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Abstract: 

Transient weather conditions often decrease the deliverable output power of photovoltaic 

(PV) arrays and threaten the ability of the PV array to provide power to meet load demands, which 

leads to utility companies to provide backup energy sources to supplement the remaining demand. 

The switch from PV to backup power is not instantaneous, so it is important to predict the PV 

system output power to prevent energy shortages. We refined an ambient light sensor system to 

predict this output power. The system uses measured irradiance to compute cloud motion 

parameters such as cloud size, speed, and direction, to predict changes in power generation due to 

cloud cover. The system will enable grid operators to better understand the effects of PV power 

variability on the grid. 
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Executive Summary: 

Around the world, distributed PV power generation systems are being deployed at a rapid 

pace. This is causing technical problems across the utility sector as reverse power flows and 

voltage fluctuation occurs more in distribution feeders. There is also a rise in real and reactive 

power transients that affect the operation of the bulk transmission system. Traditional voltage 

control devices such as line voltage regulators or switched capacitor banks can alleviate slow-

moving fluctuations, but these devices need to operate more frequently than usual when PV 

generation fluctuates due to cloud cover. For example, the output of PV systems can drop from 

100% to 20% in a matter of seconds and return back to 100% within the same time frame. Utility 

companies fear that frequent operation will impact the life expectancy of voltage control devices 

[1, 2]. In order to fully understand and address these problems, utility companies like Eversource 

are seeking solutions to this problem.  

This work is a continuation of the work done by a group in the previous year. The goal of 

the project was to design and construct a light sensor array to detect and analyze cloud cover 

approaching a PV site. This device would enable utility companies that make extensive usage of 

PV generation in their grid networks to have a more reliable and consistent output as they would 

be able to predict future power generation given forecasted cloud cover.  The last team set the 

foundations of the project including code, circuit diagrams, and knowledge that allowed us to 

quickly determine what needed to be improved. This system utilizes an array of nine separate light 

sensors to forecast the direction a cloud is traveling, the time it would arrive at the PV site, and 

predict the power generated by the PV grid. Eight of the sensors are placed around the system with 

the ninth sensor being placed in the center of the device, which forms a Cloud Motion Vector 

Sensor (CMVS) system. Our goal this year was to revise the previous year’s sensor system design, 

improve the code, and test at a PV site.  

We have designed and implemented several improvements across all parts of the CMVS 

system. The structure of the physical array was modified to improve its sturdiness. The 

weatherproofing of the system was improved using tangle and water-resistant wire sheaths to 

protect the wires. These were connected to a central enclosure that protected the Arduino 

microcontroller and central light sensor, as well as the eight radial sensor enclosures. Additionally, 

snap-fit enclosures were designed in Solidworks and 3D-printed to allow for rapid assembly. 

 Although the foundation of the electrical system remains relatively unchanged from the 

design used in the past, it has been improved and iterated upon. We have gone through several 

stages of prototyping the electronics. This ranged from basic breadboarding to experimenting with 

several potential PCB layouts and configurations in order to find an ideal medium for this project. 

This process has enabled us to create a recommended PCB for further revisions and improvements 

to the project. 

The software element of the model also received significant changes. Initially, the 

MATLAB algorithm had errors within it. These errors were debugged, and repetitive, bulky 

elements of the code were reduced and simplified to improve the overall efficiency of the model. 

We also added several quality-of-life changes with features such as an added progress bar and 
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documentation of all code being incorporated. The newly added computations to obtain additional 

cloud parameters were first incorporated into MATLAB and then these changes were added into 

ThingSpeak: the online IoT platform that we use to process our collected irradiance data. The 

newly implemented parameters were estimated time of arrival, cloud size, and depth. These 

parameters, in addition to the date and time that the histograms were computed, was all done in 

real-time. 

Determining the predicted power output required the use of additional software systems. 

The initial method to determine the predicted power output relied on calculating the alpha values 

during the day across the span of year to create a database of alpha values at known irradiance 

values. This would enable easy determination of predicted power by referencing the alpha values. 

We shifted to a different method involving Simulink because product delays made the initial plan 

implausible within our timeframe. This Simulink model has two inputs, irradiance and 

temperature, and outputs the predicted power. For this model, a pyranometer and temperature 

sensor were required at the PV site and were connected to a separate microcontroller from the one 

used in our CMVS system. These sensors did not support direct interfacing with the Simulink 

model, so Python was used as an intermediate interface between the two. Currently, the predicted 

power projection model needs to be further refined. 

While many improvements were made over the course of this project, there still is ample 

room for future refinement of the system. The system is in need of better weatherproofing to enable 

it to function more effectively across temperature ranges. While the electronics are well protected 

from weather conditions such as rain and snow, the wire connections did not maintain their 

integrity in sub-freezing temperatures. Additionally, a new more compact and spatially efficient 

central PCB design is recommended. Finally, there are select segments of the code that could be 

made more efficient or refined. The Simulink model needs to be updated to be able to integrate 

into the rest of the system, and the efficiency and annotation in the MATLAB code should be 

reflected in that on ThingSpeak. It should be noted that the cloud size and depth have not been 

retroactively implemented into the MATLAB code. 
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1 Introduction 
 

As the environmental drawbacks of fossil fuel reliant forms of power generation become 

more apparent, alternatives such as renewable energies become more attractive as long-term 

investments. Photovoltaic systems are limited by weather, such as cloud cover, PV irradiance, and 

humidity. These can impede the maximum power output of a PV array. Thereby potentially 

causing the PV array to fall below the load demand of the local grid. Our work is a continuation 

of the work done by a group in the previous year. The goal was to design and construct a light 

sensor array to detect and analyze cloud cover approaching a PV site. This array would forecast 

the direction a cloud is traveling, the time it would arrive at the PV site, and predict the power 

generated by the system. The previous group produced a baseline sensor array and code to run it. 

Our goals for the project were to improve the array design, the code, and the accuracy of the model. 

Additionally, the model needed to be tested at a PV site. 

 

1.1 Problem 

 

Around the world, distributed PV power generation systems are being deployed at a rapid 

pace. This is causing technical problems across the utility sector as reverse power flows and 

voltage fluctuation occurs more in distribution feeders. There is also a rise in real and reactive 

power transients that affect the operation of the bulk transmission system. Traditional voltage 

control devices such as line voltage regulators or switched capacitor banks can alleviate slow-

moving fluctuations, but these devices need to operate more frequently than usual when PV 

generation fluctuates due to cloud cover. For example, the output of PV systems can drop from 

100% to 20% in seconds and return back to 100% in the same time frame [1]. The utility sector 

fears that such frequent operation will impact the life expectancy of these voltage control devices. 

In order to fully understand and address these problems, utility companies like Eversource are 

seeking solutions to this problem. Such a solution would require extensive computer simulation 

and data analytics studies to properly address the issue [2]. 

For further perspective, Massachusetts alone has had a large increase in its integrated PV 

power within the last decade. The state possessed roughly 1000 MW of PV power generation in 

2015 and had the goal of reaching 1600 MW by 2020. As of 2019, the state has had a cumulative 

capacity of 2752 MW, which is more than double what it had only four years before [3]. This 

further displays the need for systems that can improve the resiliency of PV systems. As the grid 

becomes more dependent on PV arrays, loss of power due to cloud cover becomes more impactful 

and adds more stress to the system.  

 

1.3 Current Solutions and Technology 

 

Throughout our research we have encountered several contemporary solutions to the 

problem identified. All of them in some way serve to forecast weather or monitor outputs from a 



8 

PV system. One possible solution is the Total Sky Imager (TSI) product, which periodically takes 

photos of the sky to measure how much cloud cover there is. Preliminary testing has been done on 

its application as a tool for short-term solar irradiance forecasting [2]. This could in the future 

prove useful for managing PV systems, but TSIs are not widely installed, with only a few sites 

established around the world. Another solution, the Smart Monitoring Device (SMD), utilizes 

several algorithms to connect PV arrays into an Internet of Things (IoT) system [3]. This product 

also uses irradiance sensors combined with image capture to forecast cloud coverage. This product 

is the most similar to our own that we have seen so far. One final solution we investigated is the 

Cloud Shadow Positioning System (CSPS). This system uses a stationary camera to take pictures 

of passing clouds. These pictures are then analyzed by their cloud detecting system, called SIFT, 

by selecting various points on the clouds and comparing their position to the next image captured 

five minutes later. The estimated arrival time is then computed based on the clouds’ speed [4]. 

 

1.4 Our Solution and Technology 

 

The major drawback of all of these current solutions is the cost of implementation. 

Additionally, some of these contemporary solutions are only used in a small number of locations 

or are still in the testing phase. In contrast, our CMVS system will be easier and cheaper to integrate 

into pre-existing arrays and is capable of capturing irradiance data using an array of light sensors 

at high resolution and measuring solar irradiance with high accuracy. The model can also produce 

high accuracy irradiance values due to its close proximity to the PV array and is favorable for 

short-term solar forecasting. These measurements are conducted much faster than what is 

traditionally possible, only taking two seconds at its fastest, compared to approximately 15 

minutes. Eventually, our light sensor array will be marketed as an easily installable DIY-kit, which 

removes the need for a third party or technician to install. The CMVS Model can also be integrated 

into Synergi, a distributed feeder simulation software used by the majority of Utility companies. 

The addition of shape, size, and speed of clouds into the system will be useful in making real-time 

decisions to prevent frequent switching of voltage-controlled devices. As mentioned previously 

this frequent switching may shorten the life expectancy of these devices and ultimately increase 

operating costs. 
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2 System Design and Modifications 
 

The CMVS system can be divided into three sections: the hardware section, the electrical 

section, and the software section. The hardware section concerns the enclosure that protects the 

electronics from the elements as well as the other steps we took to properly weatherproof our 

design. The electrical section details the components used. While the Software section details the 

improvements that were made to the algorithm. The diagram representing the CMVS can be seen 

below. The physical construction of the array constitutes the section on the far left, while the 

software side of the project is the three sections on the right. The real-time data collection and 

conversion consists of the Arduino code uploading data to ThingSpeak. The weather data analysis 

section processes the collected data and outputs the generated parameters. The visualization and 

energy management section involves the process of automatically updating the histograms on 

ThingSpeak. It also accounts for the future work of connecting up a generator to the system, should 

PV generation fall beneath load demands. 

 

 
Figure 1. High-level block diagram of CMVS system concept. 

 

The figure below displays the PV array as it is connected to the LED signboard as a load, as well 

as the hardware configuration for the pyranometer used in predicted output power computation. These 

electronics were configured at the site, on top of the East Hall Parking Garage. The LED signboard was 

configured and programmed within the lab to display various short animations, then was transported to the 

site. The Pyranometer was used to obtain the irradiance values at the PV panels, these values were then 

inputted into the Simulink model used to determine the predicted power output.  
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Figure 2. Block diagram of the PV system and power prediction model. 

 

2.1 Mechanical Design 

 

As this project is a continuation from a previous year, most of the physical layout of the 

system had been designed in advance. The inherited design relies on a total of nine irradiance 

sensors and a central microcontroller and is elaborated upon in the electrical subsection. While the 

basic design remains largely unchanged from previous iterations, heavy emphasis was placed this 

year on designing and constructing a more rugged system that could withstand non-ideal weather 

conditions, improper care, and repeated usage. 

 

2.1.1 Wire Connectors & Connections 

 

One major issue that we encountered throughout working on the various prototypes of the 

CMVS system were the wire connectors. These were the connectors between the wires of the 

irradiance sensors and those from the central PCB. In the prototyping phase, prior to designing a 

PCB, the array was constructed on a breadboard. This was done to assure that the connected 

sensors functioned properly, because of this connection pins were mounted onto the stripped ends 

of the wires. In later prototypes, Molex wire-to-wire connectors were implemented into the design 

to aid in the construction, deconstruction, and transport of the array. These connectors are 

waterproof, insulated, and weather resistant snap joints between wires. These were configured at 

the central PCB such that it could be easily isolated from the sensors for transport. These Molex 

junctions connected the wires that were mounted to the PCB to the 12-foot-long cables to the 

sensors. Between all wire-to-wire connections involving a change in wire gauge, heat-shrinking 

was used to provide additional security. The tips of the adjoining wires were stripped then joined 

within the heat-shrink sleeve. 

 

As mentioned, the connection that provided the most difficulty was the wire connectors 

between the PCB and the Molex connectors. These connectors were also the one that changed the 

most across different iterations of prototypes. Initially, the wires from the Molex were soldered 
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directly to the port holes on the PCB. In a later prototype, the design was changed to incorporate 

screw terminal connectors onto the PCB. These screw terminals were soldered to the board and 

operated by inserting the adjoining wire into the terminal, then fastening the wire in place with the 

screw. These terminals were challenging to work with because wires kept slipping out, snapping, 

or refusing to connect at all. This was especially frustrating and cumbersome when testing in below 

freezing weather conditions. This could be attributed to the lack of dexterity and fine control of 

the wires and terminals. This led to the desire for an improved wire connector such as the type 

discussed in “Section 5.1 – Recommendations”. 

 

2.1.2 System Weatherproofing 

 

The system’s weather resistance was improved with the addition of tangle resistant wire 

sheaths and quartz glass panes. This weather proofing is critical to ensure that the electronics do 

not become damaged due to inclement rain or snow. That said, on days where the conditions were 

this poor, we still packed up the array and terminated the testing. Each sensor required a pair of 

I2C cables to properly transmit the data and receive power. 

 

 
 

Figure 3. Light sensor in 3D printed enclosure connected to wires with ribbed sheathing.  

 

The introduction of the black tangle resistant wire sheaths provided two benefits. One of 

which was that the wires connecting the sensor enclosures to the central enclosure became better 

protected against rainfall, and the tangle resistant quality prevented the array from becoming an 

unusable nest of wires when stored away. 
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The transparent quartz panes were obtained to protect the formerly exposed sensors from 

potential non-ideal weather conditions. The PCB enclosure was designed such that the panes could 

be mounted over the light sensor to weatherproof it. 

 

2.1.3 PCB Enclosures 

 

3D-printed enclosures were designed to protect the sensitive electronics in conjunction 

with quartz glass. Like the previous year, enclosures for the central microcontroller and the radial 

sensors were designed in Solidworks. However, we significantly improved these designs relative 

to the previous year. Naturally, there were a few prototypes prior to the finalized designs shown 

below. In designs, unnecessary material in these enclosures were eliminated, they became snap-fit 

enclosures, and stabilizing arms with screw holes were implemented. 

Separate designs were created for sensors that are positioned at the circumference of the 

array compared to the central enclosure holding the PCB and the ninth sensor. As mentioned, the 

shared characteristics of these models include a snap-fit closure between the cover and baseplate, 

wire and pin slots in the cover, as well as screw holes located on the baseplate. As seen on the 

figure above, there is a slot in the walls of the enclosure that allows the wires to connect to the 

sensor. These screw holes at the end of radial arms allow the enclosure to be securely mounted to 

a piece of wood, elevating it off of the ground. This then provides additional weatherproofing 

against rain and snow. The following figures show the 3-D printed enclosures that were designed: 

 

 

 

 

 

 

 

 

 

 

  

Figures 4a, 4b, 4c, 4d. Solidworks models designed for the CMVS system, with dimensions in 

millimeters.  

Figure 4a (top left) - The cover of the plastic sensor enclosures.  

Figure 4b (top right) - The spacer that holds glass above the sensor on enclosure cover.  

4c (bottom left) - Base of plastic sensor enclosures.  

4d (bottom right) - Fully assembled model of the light sensor enclosure. 
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2.2 Electronics Design 

 

The electrical system allows the CMVS system to collect the irradiance values needed to 

predict cloud cover. A diagram of the electrical system can be seen below in figure 5. 

 

Figure 5. The block diagram of the CMVS electronics. 

 

Nine individual TSL2591 light sensors are used to collect irradiance values at different 

points around the CMVS system. One light sensor is placed in the center, while the remaining 

eight light sensors are placed twelve feet away from the center in 45º increments from one another 

radially. These light sensors are connected to a central Arduino Huzzah32-ESP32 Feather 

microcontroller with the I2C protocol. As their I2C address is unalterable, a TCA9548A I2C 

multiplexer is used to assign the light sensors different addresses. In the past, two separate 

multiplexers were used to change the addresses of all nine sensors. We discovered it is possible to 

use a single multiplexer to change the address of eight sensors and maintain the default I2C address 

for the ninth. 

The TSL2591 light sensor was specifically chosen as it is a direct improvement from the 

now-outdated TSL2561 that was utilized in the design made by the previous year’s team. Whereas 

the TSL2561 had a dynamic range of 0.1 to 40k Lux, the TSL2591 has a dynamic range of 188u 

to 88k Lux. This radical improvement in sensitivity for sensing lux values allows for the CMVS 

system to collect more accurate values that can improve the quality of predictions made. 

The Arduino Huzzah32-ESP32 Feather microcontroller was specifically chosen for its 

WiFi connectivity and battery charging capabilities. The lux values collected by the Arduino are 

sent to an IoT platform, i.e., ThingSpeak, where they are processed to predict incoming cloud 

cover. This step requires the system to have an internet connection, which the ESP32 Feather can 

support. Additionally, this board has built-in battery charging capabilities that allows it to be 

powered off of a LiPoly battery which improves the portability and reliability of the system. This 

allows for testing to not have to depend on proximity to an external power source as it can be 

powered by an included battery. The microcontroller used by the previous group was the 

BeagleBone Black, which introduced unnecessary additional complexity and lacked these 

additional features. 
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2.2.1 PCB Prototypes 

 

Initial testing of the CMVS system was done on a breadboard. While the previous year’s 

team left behind an intact model for our usage, it proved too fragile and entangled for us to use for 

testing. The following figure shows the schematic of last year’s CMVS system that was followed 

in assembling that initial breadboard:  

 

 
 

Figure 6. The circuit schematic for Arduino Uno with nine light sensors and two multiplexers. 

 

The first breadboarded system proved to function well and allowed us to collect cloud 

cover data. While this breadboarded prototype worked well initially, it proved cumbersome and 

frustrating for long term usage. In order to resolve this, a graduate student that was working with 

us on the project designed a PCB for us to use instead. It is functionally identical to the 

breadboarded system as it follows the electrical schematic shown in Figure 6. This PCB is shown 

in the following figure: 
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Figures 7a, 7b, 7c, 7d. The first PCB iteration that was designed.  

Figures 7a and 7b (Top) – PCB with mounted components, in and out of the central enclosure. 

Figures 7c and 7d (Bottom) - Front and back of the blank PCB. 

 

After assembly, this PCB was much better suited for long-term testing as the connections 

were much sturdier than the previous breadboarded system. However, there were some issues with 

the design as the WiFi module was nonfunctional and a misplaced connection had to be manually 

scratched out to disconnect it. The undergraduate team designed another PCB to fix these issues. 

Like the other system prototypes, this new PCB is functionally identical to the original schematic 

given in Figure 5. This new PCB is shown in the following figure: 
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Figures 8a and 8b. Front and back of RJ45 PCB. 

 

This new CMVS system PCB resolved many of the shortcomings of the previous PCB by 

removing the faulty connection, using a WiFi-enabled microcontroller, and using RJ45 connectors 

to connect the light sensors to the Arduino. The usage of RJ45 connectors allowed for the 

connection from the light sensors to be fully weatherproofed and easily connectable to the CMVS 

system. While this solution worked well at first, issues arose as the light sensors would 

unpredictably disconnect after periods of extended use. Due to time constraints, we did not have 

the time to properly debug this issue and chose to use another PCB designed by the graduate 

student who designed the PCB shown below: 
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Figures 9a, 9b, 9c, and 9d. Large PCB wire screw terminals designed by graduate student. 

Figures 9a and 9b (Top) - The top and bottom of the blank PCB, respectively.  

Figures 9c and 9d (Bottom) - The assembled PCB in the scaled-up enclosure. 

 

While improving the issues faced with the PCB shown in Figure 7, this PCB had several 

issues which hindered its adoption. The external battery did not work, the WiFi module was still 

nonfunctional, and the SD card that was intended to be used for storing collected data locally ended 

up being unnecessary as all our collected data was being uploaded to ThingSpeak. After these 

multiple attempts to have a functional PCB, we decided to go back to the simple breadboarded 

CMVS system as it allowed us to quickly make changes if something broke or was not working as 

expected. The updated breadboarded CMVS system can be seen in the following figure: 
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Figure 10. The breadboard design used for testing when wires could not be connected to a PCB 

due to cold weather. 

 

Despite being one of our simplest designs, the updated breadboarded CMVS system 

performed extremely well and offered us the most flexibility with collected cloud cover data. We 

did not have to deal with unwieldy wire connectors, and we were able to make quick adjustments 

to the system as needed. Additionally, we made the switch over to the Arduino Huzzah32-ESP32 

Feather microcontroller board as it was WiFi-enabled and had built-in battery support. While 

lacking the convenience and ruggedness of the other PCB solutions, its performance was much 

more reliable and predictable.  

 

2.3 Software Design 

The software for this project can be divided into three distinct categories: data collection, 

data processing for visualization, and simulations. The data collection is done locally on the CMVS 

array that we tested. The CMVS system uses an Arduino C script to send collected light intensity 

values from the sensors via the microcontroller to ThingSpeak, an online analytics service that 

allows uploaded data to be remotely aggregated, visualized, and analyzed. Once the collected data 

about the current cloud cover is on ThingSpeak, it is then processed through two different 

separation methods to determine the forecasted parameters regarding the incoming cloud cover. 

The code can be locally run through MATLAB; however, it does not have the auto-update 

functionality that ThingSpeak has. Please note that all code used in this project can be found in the 

Appendices. 
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2.3.1 Data Collection 

 

The Arduino code primarily served to initiate the microcontroller such that data sampling 

could be conducted. Initially, the primary usage of the Arduino code was to confirm the proper 

configuration of the sensors, which was assured from viewing the output data. 

 The Arduino code was not modified extensively. As mentioned, the functionality of this 

code was limited to collecting the light intensity values from the nine sensors and then to 

automatically upload this data to ThingSpeak. This was able to reliably occur in two second 

intervals. Because of this code, large quantities of data could be measured and operated remotely. 

Given the location that the array was operated in was just beyond the range of WPI’s wireless 

network, an issue that was encountered was that the microcontroller was unable to access Wi-Fi. 

This was solved by creating a cellular hotspot at the site. 

 

2.3.2 Cloud Cover Prediction 

 

The MATLAB code was the origin for the other types of code used in the project. It was 

also the version that experienced the greatest change due to the revisions made. Although 

MATLAB was the starting platform, the project desired automatic updates which could not be 

provided directly, so ThingSpeak was used. This was a simple enough change since ThingSpeak 

is also owned by MathWorks therefore the MATLAB script could easily be integrated. MATLAB 

and ThingSpeak are used to process the light intensity values such that the cloud cover parameters 

and predicted output power can be calculated. 

The MATLAB code was thoroughly examined for a better understanding of how the cloud 

motion vector speed and direction were being calculated. This was necessary, as it initially 

produced errors when run. Furthermore, the MATLAB scripts were optimized and refactored to 

make it more maintainable, easier to build additional features, and to debug any glitches that may 

occur. One feature that was added was a progress bar. The inclusion of the progress bar enables 

the operator to be able to monitor the status of the scripts while the gradient matrix video is 

generated. In this step, the length of time to complete the computations scales proportionally with 

the number of data samples used.  

Improvements were also made to the generation, labeling, and saving of the histograms 

produced by the code. The most prominent modification to the code was to include titles and labels 

to the axes to the histograms, as these would provide more ease in understanding the generated 

outputs. Additionally, the histograms were saved in separate image files and were understood to 

be representative of two separate ways of calculating the probability of shadow direction. The 

following revisions to the graphing of the polar histograms were made to aid in the understanding 

and comparison of these two models: both methods were graphed on the same histogram, each 

method was graphed individually on a smaller histogram the side for better scaling should there 

be a large discrepancy between the two models, and the three histograms described above were 

placed on tiled layout on the same image. It should be noted that both methods of the MATLAB 
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script use a Savitzky-Golay filter to smooth the data samples and use a sliding window to parse 

through the entire data set. The data set is then normalized with a method based on probability, 

placed into respective bins, and then graphed on the histograms. The differences in the methods 

are as follows. Method One specifies the maximum number of bins to be 10, while not specifying 

the angle of these projections. In other words, each bin can be considered a “slice of a pie chart” 

on the histogram generated. While Method Two provides the fixed edges to these bins. Meaning a 

fixed width and orientation for a given sector area should it be populated with a cloud's direction. 

The generation of the histograms were intended to show the probability that the cloud’s shadow is 

moving in any given direction. The histograms have been changed to have the normalization 

method based on probability. In this case, the radial axis is scaled from zero to one. This greatly 

increases the clarity of the information that was conveyed and is the case for the MATLAB script. 

When integrated onto ThingSpeak, the graphs are scaled proportional to the maximum values 

within the data set, rather than the fixed graphical range on MATLAB. Additionally, the calculated 

direction, speed, and time of arrival of the cloud to the PV array is printed at the bottom of the 

tiled histogram. For easy reference, like the calculated values, the date and time that the algorithm 

was computed at is also printed on the histogram. 

 

2.3.3 Power Output Prediction 

 

As the goal of the CMVS system was to use predicted cloud cover as a way to predict the 

generated power output of a PV array, we also need to find a way to predict that output power. 

One of the graduate students who was working with us created a Simulink model for our usage 

that could take the current irradiance and temperature data collected from the solar PV site and 

process them to get the predicted power of the PV array as an output. The figure below shows what 

the model looks like: 
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Figure 11. A sample of the Simulink model used to calculate predicted output power. The two 

blocks on the left connected to the orange block are the inputs. Both blocks continuously report a 

constant value, while the top block provides irradiance at 1000 W/m2 and the bottom provides 

temperature at 25 °C. 

 

 The PV system simulation is developed in Simulink using MATLAB functions. The PV 

system consists of a PV module, DC-DC converter, maximum power point tracking (MPPT) 

algorithm, and load. The power is supplied by a PV model using irradiance and ambient 

temperature measured at the PV array. We used a pyranometer LI-200R for irradiance input and 

Temperature Sensor LM 35 for Temperature input. The function of the MPPT algorithm is to 

calculate maximum power at a given PV irradiance and temperature. We have used the Perturb & 

Observe MPPT algorithm for maximum power tracking. A Buck Converter is used as a DC-DC 

converter. A pulse width modulator set to 5 kHz was used to generate the duty cycle the model 

depends on. The Buck Converter is used to step down the PV voltage to the battery or load. This 

simulation model has been tested and verified in literature [7,8].  

In order to have inputs that reflect real-world conditions, the undergraduate team built a 

second system that utilized an Arduino Uno along with specific types of sensors to collect these 

values. After analysis into which sensors would work best for our specific application, we settled 

on the Adafruit DHT22 Temperature-Humidity Sensor and a LI-COR 2420-BNC Light Sensor 

Amplifier. The DHT22 uses two internal sensors, a capacitive humidity sensor and a thermistor, 

to measure the surrounding air and then provide a digital signal detailing measured values. This 

specific sensor was chosen due to the amount of documentation on its usage, as well as its 

widespread adoption in hobbyist projects. As for irradiance sensing, we chose the 2420-BNC due 

to its compatibility with the LI-200R Pyranometer that we use at the testing site to measure global 
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solar radiation. The 2420-BNC converts the current (μA) signal from the solar radiation sensor 

into a voltage that can be measured by a data logger.  

Our first attempt to get live data from the Arduino relied on the “Simulink Support Package 

for Arduino” library to try to interface with the Arduino directly. Despite carefully going through 

the installation process, we were unable to get the DHT22 and 2420-BNC sensor to work 

consistently within Simulink. In order to overcome this setback, we chose an alternative workflow 

that involved logging data with the Arduino, tracking the data going to the COM output port with 

Python, and then running the Python script within a MATLAB script that Simulink could interface 

with. While this approach worked initially and we were able to get collected data from the Arduino 

system all the way to MATLAB, we were not able to make the final step into Simulink due to the 

script relying on a function that Simulink did not support. While we have addressed this in more 

depth in Section 5.1.3 Software Recommendations, this is an issue that needs to be resolved in the 

future. 

 

3 Results 
 

3.1 CMVS Model 

As the CMVS system is meant to operate throughout weather conditions, we tested in a 

variety of weather environments ranging from temperate fall days with minimal cloud cover to 

cold winter days with little sun. Regardless of the weather conditions, the steps needed to test the 

CMVS system model were the same. The system had to be laid out in a cleared region near the PV 

array installed on the top of the East Hall parking garage. This involved shoveling out snow in the 

winter and working around puddles in the fall and spring to not compromise the integrity of our 

device or jeopardize the quality of collected data. The eight radial sensors were subsequently 

placed around the central enclosure containing the PCB and the ninth sensor. Due to the 

university’s Wi-Fi not reaching this location, the system depended on a cellular hotspot connection 

such that the Arduino could upload collected data. As the system was able to upload data remotely, 

we were able to monitor performance and generate histograms while away from the testing site. 

Although the sensors could reliably send measured data at a two second interval, the team 

collectively decided to maintain a five-minute refresh rate for the histograms. This was done 

initially due to a separate hardware constraint, but later maintained as it was estimated cloud cover 

would not change significantly over the chosen time period. 

By conducting the testing stated above we were able to garner some results. These results 

primarily consist of the histograms generated from the MATLAB and ThingSpeak scripts. The 

data used to generate these histograms were collected over several days in January and February. 

This data was collected over the course of three hours from 11:00 AM to 2:00 PM each day during 

a five-day work week. Figure 16 shows an example of a histogram generated directly in 

ThingSpeak. The orange and blue sectors show the direction the cloud is traveling based on the 

two methods explained previously. Additionally, the text at the bottom of these histograms 
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displays the calculated cloud parameters: the time of arrival, speed, direction in terms of theta, the 

length and depth of the cloud, and the date and time that this data was computed. 

 
Figure 12. A histogram generated from collected data using code on ThingSpeak. 

 

We downloaded the data and ran it through the same scripts on MATLAB to verify that 

the code on ThingSpeak was producing histograms correctly. An example of a histogram generated 

with MATLAB can be seen below in Figure 12. There is a slight difference in the detail and 

positioning of the text due to minor differences in the functions between MATLAB and 

ThingSpeak. Additionally, the calculations to compute the cloud size and depth were not 

retroactively added to MATLAB. The two examples of histograms displayed were not computed 

using the same data set; however, if the histograms were generated using matching data sets, 

equivalent projections would be generated. 
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Figure 13. Example of a histogram generated by importing collected data to MATLAB. 

 

When initially verifying if the histograms produced accurate projections, we manually 

covered select sensors to simulate cloud clover in a particular direction. For example, we would 

cover the three sensors on the eastern side of the array for 30 seconds, followed by the three in the 

center column 30 seconds later, then cover three sensors that make up the column on the west side 

30 seconds after that. We repeated the process when removing the cinder blocks that were used to 

cast the shade. This process allowed us to know which direction the “cloud” should appear to be 

moving in the histograms, and to manually calculate the cloud’s speed. Using different variations 

of “cloud” direction and time intervals we were able to verify that the scripts were correctly 

performing calculations. It should be noted that a large volume of data was still collected from 

genuine cloud cover passing above the array. 

At the completion of this undergraduate project, the Simulink model used to predict the 

output power of the area had not been fully functional. However, when this model is completed in 

the future the resulting calculations can be verified by comparing them to system data shown 

below. This data is accessible online because of MATE3, a system controller connected to the 

battery of the PV system. The following two figures display the power generated and consumed 

on two different days, as well as the current power consumed by the load at the time the image 

was recorded: 
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Figures 14a and 14b. Bar graph displaying power generated by the PV system on different dates. 

Figure 14a (Top) - Power generated on March 18th.  

Figure 14b (Bottom) - Power generated and consumed on March 20th. 

 

3.2 I-Corps Program 

 

One other major result of this project was the work done in I-Corps. Our group opted to 

participate in the WPI I-Corps program to build upon this previous foundation. The full program 

takes place over several months and consists of two parts. The first part is a collaboration between 

WPI and the Massachusetts Institute of Technology (MIT). Two lectures were given by MIT staff 

and participants were asked to complete 12 interviews over four weeks. Participants also attended 

two office hours with advisors from MIT to assist with the interview process. This part of the 

program focused primarily on customer discovery and establishing value propositions. After this 
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part the remainder of the program was conducted with exclusively WPI associates and sought to 

reinforce the customer segments found in the previous part. By the end of the program, it was 

expected teams would complete 30 total interviews and have refined their product idea to the 

minimum viable product. 

We applied to the program with the intention of identifying who our target market would 

be should our project be commercialized in the future. We also sought to further confirm the need 

for a product such as ours and gain insight into features necessary to transform our prototype into 

a marketable product. As of the submission of this project the program is still ongoing, however 

the interviews conducted up to this point still provide further insight into the issues we wanted to 

explore. 

Early in the program, we identified our primary customer segment to be utility companies 

that make use of photovoltaic systems. Through speaking to companies ranging from major 

utilities, residential solar providers operating in the Northeastern United States, and research 

laboratories that focus on renewable energy and renewable integration, we were able to confirm 

that utility companies would be our main market. 

Throughout conducting interviews, we were able to reach several conclusions and confirm 

previous research. First, we found that passing clouds can cause issues in delivering power, but 

not nearly as frequently as we expected. This issue is called Voltage Flicker and is the term for 

when there is a noticeable change in illumination in equipment caused by a fluctuation in voltage 

within power systems. While Voltage Flickers do cause problems on the grid, other things need to 

be considered as well, such as the ramp rate of energy storage. Energy storage was another major 

topic that came up repeatedly. Having local energy storage at sites provides much faster switching 

times than some traditional generators. Because of this, we were informed that a lot of research is 

currently being invested in this area. We also discovered that our project would not be financially 

viable if marketed towards residential PV arrays. In particular since the sensor array would be an 

additional cost on top of that of the PV arrays, where the primary function would be to provide a 

fluid switch to supplemental power. Additionally, we were told any monetary losses caused by 

cloud cover for home solar were inconsequential compared to large-scale commercial farms. 
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4 Conclusions 

 

As this project is a continuation of previous work, we had several goals to achieve based 

on the work previously done. It sought to improve the system design and code, as well as improve 

the accuracy of the model. The physical design of the sensor array has been upgraded with newly 

designed, weatherproof sensor enclosures, anti-tangle wire sheaths, and a new PCB design for the 

central processing hub. The code was cleaned up, so it is easier to read, then added to such that it 

provides more information about the characteristics of detected clouds. It also updates generated 

histograms in real time. As for improving the accuracy of the model, more testing and research 

would need to be done in this area to confirm. More detail regarding recommendations for future 

work can be found in the following sections. 

 

4.1 Recommendations 

 

Given the many challenges we have faced and overcome throughout work on the CMVS 

system, we have several recommendations for continuing work on this project. 

 

4.1.1 Hardware Recommendations 

 

One major issue this year’s team encountered was how to properly weatherproof the device 

against the cold. Protecting against weather conditions, such as rain and snow, was easy as 

individual quartz glass covers were used to shield the light sensors. Additionally, 3D printed 

enclosures and plastic cord covers safely housed the sensitive electronics and wires. The real issues 

with weatherproofing were encountered in trying to work around the subfreezing temperatures in 

the winter.  

The large circular PCB that was used for collecting cloud cover parameters depended on 

screw terminals to connect the light sensors to the Arduino. As the light sensors had to be placed 

12 feet away from the Arduino, wires had to be carefully stripped, soldered, and heat shrunk to the 

light sensors to prepare them for usage. The end that connects to the Arduino was left bare, so that 

the exposed wire could be connected to the screw terminal. Unfortunately, the extreme winter cold 

frequently jammed the screw from tightening to the point where a solid electrical connection could 

not be made. This caused testing to slow down considerably as the team had to find an alternate 

way to connect the light sensors to Arduino. 

We recommend investing in proper connectors that are rated to work in subfreezing 

temperatures to avoid this from happening in future designs. The female-end of these connectors 

should be used on the PCB, whereas the male-end should be used in the light sensor. This will 

ensure system reliability in testing across various weather conditions and temperatures. This will 

also speed up the time needed to set up the system as the light sensors can be quickly connected to 

the CMVS PCB. 
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4.1.2 Electronics Recommendations 

 

The biggest issue that this year’s team encountered was confusion on which components 

to use. Between using multiple multiplexers and working with several different single-board 

microcontrollers, trying to keep track of all the different components was difficult and frustrating. 

In order to avoid the same frustrations and complications that we faced, we recommend carefully 

evaluating the current components available to you and other alternatives that you may use to 

determine which is best suited for the project. After using many different single-board 

microcontrollers, we found the Arduino Huzzah32-ESP32 Feather microcontroller to be the best-

suited device for the specific application of the project. 

This year’s team also designed a PCB that incorporates all the improvements we have made 

to the initial design as a starting point for future hardware development. It uses the suggested 

Arduino Huzzah32-ESP32 Feather microcontroller, 6-pin weatherproof JST connectors, and a 

reset button to restore default device operation. The recommended PCB can be seen below and the 

schematics can be seen in the Appendix. 

 

 
Figure 15. The front and back of the proposed PCB design 

 

Additionally, an electrical block diagram of this proposed PCB can be seen in the following 

figure: 
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Figure 16. The electrical block diagram of the proposed PCB. 

 

The main difference between this finalized electrical block diagram and the initial one in 

Figure 5 is the usage of only one multiplexer and the inclusion an external battery. As previously 

mentioned, the second multiplexer was removed after we realized it’s unnecessary and the added 

battery was used due to compatibility with the new ESP32 Feather.  

 

4.1.3 Software Recommendations 

 

The most critical aspect of the code that needs improvement is the Simulink model. In 

particular, the segment of the code that is responsible for obtaining live sensor data and 

implementing this into the predictive power model on Simulink. The workflow that we developed 

this year did not work completely as intended and we believe that handling everything within 

Simulink will lead to better results. 

Additionally, we propose that the MATLAB code be adapted slightly so that it can be 

utilized on ThingSpeak, instead of the current version. This is because the MATLAB code is better 

documented and refined. This would require retroactively implementing the cloud size and depth 

parameters to the MATLAB code. One additional recommendation for the code is to account for 

the case when the histograms occasionally display “NaN” for various cloud parameters. This likely 

is a result of a cloud not passing above the central sensor. 
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Appendices: 

 

Project Code: 

 

 All the code that was used in this project can be accessed on a GitHub repository linked 

below. The code on this GitHub includes the code from the previous year that has been revised 

as well as that which was newly rewritten. Within GitHub is the MATLAB, Simulink, 

ThingSpeak, Python, and the Arduino codes and algorithms.  

 

The code can be downloaded from the following link: https://github.com/Natste/CMVS  

 

#include <Adafruit_Sensor.h> 
#include <Wire.h> 
#include <stdio.h> 
 
#include "Adafruit_TSL2591.h" 
 
#define MUX1_ADDR 0x70 
#define MUX2_ADDR 0X71 
#define NUM_SENSORS 2 
#define NUM_CH_PER_MUX 8 
#define NUM_MUXES 2 
#define RD_WIDTH 16 
#define RD_DLY 100 
 
Adafruit_TSL2591 tsl = Adafruit_TSL2591(2591); 
 
void i2cMultiplexSignal(uint8_t addr, uint8_t bus) { 
  Wire.beginTransmission(addr);  // TCA9548A address is 0x70 
  Wire.write(1 << bus);          // send byte to select bus 
  Wire.endTransmission(); 
} 
 
void configureSensor(void) { 
  tsl.setGain(TSL2591_GAIN_MED);  // 25x gain 
  tsl.setTiming(TSL2591_INTEGRATIONTIME_300MS); 
} 
 
void setup(void) { 
  configureSensor(); 
  Serial.begin(9600); 
  delay(RD_DLY); 
} 
 
void readSensors(void) { 
  char     irstr[NUM_SENSORS * RD_WIDTH]; 
  uint16_t ir; 
 
  for (uint8_t i = 0; i < NUM_CH_PER_MUX * NUM_MUXES; ++i) { 
    if (i == NUM_SENSORS) break; 

https://github.com/Natste/CMVS
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    delay(RD_DLY); 
    if (i < NUM_CH_PER_MUX) { 
      Wire.beginTransmission(MUX1_ADDR); 
      Wire.write(1 << i); 
    } else { 
      Wire.beginTransmission(MUX2_ADDR); 
      Wire.write(1 << (i - NUM_CH_PER_MUX)); 
    } 
    Wire.endTransmission(); 
    ir = tsl.getLuminosity(TSL2591_INFRARED); 
    sprintf(irstr, "%6u, ", ir); 
    Serial.print(irstr); 
  } 
 
} 
 
void loop(void) { 
  readSensors(); 
  Serial.println(); 
 
} 

 

The Revised MATLAB Algorithm: 

 
 

clear frames paddedData; 
clear; clc; 
DATA_FILE = '../Data/11-9-sensors-only.csv'; 
OUTPUT_DIR = '11-9-output'; 
% OUTPUT_DIR = 'output'; 
MATRIX_TYPE = 'normalized'; 
THRESHOLD = 0.03; 
PEAK_DISTANCE = 50; 
PEAK_PROMINENCE = 0.15;%0.016; 
PEAK_WIDTH = 15; 
SENSOR_ORDER  = [5 4 6 8 7 9 2 1 3]; % Northwest to Southeast 
DATA_ORDER  =   [9 4 8 3 5 1 7 2 6]; % Northwest to Southeast 
FILL_ORDER  =   [4 1 8 9 6 2 5 3 7]; % N S W E NE SW NW SE O 
CREATE_VIDEO = false; 
CREATE_PLOTS = true; 
% SENSOR_ORDER = FILL_ORDER; 
if ispc % Check to see if operating system is Windows 
 DELIMITER = '\'; 
else % otherwise, use unix-style path delimiters. 
 DELIMITER = '/'; 
end 
figure_setup; 
load figure_setup SENSOR_STRINGS FIGURE_STRINGS FMT BIN_EDGES SCALE TILE; 
if ~isfile(DATA_FILE) 
 [DATA_FILE, DATA_FILE_PATH] = uigetfile('*.csv;*.txt;*.dat',... 
   'Select Input CSV Data', 'data.csv'); 
 DATA_FILE = [DATA_FILE_PATH, DATA_FILE]; 
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end 
if ~isfolder(OUTPUT_DIR) 
 OUTPUT_DIR = uigetdir('.', 'Select Output Directory'); 
end 
% Read and transfer raw lux data to new array 
data = readmatrix(DATA_FILE, OutputType='string'); 
if ~isempty(regexp(data, '[a-fx]', 'once')) % Check if data is hex 
 data = hex2dec(data); % If hex, convert to decimal 
end 
data = uint32(data); 
%%%%%% THINGSPEAK 
% i = 0; 
% lastMat = 0; 
% T = thingSpeakRead(1552033, ... % Get table from TSpeak 
%     Fields=1, ... 
%     NumPoints=1661, ... 
%     ReadKey='AD8ZB04MFD6HIYI8', ... 
%     OutputFormat='table'); 
% dataCol = T(:, {'cmvsData'});       % time & data cols -> data col 
% dataCol = rowfun(@string, dataCol); % char table -> str table 
% data = dataCol{:,:};                %  str table -> str array 
% data = arrayfun(@(x) uint32(str2num(x)), data, ... 
%                 uniform=false);     % str array -> uint32 cell array 
% data = cell2mat(data);              % uint32 cell array -> uint32 array 
%%%%%% 
nNotNan  = sum(~isnan(data),2); % count number of valid values in each row 
nSensors = round(mean(nNotNan)); % Use mean to get number of sensors 
data = data(nNotNan == nSensors, :); % Get rows with a reading for each sensor 
data = rmmissing(data, 2); % Exclude any remaining columns that contain a Nan 
iLoop = 1; 
% iDataStart = 660; 
% iDataEnd = 770; 
% iDataStart = 1; 
% iDataEnd = 101; 
iDataStart = 840; % 10 ft/ 30 s -- whole array 
iDataEnd = 940; 
% iDataStart = 1030 + 24; % 10 ft / 10 s -- whole array 
% iDataEnd = 1130 - 24; 
iDelta = iDataEnd - iDataStart; 
dataWindow = 10; % specifies sliding window length for moving sum 
filterWindow = 11; %  specifies smoothing window length 
%% Validate, Normalize, and Smooth Data 
if dataWindow > length(data) 
 dataWindow = length(data); 
 dataWindowWarn = sprintf("dataWindow exceeds length of data and has been 
trimmed"); 
else 
 dataWindowWarn = sprintf(''); 
end 
if filterWindow > length(data) 
 filterWindow = length(data); 
 filterWindowWarn = sprintf("filterWindow exceeds length of data and has been 
trimmed"); 
else 
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 filterWindowWarn = sprintf(''); 
end 
if iDataEnd > length(data) 
 iDataEnd = length(data); 
 iDataStart = max(iDataEnd - iDelta, 1); 
 dataEndWarn = sprintf("iDataEnd exceeds length of data. Range parameters have been 
changed"); 
else 
 dataEndWarn = sprintf(''); 
end 
if ~ismissing([dataWindowWarn, filterWindowWarn, dataEndWarn]) 
 warning('\n\t%s\n\t%s\n\t%s', dataWindowWarn, filterWindowWarn, dataEndWarn); 
end 
if nSensors < 9 
 %   paddedData = padarray(data', 9 - width(data), nan, 'post')'; 
 paddedData = NaN(length(data), 9); 
 if mod(nSensors, 2) 
   fillOrder = [FILL_ORDER(1:nSensors) FILL_ORDER(end)]; 
 else 
   fillOrder = FILL_ORDER; 
 end 
 for iSensor = 1:nSensors 
   paddedData(:, fillOrder(iSensor)) = data(:, iSensor); 
 end 
 % paddedData(:, floor(linspace(1,9,nSensors))) = data; 
 data = fillmissing(paddedData, 'movmean', max(9 - nSensors,2), 2, ... 
   EndValues='nearest'); 
 warning("%d sensors detected. Missing data is being interpolated, and may be 
inaccurate.", ... 
   nSensors); 
 nSensors = 9; 
end 
% while iDataStart + iDelta < height(dataCol) 
% Tsl = Sensor; 
% data             = calculate_lux(Tsl, data); 
iDataEnd         = iDataStart +  iDelta; 
dataSample       = get_sample_range(data, iDataStart, iDataEnd); 
dataSample       = dataSample(:, DATA_ORDER); 
dataSampleNorm   = get_norm(dataSample); 
smoothSample     = smoothdata(dataSample, 'sgolay', filterWindow); 
smoothSampleNorm = smoothdata(dataSampleNorm, 'sgolay', filterWindow); 
%% Plot Sensor Data 
plotSets = { 
 data 
 dataSample 
 smoothSample 
 smoothSampleNorm 
 }; 
if CREATE_PLOTS 
 figure(FMT.FIG); 
 dataPlotFmt.LineWidth = 2; 
 for iPlotSet = 1:length(plotSets) 
   dataPlot = plot(plotSets{iPlotSet}); 
   for iSensor = 1:nSensors 
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     dataPlotFmt.DisplayName = SENSOR_STRINGS(iSensor, :); 
     set(dataPlot(iSensor), dataPlotFmt); 
   end % iSensor = 1:nSensors 
   legend('show'); 
   dataAx = gca; 
   xlabel('Time Elapsed (milliseconds)'); 
   ylabel('Irradiance (W/m^2)'); 
   dataAx.XTickLabel = arrayfun(@(x) sprintf('%d', SCALE * x), dataAx.XTick,... 
     'un', 0); 
   set(dataAx, FMT.AX); 
   saveas(gca, fullfile(OUTPUT_DIR, FIGURE_STRINGS(iPlotSet, :)), 'fig'); 
   saveas(gca, fullfile(OUTPUT_DIR, FIGURE_STRINGS(iPlotSet, :)), 'png'); 
   close 
 end % iPlotSet = 1:length(plotSets) 
end % CREATE_PLOTS 
%% Find peaks and dips 
t = (iDataStart:iDataEnd); %/ Fs 
peakArr = zeros(nSensors, 1); 
peakLocArr = zeros(nSensors, 1); 
dipArr = zeros(nSensors, 1); 
dipLocArr = zeros(nSensors, 1); 
% Peak and dip parameters 
dipFmt.MinPeakDistance = PEAK_DISTANCE; 
dipFmt.MinPeakProminence = PEAK_PROMINENCE; 
dipFmt.NPeaks = PEAK_WIDTH; 
% Plot local maxima and minima 
if CREATE_PLOTS 
 sensorPlot = repelem(0, nSensors); 
 figure(FMT.FIG); 
 hold on 
 for iSensor = 1:nSensors 
   sensorInv = 1 ./ smoothSampleNorm(:, iSensor); 
   [dip, dipLoc] = findpeaks(sensorInv, dipFmt); 
   if isempty(dipLoc) 
     dipLocArr(iSensor) = 0; 
   else 
     dipLocArr(iSensor) = dipLoc(1); 
   end 
   sensorPlot(iSensor) = plot(t, smoothSampleNorm(:, iSensor), ... 
     DisplayName='Origin Sensor', LineWidth=2); 
   set(sensorPlot(iSensor), dataPlotFmt); 
   plot(t(dipLoc), 1 / dip, 'rs', 'MarkerSize', 10); 
 end 
 hold off 
 sensorAx = gca; 
 set(sensorAx, FMT.AX); 
 xlabel('Time Elapsed (milliseconds)'); 
 ylabel('Normalized Irradiance'); 
 sensorAx.XTickLabel = arrayfun(@(x) sprintf('%d', SCALE * x), sensorAx.XTick, 
'un', 0); 
 saveas(gca, fullfile(OUTPUT_DIR, 'CMV_Sample_Norm'), 'fig'); 
 saveas(gca, fullfile(OUTPUT_DIR, 'CMV_Sample_Norm'), 'png'); 
end % CREATE_PLOTS 
if strcmp(MATRIX_TYPE, 'normalized') 
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 smoothSampleNorm2 = get_norm(smoothSample); % FIXME: Why is the normalization of 
smooth sample being defined differently here? 
 luxMatrix =  get_matrix(smoothSampleNorm2(:, SENSOR_ORDER), dataWindow); 
else 
 luxMatrix =  get_matrix(smoothSample(:, SENSOR_ORDER), dataWindow); 
end 
pages = length(luxMatrix);                        % find maxnumber of frames 
imData =  luxMatrix(:, :, 1:pages);               % set dataset to be analyzed 
[imageRow, imageCol, ~] = size(imData); 
theta = zeros(imageRow, imageCol, pages); 
magnitude = zeros(imageRow, imageCol, pages); 
%% Prepare Frames 
clear XLim yLim 
frames(pages) = struct('cdata',[],'colormap',[]); 
figure(FMT.FIG); 
% set(gcf, Visible = false); 
progressBar = waitbar(0, '1', Name='Populating Frames'); 
qFigs = nan(1, pages); 
for iFrame = 1:(pages) 
 waitbar(iFrame/pages, progressBar, sprintf("Frame %4d / %4d\n%3d%% complete", 
iFrame, pages, ceil(iFrame/pages * 100))); 
 [gx, gy] = imgradientxy( imData(:, :, iFrame), 'sobel'); % Find cmv direction 
using Gradient Matrix Method 
 [gmag, gdir] = imgradient(gx, gy); 
 theta(:, :, iFrame) = gdir; 
 magnitude(:, :, iFrame) = gmag; 
 if CREATE_VIDEO 
   figure(FMT.FIG); 
   q = quiver(gx, -gy); %invert to correct visual vector orientation 
   xAbsPos = [floor(q.XData + q.UData); ceil(q.XData + q.UData)]; 
   [xLim(1), xLim(2)] = bounds(xAbsPos, 'all'); 
   yAbsPos = [floor(q.YData - q.VData); ceil(q.YData - q.VData)]; 
   [yLim(1), yLim(2)] = bounds(yAbsPos, 'all'); 
   qFigs(iFrame) = gcf; 
 end % if CREATE_VIDEO 
end 
delete(progressBar); 
%% Create Video 
if CREATE_VIDEO 
 vidDir = 'Gradient Matrix Animations'; 
 [~, ~] = mkdir([OUTPUT_DIR, DELIMITER, vidDir]); 
 videoFmt = 'MPEG-4'; 
 videoTitle = string([OUTPUT_DIR, DELIMITER, vidDir, DELIMITER, '∇Mat', 
char(datetime('now', Format='yy-MM-dd_HH-mm-ss'))]); 
 v = VideoWriter(videoTitle, videoFmt); 
 v.FrameRate = 30; 
 open(v); 
 txt = sprintf('dataWindow = %d filterWindow = %d\n', dataWindow, filterWindow); 
 progressBar = waitbar(0, '1', Name='Creating Video'); 
 for iFrame = 1:(pages) 
   waitbar(iFrame/pages, progressBar, sprintf("Frame %4d / %4d\n%3d%% complete", 
iFrame, pages, ceil(iFrame/pages * 100))); 
   ax = gca(qFigs(iFrame)); 
 %   xlim(ax, [0, xLim(2)]); 
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   xlim(ax, [0, 5]); 
 %   ylim(ax, [0, yLim(2)]); 
   ylim(ax, [0, 5]); 
   textWrapper(txt, ax); 
   frames(cast(iFrame, 'uint16')) = getframe(qFigs(iFrame)); 
   writeVideo(v, frames(iFrame)); 
 end % iFrame = 1:(pages) 
 close(v); 
 delete(progressBar); 
end % if CREATE_VIDEO 
%% Create Polar Histograms 
mtd1.shadow = struct; 
mtd2.shadow = struct; 
mtd1.shadow.ang = get_csd(magnitude, theta, 
THRESHOLD);                           %correct raw angles 
[mtd2.shadow.mag, mtd2.shadow.ang] =  get_resultant_vec(magnitude, theta); 
figure(99); 
set(gcf, FMT.FIG); 
tlo = tiledlayout(TILE.ROWS, TILE.COLS); 
title(tlo, 'Shadow Direction Probability'); 
set(tlo,FMT.TLO); 
nexttile(TILE.POS(1), TILE.LARGE_SPAN); % Large Left Tile BEGIN 
 mtd1.phistBig = polarhistogram(mtd1.shadow.ang, 10, Normalization="probability"); 
 hold on; 
   mtd2.phistBig = polarhistogram(mtd2.shadow.ang, BIN_EDGES, 
Normalization="probability"); 
   legendLabels(1) = "Method One"; 
   legendLabels(2) = "Method Two"; 
   % Plot dotted projection lines 
   mtd1.phistBigProj = polarhistogram(mtd1.shadow.ang, 10, ... 
     Normalization="count", EdgeColor=FMT.COLORORDER(1, :), ... 
     FaceColor='none', LineStyle=':'); 
   mtd2.phistBigProj = polarhistogram(mtd2.shadow.ang, BIN_EDGES, ... 
     Normalization="count", EdgeColor=FMT.COLORORDER(2, :), ... 
     FaceColor='none', LineStyle=':'); 
   % Find bins w/ probability >= 5% and extend to edges 
   mtd1.phistBigProj.BinCounts(mtd1.phistBig.Values >= 0.05) = 1; 
   mtd2.phistBigProj.BinCounts(mtd2.phistBig.Values >= 0.05) = 1; 
   % Set bins w/ probablility < 5% to zero 
   mtd1.phistBigProj.BinCounts(mtd1.phistBig.Values  < 0.05) = 0; 
   mtd2.phistBigProj.BinCounts(mtd2.phistBig.Values  < 0.05) = 0; 
   bothMtds.polarAx = gca; 
   set(bothMtds.polarAx, FMT.POLAX); 
   FMT.RTICKSET(); 
   the = 0:45:315; 
   rho = repmat(gca().RLim, 1, length(the)); 
   the = repelem(deg2rad(the), 2); 
   for iTheta = 1:2:(length(the)-1) 
     polarplot(the(iTheta:iTheta+1), rho(iTheta:iTheta+1), ... 
       LineWidth=1, LineStyle='-', Color=[0 0 0 0.25]); 
   end 
 hold off; 
 legendLabels(3:length(gca().Children)) = repelem("", length(gca().Children) - 2); 
 legend(bothMtds.polarAx, legendLabels, ... 
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   Location='northoutside', Orientation='horizontal'); 
 set(gca, Children=flipud(gca().Children)); 
% Large Left Tile END 
nexttile(TILE.POS(2)); % Upper Right Tile BEGIN 
 mtd1.phist = polarhistogram(mtd1.shadow.ang, 10, Normalization="probability"); 
 mtd1.polarAx = gca; 
 mtd1.phist.FaceColor = FMT.COLORORDER(1,:); 
 set(mtd1.polarAx, FMT.POLAX); 
 FMT.RTICKSET(); 
% Upper Right Tile END 
nexttile(TILE.POS(3)); % Lower Right Tile BEGIN 
 mtd2.phist = polarhistogram(mtd2.shadow.ang, BIN_EDGES, 
Normalization="probability"); 
 mtd2.polarAx = gca; 
 mtd2.phist.FaceColor = FMT.COLORORDER(2,:); 
 set(mtd2.polarAx, FMT.POLAX); 
 FMT.RTICKSET(); 
% Upper Left Tile END 
cmvDirection1 = get_cmv_direction(mtd1.shadow.ang, mtd1.phist, 1); 
cmvDirection2 = get_cmv_direction(mtd2.shadow.ang, mtd2.phist, 2); 
cmvSpeed1     = get_cmv_speed(cmvDirection1, dipLocArr); 
cmvSpeed2     = get_cmv_speed(cmvDirection2, dipLocArr); 
cmvSpeed1     = fillmissing(cmvSpeed1, "nearest", EndValues='nearest'); 
cmvSpeed2     = fillmissing(cmvSpeed2, "nearest", EndValues='nearest'); 
pvSite_dist   = 5; % Distance the sensor cluster is from the PV Site. Units?? 
pvSite_phi    = 30; %The angle from the site? 
TOA           = TimeOfArrival(pvSite_dist,pvSite_phi,cmvSpeed1,cmvDirection1); 
cmv           = [TOA cmvDirection1 cmvSpeed1 cmvDirection2 cmvSpeed2]; 
clk_raw       = clock; %Outputs the [Year Month Day Hour Min Sec] 
clk           = fix(clk_raw); %Rounds each entry in clock matrix, only impacts 
seconds 
% tlo.OuterPosition = tlo.OuterPosition .* [1 1 1 1 + 0.125]; 
% tlo.InnerPosition = tlo.InnerPosition .* [1 1 1 1 + 0.125]; 
clk_txt = sprintf('%g/%g/%g  %g:%g:%g', clk); 
txt = sprintf('TOA(s)=%6.5g Dir1(θ)=% 6.5g Speed1(m/s)=% 6.5g <> Dir2(θ)=% 6.5g 
Speed2(m/2)=% 6.5g', cmv); 
textWrapper(txt, gca, [1.13 -0.18]); 
textWrapper(clk_txt, gca, [0.90 2.55]); %Displays the time in the top right 
figure(gcf); 
% saveas(gcf, fullfile(OUTPUT_DIR, 'cmv_histogram'), 
'fig');                          %save figure 
saveas(gcf, fullfile(OUTPUT_DIR, 'cmv_histogram'), 
'png');                          %save image 
iLoop = iLoop + 1; 
iDataStart = iDataEnd; 
% end % while iDataStart + iLoop * iDelta < height(dataCol) 
%% Find the optical flow 
% OpF =  get_optical_flow(imData); 
%  get_vid(OpF, strcat(OUTPUT_DIR, 'OpticalFlow'));                          %save 
OpF run as .AVI file 
fileID = fopen(strcat(OUTPUT_DIR, 'cmv.txt'), 'w'); 
fprintf(fileID, '%6s %6s %6s %6s\n', 'CMV_Direction1', 'CMV_Direction2', 
'CMV_Speed1', 'CMV_Speed2'); 
fprintf(fileID, '%0.2f %0.2f %0.2f %0.2f\n', cmv); 
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fclose(fileID); 
%% Calculate time of arrival 
function TOA = TimeOfArrival(d,phi,v,theta) 
       TOA = d/(v*cos(deg2rad(phi-theta))); 
end 

 

Python Scripts for Power Output Prediction: 

 

## readSerial-dependent.py 
import serial.tools.list_ports 
import time 
 
 
def readCOMport(): 
    ports = serial.tools.list_ports.comports() 
    serialInst = serial.Serial() 
 
    portList = [] 
 
    for onePort in ports: 
        portList.append(str(onePort)) 
        print(str(onePort)) 
 
    portVar = "COM6"  # CHANGE THIS VALUE TO THE COM PORT LISTED IN THE ARDUINO 
EDITOR 
 
    serialInst.baudrate = 9600 
    serialInst.port = portVar 
    serialInst.open() 
 
    print("---") 
 
    time.sleep(5) 
    packet = serialInst.readline() 
    sensorReading = packet.decode("utf").rstrip("\n") 
    print(sensorReading) 
 
    return sensorReading 
 
output = readCOMport() 

 

%% readSerial-independent.py 
import serial.tools.list_ports 
import time 
 
def readCOMport(): 
    ports = serial.tools.list_ports.comports() 
    serialInst = serial.Serial() 
 
    portList = [] 
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    for onePort in ports: 
        portList.append(str(onePort)) 
        print(str(onePort)) 
 
    val = input("Select Port: COM") 
 
    for x in range(0,len(portList)): 
        if portList[x].startswith("COM" + str(val)): 
            portVar = "COM" + str(val) 
            print(portList[x]) 
 
    serialInst.baudrate = 9600 
    serialInst.port = portVar 
    serialInst.open() 
 
    print("---") 
 
    while True: 
        time.sleep(1) 
        print(serialInst.in_waiting) 
        if serialInst.in_waiting: 
            packet = serialInst.readline() 
            print(packet.decode('utf').rstrip('\n')) 
 
readCOMport() 

 

MATLAB Script for Power Output Prediction: 

 

%% Clear 
clear all 
clc 
%% Check to see if python environment is detected 
% pyenv 

 
%% Run Python script 
% Get raw python string 
output = pyrunfile("readSerial-dependent.py","output"); 

 
% Convert to a regular string 
output = string(output); 
splitOutput = split(output); 

 
% Pull temperature and irradiance values from output 
temperature = splitOutput(3) 
irradiance = splitOutput(9) 
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Arduino Script for Power Output Prediction: 

 

// Sketch for reading temperature and irradiance values 
// Written by Jonathan Ferreira (ECE 2022), with help from Tim Lewis 
(ECE 2022) 
 
// REQUIRES the following Arduino libraries: 
// - DHT Sensor Library: https://github.com/adafruit/DHT-sensor-
library 
// - Adafruit Unified Sensor Lib: 
https://github.com/adafruit/Adafruit_Sensor 
 
#include "DHT.h" 
 
#define DHTPIN 2     // Digital pin connected to the DHT sensor 
#define DHTTYPE DHT22   // DHT 22  (AM2302), AM2321 
DHT dht(DHTPIN, DHTTYPE); 
 
void setup() { 
  Serial.begin(9600); 
  dht.begin();  // Required to use the DHT22 sensor 
  int gain = 0.325; 
} 
 
void loop() { 
  // Wait a few seconds between measurements. 
  delay(1000); 
 
  // DHT SENSOR READING 
  // Read temperature as Celsius (the default) 
  float t = dht.readTemperature(); 
 
  // Check if any reads failed and exit early (to try again). 
  if (isnan(t)) { 
    Serial.println(F("Failed to read from DHT sensor!")); 
    return; 
  } 
 
  Serial.print("Temperature (°C): "); 
  Serial.print(t); 
 
  // LICOR SENSOR READING 
  int lowValue = analogRead(A0); 
  int highValue = analogRead(A4); 
 



43 

  int irradiance = highValue * gain; 
  
  // Print values 
  Serial.print("  Low: "); 
  Serial.print(lowValue); 
  Serial.print("  High: "); 
  Serial.print(highValue); 
  Serial.print("  Irradiance: "); 
  Serial.println(irradiance); 
} 

 

Revised ThingSpeak Algorithm: 

 

% Enter your MATLAB code below 
data1 = 
thingSpeakRead(1248525,'Fields',[1,2,3,4,5,6,7,8],'NumPoints',200,'ReadKey','EQ4MUC
OL8YTU4EBS'); 
data2 = 
thingSpeakRead(1307045,'Fields',1,'NumPoints',200,'ReadKey','74F6BCQ36JV3K1EF'); 
data = [data1,data2]; 
 
%while size(data,1)==200 
data1 = 
thingSpeakRead(1248525,'Fields',[1,2,3,4,5,6,7,8],'NumPoints',200,'ReadKey','EQ4MUC
OL8YTU4EBS'); 
data2 = 
thingSpeakRead(1307045,'Fields',1,'NumPoints',200,'ReadKey','74F6BCQ36JV3K1EF'); 
data = [data1,data2]; 
data_sample = data; 
 
%% Set test parameters 
matrix_type = 'I_norm'; 
x_start = 1; 
x_end = 200; 
window = 50; 
filter_window = 51; 
threshold = 0.03; 
%% Normalize data 
data_sample_norm = getNorm(data_sample); 
%% Filter and de-noise data 
cmv_sample = smoothdata(data_sample,'sgolay',filter_window); 
cmv_sample_norm = smoothdata(data_sample_norm,'sgolay',filter_window); 
%% Find peaks and dips 
t = (x_start:x_end); %/ Fs 
peak_arr = zeros(9,1); 
plocation_arr = zeros(9,1); 
dip_arr = zeros(9,1); 
dlocation_arr = zeros(9,1); 
% Peak and dip parameters 
peak_distance = 50; 
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peak_prominence = 0.15;%0.016; 
peak_width = 15; 
% Plot local maxima and minima 
for sensor_idx = 1:9 
    sensor_inv = 1./cmv_sample_norm(:,sensor_idx); 
    [dip,dlocation] = 
findpeaks(sensor_inv,'MinPeakProminence',peak_prominence,'MinPeakDistance',peak_dis
tance,'NPeaks',1); 
    if isempty(dlocation) 
        dlocation_arr(sensor_idx) = 0; 
    else 
        dlocation_arr(sensor_idx) = dlocation; 
    end 
end 
 
%% Get lux matrix 
luxMatrix = getMatrix(cmv_sample,window,matrix_type); 
% Find CMV direction using Gradient Matrix Method 
[~,~,pages] = size(luxMatrix); %find max number of frames 
imData = luxMatrix(:,:,1:pages); %set dataset to be analyzed 
[image_row, image_col, ~] = size(imData); 
theta = zeros(image_row,image_col,pages); 
magnitude = zeros(image_row,image_col,pages); 
theta2 = zeros(pages,1); 
for idx = 1:(pages-1) 
    [Gx, Gy] = imgradientxy(imData(:,:,idx),'sobel'); 
    [Gmag, Gdir] = imgradient(Gx, Gy); 
    theta(:,:,idx) = Gdir; 
    magnitude(:,:,idx) = Gmag; 
end 
% Algorithm 2.1 
angle_rad = getCSD_v2(magnitude,theta,threshold); %correct raw angles 
angle_deg = rad2deg(angle_rad); %convert angles to degrees 
% Plot estimated cloud shadow direction 
subplot(2,3,3) 
hist = polarhistogram(angle_rad,10,'FaceColor',[0 0.4470 0.7410],'FaceAlpha',0.8); 
% Algorithm 2.2 
[M, Phase_rad] = getResultantVector(magnitude,theta); 
Phase_deg = rad2deg(Phase_rad); 
% Plot polar histogram 
subplot(2,3,6) 
histo = polarhistogram(Phase_rad,[0.3926991 1.178097 1.9634954 2.7488936... %set 
bin edges 
    3.5342917 4.3196899 5.1050881 5.8904862 6.6758844],'FaceColor',[0.8500 0.3250 
0.0980],'FaceAlpha',0.8); 
% sgtitle("Shadow direction Probablity") 
 
subplot(2,3,[1,2,4,5]) 
histo = polarhistogram(Phase_rad,[0.3926991 1.178097 1.9634954 2.7488936... %set 
bin edges 
    3.5342917 4.3196899 5.1050881 5.8904862 6.6758844],'FaceColor',[0.8500 0.3250 
0.0980],'FaceAlpha',0.8); 
hold on 
hist = polarhistogram(angle_rad,10,'FaceColor',[0 0.4470 0.7410],'FaceAlpha',0.8); 
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legend('Mehtod Two','Method 
One','Location','northoutside','Orientation','horizontal'); 
 
%% Get CMV final direction and speed 
CMV_Direction1 = getCMV_Direction_v2(angle_rad,hist,1); 
CMV_Direction2 = getCMV_Direction_v2(Phase_rad,histo,2); 
CMV_Speed1 = getCMV_Speed(CMV_Direction1,dlocation_arr); 
CMV_Speed2 = getCMV_Speed(CMV_Direction2,dlocation_arr); 
CMV = [CMV_Direction1 CMV_Direction2 CMV_Speed1 CMV_Speed2]; 
PVSite_distance=5; 
PVSite_phi=30; 
TOA = TimeOfArrival(PVSite_distance,PVSite_phi,CMV_Speed1,CMV_Direction1) 
 
ResultString1={"Dir(1): "+ (CMV_Direction1) + " Speed(1): "+ (CMV_Speed1) + "< > 
Dir(2): "+ (CMV_Direction2) + " Speed(2): "+ (CMV_Speed2)}; 
annotation('textbox', [0.25 0.02  0.5 
0.05],'String',ResultString1,'FitBoxToText','on'); 
 
ResultString1={"TOA: "+ (TOA) }; 
annotation('textbox', [0.08 0.02  0.5 
0.05],'String',ResultString1,'FitBoxToText','on'); 
 
%end 
 
%% Functions 
 
function data_sample_norm = getNorm(data_sample) 
%% This function normalizes data with respect to each column 
[row,col] = size(data_sample); 
data_norm = zeros(row,col); 
for i = 1:col 
    if max(abs(data_sample(:,i))) ~= 0 
        data_norm(:,i) = data_sample(:,i)/max(abs(data_sample(:,i))); 
    end 
end 
data_sample_norm = data_norm; 
end 
 
function outputArray = getMatrix(cmv_sample,window,matrix_type) 
%% This function maps lux data into a selected matrix type 
[data_length,~] = size(cmv_sample); 
cmv_sample_norm = getNorm(cmv_sample); 
pages = data_length - window + 1 
 
% Get raw pixels 
I_raw = zeros(3,3,pages); 
for j = 1:data_length 
    I_temp = [cmv_sample(j,5) cmv_sample(j,4) cmv_sample(j,6); 
        cmv_sample(j,8) cmv_sample(j,7) cmv_sample(j,9); 
        cmv_sample(j,2) cmv_sample(j,1) cmv_sample(j,3)]; 
     
    I_raw(:,:,j) = I_temp; 
end 
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% Get pixels 
switch matrix_type 
    case 'I' 
        I = zeros(3,3,pages); 
        for j = 1:pages 
            for k = 1:window 
                I_temp = [cmv_sample(j-1+k,5) cmv_sample(j-1+k,4) cmv_sample(j-
1+k,6); 
                    cmv_sample(j-1+k,8) cmv_sample(j-1+k,7) cmv_sample(j-1+k,9); 
                    cmv_sample(j-1+k,2) cmv_sample(j-1+k,1) cmv_sample(j-1+k,3)]; 
                 
                I(:,:,j) = I(:,:,j) + I_temp; 
            end 
            I(:,:,j) = I(:,:,j)/window; 
        end 
        outputArray = I; 
         
    case 'I_norm' 
        % Get normalized pixels 
        I_norm = zeros(3,3,pages); 
        for j = 1:pages 
            for k = 1:window 
                I_temp = [cmv_sample_norm(j-1+k,5) cmv_sample_norm(j-1+k,4) 
cmv_sample_norm(j-1+k,6); 
                    cmv_sample_norm(j-1+k,8) cmv_sample_norm(j-1+k,7) 
cmv_sample_norm(j-1+k,9); 
                    cmv_sample_norm(j-1+k,2) cmv_sample_norm(j-1+k,1) 
cmv_sample_norm(j-1+k,3)]; 
                 
                I_norm(:,:,j) = I_norm(:,:,j) + I_temp; 
            end 
            I_norm(:,:,j) = I_norm(:,:,j)/window; 
        end 
        outputArray = I_norm; 
         
    case 'I_norm_v2' 
        I_norm_v2 = zeros(3,3,pages); 
        for j = 1:pages 
            for k = 1:window 
                I_temp = [cmv_sample_norm(j-1+k,7) cmv_sample_norm(j-1+k,8) 
cmv_sample_norm(j-1+k,9); 
                    cmv_sample_norm(j-1+k,4) cmv_sample_norm(j-1+k,5) 
cmv_sample_norm(j-1+k,6); 
                    cmv_sample_norm(j-1+k,1) cmv_sample_norm(j-1+k,2) 
cmv_sample_norm(j-1+k,3)]; 
                 
                I_norm_v2(:,:,j) = I_norm_v2(:,:,j) + I_temp; 
            end 
            I_norm_v2(:,:,j) = I_norm_v2(:,:,j)/window; 
        end 
        outputArray = I_norm_v2; 
         
    case 'I_ave_norm' 
        I_ave_norm = zeros(3,3,pages); 
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        idx = 1; 
        for j = 1:data_length 
            I_temp = [cmv_sample_norm(j,5) cmv_sample_norm(j,4) 
cmv_sample_norm(j,6); 
                cmv_sample_norm(j,8) cmv_sample_norm(j,7) cmv_sample_norm(j,9); 
                cmv_sample_norm(j,2) cmv_sample_norm(j,1) cmv_sample_norm(j,3)]; 
             
            I_ave_norm(:,:,idx) = I_ave_norm(:,:,idx) + I_temp; 
            if mod(j,window) == 0 
                I_ave_norm(:,:,idx) = I_ave_norm(:,:,idx)/window; 
                idx = idx + 1; 
            end 
        end 
        outputArray = I_ave_norm; 
         
    otherwise 
        fprintf('ERROR') 
end 
 
end 
 
function outputArray = getCSD_v2(magnitude,theta,threshold) 
%% This function gets the raw magnitude and theta converts to a corrected array 
[~,~,pages] = size(magnitude); 
 
%% Find average angles 
angle_array = zeros(pages,1);   %initialize list of angles 
for idx = 1:pages 
    theta_avg = 0; %initialize variable 
    cnt = 0; 
    for i = 1:3 
        for j = 1:3 
            if magnitude(i,j,idx) > threshold 
                theta_avg = theta_avg + deg2rad(theta(i,j,idx)); %get a running 
tally of angles 
                cnt = cnt + 1; 
            end 
        end 
    end 
     
    theta_avg = theta_avg/cnt;                                   %get average angle 
    angle_array(idx,1) = theta_avg; 
end 
 
%% Find the first non-NaN element's sign 
test_array = angle_array; 
cnt = 0; 
for idx = 1:numel(test_array) 
    if isnan(test_array(idx)) ~= 1 
        cnt = cnt + 1; 
        angle_array(cnt,1) = test_array(idx); 
    end 
end 
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%Find starting point 
start = 1; 
while start < numel(test_array) && isnan(test_array(start)) ~= 0 
    start = start + 1; 
end 
 
%% Check the quadrants of the first 1/4 of the elements 
angle_label = getQUADRANT(test_array); 
 
check_array = cell(numel(angle_label,1)); 
check_array(1,1) = angle_label(start); 
 
[max_row,~] = size(angle_array); 
max_check = start + ceil(max_row/8); 
 
cnt = 1; 
for idx = start:max_check 
    if isequal(angle_label(idx),check_array(cnt)) == 0 %check if qudrant is not the 
same 
        cnt = cnt + 1;  %increment 
        check_array(cnt,1) = angle_label(idx);  %save new quadrant label to another 
cell 
    end 
end 
 
%% Correct angles (in radians) opposite that of reference quadrants 
for idx = 1:numel(test_array) 
    notequal = 0; 
     
    for idx2 = 1:numel(check_array) 
        if isequal(angle_label{idx},check_array{idx2}) == 1 
            notequal = notequal + 1; 
        end 
    end 
     
    if notequal == 0 
        test_array(idx) = test_array(idx) + pi; 
        angle_label{idx} = getQUADRANT(test_array(idx)); 
    end 
end 
 
%% Return output 
outputArray = test_array; 
end 
 
function QUADRANT = getQUADRANT(theta) 
%% This function receives an input angle in radiance and finds the quadrant it 
belongs to 
QUADRANT = cell(numel(theta),1); 
 
for idx = 1:numel(theta) 
    x_val = cos(theta(idx)); 
    y_val = sin(theta(idx)); 
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    if y_val > 0 && x_val > 0 
        QUADRANT{idx,1} = 'Q1'; 
    elseif y_val > 0 && x_val < 0 
        QUADRANT{idx,1} = 'Q2'; 
    elseif y_val < 0 && x_val < 0 
        QUADRANT{idx,1} = 'Q3'; 
    elseif y_val < 0 && x_val > 0 
        QUADRANT{idx,1} = 'Q4'; 
    end 
end 
end 
 
function [M, Phase] = getResultantVector(magnitude,theta) 
% This function converts the magnitudes and angles into a phasor. The 
% resultant vector's is then decomposed as magnitude, M, and angle, Phase. 
 
z_total = 0; 
threshold = 0.02; 
[~,~,pages] = size(magnitude); 
M = zeros(pages,1); 
Phase = zeros(pages,1); 
 
for idx = 1:(pages-1) 
    for i = 1:3 
        for j = 1:3 
            R = magnitude(i,j,idx); 
            rtheta = deg2rad(theta(i,j,idx)); 
             
            if R > threshold 
                z = R*(cos(rtheta)+1i*sin(rtheta));    %convert into complex form 
                z_total = z_total + z;                 %add complex numbers 
            end 
        end 
    end 
     
    M(idx) = abs(z_total); 
    Phase(idx) = angle(z_total); 
end 
end 
 
function CMV_Direction = getCMV_Direction_v2(angle_rad,hist_plot,algorithm) 
%% This function gets the CMV direction using algorithm (1) without 2*pi wraparound 
or (2) with 2*pi wraparound 
[max_row,~] = size(angle_rad); 
[~,edge_idx] = max(hist_plot.Values); 
edgeValues = hist_plot.BinEdges; 
% [~,edge_idx] = max(histo.Values); 
% edgeValues = histo.BinEdges; 
lower_bound = edgeValues(edge_idx); 
upper_bound = edgeValues(edge_idx+1); 
direction_temp = zeros(1,1); 
cnt = 1; 
 
switch algorithm 
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    case 1 
        % Get final CMV direction if Algorithm 2.1 
        for idx = 1:max_row 
            if angle_rad(idx) > lower_bound && angle_rad(idx) < upper_bound 
                direction_temp(cnt) = angle_rad(idx); 
                cnt = cnt + 1; 
            end 
        end 
         
    case 2 
        % Get final CMV direction if Algorithm 2.2 
        for idx = 1:max_row 
            if angle_rad(idx) < 0.3926991 
                angle_rad(idx) = angle_rad(idx) + 2 * pi; 
            end 
             
            if angle_rad(idx) > lower_bound && angle_rad(idx) < upper_bound 
                direction_temp(cnt) = angle_rad(idx); 
                cnt = cnt + 1; 
            end 
        end 
end 
 
CMV_Direction = rad2deg(mean(direction_temp)); 
if CMV_Direction < 0 
    CMV_Direction = CMV_Direction + 360; 
elseif CMV_Direction > 360 
    CMV_Direction = CMV_Direction - 360; 
end 
 
end 
 
function CMV_Speed = getCMV_Speed(CMV_Direction,dlocation_arr) 
% This function receives the CMV direction and calculates the cloud shadow 
% speed from the local minima locations 
theta = deg2rad(CMV_Direction); 
dlocation_arr(dlocation_arr==0) = NaN; 
v = zeros(3,1); 
 
% Initialize variables 
delta_t1 = 0; 
delta_t2 = 0; 
delta_t3 = 0; 
delta_t4 = 0; 
delta_t5 = 0; 
 
%CMV_direction = ~45 degrees 
if theta >= 0.3926991 && theta < 1.178097 
    delta_t1 = dlocation_arr(4) - dlocation_arr(8); %sqrt(2) m 
    delta_t2 = dlocation_arr(6) - dlocation_arr(2); %2m 
    delta_t3 = dlocation_arr(9) - dlocation_arr(1); %sqrt(2) m 
    delta_t4 = dlocation_arr(6) - dlocation_arr(7); %1m 
    delta_t5 = dlocation_arr(7) - dlocation_arr(2); %1m 
    choice = 45 
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    %CMV_direction = ~90 degrees 
elseif theta >= 1.178097 && theta < 1.9634954 
    delta_t1 = dlocation_arr(5) - dlocation_arr(2); %sqrt(2) m 
    delta_t2 = dlocation_arr(4) - dlocation_arr(1); %2m 
    delta_t3 = dlocation_arr(6) - dlocation_arr(3); %sqrt(2) m 
    choice = 90 
    %CMV_direction = ~135 degrees 
elseif theta >= 1.9634954 && theta < 2.7488936 
    delta_t1 = dlocation_arr(4) - dlocation_arr(9); %sqrt(2) m 
    delta_t2 = dlocation_arr(5) - dlocation_arr(3); %2m 
    delta_t3 = dlocation_arr(8) - dlocation_arr(1); %sqrt(2) m 
    delta_t4 = dlocation_arr(5) - dlocation_arr(7); %1m 
    delta_t5 = dlocation_arr(7) - dlocation_arr(3); %1m 
    choice = 135 
    %CMV_direction = ~180 degrees 
elseif theta >= 2.7488936 && theta < 3.5342917 
    delta_t1 = dlocation_arr(5) - dlocation_arr(6); %sqrt(2) m 
    delta_t2 = dlocation_arr(8) - dlocation_arr(9); %2m 
    delta_t3 = dlocation_arr(2) - dlocation_arr(3); %sqrt(2) m 
    choice = 180 
    %CMV_direction = ~225 degrees 
elseif theta >= 3.5342917 && theta < 4.3196899 
    delta_t1 = dlocation_arr(8) - dlocation_arr(4); %sqrt(2) m 
    delta_t2 = dlocation_arr(2) - dlocation_arr(6); %2m 
    delta_t3 = dlocation_arr(1) - dlocation_arr(9); %sqrt(2) m 
    delta_t4 = dlocation_arr(2) - dlocation_arr(7); %1m 
    delta_t5 = dlocation_arr(7) - dlocation_arr(6); %1m 
    choice = 225 
    %CMV_direction = ~270 degrees 
elseif theta >= 4.3196899 && theta < 5.1050881 
    delta_t1 = dlocation_arr(2) - dlocation_arr(5); %sqrt(2) m 
    delta_t2 = dlocation_arr(1) - dlocation_arr(4); %2m 
    delta_t3 = dlocation_arr(3) - dlocation_arr(6); %sqrt(2) m 
    choice = 270 
    %CMV_direction = ~315 degrees 
elseif theta >= 5.1050881 && theta < 5.8904862 
    delta_t1 = dlocation_arr(9) - dlocation_arr(4); %sqrt(2) m 
    delta_t2 = dlocation_arr(3) - dlocation_arr(5); %2m 
    delta_t3 = dlocation_arr(1) - dlocation_arr(8); %sqrt(2) m 
    delta_t4 = dlocation_arr(3) - dlocation_arr(7); %1m 
    delta_t5 = dlocation_arr(7) - dlocation_arr(5); %1m 
    choice = 315 
    %CMV_direction = ~360 degrees 
elseif theta >= 5.8904862 && theta < 6.6758844 || theta < 0.3926991 
    delta_t1 = dlocation_arr(6) - dlocation_arr(5); %sqrt(2) m 
    delta_t2 = dlocation_arr(9) - dlocation_arr(8); %2m 
    delta_t3 = dlocation_arr(3) - dlocation_arr(2); %sqrt(2) m 
    choice = 360 
end 
 
v(1) = abs(sqrt(2)/delta_t1); 
v(2) = abs(2/delta_t2); 
v(3) = abs(sqrt(2)/delta_t3); 
v(4) = abs(1/delta_t4); 
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v(5) = abs(1/delta_t5); 
 
for idx = 1:5 
    if isinf(v(idx)) == 1 
        v(idx) = nan; 
    end 
end 
 
CMV_Speed = nanmean(v)/150*1000; %meters per second 
end 
 
%% Calculate time of arrival 
function TOA = TimeOfArrival(d,phi,v,theta) 
        TOA = d/(v*cos(deg2rad(phi-theta))); 
end 

 

 

 

Recommended PCB Schematic: 

 

 
Figure 17. Schematics for major electrical components used in recommended PCB design. 
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Additional Figures: 

 

 
Figure 18. Displaying the installation of the PV array at the site on the top of the East Hall 

Parking garage. This is a close up of the weather proofing box containing the battery and the 

electronics. 

 
Figure 19. Displaying the installation of the PV array at the site on the top of the East Hall 

Parking garage. The installation expert, Tim Lewis, and Habebullah Adua are shown from left to 

right. 
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Figure 20. The PV array after the successful installation at the site. 

 

 

 
Figure 21. Image showing full sensor array setup with PV system 

 


