
Project Number: GFP1204

Software Processes at PayPal

A Major Qualifying Project Report:
Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the

 Degree of Bachelor of Science

Sponsoring Agency: PayPal

Submitted by:

Jared Andrews

Glen Lovett

Date: March 11, 2013

Approved:

Professor Gary Pollice, Advisor

i

Abstract
Static Code Analysis (SCA) is the process of analyzing software source code for potential defects.

This project implements a plugin for and analyzes one such SCA tool, Sonar, with the goal of determining

its effectiveness in correctly identifying problem areas in code. Real world data which was collected at

PayPal after setting up a continuous integration system using Jenkins CI and Sonar was used as the basis

for this project.

ii

Acknowledgements
 We would like to extend our thanks to all of those who made this project possible. We would

like to thank Professor Gary Pollice, who provided us with this wonderful opportunity and continued

support and guidance throughout the course of this project. We would also like to thank our sponsor,

PayPal for making this project possible. Additionally, we would like to thank our manager at PayPal,

Serkan Ozel for setting up this project and supporting us throughout. Furthermore, thanks to Scott

MacDonald at PayPal for teaching us the processes of release engineering and Continuous Integration.

iii

List of Figures
Figure 1 – Parameters of the Sonar Trends plugin ... 8
Figure 2 – Sonar Trends plugin as seen on a Sonar dashboard .. 9
Figure 3 – JIRA ticket frequency plotted over time .. 11
Figure 4 – Example of Sonar violation information associated with a bug ticket 11
Figure 5 – Final GQM model ... 13
Figure 6 - Descriptive statistics for package defect frequency ... 14
Figure 7 – Change in frequency for packages that have a higher level of violations than the project
average .. 15
Figure 8 – Average violations/line plotted against the frequency of appearances in JIRA bug tickets, with
clusters .. 17
Figure 9 – An overview of the options provided by the Trends plugin... 21

iv

Table of Contents
Abstract .. i

Acknowledgements ... ii

List of Figures ... iii

1 Introduction .. 1

1.1 Problem Statement ... 1

1.2 Hypothesis ... 2

2 Background ... 3

2.1 Sponsor Information ... 3

2.2 The Android PayPal Here Team .. 3

2.3 Tools Used ... 4

2.3.1 Jenkins ... 4

2.3.2 Sonar ... 4

3 Methodology ... 6

3.1 Sonar Trends Plugin .. 6

3.1.1 Technology Requirements .. 7

3.1.2 Plugin Design ... 7

3.1.3 Deployment ... 9

3.2 Analysis ... 9

3.2.1 Data Sources ... 10

3.2.2 Goal, Question, Metric Approach ... 12

3.2.3 Analysis Process .. 12

4 Results ... 14

4.1 Weka Data Mining... 15

5 Conclusions and Future Work ... 19

6 Appendix A: Sonar Trends Plugin .. 21

7 Appendix B: Trends Plugin Run Through .. 22

8 Appendix C: Package Data .. 24

8.1 Average Violations Per Line .. 24

8.2 Average Major Violation Per Line ... 26

8.3 Average Minor Violations Per Line ... 28

v

8.4 Average Info Violations Per Line ... 30

8.5 Package Defect Frequency .. 32

9 Glossary ... 34

10 References .. 35

1

1 Introduction
Completing the entire implementation of a software project prior to testing leads to defect

detection long after defect injection. (Royce 1970) To address the flaws in this approach, commonly

referred to as waterfall development, many software development teams have adopted iterative

development procedures. Iterative development supports the delivery of a product at the

conclusion of each iteration. The practice of Continuous Integration (CI) facilitates an iterative

approach and has been adopted by many software development teams.

CI is the practice of committing small, focused changes to a software project and

continuously merging (integrating) these changes with a central source that all developers access.

The goal of this practice is to always have an up to date, working product that can be developed and

tested in parallel. CI facilitates more frequent feedback on committed code, which in turn can

reduce technical debt. (Fowler 2006)

 Technical debt describes the inevitable loss in value that a product accrues over time. No

agreed upon definition of technical debt exists, but factors such as defects introduced, lack of test

suites, parallel development requiring merges, and excessive refactoring are seen as common

indicators of technical debt. For the purpose of this report, we measure technical debt as the

amount of work required to fix defects.

1.1 Problem Statement
 Many best practices and technologies contribute to a working CI system. These include

small atomic commits, automated builds, automated tests, and static code analysis. Static code

analysis (SCA) is a method of scanning source code for potential weak spots and violations. The first

SCA tools appeared in 1979 (Johnson 1977), so they are by no means a new technology. SCA

2

proponents claim that SCA reduces technical debt of a project when used effectively. (Gaudin,

Evaluate Your Technicla Debt with Sonar 2009)

 Many software teams use SCA to guide refactoring efforts and manage the technical debt of

their projects. (Parasoft 2012) Introducing SCA introduces overhead in the form of setup and

maintenance of an SCA server, in addition to the cost of actions taken based on its results.

Therefore, in order to be a worthy investment, measurable benefits of tool adoption must exist.

 This project aims to make an existing SCA tool, Sonar, more accessible to developers

through the development of a custom plugin. Additionally, the relationship between Sonar analysis

and real defects will be measured using data provided by the PayPal Here Android team.

1.2 Hypothesis
 We seek to determine if SCA tools accurately measure which parts of a software project are

accruing the most technical debt, which would correspond with real world loss of value. If this can

be shown to be the case, then it helps validate the usage of SCA tools.

3

2 Background

2.1 Sponsor Information

 PayPal™ is a global company that provides solutions for transferring money via the Internet.

Founded in 1998, PayPal became a subsidiary of eBay™ in 2002 and employs more than 10,000

people throughout the world. PayPal receives funds, converts them to foreign currencies if needed,

and distributes them to the involved parties. PayPal places a heavy emphasis on security and has

become highly trusted as a result. In addition to online transactions, PayPal has been breaking into

real world transactions with smart phone enabled 'wallet' applications that allow a customer to use

their PayPal account at brick and mortar stores.

2.2 The Android PayPal Here Team
 This report was done in conjunction with PayPal, specifically the Android PayPal Here™

Team. PayPal Here is a smart phone application for iPhone and Android devices that enables

businesses and individuals to accept credit, debit and PayPal payments via their smart phone. This

eliminates the need for costly credit card processing equipment and it transfers funds into the

seller’s account shortly after the transaction is completed. In order to use PayPal Here, credit cards

are scanned either through a smartphone camera or a free dongle provided by PayPal. These

transactions provide the core of PayPal Here's functionality.

 The subject of this report is the Android PayPal Here team. This team has been developing

PayPal Here since January 2012 and the lead developer, Serkan Ozel, felt that it would be beneficial

for the team to have CI technologies at their disposal. Serkan felt that introducing CI into his teams

existing work flow would have many benefits such as early detection of bugs, violations, and

suspicious code. If caught sooner rather than later, CI could save time and money.

4

 The authors of this report interned at PayPal and set up a CI system for the Android PayPal

Here team over the summer of 2012. Further research outlined in the methodology and analysis

sections of this report was completed from August 2012 to March 2013.

2.3 Tools Used
 The following tools were used to build the continuous integration system for the PayPal

Here Android Team. They work together to automate several areas of the release process.

2.3.1 Jenkins

 Jenkins is an open source CI server. It monitors source repositories and builds artifacts

based on parameters set by the user. (Jenkins CI Community 2011) Jenkins is extensible via plugins

and scripting. Jenkins manages the entire build process from compilation to testing to artifact

publication.

 A Jenkins instance is separated into several projects and each project has its own set of jobs.

A job is a set of instructions for completing a certain task. Jenkins can be configured to alert

developers of any problems encountered during the build process. For example if the code fails to

compile Jenkins can be configured to send an alert email to a manager. Using Jenkins to automate

the release process removes the potential for human error and allows for easily repeatable builds.

 In a typical Jenkins setup a job is tied to one particular task. For example, a job associated

with a development branch could compile with the debug features on whereas the release branch

job turns debugging features off. This allows each job to be tailored to a particular goal.

2.3.2 Sonar

 Sonar is an open source SCA tool that tracks metrics of source code quality over time. These

metrics are determined by matching Java™ source code to patterns that are known to lead to or

cause unintended behavior within a program. (SonarSource 2012) Sonar classifies violations into

5

five categories: info, minor, major, critical and blocker, with blocker being the most severe of

violations and info the least. Violations are tracked over time and on a per file basis allowing users

to explore their source code and see where potential problems lie.

 Sonar is also capable of tracking other metrics such as the amount of duplicated code, code

coverage, and unit test success and code complexity. Sonar is easily extensible and there are many

plugins available that add new metrics, language support and analysis. A Sonar analysis can take a

fair amount of time to complete for large projects so it advisable to create a standalone Jenkins job

for triggering a Sonar analysis.

Sonar’s effectiveness has never been formally studied. (Gaudin, Personal Communication

2012) Sonar is the preferred tool of the PayPal release engineering team so it would be beneficial to

verify its usefulness.

6

3 Methodology

3.1 Sonar Trends Plugin

Though the Android PayPal Here team now had a system for CI in place, the features

afforded by this system were not made apparent to the team, and thus adoption was limited to

occasional checks on the status of the builds. Sonar saw little use during the course of the

internship because when a team member would look at the Sonar dashboard they were never given

any clear actions to take. The first stage of the MQP was the implementation of a Sonar plugin in

order to provide actionable data which could help the team determine which parts of the source

were potential sources of technical debt.

The current state of the project as displayed by Sonar would have improved context if a

plugin was designed that displayed historical Sonar data. In addition, we desired to easily detect the

packages with the highest and lowest number of certain Sonar metrics. A plugin that displayed a

timeline or historical Sonar data represented as a line graph was determined to be the best way to

meet this goal.

Packages were chosen as the software component of interest because they are the smallest

component of a project that Sonar stores historical data for. Since the plugin makes use of historical

data, package level analysis was the obvious choice. During our time working directly with the

PayPal team in the summer of 2012, we found that Sonar's project oriented dashboard did not

directly address what developers were most interested in. The requirements of the Trends plugin

were:

● To display metric trends of specific packages

● To allow users to interact with the plugin and retrieve information based on selected date

range, Sonar metric and the number of packages to be shown.

7

3.1.1 Technology Requirements

 Upon determining the requirements of the plugin we researched the ways in which a Sonar

plugin could be created. The Sonar website provides some documentation on plugin development

but for the most part we relied on the source code of existing plugins to get the full picture. Some

Sonar plugins focus on adding new information to Sonar, such as definitions for a new

programming language, and others focus on reformatting existing data to change and extend the

way it is presented to the Sonar user. Our plugin falls is in the latter category.

Sonar plugins are implemented using Java, Ruby, JavaScript, HTML and the Sonar web

services API. The Trends plugin primarily uses JavaScript in conjunction with the web services API.

Boilerplate Ruby and Java is required to hook into the Sonar instance. The plugin interacts with

Sonar using the web services API which facilitates querying of the Sonar database. The Protovis

JavaScript library is used to generate the chart.

3.1.2 Plugin Design

The plugin was designed to allow for users to easily query the Sonar database and retrieve

information on packages based on the parameters shown in Figure 1.

8

Metric The metric of interest. Included were the default Sonar metrics for

violations, size and duplication. Other metrics could easily be added if

needed.

Calculate Metric How the metric information is used:

• Per Line: The metric is calculated as a ratio of a package’s total

lines of code.

• Total: The raw total is used.

Number of Packages The number of packages to display on the chart.

View Based On • Highest: Graph the packages with the highest values for the

selected metric.

• Lowest: Graph the packages with the lowest values for the

selected metric.

From Date The lower limit of the date range.

To Date The upper limit of the date range.

Figure 1 – Parameters of the Sonar Trends plugin

By adjusting these parameters a user can find many points of interest within the source

code that might need refactoring. Additionally, the legend beneath the chart provides links to a

breakdown of each package’s components allowing for deeper exploration of each package if the

user desires to do so.

9

Figure 2 – Sonar Trends plugin as seen on a Sonar dashboard

3.1.3 Deployment

The Trends plugin was deployed at PayPal in December of 2012. We created a script that

regenerated Sonar history. This allowed the team to query historical data using the plugin. The

Sonar instance and plugin are hosted on a machine which scans the source repository each night. A

more detailed overview of the Trends plugin can be found in Appendix A and a sample use case can

be found in Appendix B.

3.2 Analysis
The primary motive of this project was to determine if there is a correlation between Sonar

violations and the bugs found in live code bases. For the second half of our project the JIRA and Git

logs of the PayPal Here project were studied to determine if such a correlation exists. Historical

data was provided by PayPal from the entirety of Android PayPal Here’s existence and was used as

the basis for this analysis. Ideally each defect would be weighted based on the units of work

required fix the defect. This information was not available, so, for the purposes of our analysis, all

10

defects are considered to require equal work to resolve. Thus all defects are treated as though they

incur the same amount of technical debt.

3.2.1 Data Sources

Our analysis relied on three primary data sources: Sonar, Git and JIRA. Git is a revision

control system and JIRA is an issue tracker; both are used by the Android PayPal Here team.

Between Git logs and JIRA logs, a detailed summary of the PayPal Here code base was constructed.

The Git logs provide a complete history of the code while JIRA contains information on the defects

that were discovered in the code base as it evolved. In order to conduct a proper analysis we

connected these two sources of information.

The PayPal Here Android team uses JIRA ticket numbers in the messages of some commits

relating to those tickets. We were able to use this convention to connect the Git logs to the bugs

reported in JIRA. By using this information we were able to identify the packages that belonged to

129 defect reports from December 15, 2011 to January 17, 2013. These data points represent the

entire lifespan of the PayPal Here Android Application. Their distribution can be seen in Figure 3.

11

Figure 3 – JIRA ticket frequency plotted over time

Once this association was made, the Sonar time machine web API was used to retrieve

information on the packages involved in each bug. This process was automated with a Python script

that searched JIRA for all bugs reported, compared them to Git logs and then sent the packages

involved to Sonar. Once completed the script provided relevant information on each defect.

Figure 4 – Example of Sonar violation information associated with a bug ticket

12

Figure 4 shows sample Sonar violation information before the bug fix, on the day the bug fix

occurred and a week after the bug fix. This data set was used to determine the validity of Sonar

violations in the following analyses.

3.2.2 Goal, Question, Metric Approach

 The Goal, Question, Metric approach (GQM) is a method developed by Victor Basili for

guiding software metric research. A GQM approach first determines the goals of a study, each with

questions that address those goals. Metrics are then selected that answer those questions. (Victor

Basili 1994) GQM was used to guide decisions and research. Specifically many goals were proposed

and removed as our interests narrowed. For our analysis of Sonar we used GQM to determine what

metrics needed to be measured.

3.2.3 Analysis Process

Once information was retrieved on as many defects as possible, statistical analysis was

performed to determine if violations could be used to predict whether or not a package would be

present in defects. Violations were chosen as the Sonar metric to consider because of their

prominence within Sonar over other metrics. By using the GQM model that had been refined

through the course of the project, a set of measurements was determined and programmatically

extracted from the data described in the preceding paragraphs.

13

Goal Determine if static code analysis techniques accurately measure which parts of a
project are accruing the most technical debt and that these measurements
correspond with real defects in the source code.

Purpose Determine

Issue Accuracy of

Object Sonar SCA

Focus Code Quality, Defects

Viewpoint PayPal, Android PayPal Here Team

Questions

1 If a package has a violations per line ratio higher than the overall project average
is it more likely to appear in a JIRA bug ticket?

2 What are the average violations per line for all packages involved in JIRA bug
tickets?

3 What are the average violations per line for the overall project?

4 What is the relationship between the results of 2 and 3?

Figure 5 – Final GQM model

 Using the GQM model shown in Figure 5 as a guide, historical data was analyzed to

determine if a relationship could be found between JIRA bug tickets and Sonar violations. If

question 1 is shown to be true then a case can be made for using Sonar as a guide in predicting and

refactoring packages in a software project. Data extracted from the Git and JIRA logs answered

questions 1, 2 and 3. Question 4 was answered by comparing the results of questions 2 and 3.

14

4 Results
Questions found in the GQM table guided our analysis. The average violations per line of the

project as a whole were calculated, as was the average violations per line of every package spanning

the Android PayPal Here projects lifetime. The number of times each package appeared in a defect

report was counted and a comparison was performed to determine if packages that had a higher

number of violations over time appeared in more defects. Our sample looks at 65 individual

packages appearing in 101 defect reports. On average each appears in a defect report 3.36 times. A

complete statistical description can be found in Figure 6. A complete listing of the data used for our

analysis can be found in Appendix C: Package Data

Minimum 1

Maximum 15

Range 14

Mean 3.36923077

Figure 6 - Descriptive statistics for package defect frequency

This analysis was done for all violations per line, blocker violations per line, major

violations per line, minor violations per line and info violations per line. Violations per line

represent an aggregation of all 5 types of violations. Blocker violations never appeared in the

packages analyzed so the results were omitted.

Figure 7 shows the percent change in package appearance in defects (frequency change)

when they have violations per line greater than the project average. In many cases, a package’s

violations per line ratio was only slightly higher than the project average. Frequency change was

also calculated for packages that had a violations per line ratio greater than 110% the project

average and 120% the project average. This was done to eliminate packages that were only slightly

higher than the project average and put focus on those that were substantially higher than the

15

project average. The individual categories of violations were also calculated to see if certain

violation types tend to influence a packages appearance in defects more than others.

 Project Average 110% Project Average 120% Project Average

Violations / Line

Frequency Change

+18.3% +27.30% +56.25%

Major Violations / Line

Frequency Change

-11.56% +1.19 % +44.15%

Minor Violations /

Line Frequency

Change

+12.28 % +26.49% +26.49%

Info Violations / Line

Frequency Change

-8.59 % -1.35 % -3.42%

Figure 7 – Change in frequency for packages that have a higher level of violations than the project average

 In general, when a package has violations per line metric that is higher than the project it

more like to be involved with a defect. This is consistent with the notion that Sonar can be used to

predict what packages are more likely to be involved with defects. Because the total population is

unknown a t-test was used to calculate the test statistic. At most these values are 15% likely to be

the result of random chance.

4.1 Weka Data Mining
The data shown in Figure 4 lends itself to being mined for patterns and associations. Weka, a data

mining tool developed by the Machine Learning Group at the University of Waikato, can be used to

perform such data mining techniques. (Mark Hall 2009)

16

By performing an attribute evaluation with Weka on the data in Figure 4, we can determine

which attributes of a package are the best indicators of the frequency of that package in JIRA bug

tickets, out of the following attributes:

● Average violations/line

● Average blocker violations/line

● Average major violations/line

● Average minor violations/line

● Average info violations/line

 Weka uses an algorithm known as Cfs Subset Evaluation to “evaluate the worth of a subset

of attributes by considering the individual predictive ability of each.” (Hall 1998) This evaluation

selected the following three attributes as the most helpful in predicting the frequency of a package

in JIRA bug tickets:

● Average violations/line

● Average major violations/line

● Average info violations/line

This fact that this subset of attributes was chosen is not surprising, as average violations per line

and average major violations per line percentages are highest in Figure 7. This shows that they are

the most indicative of the number of times a package is likely to appear in a bug ticket. To have

Weka validate this using a different approach however, helps confirm the associations in Figure 7.

The fact that info violations per line was also selected was not expected however, as Figure 7 does

not show as high of a relationship with info violations, so there must be something unexplained by

the values Figure 7 that the Cfs Subset Evaluation detected.

17

Figure 8 – Average violations/line plotted against the frequency of appearances in JIRA bug tickets, with clusters

 Figure 8 displays the result of performing a k-means density based clustering in Weka,

which creates k clusters (in this case 2) of data instances by creating k centroids with which to

associate the nearest instances based on the mean of their values, and iteratively move those

centroids to the mean location of the instances closest to them in N dimensions where N is the

number of attributes of each instance. The algorithm then re-assigns any instances which are closer

to a different centroid. (Vassilvitskii 2007) When this method is performed on our data, the two

clusters seen above are generated. The red cluster contains mostly data instances with low

violations per line, and low appearances in JIRA bug tickets, and could be classified as low risk

packages. The blue instances however, contain high violations per line, high appearances in JIRA

tickets, or both so should be considered high risk. There is one red cluster instance with very high

(greater than 0.4) violations per line. This is likely due to a shortcoming in the clustering method

18

and indicates that this instance is an anomaly. This clustering method provides an example of a way

in which future work may help users of Sonar select which packages to focus on.

19

5 Conclusions and Future Work
 Sonar is a powerful tool for evaluating the state of a software project according to various

SCA violations and software quality metrics. The problem with Sonar is that the abundance of the

information presented makes it difficult for a team to find the actionable information amongst the

less impactful information. Using the newly developed Trends plugin however, a user may identify

the components of a project that are potentially accruing the most technical debt in order to be

informed as to which components could be causing defects and should be considered dangerous to

build on without first checking for quality.

 Not only was this plugin developed, but its usefulness was validated through analysis of real

world data from the Android PayPal Here team. The historical data which the team generated was

cross referenced with Sonar analysis data in order to determine what correlations exist between

their bug tickets and Sonar metrics. Our analysis found an average 18.35% increase in the number

of times a package appears in a bug report when the package has a violations per line ratio greater

than the project average. This correlation, however, cannot prove that resolving Sonar violations

causes fewer instances of bugs in that code. Rather, we can only determine that Sonar violation and

bugs are positively correlated.

 As defects accumulate in a software project so does technical debt. In order to decrease

technical debt a team must focus on fixing problematic areas before adding new features otherwise

small problems can slowly compound into bigger ones over time. By correlating Sonar violations

with real world defects it is shown that violations are indicative of increased technical debt because

fixing defects requires a development team to do more work.

Although this research has not shown that acting on Sonar violations will decrease technical

debt it has shown that violations indicate technical debt. A future study could be conducted in

which a team fully adopts Sonar along with the Trends plugin in order to identify and resolve Sonar

20

violations. In such a study, the data generated could be used to prove or disprove the claim that by

resolving Sonar violations, fewer defects will appear in the resulting code.

21

6 Appendix A: Sonar Trends Plugin

Figure 9 – An overview of the options provided by the Trends plugin

22

7 Appendix B: Trends Plugin Run Through
The following is a sample usage scenario of the trends plugin.

1) A query shows the five packages in the PayPal Here project with the most violations per line
between December 10, 2011 and December 10, 2012. The green line which represents the
package “Package 5” is the highest although it is showing a downward trend.

2) With this information we can determine that “Package 5” would be a good place to start
refactoring efforts.

3) Clicking on “Package 5” in the legend open the packages Sonar components page. This page
features a break, by file, of sonar violations and other metrics.

23

4) Clicking on an individual file name opens anther windows which details exactly where in the

source code a violation is located. In this case the file contains one major violation, a class that
should be declared as final

5) By exploring violations and trends in the source code problematic areas can be easily uncovered
and focused on during refactoring efforts.

24

8 Appendix C: Package Data
Data used for ours analysis of historical PayPal Here data. For sections 8.1 to 8.4 cells highlighted in red
are higher than the project average. Package names were anonymized for this report.

8.1 Average Violations Per Line

Package Avg. Violations / Line 10% 20%
 Project 0.073144396 0.0804588 0.08777327
 Package 1 0.048215203 0.0482152 0.0482152
 Package 2 0.036818639 0.0368186 0.03681864
 Package 3 0.045692527 0.0456925 0.04569253
 Package 4 0.071081854 0.0710819 0.07108185
 Package 5 0.050246481 0.0502465 0.05024648
 Package 6 0.070581077 0.0705811 0.07058108
 Package 7 0.060089686 0.0600897 0.06008969
 Package 8 0.086346427 0.0863464 0.08634643
 Package 9 0.036305474 0.0363055 0.03630547
 Package 10 0.033616313 0.0336163 0.03361631
 Package 11 0.032490228 0.0324902 0.03249023
 Package 12 0.067582219 0.0675822 0.06758222
 Package 13 0.039694342 0.0396943 0.03969434
 Package 14 0.060872001 0.060872 0.060872
 Package 15 0.148582762 0.1485828 0.14858276
 Package 16 0.03616304 0.036163 0.03616304
 Package 17 0.031098759 0.0310988 0.03109876
 Package 18 0.039973547 0.0399735 0.03997355
 Package 19 0.034489051 0.0344891 0.03448905
 Package 20 0.091608373 0.0916084 0.09160837
 Package 21 0.051705171 0.0517052 0.05170517
 Package 22 0.050043335 0.0500433 0.05004333
 Package 23 0.133231823 0.1332318 0.13323182
 Package 24 0.020969245 0.0209692 0.02096925
 Package 25 0.029342297 0.0293423 0.0293423
 Package 26 0.097729337 0.0977293 0.09772934
 Package 27 0.090510233 0.0905102 0.09051023
 Package 28 0.1017047 0.1017047 0.1017047
 Package 29 0.070716253 0.0707163 0.07071625
 Package 30 0.040751197 0.0407512 0.0407512
 Package 31 0.073082011 0.073082 0.07308201
 Package 32 0.046121097 0.0461211 0.0461211
 Package 33 0.038318882 0.0383189 0.03831888
 Package 34 0.072317499 0.0723175 0.0723175

25

 Package 35 0.070250232 0.0702502 0.07025023
 Package 36 0.04596835 0.0459683 0.04596835
 Package 37 0.031971878 0.0319719 0.03197188
 Package 38 0.082682965 0.082683 0.08268297
 Package 39 0.072899241 0.0728992 0.07289924
 Package 40 0.069426871 0.0694269 0.06942687
 Package 41 0.024930129 0.0249301 0.02493013
 Package 42 0.060799282 0.0607993 0.06079928
 Package 43 0.057876559 0.0578766 0.05787656
 Package 44 0.08278995 0.08279 0.08278995
 Package 45 0.061042041 0.061042 0.06104204
 Package 46 0.048806492 0.0488065 0.04880649
 Package 47 0.058572897 0.0585729 0.0585729
 Package 48 0.03904064 0.0390406 0.03904064
 Package 49 0.113865103 0.1138651 0.1138651
 Package 50 0.074553151 0.0745532 0.07455315
 Package 51 0.084223213 0.0842232 0.08422321
 Package 52 0.065191467 0.0651915 0.06519147
 Package 53 0.053138657 0.0531387 0.05313866
 Package 54 0.044717091 0.0447171 0.04471709
 Package 55 0.053939069 0.0539391 0.05393907
 Package 56 0.065073716 0.0650737 0.06507372
 Package 57 0.043445978 0.043446 0.04344598
 Package 58 0.060187814 0.0601878 0.06018781
 Package 59 0.054570384 0.0545704 0.05457038
 Package 60 0.051615445 0.0516154 0.05161545
 Package 61 0.4242147 0.4242147 0.4242147
 Package 62 0.054560261 0.0545603 0.05456026
 Package 63 0.037961312 0.0379613 0.03796131
 Package 64 0.058502071 0.0585021 0.05850207
 Package 65 0.06754061 0.0675406 0.06754061

26

8.2 Average Major Violation Per Line

Package
 Avg. Major /
Line 10% 20%

 Project 0.049189349 0.054108284 0.064929941
 Package 1 0.032935285 0.032935285 0.032935285
 Package 2 0.025312815 0.025312815 0.025312815
 Package 3 0.045692527 0.045692527 0.045692527
 Package 4 0.049537868 0.049537868 0.049537868
 Package 5 0.042584784 0.042584784 0.042584784
 Package 6 0.039397627 0.039397627 0.039397627
 Package 7 0.033781764 0.033781764 0.033781764
 Package 8 0.065456327 0.065456327 0.065456327
 Package 9 0.029044379 0.029044379 0.029044379
 Package 10 0.022545966 0.022545966 0.022545966
 Package 11 0.017827229 0.017827229 0.017827229
 Package 12 0.040115649 0.040115649 0.040115649
 Package 13 0.032274396 0.032274396 0.032274396
 Package 14 0.050275418 0.050275418 0.050275418
 Package 15 0.115940831 0.115940831 0.115940831
 Package 16 0.026202881 0.026202881 0.026202881
 Package 17 0.025156931 0.025156931 0.025156931
 Package 18 0.034572709 0.034572709 0.034572709
 Package 19 0.028688738 0.028688738 0.028688738
 Package 20 0.039275759 0.039275759 0.039275759
 Package 21 0.029152915 0.029152915 0.029152915
 Package 22 0.035855295 0.035855295 0.035855295
 Package 23 0.132775029 0.132775029 0.132775029
 Package 24 0.015222119 0.015222119 0.015222119
 Package 25 0.008448401 0.008448401 0.008448401
 Package 26 0.059582198 0.059582198 0.059582198
 Package 27 0.066263195 0.066263195 0.066263195
 Package 28 0.053755773 0.053755773 0.053755773
 Package 29 0.069311295 0.069311295 0.069311295
 Package 30 0.034644654 0.034644654 0.034644654
 Package 31 0.064153439 0.064153439 0.064153439
 Package 32 0.039403974 0.039403974 0.039403974
 Package 33 0.031220063 0.031220063 0.031220063
 Package 34 0.057216573 0.057216573 0.057216573
 Package 35 0.063299351 0.063299351 0.063299351
 Package 36 0.032152725 0.032152725 0.032152725
 Package 37 0.025443589 0.025443589 0.025443589
 Package 38 0.038771352 0.038771352 0.038771352

27

 Package 39 0.0548192 0.0548192 0.0548192
 Package 40 0.055438399 0.055438399 0.055438399
 Package 41 0.016741196 0.016741196 0.016741196
 Package 42 0.036192187 0.036192187 0.036192187
 Package 43 0.0332117 0.0332117 0.0332117
 Package 44 0.061497574 0.061497574 0.061497574
 Package 45 0.042809536 0.042809536 0.042809536
 Package 46 0.036071788 0.036071788 0.036071788
 Package 47 0.055740745 0.055740745 0.055740745
 Package 48 0.032511659 0.032511659 0.032511659
 Package 49 0.083736821 0.083736821 0.083736821
 Package 50 0.048682973 0.048682973 0.048682973
 Package 51 0.055494829 0.055494829 0.055494829
 Package 52 0.053840378 0.053840378 0.053840378
 Package 53 0.046781883 0.046781883 0.046781883
 Package 54 0.033959677 0.033959677 0.033959677
 Package 55 0.027709439 0.027709439 0.027709439
 Package 56 0.043509575 0.043509575 0.043509575
 Package 57 0.037457135 0.037457135 0.037457135
 Package 58 0.045075344 0.045075344 0.045075344
 Package 59 0.020018282 0.020018282 0.020018282
 Package 60 0.036643026 0.036643026 0.036643026
 Package 61 0.022669513 0.022669513 0.022669513
 Package 62 0.045921258 0.045921258 0.045921258
 Package 63 0.030814683 0.030814683 0.030814683
 Package 64 0.052289462 0.052289462 0.052289462
 Package 65 0.049871758 0.049871758 0.049871758

28

8.3 Average Minor Violations Per Line

Package
 Avg. Minor /
Line 10% 20%

 Project 0.019343035 0.021277339 0.023405073
 Package 1 0.01059322 0.01059322 0.01059322
 Package 2 0.009276571 0.009276571 0.009276571
 Package 3 0 0 0
 Package 4 0.017255137 0.017255137 0.017255137
 Package 5 0.007008374 0.007008374 0.007008374
 Package 6 0.024794646 0.024794646 0.024794646
 Package 7 0.019133034 0.019133034 0.019133034
 Package 8 0.016899856 0.016899856 0.016899856
 Package 9 0.00700721 0.00700721 0.00700721
 Package 10 0.007060279 0.007060279 0.007060279
 Package 11 0.011229913 0.011229913 0.011229913
 Package 12 0.025659559 0.025659559 0.025659559
 Package 13 0.007166814 0.007166814 0.007166814
 Package 14 0.006862104 0.006862104 0.006862104
 Package 15 0.027518387 0.027518387 0.027518387
 Package 16 0.006486873 0.006486873 0.006486873
 Package 17 0.005127222 0.005127222 0.005127222
 Package 18 0.003931222 0.003931222 0.003931222
 Package 19 0.004340459 0.004340459 0.004340459
 Package 20 0.035396834 0.035396834 0.035396834
 Package 21 0.001650165 0.001650165 0.001650165
 Package 22 0.013674445 0.013674445 0.013674445
 Package 23 0.000380662 0.000380662 0.000380662
 Package 24 0.002640572 0.002640572 0.002640572
 Package 25 0.010446948 0.010446948 0.010446948
 Package 26 0.030154405 0.030154405 0.030154405
 Package 27 0.021008078 0.021008078 0.021008078
 Package 28 0.045877479 0.045877479 0.045877479
 Package 29 0.001404959 0.001404959 0.001404959
 Package 30 0.002731067 0.002731067 0.002731067
 Package 31 0.008928571 0.008928571 0.008928571
 Package 32 0.00359508 0.00359508 0.00359508
 Package 33 0.005158311 0.005158311 0.005158311
 Package 34 0.012293216 0.012293216 0.012293216
 Package 35 0.005931418 0.005931418 0.005931418
 Package 36 0.011680482 0.011680482 0.011680482
 Package 37 0.005021761 0.005021761 0.005021761
 Package 38 0.042281774 0.042281774 0.042281774

29

 Package 39 0.015313344 0.015313344 0.015313344
 Package 40 0.011036131 0.011036131 0.011036131
 Package 41 0.005394075 0.005394075 0.005394075
 Package 42 0.020206556 0.020206556 0.020206556
 Package 43 0.013132476 0.013132476 0.013132476
 Package 44 0.018541982 0.018541982 0.018541982
 Package 45 0.017751858 0.017751858 0.017751858
 Package 46 0.009891607 0.009891607 0.009891607
 Package 47 0.001027595 0.001027595 0.001027595
 Package 48 0.003597602 0.003597602 0.003597602
 Package 49 0.025134103 0.025134103 0.025134103
 Package 50 0.009524929 0.009524929 0.009524929
 Package 51 0.017096892 0.017096892 0.017096892
 Package 52 0.006183472 0.006183472 0.006183472
 Package 53 0.004668256 0.004668256 0.004668256
 Package 54 0.008314145 0.008314145 0.008314145
 Package 55 0.016407392 0.016407392 0.016407392
 Package 56 0.019572954 0.019572954 0.019572954
 Package 57 0.002823451 0.002823451 0.002823451
 Package 58 0.012229744 0.012229744 0.012229744
 Package 59 0.019835466 0.019835466 0.019835466
 Package 60 0.012608353 0.012608353 0.012608353
 Package 61 0.39803802 0.39803802 0.39803802
 Package 62 0.008639003 0.008639003 0.008639003
 Package 63 0.005644682 0.005644682 0.005644682
 Package 64 0.004199264 0.004199264 0.004199264
 Package 65 0.017668852 0.017668852 0.017668852

30

8.4 Average Info Violations Per Line

Package Avg. Info / Line 10% 20%
 Project 0.003916905 0.0043086 0.0051703
 Package 1 0.004686697 0.0046867 0.0046867
 Package 2 0.002229254 0.0022293 0.0022293
 Package 3 0 0 0
 Package 4 0.004155861 0.0041559 0.0041559
 Package 5 0.000653323 0.0006533 0.0006533
 Package 6 0.006388804 0.0063888 0.0063888
 Package 7 0.006278027 0.006278 0.006278
 Package 8 0.003051363 0.0030514 0.0030514
 Package 9 0.000253884 0.0002539 0.0002539
 Package 10 0.004010068 0.0040101 0.0040101
 Package 11 0.003433086 0.0034331 0.0034331
 Package 12 0.001807011 0.001807 0.001807
 Package 13 0.000253133 0.0002531 0.0002531
 Package 14 0.002660816 0.0026608 0.0026608
 Package 15 0.003842658 0.0038427 0.0038427
 Package 16 0.003473286 0.0034733 0.0034733
 Package 17 0.000814605 0.0008146 0.0008146
 Package 18 0.001396135 0.0013961 0.0013961
 Package 19 0.000716893 0.0007169 0.0007169
 Package 20 0.016357229 0.0163572 0.0163572
 Package 21 0.02090209 0.0209021 0.0209021
 Package 22 0.000513594 0.0005136 0.0005136
 Package 23 0 0 0
 Package 24 0.003106555 0.0031066 0.0031066
 Package 25 0.010446948 0.0104469 0.0104469
 Package 26 0.007266122 0.0072661 0.0072661
 Package 27 0.001303327 0.0013033 0.0013033
 Package 28 0.001188536 0.0011885 0.0011885
 Package 29 0 0 0
 Package 30 0.003375476 0.0033755 0.0033755
 Package 31 0 0 0
 Package 32 0.001229896 0.0012299 0.0012299
 Package 33 0.001842254 0.0018423 0.0018423
 Package 34 0.00280771 0.0028077 0.0028077
 Package 35 0.001019462 0.0010195 0.0010195
 Package 36 0.002135142 0.0021351 0.0021351
 Package 37 0.001506528 0.0015065 0.0015065
 Package 38 6.27E-05 6.27E-05 6.27E-05

31

 Package 39 0.002766697 0.0027667 0.0027667
 Package 40 0.001780777 0.0017808 0.0017808
 Package 41 0.001621017 0.001621 0.001621
 Package 42 0.004400539 0.0044005 0.0044005
 Package 43 0.011532382 0.0115324 0.0115324
 Package 44 0.001328842 0.0013288 0.0013288
 Package 45 0.000480646 0.0004806 0.0004806
 Package 46 0.002724634 0.0027246 0.0027246
 Package 47 0.00175443 0.0017544 0.0017544
 Package 48 0.000266489 0.0002665 0.0002665
 Package 49 0.001033654 0.0010337 0.0010337
 Package 50 0.016345249 0.0163452 0.0163452
 Package 51 0.008968861 0.0089689 0.0089689
 Package 52 0.005167616 0.0051676 0.0051676
 Package 53 0.001688518 0.0016885 0.0016885
 Package 54 0.001248001 0.001248 0.001248
 Package 55 0.009674257 0.0096743 0.0096743
 Package 56 0.001991188 0.0019912 0.0019912
 Package 57 0.003165392 0.0031654 0.0031654
 Package 58 0.001921817 0.0019218 0.0019218
 Package 59 0.014716636 0.0147166 0.0147166
 Package 60 0.002364066 0.0023641 0.0023641
 Package 61 0.000965742 0.0009657 0.0009657
 Package 62 0 0 0
 Package 63 0.001138839 0.0011388 0.0011388
 Package 64 0.001725725 0.0017257 0.0017257
 Package 65 0 0 0

32

8.5 Package Defect Frequency

Package

Frequency

 Project n/a
 Package 1 2
 Package 2 3
 Package 3 1
 Package 4 3
 Package 5 1
 Package 6 2
 Package 7 1
 Package 8 5
 Package 9 4
 Package 10 3
 Package 11 10
 Package 12 4
 Package 13 3
 Package 14 3
 Package 15 6
 Package 16 3
 Package 17 3
 Package 18 4
 Package 19 14
 Package 20 12
 Package 21 1
 Package 22 2
 Package 23 2
 Package 24 2
 Package 25 2
 Package 26 2
 Package 27 8
 Package 28 2
 Package 29 2
 Package 30 2
 Package 31 2
 Package 32 4
 Package 33 4
 Package 34 2
 Package 35 4
 Package 36 4
 Package 37 1
 Package 38 1

33

 Package 39 2
 Package 40 3
 Package 41 3
 Package 42 1
 Package 43 4
 Package 44 2
 Package 45 1
 Package 46 1
 Package 47 5
 Package 48 2
 Package 49 5
 Package 50 1
 Package 51 1
 Package 52 3
 Package 53 1
 Package 54 6
 Package 55 9
 Package 56 1
 Package 57 6
 Package 58 3
 Package 59 1
 Package 60 2
 Package 61 3
 Package 62 1
 Package 63 15
 Package 64 1
 Package 65 2

34

9 Glossary
Continuous Integration – The practice of committing small, focused changes to a software project
and continuously merging (integrating) these changes with a central source that all developers
access.

Defect – An error in source code that causes unexpected behavior in the software.

Git – A distributed revision control system.

Iterative Development – A software design philosophy that emphasizes short iterations of work
completion. A single iteration consists of determining requirements of a feature, designing the
feature, implementing the feature and testing the feature.

JIRA – An issue tracking system for software development used for bug tracking, feature tracking
and project management.

Sonar – A static code analysis tool.

Static Code Analysis - Programmatically scanning source code for potential weak spots and
violations.

Technical Debt – The accumulation of defects and other issues in a code base over time.

Violation – In the context static code analysis tools a violation refers to potentially problematic
chunks of source code.

35

10 References
Fowler, Martin. "Continuous Integration." Martin Fowler. 2006.

http://martinfowler.com/articles/continuousIntegration.html (accessed February 12, 2013).

Gaudin, Olivier. Evaluate Your Technicla Debt with Sonar. June 11, 2009.
http://www.sonarsource.org/evaluate-your-technical-debt-with-sonar/ (accessed February 12,
2013).

Gaudin, Olivier.. "Personal Communication." September 24, 2012.

Hall, M. A. "Correlation-based Feature Subset Selection for Machine learning." Hamilton, NZ, 1998.

Jenkins CI Community. About Jenkins CI. February 12, 2011. http://jenkins-ci.org/content/about-jenkins-
ci (accessed February 12, 2013).

Johnson, Stephen C. Lint, a C Program Checker. Bell Telephone Laboratories, 1977.

Mark Hall, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutermann. The WEKA Data Mining Software.
SIGKDD Explorations, 2009.

Parasoft. Embedded Software Quality Whitepaper. 2012. http://alm.parasoft.com/embedded-software-
vdc-report/ (accessed February 12, 2013).

Royce, Winston W. Manageing the Development of Larege Software Systems. IEEE, 1970.

Vassilvitskii, Arthur S. "K-means++: The Advantage of Careful." 2007.

Victor Basili, Dieter Rombach. The Goal Question Metric Approach. Encyclopedia of Software
Engineering, 1994.

	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 Problem Statement
	1.2 Hypothesis

	2 Background
	2.1 Sponsor Information
	2.2 The Android PayPal Here Team
	2.3 Tools Used
	2.3.1 Jenkins
	2.3.2 Sonar

	3 Methodology
	3.1 Sonar Trends Plugin
	3.1.1 Technology Requirements
	3.1.2 Plugin Design
	3.1.3 Deployment

	3.2 Analysis
	3.2.1 Data Sources
	3.2.2 Goal, Question, Metric Approach
	3.2.3 Analysis Process

	4 Results
	4.1 Weka Data Mining

	5 Conclusions and Future Work
	6 Appendix A: Sonar Trends Plugin
	7 Appendix B: Trends Plugin Run Through
	8 Appendix C: Package Data
	8.1 Average Violations Per Line
	8.2 Average Major Violation Per Line
	8.3 Average Minor Violations Per Line
	8.4 Average Info Violations Per Line
	8.5 Package Defect Frequency

	9 Glossary
	References

