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Abstract 

In this Major Qualifying Project, a small-scale robotic system that sorts a classroom set 

of LEGO Mindstorms Robotics Education pieces back into kit trays was developed. Using AI 

and a mechanical part manipulation system, the robot sorts and counts individual pieces to 

ensure each kit is organized with the correct number and layout of pieces. The final design is 

effective, portable, and affordable for organizations who could benefit from it, such as schools, 

summer camps, and extracurricular programs who incorporate LEGO Robotics education into 

their curricula.   
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Introduction 

According to Forbes Magazine, “[LEGO Education’s] Mindstorms [robotics kit] is one of 

the most prevalent, most powerful hands-on science and engineering resources in schools around 

the world [1].” Since its release in 1998 [1], the Mindstorms robotics product line has been 

integrated into K-12 classroom, after-school, and summer camp curricula as a powerful, hands-

on STEM learning tool. Hands-on learning helps students become more engaged, demonstrate 

higher-level understanding of topics, and learn to work with their peers [2]. But there is one big 

downside: cleanup. 

Education programs who use the LEGO Mindstorms or similar platforms constantly need 

to reorganize and inventory their LEGO kits. Even when involving students, this is a very labor-

intensive task that cuts hours out of the limited time they have for learning robotics. This 

problem is exacerbated when allowing students to expand their creativity and the complexity of 

their systems by combining kits or using extra LEGO parts.  

If kits are staying in one place, approximate sorting that can be done more quickly may 

be acceptable—a missing part can be found elsewhere in the room. However, a school district 

that owns many LEGO kits often uses them for many different programs at different locations 

throughout the year and usually wants to ensure each kit is exactly complete. In one of the team 

member’s K-12 school district, a city-wide district serving over 47 schools, LEGO robotics kits 

are used for STEM summer camps at a few locations in the summer, and then for FIRST LEGO 

League at many elementary schools in the fall. In between these major events, all the district’s 

LEGO kits need to be carefully inventoried – a necessary, but tedious, and costly process. After 

one month of summer camps, the school district spent over $2000 in labor costs inventorying 

these kits- a recurring, considerable cost for a public-school system’s STEM program. 
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The goal of this project is to develop a small-scale robotic system that sorts LEGO 

Mindstorms pieces back into kit trays. The system will sort and count individual pieces to ensure 

each kit is organized with the correct number and layout of pieces. Ideally, the final consumer 

product will be small, portable, and affordable for organizations who could benefit from it. Our 

MQP team made progress towards this goal by designing an overall LEGO sorting system and 

then building and testing its most innovative components. 
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Background 

The background information for this project comes from two sources: research on what 

potential consumers, who are educators who use LEGO Education to teach, would like to see 

from a LEGO Sorting Robot, and investigation of past attempts to create similar machines. 

Based on this background research, the team developed a set of design goals and criteria for a 

LEGO sorting classroom robot. 

Consumer Research 

At the beginning of the design process, the team held a small focus group with two 

potential consumers for this robot: Mike Barney, director of the Massachusetts Academy of Math 

and Science, and Colleen Shaver, director of WPI’s Robotics Resource Center and former 

Education Resources Coordinator at FIRST. Their ideal version of this product would be a robot 

that sorts multiple kits simultaneously, prioritizes completing a few kits over partially 

completing many kits and notifies the user of missing parts. They also pointed out that the design 

should be easy for an educator to lift, set-up, use, and store. Speed was not a huge concern if an 

unsupervised robot could sort a class set of kits overnight. Finally, they said a reasonable cost 

would be between $500-$700 for this product. 

The educators we interviewed suggested that a major consumer would be for-profit 

STEM education centers and summer camps that showcase completed robots, leaving staff to 

organize the kits. Instead of having to pay a team to sort out entire kits, a robot could do all of 

this with minimal human interaction, reducing costs. The costs would shift from reoccurring 

labor costs to a one-time purchase of the robot, as well as occasional repairs. Since the robot 

requires minimal interaction, it would also allow educators in any environment to spend more 

time on other activities. 
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In addition to saving time and money, an automatic sorter system used in a classroom 

would inspire young roboticists as an example of a “cool” robot, a step up from the ones they 

have been building. This ties into the purpose of STEM education- to show kids how they can 

apply these skills in the future. 

While this LEGO-sorting system on its own would be invaluable to STEM education 

programs, its general hardware and software framework could allow this robot to be used for 

other consumer/small business sorting applications. A hobbyist, for example, could use this robot 

to sort their own LEGOs into their own trays. In contrast, a business might be able to use the kit 

building system to fulfill orders from an inventory of small parts. Our focus group even 

suggested using the robot to sort other companies’ robotics education kits, such as VEX. 

Previous Work 

There have been many attempts to sort LEGO pieces using robots over the past several 

years. Two MQPs at WPI—in 2018 and 2019—have approached this problem in vastly different 

ways. In addition, many individuals have published YouTube videos showcasing their LEGO 

sorting machines. A recent one, the “Universal LEGO Sorting Machine” is particularly 

interesting because the creator used 3D models to teach a neural network to recognize every part 

LEGO has ever produced. 

The AY2018-19 A.I LEGO Sorter MQP had 3 subsystems: a Serializer, a classifier, and a 

Distributor. It has a similar goal to our system: to sort LEGOs using a vision system. To 

accomplish its goal, it used ROS for communication between the 3 subsystems. The Serializer 

used a series of rotating drums to separate parts, the classifier used a convolutional neural 

network trained on real images, and the Distributor, which uses a polar robot to sort the pieces. 
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Some improvements for this system the team suggested are to make it cheaper and smaller, have 

more reliable lighting, and add a second camera for better depth perception [3].  

 

Figure 1: AI LEGO Sorter 

The AY2019-20 Scalable Sort Automation MQP took the problem of sorting LEGO 

pieces in a different direction.  Their goal was to make a general system that could sort any 

collection of parts. To do this, the team created a large system that performed sorting based on 

size, weight, and vision data. They also mathematically analyzed how changing different 

parameters of a sorting system affects the time it takes to sort [4]. 

In December 2019, software engineer Daniel West published a YouTube video 

introducing his “Universal LEGO Sorting Machine” (Figure 2). This machine, which is 

constructed from LEGO itself, sorts at a rate of 0.5 bricks/second. Using a series of conveyors 

and a V-shaped “vibration feeder”, it pulls the parts out of a hopper and serializes them. Next, it 

takes a video of the part under an extremely bright light and uses a convolutional neural network 

to identify the part based on the video frames. Finally, it drops the part into one of 18 buckets by 

opening a gate along the conveyor [5]. The innovative feature of this machine is that its 
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universal—it can identify any LEGO part ever created, using a convolutional neural network 

trained on LEGO 3D models. To overcome the simulation-to-reality gap, West employs a 

technique called “domain randomization.” Instead of trying to make the computer-generated data 

match the real world perfectly, domain randomization randomizes parameters like color, 

material, and lighting so the neural network is more robust [6]. An example of the randomized 

data is shown in Figure 3.  

 

Figure 2: West's Universal LEGO Sorting Machine [5] 

 

Figure 3: Domain Randomization of Lego Models [7] 
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Design Specifications 

 Balancing the consumer wish-list and a reasonable timeline for this project, the team 

devised a set of specifications for a LEGO Sorting Robot. A viable robot should sort the upper 

tray of one LEGO Mindstorms NXT Education kit (Figure 4) in 40 minutes. This equates to 

sorting 10 parts every minute. This set of LEGOs has 76 distinct pieces with 399 pieces total1.  

 

Figure 4: NXT Upper Sorting Tray [8] 

 Based on our research into past sorting attempts, we divided the sorting process into three 

subsystems: the Serializer, the Identifier, and the Distributor. As seen in Figure 5, the Serializer 

intakes parts from a hopper and separates them so only one enters the next system, the Identifier 

at a time. The Identifier assigns a part number and color to the part, then the Distributor uses that 

information to place the part in the designated compartment. 

 

 

1 The current generation of LEGO Mindstorms, the EV3, replaced the NXT in 2013. However, the robot should be 

able to switch between the two with only software training updates because the sorting tray is exactly the same and 

the pieces are similar. We chose the NXT because it was easier for us to find kits to test with.  
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Figure 5: Sorting Process Diagram with Subsystems 

 

The completed robot should be able to: 

1. Run for at least 1 hour without human assistance 

2. Serialize parts correctly at least 97% of the time and negatively impact the 

Identifier due to serializing errors, such as by having parts overlap, less than 1% 

of the time 

3. Correctly identify the color and part number of properly serialized parts at least 

97% of the time and unknowingly misidentify a part less than 1% of the time. 

Parts that are unknowingly misidentified will be parts in the set that end up in the 

unknown parts drawer. 

4. Successfully transport parts from the vision zone to the correct section of the tray 

(based on results from Identifier) at least 98% of the time 

5. Sort at a rate of .17 parts per second (6 seconds per part) 

6. Keep track of the number and types of parts sorted and know when a kit is 

complete 
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Design Methodology 

As dictated by our sorting process (Figure 5), our LEGO Sorting Robot design is divided 

into 3 subsystems: a Serializer, an Identifier, and a Distributor; and two part storage units: an 

unsorted part Hopper and a tray Storage Tower. These sections of the robot are labeled and 

defined in the graphic below. 

 

Figure 6: Overall Robot Design & Sorting Process 

 Parts are poured into a hopper, which in turn slowly releases them onto the main part of 

the Serializer. The Serializer consists of conveyer belts, each of which are each faster than the 

last. This results in parts getting further apart from each other. In addition, some belts are 
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oriented perpendicularly to each other so that parts next to each other on one belt will be 

separated on the subsequent one.  

Above the Serializer’s final belt is the Identifier camera. The Identifier’s purpose is to 

determine which piece is on the conveyer belt so the Distributor can put the part in the correct 

location. This system was designed to interface with a convolutional neural network which 

identifies parts (similar to previous work in LEGO Sorting). From there, if the part is identified 

with enough certainty, the Distributor will move it to its designated location. Otherwise, the part 

will be put in a bin at the bottom of the robot to be reevaluated by the machine or human later. 

During this step, the identified parts are noted by the system so it can determine if any parts are 

missing, or if there are any extras. 

The Distributor’s role is to move parts to the correct location in a tray. The Distributor 

receives the location from the Identifier, and then moves there. This is achieved using a series of 

systems which move the end effector in the x, y, and z directions relative to the tray or trays. The 

x-direction is controlled by moving the end effector, which holds the part, being moved by a 

timing belt. The y-direction is controlled by a set of moving electromagnets which move the tray 

to the correct location. This makes it so the end effector does not have to slide between the 

system’s trays; the trays are instead moved to it. Finally, the z-direction is controlled by a series 

of chains, which allow for the robot to switch between different trays. 

Hopper & Serializer 

 As the first subsystem in our sorting process, the goal of the Serializer subsystem is to 

feed parts out of a hopper and process them so that they are “serialized,” or leave the subsystem 

in a steady stream of individual parts. This will allow the subsequent subsystems, the Identifier 

and the Distributor, to process one part at a time. The Serializer should be able to serialize parts 
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correctly at least 97% of the time and negatively impact the Identifier due to serializing errors 

less than 1% of the time. An example of a negative impact would be an incorrect identification 

by the Identifier, rather than two non-serialized parts being placed in the unknown parts bin. 

Physical Design 

 For the Serializer design, we considered two ideas used on past projects: the drums from 

the 2018 MQP and a vibrating table from the Universal Lego Sorter. However, the 2019 MQP 

suggested the idea of a series of conveyor belts, each subsequent one moving faster than the last, 

to separate out parts. Since there would need to be a conveyor belt to pass the parts under the 

Identifier anyway, we decided that this would be the simplest solution to try.  

 We improved on the conveyor belt idea, by adding a 90-degree turn, so that parts 

traveling next to each other would also be separated. To test if this idea would work, we created 

the prototype belts shown in Figure 7.  

 

Figure 7: Serializer, First Prototype 
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 We found that the concept worked well but would benefit from a second 90 degree turn 

and two conveyor belts. We also found that parts could get stuck on top of each other. To 

mitigate this problem, we added a passive door on the first conveyor belt (Figure 8). This door 

concept will be used to create the feed mechanism from our hopper, which will be mounted 

above the first conveyor. 

 

Figure 8: Serializer First Prototype, Passive Door 

Belt Design 

 After validating that the idea worked, we designed a second prototype belt: this one with 

the components we plan to use on the final design. Because LEGOs are not a heavy load, we 

determined we could 3D print the frame. The belt is from McMaster-Carr and is made from 

brown neoprene rubber, which is perfect because none of the parts we are sorting are brown. To 

add friction to the 3D printed pulleys we coated them in rubber spray. This prototype is shown in 

Figure 9 below. It works well, but even though we designed to standard conveyor belt 
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specifications to avoid tracking issues [9], the belt still runs off to one side after a while. This is 

because the tensioner on the driven pulley is very hard to adjust. 

 

Figure 9: Serializer, Belt Construction Prototype 

To improve the conveyor belt design, we changed to a jack-screw tensioning system 

(shown below). While this improved the belt tracking problem, it increased the profile of the belt 

chassis, which complicated construction of a full serializer system.  

 

Figure 10: Serializer, Jack-Screw Tensioning Design 
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Serializer Design 

The intended layout of the completed Serializer system is shown in Figure 11. The parts 

move in the direction indicated by the arrows. This system sits above the Distributor system, and 

the hopper is located above the top belt. Rails should be included to keep the parts from falling 

off the side of the belt.  

 

Figure 11: Serializer Belt Layout 

To simplify controls and lower costs of this system, closed loop timing belts could be 

used to set the speed of each belt in relation to the next. The base rate of speed may be slowed at 

times deemed appropriate in order to allow for a process taking excess time to finish being 

performed. Since our target audience preferred reliability over speed, this is an acceptable 

proposition to them.  

Ideally, the whole system could be controlled with one motor. Based on our target sorting 

speed, where the final belt would run at 1.6 cm/s, we calculated the power needed for this motor 

to be 0.6 W. These calculations can be found in Appendix A.  
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Hopper Design 

 Finally, our proposed hopper design is shown below. This design is incomplete, as it 

would most likely need a non-passive latch at the bottom to control the rate parts entered the 

system, but this figure illustrates the geometry and construction of the hopper. 

 

Figure 12: Hopper Design 

Identifier 

The goal of the Identifier subsystem is to identify the part type and color of each part in 

the NXT set correctly at least 97% of the time and unknowingly misidentify a part less than 1% 

of the time. These metrics assume the parts have entered the Identifier serialized correctly. The 

team reviewed various methods to identify a LEGO part, including measuring physical 

properties like size and weight, but, for simplicity, ultimately decided to use a vision system.  

The physical build of the Identifier is a camera mounted about the end of the Serializer 

system. The software component uses a convolutional neural network to identify the part type 

and traditional computer vision techniques to identify the color. To create training data the neural 

network, we planned to use the Universal Lego Sorter’s technique of rendering digital 3D 

models of Legos using domain randomization.  
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Physical Design 

 In a final design, the height and angle of the camera will be fixed, but, for testing, we 

designed a 3D printed mount where these parameters could be adjusted (Figure 13). For the 

camera, we are using an 8MP IMX219 camera with a 77° field of view. We are also using an 

LED ring light to keep the lighting consistent. The prototype setup with the Serializer conveyor 

belt below is shown in Figure 12. 

 

Figure 13: Identifier Prototype CAD Model 
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Figure 14: Identifier Prototype 

Hardware Selection 

 We based the hardware selection for the whole system around the hardware requirements 

for the Identifier. We need a large GPU to train and run the neural network, so we chose to use 

the NVIDIA Jetson Nano 2GB. This single board computer has a 128-core NVIDIA GPU, is 

specifically designed for machine learning, and, at only $60, fits into the budget for this product. 

It also has 40 GPIO ports, which mirror the ones found on the Raspberry Pi, which we use for 

motor and sensor control, instead of purchasing another controller.  

Software Design 

 We also based the software selection of the whole system around the requirements for the 

convolutional neural network. We chose to program in Python 3 because it is the most well 

supported language for machine learning. For the Identifier, the software had four main tasks: 

processing the camera feed, creating the training data, building the neural network, and 
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determining the part based on the part database. The Identifier will accomplish these by taking 

pictures of the parts going through it. 

Camera Feed Processing 

 To feed our images into the neural network and identify them, we need to be able to 

process them from the camera feed. We will do this using a background subtractor mask. An 

example of this can be seen in Figure 15, but we will also add a blur to reduce noise. Once the 

part is separated from the background, we will identify the color by averaging the colors in the 

masked section crop the camera field to that image, turn it into grayscale, and feed it into the 

neural network to identify the part type. 

 

Figure 15: Background Subtractor 

Training Data 

To get appropriate outputs from the neural network, it must be trained, and to that, data 

must be collected for training. Traditionally, data collection for training would involve taking 

hundreds, if not thousands, of pictures, and then labelling them. To circumvent the time-sink of 

that process, we tried a technique introduced in 2017, and used by the Universal LEGO Sorter 

called domain randomization. This technique allows us to use computer generated data to train 

machine learning system. Traditionally, using computer generated data to train a neural network 
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have not worked, mostly because attempts were made to make the computer renders closely 

resemble real life. The computer renders cannot perfectly match real life though, so the AI 

struggles to properly identify the real-life images. However, by randomizing parameters like 

lighting, noise, background, and rotation, it makes the pool of information that the neural 

network is able to understand much bigger, so then it is better able to understand the real-life 

images [6]. 

 To generate this data, the first step was to obtain the part numbers present in the subset of 

NXT kit parts that are being sorted, (this can be accomplished either by hand or using the 

BrinkLink website API). Next, the CAD files for those parts are obtained from Ldraw, a CAD 

program designed to be used with LEGO bricks. The program has a CAD library of every LEGO 

manufactured. From there, the CAD files are converted into Blender files. The reason for the 

conversion is that BlendTorch [10], a Python library, uses the Blender API to automate the 

image generation and domain randomization process for use with the machine learning library, 

TorchVision. The output from this process is a series of tensors and labels, which are then 

imported into the Neural Network to be used as its training data.  

 

Figure 16: Screen Capture of Blender Animation for Domain Randomization 
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Figure 17: Visualization of the Tensor Outputs for 64T gear (part #3649) 

Neural Network 

 The Neural Network is designed to take in images from the Identifier, which have been 

cropped by a bounding box, removing as much extraneous data as possible. In addition, the 

images are converted into grayscale to eliminate any challenges that coloration will pose since 

the color is determined separately. In addition, this will decrease the amount of data needed for 

each picture since each pixel can be encoded into a single value, instead of the combination of 

red, green, and blue needed for RGB-encoded photos. In order to train the Neural Network, 90% 

of the PyTorch tensors will be used, leaving 10 % for verification. This data will be split evenly 

by part, ensuring that the neural network receives an equal amount of training for each part, 

preventing a disparity between its ability to distinguish between certain parts wherever possible. 

 When being used by the robot to identify parts, the Neural Network will work as follows. 

It will start off by intaking a photo taken by the Identifier, which has been converted to a 2d 

array of 8-bit brightness values and cropped by a bounding box. Next, they will go through series 

of layers which will down-sample the arrays with 3x3 max-pooling. In this case, that would 
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result in the array’s values in a 3x3 subsection of the matrix being replaced with a single value in 

the next layer, which will contain the highest number in that subsection. This technique allows 

for the data to be reduced, while preserving the shape and edges, which are the aspects that the 

later stages will need to know. After the down-sampling is complete, the resulting array will be 

flattened, turning the array from a 2d array to a single dimension. The dense layers, which are the 

heart and soul of the Neural Network, are designed to take in a one-dimensional array, so this 

step must be taken. The dense layers contain perceptrons, which will adjust their values based on 

the training data, to eventually return the probability that each part is the one that was just 

obtained by the Identifier. 

Color Algorithm 

 To calculate the color, an image of the part, with its background RGB pixels replaced 

with [0,0,0] is made. From there, the R, G, and B channels of each pixel which are not [0,0,0] is 

averaged. From there, the resulting average RGB value is compared to the reference value for 

each color in the set, which can be found in in ColorDB.py. To facilitate testing, a GUI was 

created, as seen in Figure 18. which could calculate the color of a user selected image and 

convert it to Greyscale, which would be used by the Neural Network. 

 

Figure 18: The Image Testing GUI, on startup 
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Part Database 

The Part Database is responsible for determining what part has been spotted by the 

Identifier. This is done by inputting the color and part number/shape of the part. From there, 

those two parameters are appended to create a “key” which will be used to search for the part. 

However, before looking for the part, a preliminary search takes place to see if it is present in the 

database, which in this case is modeled as a dictionary. If there is no value with the key, the 

program will keep searching the database as long as the certainty of the part remains above 25%. 

If it falls below this threshold, the function will return unknown, which from there will be treated 

as the name of the part. If a part is found, another search will take place, but this time, the name 

of the part will be returned. Once the name of the part has been determined, it is passed to the 

Distributor software, and the tray database to determine where the part goes.

 

Figure 19: The flow of the Part Database 

In short: there are two outcomes for a part. If there is no shape and color combination 

with a high enough certainty, it is unknown and it will be placed into the tray for unknown parts. 

If there is a valid combination, it is valid and the TrayDB will place it in the first available place. 
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Distributor & Storage Tower 

The Distributor’s job is to sort the identified piece into the correct storage location. To be 

most useful for the consumer, LEGO Robotics educators, we determined that the Distributor 

should be able to sort multiple trays at once. Ideally, the Distributor should be “small,” which 

means being able to fit well inside a classroom, both during use and for storage. It must also be 

easy to move and set up. as well as have variable or expandable tray capacity.  

Physical Design 

Design Ideas 

 We produced four different Distributor design ideas, based on the goal for the subsystem 

to sort multiple trays at once. These ideas, which can be seen in Figure 20, were a polar robot, a 

horizontal array, a drawer stack, and a drawer-less stack. The orangey-brown boxes represent 

trays, the green and red represent moving gantries, and the blue represents an elevator. 
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Figure 20: Distributor Design Ideas 

 We quickly eliminated the polar and drawer-less stack ideas. The polar was removed 

because the end of the arm would be moving too fast for comfort and safety, posing a hazard to 

children in its classroom environment, and the drawer-less stack was decided against because the 

space between trays would make it too tall to be practical. That left us with two options, the 

horizontal array, and the drawer stack. The horizontal array, having only two axes, was far 

simpler, but took up a lot of floor space. The drawer stack was more complex but took up far less 

space. In addition, the drawer stack would be easier to add capacity to. When asked about their 

preference, the consumers we interviewed preferred the drawer stack. 

 To determine which option would be best and most feasible, we ran a simulation in 

Python where all the parts in 12 NXT trays were mixed randomly, and then distributed one by 

one in the first tray that needed the part. The results of this analysis can be seen in Figure 21 

below, where you can see which tray, out of the 12 possible, each part is sorted into. 
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Figure 21: Results of Distributor Sort Analysis 

 This simulation gave us some insight into how our two Distributor options would move. 

For the drawer stack, the graph would mirror the movement of the vertical “z-axis”, which would 

have to switch heights and drawers about 50% of the time. However, the z-axis does not have 

move extremely far each time it switches heights, as most of the time it simply switches between 

neighboring trays. For the horizontal array, however, this graph illustrates how the robot would 

first fill up the trays closest to the part pickup point. As the sort went on, the Distributor would 

become less and less efficient, as it would have to move a further distance between the part 

pickup and the tray to drop-off. This analysis, along with speed calculations to ensure the robot 

could meet the 6 second part processing time, lead us to choose the vertical drawer Distributor 

design.  

Final Design 

The vertical drawer system, which can be seen in Figure 22, has a series of trays, stored 

vertically in drawers. In front of the drawers is a 3-axis cartesian robot, which puts parts into the 

correct pocket. This is accomplished by first dropping the part into the end-effector, which 
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simultaneously moves to the height of the targeted tray. Once the part has arrived, the tray 

drawer is pulled open using an electromagnet, until the desired y position is reached. While the 

drawer is being opened the end-effector moves in the x-direction until it is above the desired 

pocket. Once the end effector and tray are in the goal location, the end effector opens and drops 

the part into the pocket. From there, the tray is returned to its initial position if needed and the 

cycle continues again for each part.  

 

Figure 22: Distributor CAD 

 The first part of this design, the Storage Tower (Figure 23), is made of off-the-shelf 

drawer slides to reduce cost. Each drawer is built with laser cut wood that fits the trays inside, 

and a steel pull in front allows it to be pulled by an electromagnet attached to the Distributor. 

The empty space at the bottom is so that the Distributor mechanism can rest there at the end of 

the sort and the drawers can be pulled out easily. To increase the capacity of the storage tower, 

one must simply increase the height of the structure and add more drawers. This allows for a 

Distributor design customized to each classroom’s needs. 
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Figure 23: Distributor Tray Storage Tower 

The x and y axes (Figure 24), are actuated by wheeled gantries that slide on the v-slot 

aluminum extrusions. These are powered by timing belts and stepper motors, as calculated in 

Appendix A. Each axis has a limit switch to zero the axis position. The x-axis holds the end 

effector and is responsible for moving side to side above the tray to drop the part in the correct 

place. The y-axis has an electromagnet that attaches to and opens the drawer. It can position the 

correct compartment of the drawer under the x-axis, to control where the part is placed in the y-

direction. The whole frame that holds these axes slide up and down to manipulate the other trays.  
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Figure 24: Distributor X and Y axes 

 Figure 25 shows the vertical movement, or “z-axis” mechanism. The structure that holds 

the x and y axis slides up and down on a chain-driven elevator system to manipulate other 

drawers. This system uses a snow blower motor, which has a worm-gearbox to prevent back 

drive, and an ultrasonic sensor to track the elevator’s position. Power calculations for the motor 

can be found in Appendix A. This system uses chain so that it can be easily modified to extend 

the height to add capacity for additional tray drawers. A user-adjustable inline chain tensioner on 

each chain ensures the chain is correctly tightened. 
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Figure 25: Distributor Z-Axis 

 The end-effector bucket (Figure 26) holds the part, which drops in from the Serializer and 

Identifier above. The bucket is tilted, so that parts fall to one end, then the doors on the bottom 

will open to match the width of the tray-compartment below it, so the part falls into the correct 

tray. The end-effector was 3d printed and powered with one servo. 

 

Figure 26: Distributor End Effector 

 To ensure that the physical design worked, we first constructed and tested the z-axis 

elevator. Once we conformed binding of the corner slides was not an issue, we constructed and 

tested the rest of the Distributor, along with the storage tower. 
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Software Design 

 The software for the Distributor is designed to be as simple as possible, and can also be 

found in Appendix C. The end effector is told where to move based on the destination location of 

the part. The destination location is found by using the tray database, which tracks what parts are 

in which trays, and how many more parts each pocket can hold.  

The Distributor movement function, goTo, takes in a list of three numbers, which 

represent the destination x, y, and z values, and a pocket number, which it obtains the amount the 

claw should open to ensure that the part will end up inside the pocket. Opening the claw to far 

could cause it to fall into another, and not opening it enough could prevent some pieces from not 

ending up inside of it. goTo‘s job is to tell the individual motors and magnet to do. It performs 

the following sequence:  

1. Ensures that the robot is in the correct state to start the sequence, which consists of 

closing the end-effector to prevent the part from prematurely vacating it 

2. The Y-axis motor moves away from the trays, and into the position for the part to be 

placed into it from the Serializer 

3. The X-axis motor moves into place to receive the part 

4. The part is dropped into the end-effector by the Serializer 

5. The robot moves to the z and x positions necessary to place the part 

6. The y axis motor moves the magnet into position (self.CLOSETRAYY) to attract the 

tray, and the magnet is turned on .1 seconds after it is reached. 

7. The y axis motor moves the magnet to the goal y position, resulting in the end-effector 

ending up on top of the pocket. 

8. The magnet is turned off, and the claw is opened, placing the part into the pocket 
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9. After a .25 second break, the claw is closed, ensuring that it had enough time to open. 

10. The X and Y motors are told to move to –1000, resulting in them hitting the bumper 

switches on the x and y axes, ensuring that their positions stay calibrated 

11. The Y axis is moved to 100, since leaving it at 0, the reset position, lead to trays getting 

damaged when manually moving the Z-axis 

Low-level Motor Code 

The Distributor’s lower-level motor code is primarily controlled by a function called 

MotorGoTo. Its parameters are the goal position for that motor, as well as the name of the motor, 

which is either “X”, “Y”, or “Z”. From here, depending on the motor, operation starts to diverge, 

but the x and y axes work almost identically. For those two motors, to find the direction pin 

value to be sent to the stepper controller, the direction needed for it to reach the goal position is 

determined and set based on the calculation. From there, a while loop runs until the end 

effector’s position on that axis equals the goal, as determined by an estimation of the distance 

traveled by each step, or the axis hits the reset switch while moving in the negative direction. As 

long as the while loop runs, a square wave with a period of .002 seconds low and .002 seconds 

high is sent. If the robot tries to send a robot too far in the positive direction, the command will 

be ignored since this would result in the motor trying to move to a position it cannot physically 

reach and could damage the motors.  

The Z-axis motor functions differently. Instead of adding a set value to the calculated 

position each time the loop iterates, it uses an average of fifty ultrasonic readings to determine 

the end-effectors z-position. Also, since it is a conventional DC motor, it wants a duty cycle to 

determine the amount of effort exerted by the motor. To calculate this value, a PID controller is 

used. The error value for the P value is multiplied by the difference between the robots desired 
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position and its measured position, the error value for the d controller is determined by 

comparing the previous iteration’s error to the current one, and the I controller’s error value is 

determined by making cumulative sum of all the errors present in the current motor movement 

attempt. The kI ended up a fair amount greater than the kP or kI values due to how the robot had 

a high steady state error. This could be attributed to static friction in the system making the z axis 

movement require about 30% duty cycle to move, according to our calculations.  calculate this 

value, a PID controller is used. The error value for the P value is multiplied by the difference 

between the robots desired position and its measured position, the error value for the d controller 

is determined by comparing the previous iteration’s error to the current one, and the I controller’s 

error value is determined by making cumulative sum of all the errors present in the current motor 

movement attempt. The kI ended up a fair amount greater than the kP or kI values due to how the 

robot had a high steady state error. This could be attributed to static friction in the system making 

the z axis movement require about 30% duty cycle to move, according to our calculations.  
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Tray Database 

 

Figure 27: The Data Structure of the Tray Database 

The goal of the Tray Database is to determine where a part should be placed. To fully 

understand the inner workings of the Tray Database, its data structures must be discussed. The 

outermost layer of it is the aptly named TrayDB, which contains the entirety of the data. Within 

it is a list of trays. Each tray consists of a list of pockets and a height. Each tray is assigned a 

height because all trays that the robot can accomidate are parallel to the ground, making all of the 

pockets in that tray have the same z-value. The z-xis is perpendicular to the z-bumber switch, 

which is also the case for the x and y axes relative to their respective limit switches. Each pocket 

consists of a location, a list of current parts (currParts) and a list of the maximum parts a pocket 

can hold (maxParts). The location is the corner oriented to the near left when with reference to 

the side opposite the storage tower. This location, paired with the height of the tray, is sent to the 

Distributor to determine where it should move. currParts and maxParts each contain a list of the 

type numberOfPart. numberOfPart contains the name and amount of a part, acting as the actual 
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database portion of the database as the other portions merely serve to help direct the program to 

the correct tray or pocket, or tell the Distributor where to go. In order to determine which pocket 

a part should go into, a dictionary named PartToPocket takes in a part name, and returns its 

pocket number. This is a shortcut over the previous method, which checked every pocket. The 

TrayDB places a prt as shown in Fig. 23. However, there is an extra level of safety added, which 

is a check to see if the number of current parts in the pocket and tray, allowing for the algorithm 

to know if the part was correctly placed. 

 

Figure 28: The Program Flow of the Tray Database 

While the TrayDB represents the entire storage stack, each tray represents a single 

physical tray in the system. Each tray has the layout displayed in Fig. X. Those trays were than 

given the numbers shown in Fig. Y. In order to calculate their positions, the trays were centered 

manually on top of the pocket, and then the x and y position of it was recorded. Their z-positions 

were calculated by measuring the distance between the trays as the offset between them, and the 

z-position for the top tray, since z = 0 at the top, was experimentally determined. In order to 

move the end effector manually, the Controller GUI was used. 
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Figure 29: Tray Layout documenting where each part goes 

 

Figure 30: Pocket Numbering 
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Controller GUI 

The goal of Controller GUI was to be able to manually move the end effector and trays, 

and to be able to control other individual mechanisms, like the end effector claw, electromagnet, 

and Ultrasonic sensor readings, allowing for the code and mechanical systems to be tested 

without having to create any additional code. 

 

Figure 31: A View of Controller GUI in its default state 

The first function that the GUI performs when launched is sending X and Y to –1000, 

ensuring that the end effector always starts at (0,0), which is what the program assumes it starts 

at. The reset to 0 button does this as well, but only when the user clicks it. Going from top to 

bottom, here is what the rest of the buttons and fields do. Starting at the top, there is a color and a 

shape field. The color and shape, respectively, would be entered into these text boxes. From 

there, a user could click Click to view part Name to see what the part is internally referred to, as 

well as to see if the values were typed in properly, or if it is a valid part. Also, clicking Press to 

place part with above color and shape would have the robot perform the goTo function, using 

the entered shape and color. The next three fields are to enter x, y, and z values for the robot to 
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treat as goals. Clicking Click to go to _ Position would only move the robot to the position 

entered in the respective box. The button beneath those three labels, Click to go to the x, y, and z 

position allows the user to manually set the goal positions for goTo, making them not need to 

know parts to test out the robot. The six buttons in the rows beneath Click to view part name are 

toggles to manually control mechanisms, specifically the claw and magnet. Drop Part was 

intended to move the Serializer until it drops the part, but the Serializer was not built in time. 

Beneath them is a button to obtain the Ultrasonic Sensor’s distance. This is done over I2C to an 

ADC, which converts the sensor’s voltage into a digital value, which the Jetson Nano then 

converts to the distance it represents, using the equation below: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚𝑚) =
𝐴𝐷𝐶𝑉𝐴𝐿𝑈𝐸

8
∗

520

3270
∗ 10 

This relationship was created by scaling the possible voltages from the ultrasonic sensor 

to the values returned by the ADC, and then converting those values to the distance that the 

sensor detected. The *10 at the end was added to convert from cm to mm, the unit that the robot 

uses. Finally, there is a field to enter a value in mm to test if the claw would open to that value 

after hitting the appropriate button. 

Integrated Electrical System 

 To reduce costs, the whole electrical system was designed to be controlled using the 

Jetson Nano, and to be compatible with the distributor motors, it ran on 12V DC power. To 

choose a power supply, we calculated how much power each subsystem required, and found that, 

at maximum reasonable loads, a 250W power supply would suffice. Because the robot is meant 

to be stationary, we used a 12V AC-DC converter. To run our system’s 5V DC servo motors, we 

used a 12V-5V step-down DC power supply module. The two shortcomings of the Jetson Nano 

as an GPIO device are: the maximum current supplied on the output pins is 1 mA, and there are 
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no physical PWM signal drivers on board. To compensate for both these issues, we used an I2C 

to PWM breakout board (PCA9685), for both sending our motor controllers PWM signals, and 

sending output signals with enough current to trigger a relay.   
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Results & Discussion 

The main goal of this MQP was to design, build, and test a robotic system to sort LEGO 

Mindstorms pieces for a classroom environment. We believe the first goal: to identify criteria 

this product would need to meet and design a useful sorting product was met (see Figure 32 

below). However, due to project time and team size restraints, we had to cut back on the building 

and testing goals. Because of this, we decided to focus our energy on the parts of our robot that 

were distinct from previous projects. These were the Serializer, because we were using a 

different separation method from previous work, and the Distributor/Storage Tower combination, 

because that part of the robot added an innovative storage solution for our use case. Two 

previous projects, the A. I. LEGO Sorter, and the Universal LEGO Sorting Machine, made it 

clear that sorting LEGOs with a convolutional neural network is possible.  

 

Figure 32: Final System Design 
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Serializer 

With the Serializer design, we managed to design, build, and test an easily tension-able 

conveyor belt with a 3D printed frame. This design will be useful in the future because reliable 

conveyor belts were needed both for our Serializer design and the Identifier. However, we found 

that although the concept of serializing using conveyor belts works, they are not actually the 

cheapest or most convenient form of serialization since we found that the tensioning needs to be 

very precise. Expecting our consumer, a teacher, to adjust 6 conveyor belts using 12 tensioning 

screws, is unreasonable from an ease-of-use perspective. Also, a frame that held the six conveyor 

belts and allowed easy access to the tensioning mechanism was difficult to design and used a lot 

of extra structural material. Additionally, the conveyor belts took upwards of 40 hours each to 

3D print, making them an unreasonable manufacturing burden. Additionally, the conveyor belts 

took upwards of 40 hours each to 3D print, making them an unreasonable manufacturing burden.  

Distributor 

 As the main innovation of our project, we spent the most time designing and building the 

Distributor, corresponding storage tower, and testing code. The final Distributor can be seen in 

the figure below. 
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Figure 33: Distributor Final Build 

 Although we did not have enough of the entire system built to test the first four of our 

robot’s six main goals, we were able to test goals number 5 and 6 on the Distributor: sort at a rate 

of 6 seconds per part and keep track of the number and types of parts sorted and know when a kit 

is complete. In our Distributor tests, the parts were deposited by a human into the end-effector 

when it returned to the place it would deposit the part. We found that because of our chosen 

position control methods, the sorting speed was much too slow. Keeping track of the parts, 

however, was successfully accomplished by our code. 

On average, the Distributor took about 25 seconds between the entry of the color and 

shape into program and the system being ready to obtain another part. This timeline of events of 

course includes the placement of the part into the correct pocket. This is over four times slower 

than goal 6’s baseline of placing a part every six seconds. There were two main causes of this, 

both of which are easily adjustable for a future project. Firstly, most of the 25 seconds were used 
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by the z-axis attempting to reach its goal position. The chosen position control method, an 

ultrasonic sensor, turned out to be much too noisy, so we had to average 50 readings per 

movement. This slowed the z-axis control loop down considerably. Therefore, the cost savings 

associated with the ultrasonic sensor over a motor encoder were not worth it in terms of 

controllability. Secondly, the Distributor code was not built to multi-task: that is move the z and 

x axes at the same time. This would also reduce distribution time per part. Unlike the z-axis, the 

x and y axes motors were very accurate and precise, consistently placing parts into the correct 

pockets.  

 The Distributor’s software was able to determine if a pocket is full or not by comparing 

the maximum amount of each part that can be placed in a pocket, maxParts, with the amount that 

it has attempted to place in the pocket, currParts. This was done by the function, 

canAddPartToPocket, which is located in Pocket.py. However, this only works on a part-to-part 

basis, since TrayDB only needs to know the status of one part at a time. It returns true if the 

current amount of a part is at least one less than its maximum amount. Returning false would 

indicate that the pocket is full. Adding “not” before an instance of this function is used would 

return true if the pocket is full, accomplishing this part of the goal. However, there is no current 

code that can explicitly calculate if a tray is complete or not. However, this functionality could 

be added by iterating through the list of pockets in a tray, and then checking if each pocket’s 

parts are full by calling canAddPartToPocket on each pocket. 

 In addition to the performance goals, we were also able to evaluate the Distributor on the 

consumer’s subjective preferences: cost, size, and ease of use. The first of these was for the robot 

to cost between $500 and $700. The physical Distributor build and associated electronics, 

including the Jetson Nano, cost $831.82 total (Appendix B). However, this cost could be reduced 
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in future iterations through several methods. A design that moves from the prototyping to the 

consumer build stage could switch to a different aluminum for the robot frame. The v-slot 

aluminum on this robot cost $140 total. Future versions could also reduce the amount of 

aluminum on the robot in total, especially on the storage tower. The base underneath where the 

drawers start was designed so the z-axis elevator could move out of the way to allow a user to 

access the drawers. However, this same functionality can be achieved without the extra metal 

and brackets, simply by spacing the drawers to start up higher. Another option to reduce cost in a 

final consumer product is to manufacture custom PCBs. This would lower the cost of the 

electrical system by reducing it to just the necessary chips and components. Finally, design 

optimizations could be made to decrease the amount of material on the robot all together. For 

example, if the Distributor could be made physically smaller, that would reduce the size of the 

corresponding motor, the number of linear slides needed, and the amount of material needed. 

One option to do this would be to have the y and z axis on the other side of the drawers, pushing 

them out instead of pulling them. This would also allow the drawers to be more easily accessible 

to the teacher. 

 Another consumer goal was for the robot to fit easily in the classroom. This goal was 

successful since the robot was constructed in such a way that it takes up as little floorspace as 

possible. This is accomplished by having the trays stacked on top of each other, and putting the 

Identifier, Serializer, and various electronics on top of the Distributor. The distribution and 

storage tower can be lifted and moved individually by one person. When the storage tower is 

decoupled from the Distributor the drawers are easily accessible. A more consumer ready 

product, however, would improve the ease at which these two components can be coupled and 

decoupled.  
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Future Work & Conclusion 

 Although this MQP did not accomplish its goal of building a fully functional sorting 

system, we were able to focus on the most innovate aspects of our LEGO Sorting Robot for the 

Classroom, thereby introducing a new part distribution and storage system for any sorting 

machine, especially ones that separate multiple identical sets. We think this innovation marks 

progress in the field of sorting robots, especially LEGO sorting robots, because it demonstrates 

how a LEGO sorting system can be practically applied to a very real-world need. The concept of 

vertical storage and distribution also has the potential to be used in a wide array of sorting 

applications where floor space is at a premium and distribution efficiency is key. 

A wide variety of work can still be performed to improve our overall system’s 

functionality. Although working examples are found in past projects, an Identifier and Serializer 

that meet the specific consumer-oriented goals of this project still need to be built and tested. Our 

team did find that the multiple conveyor belt Serializer, while effective, requires too much 

maintenance to be practical for this purpose. Future work should look back at past Serializer 

designs and modify one to fit this system. However, the conveyor belt design used for our 

Serializer, is still a useful model as the base of the Identifier portion of the robot. As previously 

discussed, improvements could also be made to the Distributor to make it cheaper, more 

efficient, and more modular for the consumer. Finally, a user-facing GUI would be a useful 

addition to this project, allowing users to customize their robot by changing data such as the 

parts which go in each pocket, the layout of the tray, and the parts the neural network is trained 

for. Settings for a tray could be saved, and shared with other users, who could then import the 

data into the software and have the robot be configured to support that set. 
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 Overall, the team believes we have laid out useful design criteria, designed a reasonable 

sorting system, and tested the most innovative components of a LEGO Sorting Robot for the 

Classroom, providing a solid framework for future work on this problem. 
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Appendix A: Mechanical Calculations 

Serializer Motor 

 

Distributor Y-Axis Motor 
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Distributor X-Axis Motor 
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Distributor Z-Axis Motor 
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Distributor Electromagnet 
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Appendix B: Cost of Built Prototype 

Item Cost for Each Number Total 

Drawer Slides (set of 2)  $4.18  5  $20.90  

Wood for laser cutting  $28.68  1  $28.68  

16/20 snowblower motor  $36.00  1  $36.00  

20mm x 20mm exoslide  $6.99  8  $55.92  

12v to 5 v controller k240505 cocarieyklin  $11.89  1  $11.89  

12v power supply  $20.00  1  $20.00  

Cytron MD20A Motor Controller  $19.80  1  $19.80  

L298N  $6.89  1  $6.89  

Relay  $2.00  1  $2.00  

Electromagnet  $10.99  1  $10.99  

ADS1115  $14.95  1  $14.95  

"Gravity" Ultrasonic sensor  $10.00  1  $10.00  

PCA9685  $14.95  1  $14.95  

pololu purple stepper controller  $8.95  2  $17.90  

two trees 17hsa203  $9.89  1  $9.89  

jetson nano 2gb  $59.00  1  $59.00  

17hs4401 Stepper Motor  $9.75  1  $9.75  

Chain  $12.00  1  $12.00  

Timing Belt  $11.85  3  $35.55  

    

Snowblower motor Accessories:  $-    0  $-    

Big Sprocket  $14.00  1  $14.00  

hex hub converter  $8.00  1  $8.00  

8cm washer  $0.66  1  $0.66  

Motor bracket  $8.00  1  $8.00  

    

4 medium sprockets  $13.06  4  $52.24  

1 small sprocket  $11.29  1  $11.29  

Mini v wheel kit  $3.20  12  $38.40  

Bearings: set of 4  $9.49  1  $9.49  

Bearing blocks: material for 4  $4.03  1  $4.03  

Material to make all Brackets  $4.04  6  $24.24  

Bumper switch kits  $3.78  3  $11.34  

Bracket for electromagnet  $2.79  1  $2.79  

Jx pdi-6221mg 20 Kg Servo (servo for claw)  $15.00  1  $15.00  

stepper motor brackets  $4.95  2  $9.90  

timing belt pulleys (on motor)  $10.90  2  $21.80  

timing belt pulleys (off motor)  $4.80  2  $9.60  
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Misc hardware  $55.00  1  $55.00  

chain - metal connector (retail)  $2.50  4  $10.00  

chain master link  $6.00  4  $24.00  

chain tensioner  $15.00  2  $30.00  

3d printed parts (3d printed, negligeable)  $20.00  1  $20.00  

drawer slides, set of two  $4.18  5  $20.90  

wires  $10.00  1  $10.00  

3ft x 3/8” aluminum rod  $5.18  2  $10.36  

Wire Loom  $9.99  1  $9.99  

Steel angle (enough for two)  $7.46  0.50  $3.73  

2020 and 2040 aluminum  $140.42  1  $140.42  

  Total:  $831.82 
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Appendix C: Code 

If you are interested in viewing the code for this project, it can be found on GitHub at the 

following link: 

https://github.com/mariasharman137/LEGOSorterMQP 

 

https://github.com/mariasharman137/LEGOSorterMQP

