Project Number: GFP1204

Software Processes at PayPal

A Major Qualifying Project Report:
Submitted to the Faculty of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Bachelor of Science

Sponsoring Agency: PayPal

Submitted by:

Jared Andrews

Glen Lovett

Date: March 11, 2013

Approved:

Professor Gary Pollice, Advisor

Abstract

Static Code Analysis (SCA) is the process of analyzing software source code for potential defects.
This project implements a plugin for and analyzes one such SCA tool, Sonar, with the goal of determining
its effectiveness in correctly identifying problem areas in code. Real world data which was collected at

PayPal after setting up a continuous integration system using Jenkins Cl and Sonar was used as the basis

for this project.

Acknowledgements

We would like to extend our thanks to all of those who made this project possible. We would
like to thank Professor Gary Pollice, who provided us with this wonderful opportunity and continued
support and guidance throughout the course of this project. We would also like to thank our sponsor,
PayPal for making this project possible. Additionally, we would like to thank our manager at PayPal,

Serkan Ozel for setting up this project and supporting us throughout. Furthermore, thanks to Scott

MacDonald at PayPal for teaching us the processes of release engineering and Continuous Integration.

List of Figures

Figure 1 — Parameters of the Sonar Trends PIUGINooeiiiiiie it saree e 8
Figure 2 — Sonar Trends plugin as seen on a Sonar dashboardcccceeieiiiei e, 9
Figure 3 —JIRA ticket frequency plotted OVEr tiMecoivciiiii i e aee s 11
Figure 4 — Example of Sonar violation information associated with a bug ticketcccccoveviiiiieiinnnnen. 11
Figure 5 — FiNal GAM MOAEI ..cccc.eeeeeieeeeee et e e e e e e e et e e e e e e e e e anrreeeeaeaesenansntaeeeaaaean 13
Figure 6 - Descriptive statistics for package defect freqUeNCYcoocvvveiiiiiii i 14
Figure 7 — Change in frequency for packages that have a higher level of violations than the project
Y] = T (TSP PSPPPPPPPPPPON 15
Figure 8 — Average violations/line plotted against the frequency of appearances in JIRA bug tickets, with
(ol 1T =T - OO OO T PO ST P OO PPTRTURRUPPROUPIN 17
Figure 9 — An overview of the options provided by the Trends plUgin.........ccceeccviiieciiiii e, 21

Table of Contents

LY o153 1 T PP P R TUUPTOPPTOTPTO PSRRI i
F Yol Lo RNV (<o Feq Yo o [T o | U PRRN i
Ty o T = T TSN iii
R [o1 oo [¥ ot o] TS OO TSRO P PO VRROPRTOT 1
1.1 Problem SEAtEMENT ..ot ee e 1
1.2 [V70014 g =T R 2

D ¥ 1ol <=4 o 1V o IR 3
2.1 SPONSOE INFOIMALION ..eeiiiiiiie e e e e s bte e e s sb e e e e sbaee e s sabeeeeenanes 3
2.2 The Android PayPal HErE TEAMuiiiiiiiiei ittt ettt e s eatee e e seata e e s ssabaeeesnbaeeesnsaeeesans 3
23 TOOIS USE...eieeeeieetie ettt ettt ettt e s e s bt e e s bt e e st e e s bte e sab e e s beeeanbeesabeeesnbeesabeeeaneeenareenas 4
23.1 JENKINS ettt b e bttt ettt e b bt s sanesare e 4
2.3.2 Yo 4 =1 ST PP OPPRT 4

K B |V =1 d o To o [o] (o =V APPSR 6
3.1 Yo o= T W =Y o E o [0 o PSPPSR 6
3.1.1 TechNology REQUITEMENTSvviiiiiiiiiecciiiee ettt e s e e s st e e e s are e e s snsbaeeesnrnees 7
3.1.2 LU= T DTy T o TP 7
3.1.3 [DT<T o] Lo} 0T | TP 9

3.2 A g F: | Y TSP 9
3.21 Data SOUICES ...ttt e et e s s s a e e s e e s s 10
3.2.2 Goal, Question, Metric APProachcc.ueiiiciiiei i s srae e 12
3.2.3 F N 1YL [ad 0Tl TR 12

A RESUIES ettt b e bt s he e s h et ea et et e e bt e bt e eheeeaeeeate e beebeenreens 14
4.1 WEKA DAtA IMIININGviieeiiiie ettt ee e e e et e e e et e e e s e abeeeeseataeeesensaeeesantasaesansaseesansenaesnns 15

5 Conclusions and FULUIE WOIKc.eoiiiiiiiiiiieeieeee ettt ettt saee s s e 19
6 Appendix A: SONAr Trends PIUSINcoi ittt e e e e e e e s e e e e s e e e e saareeeesnnees 21
7 Appendix B: Trends Plugin RUN ThroUZhcccuiiiiiiiiiiiiiiieeeee ettt s 22
I AV oo 1T o [o D O o Yol T < D - | = R UURRN 24
8.1 AVErage Violations PEI LINEccccuiiii ettt sttt e et e e st e e e s aae e e s aae e e s eaabeeeesannnee s 24
8.2 Average Major Violation Per LINEc.ueeiiiiieiiciees ettt e et e e s e e e eaa e e s saanee s 26
8.3 Average MInor VIiolations Per LINEc..ueviiiiiieiciieec ettt e et e e e e s aba e e s aaeee s 28

9
10

8.4 Average INfo Violations PEIr LINEuiieiee ettt ettt e e e rree e e e e e e e nnraeeeea e s

8.5 Package DefeCt FIEQUENCYuuuiiii ettt ettt et e e e e e e e re e e e e e e e s e ntaaaeeeaaeeeennenaeees

Glossary

RETEIEINCES wuvvvvviiiiiiiiiititiittit ittt bbb ab e b a e bbabaaaaababasatasaaaassasssabassaasasst st ababasasesaeaaasababababesnanenrnrnrnrns

1 Introduction
Completing the entire implementation of a software project prior to testing leads to defect

detection long after defect injection. (Royce 1970) To address the flaws in this approach, commonly
referred to as waterfall development, many software development teams have adopted iterative
development procedures. Iterative development supports the delivery of a product at the
conclusion of each iteration. The practice of Continuous Integration (CI) facilitates an iterative

approach and has been adopted by many software development teams.

Cl is the practice of committing small, focused changes to a software project and
continuously merging (integrating) these changes with a central source that all developers access.
The goal of this practice is to always have an up to date, working product that can be developed and
tested in parallel. CI facilitates more frequent feedback on committed code, which in turn can

reduce technical debt. (Fowler 2006)

Technical debt describes the inevitable loss in value that a product accrues over time. No
agreed upon definition of technical debt exists, but factors such as defects introduced, lack of test
suites, parallel development requiring merges, and excessive refactoring are seen as common
indicators of technical debt. For the purpose of this report, we measure technical debt as the

amount of work required to fix defects.

1.1 Problem Statement

Many best practices and technologies contribute to a working CI system. These include
small atomic commits, automated builds, automated tests, and static code analysis. Static code
analysis (SCA) is a method of scanning source code for potential weak spots and violations. The first

SCA tools appeared in 1979 (Johnson 1977), so they are by no means a new technology. SCA

proponents claim that SCA reduces technical debt of a project when used effectively. (Gaudin,

Evaluate Your Technicla Debt with Sonar 2009)

Many software teams use SCA to guide refactoring efforts and manage the technical debt of
their projects. (Parasoft 2012) Introducing SCA introduces overhead in the form of setup and
maintenance of an SCA server, in addition to the cost of actions taken based on its results.

Therefore, in order to be a worthy investment, measurable benefits of tool adoption must exist.

This project aims to make an existing SCA tool, Sonar, more accessible to developers
through the development of a custom plugin. Additionally, the relationship between Sonar analysis

and real defects will be measured using data provided by the PayPal Here Android team.

1.2 Hypothesis

We seek to determine if SCA tools accurately measure which parts of a software project are
accruing the most technical debt, which would correspond with real world loss of value. If this can

be shown to be the case, then it helps validate the usage of SCA tools.

2 Background

2.1 Sponsor Information

PayPal™ is a global company that provides solutions for transferring money via the Internet.
Founded in 1998, PayPal became a subsidiary of eBay™ in 2002 and employs more than 10,000
people throughout the world. PayPal receives funds, converts them to foreign currencies if needed,
and distributes them to the involved parties. PayPal places a heavy emphasis on security and has
become highly trusted as a result. In addition to online transactions, PayPal has been breaking into
real world transactions with smart phone enabled 'wallet' applications that allow a customer to use

their PayPal account at brick and mortar stores.

2.2 The Android PayPal Here Team

This report was done in conjunction with PayPal, specifically the Android PayPal Here™
Team. PayPal Here is a smart phone application for iPhone and Android devices that enables
businesses and individuals to accept credit, debit and PayPal payments via their smart phone. This
eliminates the need for costly credit card processing equipment and it transfers funds into the
seller’s account shortly after the transaction is completed. In order to use PayPal Here, credit cards
are scanned either through a smartphone camera or a free dongle provided by PayPal. These

transactions provide the core of PayPal Here's functionality.

The subject of this report is the Android PayPal Here team. This team has been developing
PayPal Here since January 2012 and the lead developer, Serkan Ozel, felt that it would be beneficial
for the team to have CI technologies at their disposal. Serkan felt that introducing CI into his teams
existing work flow would have many benefits such as early detection of bugs, violations, and

suspicious code. If caught sooner rather than later, CI could save time and money.

The authors of this report interned at PayPal and set up a CI system for the Android PayPal
Here team over the summer of 2012. Further research outlined in the methodology and analysis

sections of this report was completed from August 2012 to March 2013.

2.3 Tools Used

The following tools were used to build the continuous integration system for the PayPal

Here Android Team. They work together to automate several areas of the release process.

2.3.1 JenKkins

Jenkins is an open source CI server. It monitors source repositories and builds artifacts
based on parameters set by the user. (Jenkins CI Community 2011) Jenkins is extensible via plugins
and scripting. Jenkins manages the entire build process from compilation to testing to artifact

publication.

A Jenkins instance is separated into several projects and each project has its own set of jobs.
Ajob is a set of instructions for completing a certain task. Jenkins can be configured to alert
developers of any problems encountered during the build process. For example if the code fails to
compile Jenkins can be configured to send an alert email to a manager. Using Jenkins to automate

the release process removes the potential for human error and allows for easily repeatable builds.

In a typical Jenkins setup a job is tied to one particular task. For example, a job associated
with a development branch could compile with the debug features on whereas the release branch

job turns debugging features off. This allows each job to be tailored to a particular goal.

2.3.2 Sonar

Sonar is an open source SCA tool that tracks metrics of source code quality over time. These
metrics are determined by matching Java™ source code to patterns that are known to lead to or

cause unintended behavior within a program. (SonarSource 2012) Sonar classifies violations into

five categories: info, minor, major, critical and blocker, with blocker being the most severe of
violations and info the least. Violations are tracked over time and on a per file basis allowing users

to explore their source code and see where potential problems lie.

Sonar is also capable of tracking other metrics such as the amount of duplicated code, code
coverage, and unit test success and code complexity. Sonar is easily extensible and there are many
plugins available that add new metrics, language support and analysis. A Sonar analysis can take a
fair amount of time to complete for large projects so it advisable to create a standalone Jenkins job

for triggering a Sonar analysis.

Sonar’s effectiveness has never been formally studied. (Gaudin, Personal Communication
2012) Sonar is the preferred tool of the PayPal release engineering team so it would be beneficial to

verify its usefulness.

3 Methodology

3.1 Sonar Trends Plugin

Though the Android PayPal Here team now had a system for Cl in place, the features
afforded by this system were not made apparent to the team, and thus adoption was limited to
occasional checks on the status of the builds. Sonar saw little use during the course of the
internship because when a team member would look at the Sonar dashboard they were never given
any clear actions to take. The first stage of the MQP was the implementation of a Sonar plugin in
order to provide actionable data which could help the team determine which parts of the source

were potential sources of technical debt.

The current state of the project as displayed by Sonar would have improved context if a
plugin was designed that displayed historical Sonar data. In addition, we desired to easily detect the
packages with the highest and lowest number of certain Sonar metrics. A plugin that displayed a
timeline or historical Sonar data represented as a line graph was determined to be the best way to

meet this goal.

Packages were chosen as the software component of interest because they are the smallest
component of a project that Sonar stores historical data for. Since the plugin makes use of historical
data, package level analysis was the obvious choice. During our time working directly with the
PayPal team in the summer of 2012, we found that Sonar's project oriented dashboard did not
directly address what developers were most interested in. The requirements of the Trends plugin

were:
e To display metric trends of specific packages

e To allow users to interact with the plugin and retrieve information based on selected date

range, Sonar metric and the number of packages to be shown.

3.1.1 Technology Requirements

Upon determining the requirements of the plugin we researched the ways in which a Sonar
plugin could be created. The Sonar website provides some documentation on plugin development
but for the most part we relied on the source code of existing plugins to get the full picture. Some
Sonar plugins focus on adding new information to Sonar, such as definitions for a new
programming language, and others focus on reformatting existing data to change and extend the

way it is presented to the Sonar user. Our plugin falls is in the latter category.

Sonar plugins are implemented using Java, Ruby, JavaScript, HTML and the Sonar web
services API. The Trends plugin primarily uses JavaScript in conjunction with the web services API.
Boilerplate Ruby and Java is required to hook into the Sonar instance. The plugin interacts with
Sonar using the web services API which facilitates querying of the Sonar database. The Protovis

JavaScript library is used to generate the chart.

3.1.2 Plugin Design

The plugin was designed to allow for users to easily query the Sonar database and retrieve

information on packages based on the parameters shown in Figure 1.

Metric

The metric of interest. Included were the default Sonar metrics for
violations, size and duplication. Other metrics could easily be added if

needed.

Calculate Metric

How the metric information is used:

e Per Line: The metric is calculated as a ratio of a package’s total
lines of code.

e Total: The raw total is used.

Number of Packages

The number of packages to display on the chart.

View Based On

e Highest: Graph the packages with the highest values for the
selected metric.
e Lowest: Graph the packages with the lowest values for the

selected metric.

From Date

The lower limit of the date range.

To Date

The upper limit of the date range.

Figure 1 — Parameters of the Sonar Trends plugin

By adjusting these parameters a user can find many points of interest within the source

code that might need refactoring. Additionally, the legend beneath the chart provides links to a

breakdown of each package’s components allowing for deeper exploration of each package if the

user desires to do so.

Metric & Calculate Metric & Number of Packages ‘& View Based On & From Date ‘& To Date &

Violations +| | PerLine AN 2 || Highest 2 03/11/2012 03/11/2013

04 T

03

02

01

0.0

04/2012 05/2012 06/2012 07/2012 08/2012 09/2012

Package 2 Package 3
Package 4 Package's

Figure 2 — Sonar Trends plugin as seen on a Sonar dashboard

3.1.3 Deployment
The Trends plugin was deployed at PayPal in December of 2012. We created a script that

regenerated Sonar history. This allowed the team to query historical data using the plugin. The
Sonar instance and plugin are hosted on a machine which scans the source repository each night. A

more detailed overview of the Trends plugin can be found in Appendix A and a sample use case can

be found in Appendix B.

3.2 Analysis

The primary motive of this project was to determine if there is a correlation between Sonar
violations and the bugs found in live code bases. For the second half of our project the JIRA and Git
logs of the PayPal Here project were studied to determine if such a correlation exists. Historical
data was provided by PayPal from the entirety of Android PayPal Here’s existence and was used as
the basis for this analysis. Ideally each defect would be weighted based on the units of work

required fix the defect. This information was not available, so, for the purposes of our analysis, all

defects are considered to require equal work to resolve. Thus all defects are treated as though they

incur the same amount of technical debt.

3.2.1 Data Sources

Our analysis relied on three primary data sources: Sonar, Git and JIRA. Git is a revision
control system and JIRA is an issue tracker; both are used by the Android PayPal Here team.
Between Git logs and JIRA logs, a detailed summary of the PayPal Here code base was constructed.
The Git logs provide a complete history of the code while JIRA contains information on the defects
that were discovered in the code base as it evolved. In order to conduct a proper analysis we

connected these two sources of information.

The PayPal Here Android team uses JIRA ticket numbers in the messages of some commits
relating to those tickets. We were able to use this convention to connect the Git logs to the bugs
reported in JIRA. By using this information we were able to identify the packages that belonged to
129 defect reports from December 15, 2011 to January 17, 2013. These data points represent the

entire lifespan of the PayPal Here Android Application. Their distribution can be seen in Figure 3.

10

25

20

15

10

0l |
0F01/M12 001112

070112

0%01/12 11701712

W Count

0101713

Figure 3 - JIRA ticket frequency plotted over time

Once this association was made, the Sonar time machine web API was used to retrieve

information on the packages involved in each bug. This process was automated with a Python script

that searched JIRA for all bugs reported, compared them to Git logs and then sent the packages

involved to Sonar. Once completed the script provided relevant information on each defect.

Packages:
Package A
Package B

Package a
2012-01-05
2012-01-12
2012-01-19
Package B
2012-01-05
2012-01-12
2012-01-19

Issue Number:
Issue Date:

00:
0o
00:

00:
00:
00:

APPH-1222
2012-01-12

00:
00
00:

00:
00:
00:

Package violations:

0o
00
0o

0o
0o
0o

oo (=Rl

. 6542
. 6181
. 60ES

L1261
L1261
L1261

violations/Line
violations/Line
violations/Line

violations/Line
violations/Line
violations/Line

Figure 4 — Example of Sonar violation information associated with a bug ticket

11

Figure 4 shows sample Sonar violation information before the bug fix, on the day the bug fix
occurred and a week after the bug fix. This data set was used to determine the validity of Sonar

violations in the following analyses.

3.2.2 Goal, Question, Metric Approach
The Goal, Question, Metric approach (GQM) is a method developed by Victor Basili for

guiding software metric research. A GQM approach first determines the goals of a study, each with
questions that address those goals. Metrics are then selected that answer those questions. (Victor
Basili 1994) GQM was used to guide decisions and research. Specifically many goals were proposed
and removed as our interests narrowed. For our analysis of Sonar we used GQM to determine what

metrics needed to be measured.

3.2.3 Analysis Process

Once information was retrieved on as many defects as possible, statistical analysis was
performed to determine if violations could be used to predict whether or not a package would be
present in defects. Violations were chosen as the Sonar metric to consider because of their
prominence within Sonar over other metrics. By using the GQM model that had been refined
through the course of the project, a set of measurements was determined and programmatically

extracted from the data described in the preceding paragraphs.

12

Goal Determine if static code analysis techniques accurately measure which parts of a
project are accruing the most technical debt and that these measurements
correspond with real defects in the source code.

Purpose Determine

Issue Accuracy of

Object Sonar SCA

Focus Code Quality, Defects

Viewpoint PayPal, Android PayPal Here Team

Questions

1 If a package has a violations per line ratio higher than the overall project average
is it more likely to appear in a JIRA bug ticket?

2 What are the average violations per line for all packages involved in JIRA bug
tickets?

3 What are the average violations per line for the overall project?

4 What is the relationship between the results of 2 and 3?

Figure 5 — Final GQM model

Using the GQM model shown in Figure 5 as a guide, historical data was analyzed to

determine if a relationship could be found between JIRA bug tickets and Sonar violations. If

question 1 is shown to be true then a case can be made for using Sonar as a guide in predicting and

refactoring packages in a software project. Data extracted from the Git and JIRA logs answered

questions 1, 2 and 3. Question 4 was answered by comparing the results of questions 2 and 3.

13

4 Results

Questions found in the GQM table guided our analysis. The average violations per line of the
project as a whole were calculated, as was the average violations per line of every package spanning
the Android PayPal Here projects lifetime. The number of times each package appeared in a defect
report was counted and a comparison was performed to determine if packages that had a higher
number of violations over time appeared in more defects. Our sample looks at 65 individual
packages appearing in 101 defect reports. On average each appears in a defect report 3.36 times. A
complete statistical description can be found in Figure 6. A complete listing of the data used for our

analysis can be found in Appendix C: Package Data

Minimum 1

Maximum 15

Range 14

Mean 3.36923077

Figure 6 - Descriptive statistics for package defect frequency

This analysis was done for all violations per line, blocker violations per line, major
violations per line, minor violations per line and info violations per line. Violations per line
represent an aggregation of all 5 types of violations. Blocker violations never appeared in the

packages analyzed so the results were omitted.

Figure 7 shows the percent change in package appearance in defects (frequency change)
when they have violations per line greater than the project average. In many cases, a package’s
violations per line ratio was only slightly higher than the project average. Frequency change was
also calculated for packages that had a violations per line ratio greater than 110% the project
average and 120% the project average. This was done to eliminate packages that were only slightly

higher than the project average and put focus on those that were substantially higher than the
14

project average. The individual categories of violations were also calculated to see if certain

violation types tend to influence a packages appearance in defects more than others.

Project Average 110% Project Average | 120% Project Average
Violations / Line +18.3% +27.30% +56.25%
Frequency Change
Major Violations / Line | -11.56% +1.19% +44.15%
Frequency Change
Minor Violations / +12.28 % +26.49% +26.49%
Line Frequency
Change
Info Violations / Line | -8.59 % -1.35% -3.42%
Frequency Change

Figure 7 — Change in frequency for packages that have a higher level of violations than the project average

In general, when a package has violations per line metric that is higher than the project it
more like to be involved with a defect. This is consistent with the notion that Sonar can be used to
predict what packages are more likely to be involved with defects. Because the total population is
unknown a t-test was used to calculate the test statistic. At most these values are 15% likely to be

the result of random chance.

4.1 Weka Data Mining

The data shown in Figure 4 lends itself to being mined for patterns and associations. Weka, a data
mining tool developed by the Machine Learning Group at the University of Waikato, can be used to

perform such data mining techniques. (Mark Hall 2009)

15

By performing an attribute evaluation with Weka on the data in Figure 4, we can determine
which attributes of a package are the best indicators of the frequency of that package in JIRA bug
tickets, out of the following attributes:

e Average violations/line

e Average blocker violations/line
e Average major violations/line
e Average minor violations/line
e Average info violations/line

Weka uses an algorithm known as Cfs Subset Evaluation to “evaluate the worth of a subset
of attributes by considering the individual predictive ability of each.” (Hall 1998) This evaluation
selected the following three attributes as the most helpful in predicting the frequency of a package
in JIRA bug tickets:

e Average violations/line
e Average major violations/line

e Average info violations/line

This fact that this subset of attributes was chosen is not surprising, as average violations per line
and average major violations per line percentages are highest in Figure 7. This shows that they are
the most indicative of the number of times a package is likely to appear in a bug ticket. To have
Weka validate this using a different approach however, helps confirm the associations in Figure 7.
The fact that info violations per line was also selected was not expected however, as Figure 7 does
not show as high of a relationship with info violations, so there must be something unexplained by

the values Figure 7 that the Cfs Subset Evaluation detected.

16

= O

o] Usterd

clusterl

0, 227

Avg. violations/line

Figure 8 — Average violations/line plotted against the frequency of appearances in JIRA bug tickets, with clusters

Figure 8 displays the result of performing a k-means density based clustering in Weka,
which creates k clusters (in this case 2) of data instances by creating k centroids with which to
associate the nearest instances based on the mean of their values, and iteratively move those
centroids to the mean location of the instances closest to them in N dimensions where N is the
number of attributes of each instance. The algorithm then re-assigns any instances which are closer
to a different centroid. (Vassilvitskii 2007) When this method is performed on our data, the two
clusters seen above are generated. The red cluster contains mostly data instances with low
violations per line, and low appearances in JIRA bug tickets, and could be classified as low risk
packages. The blue instances however, contain high violations per line, high appearances in JIRA
tickets, or both so should be considered high risk. There is one red cluster instance with very high

(greater than 0.4) violations per line. This is likely due to a shortcoming in the clustering method

17

and indicates that this instance is an anomaly. This clustering method provides an example of a way

in which future work may help users of Sonar select which packages to focus on.

18

5 Conclusions and Future Work
Sonar is a powerful tool for evaluating the state of a software project according to various

SCA violations and software quality metrics. The problem with Sonar is that the abundance of the
information presented makes it difficult for a team to find the actionable information amongst the
less impactful information. Using the newly developed Trends plugin however, a user may identify
the components of a project that are potentially accruing the most technical debt in order to be
informed as to which components could be causing defects and should be considered dangerous to

build on without first checking for quality.

Not only was this plugin developed, but its usefulness was validated through analysis of real
world data from the Android PayPal Here team. The historical data which the team generated was
cross referenced with Sonar analysis data in order to determine what correlations exist between
their bug tickets and Sonar metrics. Our analysis found an average 18.35% increase in the number
of times a package appears in a bug report when the package has a violations per line ratio greater
than the project average. This correlation, however, cannot prove that resolving Sonar violations
causes fewer instances of bugs in that code. Rather, we can only determine that Sonar violation and

bugs are positively correlated.

As defects accumulate in a software project so does technical debt. In order to decrease
technical debt a team must focus on fixing problematic areas before adding new features otherwise
small problems can slowly compound into bigger ones over time. By correlating Sonar violations
with real world defects it is shown that violations are indicative of increased technical debt because

fixing defects requires a development team to do more work.

Although this research has not shown that acting on Sonar violations will decrease technical
debt it has shown that violations indicate technical debt. A future study could be conducted in

which a team fully adopts Sonar along with the Trends plugin in order to identify and resolve Sonar

19

violations. In such a study, the data generated could be used to prove or disprove the claim that by

resolving Sonar violations, fewer defects will appear in the resulting code.

20

6 Appendix A: Sonar Trends Plugin

Pazkages are graphed on the
chart based on their values for

the sslected metric,
Metrics can be viewsd a5 ratios
peir v of code in 8 package or
basad on the Sotal num baer of
eccunences in @ package
The number of packages o char,
Chooga packages with
the highest level of the
selected metng o the
h vy The range of dabes to sebect packages from.
e Calculae Miiric Mumber of Packages View Based On From Date &
Vit 2| | P i =13 2 | rwpen 2 J1zosz011
L]
o)
! Hewering the cursor
\ o @ dot on the kne
Y ghves the ecact value of
that point and the die
& k5 from,
L1
o T —%—
03
*® & & & & & & & * & & — -
- - w II”-‘
O By TR i3 =g o =ryg BT =g

e st

Thee abowve chart shows the S packages with highest level of violations per line between December 5, 2001 and September 6, 2012,

Figure 9 — An overview of the options provided by the Trends plugin

21

7 Appendix B: Trends Plugin Run Through

The following is a sample usage scenario of the trends plugin.

Metric & Calculate Metric & MNumber of Packages & View Based On ‘& From Date & To Date &
Violations +| | PerLine E % || Highest 2 03/11/2012 03/11/2013
—e
\ S
__7_¥__7_’7__7__7_
e
0.4 —
e
03
02

01

0.0

0472012 05/2012 06/2012 072012 08/2012 09/2012

Packaged Package 3
Package 4

1) A query shows the five packages in the PayPal Here project with the most violations per line
between December 10, 2011 and December 10, 2012. The green line which represents the
package “Package 5” is the highest although it is showing a downward trend.

2) With this information we can determine that “Package 5” would be a good place to start
refactoring efforts.

Name Rules compliance Coverage Build time Links
[50 Package 5 732% v 06 Sep 2012
- Name Rules compliance Coverage Build time Links
2 Class A 100.0% 06 Sep 2012
4 Class B 68.6% 06 Sep 2012
2 Class C 63.4% 06 Sep 2012
2 Class D 100.0% 06 Sep 2012
) Class E 78.6% 06 Sep 2012

3) Clicking on “Package 5” in the legend open the packages Sonar components page. This page
features a break, by file, of sonar violations and other metrics.

2 Package 5

Duplications Source Violations

1 violations 1\ Blocker: 0 @ Critical: 0 & Major: 1 % Minor: 0

Full source [Time changes... = | [All violations

package package package.5;

public class Example{

& Final Class | about 1 year
Class Url should be declared as final.

Comment Assign False-positive More actions «

4) Clicking on an individual file name opens anther windows which details exactly where in the
source code a violation is located. In this case the file contains one major violation, a class that
should be declared as final

5) By exploring violations and trends in the source code problematic areas can be easily uncovered
and focused on during refactoring efforts.

23

8 Appendix C: Package Data

Data used for ours analysis of historical PayPal Here data. For sections 8.1 to 8.4 cells highlighted in red

are higher than the project average. Package names were anonymized for this report.

8.1 Average Violations Per Line

Package
Project
Package 1
Package 2
Package 3
Package 4
Package 5
Package 6
Package 7
Package 8
Package 9
Package 10
Package 11
Package 12
Package 13
Package 14
Package 15
Package 16
Package 17
Package 18
Package 19
Package 20
Package 21
Package 22
Package 23
Package 24
Package 25
Package 26
Package 27
Package 28
Package 29
Package 30
Package 31
Package 32
Package 33
Package 34

Avg. Violations / Line

0.073144396
0.048215203
0.036818639
0.045692527
0.071081854
0.050246481
0.070581077
0.060089686
0.086346427
0.036305474
0.033616313
0.032490228
0.067582219
0.039694342
0.060872001
0.148582762
0.03616304
0.031098759
0.039973547
0.034489051
0.091608373
0.051705171
0.050043335
0.133231823
0.020969245
0.029342297
0.097729337
0.090510233
0.1017047
0.070716253
0.040751197
0.073082011
0.046121097
0.038318882
0.072317499

10%
0.0804588
0.0482152
0.0368186
0.0456925
0.0710819
0.0502465
0.0705811
0.0600897
0.0863464
0.0363055
0.0336163
0.0324902
0.0675822
0.0396943

0.060872
0.1485828

0.036163
0.0310988
0.0399735
0.0344891
0.0916084
0.0517052
0.0500433
0.1332318
0.0209692
0.0293423
0.0977293
0.0905102
0.1017047
0.0707163
0.0407512

0.073082
0.0461211
0.0383189
0.0723175

20%
0.08777327
0.0482152
0.03681864
0.04569253
0.07108185
0.05024648
0.07058108
0.06008969
0.08634643
0.03630547
0.03361631
0.03249023
0.06758222
0.03969434
0.060872
0.14858276
0.03616304
0.03109876
0.03997355
0.03448905
0.09160837
0.05170517
0.05004333
0.13323182
0.02096925
0.0293423
0.09772934
0.09051023
0.1017047
0.07071625
0.0407512
0.07308201
0.0461211
0.03831888
0.0723175

24

Package 35
Package 36
Package 37
Package 38
Package 39
Package 40
Package 41
Package 42
Package 43
Package 44
Package 45
Package 46
Package 47
Package 48
Package 49
Package 50
Package 51
Package 52
Package 53
Package 54
Package 55
Package 56
Package 57
Package 58
Package 59
Package 60
Package 61
Package 62
Package 63
Package 64
Package 65

0.070250232
0.04596835
0.031971878
0.082682965
0.072899241
0.069426871
0.024930129
0.060799282
0.057876559
0.08278995
0.061042041
0.048806492
0.058572897
0.03904064
0.113865103
0.074553151
0.084223213
0.065191467
0.053138657
0.044717091
0.053939069
0.065073716
0.043445978
0.060187814
0.054570384
0.051615445
0.4242147
0.054560261
0.037961312
0.058502071
0.06754061

0.0702502
0.0459683
0.0319719
0.082683
0.0728992
0.0694269
0.0249301
0.0607993
0.0578766
0.08279
0.061042
0.0488065
0.0585729
0.0390406
0.1138651
0.0745532
0.0842232
0.0651915
0.0531387
0.0447171
0.0539391
0.0650737
0.043446
0.0601878
0.0545704
0.0516154
0.4242147
0.0545603
0.0379613
0.0585021
0.0675406

0.07025023
0.04596835
0.03197188
0.08268297
0.07289924
0.06942687
0.02493013
0.06079928
0.05787656
0.08278995
0.06104204
0.04880649

0.0585729
0.03904064

0.1138651
0.07455315
0.08422321
0.06519147
0.05313866
0.04471709
0.05393907
0.06507372
0.04344598
0.06018781
0.05457038
0.05161545

0.4242147
0.05456026
0.03796131
0.05850207
0.06754061

25

8.2 Average Major Violation Per Line

Package
Project
Package 1
Package 2
Package 3
Package 4
Package 5
Package 6
Package 7
Package 8
Package 9
Package 10
Package 11
Package 12
Package 13
Package 14
Package 15
Package 16
Package 17
Package 18
Package 19
Package 20
Package 21
Package 22
Package 23
Package 24
Package 25
Package 26
Package 27
Package 28
Package 29
Package 30
Package 31
Package 32
Package 33
Package 34
Package 35
Package 36
Package 37
Package 38

Avg. Major /

Line

0.049189349
0.032935285
0.025312815
0.045692527
0.049537868
0.042584784
0.039397627
0.033781764
0.065456327
0.029044379
0.022545966
0.017827229
0.040115649
0.032274396
0.050275418
0.115940831
0.026202881
0.025156931
0.034572709
0.028688738
0.039275759
0.029152915
0.035855295
0.132775029
0.015222119
0.008448401
0.059582198
0.066263195
0.053755773
0.069311295
0.034644654
0.064153439
0.039403974
0.031220063
0.057216573
0.063299351
0.032152725
0.025443589
0.038771352

10%
0.054108284
0.032935285
0.025312815
0.045692527
0.049537868
0.042584784
0.039397627
0.033781764
0.065456327
0.029044379
0.022545966
0.017827229
0.040115649
0.032274396
0.050275418
0.115940831
0.026202881
0.025156931
0.034572709
0.028688738
0.039275759
0.029152915
0.035855295
0.132775029
0.015222119
0.008448401
0.059582198
0.066263195
0.053755773
0.069311295
0.034644654
0.064153439
0.039403974
0.031220063
0.057216573
0.063299351
0.032152725
0.025443589
0.038771352

20%
0.064929941
0.032935285
0.025312815
0.045692527
0.049537868
0.042584784
0.039397627
0.033781764
0.065456327
0.029044379
0.022545966
0.017827229
0.040115649
0.032274396
0.050275418
0.115940831
0.026202881
0.025156931
0.034572709
0.028688738
0.039275759
0.029152915
0.035855295
0.132775029
0.015222119
0.008448401
0.059582198
0.066263195
0.053755773
0.069311295
0.034644654
0.064153439
0.039403974
0.031220063
0.057216573
0.063299351
0.032152725
0.025443589
0.038771352

26

Package 39
Package 40
Package 41
Package 42
Package 43
Package 44
Package 45
Package 46
Package 47
Package 48
Package 49
Package 50
Package 51
Package 52
Package 53
Package 54
Package 55
Package 56
Package 57
Package 58
Package 59
Package 60
Package 61
Package 62
Package 63
Package 64
Package 65

0.0548192
0.055438399
0.016741196
0.036192187

0.0332117
0.061497574
0.042809536
0.036071788
0.055740745
0.032511659
0.083736821
0.048682973
0.055494829
0.053840378
0.046781883
0.033959677
0.027709439
0.043509575
0.037457135
0.045075344
0.020018282
0.036643026
0.022669513
0.045921258
0.030814683
0.052289462
0.049871758

0.0548192
0.055438399
0.016741196
0.036192187

0.0332117
0.061497574
0.042809536
0.036071788
0.055740745
0.032511659
0.083736821
0.048682973
0.055494829
0.053840378
0.046781883
0.033959677
0.027709439
0.043509575
0.037457135
0.045075344
0.020018282
0.036643026
0.022669513
0.045921258
0.030814683
0.052289462
0.049871758

0.0548192
0.055438399
0.016741196
0.036192187

0.0332117
0.061497574
0.042809536
0.036071788
0.055740745
0.032511659
0.083736821
0.048682973
0.055494829
0.053840378
0.046781883
0.033959677
0.027709439
0.043509575
0.037457135
0.045075344
0.020018282
0.036643026
0.022669513
0.045921258
0.030814683
0.052289462
0.049871758

27

8.3 Average Minor Violations Per Line

Package
Project
Package 1
Package 2
Package 3
Package 4
Package 5
Package 6
Package 7
Package 8
Package 9
Package 10
Package 11
Package 12
Package 13
Package 14
Package 15
Package 16
Package 17
Package 18
Package 19
Package 20
Package 21
Package 22
Package 23
Package 24
Package 25
Package 26
Package 27
Package 28
Package 29
Package 30

Package 31
Package 32

Package 33
Package 34
Package 35
Package 36
Package 37
Package 38

Avg. Minor /

Line

0.019343035
0.01059322
0.009276571
0
0.017255137
0.007008374
0.024794646
0.019133034
0.016899856
0.00700721
0.007060279
0.011229913
0.025659559
0.007166814
0.006862104
0.027518387
0.006486873
0.005127222
0.003931222
0.004340459
0.035396834
0.001650165
0.013674445
0.000380662
0.002640572
0.010446948
0.030154405
0.021008078
0.045877479
0.001404959
0.002731067
0.008928571
0.00359508
0.005158311
0.012293216
0.005931418
0.011680482
0.005021761
0.042281774

10%
0.021277339
0.01059322
0.009276571
0
0.017255137
0.007008374
0.024794646
0.019133034
0.016899856
0.00700721
0.007060279
0.011229913
0.025659559
0.007166814
0.006862104
0.027518387
0.006486873
0.005127222
0.003931222
0.004340459
0.035396834
0.001650165
0.013674445
0.000380662
0.002640572
0.010446948
0.030154405
0.021008078
0.045877479
0.001404959
0.002731067
0.008928571
0.00359508
0.005158311
0.012293216
0.005931418
0.011680482
0.005021761
0.042281774

20%
0.023405073
0.01059322
0.009276571
0
0.017255137
0.007008374
0.024794646
0.019133034
0.016899856
0.00700721
0.007060279
0.011229913
0.025659559
0.007166814
0.006862104
0.027518387
0.006486873
0.005127222
0.003931222
0.004340459
0.035396834
0.001650165
0.013674445
0.000380662
0.002640572
0.010446948
0.030154405
0.021008078
0.045877479
0.001404959
0.002731067
0.008928571
0.00359508
0.005158311
0.012293216
0.005931418
0.011680482
0.005021761
0.042281774

28

Package 39
Package 40
Package 41
Package 42
Package 43
Package 44
Package 45
Package 46
Package 47
Package 48
Package 49
Package 50
Package 51
Package 52
Package 53
Package 54
Package 55
Package 56
Package 57
Package 58
Package 59
Package 60
Package 61
Package 62
Package 63
Package 64
Package 65

0.015313344
0.011036131
0.005394075
0.020206556
0.013132476
0.018541982
0.017751858
0.009891607
0.001027595
0.003597602
0.025134103
0.009524929
0.017096892
0.006183472
0.004668256
0.008314145
0.016407392
0.019572954
0.002823451
0.012229744
0.019835466
0.012608353

0.39803802
0.008639003
0.005644682
0.004199264
0.017668852

0.015313344
0.011036131
0.005394075
0.020206556
0.013132476
0.018541982
0.017751858
0.009891607
0.001027595
0.003597602
0.025134103
0.009524929
0.017096892
0.006183472
0.004668256
0.008314145
0.016407392
0.019572954
0.002823451
0.012229744
0.019835466
0.012608353

0.39803802
0.008639003
0.005644682
0.004199264
0.017668852

0.015313344
0.011036131
0.005394075
0.020206556
0.013132476
0.018541982
0.017751858
0.009891607
0.001027595
0.003597602
0.025134103
0.009524929
0.017096892
0.006183472
0.004668256
0.008314145
0.016407392
0.019572954
0.002823451
0.012229744
0.019835466
0.012608353

0.39803802
0.008639003
0.005644682
0.004199264
0.017668852

29

8.4 Average Info Violations Per Line

Package
Project
Package 1
Package 2
Package 3
Package 4
Package 5
Package 6
Package 7
Package 8
Package 9
Package 10
Package 11
Package 12
Package 13
Package 14
Package 15
Package 16
Package 17
Package 18
Package 19
Package 20
Package 21
Package 22
Package 23
Package 24
Package 25
Package 26
Package 27
Package 28
Package 29
Package 30

Package 31
Package 32

Package 33
Package 34
Package 35
Package 36
Package 37
Package 38

Avg. Info / Line
0.003916905
0.004686697
0.002229254

0
0.004155861
0.000653323
0.006388804
0.006278027
0.003051363
0.000253884
0.004010068
0.003433086
0.001807011
0.000253133
0.002660816
0.003842658
0.003473286
0.000814605
0.001396135
0.000716893
0.016357229

0.02090209
0.000513594

0
0.003106555
0.010446948
0.007266122
0.001303327
0.001188536

0
0.003375476

0
0.001229896
0.001842254

0.00280771
0.001019462
0.002135142
0.001506528
6.27E-05

10%
0.0043086
0.0046867
0.0022293

0
0.0041559
0.0006533
0.0063888

0.006278
0.0030514
0.0002539
0.0040101
0.0034331

0.001807
0.0002531
0.0026608
0.0038427
0.0034733
0.0008146
0.0013961
0.0007169
0.0163572
0.0209021
0.0005136

0
0.0031066
0.0104469
0.0072661
0.0013033
0.0011885

0
0.0033755

0
0.0012299
0.0018423
0.0028077
0.0010195
0.0021351
0.0015065

6.27E-05

20%
0.0051703
0.0046867
0.0022293

0
0.0041559
0.0006533
0.0063888

0.006278
0.0030514
0.0002539
0.0040101
0.0034331

0.001807
0.0002531
0.0026608
0.0038427
0.0034733
0.0008146
0.0013961
0.0007169
0.0163572
0.0209021
0.0005136

0
0.0031066
0.0104469
0.0072661
0.0013033
0.0011885

0
0.0033755

0
0.0012299
0.0018423
0.0028077
0.0010195
0.0021351
0.0015065

6.27E-05

30

Package 39
Package 40
Package 41
Package 42
Package 43
Package 44
Package 45
Package 46
Package 47
Package 48
Package 49
Package 50
Package 51
Package 52
Package 53
Package 54
Package 55
Package 56
Package 57
Package 58
Package 59
Package 60
Package 61
Package 62
Package 63
Package 64
Package 65

0.002766697
0.001780777
0.001621017
0.004400539
0.011532382
0.001328842
0.000480646
0.002724634
0.00175443
0.000266489
0.001033654
0.016345249
0.008968861
0.005167616
0.001688518
0.001248001
0.009674257
0.001991188
0.003165392
0.001921817
0.014716636
0.002364066
0.000965742
0
0.001138839
0.001725725
0

0.0027667
0.0017808
0.001621
0.0044005
0.0115324
0.0013288
0.0004806
0.0027246
0.0017544
0.0002665
0.0010337
0.0163452
0.0089689
0.0051676
0.0016885
0.001248
0.0096743
0.0019912
0.0031654
0.0019218
0.0147166
0.0023641
0.0009657
0
0.0011388
0.0017257
0

0.0027667
0.0017808
0.001621
0.0044005
0.0115324
0.0013288
0.0004806
0.0027246
0.0017544
0.0002665
0.0010337
0.0163452
0.0089689
0.0051676
0.0016885
0.001248
0.0096743
0.0019912
0.0031654
0.0019218
0.0147166
0.0023641
0.0009657
0
0.0011388
0.0017257
0

31

8.5 Package Defect Frequency

Package Frequency
Project n/a
Package 1
Package 2
Package 3
Package 4
Package 5
Package 6
Package 7
Package 8
Package 9
Package 10
Package 11
Package 12
Package 13
Package 14
Package 15
Package 16
Package 17
Package 18
Package 19
Package 20
Package 21
Package 22
Package 23
Package 24
Package 25
Package 26
Package 27
Package 28
Package 29
Package 30

Package 31
Package 32

Package 33
Package 34
Package 35
Package 36
Package 37
Package 38

=
A W WOoOWWPMROWDPAUUERNEWEWN

IR
N B

R R, A B NP DB NDNNNONNNNNLPRE

Package 39
Package 40
Package 41
Package 42
Package 43
Package 44
Package 45
Package 46
Package 47
Package 48
Package 49
Package 50
Package 51
Package 52
Package 53
Package 54
Package 55
Package 56
Package 57
Package 58
Package 59
Package 60
Package 61
Package 62
Package 63
Package 64
Package 65

R W NP WO OO0OOF WEFE PFkFOUNNOUEFEEFENDPDPFE WWwDN

[
N = U

33

9 Glossary

Continuous Integration - The practice of committing small, focused changes to a software project
and continuously merging (integrating) these changes with a central source that all developers
access.

Defect - An error in source code that causes unexpected behavior in the software.
Git — A distributed revision control system.

[terative Development - A software design philosophy that emphasizes short iterations of work
completion. A single iteration consists of determining requirements of a feature, designing the
feature, implementing the feature and testing the feature.

JIRA - An issue tracking system for software development used for bug tracking, feature tracking
and project management.

Sonar - A static code analysis tool.

Static Code Analysis - Programmatically scanning source code for potential weak spots and
violations.

Technical Debt - The accumulation of defects and other issues in a code base over time.

Violation - In the context static code analysis tools a violation refers to potentially problematic
chunks of source code.

34

10 References
Fowler, Martin. "Continuous Integration." Martin Fowler. 2006.
http://martinfowler.com/articles/continuousintegration.html (accessed February 12, 2013).

Gaudin, Olivier. Evaluate Your Technicla Debt with Sonar. June 11, 2009.
http://www.sonarsource.org/evaluate-your-technical-debt-with-sonar/ (accessed February 12,
2013).

Gaudin, Olivier.. "Personal Communication." September 24, 2012.
Hall, M. A. "Correlation-based Feature Subset Selection for Machine learning." Hamilton, NZ, 1998.

Jenkins Cl Community. About Jenkins Cl. February 12, 2011. http://jenkins-ci.org/content/about-jenkins-
ci (accessed February 12, 2013).

Johnson, Stephen C. Lint, a C Program Checker. Bell Telephone Laboratories, 1977.

Mark Hall, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutermann. The WEKA Data Mining Software.
SIGKDD Explorations, 2009.

Parasoft. Embedded Software Quality Whitepaper. 2012. http://alm.parasoft.com/embedded-software-
vdc-report/ (accessed February 12, 2013).

Royce, Winston W. Manageing the Development of Larege Software Systems. IEEE, 1970.
Vassilvitskii, Arthur S. "K-means++: The Advantage of Careful." 2007.

Victor Basili, Dieter Rombach. The Goal Question Metric Approach. Encyclopedia of Software
Engineering, 1994.

35

	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 Problem Statement
	1.2 Hypothesis

	2 Background
	2.1 Sponsor Information
	2.2 The Android PayPal Here Team
	2.3 Tools Used
	2.3.1 Jenkins
	2.3.2 Sonar

	3 Methodology
	3.1 Sonar Trends Plugin
	3.1.1 Technology Requirements
	3.1.2 Plugin Design
	3.1.3 Deployment

	3.2 Analysis
	3.2.1 Data Sources
	3.2.2 Goal, Question, Metric Approach
	3.2.3 Analysis Process

	4 Results
	4.1 Weka Data Mining

	5 Conclusions and Future Work
	6 Appendix A: Sonar Trends Plugin
	7 Appendix B: Trends Plugin Run Through
	8 Appendix C: Package Data
	8.1 Average Violations Per Line
	8.2 Average Major Violation Per Line
	8.3 Average Minor Violations Per Line
	8.4 Average Info Violations Per Line
	8.5 Package Defect Frequency

	9 Glossary
	References

