
x_start = 1;
x_end = 200;
window = 50;
filter_window = 51;
threshold = 0.03;
%% Normalize data
data_sample_norm = getNorm(data_sample);
%% Filter and de-noise data
cmv_sample = smoothdata(data_sample,'sgolay',filter_window);
cmv_sample_norm = smoothdata(data_sample_norm,'sgolay',filter_window);
%% Find peaks and dips
t = (x_start:x_end); %/ Fs
peak_arr = zeros(9,1);
plocation_arr = zeros(9,1);
dip_arr = zeros(9,1);
dlocation_arr = zeros(9,1);
% Peak and dip parameters
peak_distance = 50;

44

peak_prominence = 0.15;%0.016;
peak_width = 15;
% Plot local maxima and minima
for sensor_idx = 1:9
 sensor_inv = 1./cmv_sample_norm(:,sensor_idx);
 [dip,dlocation] =
findpeaks(sensor_inv,'MinPeakProminence',peak_prominence,'MinPeakDistance',peak_dis
tance,'NPeaks',1);
 if isempty(dlocation)
 dlocation_arr(sensor_idx) = 0;
 else
 dlocation_arr(sensor_idx) = dlocation;
 end
end

%% Get lux matrix
luxMatrix = getMatrix(cmv_sample,window,matrix_type);
% Find CMV direction using Gradient Matrix Method
[~,~,pages] = size(luxMatrix); %find max number of frames
imData = luxMatrix(:,:,1:pages); %set dataset to be analyzed
[image_row, image_col, ~] = size(imData);
theta = zeros(image_row,image_col,pages);
magnitude = zeros(image_row,image_col,pages);
theta2 = zeros(pages,1);
for idx = 1:(pages-1)
 [Gx, Gy] = imgradientxy(imData(:,:,idx),'sobel');
 [Gmag, Gdir] = imgradient(Gx, Gy);
 theta(:,:,idx) = Gdir;
 magnitude(:,:,idx) = Gmag;
end
% Algorithm 2.1
angle_rad = getCSD_v2(magnitude,theta,threshold); %correct raw angles
angle_deg = rad2deg(angle_rad); %convert angles to degrees
% Plot estimated cloud shadow direction
subplot(2,3,3)
hist = polarhistogram(angle_rad,10,'FaceColor',[0 0.4470 0.7410],'FaceAlpha',0.8);
% Algorithm 2.2
[M, Phase_rad] = getResultantVector(magnitude,theta);
Phase_deg = rad2deg(Phase_rad);
% Plot polar histogram
subplot(2,3,6)
histo = polarhistogram(Phase_rad,[0.3926991 1.178097 1.9634954 2.7488936... %set
bin edges
 3.5342917 4.3196899 5.1050881 5.8904862 6.6758844],'FaceColor',[0.8500 0.3250
0.0980],'FaceAlpha',0.8);
% sgtitle("Shadow direction Probablity")

subplot(2,3,[1,2,4,5])
histo = polarhistogram(Phase_rad,[0.3926991 1.178097 1.9634954 2.7488936... %set
bin edges
 3.5342917 4.3196899 5.1050881 5.8904862 6.6758844],'FaceColor',[0.8500 0.3250
0.0980],'FaceAlpha',0.8);
hold on
hist = polarhistogram(angle_rad,10,'FaceColor',[0 0.4470 0.7410],'FaceAlpha',0.8);

45

legend('Mehtod Two','Method
One','Location','northoutside','Orientation','horizontal');

%% Get CMV final direction and speed
CMV_Direction1 = getCMV_Direction_v2(angle_rad,hist,1);
CMV_Direction2 = getCMV_Direction_v2(Phase_rad,histo,2);
CMV_Speed1 = getCMV_Speed(CMV_Direction1,dlocation_arr);
CMV_Speed2 = getCMV_Speed(CMV_Direction2,dlocation_arr);
CMV = [CMV_Direction1 CMV_Direction2 CMV_Speed1 CMV_Speed2];
PVSite_distance=5;
PVSite_phi=30;
TOA = TimeOfArrival(PVSite_distance,PVSite_phi,CMV_Speed1,CMV_Direction1)

ResultString1={"Dir(1): "+ (CMV_Direction1) + " Speed(1): "+ (CMV_Speed1) + "< >
Dir(2): "+ (CMV_Direction2) + " Speed(2): "+ (CMV_Speed2)};
annotation('textbox', [0.25 0.02 0.5
0.05],'String',ResultString1,'FitBoxToText','on');

ResultString1={"TOA: "+ (TOA) };
annotation('textbox', [0.08 0.02 0.5
0.05],'String',ResultString1,'FitBoxToText','on');

%end

%% Functions

function data_sample_norm = getNorm(data_sample)
%% This function normalizes data with respect to each column
[row,col] = size(data_sample);
data_norm = zeros(row,col);
for i = 1:col
 if max(abs(data_sample(:,i))) ~= 0
 data_norm(:,i) = data_sample(:,i)/max(abs(data_sample(:,i)));
 end
end
data_sample_norm = data_norm;
end

function outputArray = getMatrix(cmv_sample,window,matrix_type)
%% This function maps lux data into a selected matrix type
[data_length,~] = size(cmv_sample);
cmv_sample_norm = getNorm(cmv_sample);
pages = data_length - window + 1

% Get raw pixels
I_raw = zeros(3,3,pages);
for j = 1:data_length
 I_temp = [cmv_sample(j,5) cmv_sample(j,4) cmv_sample(j,6);
 cmv_sample(j,8) cmv_sample(j,7) cmv_sample(j,9);
 cmv_sample(j,2) cmv_sample(j,1) cmv_sample(j,3)];

 I_raw(:,:,j) = I_temp;
end

46

% Get pixels
switch matrix_type
 case 'I'
 I = zeros(3,3,pages);
 for j = 1:pages
 for k = 1:window
 I_temp = [cmv_sample(j-1+k,5) cmv_sample(j-1+k,4) cmv_sample(j-
1+k,6);
 cmv_sample(j-1+k,8) cmv_sample(j-1+k,7) cmv_sample(j-1+k,9);
 cmv_sample(j-1+k,2) cmv_sample(j-1+k,1) cmv_sample(j-1+k,3)];

 I(:,:,j) = I(:,:,j) + I_temp;
 end
 I(:,:,j) = I(:,:,j)/window;
 end
 outputArray = I;

 case 'I_norm'
 % Get normalized pixels
 I_norm = zeros(3,3,pages);
 for j = 1:pages
 for k = 1:window
 I_temp = [cmv_sample_norm(j-1+k,5) cmv_sample_norm(j-1+k,4)
cmv_sample_norm(j-1+k,6);
 cmv_sample_norm(j-1+k,8) cmv_sample_norm(j-1+k,7)
cmv_sample_norm(j-1+k,9);
 cmv_sample_norm(j-1+k,2) cmv_sample_norm(j-1+k,1)
cmv_sample_norm(j-1+k,3)];

 I_norm(:,:,j) = I_norm(:,:,j) + I_temp;
 end
 I_norm(:,:,j) = I_norm(:,:,j)/window;
 end
 outputArray = I_norm;

 case 'I_norm_v2'
 I_norm_v2 = zeros(3,3,pages);
 for j = 1:pages
 for k = 1:window
 I_temp = [cmv_sample_norm(j-1+k,7) cmv_sample_norm(j-1+k,8)
cmv_sample_norm(j-1+k,9);
 cmv_sample_norm(j-1+k,4) cmv_sample_norm(j-1+k,5)
cmv_sample_norm(j-1+k,6);
 cmv_sample_norm(j-1+k,1) cmv_sample_norm(j-1+k,2)
cmv_sample_norm(j-1+k,3)];

 I_norm_v2(:,:,j) = I_norm_v2(:,:,j) + I_temp;
 end
 I_norm_v2(:,:,j) = I_norm_v2(:,:,j)/window;
 end
 outputArray = I_norm_v2;

 case 'I_ave_norm'
 I_ave_norm = zeros(3,3,pages);

47

 idx = 1;
 for j = 1:data_length
 I_temp = [cmv_sample_norm(j,5) cmv_sample_norm(j,4)
cmv_sample_norm(j,6);
 cmv_sample_norm(j,8) cmv_sample_norm(j,7) cmv_sample_norm(j,9);
 cmv_sample_norm(j,2) cmv_sample_norm(j,1) cmv_sample_norm(j,3)];

 I_ave_norm(:,:,idx) = I_ave_norm(:,:,idx) + I_temp;
 if mod(j,window) == 0
 I_ave_norm(:,:,idx) = I_ave_norm(:,:,idx)/window;
 idx = idx + 1;
 end
 end
 outputArray = I_ave_norm;

 otherwise
 fprintf('ERROR')
end

end

function outputArray = getCSD_v2(magnitude,theta,threshold)
%% This function gets the raw magnitude and theta converts to a corrected array
[~,~,pages] = size(magnitude);

%% Find average angles
angle_array = zeros(pages,1); %initialize list of angles
for idx = 1:pages
 theta_avg = 0; %initialize variable
 cnt = 0;
 for i = 1:3
 for j = 1:3
 if magnitude(i,j,idx) > threshold
 theta_avg = theta_avg + deg2rad(theta(i,j,idx)); %get a running
tally of angles
 cnt = cnt + 1;
 end
 end
 end

 theta_avg = theta_avg/cnt; %get average angle
 angle_array(idx,1) = theta_avg;
end

%% Find the first non-NaN element's sign
test_array = angle_array;
cnt = 0;
for idx = 1:numel(test_array)
 if isnan(test_array(idx)) ~= 1
 cnt = cnt + 1;
 angle_array(cnt,1) = test_array(idx);
 end
end

48

%Find starting point
start = 1;
while start < numel(test_array) && isnan(test_array(start)) ~= 0
 start = start + 1;
end

%% Check the quadrants of the first 1/4 of the elements
angle_label = getQUADRANT(test_array);

check_array = cell(numel(angle_label,1));
check_array(1,1) = angle_label(start);

[max_row,~] = size(angle_array);
max_check = start + ceil(max_row/8);

cnt = 1;
for idx = start:max_check
 if isequal(angle_label(idx),check_array(cnt)) == 0 %check if qudrant is not the
same
 cnt = cnt + 1; %increment
 check_array(cnt,1) = angle_label(idx); %save new quadrant label to another
cell
 end
end

%% Correct angles (in radians) opposite that of reference quadrants
for idx = 1:numel(test_array)
 notequal = 0;

 for idx2 = 1:numel(check_array)
 if isequal(angle_label{idx},check_array{idx2}) == 1
 notequal = notequal + 1;
 end
 end

 if notequal == 0
 test_array(idx) = test_array(idx) + pi;
 angle_label{idx} = getQUADRANT(test_array(idx));
 end
end

%% Return output
outputArray = test_array;
end

function QUADRANT = getQUADRANT(theta)
%% This function receives an input angle in radiance and finds the quadrant it
belongs to
QUADRANT = cell(numel(theta),1);

for idx = 1:numel(theta)
 x_val = cos(theta(idx));
 y_val = sin(theta(idx));

49

 if y_val > 0 && x_val > 0
 QUADRANT{idx,1} = 'Q1';
 elseif y_val > 0 && x_val < 0
 QUADRANT{idx,1} = 'Q2';
 elseif y_val < 0 && x_val < 0
 QUADRANT{idx,1} = 'Q3';
 elseif y_val < 0 && x_val > 0
 QUADRANT{idx,1} = 'Q4';
 end
end
end

function [M, Phase] = getResultantVector(magnitude,theta)
% This function converts the magnitudes and angles into a phasor. The
% resultant vector's is then decomposed as magnitude, M, and angle, Phase.

z_total = 0;
threshold = 0.02;
[~,~,pages] = size(magnitude);
M = zeros(pages,1);
Phase = zeros(pages,1);

for idx = 1:(pages-1)
 for i = 1:3
 for j = 1:3
 R = magnitude(i,j,idx);
 rtheta = deg2rad(theta(i,j,idx));

 if R > threshold
 z = R*(cos(rtheta)+1i*sin(rtheta)); %convert into complex form
 z_total = z_total + z; %add complex numbers
 end
 end
 end

 M(idx) = abs(z_total);
 Phase(idx) = angle(z_total);
end
end

function CMV_Direction = getCMV_Direction_v2(angle_rad,hist_plot,algorithm)
%% This function gets the CMV direction using algorithm (1) without 2*pi wraparound
or (2) with 2*pi wraparound
[max_row,~] = size(angle_rad);
[~,edge_idx] = max(hist_plot.Values);
edgeValues = hist_plot.BinEdges;
% [~,edge_idx] = max(histo.Values);
% edgeValues = histo.BinEdges;
lower_bound = edgeValues(edge_idx);
upper_bound = edgeValues(edge_idx+1);
direction_temp = zeros(1,1);
cnt = 1;

switch algorithm

50

 case 1
 % Get final CMV direction if Algorithm 2.1
 for idx = 1:max_row
 if angle_rad(idx) > lower_bound && angle_rad(idx) < upper_bound
 direction_temp(cnt) = angle_rad(idx);
 cnt = cnt + 1;
 end
 end

 case 2
 % Get final CMV direction if Algorithm 2.2
 for idx = 1:max_row
 if angle_rad(idx) < 0.3926991
 angle_rad(idx) = angle_rad(idx) + 2 * pi;
 end

 if angle_rad(idx) > lower_bound && angle_rad(idx) < upper_bound
 direction_temp(cnt) = angle_rad(idx);
 cnt = cnt + 1;
 end
 end
end

CMV_Direction = rad2deg(mean(direction_temp));
if CMV_Direction < 0
 CMV_Direction = CMV_Direction + 360;
elseif CMV_Direction > 360
 CMV_Direction = CMV_Direction - 360;
end

end

function CMV_Speed = getCMV_Speed(CMV_Direction,dlocation_arr)
% This function receives the CMV direction and calculates the cloud shadow
% speed from the local minima locations
theta = deg2rad(CMV_Direction);
dlocation_arr(dlocation_arr==0) = NaN;
v = zeros(3,1);

% Initialize variables
delta_t1 = 0;
delta_t2 = 0;
delta_t3 = 0;
delta_t4 = 0;
delta_t5 = 0;

%CMV_direction = ~45 degrees
if theta >= 0.3926991 && theta < 1.178097
 delta_t1 = dlocation_arr(4) - dlocation_arr(8); %sqrt(2) m
 delta_t2 = dlocation_arr(6) - dlocation_arr(2); %2m
 delta_t3 = dlocation_arr(9) - dlocation_arr(1); %sqrt(2) m
 delta_t4 = dlocation_arr(6) - dlocation_arr(7); %1m
 delta_t5 = dlocation_arr(7) - dlocation_arr(2); %1m
 choice = 45

51

 %CMV_direction = ~90 degrees
elseif theta >= 1.178097 && theta < 1.9634954
 delta_t1 = dlocation_arr(5) - dlocation_arr(2); %sqrt(2) m
 delta_t2 = dlocation_arr(4) - dlocation_arr(1); %2m
 delta_t3 = dlocation_arr(6) - dlocation_arr(3); %sqrt(2) m
 choice = 90
 %CMV_direction = ~135 degrees
elseif theta >= 1.9634954 && theta < 2.7488936
 delta_t1 = dlocation_arr(4) - dlocation_arr(9); %sqrt(2) m
 delta_t2 = dlocation_arr(5) - dlocation_arr(3); %2m
 delta_t3 = dlocation_arr(8) - dlocation_arr(1); %sqrt(2) m
 delta_t4 = dlocation_arr(5) - dlocation_arr(7); %1m
 delta_t5 = dlocation_arr(7) - dlocation_arr(3); %1m
 choice = 135
 %CMV_direction = ~180 degrees
elseif theta >= 2.7488936 && theta < 3.5342917
 delta_t1 = dlocation_arr(5) - dlocation_arr(6); %sqrt(2) m
 delta_t2 = dlocation_arr(8) - dlocation_arr(9); %2m
 delta_t3 = dlocation_arr(2) - dlocation_arr(3); %sqrt(2) m
 choice = 180
 %CMV_direction = ~225 degrees
elseif theta >= 3.5342917 && theta < 4.3196899
 delta_t1 = dlocation_arr(8) - dlocation_arr(4); %sqrt(2) m
 delta_t2 = dlocation_arr(2) - dlocation_arr(6); %2m
 delta_t3 = dlocation_arr(1) - dlocation_arr(9); %sqrt(2) m
 delta_t4 = dlocation_arr(2) - dlocation_arr(7); %1m
 delta_t5 = dlocation_arr(7) - dlocation_arr(6); %1m
 choice = 225
 %CMV_direction = ~270 degrees
elseif theta >= 4.3196899 && theta < 5.1050881
 delta_t1 = dlocation_arr(2) - dlocation_arr(5); %sqrt(2) m
 delta_t2 = dlocation_arr(1) - dlocation_arr(4); %2m
 delta_t3 = dlocation_arr(3) - dlocation_arr(6); %sqrt(2) m
 choice = 270
 %CMV_direction = ~315 degrees
elseif theta >= 5.1050881 && theta < 5.8904862
 delta_t1 = dlocation_arr(9) - dlocation_arr(4); %sqrt(2) m
 delta_t2 = dlocation_arr(3) - dlocation_arr(5); %2m
 delta_t3 = dlocation_arr(1) - dlocation_arr(8); %sqrt(2) m
 delta_t4 = dlocation_arr(3) - dlocation_arr(7); %1m
 delta_t5 = dlocation_arr(7) - dlocation_arr(5); %1m
 choice = 315
 %CMV_direction = ~360 degrees
elseif theta >= 5.8904862 && theta < 6.6758844 || theta < 0.3926991
 delta_t1 = dlocation_arr(6) - dlocation_arr(5); %sqrt(2) m
 delta_t2 = dlocation_arr(9) - dlocation_arr(8); %2m
 delta_t3 = dlocation_arr(3) - dlocation_arr(2); %sqrt(2) m
 choice = 360
end

v(1) = abs(sqrt(2)/delta_t1);
v(2) = abs(2/delta_t2);
v(3) = abs(sqrt(2)/delta_t3);
v(4) = abs(1/delta_t4);

52

v(5) = abs(1/delta_t5);

for idx = 1:5
 if isinf(v(idx)) == 1
 v(idx) = nan;
 end
end

CMV_Speed = nanmean(v)/150*1000; %meters per second
end

%% Calculate time of arrival
function TOA = TimeOfArrival(d,phi,v,theta)
 TOA = d/(v*cos(deg2rad(phi-theta)));
end

Recommended PCB Schematic:

Figure 17. Schematics for major electrical components used in recommended PCB design.

53

Additional Figures:

Figure 18. Displaying the installation of the PV array at the site on the top of the East Hall

Parking garage. This is a close up of the weather proofing box containing the battery and the

electronics.

Figure 19. Displaying the installation of the PV array at the site on the top of the East Hall

Parking garage. The installation expert, Tim Lewis, and Habebullah Adua are shown from left to

right.

54

Figure 20. The PV array after the successful installation at the site.

Figure 21. Image showing full sensor array setup with PV system

