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ABSTRACT 

 

Src signaling plays an important role in prostate cancer (PrCa) progression.  It has 

previously been shown that Src interacts with androgen receptor (AR) and enhances AR 

transactivation.  Although it has been shown that Src promotes AR activity, the underlying 

pathway has not been defined.   

To help characterize the Src-AR pathway, the cellular localizations of Src, p-Src, AR, 

pAR, and Prostate Specific Antigen (PSA, an AR target gene) were analyzed in androgen-

dependent (AD) LNCaP cells and in androgen-independent (AI) castration-resistant C4-2B cells.  

Using sub-cellular fractionation, the data showed that treatment of AD cells with synthetic 

androgen R1881 increased p-Src, AR, pAR, and PSA in the nucleus, while the levels of c-Src 

remained unchanged.  Treatment of AI cells with R1881 increased pSrc and AR in the nucleus, 

while the levels of c-Src and PSA remained unchanged.  When using Immunofluorescence 

microscopy, R1881 did not appear to increase the nuclear levels of p-Src or c-Src, so perhaps this 

technique is not as sensitive or quantitative as sub-cellular fractionation/immunoblots. 

The presence of PSA in the nucleus was unexpected given its well-proven role as a 

secreted protein.  Nuclear PSA was observed upon androgen stimulation in AD and AI cells, and 

in the nucleus of AI cells upon androgen deprivation.  Given PSA’s ability to induce cell division 

and decrease apoptosis when transfected into cells, its presence in the nucleus may imply that 

PSA acts there to help induce tumorigenesis.  

The effect of Src on AR activity was further studied by transfection of a dominant 

negative src (SrcK298M) in AD and AI cells.  Transfection with SrcK298M did not affect PSA 

expression in LNCaP cells, but strongly inhibited PSA levels in AI cells.  



 3 

Integrin signaling through Src was investigated in PrCa by ligand binding assay in AD 

and AI cells.  The data showed that αvβ3 integrin (but not αvβ6) upon attachment to fibronectin 

or   TGFβ-latency associated peptide (TGFβ-LAP) increases p-Src levels in AD and AI cells, 

while the levels of c-Src, PSA, and AKT remain unchanged.  Thus, αvβ3 integrin facilitates Src 

signaling, but the activation does not appear to affect AR transactivation.   

In conclusion, these data show that Src is required for AR activity and, consequently, 

PSA expression in AI prostate cancer cells, but not in AD cells.  These data also suggest that the 

nuclear co-localization of p-Src, AR and PSA might allow macromolecular interactions, which 

can further enhance AR transactivation and promote disease progression.  With respect to the 

switch in tumor progression from an AD to AI state, the data indicate that the integrin-Src 

pathway does not include AKT or PSA (and not AR by deduction), so perhaps other non-AR 

pathways help facilitate tumor growth at the AI state.  
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THESIS PURPOSE 

 

 It has previously been shown that Src phosphorylates and activates AR in AI PrCa cells 

(Guo et al., 2006).  Hence, it can be hypothesized that Src plays an important role in PrCa 

disease progression.   Src activation promotes AR nuclear translocation and promotes AR 

transactivation.  However, the mechanism of Src-regulated AR activity in PrCa remains to be 

explored.  It is also known that cytoplasmic domains of integrins interact with Src and results in 

Src activation.  Thus, this integrin-Src pathway may help regulate AR activity.  

 The first and second part of this thesis focused on the role of Src in the regulation of AR 

activity in PrCa.  Src activity is known to be important in PrCa since tumors in which Src 

activity has been blocked show reduced tumor volume (Recchia et al., 2003).  Since AR is found 

to be localized in the nucleus upon ligand binding, and increased Src kinase activity is found in 

PrCa tumor xenografts, I studied AR, Src, and PSA localization in PrCa cells upon stimulation 

with synthetic androgen R1881.  Then, I studied the effect of Src expression and phosphorylation 

on AR activity in LNCaP (AD) and C4-2B (AI) PrCa cell lines.  And finally, I analyzed the role 

of an integrin-Src-AR pathway on the localization of Src, p-Src, AR, p-AR, and PSA. 

Therefore, this thesis investigated novel mechanisms, which modulate AR activity by 

studying Src localization, expression and phosphorylation in androgen-dependent and 

independent cell lines, and the potential ability of integrins to activate this pathway.  
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BACKGROUND 

 

Prostate cancer is the second leading cause of cancer death among men in Western 

countries.  In 2010, 192,280 new cases, and 27,360 estimated deaths are predicted to occur due 

to PrCa in United States (Jemal et al., 2009) (Table 1).  Patients with advanced PrCa initially 

benefit from androgen-ablation therapy, which leads to temporary tumor remission due to 

apoptosis of androgen-sensitive tumor cells.  However, the recurrence of AI tumors is inevitable 

for most patients, and renders the conventional hormone ablation therapy ineffective (Feldman 

and Feldman, 2001; Debes and Tindall, 2004).  It has, therefore, become a focus of intensive 

study to understand the mechanisms underlying the development of hormone-refractory PrCa.  

 

Table 1: Cancer Statistics 2009 (Jemal et al., 2009). 
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Androgen-Independent Prostate Cancer 

 Prostate cancer develops in the prostate gland, and the tumor cells can metastasize from 

prostate to other parts of the body, such as lymph nodes and bones.  Disease diagnosis involves 

screening prostate specific antigen (PSA) levels present in serum.  PSA is a member of the 

human kallikrein family of serine proteases (Heinlein and Chang, 2004).  PSA is secreted by the 

prostate gland, and is found in small quantities in normal patients.  It is a 33kDa, human 

kallikrein gene family member, and a serine protease that inhibits coagulation of the seminal 

fluid (Balk et al., 2003).  The major substrates of PSA are seminogelin I and II that mediate gel 

formation in the semen (Balk et al, 2003).  Other PSA substrates include fibronectin, TGFβ, 

PTH-related peptide, and plasminogen (Yousef et al., 2001).  PSA was initially detected in the 

cytoplasmic vesicles and secretory granules of epithelial cells (Sinha et al., 1987).  Serum PSA 

levels are often elevated in PrCa disease.  PSA is a one of the major AR-dependent target genes, 

and is clinically monitored to detect early stage disease and the emergence of recurrent tumors 

post-therapy (Nash and Melezinek, 2000; Ryan et al., 2006).  Thus, readouts of AR activity are 

critical for the assessment of disease progression and therapeutic outcome.  PrCa initially 

presents as an AD disease, therefore hormone ablation therapy is often used.  However, the 

disease progresses to a state where it becomes AI.  In these cases the AR becomes hypersensitive 

and responds to very low levels of androgens.  There are five different proposed pathways, 

hypersensitive pathway, promiscuous pathway, outlaw receptor pathway, bypass pathway, and 

lurker pathway, which can lead to AI PrCa (Feldman and Feldman, 2001).  In the hypersensitive 

pathway, AR becomes hypersensitive to low levels of androgens (Fig 1).  The factors that might 

contribute to hypersensitivity include mutations in the AR gene, or increased levels of co-

activators. In the promiscuous pathway, the specificity of AR broadens due to the production of 
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other steroid hormones or even AR antagonists that can activate AR.  In the outlaw pathway, 

there is production of outlaw receptors by crosstalk with growth factor signaling pathways, 

which can phosphorylate and activate AR.  Unlike the three pathways discussed above, the 

bypass pathway is independent of AR.  In this pathway, the pro-apoptotic mechanisms that are 

normally blocked by androgen are, instead, inhibited by a parallel mechanism such as the up-

regulation of Bcl2.  In the lurker cell pathway, AI PrCa cells are lurking in the normal prostate 

and  become selected for by therapy (Fig 1). 

 

 

 

 

      

 

 

 

 

Figure 1: Androgen-Independent Pathways in Prostate Cancer.  Five different 
pathways have been proposed to result in androgen-independent prostate cancer: 
hypersensitive pathway, promiscuous pathway, outlaw receptor pathway, bypass 
pathway, and lurker pathway (Feldman and Feldman, 2001).   
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By understanding the mechanism behind AI PrCa, specific therapies could be designed to 

target the cause behind this disease. 

 

Androgen Receptor 

AR plays a central role in PrCa development and disease progression.  AR, is a member 

of the steroid hormone receptor family which is primarily responsible for mediating the 

physiological effects of androgens by binding to specific DNA sequences, known as androgen 

response elements (AREs) (Heinlein and Chang, 2004).  AR, also known as NR3C4 (nuclear 

receptor subfamily 3, group C, member 4), is a type of nuclear receptor, which is activated by 

binding of either of the androgenic hormones testosterone or dihydrotestosterone (Roy et al., 

2001).  The AR gene is located on the X chromosome at Xq11-12 (Roy et al., 2001).  The main 

function of the AR is as a DNA-binding transcription factor, which regulates gene expression.  

AR appears to be involved in various aspects of the disease, from its commencement to the 

development of treatment resistance.  

In the absence of androgens, AR usually stays in the cytoplasm in an inactive form.  

Upon androgen binding the AR, the AR forms a dimer, which moves from the cytoplasm to the 

nucleus (Roy et al., 2001; Marcelli et al., 2006) (Fig 2).  The nuclear translocation of AR results 

in the binding of AR to ARE’s in the regulatory region of target genes as a transcription factor 

(Heinlein and Chang, 2004).  
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Figure 2: Androgen Receptor Activation. The unliganded AR localizes in the 
cytoplasm as a heteromeric complex with heat shock proteins (Hsp).  Upon androgen 
binding, the AR undergoes conformational changes, gets dimerized and moves from the 
cytoplasm to the nucleus.  The nuclear translocation of AR results in the binding of AR to 
androgen response elements in the regulatory region of target genes as a transcription 
factor (Feldman and Feldman, 2001). 

 

The AR gene is composed of three domains: N terminal domain (NTD), DNA binding 

domain (DBD) and a C-terminal domain or ligand-binding domain (LBD) (Fig 3).  
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Figure 3: Androgen Receptor Gene.  The AR gene is composed of three domains: N 
terminal domain (NTD), DNA binding domain (DBD) and a C-terminal domain or 
ligand-binding domain (LBD) (Litvinov et al., 2003).   

 

 The NTD and LBD domains contain the sub-domains called activation function-1 (AF-

1), and activation function-2 (AF-2), respectively (Litvinov et al., 2003).  AF-1 and AF-2 interact 

with several other co-factors that lead to transactivation of AR.  AF-1 and AF-2 docking sites 

specifically recognize motifs like LXXLL and FXXLF which are present in different co-factors 

(van de Wijngaart et al., 2006).  The FXXLF motif is also present in the NTD that interacts with 

the LBD of AR, although the function of this interaction is not clear.  FXXMF is the common 

motif found in PAK6 and Supervillin.  FXXLF is frequently found in ARA50 and ARA70 

(Miyamoto et al., 1998), while the FXXFF motif is frequently found in Gelsolin, cdc37 (van de 

Wijngaart et al., 2006).  These interactions of the AR with co-factors result in either 
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phosphorylation or dephosphorylation of AR that may cause either activation or inactivation, 

respectively, of AR in PrCa. 

 

AR and Androgen-Independent PrCa 

Activation of the AR plays a role in AI PrCa. Multiple mechanisms including stimulation 

by tyrosine kinases have been postulated. Several phosphorylation sites exist in the AR protein.  

Three tyrosine sites have been studied so far: tyr-267, tyr-363 and tyr-534 (Guo et al., 2006; 

Mahajan et al., 2007).  It was found that the tyr-534 site was evolutionally conserved, which 

suggested that tyr-534 might be of functional importance in hormone refractory cancer (Guo et 

al, 2006).  A mutation at tyr-534 diminished Src-induced tyrosine phosphorylation of AR (Guo et 

al., 2006).  Hormone-refractory tumor lysates were blotted with anti-pAR (Y534) antibody, and 

an increase in pAR expression levels was found in AI tumors as compared to hormone naïve 

tumors.  It was also reported that tyrosine phosphorylation regulates AR nuclear translocation 

and transcriptional activity (Guo et al., 2006).  Hence, it can be hypothesized that AR tyrosine 

phosphorylation has a role in the progression of PrCa to the AI state. 

 

Integrins and Prostate Cancer 

Integrins have been found to play a major role in PrCa progression (Goel et al., 2008).  

Integrins play an important role in cell signaling.  They are crucial regulators of differentiation, 

growth, survival, migration and invasion.  The adhesive contacts between cells and the extra 

cellular matrix (ECM) are mediated by integrins (Fornaro et al., 2003).   They are also involved 

in tumor growth and metastasis. Integrins are dimers of alpha and beta subunits (Fig 4).  Twenty 

four unique integrin dimers can form through different combinations of alpha and beta subunits.  
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αIIb, α6, β1, β3 and β6 integrin subunits are up-regulated in PrCa, while αv, α7, α3 β1C, β4 

integrins are down-regulated (Goel et al., 2008).  

 

Figure 4: Integrins link extracellular matrix 
proteins to the cytoskeleton  (Goel and 
Languino, 2004). 

 

The integrin αvβ6 is neo-expressed in many carcinomas, such as colon (Agrez et al., 

1994), breast (Arihiro et al., 2000), oral squamous carcinoma (Jones et al., 1997), ovarian cancer 

(Ahmed et al., 2002), and in vitro studies suggest that αvβ6 promotes epithelial cell spreading, 

migration, and proliferation (Breuss et al., 1995).  siRNA-mediated down-regulation of AR in 

αvβ6 integrin expressing LNCaP cells shows a strong inhibition of PSA expression levels (Wang 

et al., unpublished data), suggesting that αvβ6 integrin mediates specific pathways that are AR 

dependent, and contributes to increased AR transcriptional activity.  Immunofluorescence studies 

in LNCaP cells expressing αvβ6 integrin showed that AR was localized in the nucleus, even 

under starvation conditions (Wang et al., unpublished data).  This suggests that αvβ6  integrin 
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promotes AR translocation and transcriptional activity via an AI mechanism. 

Integrins promote a wide range of adhesion-dependent effects, including proliferation, 

survival, migration or invasion.  In particular αvβ3 integrin is associated with the progression of 

a variety of human tumors, including melanomas and carcinomas of the prostate, breast, cervix 

and pancreas.  It enhances tumor cell migration, survival and increased growth factor release.  It 

has been previously shown that αvβ3 integrin strongly supports Src-mediated oncogenic 

transformation through an interaction at the β3 cytoplasmic tail (Huvneers et al., 2007).  Src 

phosphorylates αvβ3 integrin, but this phosphorylation is not required for αvβ3 integrin-

mediated support for tumor formation (Huvneers et al., 2007). 

  Thus, integrins regulate Src-mediated oncogenic transformation and various aspects of 

morphological transformation through different pathways.  It has also been reported that αvβ3 

integrin promotes anchorage-independence through Src mediated pathways (Desgrosellier et al., 

2009).  Hence, to define the integrin-Src pathway involved in PrCa disease progression will be of 

utmost importance.  

 

Src Regulation of AR  

Src and its function in cellular mechanisms 

 Src is a non-receptor tyrosine kinase originally discovered in the 1970s (Martin, 2001).  It 

is a 60 kDa protein that consists of three domains, an N-terminal SH3 domain, a central SH2 

domain and a tyrosine kinase domain (Martin, 2001) (Fig 5).  The Src kinase family is comprised 

of nine members:  Src, Lyn, Fyn, Yes, Lck, Hck, Blk, Fgr and Yrk (Fizazi, 2007).    
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Figure 5: Src Gene and Structure. a) The v-Src and c-Src genes.  The v-Src gene 
(bottom) lacks the introns present in c-Src (top), and in v-src the 3'-terminal sequence of 
c-Src is replaced by a downstream sequence. In addition, several activating point 
mutations are present within v-Src (not shown).  A non-defective Rous sarcoma virus 
strain, such as that shown, contains the viral structural genes (gag, pol and env), plus the 
viral-transforming gene, v-Src.  The Bryan strain is replication-defective and lacks a 
functional env gene; some variants of the Bryan strain are also defective in pol. b) 
Structural features of c-Src and v-Src proteins.  Residue numbers and other details are 
specific to chicken c-Src and the v-Src protein of the Schmidt–Ruppin strain of RSV. The 
amino terminus of the protein is myristoylated at Gly2.  Positions of the membrane-
binding (M), unique (U), SH2, SH3, linker (L), catalytic and regulatory (R) domains of c-
Src are shown; the substituted carboxy-terminal sequences in v-Src are shown in red. 
Asterisks represent amino acid substitutions in v-Src (Martin, 2001). 

 

Auto-inhibition of the Src kinase domain results from the interactions between SH2 (Src 

Homology domain 2) and SH3 (Src Homology domain 3) domains.  Auto-phosphorylation at tyr-

416, and de-phosphorylation at tyr-527, are required for activation of c-Src (Cooper et al., 1986).  

Csk (Carboxy-terminal Src kinase) phosphorylates at site tyr527, which results in inactivation of 

c-Src (Okada and Nakawaga, 1989).  Phosphorylation at site tyr-527 was found to be the key 

event in regulating c-Src kinase activity.  Deletion of this site could account for the oncogenic 

activation of Src, and this variant is referred to as v-Src (Martin, 2001) (Fig 6).   
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Figure 6: Src Activation.  Src protein consists of three domains, an N-terminal SH3 
domain, a central SH2 domain and a tyrosine kinase domain.  Auto-inhibition of the 
kinase domain results from the interactions between SH2 and SH3 domains.  Auto-
phosphorylation at tyrosine 416 and dephosphorylation at tyrosine 527 are required for 
activation of c-Src.  Deletion of Tyr527 accounts for the oncogenic activation of Src and 
the variant is referred to as v-Src (Martin, 2001).  
 

Src has been found to be involved in the control of many functions, including cell 

adhesion, growth, movement and differentiation (Dehm and Bonham 2004).  Src can be activated 

by different surface receptors, like receptor tyrosine kinase, G-protein coupled receptor, and 

integrins (Martin, 2001).  Growth factors like PDGF (platelet derived growth factor) activate c-

Src by recruiting it to surface receptors like PDGFR which results in further downstream 

intracellular signaling (Ralston and Bishop, 1985; Kypta et al., 1990) (Fig 7).  
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Figure 7: Src Activation and Function. Src can be activated by different surface 
receptors, like receptor tyrosine kinase, G-protein coupled receptor, and integrins. Src 
signaling is found to be involved in the control of many functions including cell 
adhesion, growth, movement, and differentiation (Martin, 2001). 
 

Many substrates of src have been characterized.  Several of these Src substrates, 

including FAK (focal adhesion kinase) (Lipfert et al., 1992), Cas (Crk and Src associated 

substrate) (Sakai et al., 1994), and Stat3 (Turkson et al., 1998) were found to be important for 

integrin signaling and growth regulation.  Src was also found to play a role in mitogenesis, as it 

is found to be involved in the MAPK and PI3K-mTOR pathways (Penuel and Martin, 1999).  Src 

activity is up-regulated in lung, colon, breast, prostate and pancreatic cancer (Dehm and 

Bonham, 2004).  Hence, Src can play an important role in PrCa disease progression. 

 

Src and Prostate Cancer 

Multiple studies have supported a role for Src tyrosine kinase and its family members in 
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PrCa  (reviewed in Fizazi, 2007).  Src may contribute to AI-PrCa by mediating signals from 

various factors, including growth factors and chemokines (Lee et al., 2004).  It has been reported 

that Src may be involved in the initial transition from an AD to AI state (Lee et al., 2001; Unni et 

al., 2004).  Several studies show that inhibition of Src signaling decreases proliferation, invasion 

and migration of PrCa cells that have detached from the primary site (Recchia et al., 2003), 

suggesting involvement of Src in PrCa progression.  It was found that Src kinase activity gets up-

regulated in androgen refractory PrCa (Guo et al., 2006).  Tumor lysates from hormone 

refractory prostate xenograft models were studied, and it was found that there were high 

expression levels of p-Src in hormone-refractory prostate xenograft tumors compared to their 

hormone sensitive counterparts (Guo et al., 2006).  Studies were also done in human prostate 

tissue samples from hormone-naïve and hormone-refractory patients.  This may suggest a 

possible role of Src in AI-PrCa.  Increased Src expression was also found in TRAMP mouse 

models of PrCa (Asim et al., 2008).  Together, these studies confirm a crucial role of Src in PrCa 

disease and its progression. 

 

Src and its potential role in integrin-mediated signaling 

A signaling partnership is reported among integrins, Src, and FAK, which subsequently 

can result in recruitment of proteins containing SH2 domains to trigger adhesion-induced cellular 

responses (Hanks and Polte, 1996).  FAK phosphorylation at tyr-397 mediates a direct 

interaction with the Src SH2 domain, which results in activation of Src (Hanks and Polte, 1996). 

Recently it has been shown that αvβ3 integrin mediates anchorage-independence and tumor cell 

malignancy in a Src-dependent manner (Desgrosellie et al., 2009).  In breast cancer, α6β4 

integrin was found to promote cancer cell-motility and invasion through a mechanism involving 
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Src, AKT and NFAT (Kim et al., 2009).  Hence, Src tyrosine kinase is found to play a significant 

role in integrin-mediated signaling through indirect association with integrins in cancer 

progression and metastasis. 

 

Src phosphorylation activates AR 

Src interacts and phosphorylates AR at its tyr-534 site (Guo et al., 2006; Kraus et al., 

2006), which is responsible for AR activation.  By transfecting PrCa cell lines with kinase active 

(SrcY527F) and dominant-negative (SrcK295M) constructs, luciferase activity was studied using 

a PSA-luc promoter.  It was found that SrcY527F induced the activity of the PSA promoter, 

suggesting that Src may directly modulate AR transcriptional activity (Guo et al., 2006).  

Specific Src inhibitor SU6656 reduced the AR-driven luciferase activity (Guo et al., 2006).  

Hence, this suggests that Src interaction with AR results in AR activation.  

Though it has been shown that Src-induced phosphorylation regulates the translocation of 

AR from the cytoplasm to the nucleus, it is still unclear how tyrosine kinase phosphorylation of 

AR induces its translocation (Guo et al., 2006).  It is possible that phosphorylation may induce 

conformational changes in the ligand-binding domain of AR, and therefore, even in the presence 

of very low levels of androgen (as in androgen refractory cancer), the androgen responsive genes 

are activated and AR transcriptional activity takes place.  

Understanding the mechanism behind AI PrCa will help in building a novel and effective 

strategy to inhibit PrCa growth and metastasis. 
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MATERIALS AND METHODS 

 

Reagents  

 Synthetic androgen R1881 was obtained from Perkin-Elmer.  The following rabbit 

polyclonal antibodies (pAbs) were used for immunoblotting: pSer81-AR (Dr. Daniel Gioeli), p-

Src (Y416, Cell Signaling), AKT1/2/3 (H-136), ERK1 (C16, Santa Cruz), PSA (DAKO 

Cytomation), and goat polyclonal RCC1 (Santa Cruz).  The following mouse monoclonal 

antibodies (mAbs) were used against androgen receptor (AR) (AR441, Santa Cruz), c-Src (Santa 

Cruz and Cell Signaling), and α-tubulin (DM1A, Sigma) for immunoblotting.  Purified non-

immune mouse IgGs (mIgG) and rabbit IgGs (rIgG) (Pierce) were used as negative controls.  For 

immunofluorescence, rabbit pAb AR (N20, Santa Cruz), p-Src (stimulatory site Y416, Cell 

Signaling), and mAb for c-Src (Santa Cruz) were used.  HRP-conjugated secondary antibodies to 

mouse, rabbit (Cell Signaling) and goat (Santa Cruz) were used for immunoblotting.  Rhodamine 

and fluorescein-conjugated secondary antibodies used for immunofluorescence were purchased 

from Jackson Laboratories.  4', 6-diamidino-2-phenylindole (DAPI) used for 

immunofluorescence was obtained from Molecular Probes, Invitrogen. 

 

Androgen Deprivation and Androgen Stimulation 

 Androgen Deprivation:  Cells were cultured in media containing 2% charcoal stripped 

serum (CSS) for 24 hrs.  This serum was prepared by treating fetal bovine serum (FBS) with 

HCl-treated charcoal.  This medium does not have detectable levels of androgens or steroids that 

might activate AR (based on our laboratory’s internal standard data).  
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 Androgen Stimulation:  Cells were cultured in media containing 2% CSS for 24 hrs, and 

then stimulated with R1881 (1 nM) for 2 hrs or 24 hrs depending upon the experimental 

conditions. 

 

Cells and Culture Conditions 

 LNCaP (AD) and C4-2B (AI) cells were obtained from ATCC.  Cells stably transfected 

with either αvβ3 or αvβ6 integrin genes were obtained from Zheng et al. (1999) and Manes et al.  

(2003).  Cells were cultured in RPMI (GIBCO, Invitrogen) supplemented with 5% FBS (Gemini 

Bioproducts Inc.), 2 mmol/L glutamine, 100 µg/ml streptomycin-100U/ml penicillin, 0.1 mmol/L 

nonessential amino acids and 1 mmol/L sodium pyruvate (GIBCO, Invitrogen).  RPMI 

supplemented with 2% CSS was used for starvation of the cells.  For transient transfection 

experiments, cells were transfected with wild-type Src (wt-src) or dominant negative Src 

(SrcK298M) using Lipofectamine 2000 (Invitrogen), according to the manufacturer’s 

instructions. 

 

Sub-Cellular Fractionation  

 A total of 3x106 cells were trypsinized, and the pellet was washed once with 1XPBS.  

The pellet was resuspended in Buffer A (10 mM HEPES at pH 7.9, 10 mM KCL, 1.5 mM 

MgCl2, 0.34 M sucrose, 10% glycerol, 1 mM DTT, 10 mM NaF, 1 mM Na2VO3, 0.1% Triton X-

100, protease inhibitors, 0.2 mM PMSF), vortexed and kept on ice for 30 min.  Cell homogenate 

was spun at 3,300 RPM for 15 min at 4oC using a microcentrifuge.  The supernatant obtained 

from the above step was removed and stored as cytosolic extract.   
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 The cytosolic extract can be further clarified by centrifuging at 16,000 RPM, to remove 

any contaminants.  The pellet obtained (nuclear fraction) was incubated in an equivalent volume 

of buffer B (3 mM EDTA, 0.2 mM EGTA, 1 mM DTT, 0.2 mM PMSF, and protease inhibitors) 

for 30 min, and centrifuged at 13,000 RPM for 15 mins to remove contaminants such as 

chromatin and nuclei.  The supernatant obtained from the above centrifugation was stored as the 

“nuclear fraction”.  Note: All steps were performed under ice-cold conditions i.e. at 4oC (Zou et 

al., 2002). 

 

Immunoblotting 

 The protein concentration for each cell lysate was quantified with a BCA protein assay 

kit (Pierce) to allow equal loading on the gel.  Proteins were separated by denaturing SDS-

Polyacrylamide Gel Electrophoresis, then transferred to PVDF membrane (Millipore).  

Membranes were blocked for 3 hrs with 5% nonfat dry milk-TBST or 5% bovine serum albumin 

(BSA)-TBST buffer.  Primary antibodies were diluted in blocking buffer according to the 

manufacturer’s protocols, and subsequently incubated with the blots for 2 hr at room 

temperature, or overnight at 4°C.  Primary antibodies against pSer81-AR, p-Src, and c-Src were 

diluted in 5% BSA-TBST buffer.  The membranes were washed three times with TBST and 

incubated with a 1:2000 dilution of the appropriate horseradish peroxidase-conjugated anti-

mouse, anti-rabbit, or anti-goat IgG in the blocking buffer for 2 hr at room temperature.  After 

washing, the blots were developed with enhanced chemiluminescence (Boston Bioproducts) and 

exposed to BioMax X-ray film (ISC Bioexpress) (Fornaro et al., 1998; Goel et al., 2004).  
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Immunofluorescence 

 Cells were grown on cover-slips coated with poly-L-lysine (1 mg/ml) in RPMI 

supplemented with 5% FBS.  After starvation for 24 hrs in RPMI containing 2% CSS medium, 

cells were grown in the presence of ethanol (EtOH) or R1881 (1 nM or 0.1 nM) for 2 hrs.  Cells 

were fixed in 4% paraformaldehyde for 5 min, and washed twice with phosphate buffer saline 

(1X PBS).  The cells were permeabilized with 1X PBS containing 0.2% Triton-X100, and 

blocked with 5% BSA in 1X PBS for 1 hr at room temperature.  Cells were incubated with 

primary antibodies diluted in 5% BSA-PBS buffer for 1 hr at room temperature.  After washing 

with 1X PBS, the cover-slips were incubated with goat anti-rabbit rhodamine or anti-mouse 

fluorescein-conjugated secondary antibody for 1 hr at room temperature.  Cells were washed 

twice for 5 min each with 1X PBS.  Finally, the cells were counterstained with DAPI to visualize 

nuclei before mounting.  The slides were visualized using an Olympus IX71 inverted microscope 

with IPLab V3.55 (Scanalytics, Inc, Rockville, MD), magnification 400X. 

 

Cell Adhesion Assay 

 Cell adhesion assays have been described previously (Zheng et al., 1999). Stable 

transfected αvβ6-LNCaP and αvβ3-LNCaP cells were starved overnight in a serum free RPMI 

culture medium.  Cells were seeded on the culture plates coated with FN (3 mg/ml), LAP-TGF-β 

(0.5 mg/ml) or BSA.  Cells (106) were plated on the substrate for 1 hr in serum-free RPMI 

medium before collecting cell lysates.   
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Small Interfering RNA Transfection 

 LNCaP cells were transfected with β1A and β1C integrin siRNA duplexes (IDT Inc.).  

The sequences of β1A siRNA were:  sense strand, 5'-AUGGGACACGGGUGAAAAUTT-3'; 

antisense strand, 5'-AUUUUCACCCGUGUCCCAUTT-3'.  The sequences of β1C siRNA   were: 

sense strand, 5'-CCUCUGACUUCCAGAUUCCTT-3'; antisense strand, 5’-

GGAAUCUGGAAGUCAGAGGTT-3'.  siRNA duplexes were transfected using Oligofectamine 

(Invitrogen) at a final concentration of 20 nM.  After two rounds of transfection, cells were 

harvested 48 hrs post-transfection. 

 

Statistical Analysis 

 For immunofluorescence experiments detecting AR, p-Src, c-Src, or PSA, a total of 700 

cells were counted for each time point under different experimental conditions.  Each experiment 

was repeated three times.  The average and standard deviation values were calculated for every 

experiment.  Statistical analysis was performed pairwise using the Student’s t-test.  All p-values 

were based on two-tailed tests. 
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RESULTS 

Androgen Promotes Nuclear Localization of AR 

Steroid hormone receptors are ligand–activated transcription factors.  The intracellular 

movement and nucleo-cytoplasmic trafficking of steroid hormone receptors has been well 

researched, and the data indicate that unliganded receptor localizes in the cytoplasm as a 

heteromeric complex with heat shock proteins (Roy et al., 1999; Roy et al., 2001).  Upon ligand 

binding, the receptor undergoes conformational changes, homodimerization, nuclear 

translocation, and initiation of target gene expression.  AR is localized in the nucleus upon 

stimulation with dihydroxy-testosterone (DHT), and is exported back into the cytoplasm upon 

DHT withdrawal (Roy et al., 1999; Roy et al., 2001).  

In the first set of experiments of this thesis, the dynamic trafficking of AR in the LNCaP 

(AD) cell line was studied over a period of time under starvation and stimulation conditions. AR 

translocation was evident as soon as 15 minutes after stimulation with synthetic androgen R1881 

(Fig 8A), and accumulated in the nucleus after 2 hrs of stimulation with R1881.  Under 

starvation conditions, AR was predominantly localized in the cytoplasm (Fig 8B).  These results 

confirm the previously published data (Roy et al., 2001; Marcelli et al., 2006), and validate the 

androgen sensitivity of our LNCaP/R1881 system.  
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Fig 8 

(A)                

 

(B) 

 

Figure 8:  AR Nuclear Localization After R1881 Stimulation.  LNCaP (AD) cells were 
seeded on poly-L-Lysine (1 mg/ml)-coated cover-slips for two days.   Cells were starved 
for 24 hrs, then stimulated with R1881 (1 nM) (upper panel), or ethanol  (EtOH) (vehicle) 
(lower panel) for different time points.  Immunofluorescence was performed by staining 
the cells with anti-AR (N20).  Nuclear staining was performed using DAPI.  Pictures were 
taken at different time points as indicated. 

 

The AR nuclear export mechanism was also studied over a period of time.  Cells were 

stimulated for 2 hrs with R1881, then R1881 was removed.  Pictures were visualized using 

IPLab V3.55 at different time points (Fig 9).  It was found that AR localized in the nucleus after 

2 hrs of stimulation with R1881, but gradually started to move out from the nucleus after 

withdrawal of R1881.  At 2 hrs after the withdrawal of R1881, weak diffused cytoplasmic and 

nuclear AR staining patterns were observed.  Hence, I conclude that AR shuttles to and from the 
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nucleus, and its movement depends upon androgen stimulation or withdrawal.  AR activity is 

known to be high in PrCa, which is a result of AR nuclear translocation.  In recurrent PrCa, AR 

activity is found high among patients exhibiting an androgen-independent phenotype (Feldman 

and Feldman 2001).  This androgen-independent AR activity can be the result of unmonitored 

AR activation through several co-factors, growth factors, integrins, or other signaling 

mechanisms. 

Fig 9 

 

Figure 9:  AR Dynamic Trafficking.  LNCaP (AD) cells were seeded on poly-L-Lysine 
(1 mg/ml)-coated cover-slips for two days.  Cells were starved for 24 hrs, then  
stimulated with R1881 (1 nM) for 2 hrs.  R1881 was removed and immunofluorescence 
was performed by staining cells with anti-AR (N20) at different time points as indicated.  
Nuclear staining was performed using DAPI.  Pictures were taken at different time 
points.  

 

Androgen Does Not Affect p-Src or c-Src Localization Based on Immunofluorescence  

AR cooperates with many co-factors, and recently Src was found to be an important co-

factor that affects AR activity in PrCa (Guo et al., 2006).  Src, which is known to be involved in 

tumor growth and metastasis in PrCa, affects AR translocation and activity in vitro (Gioeli et al., 

2002).  During in vivo studies, hormone-refractory PrCa tumor xenografts exhibited increased 

Src phosphorylation when compared with hormone-sensitive xenografts.  To confirm a definite 
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role of Src in the regulation of AR activity in PrCa, I investigated the effect of R1881 AR ligand 

on Src phosphorylation at stimulatory site Y416 (p-Src), and total cellular scr (c-Src) localization 

and expression in LNCaP (AD) and C4-2B (AI) PrCa cells in the presence and absence of 

R1881.  p-Src and c-Src were found to be localized in the cytoplasm as well in the nucleus 

irrespective of R1881 stimulation (Fig 10).  No statistically significant differences (p>0.05) were 

observed (Fig 10C).  Hence, I conclude that based on immunofluorescence, androgen 

stimulation does not affect p-Src or c-Src localization in PrCa cells. 

Fig 10                                                                             

(A) 

 

(B) 
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(C) 

 

Figure 10:  Based on Immunofluorescence Microscopy p-Src and c-Src Are Localized 
in the Cytoplasm and Nucleus Irrespective of Androgen Status.  LNCaP (AD) (Panel 
A) and C4-2B (AI) (Panel B) cells were seeded on poly-L-Lysine (1 mg/ml) coated cover-
slips for 2 days.  Cells were starved for 24 hrs, then stimulated with R1881 (1 nM) or 
ethanol (vehicle) for 15 min or 60 min.  Immunofluorescence was performed by staining 
cells with antibodies against c-Src or p-Src.  Nuclear staining was performed using DAPI.  
(Panel C) The graphs represent the mean of triplicates ± SD, while p values are based on 
three different experiments.  Error bars denote standard error. There were no statistically 
significant differences, p>0.05. 

 

Androgen Affects Src and AR Activation Based on Cell Fractionation 

Using sub-cellular fractionation, c-Src and p-Src expression levels were analyzed in the 

presence and absence of R1881.  R1881 stimulation increased p-Src levels in both LNCaP (AD) 

and C4-2B (AI) cells (Fig 11).  The localization of c-Src and p-Src were also studied under these 

conditions.  In agreement with the immunofluorescence results, R1881 stimulation did not affect 

the localization of total cellular c-Src when analyzed by cell fractionation.  c-Src was found in 

both cytoplasmic and nuclear fractions, independent of androgen status, in either AD or AI cell 
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lines.  In contrast to c-Src, the levels of p-Src clearly increased in the nucleus (and lesser so in 

the cytoplasm) after androgen stimulation, for either LNCaP cells (left panel, third row) or C4-

2B cells (right panel, top row), indicating that androgen affects Src activation in both cell lines.  

Fig 11 

 

 

Figure 11:  Nuclear Localization of Src and AR.  LNCaP (AD) and C4-2B (AI) cells 
were starved for 24 hrs using RPMI containing 2% CSS followed by stimulation with 
R1881 (1 nM) or ethanol for 24hrs. Cell lysates were subjected to fractionation, 
cytoplasmic and nuclear fractions were collected.  The collected fractions were subjected 
to immunoblotting (IB) using mAbs against AR (AR441), c-Src and α-tubulin (DM1A).   
pAbs were used against  p-Src (Y416), pS81-AR and RCC1 (C-20).  α-tubulin was used 
as a loading control for the cytoplasmic fractions.  RCC1 was used as a loading control 
for the nuclear fractions. C, cytoplasmic fraction; N, nuclear fraction. 

 

The cell fraction technique was also applied to AR.  AR was found to localize in the 

nucleus of LNCaP (AD) (Fig 11, left panel, second row; Fig 12A, top row) and C4-2B (AI) cells 

(Fig 12A, top row) upon stimulation with R1881 for 2 hrs, as compared with non-stimulated 

(vehicle treated) cells.  I also found that upon stimulation with R1881, pS81-AR (an AR site 

indirectly phosphorylated by Src) (Yang et al., 2009) also localizes in the nucleus of LNCaP 

cells (Fig 11, left panel, top row).  In addition, increased expression levels of AR were found in 
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the cytoplasmic fractions from vehicle treated cells as compared to cytoplasmic fractions from 

R1881 treated cells.  Therefore, it can be suggested that upon ligand binding AR becomes 

activated (p-AR) and localizes to the nucleus.  

The cell fractionation technique was also applied to PSA.  Translocation of AR from the 

cytoplasm into the nucleus is required for AR to exert its transcriptional activity (Heinlein and 

Chang 2004).  PSA is a gene strongly regulated by AR activity, therefore, I examined PSA levels 

in cytoplasmic and nuclear fractions in R1881 treated and untreated cells.  High PSA levels were 

found in nuclear and cytoplasmic fractions of R1881-treated LNCaP (AD) cells, and no 

expression of PSA was found in vehicle treatment (Fig 12A, left panel, second row).  In C4-2B 

(AI) cells, PSA was found in approximately equal amounts in nuclear and cytoplasmic fractions, 

in either androgen-stimulation or deprivation conditions (Fig 12A, right panel, second row).  

Immunofluorescence studies done for PSA localization in LNCaP (AD) and C4-2B (AI) cells 

upon androgen stimulation and deprivation revealed similar results as obtained by fractionation 

experiments (Fig 12B).  Overall, these data show that androgen stimulation activates Src (p-Src), 

increases nuclear levels of AR, and increases cellular levels of PSA.  The nuclear localization of 

PSA previously thought only to be a secretory protein is novel.  The nuclear co-localization of 

AR, Src, and PSA might play an important role in disease progression. 
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Fig 12A  

 

Fig 12B   

                                                                                                                                                                    

Figure 12:  AR and PSA Nuclear Translocation.  (A) LNCaP (AD) and C4-2B (AI) 
cells were starved for 24 hrs using RPMI containing 2% CSS, followed by stimulation 
with R1881 (1 nM) or ethanol for 24 hrs.  Cell lysates were subjected to fractionation, 
then cytoplasmic and nuclear fractions were collected.  The collected fractions were 
subjected to IB)using mAbs against AR (AR441) and α-tubulin (DM1A). (B) LNCaP 
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(AD) and C4-2B (AI) cells were seeded on poly-L-Lysine (1 mg/ml)-coated cover-slips 
for two days.   Cells were starved for 24 hrs and stimulated with R1881(1 nM) or ethanol 
(EtOH).  Immunofluorescence was carried out by staining cells with pAb against PSA.  
rIgG was used as a negative control for staining.  Nuclear staining was performed using 
DAPI. 

 

    
 

 Src Differentially Affects AR Activity in Androgen-Dependent and 
Independent PrCa Cell Lines 
 

 To study the effect of Src kinase on AR transactivation, transfection studies were 

performed in the LNCaP (AD) cell line using plasmids encoding wt-src or SrcK298M.  The 

plasmids were transiently transfected into LNCaP (AD) cells, and AR, PSA, and AKT levels 

were studied 72 hrs post-transfection.  I observed that there was no difference in expression 

levels of AR in cells transfected with SrcK298M plasmid compared to cells transfected with wt-

src (Fig 13, left panel).   

Fig 13 
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Figure 13: Src Differentially Affects AR Activity in AD and AI PrCa Cells.  LNCaP 
(AD) and C4-2B (AI) cells were transiently transfected with plasmids encoding wt-src or 
SrcK298M using Lipofectamine 2000 (Invitrogen).  Cell lysates were collected after 72 
hrs of transfection, and were subjected to IB using mAbs specific for AR (AR441) or c-
Src.  Primary Abs were used against p-Src (Y416), PSA, AKT1/2/3, or ERK1/2 (C16) 
(the latter was used as a loading control).  Dominant negative src inhibits AR activity 
(PSA levels) in AI PrCa cells, but has no effect on AR activity in AD PrCa cells.   
 

In addition to androgen signaling, which plays an important role in PrCa, the 

phosphotidylinositol 3-kinase (PI3K) pathway represents another important mechanism with 

roles in PrCa.  Kinase AKT modulates AR activity, which is cell-type and passage number-

dependent (Lin et al., 2003).  Therefore, AKT and PSA levels were analyzed.  In AD cells (Fig 

13, left panel), AKT levels were comparable in cells transfected with SrcK298M and wt-src, 

although a slight decrease in AKT was sometimes observed in SrcK298M samples.  Thus, in AD 

cells, dominant-negative src expression appears to have no strong effect on PSA or AKT levels.   

However, in C4-2B (AI) cells (Fig 13, right panel), SrcK298M transient transfection inhibited 

AR activity (as measured by PSA and AKT levels) compared to cells transfected with wt-src. 

Thus, dominant-negative src appears to down-regulate AR activity in the AI PrCa cell line, but 

not in the AD cell line.  Thus, we conclude that Src differentially affects AR activity in AD and 

AI PrCa cell lines. 

 

αvβ3 Integrin Increases Src Activation in a Ligand-Dependent Manner 

Integrins regulate Src-mediated oncogenic transformation and various aspects of 

morphological transformation through different pathways (Goel et al., 2008).  It has also been 

reported that αvβ3 integrin promotes anchorage-independence through Src-mediated pathways 

(Desgrosellier et al., 2009). The interaction of Src with αvβ3 integrin is required for tumor 

formation.  With respect to PrCa, integrin signalling may play a key role in the switch from early 
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stage AD tumors to later stage AI tumors (Goel et al., 2008).  Hence, I studied the integrin-Src 

pathway in PrCa cells using an integrin ligand-binding assay with LNCaP (AD) and C4-2B (AI) 

cell lines stably expressing αvβ3 integrin (Fig 14).  I found that transfection with αvβ3 integrin 

increases p-Src levels upon attachment to ligands fibronectin or TGFβ-LAP, as compared to 

control cell lines expressing αvβ6 integrin, in either AD (Fig 14 A) or AI (Fig 14B) cell lines.  

Therefore, I concluded that αvβ3 integrin increases p-Src levels in a ligand-dependent manner.   

Fig 14  

 (A)                                                      (B)  

 

          (C) 

 

Figure 14:  αvβ3 Integrin Increases Src Activation.  LNCaP (AD) (A) 
and C4-2B (AI) (B) cells were starved in serum-free culture medium for 
24 hrs before incubation with ligands fibronectin (FN) (3 mg/ml), LAP-
TGF-β (0.5 mg/ml), or BSA for 1 hr.  Cell lysates were collected and 
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subjected to IB using mAbs specific for c-Src.  Primary Abs were for c-
Src or p-Src (Y416). (C) LNCaP cells were transfected with β1A siRNA 
or NS siRNA using Oligofectamine (Invitrogen).  Cell lysates were 
collected 48 hrs post transfection and subjected to to IB using Abs 
specific for c-Src, p-Src (Y416), or β1A integrin. 

 

To prove integrin specificity of the observed effect, I also studied whether β1A integrin, 

which is endogenously expressed in many cell lines affects Src activation.  Therefore, I down-

regulated β1A integrin by siRNA in LNCaP (AD) cells, and found that inhibition of β1A integrin 

has no effect on Src activation as compared to the non-silencing control (Fig 14C).  Hence, we 

concluded that Src activation is integrin-specific and ligand-dependent. 

I also studied the effect of αvβ3 integrin on AR activity in both LNCaP (AD) and C4-2B 

(AI) cell lines (Fig 15).  I found that there was no apparent change in the total cellular levels of 

PSA or AKT as compared to mock transfected cells, although small changes in sub-cellular 

levels (i.e. in the nucleus) can not be ruled out.  In conclusion, although αvβ3 integrin when 

bound to ligand strongly activates p-Src, it does not appear to affect AR activity. 
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Fig 15 

 (A)                                                      (B)                                                      

 

   

Figure 15:  αvβ3 Integrin Does Not Affect PSA Expression Levels.  
LNCaP (A) or C4-2B (B) cells were tranfected with a plasmid encoding 
αvβ3 integrin, or were mock transfected.  Cell lysates were collected, 
and subjected to IB using Ab for PSA, p-Src (Y416), c-Src, or AKT 
(loading control).  
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DISCUSSION 

 

The purpose of this thesis was to analyze the role of Src in the regulation of AR activity, 

and to investigate a potential effect of αvβ3 integrin, a surface receptor known to be upregulated 

in PrCa (Goel et al., 2008), on AR activity through Src.  Src signaling plays an important role in 

PrCa progression.  Its inhibition has previously been shown to decrease tumor volume (Recchia 

et al., 2003).  It has also been shown that Src can interacts with AR to enhance AR 

transactivation.  Although it has been shown that Src can promote AR activity, the underlying 

pathway has not been defined, nor has it been shown whether Src activation of AR plays a role in 

integrin-Src signalling.  The novel findings described in this thesis show that the cytoplasmic 

tyrosine kinase Src (Martin, 2001) differentially affects AR activity, evaluated by measuring 

PSA levels, in AD and AI PrCa cells.  Specifically, Src was found to stimulate AR activity in AI 

cells but not in AD cells.  The results also show that Src, AR and PSA localize in the nucleus, 

suggesting a macromolecular interaction which could further enhance AR transactivation.  

Finally, I demonstrate that although αvβ3 integrin increases Src phosphorylation, its activation 

does not affect PSA levels mediated by AR. 

 

Src, AR, and PSA Localization 

The first set of investigations focused on studying the localization of Src, p-Src, AR, 

pAR, and PSA, in AD and AI cells, in the presence and absence of androgen.  Using sub-cellular 

fractionation, the data showed that treatment of AD cells with synthetic androgen R1881 

increased p-Src, AR, pAR, and PSA in the nucleus, while the levels of c-Src remained 
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unchanged.  Treatment of AI cells with R1881 increased pSrc and AR in the nucleus, while the 

levels of c-Src and PSA remained unchanged.  However, when using immunofluorescence 

microscopy, R1881 did not appear to increase the nuclear levels of p-Src or c-Src, so perhaps this 

technique is not as sensitive or quantitative as the sub-cellular fractionation/immunoblots.   

The increase in p-Src levels in PrCa cells treated with R1881 supports previously 

published work (Kraus et al., 2006).  The findings with the R1881-induced increase in nuclear 

AR make sense, since Src has previously been shown to promote the nuclear localization of 

various transcription factors, including AR and RUNX3, and AR nuclear import is crucial for its 

function as a DNA transcription factor (Guo et al., 2006; Cutress et al., 2008; Goh et al., 2010). 

 

PSA in the Nucleus 

While performing these studies, I unexpectedly found the AR target gene, PSA, in the 

nucleus of AD and AI PrCa cells, suggesting a possible role of PSA in gene transactivation.  

PSA has long been known to be a secreted protein that functions to prevent seminal fluid 

coagulation, but it is also known to promote cell growth (Niu et al., 2008).  Although its nuclear 

localization has not been reported, it was previously shown that PSA increases ARA70/AR-

mediated transactivation (Niu et al., 2008).  Thus, the nuclear localization of PSA may help 

define its specific role in PrCa progression.  With respect to cancer therapeutics, targeting PSA 

itself might be needed to stop PSA-induced PrCa progression.  Initial clinical studies with PSA-

encoding recombinant vaccinia vectors (rV-PSA) demonstrated safety and immunogenicity 

(Sanda et al., 1999; Gulley et al., 2002).  Phase I and II clinical trials with a PSA vaccine have 

shown a 44% reduction in the death rate, and an 8.5-month improvement in median overall 

survival in men with castration-resistant PrCa (Lubaroff et al., 2009; Kantoff et al., 2010).  Phase 
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III trials with PROSTVA are currently in progress.  These data suggest that targeting PSA will 

be a novel therapeutic strategy to treat patients with recurrent PrCa.  

 

Dominant-Negative Src Experiments 

Src signaling is involved in androgen-induced proliferation of PrCa cells (Migliaccio et 

al., 2000) and may also participate in the transition to AI growth (Lee et al., 2001; Lee et al., 

2004; Unni et al., 2004).  Src promotes AI growth and metastasis (Lee et al., 2004; Chang et al., 

2007).  Previous reports on Src kinase activity in PrCa cells show that constitutively active src 

increases AR transactivation, while dominant-negative src (in agreement with this thesis data) 

decreases AR transactivation in AI PrCa cells (Guo et al., 2006).  The Guo et al. study also 

showed that Src phosphorylates AR in AI-prostate cancer cells (Guo et al., 2006).  Consistent 

with these published data, I have shown that a dominant-negative variant of src (SrcK298M) 

prevents AR activity in C4-2B AI cells.  However, this effect is specific for AI cells, but is not 

observed in AD LNCaP cells.  In these latter cells, the Src dominant-negative variant does not 

prevent AR activity.  These results, may have profound implications in the strategy currently 

used in several clinical trials which are targeting Src in PrCa (Guarino, 2010).  It has been 

reported that dominant-negative src destroys the interaction of RACK1 (receptor for activated C 

kinase 1), AR, and Src (Kraus et al., 2006) in PrCa cells.   Therefore, the effect of Src in AI PrCa 

cells may be due to a differential expression of scaffolding proteins such as RACK1 that help 

bring kinase and substrate together (Kraus et al., 2006). 

 

Integrins and Src Activity 

The third and final purpose of this thesis was to investigate the potential effects of αvβ3 
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integrin on AR activity.  αvβ3 is a surface receptor previously shown to be upregulated in 

prostate cancer, through Src.  Integrins promote a wide-range of adhesion-dependent effects in 

tumor cells.  Most integrins activate FAK and thereby also other members of the Src Family 

Kinaes (SFK), which causes activation of several downstream pathways (Guo and Giancotti, 

2004).  Integrins bind ECM ligands, and act to couple cells to their microenvironments.   

Here I show that αvβ3 integrin increases Src activation in AD and AI PrCa cells.  

Previous reports show that αvβ3 integrin alters TGF-β  signaling in mesenchymal epithelial cells 

(MECs); the ability of TGF-β   to promote invasion is mediated by phosphorylation of TGFβ-

 receptor II   by Src kinase (Galliher and Schiemann, 2006).  I confirm that αvβ3 integrin, but not 

αvβ6 integrin, increases Src activation upon attachment to ligands fibronectin or TGFβ-LAP 

(Desgrosellier et al., 2009).  This shows that in addition to Src activation by androgens in AD 

cells, Src can also be activated by integrins in a ligand-dependent and integrin-specific manner.  

Since Src activation increases AR activity, I hypothesized that αvβ3 integrin can promote AR 

transactivation through Src.  Thus, I investigated the effect of αvβ3 integrin–mediated Src 

activation on PSA expression levels.  The findings show surprisingly that the αvβ3 integrin–Src 

pathway does not affect PSA expression levels.  Therefore, I concluded that the αvβ3 integrin–

Src signaling pathway is AR-independent, or that this pathway upregulates a different AR target 

gene.  Indeed, PSA is not the only AR target gene; other AR responsive genes include 

TMPRSS2, PRKCD (Protein kinase C delta), PYCR1 (Pyrroline-5-carboxylate reductase 1), and 

many others (Jariwala et al., 2007; Bolton et al., 2007).  Thus, potential increases in these other 

AR-responsive proteins should be analyzed in integrin-transfected cells to help determine 

whether AR participates in the integrin-Src pathway. Studying the integrin-mediated changes in 

the expression levels of these genes, and other genes known to be activated by Src, will likely 
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bring new insights in the mechanisms underlying the integrin-Src pathway. 

 

OVERALL CONCLUSIONS 

 

From the present study I conclude that Src is required for AR activity and, consequently, 

PSA expression in androgen-independent prostate cancer cells, but not in androgen-dependent 

cells.  The findings in this thesis of the nuclear co-localization of p-Src, AR, and PSA appears to 

be consistent with their roles in disease progression.  Given PSA’s ability to induce cell division 

and decrease apoptosis when transfected into cells, its presence in the nucleus as first shown in 

this thesis may imply that PSA acts there to help induce tumorigenesis.  With respect to 

integrins, cells transfected with αvβ3 but not αvβ6 increase Src activity, although the increased 

Src activity  does not appear to affect AR transactivation.  

Therefore, during integrin-Src signaling, which likely increases in the AI state, perhaps 

other AR-genes are involved, or other pathways besides AR helps maintain the tumorigenesis. 

 

 

FUTURE EXPERIMENTS 

 The present investigation can be extended for future studies as follows:  

1. Analyze a potential role of PSA in promoting PrCa progression. The experimental design 

could include: inhibiting or over-expressing PSA in LNCaP (AD) and C4-2B (AI) cell lines, and 

studying changes in gene expression, cell adhesion, cell migration, and cell viability.  Analyzing 

the type of integrin expression at the cell surface by down-regulating or over-expressing PSA 
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could further help define the integrins that affect the PSA-AR pathway.  

  

2. Analyze a potential interaction between Src kinase and PSA in PrCa cells.  To study a 

possible interaction of Src-AR-PSA in PrCa cells, immunoprecipitation of PSA followed by 

immunoblotting with Src, and vice versa, will be required to confirm the interaction.  This 

potential interaction can further unfold the mechanism behind nuclear localization of Src, AR 

and PSA.  This interaction could also be investigated in an integrin-dependent environment to 

help define the specific integrin-Src-AR-PSA pathway in PrCa.  

  

3. Study the downstream effects resulting from αvβ3 integrin-Src activation.  To analyze the 

αvβ3 integrin-Src pathway in PrCa, hybridization arrays could be used to help identify specific 

genes up- or down-regulated by this pathway.  RNA could be isolated from cells transfected with 

various integrins, with or without co-transfection with the Src dominant-negative plasmid, to 

hybridize to commercial arrays.  It could be suggested that the αvβ3 integrin–Src signaling 

pathway is AR-independent, so this approach could help identify genes important to PrCa 

progression in an androgen-independent and AR-independent state.  Candidates identified by 

arrays could be confirmed by RT-PCR.  Further studies at RNA (RT-PCR) and DNA level 

(CHIP analysis) could determine the requirement of AR and its target gene to regulate gene 

transcription. 

  

4. All of the above studies could be extended to PrCa mouse models in vivo to confirm the in 

vitro findings. 
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