
Automated Vision-Based
Inspection System for Stents

A Major Qualifying Project
Submitted to the faculty of

Worcester Polytechnic Institute
In partial fulfillment of the requirements for the

Degree of Bachelor of Science

Submitted by:

Jason Farmer

Benjamin Mar

Erik Schmidtberg

Submitted to:
Instructors and Advisors (WPI)

Prof. John Orr (Project Advisor & Center Co-Director)

Prof. David Finkel (Center Co-Director)

Date: April 26, 2005
mqpstent@wpi.edu

 2

Executive Summary
The purpose of this project was to address the challenge of designing and

implementing a vision system to find defects in coated stents. A stent is a small
medical device that is used to prevent blood vessels and other hollow
passageways in the body from closing. These drug-eluting stents are coated
with special drugs to prevent excess blood clotting and restenosis or re-
narrowing due to the presence of the stent within the vessel. Defects in the stent
geometry or stent coating can occur during manufacturing and defective stents
must be repaired or removed before a product batch can be shipped. This
project used a Guidant designed machine vision console to streamline the stent
inspection process by automatically inspecting the stents for defects.

The main requirement for the automated inspection system was that it
needed to identify all defects on a given stent and reject the stent if the defect
size was above a known threshold. It was also preferred that the inspection
examine the stent at a rate of 18 mm per 1 minute and identify less than 20%
falsely identified defects. Priority was given to catching all of the true defects, as
a missed defect could result in a defective stent entering the market.

The first step in creating this inspection system was to identify all of the
defect types. Identifying the potential defects that the system would need to
search for was the simplest of the tasks faced while completing the project.
Guidant Corporation maintains a list of all defects that occur during the
production of stents. Strict definitions for each defect type and whether it is
“Acceptable” or “Unacceptable” have been developed previously by Guidant.
After the list had been obtained, it was then condensed to include only the
surface and coating defects that the inspection would be searching for.
 After the potential defects had been identified, it was possible to develop
the inspection system. The development of the inspection system consisted of
three major challenges. These challenges consisted of maneuvering the stent
using the CNC fixture on the machine vision console, inspecting the stent using
the camera and software on the console, and designing a user interface to
interact with the inspection operator.

To begin the inspection, the stent first needed to be loaded into the
machine vision console and maneuvered into the inspection area by a CNC
fixture. The fixture then rotated and horizontally moved the stent so that all
geometrical features on the stent could be inspected. This required the use of G-
code and the program NViewMMI to control the CNC fixture. While the fixture
was manipulating the stent, the vision camera was used to image the stent and
search for a predefined starting point. To do this, the DVT program FrameWork
was used to define an inspection sensor package and inspection script. The goal
was to automate most of the load/unload process. The operator would only need
to place the stent on a mandrel and then load the mandrel into the chuck on the
fixture. A mandrel is used to suspend the stent between the two chuck grips of
the mechanical fixture. It runs through the hollow center of the stent and allows
the fixture to manipulate the stent without damaging it.

 3

After the algorithm to manipulate and properly align the stent for
inspection had been created, the next step was to design sensors to scan the
stent for defects. To do this, two sensor packages were created. The first
sensor package was used to scan the strut and edges of the stent. It was called
the Strut Sensor Package. The other sensor package, called the Black Space
Sensor Package, was used to scan the area between the stent struts. By
combining these two sensor packages, the inspection was guaranteed full
coverage of the stent’s geometry.

To manage the inspection system, a user interface was created using G-
Code. This user interface allows the operator to start/abort the inspection, view
an image of any stent features that failed inspection, accept/reject the feature,
and classify the defect by type. It also generated a summary report that
contained the number and types of the defects found.

After the automated inspection system had been created, it needed to be
tested. The tests generated the experimental results that were used to analyze
the accuracy, effectiveness, and efficiency of the system. The purpose of
automating the inspection of stents was to create a system that could replace the
manual inspection process that was being used. To do this, the test results had
to demonstrate that the automated inspection process could provide an
inspection that was as accurate or more accurate than the manual inspection. It
also needed to prove that the inspection could run in a timely and efficient
manner. After the tests were completed, it was found that the inspection
identified 8 % false positives/acceptable defects, missed 0.08% true defects, and
ran at a rate of 18 mm per 1 minute 6 seconds.

The results, while meeting the main objective of the project, show that it
was very difficult to produce an inspection system that does not pass any
defective stents, fail any acceptable stents without operator intervention, and
inspects at a rate of 18 mm per 1 minute. Creating a sensor package that was
sensitive enough to catch 100% of the defects resulted in the inspection time and
the number of false positives increasing. A balance of these three objectives
was achieved and the result of this project was an efficient yet accurate
inspection system created for Guidant Corporation.

Further work and testing is required before this inspection system can be
fully implemented. During the testing of the inspection, it was found that the
system responds negatively to significant changes in the stent geometry or
contamination caused by flakes from the Teflon mandrel coating. It also does not
classify the defects that it identifies. Instead, it requires an operator to make the
distinction at this phase. These issues, as well as the flexibility and robustness
of the system will need to be addressed to further improve upon the inspection.
.

.

 4

Table of Contents
EXECUTIVE SUMMARY .. 2

TABLE OF CONTENTS ... 4

TABLE OF FIGURES.. 6

1. INTRODUCTION... 7

2. BACKGROUND RESEARCH .. 8

2.1. STENT TECHNOLOGY ... 8
2.1.1. Stent Usage ... 9
2.1.2. Stent Production.. 10

2.2. MACHINE VISION... 11
2.2.1. Machine Vision Basics.. 12
2.2.2. Machine Vision Options.. 12

2.2.2.1. Lighting Options ... 12
2.2.2.2. Camera and Sensor Options ... 13
2.2.2.3. Software Options ... 14
2.2.2.4. Mechanical Fixture Options.. 14

3. INSPECTION PROCEDURE ... 15

3.1. PRODUCT SPECIFICATIONS... 15
3.2. DESIGN FLOW CHART .. 15
3.3. PROJECT OBJECTIVES... 16
3.4. IDENTIFYING POTENTIAL DEFECTS .. 17
3.5. MANIPULATING THE STENT ... 17

3.5.1. Closing the Tailstock... 19
3.5.2. Moving the Stent ... 19
3.5.3. Finding the Starting Point .. 19
3.5.4. Rotating the Stent.. 22

3.6. INSPECTING THE STENT.. 22
3.6.1. Strut Sensor Package .. 23
3.6.2. Black Space Sensor Package .. 25

3.7. MANAGING THE SYSTEM ... 27
3.8. DELIVERABLES .. 28

4. RESULTS AND ANALYSIS ... 30

4.1. EXPERIMENTAL RESULTS... 30
4.2. EXPERIMENTAL ANALYSIS... 31
4.3. DESIGN ISSUES... 33

4.3.1. Inspection Time... 33
4.3.1.1. Template Match SoftSensors .. 33

4.3.2. False Positives .. 34
4.3.2.1. Internal Triggering.. 34
4.3.2.2. Black Space Intensity SoftSensors ... 35
4.3.2.3. Linear Intensity SoftSensor .. 36

 5

4.3.2.4. Ridged Mandrel .. 38

5. CONCLUSIONS AND RECOMMENDATIONS.. 40

5.1. DESIGN CONCLUSIONS... 40
5.2. DESIGN RECOMMENDATIONS... 40

5.2.1. Additional Testing... 40
5.2.2. Mandrel Upgrade.. 41
5.2.3. Lighting Upgrades .. 41
5.2.4. Algorithm Upgrade... 42
5.2.5. User Interface Upgrade .. 43

6. BIBLIOGRAPHY ... 46

7. APPENDIX A: BACKGROUND INFORMATION.. 47

7.1. SILICON VALLEY.. 47
7.2. GUIDANT CORPORATION.. 48

8. APPENDIX B: SCHEDULE.. 49

9. APPENDIX C: G-CODE DEFINITION .. 52

10. APPENDIX D: DVT SOFTSENSORS.. 53

11. APPENDIX E: SOFTWARE DESCRIPTION... 55

11.1. STENT ALIGNMENT .. 56
11.2. FEATURE INSPECTION: BEGINNING RING ... 58
11.3. FEATURE INSPECTION: MIDDLE RINGS .. 70
11.4. FEATURE INSPECTION: END RING .. 84

12. APPENDIX F: INSPECTION RESULTS .. 97

13. APPENDIX G: HARDWARE DESCRIPTION... 100

14. APPENDIX H: INSPECTION G-CODE PROGRAM.. 102

14.1. VISION_INSPECTION_SYSTEM.PGM.. 102
14.2. LIGHT_CONTROL.PGM ... 109

15. APPENDIX I: INSPECTION DVT SCRIPT ... 111

15.1. SCR_EDGE_ALIGN.DVTSCR.. 111
15.2. SCR_STENT_SCAN.DVTSCR.. 118

 6

Table of Figures
FIGURE 1: INSERTION OF A STENT...9
FIGURE 2: EXAMPLE OF CLUMPING ...11
FIGURE 3: EXAMPLE OF POOL WEBBING...11
FIGURE 4: SAMPLE MACHINE VISION CONSOLE..12
FIGURE 5: LIGHT AND DARK FIELD ILLUMINATION WITH IDEAL REFLECTIONS13
FIGURE 6: DESIGN FLOW CHART ..16
FIGURE 7: POTENTIAL DEFECTS LIST AND OCCURRENCE RATES17
FIGURE 8: STENT AND MANDREL POSITIONING ..18
FIGURE 9: MANIPULATING THE STENT FLOW CHART...18
FIGURE 10: INSPECTION STARTING POINT ...20
FIGURE 11: STARTING POINT SOFTSENSORS ..21
FIGURE 12: STARTING POINT SOFTSENSORS WITH BLOB SOFTSENSORS21
FIGURE 13: EXAMPLE OF A RING ..22
FIGURE 14: STENT FEATURES ..23
FIGURE 15: SENSOR SUB-PACKAGE LIST ..23
FIGURE 16: REFERENCE BLOB SOFTSENSOR ..24
FIGURE 17: STRUT BLOB SENSOR LAYOUT..25
FIGURE 18: STRUT BLOB SENSOR LAYOUT WITH DEFECT ...25
FIGURE 19: BLACK SPACE BLOB SOFTSENSOR LAYOUT...26
FIGURE 20: BLACK SPACE BLOB SOFTSENSOR LAYOUT WITH DEFECT27
FIGURE 21: STENT LOADING PROMPT ...27
FIGURE 22: POTENTIAL DEFECT PROMPT..28
FIGURE 23: END OF INSPECTION SUMMARY...28
FIGURE 24: BLACK TEFLON CONTAMINANT..32
FIGURE 25: MISSED COB WEB ...32
FIGURE 26: MISSED COB WEB WITH BLOB SOFTSENSOR ...33
FIGURE 27: TEMPLATE MATCH AND ROTATIONAL SOFTSENSORS..............................34
FIGURE 28: INTENSITY SOFTSENSOR LAYOUT ...35
FIGURE 29: INTENSITY SOFTSENSORS WITH DEFECT ...36
FIGURE 30: ORIGINAL INTENSITY SOFTSENSOR LAYOUT ..37
FIGURE 31: FINAL INTENSITY SOFTSENSOR LAYOUT ..37
FIGURE 32: EXAMPLE OF MANDREL NOISE ..38
FIGURE 33: CONTAMINATION WITH RIDGED MANDREL ..39
FIGURE 34: CONTAMINATION WITH FLAT MANDREL ..39
FIGURE 35: PROPOSED MANDREL UPGRADE ...41
FIGURE 36: EXAMPLE OF SHADOWING ..42
FIGURE 37: PROPOSED LIGHTING UPGRADE..42
FIGURE 38: USER INTERFACE MAIN SCREEN ...43
FIGURE 39: INITIALIZATION WINDOW ...44
FIGURE 40: HARDWARE IO DESCRIPTION..100

 7

1. Introduction
A current business trend that exists in the market today is the shift from

manual labor to automated production. Over the years, technology has evolved
so quickly that there is now a surplus of technology awaiting proper utilization.
Companies are now working to integrate technology into their design and
manufacturing processes. Integrating technology into the manufacturing process
reduces the cost of production and maximizes the company’s efficiency.
Companies that don’t take advantage of the technology available to them will
begin to lose their market share as other companies find newer, more efficient
ways to manufacture their products.

The market for cardiovascular medical products has quickly become one
of the most technological industries. Many of the products are very small in size
and large in importance. These products are often used during surgery or other
medical procedures and can be used to save people’s lives. An example of
these products is the stent.

Stents are inserted into arteries and veins to help prevent clogging and
provide added support. Since they are used within the body, defective stents are
unacceptable. The procedure for producing and inspecting stents must be as
thorough as possible. This is an expensive process, so integrating technology
becomes even more important to companies that produce stents, like Guidant
Corporation.

Currently, Guidant inspects their stents by hand. This process is slow and
expensive. Their goal over the next few years is to develop a process that will
use the machine vision technology that exists in the technology market to create
an automated inspection system. This project was conducted to develop this
system for Guidant and was completed by working with an existing machine
vision tools. The system checks the stents for potential defects, classifies any
defects that are found, prompts an operator when a defect is found, and saves
an image of any defective stent features. This inspection process and the user
interface that was designed with it will help Guidant more efficiently produce and
inspect their drug eluting stents.

 8

2. Background Research
Guidant Corporation, which has a production facility in Silicon Valley,

California, specializes in the production of cardiovascular medical devices. One
of their main products is the drug-eluting stent. A stent is used to prevent blood
vessels and other hollow passageways in the body from closing. It is inserted in
an artery and then ballooned so that it supports the outer walls of the artery.
Drug eluting stents are special because they are coated with a chemical that
discourages clogging or clotting around the stent. Eluting means to purify or
wash out, so drug-eluting stents use the chemicals that they coated with to elute
or purify the area around the stent to prevent re-closure of the vessel. Due to the
importance of the stent, each product needs to be thoroughly inspected before it
can enter the market. To design a machine vision system to inspect these
stents, background research was conducted on machine vision technology and
stent production, along with sponsor-company and Silicon Valley history (found in
Appendix A). This research has provided a solid understanding of the problem at
hand and allowed the project to be most useful to Guidant.

2.1. Stent Technology
Stents are named after Charles Stent, an English dentist, who invented a

support structure to align teeth. The stent was later adapted for use in a blood
vessels and arteries and, in 1986, Jacques Puel and Ulrich Sigwart inserted the
first stent into a human coronary artery. It wasn’t until 1994 that the first Palmaz-
Schatz stent was approved for use in the United States.

The stent can either be plain mesh or it can be covered with a synthetic
tissue lining or drugs. These tubes are inserted into the esophagus, trachea, or
blood vessels and their purpose is to keep these parts of the body open. Before
the stent is inserted into the body, it is collapsed to a much smaller diameter.
Once inside the desired vessel, it is expanded using a small inflatable balloon.
The stress between the surface of the stent and the vessel is utilized to hold it in
place. Figure 1 shows a stent and the procedure for inserting it into a blood
vessel.

 9

Figure 1: Insertion of a Stent

2.1.1. Stent Usage
The main advantage of using stents is that the procedure to insert them is

much less invasive than the equivalent surgical operation. When performing
Coronary Angioplasty, which is a process to unblock a coronary artery, a wire is
passed through the diseased artery, past the blockage. Then a balloon catheter
is passed along the wire to the blockage and inflated to open up and stretch the
walls of the artery. A stent can be connected to the balloon that will expand in
the newly opened artery and help hold it open once the balloon is removed.
Although this procedure has been proven to reduce symptoms due to coronary
artery disease, and to reduce ischemia, it has not been proven to reduce
mortality due to coronary artery disease.
 Often times, the stent will cause small injuries in the blood vessel when it
is being ballooned to its full size. These injuries, small scratches on the inside of
the vessel are created purposely. They are created to encourage the body to
heal the area around and under the stent. To heal this area, the body will cover
the damaged surfaces within the artery with new, uninjured cells. This will create
a fine layer between the stent and the inside of the vessel. With the stent
thoroughly integrated into the vessel, it can then act as an internal support
structure.
 There are two major designs available for stents. The first of these is bare
metal coronary stents. As the name would suggest, they are not coated with any
chemicals. The major drawback with bare metal coronary stents is that they tend
to trigger too severe a reaction within the body where too many cells are sent to
heal the area around the stent. This severely increases the thickness of the

 10

vessel walls and reduces the diameter of the blood vessel. This process is called
restenosis or re-narrowing of the blood vessel. To solve this problem, drug-
eluting stents were introduced. The stents are coated with a fine layer of
chemicals that will slow the healing process within the vessel. This reduces the
thickness of the layer built by the healing cells and helps to prevent restenosis.
 Bare metal coronary stents are simply a mechanical framework that holds
the walls of the artery open, preventing the narrowing of such arteries. This
technique is more effective than plain angioplasty. The two most effective and
safe drugs that being used to coat newer stents are sirolimus and paclitaxel. In
addition to these drugs, there are other drugs used to coat the stents that inhibit
the growth of scar tissue after they are implanted into the arteries. A drug called
Rapamycin is used to coat the stents that has a near-zero restenosis rate
meaning there is no recurrent narrowing of the arteries. (Kulick, 6)

2.1.2. Stent Production
Due to their importance as cardiovascular medical tools, stents need to be

thoroughly inspected before they can be shipped from the production facility.
During the production of stents, there are many opportunities for defects to occur.
Any of these defects could prove disastrous if they are not caught and fixed
before the stent is used.

The defects that can occur during productions can range greatly in type
and rate of occurrence. Many of these defects occur when the stent is coated
with a solution that consists of a solvent, a polymer, and a small amount of a
drug. Often times, the coating will form bridges or webs between supports on the
stent, clumps on the surface of the stent, or thin cobwebs that extend over the
surface of the stent. Also, the coating can be layered unevenly, causing bare
spots to appear on the surface of the stent. These defects along with any chips
or other structural defects must be caught during inspection. Examples of these
defects are shown in Figures 2-3.

Please note these pictures and all others of defects that were used for this
project were created specifically for this project and intended to produce defects
for vision algorithm development. The stents did not contain drugs and are not
representative of the quality of coated stents produced on the manufacturing
lines.

 11

Figure 2: Example of Clumping

Figure 3: Example of Pool Webbing

Should any of the defects make it through inspection, they could prove
costly to Guidant Corporation, the reputation of the doctor and hospital using
them, and the patient who is receiving them. The danger lies in the fragile nature
of the coating defects. Should any of the webs, clumps, or bridges break off of
the stent after it is inserted in the body, they could flow through the vessel to
other parts of the body. These pieces, though small, could get caught in the
vessel and cause the vessel to clog. This danger makes the inspection of stents
a priority during production.

2.2. Machine Vision
Machine vision tools are used to by companies to automate the inspection

of their products. In the case of Guidant Corporation, they wish to use machine
vision to automatically inspect their drug-eluting stents for coating and structural
defects.

 12

2.2.1. Machine Vision Basics
Machine vision is a term used for numerous vision tools working together.

Often times, the different tools are arranged together on a console that
maximizes the effectiveness of each part. Machine vision consoles consist of a
number of cameras and sensors, various lighting fixtures, a mechanical fixture to
manipulate the part being observed, and a computer to control and integrate all
of the tools. The console is often designed with a central viewing area in mind.
The mechanical fixture is programmed to place the product being observed
within this specified area. The cameras, sensors, and lighting fixtures are then
arranged above and to the sides of this area to best attain the desired exposure
and lighting effect. An example of this setup is shown in Figure 4.

Figure 4: Sample Machine Vision Console

2.2.2. Machine Vision Options
To achieve a complete machine vision analysis inspection system there

must be a harmony of software, sensor, lighting, and mounting of the product.
Each part of the machine vision console needs to be arranged for maximum
result and work in conjunction with the control software on the computer.

2.2.2.1. Lighting Options
The lighting options are the most complex and important in the machine

vision inspection system. Many different types of lighting can be used to
illuminate the product. These lighting options are chosen based on the surface
of the product and desired resolution of the system. The machine vision console
that Guidant Corporation had designed was flexible enough to allow for

 13

numerous lighting options. Based on this flexibility, we explored the lighting
options to determine which would best fit our requirements.

The two most popular lighting options are light-field and dark-field
illumination. Light field illumination is used best with non-reflective surfaces to
provide high contrast pictures for inspection. Dark field illumination works well
with reflective surfaces to easily detect scratches, packaging tears, and other
surface flaws. Both lighting applications use a series of lights such as LED,
laser, or halogen, and project it on the product being inspected. With light field
illumination the light is directly pointed down, usually from a ring around the
camera itself so that most of the light is reflected off the surface in question and
back into the camera. Dark field uses the same lights, but at an angle such as
45 degrees inward towards the camera. This means that the light will reflect off
of the surface under inspection and away from the camera unless a surface flaw
causes the light to change direction and reflect into the camera. The lighting
positions and reflections for dark and light field illumination are shown in Figure
5. It is also possible to use a combination of these two lighting methods to look
for different features. Light field illumination could be used to easily verify that
there is not Webbing in the coating, where dark field illumination could check the
consistency and complete nature of the coating.

Figure 5: Light and Dark Field Illumination with Ideal Reflections

2.2.2.2. Camera and Sensor Options
Selecting a camera and sensor package is another important decision that

the designer needs to make when creating an inspection system. There are
currently numerous camera and sensor packages available on the market. Each
package has its own strengths and weaknesses. For our project, the camera
and sensor package was chosen for us. Guidant had already designed and built

 14

a machine vision console that used the DVT Legend 540 Series camera/sensor
package.

The Legend 540 Series camera is one of DVT’s most advanced models.
It specializes in high-speed inspection and can inspect 60,000 parts per minute.
Its electronic shutter allows it to image products at speeds ranging from 1 every
10 microseconds to 1 every second. The camera’s Ethernet capability allows the
camera to communicate with the control software and transfer the images onto a
computer hard drive. This allows it to save the images of the stent that it
inspects.

2.2.2.3. Software Options
Selecting the appropriate software package and designing the code for the

system is another important step in designing a machine vision inspection
system. Part of this problem has already been settled. Guidant named DVT
Corporation, who is a leader in the machine vision world, their primary software
provider.

This is another design decision that Guidant Corporation had already
made. The console they had designed used DVT’s FrameWork software to
control the camera and sensor packages, NViewMMI to control the mechanical
fixture, and Visual Basic to implement the user interface to the completed
system. FrameWork was used to set up digital sensors through the computer
and look for certain attributes on the stent. NViewMMI used G-code (G Code is
the language of CNC controllers) to program the mechanical fixture.

2.2.2.4. Mechanical Fixture Options
The final component in this system is the mounting of the stent for

inspection. Since a stent is a 3D object and must be inspected on all sides there
will be requirements for CNC motion and automated insertion and removal from
the inspection area. In most cases, this area of the project would be another
important step in the design process. There are numerous choices that could be
made regarding how to manipulate the stent. Fortunately, this is another design
option that Guidant Corporation had made for us. They used a custom built
mechanical fixture to move and rotate the stent in the central viewing area.

 15

3. Inspection Procedure
The purpose of this project was to address the challenge of designing and

implementing a vision system to find defects in coated stents. These drug-
eluting stents are coated with special drugs to prevent excess blood clotting and
restenosis due to the presence of the stent within the artery. As discussed
above, defects occur during the manufacturing of stents and defective stents
must be repaired or removed before a product batch can be shipped. This
project used a Guidant designed machine vision console to streamline the stent
inspection process by automatically inspecting the stents for defects

3.1. Product Specifications
By working with the project liaison, Mr. Jason Van Sciver, a set of product

specifications for the design was developed. These specifications are listed
below.

1. Identify potential coating or structural defects on the stent geometry
and surface.

2. Classify any found defects using a list of known defects.
3. Prompt an operator when a defect is found and pause the

inspection.
4. Allow an operator to classify any found defects as “Acceptable” or

“Unacceptable.”
5. Allow an operator to change the classification of any defects that

were misclassified.
6. Display and save an image of any defects that are found.
7. Maintain a record of all defects found and their classification,

preferably in the form of an MS Access Database.
8. Complete inspection of an 18 mm stent in less than one minute.
9. Allow 0% true negatives (actual defects) to pass through the

inspection and identify less than 20% false positives (non-defects).
Priority is given to 0% true negatives, as these cannot be caught by
the system operator.

3.2. Design Flow Chart
Based on the product specifications defined above, a flow chart that

displayed the basic ideas for how the process should work was created. This
outline showed some of the key steps that were necessary to complete an
automated inspection and was used to focus design ideas. It also assisted with
defining the project objectives. The flow chart for the design outline is shown in
Figure 6.

 16

Figure 6: Design Flow Chart

3.3. Project Objectives
Using the above criteria, the project was divided into four major objectives.

The project objectives are as follows:
1. Create a list of potential defects. This list included information

regarding the severity and occurrence rate of each defect type.
2. Use G-code to program the motion control system that holds and

rotates the stent mounted on a mandrel during inspection. This
allows users to maneuver the stent into proper position for
inspection.

3. Create an algorithm to identify the defects. This algorithm used a
minimum number of strategically placed sensors to test for the wide
range of defects and provide the best classification options while
maintaining the stringent time requirements.

4. Use Visual Basic to create a manageable user interface for the
system. This UI integrates the CNC and machine vision pieces, as
well as prompting an operator to accept or reject any defective
product it found.

 17

3.4. Identifying Potential Defects
Identifying the potential defects that the system would need to search for

was the simplest of the tasks faced while completing the project. Guidant
Corporation maintains a list of all defects that occur during the production of
stents. They already have strict definitions for each defect type and whether it is
“Acceptable” or “Unacceptable.” After the list had been obtained from the project
liaison, Mr. Van Sciver, it was then condensed to include only surface and
coating defects. The system did not need to search for structural defects
because they are found and fixed before the stent is coated. The final potential
defect list is shown in Figure 7. The “# of Occurrences” and “% of Occurrence”
were generated using a sample batch from stent production.

This table was removed for confidentiality reasons.

The table illustrated that the most common defects are:

Pealing / Tearing
Clumping

Cob Webbing
Contamination

All others
Figure 7: Potential Defects List and Occurrence Rates

After the list of potential defects was obtained, several hours were spent in
the laboratory using microscopes to view defective stents. The defect list was
used during this time to classify the defects that were found and to assist with
identifying the characteristics of each defect. Understanding how the manual
inspection of stents is completed helped in designing a system that would
replicate this process automatically.

3.5. Manipulating the Stent
The first step in during an automated stent inspection is to load the stent

and maneuver it to the central viewing area. This required the use of G-code
(explained in Appendix C) and the program NViewMMI to control the CNC fixture.
While the fixture was manipulating the stent, the vision camera was used to
image the stent and search for a predefined starting point. To do this, the DVT
program FrameWork was used to define an inspection sensor package and
inspection script. The goal was to automate most of the load/unload process.
The operator would only need to place the stent on a mandrel and then load the
mandrel into the chuck on the fixture. A mandrel is used to suspend the stent
between the two chuck grips of the mechanical fixture. It runs through the hollow
center of the stent as shown in Figure 8.

 18

Figure 8: Stent and Mandrel Positioning

Once the stent and mandrel have been secured into the chuck of the mechanical
fixture, the operator can press the “Start” button. The system then automatically
closes the other side of the chuck, called the tailstock, and maneuvers the stent
to the central viewing area.

Once in the central viewing area, the camera is focused on the beginning
of the mandrel and the console shifts the mandrel slowly until a predefined
starting point on the stent’s geometry is found. The stent and mandrel then begin
to rotate. This is where the stent inspection software starts to run. The fixture
control program continues to run during the inspection. It rotates the stent a full
360 degrees while the inspection program inspects and images the structure of
the stent. The fixture is then shifted a predefined increment so that another ring
of the stent can be inspected. This process continues until the stent has been
fully inspected. The fixture then returns to the starting point and opens the
tailstock. The flow chart for this process is shown in Figure 9.

Figure 9: Manipulating the Stent Flow Chart

To complete this step of the inspection process, Guidant Corporation
provided a CNC fixture with their custom vision console. The fixture consists of a
custom chuck grip that rests on a CNC controlled track. The CNC controller in
the machine vision console controls opening and closing of the tailstock. It is
also responsible for maneuvering the chuck on its track. This controller

 19

communicates directly with the computer in the console. Using the computer, a
program to control the motion of the mechanical fixture was developed. This
code was copied to the CNC controller, where it ran with little supervision from
the computer. The code for this program can be found in Appendix F.

3.5.1. Closing the Tailstock
To use the tailstock, simple G-code command was used. A binary output

was associated with a variable to control. This variable controlled the tailstock.
When it was equal to 1, the tailstock opened and when it was equal to 0, the
tailstock closed.

3.5.2. Moving the Stent
To control the movement of the mechanical fixture, variables were defined

for the target position in the X, Y, and Z directions. The X direction is east to
west, the Z is north to south, and the Y is rotational. This specifies to the fixture
the exact position that it should move to. Using G-codes other motion
parameters such as the fixture’s linear acceleration/deceleration and rate-based
acceleration/deceleration were enabled. This allowed a specific type of
acceleration to used for each movement. By using simple “Go” commands and
specifying the coordinates to go to, it was possible to move the fixture into the
central viewing area.

3.5.3. Finding the Starting Point
To start the stent inspection, the stent needed to be maneuvered so that a

predefined starting point was centered underneath the camera. This starting
point is defined by a specific juncture on the stent geometry, thus making it easy
to find. Since the stent geometry repeats itself, defining this point was a simple
task. It was decided that the inspection should start at the stent junction shown
in Figure 10, due to ease of detection and the repeatability of alignment.

 20

Figure 10: Inspection Starting Point

To locate this starting point, a FrameWork script was developed in
conjunction with a stent manipulation program. The FrameWork script controls
the camera and can be used to find certain features on the product in the central
viewing area. The script is also used to communicate with SoftSensors that were
defined during the development of the inspection. SoftSensors are tools used in
FrameWork to manipulate or inspect an image. A description of these tools is
available in Appendix D. By setting up SoftSensors within FrameWork, it was
possible to scan the real time image of the central viewing area for distinctive
stent features. The first step in the process was to set up an Intensity Soft
Senor. The sensor scans the image for a predefined number of pixels with a
bright intensity. Since the mandrel appears black under the camera and the
stent appears white, this sensor can be used to find when the edge of the stent
enters the central viewing area. Then, the stent will begin to slowly rotate, using
a Template Match SoftSensor to try to locate the starting point geometry. The
Template Match SoftSensor searches within the specified Scan Region for the
predefined template that resembles the geometry in the above figure. When a
match is made, the CNC fixture stops rotating and centers on the starting point.
The SoftSensors used for this process are shown below.

 21

Figure 11: Starting Point SoftSensors

During testing, problems arose with the accuracy of the Template Match
SoftSensor. Template Match SoftSensors are great for locating an object or
shape but are only accurate to within a dozen pixels. This happens because the
stent is at an angle when the Template Match SoftSensor identifies it, which
skews the center of mass of the object and causes it to be misaligned. This
misalignment caused some problems with realigning the stent after a ring had
been inspected. To overcome this problem, multiple Blob SoftSensors were
added to the design. Blob SoftSensors are accurate to within sub-pixels, so they
served as perfect sensors for the subtle movements needed to realign the stent
once the Template Match SoftSensor had identified it.

Figure 12: Starting Point SoftSensors with Blob SoftSensors

 22

The final design used the strengths of the SoftSensors described above to
accurately find the starting point on the stent. First, the Template Match
SoftSensor locates the desired template and roughly centers the object under the
camera. Then, a series of Blob SoftSensors are used to make the fine
adjustments necessary to center it under the camera.

3.5.4. Rotating the Stent
Once the starting point of the stent had been found, the inspecting the

stent is ready to begin. To do this with as much flexibility and efficiency as
possible, the stent was divided into rings. A ring consists of a sliver of the stent
with a repeating geometry that the camera can focus on. An example of a ring is
shown in Figure 13.

Figure 13: Example of a Ring

By dividing the stent into rings, it became easy to thoroughly inspect stents of
variable length by simply increasing the number of rings to inspect. To rotate the
stent, the same “Go” command from above was used. The only difference
between the two is that the fixture moved in the Y (rotational) direction.
 The last part of rotating the stent was to stop the rotation after 360
degrees. This also proved to be simple task. Based on background research, it
was known that a stent ring included 12 geometrical features to examine. The
fixture was programmed so that it stopped rotating when the camera had
identified these 12 features. This completed the inspection of the ring and
returned the stent to the starting point. The CNC controller then incremented the
stent by the width of one ring and realigned it for the next inspection cycle. This
moved the next ring of the stent into view and allowed us to continue with the
inspection. By continuously finding the starting point in a ring, rotating the stent
360 degrees, and then incrementing to the next ring, the process was able to
thoroughly inspect the entire outer surface of the stent.

3.6. Inspecting the Stent
After the algorithm to manipulate and properly align the stent for

inspection had been created, the next step was to design sensors to scan the
stent for defects. To do this, two sensor packages were created. The first
sensor package was used to scan the strut and edges of the stent. It was called

 23

the Strut Sensor Package. The other sensor package was used to scan the area
between the stent struts. It was called the Black Space Sensor Package.

Each sensor package was then divided up into sub-packages. The sub-
packages were used to scan the 12 different geometric features of the stent.
These features are shown in Figure 14.

Figure 14: Stent Features

Since many of the stents’ features are similar to each other, it was possible to
condense the number of sub-packages that were used down to 6 sub-packages
for the Strut sensor package and 6 sub-packages for the Black Space Sensor
Package. These sub-packages and the features they inspect are shown in
Figure 15. The DVT script that calls these sub-packages can be found in
Appendix G and a complete description of the sensor packages and their sensor
layouts can be found in Appendix E.

Figure 15: Sensor Sub-Package List

3.6.1. Strut Sensor Package
The purpose of the Strut Sensor Package was to scan the surface and

edges of the stent for defects. To do this, two sets of Blob SoftSensors were
used. The first set of Blob SoftSensors properly aligned the features of the stent
and the second set scanned the surface of the feature for defects.

 24

The first set of Blob SoftSensor was used to locate predefined struts within
the feature’s geometry. Blob SoftSensors work by separating the viewing area
into light and dark “blobs.” By defining the Blob search area and identifying the
type of blob (light or dark) to search for, the user can obtain blobs of a certain
size and shape. Once a blob had been had obtained, the Blob Selector could
calculate the center of mass, perimeter, and surface area of the blob. By placing
long, thin Blob sensors at strategic points within the camera view the sensors
could sample the image on the screen and determine where the stent struts were
located. By using a series of three or four of these reference blobs, it was
possible to locate all of the key struts within a stent image. This allowed a stable
reference system to place inspection sensors around the stent struts. A sample
of the reference blobs is shown in Figure 16.

Figure 16: Reference Blob SoftSensor

By identifying the various struts of the stent feature and calculating the centers of
mass for these struts, the system was able to account for any misalignment that
occurred while the stent was being spun.

As discussed above, the Blob SoftSensors separate the white stent
surface from the black mandrel background. This feature was used to identify
defects that would appear on the edges of the stent. Using a series of Blob
SoftSensors, it was possible to define search areas and specify which type of
blob (light or dark) the sensor should identify. The sensor then identified all of
the blobs or light areas within the search area. After that, Blob Selectors were
created to scan these blobs. The selectors used the Blob SoftSensors to
calculate the surface area and perimeter of a given blob. By searching for drastic
changes in the blob’s perimeter or surface area, the system is able to effectively

 25

identify defects on the stent’s surface and edges. Figure 17 shows the Blob
SoftSensors and Selectors for this package.

Figure 17: Strut Blob Sensor Layout

Using many small Blob SoftSensors instead of one large Blob SoftSensor
increased the sensitivity of the inspection. Defects on a large blob appear as a
small change to a large perimeter or surface area. Defects on a small blob
appear as large changes to a small perimeter and surface area. Figure 18
shows an example of a defect being detected by the Strut Sensor Package.

Figure 18: Strut Blob Sensor Layout with Defect

3.6.2. Black Space Sensor Package
The Black Space Sensor Package was designed to be very similar to the

Strut Sensor Package. It used the reference blobs described above to align a
series of Blob SoftSensors and Blob Selectors. These Intensity SoftSensors
inspected the dark area between the stent’s struts for defects.

 26

As in the Strut Sensor Package, Blob SoftSensors and Blob Selectors are
used to detect light blobs in the dark background and calculate the area and
perimeter of these blobs. By defining these areas as shown in Figure 19, it
became possible to inspect the space between the stent struts.

Figure 19: Black Space Blob SoftSensor Layout

As the figure shows, this space between the struts appears as a very dark
background. By setting a specific contrast for the Blob SoftSensors, very fine
defects that occurred in this area could be detected. These fine defects showed
up as very bright spots on the inspection screen. After the defects were
detected, it was important to determine if they were severe enough to reject the
feature. This would allow minor defects and mandrel noise to pass without
disrupting the inspection. The DVT script for the inspection uses the areas of all
of the detected blobs to calculate the sum of the areas. It then compared this
area to a threshold value. Based on the defect specifications, it was determined
that a defect consists of 20 or more pixels. If the sum of the light blobs had an
area greater than this value, the feature would be failed. Figure 20 shows a stent
with a defect that has been deemed too large.

 27

Figure 20: Black Space Blob SoftSensor Layout with Defect

Calculating the sum of the blob areas allowed the inspection to avoid detecting
mandrel noise and acceptable defects that would result in false positives.

3.7. Managing the System
To manage the inspection system, a user interface was created using G-

Code prompting. The inspection system interfaced with the user through a series
of prompts. When To start the system, the user was prompted to load the stent
into the CNC fixture. This prompt is shown in Figure 21.

Figure 21: Stent Loading Prompt

The next prompt appeared whenever a potential defect was found. The prompt
would display a list of possible defect types. The inspection system automatically
selects one defect type based on the sensor that failed and the conditions of the
failure. This defect type is highlighted in the list and the operator has the option
to correct any misclassifications by selecting another defect type. This prompt is
shown in Figure 22.

 28

Figure 22: Potential Defect Prompt

At the end of the inspection, a summary was generated by the inspection system
and the operator is given the option to load and inspect another stent. This
report was displayed in the NView MMI Message Box and contains all of the
information regarding the defects found and their classification. An example of
this summary is shown in Figure 23.

Figure 23: End of Inspection Summary

3.8. Deliverables
The deliverables for this project were the source code for the inspection

system, a software description detailing the steps needed to recreate the sensor
packages, a hardware description detailing the steps needed to adjust the
machine vision console for to run an inspection, and a users guide detailing how
to properly run an inspection using the software and hardware.

The source code for the inspection system is divided between a DVT
script that runs that actual inspections and a G-Code document that controls the
CNC motion. The code for the G-Code program is located in Appendix H and the
code for the DVT script can be found in Appendix I.

 29

The software description contains the detailed information needed to
recreate all of the sensors used for the inspection. This description can be found
in Appendix E.

The hardware description contains all of the information needed to adjust
and rewire the console to run an inspection. The hardware description can be
found in Appendix G.

 30

4. Results and Analysis
 After the automated inspection process had been designed, it needed to

be tested. The tests generated the experimental results that were used to
analyze the accuracy, effectiveness, and efficiency of the system. The purpose
of automating the inspection of stents was to create a system that would replace
the manual inspection process that was being used. To do this, it needed to be
proved that the automated inspection process could provide an inspection that
was as accurate or more accurate than the manual inspection. It also needed to
be proven that the inspection could run in a timely and efficient manner. The
results of these tests, the required analysis of these results, and summaries of
the major changes made to the original design are discussed in this section.

4.1. Experimental Results
To test the accuracy and flexibility of the inspection, it was necessary to

use a variety of stents. Originally, the inspection was going to be tested with 20
different stents. Fifteen of the stents were manufactured to specifically contain
known defects. They were expected to fail and test the accuracy and sensitivity
of the system. Five of the stents were manufactured normally and it was
assumed that they would pass inspection. The stents that were expected to pass
the inspection would test the robustness and flexibility of the inspection.

During the inspection testing, it was found that only 15 of the stents could
be inspected. The 5 omitted stents were excluded because they contained gross
geometry defects. Since these defects occurred in the beginning ring, they
caused the inspection alignment to fail. This meant that the inspection could not
find the starting point in the geometry and resulted in the inspection failing the
stents. These failures proved that the inspection could accurately detect
geometry defects and fail the geometrically defective stents. Two of the
remaining 15 stents also contained gross geometry defects. These defects were
in the middle rings of the stent and resulted in the stent failing halfway through
the inspection. The detailed results for these two stents and the remaining 13
stents are shown in Appendix H. The overall results from the inspections are
shown below.

Type Detailed Reason Count Percent

Total Stents 15 100.00%
Total Inspections 2520 100.00%
False Triggers 190 7.54%
 Mandrel Noise 28 1.11%
 Black Space Blobs > Threshold 79 3.13%
 Clump Area > Tolerance 10 0.40%
 Acceptable Clumping Strut Area 1 0.04%
 Strut Area > Threshold 29 1.15%
 Strut Perimeter > Threshold 11 0.44%
 Alignment Error 32 1.27%

 31

True Defects 334 13.25%
 Black Space Blobs > Threshold 290 11.51%
 Clump Area > Tolerance 13 0.52%
 Acceptable Clumping Strut Area 10 0.40%
 Strut Area > Threshold 3 0.12%
 Strut Perimeter > Threshold 3 0.12%
 Alignment Error 15 0.60%
Missed Defects 2 0.08%
 Black Teflon Flake 1 0.04%
 Thin Cobweb 1 0.04%

4.2. Experimental Analysis
As the results table above shows, the automated stent inspection system

works very close to the Product Specifications outlined above. It performs the
inspection of an 18 mm stent in less then 1.5 minutes, identifies less than 8%
false positives, and missed 0.08% true defects.

The stent inspection time is 30 seconds over the time defined in the
Product Specifications. During the design process, it was determined that
additional time was going to be needed to ensure full coverage of the stent. This
final inspection time was deemed acceptable by Guidant. Inspection accuracy
and reliability were the most important Product Specifications. The inspection
time could exceed 1 minute as long as it meant increased accuracy.

During an inspection, less than the specified 20% false positives were
identified. This is well within the predefined specifications. Ideally, this number
would be as close to zero as possible and given more time it could be reduced.
However, design preference was given towards creating an inspection that would
allow no defects to slip through.

The inspections performed on the test stents resulted in two defects being
missed. This was very alarming until an image of the defects was viewed. Both
defects were found to be minor and using the inspection system defined above,
impossible to detect.

The first of these defects was a black Teflon contaminant on the strut of
the stent. It is shown in Figure 24. The black surface of the contaminant makes
it impossible to detect using this particular inspection process. The contaminant
is the same material and color as the mandrel, so lowering the sensor thresholds
to detect a black contaminant would result in all inspections triggering false
positives. This would result in the inspection being rendered useless because it
would identify a false defect on every stent feature inspected.

 32

Figure 24: Black Teflon Contaminant

 The second defect that the inspection missed was a very small cob web.
This cob web is shown in Figure 25. As the figure shows, the intensity of this cob
web is very close to the intensity of the mandrel surface. This makes it
impossible for the Blob SoftSensor, shown in Figure 26, to identify this defect at
the current threshold values. The inspection threshold could be reduced so that
this defect could be caught, but the sensor robustness would be compromised.
The inspection would become so sensitive that it would pick up an excessive
amount of mandrel noise and produce a false defect on every stent feature.

Figure 25: Missed Cob Web

 33

Figure 26: Missed Cob Web with Blob SoftSensor

4.3. Design Issues
During the design process, it became obvious that several of the sensor

packages and design ideas needed to be modified or replaced to combat the
problems that arose within the inspection. It was important to document the
original design ideas, the changes made to them, and the reasons the changes
were made. This makes it easier for other people within Guidant Corporation to
continue the work that was started on this project. Documenting any dead ends
found in the design process allows the employees of Guidant to upgrade the
inspection without encountering the same problems that this project faced.

4.3.1. Inspection Time
The first major challenge faced during the creation of the inspection was

that the inspection took too long to complete. The initial test inspection took over
7 minutes to complete. This was much greater than expected and unacceptable.
To combat this problem, different sensors were used for stent alignment.

4.3.1.1. Template Match SoftSensors
A major change made to the inspection design was to reduce the number

of Template Match SoftSensors used. Originally, the design called for a
combination of Template Match SoftSensors and Rotational SoftSensors to be
used to align the Strut and Black Space Sensor Packages. The process was
very similar to the alignment process described above and was used for each
sensor package. This meant that there were 15 Template Match SoftSensors
and more than 15 Rotational SoftSensors being used for the inspection. For
each feature, the Template Match SoftSensor would search for the predefined
Template Region within the Scan Region. Once it had found this feature, it
would center it within the screen. Then, the Rotational SoftSensor would align on
a stent strut and calculate the percent rotation between the current feature and
the predefined feature. This sensor package is shown in Figure 27.

 34

Figure 27: Template Match and Rotational SoftSensors

 It was discovered that a complete inspection of an 18 mm stent took
over 7 minutes to complete. As shown by the Product Specifications defined
above, this was unacceptable. After much testing and consultation with the
project liaison Jason Van Sciver, it was determined that the cause of this lengthy
inspection was the Template Match SoftSensors. The original design called for a
Template Match and a Rotational SoftSensor to be used for every Black Space
and Strut Sensor Package, along with the Alignment sensor packages. By
changing these sensors to the current combination of Blob SoftSensors, the
sensors could still be properly aligned and 14 Template Match and Rotational
SoftSensors were eliminated from the design. This reduced the inspection time
to 1.5 minutes.

4.3.2. False Positives
The second major problem that the inspection faced was to find a way to

combat mandrel noise. Mandrel noise consists of light spots that appear on the
dark background during the inspection. These bright spots were sometimes
detected by the inspection and would result in a false positive.

4.3.2.1. Internal Triggering
One problem with the original inspection process that contributed to the

excessive false positives was that it was difficult to properly synchronize the CNC
fixture with the DVT camera. The process was first designed using internal
triggering. The camera was programmed to image the stent every 175
milliseconds. This proved to be very unreliable and resulted in pictures that were
off center. Since the camera was imaging the stent at such a high rate, any
deviation in the amount of time that it took to inspect the stent feature and rotate

 35

the stent resulted in a misalignment. This caused errors in the inspection and
returned too many false positives.

To rectify this problem, external triggering was used. The camera was
wired to the CNC fixture and programmed to wait for an input from the fixture to
take a picture. The new process starts with the CNC fixture rotating the stent to
the predefined starting point. When it reaches this point, it ceases all movement
and signals to the camera to take a picture. After an image is taken, the camera
inspects the stent feature. When the inspection is completed, it signals back to
the CNC fixture and the fixture increments the stent to the next feature. This new
process is a little more deliberate than the previous one and requires more
physical wiring, but less software communication. With this lack of additional
software handshaking, external triggering is more robust than the original design
and less prone to misaligning the stent. This made it the best choice for the
design. A more detailed description of the hardware changes required to
implement external triggering is located in Appendix G.

4.3.2.2. Black Space Intensity SoftSensors
Originally, the Black Space Sensor Package was designed using Intensity

SoftSensors. Intensity sensors are very useful because they can be used to
detect black and white pixel change within a predefined area. By defining these
areas as shown in Figure 28, it became possible to inspect the space between
the stent struts.

Figure 28: Intensity SoftSensor Layout

As the figure shows, this space between the struts appears as a very dark
background. By setting a specific contrast for the intensity sensors, very fine
defects that occurred in this area could be detected. These fine defects showed
up as very bright spots on the inspection screen. Figure 29 shows a stent with a
defect in between the struts and the intensity sensors that identified it.

 36

Figure 29: Intensity SoftSensors with Defect

This change in pixel intensity tripped the Intensity SoftSensor and alerted the
system that a defect had been found.
 The problem with Intensity SoftSensors was that they did not record or
save any of the information regarding the light pixels that they identified. During
the design process, it became necessary to reduce the sensitivity and increase
the robustness of the inspection. It proved impossible to do this with Intensity
SoftSensors because they recorded no information regarding the pixels they
observed. Part of the inspection was to determine the sum of all of the bright
pixels in a search area. If this sum was above the specification of 10 pixels, it
was determined that the feature was defective. By replacing the Intensity
SoftSensors with Blob SoftSensors and Blob Selectors, the sensor package was
able to store data regarding the area and perimeter of all of the light pixels in the
scan area. This allowed the inspection to calculate the sum of the light pixels
and added a great deal of robustness to the design.

4.3.2.3. Linear Intensity SoftSensor
Another minor change that was made during the development of the

inspection was that the Intensity SoftSensor responsible for finding the edge of
the stent was functioning incorrectly. Since the SoftSensor is designed to detect
when a change from dark pixels to bright pixels occurs, it could be easily fooled
into finding a false edge. Any bright spots or “noise” on the mandrel was being
detected and labeled as the edge of the stent. This caused the inspection to go
into an endless loop while it looked for the starting point. The initial Intensity
SoftSensor layout is shown in Figure 30.

 37

Figure 30: Original Intensity SoftSensor Layout

To rectify this problem, the area of the Intensity SoftSensor was
increased. The Intensity SoftSensor works by detecting a percentage of light
pixels in a specified area. When the percentage of light pixels rises above a
predefined threshold, it returns a PASS. Light spots on the mandrel were
causing this sensor to return an incorrect PASS because the search area was
not large enough to allow for small amounts of bright pixels of the mandrel.
When the search area was increased, the light pixels that represented the light
spots on the mandrel became a smaller percent of the overall area. This
reduced percentage was well below the predefined threshold. By increasing the
area, the errors caused by small amounts of mandrel noise were eliminated. The
final layout for the Intensity SoftSensor is shown in Figure 31.

Figure 31: Final Intensity SoftSensor Layout

 38

4.3.2.4. Ridged Mandrel
The major cause of the false positives that the inspection was generating

was image noise from the mandrel. This noise was caused by the structure of
the mandrel itself. Initial inspections were performed with a ridged mandrel. The
ridges in the mandrel caused most of the noise that were causing the
inspection’s false positives.

Mandrels are made of darkened carbide rods that are cut to a set length
and diameter. Carbide is used because it does not lose shape and suffer from
run out. The carbide mandrels are either perfectly shaped or broken, never bent
or warped. The mandrels are then coated with a thin layer of Teflon. The Teflon
is used to facilitate the loading/unloading of the stent from the mandrel and
increase the darkness of the mandrel surface.

Originally, a ridged mandrel was used to hold the stent during the
inspection. The mandrel surface contained small ridges that minimized the
amount of contact between the stent and mandrel while effectively holding the
stent in place. The problem with these mandrels was that the ridges made it
difficult to uniformly coat them with Teflon. Creases and light spots would appear
on the mandrel surface near the ridges. These bright spots would be detected by
the inspection and classified as defects. An example of mandrel noise caused by
a ridge is shown in Figure 32.

Figure 32: Example of Mandrel Noise

 To solve the problems caused by the ridged mandrel, a flat mandrel was
substituted into the inspection. The flat mandrel was uniformly coated with
Teflon, so the bright spots that caused mandrel noise were greatly reduced. It
was found that changing mandrel types reduced the number of false positives by
nearly 33%.

Another added benefit of the flat mandrel was that it made it easier for the
inspection to detect contamination. Contamination consists of a foreign particle
exists on the stent. Usually, contamination is found in the form a strand being
woven in and out of the stent geometry. An example of contamination is shown
in Figure 33.

 39

Figure 33: Contamination with Ridged Mandrel

This made it very hard to detect when using the ridged mandrel. Using
the flat mandrel forced the contamination to the surface of the stent and made it
much easier to detect. Figure 34 shows an example of contamination being
forced to the surface of the stent.

Figure 34: Contamination with Flat Mandrel

 40

5. Conclusions and Recommendations
The goal of this project was to design an automated, machine vision

based stent inspection system. This inspection system was the first prototype of
a system that Guidant may eventually use to replace the manual inspection for
their drug-eluting stents.

5.1. Design Conclusions
The results, while meeting the main objective of the project, show that it

was very difficult to produce an inspection system that does not pass any
defective stents, fail any acceptable stents without operator intervention, and
inspects at a rate of 18 mm per 1 minute. Creating a sensor package that was
sensitive enough to catch 100% of the defects resulted in the inspection time and
the number of false positives increasing. A balance of these three objectives
was achieved and the result of this project was an efficient yet accurate
inspection created for Guidant Corporation.

Further work and testing is required before this inspection system can be
fully implemented. During the testing of the inspection, it was found that the
system responds negatively to significant changes in the stent geometry or
contamination caused by flakes from the Teflon mandrel coating. These minor
issues, as well as the flexibility and robustness of the system will need to be
addressed to further improve upon an already accurate and successful
inspection system

Despite the conclusions drawn above, this project was viewed as a
success. When a stent feature is being inspected, the chances of a true defect
being missed or a false positive being identified are 0.08% and 7.54%
respectively. These numbers are very promising. Based on the size and variety
of defects found on a stent, these numbers can be deemed very acceptable. The
specifications laid out at the beginning of the project were quite lofty and this
project came very close to completing them. The inspection system created for
Guidant Corporation is a very good first prototype and, with a little more time, can
be easily upgraded to achieve the desired accuracy and flexibility.

5.2. Design Recommendations
Based on the results generated in the previous tests of the inspection, it

was determined that additional testing using production stents are required.
Also, upgrades to the mandrel, lighting system, inspection algorithm, and user
interface are needed to reduce the number of false positives generated by the
inspection and increase robustness of the system.

5.2.1. Additional Testing
Further testing of the current algorithm is also required. The testing

performed on this inspection was limited to a batch of 25 stents. 5 of these
stents were used to program the inspection and the other 20 were used to test its
accuracy. All of the stents used only had a polymer coat, so some testing would
need to be done on the drug coated stents from the manufacturing line. Testing

 41

stents off of the manufacturing line would validate the algorithm’s sensors. To
further evaluate the capability of the inspection, it will need to be tested on more
stents with wider variety of defects.

5.2.2. Mandrel Upgrade
During the inspection testing, problems arose with loading the stent onto

the flat mandrel. Since the mandrel is flat, the interior of the stent could catch
against the edge of the Teflon coating applied to the mandrel. In rare cases, the
coating would flake off and contaminate the stent or one of the crowns would slip
under the Teflon. One such defect occurred during the testing and proved
impossible to detect.

To solve this problem, Guidant could make minor adjustments to the flat
mandrels. By adding small grooves to either end of the mandrel, they could
remove the possibility of the stent catching on the end of the Teflon coating. The
proposed mandrel upgrade is shown in Figure 35. This upgrade would also
make loading and unloading the stent less damaging, since there would be a
taper for the leading ring of the stent rather than a flat edge of the 0.002” Teflon
coating.

Figure 35: Proposed Mandrel Upgrade

5.2.3. Lighting Upgrades
One of the problems that caused some of the false positives was

shadowing. Shadowing occurs when the lighting of the inspection console is
centered at one location. The fixture illuminates the center of the stent but fails to
properly adjust to the stent’s surface contours. Since the lighting on the
inspection console used for this inspection was located directly above the
viewing area, it highlighted the center of the viewing area well but left shadows
near the edges of the image. These shadows were inconsistent and varied from
feature to feature. The shaded area could appear under the sensors as dark
pixels, light pixels, or combination of the two. This combination of light and dark
pixels could be identified as a defect and sometimes resulted in a false positive
being generated. This inconsistent intensity of the edge struts made it
impossible to predict if the shadows would interfere with the inspection sensors
or not. Reducing shadowing would produce a more consistently lit image for
inspection and reduce the number of false positives generated by the inspection.
An example of shadowing is shown in Figure 36.

 42

Figure 36: Example of Shadowing

One solution to reduce shadowing would be to switch to a lighting fixture
that illuminates more of the stent. One way to do this would be to reflect the light
into the viewing area at many angles. This would result in a more consistent
intensity on the edge of the viewing area and reduce the number of false
positives generated by shadowing. This would also assist in catching cobwebs
that move from one feature to the next, since they would be directly illuminated
without the reflection of the stent behind them. The proposed upgrade to the
lighting system is shown in Figure 37.

Figure 37: Proposed Lighting Upgrade

5.2.4. Algorithm Upgrade
Currently, the inspection possesses the capability to inspect the stent and

identify defects, but not classify them. Upgrading this area of the inspection
algorithm would prove very useful. Programming the inspection to identify and
classify the defect would negate the need for supervision from an operator and
make the inspection fully automated. Since this algorithm upgrade would be
used to fully automate the inspection, it should only be performed after the

 43

number of false positives has been significantly lowered. This would ensure that
the inspection would be both automated and accurate.

5.2.5. User Interface Upgrade
To manage the inspection system, a user interface was created using

Visual Basic. The interface has already been developed and tested in Visual
Basic and it is predicted that it will serve as an upgrade of the current UI when
implemented. Unfortunately, the driver class files required for communication
between the Visual Basic, CNC, and DVT systems could not be obtained in time
for proper implementation. This made it impossible to compile the program and
run tests to see if it communicates with the camera and CNC controller as
expected. By obtaining these files and compiling them with the interface
described below, the UI can be easily upgraded.

This user interface runs an inspection initialization that checks the system
to make sure that the camera and CNC fixture are properly connected. It also
allows the operator to start/abort the inspection, view and save an image of any
features that failed inspection, accept/reject the feature, and classify the defect
by type. The main screen for the user interface is shown in Figure 38.

Figure 38: User Interface Main Screen

When then inspection is first started, the user interface initialization
window is the first to load. It consists of a progress bar and a status update. The
system is checking to make sure that the camera and CNC fixture are properly
connected and that they are communicating with each other. The initialization
screen is shown in Figure 39.

 44

Figure 39: Initialization Window

The Start/Abort button on the user interface is used to begin a new
inspection or halt an inspection in process. To start an inspection, the operator
needs to load the stent and mandrel into the CNC chuck. They can then press
the Start/Abort button and the inspection will begin. Pressing the button during
an inspection results in the inspection being stopped, the CNC fixture being
returned to the “Home” position, and the tailstock being opened.

As the inspection is running, the user interface is displaying images of the
feature that is being inspected. This is updated five times a second, so the
images are changing too fast for the operator to see any details. If a defect is
found, the inspection freezes. This results in an image of the defect and feature
that it was found on being displayed on the user interface. The operator can then
view the potential defect and save the image.

Before the inspection can be resumed, the operator is required to either
accept or reject the part. To do this, the operator can select one of four options.
First, the operator can accept the inspection’s assessment of the stent. This
means that the operator agrees that the potential defect is serious enough to fail
the stent and that it has been classified correctly. For this option, the operator
must push the “True Defect” button. The second option that the operator has is
to reject the stent, but reclassify the defect. This means that the inspection has
correctly identified a defect but incorrectly classified it. To do this, the operator
must select a new defect from the drop box and push the “Reclassify Defect”
button. The third option is for the operator to push the “Acceptable Defect”
button. This means that the potential defect is a defect, but that it is small
enough to be disregarded. The feature is reclassified as passing and the
inspection continues. Lastly, the operator can disagree with the inspection. This
means that the feature in question contains no actual defect and the inspection
misidentified it. To do this, the operator must push the “Not a Defect” button.
After an inspection passes, fails, or is aborted, a report is generated to contain
the results of the inspection. This report is in the form of an MS Access
Database and contains all the information about of the potential defects that have
been classified as “Acceptable Defect”, “True Defect”, “Not a Defect”, or
reclassified. This makes it easier to monitor the accuracy of the inspection. It
also facilitates the reconfiguring the system. If one part of the inspection is
excessively misidentifying defects, it can be changed without affecting the other
parts of the inspection. The report is also useful because it allows the operator to
observe patterns within a batch of stents. For example, if numerous stents within
a batch are all found to be failing for excessive clumping, it will show up in the

 45

report and make it easier for the operator to observe this trend and report the
problem to production. Generating an inspection report in the form of a MS
Access Database makes it easier for Guidant Corporation to track the accuracy
of the stent inspection and production.

 46

6. Bibliography
1. “A Few Quotes From... Silicon Valley History.” Gromov, Gregory.
. Retrieved November 6, 2004, from the World Wide Web:
http://www.netvalley.com/svhistory.html

2. “Fred Terman, the Father of Silicon Valley.” (May 1985) Tajnai, Carolyne.
Retrieved November 7, 2004, from the World Wide Web:
http://www.netvalley.com/archives/mirrors/terman.html

3. “Guidant Gains Immediate Access to Drug Eluting Stent Market.” (Feb 24,
2004). Retrieved November 7, 2004, from the World Wide Web:
http://www.guidant.com/news/400/web_release/nr_000451.shtml

4. “Stent.” Retrieved November 9, 2004, from the World Wide Web:
http://en.wikipedia.org/wiki/Stent

5. “Quality Every Step of the Way.” (Summer 2004). Retrieved November 9,
2004, from the World Wide Web:
http://www.lifebeatonline.com/winter2004/news.shtml

6. “The New ‘Coated’ Stents – What’s the Story?” (July 7, 2004). Kulick, Daniel.
Retrieved November 9, 2004, from the World Wide Web:
http://www.medicinenet.com/script/main/art.asp?articlekey=20723

7. “Welcome to Silicon Valley Today.” Unknown Author. Retrieved November 7,
2004, from the World Wide Web: http://www.svtoday.com/svt/newspage.htm

8. Cognex Corporation. Retrieved November 7, 2004, from the World Wide Web:
http://www.cognex.com/

9. Machine Vision Online Community. Retrieved November 7, 2004, from the
World Wide Web: http://www.machinevisiononline.org/

10. Advanced Illumination Online Catalog. Retrieved November 7, 2004, from
the World Wide Web:
http://www.advancedillumination.com/category/RL.html#dark_field

11. “Machine Vision Inspection” Retrieved November 7, 2004, from the World
Wide Web:
http://www.it.northropgrumman.com/home.asp?bid=6083

12. “Guidant Corporation: About Us” Retrieved November 7, 2004, from the
World Wide Web:
http://www.guidant.com/about/

 47

7. Appendix A: Background Information
A significant part of our background research was learning about our

project site and sponsor company. Completing this research gave us a better
understanding of the environment that we would be working in and the type of
products produced by Guidant Corporation. By understanding the goals of our
sponsor company, we were able to define our project objectives to meet the
goals of the entire company, our project liaison, and project advisors.

7.1. Silicon Valley
“Silicon Valley is the only place on Earth not trying to figure out how to

become Silicon Valley.” (Robert Metcalfe, 1) Today Silicon Valley is one of the
most famous industrial parks in the world. It houses many of the world’s top
high-tech industries and is famous for the production of semiconductor chips.
 The valley that is contained between the San Francisco Bay, Santa Cruz
Mountains, and the Coast Range hasn’t always been the center of industry that is
today. In the early 1900’s, the valley was known as the Valley of Heart’s Delight
and it was famous for its fruit orchards, not its silicon chips. It took the vision of
one man, Professor Frederick Emmons Terman of Stanford University, to turn
the Valley of Heart’s Delight into Silicon Valley (Tajnai, 2).
 During the 1930’s Prof. Terman was a professor in the Department of
Electrical Engineering at Stanford University. He became concerned with the
lack of employment opportunities for graduates of the Stanford Engineering
Program (Tajnai, 2). To solve this problem, he began plans to establish an
industry for radio technology in Stanford’s backyard. This industry would provide
employment for Stanford’s graduates and work in the growing field of radios.
 Silicon Valley was officially founded in 1946 (Tajnai, 2). Prof. Terman and
Stanford worked together to create a West Coast center of innovation. Their goal
was to create an industrial park that could compete with similar centers on the
East Coast and provide economic development to the area. Stanford began
leasing the off-campus lands that it owned in the 1950’s and in 1951; Varian
Associates signed the first lease. Varian also moved into the first industrial
building in 1953. Soon after, companies like Eastman Kodak, General Electric,
Admiral Corporation, Shockley Transistor Laboratory of Beckman Instruments,
Lockheed, Hewlett-Packard, and Preformed Line Products followed. Hewlett-
Packard is especially important to Silicon Valley’s history, as Terman was
responsible for bringing the two co-founders of HP together. Stanford Electrical
Engineering graduates Hewlett and Packard worked very closely with Terman to
form HP and Silicon Valley (Tajnai, 2). These companies, along with others
started by Stanford graduates, helped to form the core of what is present day
Silicon Valley.
 Today, Silicon Valley plays host to some of the World’s largest and most
successful hi-tech companies. With companies like Netscape, National
Semiconductor, Intel, Adobe, Adaptec, Guidant Corporation, and Computer
Curriculum Corporation, as well as universities like Stanford University, San Jose

 48

State, and Santa Clara University, Silicon Valley has become a synonym for
technology and industrial efficiency. (Unknown, 5)

7.2. Guidant Corporation
Since its incorporation in 1994, Guidant Corporation has been a pioneer in

the design and production of cardiovascular medical products. It is located all
over the world and has Corporate Headquarters in Indianapolis, Japan, Belgium,
Hong Kong, Canada, Brazil, Austria, Switzerland, and the Czech Republic. They
also have Operating Locations throughout the United States, Puerto Rico, and
Ireland. The company has been split into four business groups. By dividing the
company into these four specific business groups, Guidant has been able to
maintain the personal and innovative atmosphere of a small company, while
growing into a much larger one. The business groups are able to work intimately
with customers and provide immediate responses to their needs.

Since 1994, Guidant has grown into a $3.6 billion company and now
employs 12,000 employees. These are all a product of the success that each
business group is having within the Cardiac Surgery, Endovascular Solutions,
Cardiac Rhythm Management, and Vascular Intervention markets. (Unknown,
12)
 Recently, Guidant has increased their production and market share by
entering in an agreement with Cordis Corporation, a Johnson-Johnson company.
In February 2004, the two companies agreed to work together to design,
manufacture, and promote Cordis’ CYPHER™ Sirolimus-eluting Coronary Stent.
They will combining Cordis’ CYPHER Stent product line with Guidant’s MULTI-
LINK VISION® Stent Delivery System to more efficiently design, produce, and
inspect drug eluting stents. This partnership gives Guidant access to the US
drug eluting stent market, a market that is expected to generate close to $3
billion in revenue. (Unknown, 3)
 This partnership has created a feeling of optimism within Guidant
Corporation. This feeling was recently echoed by Dana G. Mead, Jr., the
president Guidant’s Vascular Intervention Business Group.

‘“We are enthusiastic about expanding our product offering with a drug eluting
stent that has consistently demonstrated exceptional clinical results. In four
years of clinical use in over half a million patients, the CYPHER Stent has proven
to be safe and effective. The combination of our market-leading metallic stent –
the MULTI-LINK VISION® Coronary Stent System – and an expansive product
portfolio will allow Guidant to provide a full range of proven interventional
therapies to physicians and patients,” said Dana G. Mead, Jr., president, Guidant
Vascular Intervention.’ (Unknown, 3)

 By entering a partnership with Cordis Corporation, one of the country’s
leaders in stent research and production, Guidant is expanding their market
share and increasing their revenue. This increases Guidant’s contributions to the
medical industry and helps to continue the prevention of cardiac disease in the
United States.

 49

8. Appendix B: Schedule
Monday Tuesday Wednesday Thursday Friday

January 3
• Trial Run to

Guidant (All)
• Arrange to

Meet Liaison
(All)

January 4
• Tour of

Facility (All)
• Introductory

Meeting with
Liaison (All)

January 5
• Study

Manual Stent
Inspection
Process (All)

January 6
• DVT Software

Tutorials (All)

January 7
• DVT

Software
Tutorials
(All)

• Introduction
to Vision
Console
(All)

January 10
• Mandatory

CBT
Training (All)

January 11
• Mandatory

Haz Comm
Training (All)

• Create
Schedule
(All)

January 12
• Review of

Existing
Code
(Jay/Ben)

• Update
Proposal
(Erik)

January 13
• Review of

Existing Code
(Jay/Ben)

• Update
Proposal
(Erik)

January 14
• Review of

Existing
Code
(Jay/Ben)

• Complete Lit
Review of
Final Report
(Erik)

January 17
• Automated

Stent
Load/Unload
Function
(Jay/Ben)

• Outline of
Procedure
for Final
Report
(Erik)

January 18
• Automated

Stent
Load/Unload
Function
(Jay/Ben)

• Outline of
Procedure
for Final
Report
(Erik)

January 19
• Automated

Stent
Load/Unload
Function
(Jay/Ben)

• Update
Procedure
for Final
Report (Erik)

January 20
• Automated

Stent
Load/Unload
Function
(Jay/Ben)

• Update
Procedure for
Final Report
(Erik)

January 21
• Code review

1 for
Load/Unload
Function
(All)

• Revision 1
Procedure
for Final
Report (All)

January 24
• Automated

Stent
Load/Unload
Function
(Jay/Ben)

• Outline of
Procedure
for Final
Report
(Erik)

January 25
• Automated

Stent
Load/Unload
Function
(Jay/Ben)

• Outline of
Procedure
for Final
Report
(Erik)

January 26
• Automated

Stent
Load/Unload
Function
(Jay/Ben)

• Update
Procedure
for Final
Report (Erik)

January 27
• Automated

Stent
Load/Unload
Function
(Jay/Ben)

• Update
Procedure for
Final Report
(Erik)

January 28
• Code review

2 for
Load/Unload
Function
(All)

• Revision 2
Procedure
for Final
Report (All)

January 31
• Black Space

Inspection
Module
(Ben)

• Strut
Inspection

February 1
• Black Space

Inspection
Module
(Ben)

• Strut
Inspection

February 2
• Black Space

Inspection
Module
(Ben)

• Strut
Inspection

February 3
• Black Space

Inspection
Module (Ben)

• Strut
Inspection
Module (Erik)

February 4
• Code review

1 for
Load/Unload
Function
(All)

• Code review

 50

Module
(Erik)

• Stent
Alignment
Module (Jay)

Module
(Erik)

• Stent
Alignment
Module (Jay)

Module (Erik)
• Stent

Alignment
Module (Jay)

• Stent
Alignment
Module (Jay)

• Update
Procedure for
Final Report
(Erik)

1 for Strut
Inspection
Module (All)

• Code review
for Black
Space
Inspection
Module (All)

• Revision 3
Procedure
for Final
Report (All)

February 7
• Black Space

Inspection
Module
(Ben)

• Strut
Inspection
Module
(Erik)

• Stent
Alignment
Module (Jay)

February 8
• Black Space

Inspection
Module
(Ben)

• Strut
Inspection
Module
(Erik)

• Stent
Alignment
Module (Jay)

February 9
• Black Space

Inspection
Module
(Ben)

• Strut
Inspection
Module (Erik)

• Stent
Alignment
Module (Jay)

February 10
• Black Space

Inspection
Module (Ben)

• Strut
Inspection
Module (Erik)

• Stent
Alignment
Module (Jay)

• Update
Procedure for
Final Report
(Erik)

February 11
• Code review

2 for
Load/Unload
Function
(All)

• Code review
2 for Strut
Inspection
Module (All)

• Code review
for Black
Space
Inspection
Module (All)

• Revision 4
Procedure
for Final
Report (All)

February 14
• System

Testing
(Ben)

• Sensor
Updates
(Jay)

• Outline of
Results and
Analysis for
Final Report
(Erik)

February 15
• System

Testing
(Ben)

• Sensor
Updates
(Jay)

• Outline of
Results and
Analysis for
Final Report
(Erik)

February 16
• System

Testing
(Ben)

• Sensor
Updates
(Jay)

• Write Results
and Analysis
for Final
Report (Erik)

• Update
Presentation
(Erik)

February 17
• System

Testing (Ben)
• Sensor

Updates (Jay)
• Write Results

and Analysis
for Final
Report (Erik)

• Update
Presentation
(Erik)

February 18
• Sensor

Accuracy
Review (All)

• Revision 1
of Results
and Analysis
for Final
Report (All)

• Revision of
Presentation
(All)

February 21
• Final System

Testing (All)
• Update

Results and
Analysis for
Final Report
(Erik)

February 22
• Final System

Testing (All)
• Update

Results and
Analysis for
Final Report
(Erik)

February 23
• Update

Presentation
(Jay)

• Users
Manual
(Ben)

• Revision 2 of
Results and
Analysis for

February 24
• User Interface

(Jay)
• Write

Conclusions
and
Recommendat
ions for Final
Report (Erik)

• Users Manual

February 25
• Write

Executive
Summary
(Erik)

• Revision of
Users
Manual (All)

• Revision of
Final Report

 51

Final Report
(All)

(Ben) (All)
• User

Interface
(Jay)

February 28
• Presentation

Rehearsal
(All)

March 1
• Presentation

Rehearsal
(All)

March 2
• Final

Presentation
at Guidant
(All)

March 3
• Final

Presentation
at SRI (All)

March 4
• Final Day at

Guidant (All)

 52

9. Appendix C: G-Code Definition
What is G Code?

G codes are the specific syntax used for preparatory functions such as the type
of movement, acceleration, and work in conjunction with F & M words. In the
following table is a summary of the G Codes and their associated F and M words.
Command Description Comments
G0 Rapid Traverse Used to rapidly move from point to

point, where the path taken is not
critical.

G1 Linear Interpolation Interpolates motion and synchronizes
it on all axes commanded to move.

G4 Dwell Pause for the number of seconds
indicated in the next F word.

G64 Set Linear Acceleration
Mode

The acceleration is linear and
constant over the time allotted versus
sinusoidal.

G68 Acceleration/Deceleration
Rate Based

The acceleration and deceleration will
vary in accordance to the desired rate
of movement, rather than time to
move.

G82 Clear Software Home Will eliminate any software coordinate
systems current active and use
hardware coordinates.

G90 Absolute Programming
Mode

Movements in this mode move to a
specific place in the coordinate plane
based upon a fixed reference point.

G91 Incremental Programming
Mode

Movements in this mode move based
on the current position rather than a
fixed reference.

G109 Deceleration to Zero
Velocity

During consecutive movements the
fixture must come to a complete stop
rather than chain movements
together.

M0 Program Stop The motion will stop at this point until
the Cycle Start button is pressed

M1 Optional Program Stop If optional stops are enabled this will
halt motion until the Cycle Start button
is pressed, otherwise it has no effect.

M2 End of Program This will terminate the program.
F Linear Feed Rate (When

used with a G0 or G1)
This is the velocity in Inches/Minute
that the fixture will accelerate towards
as a maximum speed.

F Dwell Time (When used
with a G4)

This is the time in seconds for the
system to pause after a G4 command.

 53

10. Appendix D: DVT SoftSensors
What are DVT SoftSensors?

DVT SoftSensors are tools used by FrameWork to manipulate and inspect an
image from a DVT camera. The basic tools and their purposes are described
below.
Sensor Type Description
Translational
SoftSensor

Translational SoftSensors are used primarily to locate
objects to be inspected in the Sampled Image Display.

Rotational
SoftSensor

Rotation SoftSensors are designed to compute the angle
of rotation of objects in the image. Like Translation
SoftSensors, Rotation SoftSensors allow for different
positions of an object without failing the part for being in
an unexpected position or location.

Intensity SoftSensor Checks contrast and bright area and compare to defined
threshold values for maximum and minimum values for
each of these measurements.

EdgeCount
SoftSensor

Used to count edge transitions based on changing
intensity levels. The SoftSensor outputs the total number
of edges in the Results Table and this output can be
limited with Warn and Pass Parameters.

FeatureCount
SoftSensor

Used to count regions known as features of light and/or
dark pixels along the SoftSensor path. The SoftSensor
outputs the total number of features in the Results Table
and this output can be limited with Warn and Pass
Parameters.

Measurement
SoftSensor

Measurement SoftSensors are used to compute the
distance between two points of origin or the area of a
selected region.

Math SoftSensors Use reference points to calculate Distance, Intersection,
Angle, Midpoint, Midline, Line Through Two Points,
Perpendicular Line, Scale Factor, Coordinate Transform,
Coordinate System, and New Coordinate Transform.

Readers The Reader SoftSensors are the 2-D reader (good for
DataMatrix, Vericode and Snowflake), bar code reader,
and the OCR reader. They are designed to read labels,
codes, etc. to verify that the right part is in front of the
SmartImage Sensor or simply to decode the information.

Blob SoftSensor Blobs are areas of connected pixels of similar intensity.
The Blob Generator will locate these blobs of either dark
or light pixels and allow further analysis.

Blob Selector Analyze blobs found by a given Blob SoftSensor and
compare against predefined criteria including area,
perimeter, angular rotation, and center of mass.

Template Match Searches within a defined Scan Region for a minimum

 54

SoftSensor error match to the Template Region that was learned
previously

ObjectFind
SoftSensor

Similar to Template Match, it searches within a defined
area for a known object.

Segmentation Similar to a Blob SoftSensor, Segmentation is the process
of separating pixels into distinct blobs. Each set has its
own characteristics including color, pixel size, and center.

Smart Link The SmartLink SoftSensor is used to send information
from a SmartImage Sensor to the SmartLink Display
device. The information from this SoftSensor is displayed
in a Table in the SmartLink display. The table must be
configured on both in the FrameWork and in SmartLink.
When defining a table in the SmartLink, the IP address of
the SmartImage sensor and a Table ID must be defined.

Script Scripts are basically programmable tools used in
SmartImage Sensors. Each script is designated as a class
that can contain a number of static user-defined functions,
with one required method that will be the first to execute
when the script is initialized (the name of this method is
different between a Foreground Script and a Background
Script and will be detailed below). They are designed to be
fully customizable to the application’s needs. Unlike other
parameters within FrameWork, Scripts have no predefined
purpose. They are created as an empty tool that is shaped
to perform the required tasks according to the user needs.

 55

11. Appendix E: Software Description
The individual sensor packages that were used to automate the stent inspection
are shown below. There are three different classifications for these sensor
packages. They are Alignment, Webbing, and Clumping. Alignment sensors are
used to find the edges and inspection starting points within the stent geometry.
Webbing sensors are used to scan the area between stent struts for defects.
Clumping sensors are used to scan the actual stent surface and edges for
defects. The information needed to recreate each sensor package is displayed
in the tables below. All sensors are named using the following convention.

Sensor Naming Convention: type_ feature#_ classification _name
Type:
Blob Sensor = blo
Intensity Sensor = int
Template Sensor = tmp
Blob Selector = bls
Feature #:
Feature 1, 5 = 1
Feature 2, 4, 8, 10 = 2
Feature 3 = 3
Feature 6, 12 = 6
Feature 7, 9 = 7
Feature 11 = 11
Classification:
Alignment = a
Webbing = w
Clumping = c
Threshold = t

 56

11.1. Stent Alignment
The first step in the inspection algorithm is to properly align the stent for
inspection.

int_1_a_edge_seek
Sensor Shape X Y
Point 0 114 66
Point 1 127 66
Point 2 127 378
Point 3 114 378
Point 4 114 66
Sensor Thresholds Type Value
Threshold Level Fixed

Value
65

Min Bright Area Warn/Pass 2 %

Sensor Type: Intensity Soft
Sensor
Package Type: Alignment
Purpose: This sensor is the
first sensor that we use. As
the CNC fixture is slowly
moving the stent
horizontally, this sensor
scans the area. The sensor
is scanning the area for
bright pixels. When the
percentage of bright pixels
in the search area reaches
2%, the sensor will return a
PASS. It returns a FAIL
otherwise
Pass: A PASS signifies that
the edge of the stent has
been found. It signals to the
CNC fixture to cease all
horizontal movement and
begin slowly rotating the
stent.
Fail: A FAIL signifies that
the edge has not been
found. It signals to the CNC
fixture to continue horizontal
movement.

tmp_1_a_fidseek
Sensor Shape X Y

Outer Rectangle 330 136
 496 351

Sensor Type: Template
Match Soft Sensor
Package Type: Alignment
Purpose: This sensor
searches for the inspection
starting point after the stent
edge has been found. As
the stent rotates, it scans
the search area (outer box)
for a match to the defined
template (inner box). It will
return a PASS when a
feature that matches the
template is found. The
sensor allows for an error of
10% for this template
matching. It return a FAIL if
no matches are found.

 57

Inner Rectangle 370 176
 456 302
Sensor Thresholds Type Value
Threshold Level Fixed Value 65
Max Total Area Warn/Pass 10%

Pass: A PASS signifies that
the starting point has been
found. It signals to the CNC
fixture to cease rotation.
Fail: A FAIL signifies that
the starting point has not
been found. It signals to the
CNC fixture to continue
rotation.

Sensor Shape X Y Positional
Reference

blo_1_a_topstr 270 88 blo_1_a_key
 275 232
blo_1_a_botstr 270 230 blo_1_a_key
 275 362
blo_1_a_fid 445 158 None
 450 312
blo_1_a_key 445 280 blo_1_a_fid
 601 285

Sensor
Thresholds

Type Value

Threshold Level Fixed Value 65
Preprocessing Light Blob
Parameters Enable

Boundary Blobs
enable
d

Sensor Type: Blob Soft
Sensors, Blob Selectors
Package Type: Alignment
Purpose: These sensors
make the fine adjustments
required to center the
starting point. This
adjustment runs in two
stages. First it performs a
coarse adjustment based on
the vertical Blob Sensors.
Then, it performs a fine
adjustment based on both
the horizontal and vertical
Blob Sensors. They return
a PASS when a light blob is
found within the search
area. They return a FAIL if
no light blobs are found.
Pass: A PASS signifies that
one of the stent’s struts has
been found. The Blob
Selector than calculates the
center of mass of the blob.
The center of mass for each
strut is used as a reference
for centering the starting
point.
Fail: A FAIL signifies that
there is a geometry error
within the stent or an error
with the sensor placement.
This causes software reset
and returns to the Template
Sensor described above.

 58

11.2. Feature Inspection: Beginning Ring
The inspection starts by incrementing through the features of the first ring. A
Webbing Inspection and a Clumping Inspection is performed for each feature.
After each inspection is performed on a feature, the stent is rotated 0.01963
inches (based on 0.075 inch outer diameter) to the next feature. Once all 12
features have been inspected, the stent is moved 0.05286 inches horizontally to
focus on the next ring. Blob Sensors from above are then used to realign the
stent to the next starting point.

Feature 1 Feature 1 occurs three times within

Ring 1. It uses the same reference
and inspection sensors as Feature 5.

Sensor Shape X Y Positional
Reference

blo_1_a_topstr 270 88 blo_1_a_key
 275 232
blo_1_a_botstr 270 230 blo_1_a_key
 275 362
blo_1_a_fid 445 158 None
 450 312
blo_1_a_key 445 280 blo_1_a_fid
 601 285

Sensor
Thresholds

Type Value

Threshold
Level

Fixed
Value

65

Preprocessing Light Blob
Parameters Enable

Boundary
Blobs

enabled

Sensor Type: Blob Soft Sensors,
Blob Selectors
Package Type: Alignment
Purpose: These sensors act as
reference points for the inspection
sensors. They return a PASS when
a light blob is found within the search
area. They return a FAIL if no light
blobs are found.
Pass: A PASS signifies that one of
the stent’s struts has been found.
The Blob Selector than calculates the
center of mass of the blob. The
center of mass for each strut is used
as a reference for aligning the
inspection sensors.
Fail: A FAIL signifies that there is a
geometry error within the stent or an
error with the sensor placement.
This causes an invalid test and
unpredictable inspection results.

 59

Sensor Shape X Y Positional Reference
blo_1_w_1 blo_1_a_botstr
Point 0 356 228
Point 1 385 228
Point 2 385 246
Point 3 356 246
Point 4 356 228
blo_1_w_2 blo_1_a_botstr
Point 0 355 237
Point 1 243 225
Point 2 243 200
Point 3 294 217
Point 4 356 227
Point 5 355 237
blo_1_w_3 blo_1_a_botstr
Point 0 355 237
Point 1 355 249
Point 2 305 255
Point 3 243 265
Point 4 243 247
Point 5 355 237
blo_1_w_4 blo_1_a_key
Point 0 342 148
Point 1 342 102
Point 2 480 102
Point 3 491 225
Point 4 416 170
Point 5 342 148
blo_1_w_5 blo_1_a_key
Point 0 444 270
Point 1 460 270
Point 2 460 301
Point 3 444 301
Point 4 444 270
blo_1_w_6 blo_1_a_key
Point 0 459 301
Point 1 459 355
Point 2 279 355
Point 3 352 318

Sensor Type: Blob Soft Sensors,
Blob Selectors, Intensity Sensors
Package Type: Black Space
Inspection
Purpose: These sensors inspect the
area between stent struts. They
return a PASS when no light blobs
are found or blobs under the
threshold area are found. They
return a FAIL if multiple blobs whose
sum is above a known threshold.
Pass: A PASS signifies that the
search area has been found free of
defects. The inspection has passed
and the stent is rotated to the next
feature.
Fail: A FAIL signifies that there is a
defect in the black space between
stent struts. One of the Blob Sensors
has detected multiple blobs above
the threshold area or a blob with too
large of an area or perimeter. The
inspection has failed and the user is
prompted.

 60

Point 4 459 301
blo_1_w_7 blo_1_a_topstr
Point 0 128 197
Point 1 128 153
Point 2 77 98
Point 3 52 122
Point 4 128 197
int_1_t_dark blo_1_a_botstr
Point 0 103 186
Point 1 208 186
Point 2 208 291
Point 3 103 291
Point 4 103 186
int_1_t_light blo_1_a_fid
Point 0 442 235
Point 1 453 235
Point 2 453 246
Point 3 442 246
Point 4 442 235

Sensor Shape X Y Positional Reference
blo_1_c_ts 312 137 blo_1_a_botstr
 390 248
blo_1_c_ts2 241 108 blo_1_a_botstr
 333 210
blo_1_c_bs 313 243 blo_1_a_botstr
 388 348
blo_1_c_bs2 237 267 blo_1_a_botstr
 322 356
blo_1_c_ms 428 204 blo_1_a_botstr
 508 264
blo_1_c_ms2 512 205 blo_1_a_key
 628 287
blo_1_c_crown 377 162 blo_1_a_botstr
 447 329
blo_1_c_kh 467 261 blo_1_a_botstr
 566 361

Sensor Type: Blob Soft Sensors,
Blob Selectors
Package Type: Strut Inspection
Purpose: These sensors inspect the
stent struts and edges. They return a
PASS when a single light blob whose
area and perimeter are under the
threshold values or multiple blobs
whose sum of areas is under a
threshold value are detected. They
return a FAIL if multiple blobs whose
sum is above a known threshold are
detected.
Pass: A PASS signifies that the strut
within the search area has been
found and is free of defects. The Blob
Selector has calculated the surface
area of the blobs and the script has
determined the sum of these areas.
The sum is under the threshold
value. The inspection has passed
and the stent is rotated to the next
feature.
Fail: A FAIL signifies that there is a
defect on the surface of the stent.
One of the Blob Sensors has
detected multiple blobs above the
threshold area or a blob with too
large of an area or perimeter. The
inspection has failed and the user is
prompted.

 61

Feature 2 Feature 2 occurs three times within

Ring 1. It uses the same reference
and inspection sensors as
Features 4, 8, and 10.

Sensor Shape X Y Position
Reference

blo_2_a_topstr 270 100 None
 275 240
blo_2_a_botstr 270 245 blo_2_a_topstr
 275 374
blo_2_a_neck 162 136 blo_2_a_botstr
 167 346
blo_2_a_crown 10 239 blo_2_a_neck
 200 244

Sensor
Thresholds

Type Value

Threshold
Level

Fixed
Value

65

Preprocessing Light Blob
Parameters Enable

Boundary
Blobs

enabled

Sensor Type: Blob Soft Sensors,
Blob Selectors
Package Type: Alignment
Purpose: These sensors act as
reference points for the inspection
sensors. They return a PASS
when a light blob is found within
the search area. They return a
FAIL if no light blobs are found.
Pass: A PASS signifies that one of
the stent’s struts has been found.
The Blob Selector than calculates
the center of mass of the blob. The
center of mass for each strut is
used as a reference for aligning the
inspection sensors.
Fail: A FAIL signifies that there is a
geometry error within the stent or
an error with the sensor placement.
This causes an invalid test and
unpredictable inspection results.

Sensor Type: Blob Soft Sensors,
Blob Selectors, Intensity Sensors
Package Type: Black Space
Inspection
Purpose: These sensors inspect
the area between stent struts.
They return a PASS when no light
blobs are found or blobs under the
threshold area are found. They
return a FAIL if multiple blobs
whose sum is above a known
threshold.
Pass: A PASS signifies that the
search area has been found free of
defects. The inspection has passed

 62

Sensor Shape X Y Position Reference
blo_2_w_1 blo_2_a_crown
Point 0 156 233
Point 1 192 233
Point 2 192 246
Point 3 156 246
Point 4 156 233
blo_2_w_2 blo_2_a_crown
Point 0 193 233
Point 1 246 233
Point 2 246 247
Point 3 193 247
Point 4 193 233
blo_2_w_3 blo_2_a_crown
Point 0 247 249
Point 1 355 284
Point 2 363 262
Point 3 247 242
Point 4 247 249
blo_2_w_4 blo_2_a_crown
Point 0 247 233
Point 1 355 184
Point 2 355 215
Point 3 247 242
Point 4 247 233
blo_2_w_5 blo_2_a_crown
Point 0 90 160
Point 1 70 222
Point 2 117 183
Point 3 187 177
Point 4 247 143
Point 5 90 160
blo_2_w_6 blo_2_a_crown
Point 0 68 286
Point 1 111 308
Point 2 199 308
Point 3 251 342
Point 4 68 342
Point 5 68 286
int_2_t_dark blo_2_a_crown
Point 0 372 187
Point 1 473 187
Point 2 473 288
Point 3 372 288
Point 4 372 187
int_2_t_light blo_2_a_crown
Point 0 121 231
Point 1 130 231
Point 2 130 240
Point 3 121 240
Point 4 121 231

and the stent is rotated to the next
feature.
Fail: A FAIL signifies that there is a
defect in the black space between
stent struts. One of the Blob
Sensors has detected multiple
blobs above the threshold area or a
blob with too large of an area or
perimeter. The inspection has
failed and the user is prompted.

 63

Sensor Shape X Y Position Reference
blo_2_c_ts 160 116 blo_2_a_crown
 313 239
blo_2_c_bs 159 251 blo_2_a_crown
 314 357
blo_2_c_crown 102 185 blo_2_a_crown
 172 297

Sensor Type: Blob Soft Sensors,
Blob Selectors
Package Type: Strut Inspection
Purpose: These sensors inspect
the stent struts and edges. They
return a PASS when a single light
blob whose area and perimeter are
under the threshold values or
multiple blobs whose sum of areas
is under a threshold value are
detected. They return a FAIL if
multiple blobs whose sum is above
a known threshold are detected.
Pass: A PASS signifies that the
strut within the search area has
been found and is free of defects.
The Blob Selector has calculated
the surface area of the blobs and
the script has determined the sum
of these areas. The sum is under
the threshold value. The
inspection has passed and the
stent is rotated to the next feature.
Fail: A FAIL signifies that there is a
defect on the surface of the stent.
One of the Blob Sensors has
detected multiple blobs above the
threshold area or a blob with too
large of an area or perimeter. The
inspection has failed and the user
is prompted.

 64

Feature 3 Feature 3 occurs three times

within Ring 1. It uses the same
reference sensors as Feature
11.

Sensor Shape X Y Position
Reference

blo_11_a_topstr 280 68 None
 284 214
blo_11_a_botstr 279 233 blo_11_a_topstr
 283 394
blo_11_a_crown 366 234 blo_11_a_crown
 505 237

Sensor
Thresholds

Type Value

Threshold Level Fixed
Value

65

Preprocessing Light Blob
Parameters Enable

Boundary
Blobs

enabled

Sensor Type: Blob Soft
Sensors, Blob Selectors
Package Type: Alignment
Purpose: These sensors act as
reference points for the
inspection sensors. They return
a PASS when a light blob is
found within the search area.
They return a FAIL if no light
blobs are found.
Pass: A PASS signifies that one
of the stent’s struts has been
found. The Blob Selector than
calculates the center of mass of
the blob. The center of mass for
each strut is used as a reference
for aligning the inspection
sensors.
Fail: A FAIL signifies that there
is a geometry error within the
stent or an error with the sensor
placement. This causes an
invalid test and unpredictable
inspection results.

Sensor Type: Blob Soft
Sensors, Blob Selectors,
Intensity Sensors
Package Type: Black Space
Inspection
Purpose: These sensors inspect
the area between stent struts.
They return a PASS when no
light blobs are found or blobs
under the threshold area are
found. They return a FAIL if
multiple blobs whose sum is
above a known threshold.
Pass: A PASS signifies that the
search area has been found free

 65

Sensor Shape X Y Position Reference
blo_3_w_1 blo_11_a_crown
Point 0 335 213
Point 1 415 213
Point 2 415 276
Point 3 335 276
Point 4 335 213
blo_3_w_2 blo_11_a_crown
Point 0 335 276
Point 1 245 304
Point 2 230 278
Point 3 335 246
Point 4 335 276
blo_3_w_3 blo_11_a_crown
Point 0 335 212
Point 1 245 178
Point 2 232 206
Point 3 335 238
Point 4 335 212
blo_3_w_4 blo_11_a_crown
Point 0 487 200
Point 1 487 96
Point 2 287 96
Point 3 355 134
Point 4 449 134
Point 5 487 200
blo_3_w_5 blo_11_a_crown
Point 0 492 200
Point 1 520 200
Point 2 520 321
Point 3 492 321
Point 4 492 200
blo_3_w_6 blo_11_a_crown
Point 0 302 368
Point 1 492 368
Point 2 492 321
Point 3 453 345
Point 4 356 345
Point 5 302 368
int_3_t_dark blo_11_a_crown
Point 0 80 184
Point 1 203 184
Point 2 203 307
Point 3 80 307
Point 4 80 184
int_3_t_light blo_11_a_crown
Point 0 442 233
Point 1 452 233
Point 2 452 243
Point 3 442 243
Point 4 442 233

of defects. The inspection has
passed and the stent is rotated
to the next feature.
Fail: A FAIL signifies that there
is a defect in the black space
between stent struts. One of the
Blob Sensors has detected
multiple blobs above the
threshold area or a blob with too
large of an area or perimeter.
The inspection has failed and
the user is prompted.

 66

Sensor Shape X Y Position Reference
blo_3_c_ts 273 248 blo_11_a_crown
 413 383
blo_3_c_bs 272 113 blo_11_a_crown
 411 252
blo_3_c_crown 400 166 blo_11_a_crown
 497 361

Sensor Type: Blob Soft
Sensors, Blob Selectors
Package Type: Strut Inspection
Purpose: These sensors inspect
the stent struts and edges. They
return a PASS when a single
light blob whose area and
perimeter are under the
threshold values or multiple
blobs whose sum of areas is
under a threshold value are
detected. They return a FAIL if
multiple blobs whose sum is
above a known threshold are
detected.
Pass: A PASS signifies that the
strut within the search area has
been found and is free of
defects. The Blob Selector has
calculated the surface area of
the blobs and the script has
determined the sum of these
areas. The sum is under the
threshold value. The inspection
has passed and the stent is
rotated to the next feature.
Fail: A FAIL signifies that there
is a defect on the surface of the
stent. One of the Blob Sensors
has detected multiple blobs
above the threshold area or a
blob with too large of an area or
perimeter. The inspection has
failed and the user is prompted.

 67

Feature 4 Feature 4 occurs three times within

Ring 1. It uses the same reference
and inspection sensors as Features
2, 8, and 10.

Sensor Shape X Y Position
Reference

blo_2_a_topstr 270 100 None
 275 240
blo_2_a_botstr 270 245 blo_2_a_topstr
 275 374
blo_2_a_neck 162 136 blo_2_a_botstr
 167 346
blo_2_a_crown 10 239 blo_2_a_neck
 200 244

Sensor
Thresholds

Type Value

Threshold
Level

Fixed
Value

65

Preprocessing Light
Blob

Parameters Enable
Boundary
Blobs

enabled

Sensor Type: Blob Soft Sensors,
Blob Selectors
Package Type: Alignment
Purpose: These sensors act as
reference points for the inspection
sensors. They return a PASS when
a light blob is found within the
search area. They return a FAIL if
no light blobs are found.
Pass: A PASS signifies that one of
the stent’s struts has been found.
The Blob Selector than calculates
the center of mass of the blob. The
center of mass for each strut is used
as a reference for aligning the
inspection sensors.
Fail: A FAIL signifies that there is a
geometry error within the stent or an
error with the sensor placement.
This causes an invalid test and
unpredictable inspection results.

Sensor Type: Blob Soft Sensors,
Blob Selectors, Intensity Sensors
Package Type: Black Space
Inspection
Purpose: These sensors inspect
the area between stent struts. They
return a PASS when no light blobs
are found or blobs under the
threshold area are found. They
return a FAIL if multiple blobs
whose sum is above a known
threshold.
Pass: A PASS signifies that the
search area has been found free of
defects. The inspection has passed

 68

Sensor Shape X Y Position Reference
blo_2_w_1 blo_2_a_crown
Point 0 156 233
Point 1 192 233
Point 2 192 246
Point 3 156 246
Point 4 156 233
blo_2_w_2 blo_2_a_crown
Point 0 193 233
Point 1 246 233
Point 2 246 247
Point 3 193 247
Point 4 193 233
blo_2_w_3 blo_2_a_crown
Point 0 247 249
Point 1 355 284
Point 2 363 262
Point 3 247 242
Point 4 247 249
blo_2_w_4 blo_2_a_crown
Point 0 247 233
Point 1 355 184
Point 2 355 215
Point 3 247 242
Point 4 247 233
blo_2_w_5 blo_2_a_crown
Point 0 90 160
Point 1 70 222
Point 2 117 183
Point 3 187 177
Point 4 247 143
Point 5 90 160
blo_2_w_6 blo_2_a_crown
Point 0 68 286
Point 1 111 308
Point 2 199 308
Point 3 251 342
Point 4 68 342
Point 5 68 286
int_2_t_dark blo_2_a_crown
Point 0 372 187
Point 1 473 187
Point 2 473 288
Point 3 372 288
Point 4 372 187
int_2_t_light blo_2_a_crown
Point 0 121 231
Point 1 130 231
Point 2 130 240
Point 3 121 240
Point 4 121 231

and the stent is rotated to the next
feature.
Fail: A FAIL signifies that there is a
defect in the black space between
stent struts. One of the Blob
Sensors has detected multiple blobs
above the threshold area or a blob
with too large of an area or
perimeter. The inspection has failed
and the user is prompted.

 69

Sensor Shape X Y Position Reference
blo_2_c_ts 160 116 blo_2_a_crown
 313 239
blo_2_c_bs 159 251 blo_2_a_crown
 314 357
blo_2_c_crown 102 185 blo_2_a_crown
 172 297

Sensor Type: Blob Soft Sensors,
Blob Selectors
Package Type: Strut Inspection
Purpose: These sensors inspect
the stent struts and edges. They
return a PASS when a single light
blob whose area and perimeter are
under the threshold values or
multiple blobs whose sum of areas
is under a threshold value are
detected. They return a FAIL if
multiple blobs whose sum is above
a known threshold are detected.
Pass: A PASS signifies that the
strut within the search area has
been found and is free of defects.
The Blob Selector has calculated
the surface area of the blobs and
the script has determined the sum
of these areas. The sum is under
the threshold value. The inspection
has passed and the stent is rotated
to the next feature.
Fail: A FAIL signifies that there is a
defect on the surface of the stent.
One of the Blob Sensors has
detected multiple blobs above the
threshold area or a blob with too
large of an area or perimeter. The
inspection has failed and the user is
prompted.

 70

11.3. Feature Inspection: Middle Rings
The inspection for the middle rings is very similar to the beginning ring. The
difference being the types of features found in the rings. It starts each ring by
realigning the stent to the starting point and then incrementing through the 12
features.

Feature 5 Feature 5 occurs three times within

each middle ring. It uses the same
reference and inspection sensors as
Feature 1.

Sensor
Shape

X Y Position
Reference

blo_1_a_topstr 270 88 blo_1_a_key
 275 232
blo_1_a_botstr 270 230 blo_1_a_key
 275 362
blo_1_a_fid 445 158 None
 450 312
blo_1_a_key 445 280 blo_1_a_fid
 601 285

Sensor
Thresholds

Type Value

Threshold
Level

Fixed
Value

65

Preprocessing Light
Blob

Parameters Enable
Boundary
Blobs

enabled

Sensor Type: Blob Soft Sensors, Blob
Selectors
Package Type: Alignment
Purpose: These sensors act as
reference points for the inspection
sensors. They return a PASS when a
light blob is found within the search
area. They return a FAIL if no light
blobs are found.
Pass: A PASS signifies that one of the
stent’s struts has been found. The
Blob Selector than calculates the
center of mass of the blob. The center
of mass for each strut is used as a
reference for aligning the inspection
sensors.
Fail: A FAIL signifies that there is a
geometry error within the stent or an
error with the sensor placement. This
causes an invalid test and
unpredictable inspection results.

 71

Sensor Shape X Y Positional Reference
blo_1_w_1 blo_1_a_botstr
Point 0 356 228
Point 1 385 228
Point 2 385 246
Point 3 356 246
Point 4 356 228
blo_1_w_2 blo_1_a_botstr
Point 0 355 237
Point 1 243 225
Point 2 243 200
Point 3 294 217
Point 4 356 227
Point 5 355 237
blo_1_w_3 blo_1_a_botstr
Point 0 355 237
Point 1 355 249
Point 2 305 255
Point 3 243 265
Point 4 243 247
Point 5 355 237
blo_1_w_4 blo_1_a_key
Point 0 342 148
Point 1 342 102
Point 2 480 102
Point 3 491 225
Point 4 416 170
Point 5 342 148
blo_1_w_5 blo_1_a_key
Point 0 444 270
Point 1 460 270
Point 2 460 301
Point 3 444 301
Point 4 444 270
blo_1_w_6 blo_1_a_key
Point 0 459 301
Point 1 459 355
Point 2 279 355

Sensor Type: Blob Soft Sensors, Blob
Selectors, Intensity Sensors
Package Type: Black Space
Inspection
Purpose: These sensors inspect the
area between stent struts. They return
a PASS when no light blobs are found
or blobs under the threshold area are
found. They return a FAIL if multiple
blobs whose sum is above a known
threshold.
Pass: A PASS signifies that the search
area has been found free of defects.
The inspection has passed and the
stent is rotated to the next feature.
Fail: A FAIL signifies that there is a
defect in the black space between stent
struts. One of the Blob Sensors has
detected multiple blobs above the
threshold area or a blob with too large
of an area or perimeter. The inspection
has failed and the user is prompted.

 72

Point 3 352 318
Point 4 459 301
blo_1_w_7 blo_1_a_topstr
Point 0 128 197
Point 1 128 153
Point 2 77 98
Point 3 52 122
Point 4 128 197
int_1_t_dark blo_1_a_botstr
Point 0 103 186
Point 1 208 186
Point 2 208 291
Point 3 103 291
Point 4 103 186
int_1_t_light blo_1_a_fid
Point 0 442 235
Point 1 453 235
Point 2 453 246
Point 3 442 246
Point 4 442 235

Sensor Shape X Y Position Reference
blo_1_c_ts 312 137 blo_1_a_botstr
 390 248
blo_1_c_ts2 241 108 blo_1_a_botstr
 333 210
blo_1_c_bs 313 243 blo_1_a_botstr
 388 348
blo_1_c_bs2 237 267 blo_1_a_botstr
 322 356
blo_1_c_ms 428 204 blo_1_a_botstr
 508 264
blo_1_c_ms2 512 205 blo_1_a_key
 631 267
blo_1_c_crown 377 162 blo_1_a_botstr
 447 329
blo_1_c_kh 467 261 blo_1_a_botstr
 566 361

Sensor Type: Blob Soft Sensors, Blob
Selectors
Package Type: Strut Inspection
Purpose: These sensors inspect the
stent struts and edges. They return a
PASS when a single light blob whose
area and perimeter are under the
threshold values or multiple blobs
whose sum of areas is under a
threshold value are detected. They
return a FAIL if multiple blobs whose
sum is above a known threshold are
detected.
Pass: A PASS signifies that the strut
within the search area has been found
and is free of defects. The Blob
Selector has calculated the surface
area of the blobs and the script has
determined the sum of these areas.
The sum is under the threshold value.
The inspection has passed and the
stent is rotated to the next feature.
Fail: A FAIL signifies that there is a
defect on the surface of the stent. One
of the Blob Sensors has detected
multiple blobs above the threshold area
or a blob with too large of an area or
perimeter. The inspection has failed
and the user is prompted.

 73

 74

Feature 6 Feature 6 occurs three times within

each middle ring. It uses the same
reference and inspection sensors
as Feature 12.

Sensor Shape X Y Position
Reference

blo_6_a_topstr 309 133 None
 314 248
blo_6_a_botstr 304 275 blo_6_a_topstr
 309 408
blo_6_a_crown 73 251 blo_6_a_neck
 218 256
blo_6_a_neck 220 151 blo_6_a_botstr
 225 361

Sensor
Thresholds

Type Value

Threshold
Level

Fixed
Value

65

Preprocessing Light Blob
Parameters Enable

Boundary
Blobs

enabled

Sensor Type: Blob Soft Sensors,
Blob Selectors
Package Type: Alignment
Purpose: These sensors act as
reference points for the inspection
sensors. They return a PASS
when a light blob is found within
the search area. They return a
FAIL if no light blobs are found.
Pass: A PASS signifies that one of
the stent’s struts has been found.
The Blob Selector than calculates
the center of mass of the blob. The
center of mass for each strut is
used as a reference for aligning the
inspection sensors.
Fail: A FAIL signifies that there is a
geometry error within the stent or
an error with the sensor placement.
This causes an invalid test and
unpredictable inspection results.

Sensor Type: Blob Soft Sensors,
Blob Selectors, Intensity Sensors
Package Type: Black Space
Inspection
Purpose: These sensors inspect
the area between stent struts.
They return a PASS when no light
blobs are found or blobs under the
threshold area are found. They
return a FAIL if multiple blobs
whose sum is above a known
threshold.
Pass: A PASS signifies that the
search area has been found free of
defects. The inspection has passed

 75

Sensor Shape X Y Position Reference
blo_6_w_1 blo_6_a_crown
Point 0 196 247
Point 1 243 247
Point 2 243 267
Point 3 196 267
Point 4 196 247
blo_6_w_2 blo_6_a_crown
Point 0 243 258
Point 1 244 267
Point 2 289 288
Point 3 331 324
Point 4 331 280
Point 5 243 258
blo_6_w_3 blo_6_a_crown
Point 0 243 247
Point 1 315 225
Point 2 315 245
Point 3 243 258
Point 4 243 247
blo_6_w_4 blo_6_a_crown
Point 0 491 111
Point 1 528 111
Point 2 485 214
Point 3 454 214
Point 4 454 192
Point 5 481 173
Point 6 491 111
blo_6_w_5 blo_6_a_crown
Point 0 139 145
Point 1 139 168
Point 2 173 191
Point 3 240 180
Point 4 305 158
Point 5 305 145
Point 6 139 145
blo_6_w_6 blo_6_a_crown
Point 0 144 303
Point 1 144 367
Point 2 279 367
Point 3 222 327
Point 4 144 303
blo_6_w_7 blo_6_a_crown
Point 0 132 289
Point 1 114 289
Point 2 114 230
Point 3 146 173
Point 4 159 182
Point 5 132 231
Point 6 132 289
int_6_t_dark blo_6_a_crown

and the stent is rotated to the next
feature.
Fail: A FAIL signifies that there is a
defect in the black space between
stent struts. One of the Blob
Sensors has detected multiple
blobs above the threshold area or a
blob with too large of an area or
perimeter. The inspection has
failed and the user is prompted.

 76

Point 1 479 220
Point 2 479 329
Point 3 370 329
Point 4 370 220
int_6_t_light blo_6_a_crown
Point 0 156 245
Point 1 166 245
Point 2 166 255
Point 3 156 255
Point 4 156 245

Sensor Shape X Y Position Reference
blo_6_c_ts 205 141 blo_6_a_crown
 323 252
blo_6_c_bs 205 257 blo_6_a_crown
 321 380
blo_6_c_crown 125 185 blo_6_a_crown
 215 315

Sensor Type: Blob Soft Sensors,
Blob Selectors
Package Type: Strut Inspection
Purpose: These sensors inspect
the stent struts and edges. They
return a PASS when a single light
blob whose area and perimeter are
under the threshold values or
multiple blobs whose sum of areas
is under a threshold value are
detected. They return a FAIL if
multiple blobs whose sum is above
a known threshold are detected.
Pass: A PASS signifies that the
strut within the search area has
been found and is free of defects.
The Blob Selector has calculated
the surface area of the blobs and
the script has determined the sum
of these areas. The sum is under
the threshold value. The
inspection has passed and the
stent is rotated to the next feature.
Fail: A FAIL signifies that there is a
defect on the surface of the stent.
One of the Blob Sensors has
detected multiple blobs above the
threshold area or a blob with too
large of an area or perimeter. The
inspection has failed and the user
is prompted.

 77

Feature 7 Feature 7 occurs three times

within each middle ring. It
uses the same reference and
inspection sensors as
Feature 9.

Sensor Shape X Y Position
Reference

blo_7_a_keyhole 75 294 blo_7_a_midstr
 139 298
blo_7_a_botstr 315 281 None
 319 389
blo_7_a_midstr 136 172 blo_7_a_m
 139 308
blo_7_a_m2 390 130 blo_7_a_key2
 395 340
blo_7_a_key2 75 294 blo_7_a_keyhole
 79 370
blo_7_a_m 384 203 blo_7_a_botstr
 508 206

Sensor
Thresholds

Type Value

Threshold Level Fixed
Value

65

Preprocessing Light Blob
Parameters Enable

Boundary
Blobs

enabled

Sensor Type: Blob Soft
Sensors, Blob Selectors
Purpose: These sensors act
as reference points for the
inspection sensors. They
return a PASS when a light
blob is found within the
search area. They return a
FAIL if no light blobs are
found.
Pass: A PASS signifies that
one of the stent’s struts has
been found. The Blob
Selector than calculates the
center of mass of the blob.
The center of mass for each
strut is used as a reference
for aligning the inspection
sensors.
Fail: A FAIL signifies that
there is a geometry error
within the stent or an error
with the sensor placement.
This causes an invalid test
and unpredictable inspection
results.

 78

Sensor Shape X Y Position Reference
blo_7_w_1 blo_7_a_m2
Point 0 363 265
Point 1 413 265
Point 2 413 277
Point 3 363 277
Point 4 363 265
blo_7_w_2 blo_7_a_m2
Point 0 366 204
Point 1 413 204
Point 2 413 213
Point 3 366 213
Point 4 366 204
blo_7_w_3 blo_7_a_m2
Point 0 366 215
Point 1 265 215
Point 2 265 185
Point 3 315 201
Point 4 366 201
Point 5 366 215
blo_7_w_4 blo_7_a_m2
Point 0 363 263
Point 1 264 268
Point 2 264 302
Point 3 335 278
Point 4 363 278
Point 5 363 263
blo_7_w_5 blo_7_a_m2
Point 0 471 90
Point 1 529 90
Point 2 529 236
Point 3 481 236
Point 4 471 152
Point 5 471 90
blo_7_w_6 blo_7_a_m2
Point 0 271 90
Point 1 271 124
Point 2 354 152

Sensor Type: Blob Soft
Sensors, Blob Selectors,
Intensity Sensors
Package Type: Black Space
Inspection
Purpose: These sensors
inspect the area between
stent struts. They return a
PASS when no light blobs
are found or blobs under the
threshold area are found.
They return a FAIL if multiple
blobs whose sum is above a
known threshold.
Pass: A PASS signifies that
the search area has been
found free of defects. The
inspection has passed and
the stent is rotated to the
next feature.
Fail: A FAIL signifies that
there is a defect in the black
space between stent struts.
One of the Blob Sensors has
detected multiple blobs
above the threshold area or
a blob with too large of an
area or perimeter. The
inspection has failed and the
user is prompted.

 79

Point 3 471 152
Point 4 471 90
Point 5 271 90
blo_7_w_7 blo_7_a_key2
Point 0 48 85
Point 1 32 118
Point 2 103 175
Point 3 118 175
Point 4 78 136
Point 5 48 85
blo_7_w_8 blo_7_a_keyhole
Point 0 27 185
Point 1 150 185
Point 2 150 219
Point 3 27 219
Point 4 27 185
blo_7_w_9 blo_7_a_keyhole
Point 0 60 220
Point 1 72 275
Point 2 81 274
Point 3 92 220
Point 4 60 220
blo_7_w_10 blo_7_a_keyhole
Point 0 72 275
Point 1 80 275
Point 2 80 305
Point 3 72 305
Point 4 72 275
blo_7_w_11 blo_7_a_key2
Point 0 132 332
Point 1 145 337
Point 2 121 366
Point 3 38 366
Point 4 38 353
Point 5 114 353
Point 6 132 332
blo_7_w_12 blo_7_a_m2
Point 0 291 383
Point 1 291 372
Point 2 359 352
Point 3 364 341
Point 4 465 341
Point 5 465 384
Point 6 291 383
int_7_t_dark blo_7_a_m2
Point 0 523 186
Point 1 620 186
Point 2 620 295
Point 3 523 295
Point 4 523 186
int_7_t_light blo_7_a_m
Point 0 443 200
Point 1 453 200

 80

Point 2 453 210
Point 3 443 210
Point 4 443 200

Sensor Shape X Y Position Reference
blo_7_c_ts 287 121 blo_7_a_keyhole
 421 207
blo_7_c_bs 276 282 blo_7_a_keyhole
 408 361
blo_7_c_ms 283 208 blo_7_a_keyhole
 414 275
blo_7_c_ms2 131 200 blo_7_a_keyhole
 289 283
blo_7_c_crown 409 132 blo_7_a_keyhole
 473 352

Sensor Type: Blob Soft
Sensors, Blob Selectors
Package Type: Strut
Inspection
Purpose: These sensors
inspect the stent struts and
edges. They return a PASS
when a single light blob
whose area and perimeter
are under the threshold
values or multiple blobs
whose sum of areas is under
a threshold value are
detected. They return a FAIL
if multiple blobs whose sum
is above a known threshold
are detected.
Pass: A PASS signifies that
the strut within the search
area has been found and is
free of defects. The Blob
Selector has calculated the
surface area of the blobs and
the script has determined the
sum of these areas. The
sum is under the threshold
value. The inspection has
passed and the stent is
rotated to the next feature.
Fail: A FAIL signifies that
there is a defect on the
surface of the stent. One of
the Blob Sensors has
detected multiple blobs
above the threshold area or
a blob with too large of an
area or perimeter. The
inspection has failed and the
user is prompted.

 81

Feature 8 Feature 8 occurs three times

within each middle ring. It uses
the same reference and inspection
sensors as Features 2, 4, and 10.

Sensor Shape X Y Position
Reference

blo_2_a_topstr 270 100 None
 275 240
blo_2_a_botstr 270 245 blo_2_a_topstr
 275 374
blo_2_a_neck 162 136 blo_2_a_botstr
 167 346
blo_2_a_crown 10 239 blo_2_a_neck
 200 244

Sensor
Thresholds

Type Value

Threshold
Level

Fixed
Value

65

Preprocessing Light Blob
Parameters Enable

Boundary
Blobs

enabled

Sensor Type: Blob Soft Sensors,
Blob Selectors
Purpose: These sensors act as
reference points for the inspection
sensors. They return a PASS
when a light blob is found within
the search area. They return a
FAIL if no light blobs are found.
Pass: A PASS signifies that one of
the stent’s struts has been found.
The Blob Selector than calculates
the center of mass of the blob.
The center of mass for each strut
is used as a reference for aligning
the inspection sensors.
Fail: A FAIL signifies that there is
a geometry error within the stent
or an error with the sensor
placement. This causes an invalid
test and unpredictable inspection
results.

 82

Sensor Shape X Y Position Reference
blo_2_w_1 blo_2_a_crown
Point 0 156 233
Point 1 192 233
Point 2 192 246
Point 3 156 246
Point 4 156 233
blo_2_w_2 blo_2_a_crown
Point 0 193 233
Point 1 246 233
Point 2 246 247
Point 3 193 247
Point 4 193 233
blo_2_w_3 blo_2_a_crown
Point 0 247 249
Point 1 355 284
Point 2 363 262
Point 3 247 242
Point 4 247 249
blo_2_w_4 blo_2_a_crown
Point 0 247 233
Point 1 355 184
Point 2 355 215
Point 3 247 242
Point 4 247 233
blo_2_w_5 blo_2_a_crown
Point 0 90 160
Point 1 70 222
Point 2 117 183
Point 3 187 177
Point 4 247 143
Point 5 90 160
blo_2_w_6 blo_2_a_crown
Point 0 68 286
Point 1 111 308
Point 2 199 308
Point 3 251 342
Point 4 68 342

Sensor Type: Blob Soft Sensors,
Blob Selectors, Intensity Sensors
Package Type: Black Space
Inspection
Purpose: These sensors inspect
the area between stent struts.
They return a PASS when no light
blobs are found or blobs under the
threshold area are found. They
return a FAIL if multiple blobs
whose sum is above a known
threshold.
Pass: A PASS signifies that the
search area has been found free
of defects. The inspection has
passed and the stent is rotated to
the next feature.
Fail: A FAIL signifies that there is
a defect in the black space
between stent struts. One of the
Blob Sensors has detected
multiple blobs above the threshold
area or a blob with too large of an
area or perimeter. The inspection
has failed and the user is
prompted.

 83

Point 5 68 286
int_2_t_dark blo_2_a_crown
Point 0 372 187
Point 1 473 187
Point 2 473 288
Point 3 372 288
Point 4 372 187
int_2_t_light blo_2_a_crown
Point 0 121 231
Point 1 130 231
Point 2 130 240
Point 3 121 240
Point 4 121 231

Sensor Shape X Y Position Reference
blo_2_c_ts 160 116 blo_2_a_crown
 313 239
blo_2_c_bs 159 251 blo_2_a_crown
 314 357
blo_2_c_crown 102 185 blo_2_a_crown
 172 297

Sensor Type: Blob Soft Sensors,
Blob Selectors
Package Type: Strut Inspection
Purpose: These sensors inspect
the stent struts and edges. They
return a PASS when a single light
blob whose area and perimeter
are under the threshold values or
multiple blobs whose sum of areas
is under a threshold value are
detected. They return a FAIL if
multiple blobs whose sum is above
a known threshold are detected.
Pass: A PASS signifies that the
strut within the search area has
been found and is free of defects.
The Blob Selector has calculated
the surface area of the blobs and
the script has determined the sum
of these areas. The sum is under
the threshold value. The
inspection has passed and the
stent is rotated to the next feature.
Fail: A FAIL signifies that there is
a defect on the surface of the
stent. One of the Blob Sensors
has detected multiple blobs above
the threshold area or a blob with
too large of an area or perimeter.
The inspection has failed and the
user is prompted.

 84

11.4. Feature Inspection: End Ring
The inspection for the middle rings is similar to the beginning and middle rings.
The differences being the types of features found in the rings and that after the
ring has been inspected, the stent must be unloaded. The inspection starts by
realigning the stent and then incrementing through the 12 features. The CNC
fixture then returns to the “Home” position and open the tailstock.

Feature 9 Feature 9 occurs three times

within each middle ring. It uses
the same reference and
inspection sensors as Feature
7.

Sensor Shape X Y Position
Reference

blo_7_a_keyhole 75 294 blo_7_a_midstr
 139 298
blo_7_a_botstr 315 281 None
 319 389
blo_7_a_midstr 136 172 blo_7_a_m
 139 308
blo_7_a_m2 390 130 blo_7_a_key2
 395 340
blo_7_a_key2 75 294 blo_7_a_keyhole
 79 370

Sensor
Thresholds

Type Value

Threshold Level Fixed
Value

65

Preprocessing Light Blob
Parameters Enable

Boundary
Blobs

enabled

Sensor Type: Blob Soft
Sensors, Blob Selectors
Purpose: These sensors act as
reference points for the
inspection sensors. They return
a PASS when a light blob is
found within the search area.
They return a FAIL if no light
blobs are found.
Pass: A PASS signifies that
one of the stent’s struts has
been found. The Blob Selector
than calculates the center of
mass of the blob. The center of
mass for each strut is used as a
reference for aligning the
inspection sensors.
Fail: A FAIL signifies that there
is a geometry error within the
stent or an error with the sensor
placement. This causes an
invalid test and unpredictable
inspection results.

 Sensor Type: Blob Soft
Sensors, Blob Selectors,

 85

Sensor Shape X Y Position Reference
blo_7_w_1 blo_7_a_m2
Point 0 363 265
Point 1 413 265
Point 2 413 277
Point 3 363 277
Point 4 363 265
blo_7_w_2 blo_7_a_m2
Point 0 366 204
Point 1 413 204
Point 2 413 213
Point 3 366 213
Point 4 366 204
blo_7_w_3 blo_7_a_m2
Point 0 366 215
Point 1 265 215
Point 2 265 185
Point 3 315 201
Point 4 366 201
Point 5 366 215
blo_7_w_4 blo_7_a_m2
Point 0 363 263
Point 1 264 268
Point 2 264 302
Point 3 335 278
Point 4 363 278
Point 5 363 263
blo_7_w_5 blo_7_a_m2
Point 0 471 90
Point 1 529 90
Point 2 529 236
Point 3 481 236
Point 4 471 152
Point 5 471 90
blo_7_w_6 blo_7_a_m2
Point 0 271 90
Point 1 271 124
Point 2 354 152
Point 3 471 152

Intensity Sensors
Package Type: Black Space
Inspection
Purpose: These sensors
inspect the area between stent
struts. They return a PASS
when no light blobs are found or
blobs under the threshold area
are found. They return a FAIL if
multiple blobs whose sum is
above a known threshold.
Pass: A PASS signifies that the
search area has been found
free of defects. The inspection
has passed and the stent is
rotated to the next feature.
Fail: A FAIL signifies that there
is a defect in the black space
between stent struts. One of
the Blob Sensors has detected
multiple blobs above the
threshold area or a blob with
too large of an area or
perimeter. The inspection has
failed and the user is prompted.

 86

Point 4 471 90
Point 5 271 90
blo_7_w_7 blo_7_a_key2
Point 0 48 85
Point 1 32 118
Point 2 103 175
Point 3 118 175
Point 4 78 136
Point 5 48 85
blo_7_w_8 blo_7_a_keyhole
Point 0 27 185
Point 1 150 185
Point 2 150 219
Point 3 27 219
Point 4 27 185
blo_7_w_9 blo_7_a_keyhole
Point 0 60 220
Point 1 72 275
Point 2 81 274
Point 3 92 220
Point 4 60 220
blo_7_w_10 blo_7_a_keyhole
Point 0 72 275
Point 1 80 275
Point 2 80 305
Point 3 72 305
Point 4 72 275
blo_7_w_11 blo_7_a_key2
Point 0 132 332
Point 1 145 337
Point 2 121 366
Point 3 38 366
Point 4 38 353
Point 5 114 353
Point 6 132 332
blo_7_w_12 blo_7_a_m2
Point 0 291 383
Point 1 291 372
Point 2 359 352
Point 3 364 341
Point 4 465 341
Point 5 465 384
Point 6 291 383
int_7_t_dark blo_7_a_m2
Point 0 523 186
Point 1 620 186
Point 2 620 295
Point 3 523 295
Point 4 523 186
int_7_t_light blo_7_a_m
Point 0 443 200
Point 1 453 200
Point 2 453 210

 87

Point 3 443 210
Point 4 443 200

Sensor Shape X Y Position Reference
blo_7_c_ts 287 121 blo_7_a_keyhole
 421 207
blo_7_c_bs 276 282 blo_7_a_keyhole
 408 361
blo_7_c_ms 283 208 blo_7_a_keyhole
 414 275
blo_7_c_ms2 131 200 blo_7_a_keyhole
 289 283
blo_7_c_crown 409 132 blo_7_a_keyhole
 473 352

Sensor Type: Blob Soft
Sensors, Blob Selectors
Package Type: Strut Inspection
Purpose: These sensors
inspect the stent struts and
edges. They return a PASS
when a single light blob whose
area and perimeter are under
the threshold values or multiple
blobs whose sum of areas is
under a threshold value are
detected. They return a FAIL if
multiple blobs whose sum is
above a known threshold are
detected.
Pass: A PASS signifies that the
strut within the search area has
been found and is free of
defects. The Blob Selector has
calculated the surface area of
the blobs and the script has
determined the sum of these
areas. The sum is under the
threshold value. The inspection
has passed and the stent is
rotated to the next feature.
Fail: A FAIL signifies that there
is a defect on the surface of the
stent. One of the Blob Sensors
has detected multiple blobs
above the threshold area or a
blob with too large of an area or
perimeter. The inspection has
failed and the user is prompted.

 88

Feature 10 Feature 10 occurs three times

within the end ring. It uses the
same reference and inspection
sensors as Features 2, 4, and 8.

Sensor Shape X Y Position
Reference

blo_2_a_topstr 270 100 None
 275 240
blo_2_a_botstr 270 245 blo_2_a_topstr
 275 374
blo_2_a_neck 162 136 blo_2_a_botstr
 167 346
blo_2_a_crown 10 239 blo_2_a_neck
 200 244

Sensor
Thresholds

Type Value

Threshold
Level

Fixed
Value

65

Preprocessing Light Blob
Parameters Enable

Boundary
Blobs

enabled

Sensor Type: Blob Soft Sensors,
Blob Selectors
Purpose: These sensors act as
reference points for the inspection
sensors. They return a PASS
when a light blob is found within
the search area. They return a
FAIL if no light blobs are found.
Pass: A PASS signifies that one of
the stent’s struts has been found.
The Blob Selector than calculates
the center of mass of the blob.
The center of mass for each strut
is used as a reference for aligning
the inspection sensors.
Fail: A FAIL signifies that there is
a geometry error within the stent
or an error with the sensor
placement. This causes an invalid
test and unpredictable inspection
results.

 89

Sensor Shape X Y Position Reference
blo_2_w_1 blo_2_a_crown
Point 0 156 233
Point 1 192 233
Point 2 192 246
Point 3 156 246
Point 4 156 233
blo_2_w_2 blo_2_a_crown
Point 0 193 233
Point 1 246 233
Point 2 246 247
Point 3 193 247
Point 4 193 233
blo_2_w_3 blo_2_a_crown
Point 0 247 249
Point 1 355 284
Point 2 363 262
Point 3 247 242
Point 4 247 249
blo_2_w_4 blo_2_a_crown
Point 0 247 233
Point 1 355 184
Point 2 355 215
Point 3 247 242
Point 4 247 233
blo_2_w_5 blo_2_a_crown
Point 0 90 160
Point 1 70 222
Point 2 117 183
Point 3 187 177
Point 4 247 143
Point 5 90 160
blo_2_w_6 blo_2_a_crown
Point 0 68 286
Point 1 111 308
Point 2 199 308
Point 3 251 342
Point 4 68 342

Sensor Type: Blob Soft Sensors,
Blob Selectors, Intensity Sensors
Package Type: Black Space
Inspection
Purpose: These sensors inspect
the area between stent struts.
They return a PASS when no light
blobs are found or blobs under the
threshold area are found. They
return a FAIL if multiple blobs
whose sum is above a known
threshold.
Pass: A PASS signifies that the
search area has been found free
of defects. The inspection has
passed and the stent is rotated to
the next feature.
Fail: A FAIL signifies that there is
a defect in the black space
between stent struts. One of the
Blob Sensors has detected
multiple blobs above the threshold
area or a blob with too large of an
area or perimeter. The inspection
has failed and the user is
prompted.

 90

Point 5 68 286
int_2_t_dark blo_2_a_crown
Point 0 372 187
Point 1 473 187
Point 2 473 288
Point 3 372 288
Point 4 372 187
int_2_t_light blo_2_a_crown
Point 0 121 231
Point 1 130 231
Point 2 130 240
Point 3 121 240
Point 4 121 231

Sensor Shape X Y Position Reference
Top Strut 160 116 blo_2_a_crown
 313 239
Bottom Strut 159 251 blo_2_a_crown
 314 357
Crown 102 185 blo_2_a_crown
 172 297

Sensor Type: Blob Soft Sensors,
Blob Selectors
Package Type: Strut Inspection
Purpose: These sensors inspect
the stent struts and edges. They
return a PASS when a single light
blob whose area and perimeter
are under the threshold values or
multiple blobs whose sum of areas
is under a threshold value are
detected. They return a FAIL if
multiple blobs whose sum is above
a known threshold are detected.
Pass: A PASS signifies that the
strut within the search area has
been found and is free of defects.
The Blob Selector has calculated
the surface area of the blobs and
the script has determined the sum
of these areas. The sum is under
the threshold value. The
inspection has passed and the
stent is rotated to the next feature.
Fail: A FAIL signifies that there is
a defect on the surface of the
stent. One of the Blob Sensors
has detected multiple blobs above
the threshold area or a blob with
too large of an area or perimeter.
The inspection has failed and the
user is prompted.

 91

Feature 11 Feature 11 occurs three times

within the end ring. It uses the
same reference sensors as
Feature 3.

Sensor Shape X Y Position
Reference

blo_11_a_topstr 280 68 None
 284 214
blo_11_a_botstr 279 233 blo_11_a_botstr
 283 394
blo_11_c_crown 366 234 blo_11_a_botstr
 505 237
blo_11_c_neck 358 171 blo_11_a_botstr
 363 350

Sensor
Thresholds

Type Value

Threshold Level Fixed
Value

65

Preprocessing Light Blob
Parameters Enable

Boundary
Blobs

enabled

Sensor Type: Blob Soft
Sensors, Blob Selectors
Purpose: These sensors act as
reference points for the
inspection sensors. They return
a PASS when a light blob is
found within the search area.
They return a FAIL if no light
blobs are found.
Pass: A PASS signifies that one
of the stent’s struts has been
found. The Blob Selector than
calculates the center of mass of
the blob. The center of mass for
each strut is used as a reference
for aligning the inspection
sensors.
Fail: A FAIL signifies that there is
a geometry error within the stent
or an error with the sensor
placement. This causes an
invalid test and unpredictable
inspection results.

 92

Sensor Shape X Y Position Reference
blo_11_w_1 blo_11_a_neck
Point 0 351 250
Point 1 375 250
Point 2 375 274
Point 3 351 274
Point 4 351 250
blo_11_w_2 blo_11_a_neck
Point 0 350 262
Point 1 350 274
Point 2 300 280
Point 3 238 305
Point 4 238 272
Point 5 350 262
blo_11_w_3 blo_11_a_neck
Point 0 351 260
Point 1 239 248
Point 2 239 209
Point 3 290 240
Point 4 352 250
Point 5 351 260
blo_11_w_4 blo_11_a_neck
Point 0 326 159
Point 1 326 113
Point 2 464 113
Point 3 475 236
Point 4 400 181
Point 5 326 159
blo_11_w_5 blo_11_a_neck
Point 0 157 207
Point 1 157 163
Point 2 106 108
Point 3 81 132
Point 4 157 207
blo_11_w_6 blo_11_a_neck
Point 0 440 323
Point 1 440 377
Point 2 260 377

Sensor Type: Blob Soft
Sensors, Blob Selectors,
Intensity Sensors
Package Type: Black Space
Inspection
Purpose: These sensors inspect
the area between stent struts.
They return a PASS when no
light blobs are found or blobs
under the threshold area are
found. They return a FAIL if
multiple blobs whose sum is
above a known threshold.
Pass: A PASS signifies that the
search area has been found free
of defects. The inspection has
passed and the stent is rotated to
the next feature.
Fail: A FAIL signifies that there is
a defect in the black space
between stent struts. One of the
Blob Sensors has detected
multiple blobs above the
threshold area or a blob with too
large of an area or perimeter.
The inspection has failed and the
user is prompted.

 93

Point 3 333 340
Point 4 440 323
int_11_t_dark blo_11_a_crown
Point 0 85 196
Point 1 200 196
Point 2 200 311
Point 3 85 311
Point 4 85 196
int_11_t_light blo_11_a_crown
Point 0 409 257
Point 1 422 257
Point 2 422 270
Point 3 409 270
Point 4 409 275

Sensor Shape X Y Position Reference
blo_11_c_ts 290 85 blo_11_a_crown
 390 218
blo_11_c_bs 314 226 blo_11_a_crown
 389 318
blo_11_c_bs2 237 231 blo_11_a_crown
 322 356
blo_11_c_crown 378 146 blo_11_a_crown
 456 300

Sensor Type: Blob Soft
Sensors, Blob Selectors
Package Type: Strut Inspection
Purpose: These sensors inspect
the stent struts and edges. They
return a PASS when a single
light blob whose area and
perimeter are under the
threshold values or multiple
blobs whose sum of areas is
under a threshold value are
detected. They return a FAIL if
multiple blobs whose sum is
above a known threshold are
detected.
Pass: A PASS signifies that the
strut within the search area has
been found and is free of
defects. The Blob Selector has
calculated the surface area of the
blobs and the script has
determined the sum of these
areas. The sum is under the
threshold value. The inspection
has passed and the stent is
rotated to the next feature.
Fail: A FAIL signifies that there is
a defect on the surface of the
stent. One of the Blob Sensors
has detected multiple blobs
above the threshold area or a
blob with too large of an area or
perimeter. The inspection has
failed and the user is prompted.

 94

Feature 12 Feature 12 occurs three times within

the end ring. It uses the same
reference and inspection sensors as
Feature 6.

Sensor Shape X Y Position
Reference

blo_6_a_topstr 309 133 None
 314 248
blo_6_a_botstr 304 275 blo_6_a_topstr
 309 408
blo_6_a_crown 73 251 blo_6_a_neck
 218 256
blo_6_a_neck 220 151 blo_6_a_botstr
 225 361

Sensor
Thresholds

Type Value

Threshold
Level

Fixed
Value

65

Preprocessing Light
Blob

Parameters Enable
Boundary
Blobs

enabled

Sensor Type: Blob Soft Sensors,
Blob Selectors
Package Type: Alignment
Purpose: These sensors act as
reference points for the inspection
sensors. They return a PASS when
a light blob is found within the search
area. They return a FAIL if no light
blobs are found.
Pass: A PASS signifies that one of
the stent’s struts has been found.
The Blob Selector than calculates
the center of mass of the blob. The
center of mass for each strut is used
as a reference for aligning the
inspection sensors.
Fail: A FAIL signifies that there is a
geometry error within the stent or an
error with the sensor placement.
This causes an invalid test and
unpredictable inspection results.

Sensor Type: Blob Soft Sensors,
Blob Selectors, Intensity Sensors
Package Type: Black Space
Inspection
Purpose: These sensors inspect the
area between stent struts. They
return a PASS when no light blobs
are found or blobs under the
threshold area are found. They
return a FAIL if multiple blobs whose
sum is above a known threshold.
Pass: A PASS signifies that the
search area has been found free of
defects. The inspection has passed
and the stent is rotated to the next

 95

Sensor Shape X Y Position Reference
blo_6_w_1 blo_6_a_crown
Point 0 196 247
Point 1 243 247
Point 2 243 267
Point 3 196 267
Point 4 196 247
blo_6_w_2 blo_6_a_crown
Point 0 243 258
Point 1 244 267
Point 2 289 288
Point 3 331 324
Point 4 331 280
Point 5 243 258
blo_6_w_3 blo_6_a_crown
Point 0 243 247
Point 1 315 225
Point 2 315 245
Point 3 243 258
Point 4 243 247
blo_6_w_4 blo_6_a_crown
Point 0 491 111
Point 1 528 111
Point 2 485 214
Point 3 454 214
Point 4 454 192
Point 5 481 173
Point 6 491 111
blo_6_w_5 blo_6_a_crown
Point 0 139 145
Point 1 139 168
Point 2 173 191
Point 3 240 180
Point 4 305 158
Point 5 305 145
Point 6 139 145
blo_6_w_6 blo_6_a_crown
Point 0 144 303
Point 1 144 367
Point 2 279 367
Point 3 222 327
Point 4 144 303
blo_6_w_7 blo_6_a_crown
Point 0 132 289
Point 1 114 289
Point 2 114 230
Point 3 146 173
Point 4 159 182
Point 5 132 231
Point 6 132 289
int_6_t_dark blo_6_a_crown

feature.
Fail: A FAIL signifies that there is a
defect in the black space between
stent struts. One of the Blob
Sensors has detected multiple blobs
above the threshold area or a blob
with too large of an area or
perimeter. The inspection has failed
and the user is prompted.

 96

Point 1 479 220
Point 2 479 329
Point 3 370 329

Sensor Shape X Y Position Reference
blo_6_c_ts 205 141 blo_6_a_crown
 323 252
blo_6_c_bs 205 257 blo_6_a_crown
 321 380
blo_6_c_crown 125 185 blo_6_a_crown
 215 315

Sensor Type: Blob Soft Sensors,
Blob Selectors
Package Type: Strut Inspection
Purpose: These sensors inspect the
stent struts and edges. They return
a PASS when a single light blob
whose area and perimeter are under
the threshold values or multiple
blobs whose sum of areas is under a
threshold value are detected. They
return a FAIL if multiple blobs whose
sum is above a known threshold are
detected.
Pass: A PASS signifies that the strut
within the search area has been
found and is free of defects. The
Blob Selector has calculated the
surface area of the blobs and the
script has determined the sum of
these areas. The sum is under the
threshold value. The inspection has
passed and the stent is rotated to the
next feature.
Fail: A FAIL signifies that there is a
defect on the surface of the stent.
One of the Blob Sensors has
detected multiple blobs above the
threshold area or a blob with too
large of an area or perimeter. The
inspection has failed and the user is
prompted.

 97

12. Appendix F: Inspection Results
The detailed results of the test inspections are shown below. 15 stents

were inspected and 2 were aborted mid-inspection due to geometry defects. The
stents are classified as “D” for True Defect, “A” for Acceptable Defect, “N” for
Mandrel Noise, or “M” for Missed Defect and are named using the following
convention: Batch#_Stent#.

Stent ID
Inspection
Result Sensor Fail Reason Count

B1_S1 A >1 Blob - > Max Error - Blackspace 1

 D > Max Error - Blackspace 4

 N > Max Error - Blackspace 2

B1_S10 A > Max Error - Blackspace 4

 1 Blob - Area Error 1

 1 Blob - Perimeter Error 1

 Alignment 4

 D > Max Error - Blackspace 28

 >1 Blob - > Max Error - Blackspace 4

 >1 Blob - Area Error 1

 1 Blob - Area Error 1

 Alignment 1

B1_S13 A > Max Error - Blackspace 4

 >1 Blob - Area Error 1

 1 Blob - Area Error 1

 D > Max Error - Blackspace 67

 >1 Blob - > Max Error - Blackspace 1

 >1 Blob - Area Error 4

 1 Blob - Perimeter Error 1

 Alignment 3

 N > Max Error - Blackspace 2

B1_S15 A > Max Error - Blackspace 7

 >1 Blob - > Max Error - Blackspace 1

 1 Blob - Area Error 2

 Alignment 1

 D > Max Error - Blackspace 38

 >1 Blob - > Max Error - Blackspace 2

 >1 Blob - Area Error 3

 Alignment 8

B1_S17 A > Max Error - Blackspace 4

 1 Blob - Area Error 2

 Alignment 1

 D > Max Error - Blackspace 25

 Alignment 1

 98

B1_S19 A > Max Error - Blackspace 6

 >1 Blob - > Max Error - Blackspace 1

 1 Blob - Perimeter Error 1

 Alignment 1

 D > Max Error - Blackspace 27

 >1 Blob - > Max Error - Blackspace 1

B1_S19 D Alignment 1

B1_S2 A > Max Error - Blackspace 15

 >1 Blob - > Max Error - Blackspace 1

 1 Blob - Area Error 6

 Alignment 17

 D > Max Error - Blackspace 7

 >1 Blob - > Max Error - Blackspace 1

 1 Blob - Area Error 1

 1 Blob - Perimeter Error 1

 M Unknown 1

 N > Max Error - Blackspace 2

B1_S20 A > Max Error - Blackspace 6

 1 Blob - Area Error 1

 1 Blob - Perimeter Error 1

 D > Max Error - Blackspace 15

 >1 Blob - Area Error 1

B1_S3 A > Max Error - Blackspace 9

 >1 Blob - > Max Error - Blackspace 1

 1 Blob - Area Error 10

 Alignment 1

 D > Max Error - Blackspace 5

 >1 Blob - > Max Error - Blackspace 1

 N > Max Error - Blackspace 7

B1_S4 A > Max Error - Blackspace 6

 >1 Blob - > Max Error - Blackspace 1

 1 Blob - Perimeter Error 5

 Alignment 1

 D > Max Error - Blackspace 11

 >1 Blob - > Max Error - Blackspace 1

 1 Blob - Area Error 1

 N > Max Error - Blackspace 5

B1_S5 A > Max Error - Blackspace 9

 >1 Blob - > Max Error - Blackspace 3

 Alignment 1

 D > Max Error - Blackspace 5

 >1 Blob - > Max Error - Blackspace 1

 N > Max Error - Blackspace 6

B1_S6 A 1 Blob - Perimeter Error 1

 99

 D > Max Error - Blackspace 11

 1 Blob - Perimeter Error 1

 N > Max Error - Blackspace 1

B1_S7 A > Max Error - Blackspace 3

 1 Blob - Area Error 6

 1 Blob - Perimeter Error 2

B1_S7 A Alignment 1

 D > Max Error - Blackspace 20

 >1 Blob - Area Error 1

 M > Max Error - Blackspace 1

 N > Max Error - Blackspace 1

B1_S8 A > Max Error - Blackspace 5

 Alignment 1

 D > Max Error - Blackspace 15

B1_S9 A > Max Error - Blackspace 1

 >1 Blob - > Max Error - Blackspace 1

 Alignment 3

 D > Max Error - Blackspace 12

 >1 Blob - > Max Error - Blackspace 1

 Alignment 1

 N > Max Error - Blackspace 2

 100

13. Appendix G: Hardware Description
For the console to adapt to external triggering, there were a few hardware

changes that need to be made to it. The first step was to identify the binary
inputs and outputs that were available on the CNC controller breakout board.
The main available output was Binary Output 14. Binary Output 14 was used to
trigger the DVT system to perform an inspection. Using isolated input and output
modules, Binary Output 14 was connected from the CNC controller output to a
DVT hardware input on the inspection camera break out box. This connection is
shown in Figure 40.

Figure 40: Hardware IO Description

The Red block is the output module. Its primary function is to connect the

24 volts to the input module thereby, transmitting a pulse. This pulse is the
signal to run an inspection. The trigger waveform must have an on time of 5 ms
and the inspection triggers on the rising edge of the pulse. Setting this output
from 0 to 1 can also trigger a DVT inspection.

Wiring another pair of input/output modules as shown above allowed DVT
to signal back to the automation controller. One of the positions on the
inspection camera break out box was configured to the IO of Inspection Toggle.
This IO changes state each time an inspection is finished and was used to signal
back to the CNC controller that an inspection had been completed. This way the
inspection could take a variable length of time without being cut short by the
incremented rotation of the CNC fixture.

All necessary hardware connections are detailed below with their
respective uses noted. There are a total of 4 important connections to allow
efficient hardware communication between the vision system and motion control
application.

DVT
Position

Type DVT Function Motion
Position

Type Comment

 101

1 In Product Select 31 Out Starts a product swap
2 In Trigger 30 Out Triggers inspection
3 In Product bit0 23 Out Controls which

product is loaded
4 Out Inspection

Toggle
3 In Changes state after

inspection completed
5 - None - -
6 - None - -
7 Out Strobe2 N/A N/A Connects to lighting

system
8 Out Strobe N/A N/A Connects to lighting

system

 With the hardware connected the DVT software, FrameWork, required
configuration to make use of this setup. The I/O Configure tab located within the
I/O Parameters window can be found under the I/O menu in FrameWork and
should be configured so that the functions outlined above are met.

Another change to the defaults is to set the debounce times to 2ms. This
will allow for increased frequency between toggles, since the system is opto-
electrical and there is no mechanical bouncing to regulate.

The last change necessary in Framework is to set digital id numbers for
the two different products. This is done in the Product Management window
located under the Product menu. By checking the “Enable Product for Digital
Selection” and setting the ID to 0 for the edge find product and 1 for the stent
scan product it is possible for an outside source to change the product on
demand, without the need for background commands or VB interfaces.

Using this hardware setup there were zero wasted inspections or
incomplete inspections. Using the previous software handshaking method
required at least 2 inspection cycles per position. One cycle was used to perform
the actual inspection and the other one to clear the variables. If the timing didn’t
line up perfectly, at least one additional inspection cycle would be wasted. This
hardware setup avoided this wasted cycle and resulted in a more efficient
inspection process, and enabled additional automated usage.

 102

14. Appendix H: Inspection G-Code Program

14.1. Vision_Inspection_System.PGM
' Vision_Inspection_System.PGM

' This program will control the motion control for the inspection of
' the VISION stents.

' --
' Variable Declarations
' --
DVAR $TimeOut ' Amount to wait in milliseconds
 ' before a timeout error occurs
DVAR $Velocity ' Speed at which to move in inches/minute
DVAR $ScaleFactorX, $ScaleFactorY ' Scale factors - this is the distance in
 ' inches that is the equivilent to 1
 ' pixel on screen
DVAR $YIncrement, $XIncrement ' The amount to increment in the Y/X to
 ' get to the next feature or ring.
DVAR $NPass, $NFail ' Counts of number fails and passes
DVAR $FeaturePosition, $Ring, $RingCount ' These track the current position
 ' and how many rings to go
 ' used to image the whole stent
DVAR $XCenter, $YCenter ' Center positions that are used
 ' to perform updates
DVAR $LastInsp ' Holds the last inspection state
DVAR $resp ' Response from UI Button
DVAR $NBridge, $NCobweb, $NPoolweb ' Counting vars for the type of
DVAR $NClumping, $NGeometry ' failures recorded.
DVAR $NAccept, $NNondefect, $NContam
' --

:Startup
' --
' Motion Parameters
' --
G68 ' Set rate-based accel/decel
G64 ' Set linear accel/decel
G109 ' Deceleration between moves
G82 X Y Z ' Reset the position reference to the hardware home

ENABLE X ' Enable X Axis
ENABLE Y ' Enable Y Axis
ENABLE Z ' Enable Z Axis
HOME Z ' Home Z Axis
HOME X ' Home X Axis
HOME Y ' Home Y Axis
' --

 103

:StartInspection
' --
' Variable Initialization
' --
ExecuteNumLines = 10 ' Reserve CPU time for loops to execute
$TimeOut = 1000 ' Wait 1 second
$XIncrement = 0.05286 ' Set the increment values for X
$YIncrement = 0.01963 ' and Y to move to the next Feature/ring
$Velocity = 20 ' 20 Inches/minute velocity
$ScaleFactorX = .000121 ' Engineering equivlent of 1 pixel
$ScaleFactorY = -.000124 ' in both the X and Y directions
$RingCount = 14 ' Number of rings to scan total
$RO5 = $RingCount ' Provide this for DVT
$FeaturePosition = 0 ' Starting position
$Ring = 1 ' Starting ring
$RO4 = 11 ' Set TaskAck flag (will clear task complete)
$BO14 = 0 ' Set the Vision Trigger to 0
$LastInsp = $BI3 ' Set the last state to the current camera setting
$NPass = 0 ' Number of passes
$NFail = 0 ' Number of fails
$NBridge = 0 ' Clear all counts
$NCobweb = 0
$NPoolweb = 0
$NClumping = 0
$NGeometry = 0
$NNondefect = 0
$NAccept = 0
$NContam = 0
' --

' --
' Message Window Setup & Display
' --
MSGCLEAR -1 ' Clear all messages
MSGSHOW ' Toggle to the message window (not the code view)
MSGDISPLAY 99, "Vision Stent Inspection System"
' --

' --
' Stent Load Operation
' --
G90 ' Set to absolute coordinates
G0 Z0 X0 Y0 ' Move to the home position 0,0,0
$BO6 = 1 ' Open the tailstock
$RO6 = 002 ' Blink the "In Progress" light

 ' This section will ask if a stent is loaded and will
 ' react accordingly with the Yes, No, Cancel buttons.
 ' Yes - Inspection continues
 ' No - A prompt will tell the user to put a stent in place
 ' Cancel - Disable all drives, and provide a way to loop to
 ' the top (startup) initialization (M0 instead of M2)

 104

:WaitForLoad
$resp = MSGBOX DF_MSGBOX_YESNOCANCEL + DF_ICON_QUESTION, "Stent Loaded?"
IF($resp == YES_BUTTON) THEN
 GOTO DoneLoad
ELSE IF($resp == NO_BUTTON) THEN
 MSGDISPLAY 1, "Please Load a Stent"
 GOTO WaitForLoad
ELSE IF($resp == CANCEL_BUTTON) THEN
 MSGDISPLAY 1, "Operation Canceled"
 Call EndMotion
 M0
 GOTO Startup
END IF

:DoneLoad
MSGCLEAR 1 ' Clear the stent loading messages only
$RO6 = 001 ' Disable blinking - steady on
$BO6 = 0 ' Close the tailstock

' Move to start location for scan
G0 F50 Z5.900 X0 Y0 ' Rapid Traversal to Z=5.9
G1 F20 Z5.94 ' Slowly slide under the camera
 F10 Z5.946 X-.16 ' and back to just before the hard limit
 ' to give the greatest possibility of
 ' finding the stent edge, without an error
' --

' --
' Setup for Stent Edge and Fiducial Location Operation
' --
MSGDISPLAY 2, "Stent Edge Product Change Initiated"
$BO7 = 0 ' Set bit 0 to Edge align
$BO15 = 1 ' Trigger Product Selection
G4 F1 ' Wait 1 second
$BO15 = 0 ' clear Product Trigger
G4 F3 ' Wait 5 seconds to guarentee a successful change
MSGDISPLAY 2, "Stent Edge Product Change Complete"

MSGDISPLAY 2, "Stent Edge Location In Progress"

G91 ' Incremental Positioning
G1 F$Velocity ' Linear traversal at $velocity
$RO4 = 10 ' Clear TaskAck flag

$LastInsp = $BI3 ' Set last trigger state
call TaskAck' Clear the flags
G4 F0.100

' --

' --
' Find the Edge and Locate Fiducial Point
' --

 105

'M0
while $RI0 LT 11 do ' While the task is not complete

 call Inspect
 $XCenter = ($RI52 - $RI1) * $ScaleFactorX ' Calculate new center position
 $YCenter = ($RI53 - $RI2) * $ScaleFactorY ' by using the center-offset
 M1 ' Optional Stop for Debugging
 X$XCenter ' Move to the designated Center
 Y$YCenter

endwhile ' Loop

call TaskAck ' TaskComplete so it is neccessary to ACK it
MSGDISPLAY 2, "Fiducial Found, Starting Inspection"
' --

' --
' Swap to Stent Scan product
' --
MSGDISPLAY 2, "Starting Product Change to Stent Scan"
$BO7 = 1 ' Set bit 0 to Edge align
$BO15 = 1 ' Trigger Product Selection
G4 F1
$BO15 = 0 ' clear Product Trigger
G4 F3
MSGDISPLAY 2, "Finished Product Change"
MSGCLEAR 2
MSGDISPLAY 2, "Inspection Scan Running"

' --

' --
' Scan the stent and inspect
' --
$RO2 = $Ring ' Provide DVT with the current ring
$RO3 = $FeaturePosition ' and FeaturePosition
 ' (ensuring good data is in the register)

while $Ring LT $RingCount + 1 ' While rings are left to scan
MSGDISPLAY 3, "Inspecting Ring " $Ring
 while $FeaturePosition LT 12 ' While there are features to scan

 ' This is where the DVT will do the inspection
 call Inspect

 ' The result of the inspection will be stored in $RI5
 ' and the error code reported by the sensor will be stored
 ' in $RI6.

 if($RI5 == 10) ' Failure detected
 $RO6 = 011 ' Activate red fail light
 $NFail = $NFail + 1 ' Increment failure count
 CALL Classify ' classify the defect

 106

 else if ($RI5 == 11) ' Pass detected
 $RO6 = 101 ' Activate green pass light
 $NPass = $NPass + 1 ' Increment pass count
 endif

 M1 ' optional pause for
 ' debugging

 $FeaturePosition = $FeaturePosition + 1 ' Increment feature
 $RO3 = $FeaturePosition ' Update DVT position register
 Y$YIncrement ' Increment the Y Position
 endwhile ' Loop until out of feature positions

 $Ring = $Ring+1 ' Increment Ring
 $RO2 = $Ring ' Update DVT Ring register
 $FeaturePosition = 0 ' Reset FeaturePosition
 $RO3 = $FeaturePosition ' Update DVT FeaturePosition Register
 X$XIncrement ' Increment the X Position
 if ($Ring < $RingCount) ' If not the End Ring
 Y-(2*$YIncrement) ' Increment the Y Position
 call AlignRing ' Call the ring alignment function
 end if ' If it's past the end (done)
 ' then do not call Align
 MSGCLEAR 3
endwhile ' Loop until all rings are scanned

' --

' --
' Inspection Complete or Aborted
' --
Call UnloadStent
Call DisplayStats

$resp = MSGBOX DF_MSGBOX_YESNO + DF_ICON_QUESTION, "Inspect Another?"
IF($resp == YES_BUTTON) THEN
 GOTO StartInspection
ELSE IF($resp == NO_BUTTON) THEN
 Call EndMotion
END IF

M2 ' End the program
GOTO Startup
' --

' --
' Align Ring
' --
' Function to align the stent to a known location to prevent
' small errors from building over the length of a stent
DFS AlignRing ' Function AlignRing

M1 ' Optional stop for debugging

 107

call TaskAck ' Trigger an ACK to clear step
G4 P0.07 ' Wait 70ms before starting align

while $RI0 LT 11 do ' While TaskComplete is not asserted
 $LastInsp = $BI3 ' Record current inspection toggle
 call Inspect ' Trigger an inspection
 G4 P0.150 ' Wait 150ms for processing
 $XCenter = ($RI52-$RI1) * $ScaleFactorX ' Calculate new Incremental
 $YCenter = ($RI53-$RI2) * $ScaleFactorY ' position based on offsets
 ' and center location then
 ' convert to engineering
 ' units with the scale
 ' factors
 M1 ' Optional stop for debugging
 X$XCenter ' Move based on the incremental position
 Y$YCenter ' calculated previously
endwhile ' Loop until TaskComplete

ENDDFS ' End of Function
' --

' --
' Inspect
' --
' This fuction will trigger one inspection, and wait for the updated
' vision flag
DFS Inspect

$BO14 = 1 ' Trigger Inspection

wait($BI3 != $LastInsp) $TimeOut ' Wait for the state change that
 ' indicates that the inspection
 ' has been completed

$LastInsp = $BI3 ' Store the new state
$BO14 = 0 ' Clear the inspection trigger

ENDDFS
' --

' --
' TaskAck
' --
DFS TaskAck
$RO4 = 11 ' Set the TaskAck flag
call Inspect ' Trigger an inspection so DVT can set/clear
 ' based on it's taskack instructions
$RO4 = 10 ' Clear the taskack flag
ENDDFS
' --

' --
' Classify

 108

' --
' This is used to classify the defects and record the statistics
DFS Classify
MSGMENU (DF_MENU_REMOVE), -1 ""
MSGMENU (DF_MENU_ADD), 1, "Bridge"
MSGMENU (DF_MENU_ADD), 2, "Cob web"
MSGMENU (DF_MENU_ADD), 3, "Pool Web"
MSGMENU (DF_MENU_ADD), 4, "Clumping"
MSGMENU (DF_MENU_ADD), 5, "Geometry"
MSGMENU (DF_MENU_ADD), 6, "Contaimination"
MSGMENU (DF_MENU_ADD), 7, "Acceptable Defect"
MSGMENU (DF_MENU_ADD), 8, "Not A Defect"

if ($RI6 > 2700) THEN
 $resp = 4
else
 $resp = 2
end if

$resp = MSGMENU (DF_MENU_SHOW),(DF_MSGBOX_OKONLY), "Select defect type; Select
Defect Type:;",$resp

if($resp == 1) then
 $NBridge = $NBridge+1
else if($resp == 2) then
 $NCobweb = $NCobweb+1
else if($resp == 3) then
 $NPoolweb = $NPoolweb+1
else if($resp == 4) then
 $NClumping = $NClumping+1
else if($resp == 5) then
 $NGeometry = $NGeometry+1
else if($resp == 6) then
 $NContam = $NContam+1
else if($resp == 7) then
 $NAccept = $NAccept+1
else if($resp == 8) then
 $NNondefect = $NNondefect+1
end if

ENDDFS
' --

' --
' DisplayStats
' --
' This will display statistics about the last inspection and
' a recommended result.
DFS DisplayStats

MSGDISPLAY 5, "--------------------------------------"
MSGDISPLAY 5, "Total Inspections : " ($NFail+$NPass)
MSGDISPLAY 5, "Passing Inspections: " $NPass
MSGDISPLAY 5, "Failing Inspections: " $NFail

 109

MSGDISPLAY 5, "--------------------------------------"
MSGDISPLAY 5, "Bridge : " $NBridge
MSGDISPLAY 5, "Cobweb : " $NCobweb
MSGDISPLAY 5, "Pool Web : " $NPoolweb
MSGDISPLAY 5, "Clumping : " $NClumping
MSGDISPLAY 5, "Geometry : " $NGeometry
MSGDISPLAY 5, "Contaminat : " $NContam
MSGDISPLAY 5, "Acceptable : " $NAccept
MSGDISPLAY 5, "Not A Defect: " $NNondefect
MSGDISPLAY 5, "--------------------------------------"

ENDDFS
' --

' --
' UnloadStent
' --
' This will open the tailstock and move to home position.
DFS UnloadStent
G90 ' Absolute coordinate mode
G0 Z0 X0 Y0 ' Move to 0,0,0
$BO6 = 1 ' Open the tailstock
$RO6 = 002 ' Flash Operator Light
ENDDFS
' --

' --
' EndMotion
' --
' This function will bring the fixture to the zero location
' and then open the tailstock before stopping the program
DFS EndMotion ' Function EndMotion

$RO6 = 000
DISABLE X ' Disable all Axis servos
DISABLE Y
DISABLE Z

ENDDFS ' End of Function
' --

14.2. Light_Control.PGM
'Light_Control.PGM

' This program watches a register and will
' activate the lights on the console as appropriate

' The system used is by setting a 3 digit code, the order being
' RGY with a 0 meaning off, 1 meaning on, and 2 is flashing.

DVAR $Yellow, $Red, $Green ' Variables to receive value
DVAR $YellowOut, $RedOut, $GreenOut ' Variables to toggle light

 110

DVAR $Counter ' Variable as a timer

while 1 do ' Infinite looping

 $Red = INT ($RO6 / 100) ' Extract the red value
 $Green = INT (($RO6 / 10) - $Red*10) ' Extract the green
 $Yellow = INT ($RO6 - $Green * 10 - $Red * 100) ' Extract the yellow

 if ($Yellow < 2)
 $YellowOut = $Yellow
 else if($Yellow == 2)
 if ($Counter == 0)
 $YellowOut = 1 - $YellowOut
 endif
 endif

 if ($Red < 2)
 $RedOut = $Red
 else if($Red == 2)
 if ($Counter == 0)
 $RedOut = 1 - $RedOut
 endif
 endif

 if ($Green < 2)
 $GreenOut = $Green
 else if($Green == 2)
 if ($Counter == 0)
 $GreenOut = 1 - $GreenOut
 endif
 endif

 $Counter = $Counter + 1
 if($Counter == 30)
 $Counter = 0
 endif

 $BO11 = $YellowOut
 $BO10 = $GreenOut
 $BO12 = $RedOut

endwhile

 111

15. Appendix I: Inspection DVT Script

15.1. scr_Edge_Align.dvtscr
class scr_Edge_Align
{

//***
//* Standard Register Methods *
//***
public void setStatus(short stat)
{
 RegisterWriteShort(1032, stat);
}
public short getStatus()
{
 return RegisterReadShort(1032);
}
public short getInPositionFlag()
{
 return RegisterReadShort(14);
}
public short getVisionUpdatedFlag()
{
 return RegisterReadShort(1132);
}
public void setVisionUpdatedFlag()
{
 RegisterWriteShort(1132, 11);
}
public void clearVisionUpdatedFlag()
{
 RegisterWriteShort(1132, 10);
}
public short getTaskAckFlag()
{
 return RegisterReadShort(20);
}
public short getTaskCompetedFlag()
{
 return RegisterReadShort(1024);
}
public void setTaskCompletedFlag()
{
 RegisterWriteShort(1024,11);
}

 112

public void clearTaskCompletedFlag()
{
 RegisterWriteShort(1024,10);
}
public short getTaskStep()
{
 return RegisterReadShort(1030);
}
public void setTaskStep(short step)
{
 RegisterWriteShort(1030,step);
}
public int[] getOffset()
{
 int[] off = new int[2];
 off[0] = RegisterReadShort(1026);
 off[1] = RegisterReadShort(1028);
 return off;
}
public void setOffset(short x, short y)
{
 RegisterWriteShort(1026,x);
 RegisterWriteShort(1028,y);
 getOffset();
}
public void setAbsolutePosition(short x, short y)
{
 RegisterWriteShort(1128, x);
 RegisterWriteShort(1130, y);
}
public void setAbsolutePosition(int[] pos)
{
 RegisterWriteShort(1128, pos[0]);
 RegisterWriteShort(1130, pos[1]);
}
public void setRelativePosition(short x, short y)
{
 int[] off = getOffset();
 RegisterWriteShort(1128, x+off[0]);
 RegisterWriteShort(1130, y+off[1]);
}
public void setInspectionPass()
{
 RegisterWriteShort(1034, 11);
}
public void setInspectionFail()

 113

{
 RegisterWriteShort(1034, 10);
}
//***

//***
// Alignment Functions
//***
// This function will check for the center point of the template seek
// so that the first move can get the blob sensors to the point that
// they are able to be used for better adjustment.

// Since the template will catch off TDC it is only semi-accurate, to about
// 6 pixels which is why the coarse and fine adjustment are still needed.
public int[] getTemplateAdjust()
{
 int[] pos = new int[2];
 //set up variables for the pos
 pos = getOffset();
 //get the current offset
 DebugPrint("Starting Template Adjust");
 if(tmp_1_a_fidseek.Result != 0)
 {
 setStatus(18);
 DebugPrint("Template Adjust Failure");
 }
 else
 {
 pos[0] = tmp_1_a_fidseek.Position.X - 90;
 pos[1] = tmp_1_a_fidseek.Position.Y;
 }

 return pos;
}

// The coarse adjustment is a rotational (Y) axis adjustment
// and is required to be performed before an X adjust on the
// keyhole can be reliably used.

// The averages of all the struts should balance to TDC in
// the Y axis so this is just a simple average calcuation
public int[] getCoarseAdjustment()
{
 int[] pos = new int[2];

 114

 pos = getOffset();

 DebugPrint("Starting Coarse Adjust");
 if(bls_1_a_topstr.NumBlobs != 1) //verify that only 1
blob is
 {
 //found by the alignment blobs
 setStatus(11);
 //otherwise alignment will be
 }
 //wrong when it repositions
 else if(bls_1_a_botstr.NumBlobs != 1)
 {
 setStatus(12);
 }
 else if(bls_1_a_fid.NumBlobs != 1)
 {
 setStatus(13);
 }
 else
 {
 pos[1] = (((bls_1_a_topstr.BlobPosition.Y[0] +
bls_1_a_botstr.BlobPosition.Y[0])/2)
 + bls_1_a_fid.BlobPosition.Y[0])/2;
 DebugPrint("Success");
 }

 return pos;
}

// Fine adjustment is used to calculate the total movement in both the X
// and Y direction. The Y movement is again done
// via the blobs set on the struts to perform rotational
// alignment. The blobs that fall across the keyhole are
// used for the horizontal adjustment based on their
// average position and a given offset.
public int[] getFineAdjustment()
{
 int[] pos = new int[2];
 pos = getOffset();

 DebugPrint("Fine Adjust");
 // beginning ring
 if(bls_1_a_topstr.NumBlobs != 1) //verify that only 1
blob is

 115

 {
 //found by the alignment blobs
 setStatus(14);
 //otherwise alignment will be
 }
 //wrong when it repositions
 else if(bls_1_a_botstr.NumBlobs != 1)
 {
 setStatus(15);
 }
 else if(bls_1_a_fid.NumBlobs != 1)
 {
 setStatus(16);
 }
 else if(bls_1_a_key.NumBlobs != 2)
 {
 setStatus(17);
 }
 else
 {
 DebugPrint("Success");
 pos[1] = (((bls_1_a_topstr.BlobPosition.Y[0] +
bls_1_a_botstr.BlobPosition.Y[0])/2)
 + bls_1_a_fid.BlobPosition.Y[0])/2;
 pos[0] =
(bls_1_a_key.BlobPosition.X[0]+bls_1_a_key.BlobPosition.X[1])/2 - 190;
 }

 return pos;
}
//***

//***
// Inspection sensor testing methods
//***
public void inspect()
{
 clearVisionUpdatedFlag();

 short shtTaskStep = getTaskStep(); // Get the current task step

 setOffset(320, 240); // Center of the view - offset that should be used
 // from the 0 position when calculating the
actual
 // incremental move

 116

 setStatus(10); // Set the status to 10 or normal

 DebugPrint("");DebugPrint("");
 DebugPrint("Vision Triggered. Current Task: "+shtTaskStep);
 if(shtTaskStep != 99)
 {
 int[] pos = new int[2];

 if(shtTaskStep == 10)
 {
 if(int_1_a_edge_seek.Result == 0) //search for
beginning of strut
 {
 setTaskStep(11); //if
found go to template
 setVisionUpdatedFlag();
 }
 else
 {
 setRelativePosition(10,0); //if not move
in x direction
 setVisionUpdatedFlag();
 }
 }
 else if(shtTaskStep == 11)
 {
 if(tmp_1_a_fidseek.Result == 0) //search for
template
 {
 setAbsolutePosition(getTemplateAdjust());
 setTaskStep(12); //if
found go to adjustment
 setVisionUpdatedFlag();
 }
 else
 {
 setRelativePosition(0,5); //if not move
in y direction
 setVisionUpdatedFlag();
 }
 }
 else if(shtTaskStep == 12)
 {
 pos = getCoarseAdjustment(); //perform
coarse adjustment

 117

 if(getStatus() == 10) //and if
nominal move
 {
 setAbsolutePosition(pos);
 setTaskStep(13);
 setVisionUpdatedFlag();
 }
 else
 {
 setRelativePosition(0,0);
 setTaskStep(11);
 setVisionUpdatedFlag();
 DebugPrint("Error condition of: "+getStatus());
 }
 }
 else if(shtTaskStep == 13)
 {
 pos = getFineAdjustment();
 //perform fine adjustment
 if(getStatus() == 10)
 {
 setAbsolutePosition(pos);
 setTaskStep(99);
 //signal the end of the realign
 setTaskCompletedFlag();
 setVisionUpdatedFlag();
 }
 else
 {
 setRelativePosition(0,0);
 setTaskStep(11);
 setVisionUpdatedFlag();
 }
 }
 }

 if(getTaskAckFlag() == 11) // If a task has been acknowledged
 {
 DebugPrint("Task Ack'd clearing flags");
 setTaskStep(10); // reset the task counter for next
new ring
 clearTaskCompletedFlag();
 RegisterWriteShort(1050,0);
 RegisterWriteShort(1052,0);
 RegisterWriteShort(1054,0);
 RegisterWriteShort(1056,0);

 118

 RegisterWriteShort(1058,0);
 RegisterWriteShort(1060,0);
 RegisterWriteShort(1062,0);
 RegisterWriteShort(1064,0);
 RegisterWriteShort(1066,0);
 RegisterWriteShort(1068,0);
 RegisterWriteShort(1070,0);
 }

} // end Inspect()

} // end Class

15.2. scr_Stent_Scan.dvtscr
class scr_Stent_Scan
{

//***
//* Standard Register Methods *
//***
public int getMaxError() // This holds the maximum area allowed
{ // for a defect on the strut
 return 75; // 50 pixels
}
public void setStatus(short stat)
{
 RegisterWriteShort(1032, stat);
}
public short getStatus()
{
 return RegisterReadShort(1032);
}
public short getInPositionFlag()
{
 return RegisterReadShort(14);
}
public short getVisionUpdatedFlag()
{
 return RegisterReadShort(1132);
}
public void setVisionUpdatedFlag()
{
 RegisterWriteShort(1132, 11);

 119

}
public void clearVisionUpdatedFlag()
{
 RegisterWriteShort(1132, 10);
}
public short getTaskAckFlag()
{
 return RegisterReadShort(20);
}
public short getTaskCompetedFlag()
{
 return RegisterReadShort(1024);
}
public void setTaskCompletedFlag()
{
 RegisterWriteShort(1024,11);
}
public void clearTaskCompletedFlag()
{
 RegisterWriteShort(1024,10);
}
public short getTaskStep()
{
 return RegisterReadShort(1030);
}
public void setTaskStep(short step)
{
 RegisterWriteShort(1030,step);
}
public int[] getOffset()
{
 int[] off = new int[2];
 off[0] = RegisterReadShort(1026);
 off[1] = RegisterReadShort(1028);
 return off;
}
public void setOffset(short x, short y)
{
 RegisterWriteShort(1026,x);
 RegisterWriteShort(1028,y);
 getOffset();
}
public void setAbsolutePosition(short x, short y)
{
 RegisterWriteShort(1128, x);
 RegisterWriteShort(1130, y);

 120

}
public void setAbsolutePosition(int[] pos)
{
 RegisterWriteShort(1128, pos[0]);
 RegisterWriteShort(1130, pos[1]);
}
public void setRelativePosition(short x, short y)
{
 int[] off = getOffset();
 RegisterWriteShort(1128, x+off[0]);
 RegisterWriteShort(1130, y+off[1]);
}
public void setInspectionPass()
{
 RegisterWriteShort(1034, 11);
}
public void setInspectionFail()
{
 RegisterWriteShort(1034, 10);
}
public static int getTotalArea(Sensor b) // Given a blob sensor this will
{ // determine the total area of all
 int sum = 0; // blobs
 for(int i=0; i<b.NumBlobs; i++)
 {
 sum += b.BlobArea[i];
 }
 return sum;
}
public int getErrorArea(Sensor b) // This will report total area of
{ // all blobs excluding the largest
 int sum = 0; // blob found
 int max = 0;

 for(int i=0; i<b.NumBlobs; i++)
 {
 sum += b.BlobArea[i];
 if(b.BlobArea[i] > max)
 {
 max = b.BlobArea[i];
 }
 }

 sum -= max;

 return sum;

 121

}
public int getMaxAreaIndex(Sensor b) // returns the index of the largest
{ // blob by area
 int ind = 0;
 int max = 0;

 for(int i=0; i<b.NumBlobs; i++)
 {

 if(b.BlobArea[i] > max)
 {
 max = b.BlobArea[i];
 ind = i;
 }
 }

 return ind;

}
public void setSensorStatus(int sid, int err)
{
 int stat = sid*100+err;
 RegisterWriteShort(1036, stat);
}
public int getSensorStatus()
{
 return RegisterReadShort(1036);
}
public void incrementRegister(int reg)
{
 int tmp = RegisterReadShort(reg);
 tmp = tmp + 1;
 RegisterWriteShort(reg, tmp);
}
//***

//***
// Adjustment & Realign sensors
//***
public int[] getCoarseAdjustment()
{
 DebugPrint("Starting Coarse Adjustment");
 int[] pos = new int[2]; // Set up variables for the
pos
 pos = getOffset(); // get the current offset

 122

 if(RegisterReadShort(16) == RegisterReadShort(22)) //test for end ring
 { // End ring alignment required.

 DebugPrint("CA: End Ring");

 }
 else
 { // Middle ring alignment required.

 DebugPrint("CA: Middle Ring");

 if(bls_1_a_topstr.NumBlobs != 1) // Verify that only 1 blob is
 { // found by the alignment
blobs
 setStatus(11); // otherwise alignment will
be
 } // wrong when it
repositions
 else if(bls_1_a_botstr.NumBlobs != 1)
 {
 setStatus(12);
 }
 else if(bls_1_a_fid.NumBlobs != 1)
 {
 setStatus(13);
 }
 else
 {
 DebugPrint("CA: Calculating movement");
 // The coarse adjustment is a rotational (Y) axis adjustment
 // and is required to be performed before an X adjust on the
 // keyhole can be reliably used.

 // The averages of all the struts should balance to TDC in
 // the Y axis so this is just a simple average calcuation
 pos[1] = (((bls_1_a_topstr.BlobPosition.Y[0]
 + bls_1_a_botstr.BlobPosition.Y[0])/2)
 + bls_1_a_fid.BlobPosition.Y[0])/2;
 }
 }
 DebugPrint("CA: Final Coords X:"+pos[0]+" Y:"+pos[1]);
 return pos;
}

 123

public int[] getFineAdjustment()
{
 DebugPrint("Starting Fine Adjustment");
 int[] pos = new int[2];
 pos = getOffset();

 if(RegisterReadShort(16) == RegisterReadShort(22))
 {
 DebugPrint("FA: End Ring");
 // end ring

 }
 else
 {
 DebugPrint("FA: Middle Ring");
 // middle ring
 if(bls_1_a_topstr.NumBlobs != 1) // Verify that only 1 blob is
 { // found by the alignment
blobs
 setStatus(14); // otherwise alignment will
be
 } // wrong when it
repositions
 else if(bls_1_a_botstr.NumBlobs != 1)
 {
 setStatus(15);
 }
 else if(bls_1_a_fid.NumBlobs != 1)
 {
 setStatus(16);
 }
 else if(bls_1_a_key.NumBlobs != 2)
 {
 setStatus(17);
 }
 else
 {
 DebugPrint("FA: Calculating Movement");
 // calculate the total movement. The Y movement is again
done
 // via the blobs set on the struts to perform rotational
 // alignment. The blobs that fall across the keyhole are
 // used for the horizontal adjustment based on their
 // average position and a given offset.
 pos[1] = (((bls_1_a_topstr.BlobPosition.Y[0] +
bls_1_a_botstr.BlobPosition.Y[0])/2)

 124

 + bls_1_a_fid.BlobPosition.Y[0])/2;
 pos[0] =
(bls_1_a_key.BlobPosition.X[0]+bls_1_a_key.BlobPosition.X[1])/2 - 190;
 }
 }
 DebugPrint("FA: Final Coords X:"+pos[0]+" Y:"+pos[1]);
 return pos;
}
//***

//***
// Inspection sensor testing methods
//***
public boolean checkStrutBlob(Sensor b, int maxerror, int maxperimeter, int
maxarea, int sid)
{
 setSensorStatus(sid, 00);
 float pmin = 0.50; // percent of max the min value is

 // This will test the strut sensors for multiple conditions
 // The first is if there is 1 blob - does it fit within the defined
 // specifications for the sensor in question.
 // The test is done on both area and perimeter, with separate
 // fail codes for statistical and debugging reasons.

 if(b.NumBlobs == 1) // check condition of 1 blob first
 {
 if((b.BlobArea[0] <= maxarea) && // if blob (strut) is
smaller than the max
 (b.BlobArea[0] >= maxarea*pmin)) // and larger
than the min area
 {
 if((b.BlobPerimeter[0] <= maxperimeter) &&
 // and smaller than the max
 (b.BlobPerimeter[0] >= maxperimeter*pmin)
 // and larger than the min perimeter
)
 {
 setSensorStatus(sid, 01);
 incrementRegister(1050);
 return true; // pass this strut.
 }
 else
 {
 setSensorStatus(sid, 03);
 incrementRegister(1054);

 125

 return false;
 }
 }
 else
 {
 setSensorStatus(sid,02);
 incrementRegister(1052);
 return false;
 }
 }

 // If there is not 1 blob detected the previous block is skipped
 // and the test is then to see if there are 0 blobs found.
 // If there are no blobs located the sensor has misaligned, the
 // stent has been moved, or there is a major geometry defect
 // in which case this is a failing condition.

 if(b.NumBlobs == 0)
 {
 setSensorStatus(sid, 08);
 incrementRegister(1064);
 return false; // fail if no blobs found
 }

 // After the tests for 0 and 1 blob are completed the only
 // situation left is >1 blob.
 // When there is more than 1 blob the first step is to test
 // the total of the "error" blobs, which are blobs that are not
 // the strut being inspected. It is assumed that the strut will
 // be the largest blob found, so that is the differentiation criteria

 int toterr = getErrorArea(b.BlobArea);
 if(toterr > maxerror)
 {
 setSensorStatus(sid, 04);
 incrementRegister(1056);
 return false; // if there's too much error
 }

 // If the area of the error blobs is within the tolerance set then
 // the test will continue by testing the total area of the error
 // and the strut itself to verify that it is within tolerance

 int totArea = getTotalArea(b);
 int ind = getMaxAreaIndex(b);
 int maxPeri = b.BlobPerimeter[ind];

 126

 if((totArea > maxarea) || // if total is larger than the max
 (totArea < maxarea*pmin)) // or smaller than the min
area
 {
 setSensorStatus(sid, 05);
 incrementRegister(1058);
 return false;
 }

 // If this is the case then the perimeter of the strut (largest blob)
 // is tested to verify that it doesn't buldge greatly, and that there
 // are no defects that would indicate the strut has been bent or
 // otherwise damaged.
 /* if((b.BlobPerimeter[0] > maxperimeter + 25) || // and
smaller than the max
 (b.BlobPerimeter[0] < maxperimeter*pmin)) // and larger
than the min perimeter
 {
 setSensorStatus(sid, 06);
 incrementRegister(1060);
 return false;
 }*/

 // When the test makes it to this stage all possible defective
 // conditions have been tested so the only possible condition
 // is a passing test.

 setSensorStatus(sid, 07);
 incrementRegister(1062);
 return true; // if it hasn't been disqualified yet, it's valid.
}

public boolean checkBlackSpaceBlob(Sensor b, int sid)
{
 // This method will test the black space blob by first
 // seeing if there are blobs detected at all. This is the ideal
 // and most common case for a non-defect. If there are no blobs
 // found here then there are no cob-webs, bridges, or contamination
 // fibers running through this region

 if(b.NumBlobs == 0)
 {
 setSensorStatus(sid, 10);
 incrementRegister(1068);
 return true;

 127

 }

 // If there are blobs tested the total area is computed for all blobs
 // that have a minimum of 2 pixels to them. This will screen out
 // most of the 'random' noise that shows when looking in the blackspace
 // region of the inspection.

 if(getTotalArea(b) > 10)
 {
 setSensorStatus(sid, 09);
 incrementRegister(1066);
 return false;
 }

 // If the total area is under the error threshold above then this is
 // considered to be noise, and will be passed.

 setSensorStatus(sid, 11);
 incrementRegister(1070);
 return true;
}
//***

//***
// Product inspection methods
//***
// These methods will be used to control what sensors are used
// to determine the pass or fail condition. The main inspect method
// will call one of these based upon the current feature under test.

public boolean InspectProduct1()
{
 setSensorStatus(00, 00);
 int MAX_ERROR = getMaxError();
 // Inspection criteria for features 1 & 5
 DebugPrint("InspectionProduct1, Features 1,5");

 // Test webbing:
 if(checkBlackSpaceBlob(bls_1_w_1, 27)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_1_w_2, 28)==false)
 {
 return false;
 }

 128

 if(checkBlackSpaceBlob(bls_1_w_3, 29)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_1_w_4, 30)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_1_w_5, 31)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_1_w_6, 32)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_1_w_7, 33)==false)
 {
 return false;
 }

 DebugPrint("Blackspace Passed");

 if(checkStrutBlob(bls_1_c_ms2s, MAX_ERROR, 355, 3825, 5)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_1_c_bss, MAX_ERROR, 245, 2705, 2)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_1_c_ts2s, MAX_ERROR, 325, 4095, 7)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_1_c_tss, MAX_ERROR, 280, 3165, 8)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_1_c_bs2s, MAX_ERROR, 295, 3630, 1)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_1_c_khs, MAX_ERROR, 495, 5200, 4)==false)
 {
 return false;

 129

 }
 if(checkStrutBlob(bls_1_c_mss, MAX_ERROR, 285, 3000, 6)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_1_c_cs, MAX_ERROR, 425, 5265, 3)==false)
 {
 return false;
 }

 DebugPrint("Strut Passed");

 return true;
}

public boolean InspectProduct2()
{
 setSensorStatus(00, 00);
 int MAX_ERROR = getMaxError();

 // Inspection criteria for features 2,4,8 & 10
 DebugPrint("InspectionProduct2, Features 2,4,8,10");
 if(checkBlackSpaceBlob(bls_2_w_1, 34)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_2_w_2, 35)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_2_w_3, 36)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_2_w_4, 37)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_2_w_5, 38)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_2_w_6, 39)==false)
 {
 return false;

 130

 }

 DebugPrint("Blackspace Passed");

 if(checkStrutBlob(bls_2_c_bss, MAX_ERROR, 480, 5695, 9)==false)
 {
 DebugPrint("Damn");
 return false;
 }
 DebugPrint("mmkay");
 if(checkStrutBlob(bls_2_c_tss, MAX_ERROR, 450, 6250, 11)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_2_c_cs, MAX_ERROR, 370, 4255, 10)==false)
 {
 return false;
 }

 DebugPrint("Strut Passed");

 return true;
}

public boolean InspectProduct3()
{
 setSensorStatus(00, 00);
 int MAX_ERROR = getMaxError();

 // Inspection criteria for feature 3
 DebugPrint("InspectionProduct3, Features 3");

 if(checkBlackSpaceBlob(bls_3_w_1, 40)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_3_w_2, 41)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_3_w_3, 42)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_3_w_4, 43)==false)
 {

 131

 return false;
 }
 if(checkBlackSpaceBlob(bls_3_w_5, 44)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_3_w_6, 45)==false)
 {
 return false;
 }

 DebugPrint("Blackspace Passed");

 if(checkStrutBlob(bls_3_c_bss, MAX_ERROR, 385, 4625, 12)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_3_c_tss, MAX_ERROR, 400, 5225, 14)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_3_c_ms, MAX_ERROR, 570, 6955, 13)==false)
 {
 return false;
 }

 DebugPrint("Strut Passed");

 return true;
}

public boolean InspectProduct4()
{
 setSensorStatus(00, 00);
 int MAX_ERROR = getMaxError();

 // Inspection criteria for features 6 & 12
 DebugPrint("InspectionProduct4, Features 6,12");
 if(checkBlackSpaceBlob(bls_6_w_1, 46)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_6_w_2, 47)==false)
 {
 return false;

 132

 }
 if(checkBlackSpaceBlob(bls_6_w_3, 48)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_6_w_4, 49)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_6_w_5, 50)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_6_w_6, 51)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_6_w_7, 52)==false)
 {
 return false;
 }

 DebugPrint("Blackspace Passed");

 if(checkStrutBlob(bls_6_c_bss, MAX_ERROR, 375, 4905, 15)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_6_c_tss, MAX_ERROR, 360, 4600, 17)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_6_c_cs, MAX_ERROR, 430, 5150, 16)==false)
 {
 return false;
 }

 DebugPrint("Strut Passed");

 return true;
}

public boolean InspectProduct5()
{
 setSensorStatus(00, 00);
 int MAX_ERROR = getMaxError();

 133

 // Inspection criteria for features 7 & 9
 DebugPrint("InspectionProduct5, Features 7,9");
 if(checkBlackSpaceBlob(bls_7_w_1, 53)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_7_w_2, 54)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_7_w_3, 55)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_7_w_4, 56)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_7_w_5, 57)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_7_w_6, 58)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_7_w_7, 59)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_7_w_8, 60)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_7_w_9, 61)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_7_w_10, 62)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_7_w_11, 63)==false)
 {
 return false;

 134

 }
 if(checkBlackSpaceBlob(bls_7_w_12, 64)==false)
 {
 return false;
 }

 DebugPrint("Blackspace Passed");

 if(checkStrutBlob(bls_7_c_bss, MAX_ERROR, 385, 4865, 18)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_7_c_tss, MAX_ERROR, 375, 4640, 22)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_7_c_ms2s, MAX_ERROR, 420, 5105, 20)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_7_c_mss, MAX_ERROR, 360, 4325, 21)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_7_c_cs, MAX_ERROR, 540, 6815, 19)==false)
 {
 return false;
 }

 DebugPrint("Strut Passed");

 return true;
}

public boolean InspectProduct6()
{
 setSensorStatus(00, 00);
 int MAX_ERROR = getMaxError();

 // Inspection criteria for feature 11
 DebugPrint("InspectionProduct6, Feature 11");
 if(checkBlackSpaceBlob(bls_11_w_1, 65)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_11_w_2, 66)==false)

 135

 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_11_w_3, 67)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_11_w_4, 68)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_11_w_5, 69)==false)
 {
 return false;
 }
 if(checkBlackSpaceBlob(bls_11_w_6, 70)==false)
 {
 return false;
 }

 DebugPrint("Blackspace Passed");

 if(checkStrutBlob(bls_11_c_bss, MAX_ERROR, 240, 2700, 24)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_11_c_bs2s, MAX_ERROR, 300, 3600, 23)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_11_c_tss, MAX_ERROR, 330, 3825, 26)==false)
 {
 return false;
 }
 if(checkStrutBlob(bls_11_c_cs, MAX_ERROR, 395, 4501, 25)==false)
 {
 return false;
 }

 DebugPrint("Strut Passed");

 return true;
}
//***

 136

//***
// Main inspection method, this is called for each trigger of the camera
//***
public void inspect()
{
 short shtTaskStep = getTaskStep(); // Get the current task step

 setOffset(320, 240); // Center of the view - offset that should be used
 // from the 0 position when calculating the
actual
 // incremental move. This is used since
different
 // products could have different offsets

 int intCurrentFeature; // The current feature under the camera

 setStatus(10); // Set the status to 10 or normal

 intCurrentFeature = RegisterReadShort(18); // Get the value of the
 short shtCurrentRing = RegisterReadShort(16); // current feature and
 // ring so that the
proper
 // product can be
used

 DebugPrint("");DebugPrint(""); // Spaces on the debug
 DebugPrint("Inspection Started. Current Position:"+intCurrentFeature
 +" Current Ring: "+shtCurrentRing); // This is debug
information

 // If on the first ring, and the alignment isn't complete then run
 // the following code. This will perform the 2 step realignment procedure
 // that is used after each ring advancement.
 // The other part of the if block is to make sure a realign is not
 // started on the beginning ring right after a stent edge align has been
 // executed. Otherwise the script and G-code will desyncronize.
 if(intCurrentFeature == 0 && shtTaskStep != 99 && shtCurrentRing != 1)
 {
 int[] pos = new int[2]; // Positional array to use for movement

 DebugPrint("New ring found, current task: "+shtTaskStep);
 if(shtTaskStep == 10) // Task 10 is the coarse adjustment
 {
 pos = getCoarseAdjustment();
 if(getStatus() == 10) // If the adjustment returned normal

 137

 { // then it is safe to adjust stent
 setAbsolutePosition(pos); // Set the new center
 setTaskStep(11); // and then increment the task
step
 }
 else
 {
 DebugPrint("Error condition of: "+getStatus());
 setRelativePosition(0,0);
 }
 }
 else if(shtTaskStep == 11)
 {
 pos = getFineAdjustment(); // perform the fine
adjustment
 if(getStatus() == 10) // and if nominal move
 {
 setAbsolutePosition(pos);
 setTaskCompletedFlag();
 setTaskStep(99); // signal the end of the
realign
 }
 else
 {
 DebugPrint("Error Condition of: "+getStatus());
 setRelativePosition(0,0);
 setTaskStep(10);
 //setVisionUpdatedFlag();
 }
 }
 }
 else // If there is not during a ring alignment then perform an inspection
 { // of the given feature.

 // Since there are 4 repeating features for each ring it is
 // possible to divide by 4 and use the remainder (modulo) to select
 // which product to use
 short shtInspectionFeature = intCurrentFeature % 4;

 if(shtCurrentRing == 1)
 {
 // beginning ring
 if(shtInspectionFeature == 0)
 {
 if(InspectProduct1())

 138

 {
 setInspectionPass();
 DebugPrint("Feature 1 : Inspection Passed");
 }
 else
 {
 setInspectionFail();
 DebugPrint("Feature 1 : Inspection Failed:
Status Code: " + getSensorStatus());
 }
 }
 else if(shtInspectionFeature == 1)
 {
 if(InspectProduct2())
 {
 setInspectionPass();
 DebugPrint("Feature 2 : Inspection Passed");
 }
 else
 {
 setInspectionFail();
 DebugPrint("Feature 2 : Inspection Failed:
Status Code: " + getSensorStatus());
 }
 }
 else if(shtInspectionFeature == 2)
 {
 if(InspectProduct3())
 {
 setInspectionPass();
 DebugPrint("Feature 3 : Inspection Passed");
 }
 else
 {
 setInspectionFail();
 DebugPrint("Feature 3 : Inspection Failed:
Status Code: " + getSensorStatus());
 }
 }
 else if(shtInspectionFeature == 3)
 {
 if(InspectProduct2())
 {
 setInspectionPass();
 DebugPrint("Feature 4 : Inspection Passed");
 }

 139

 else
 {
 setInspectionFail();
 DebugPrint("Feature 4 : Inspection Failed:
Status Code: " + getSensorStatus());
 }
 }
 else
 {
 DebugPrint("Error Condition - Beginning Ring Else Clause");
 }
 }
 else if(shtCurrentRing == RegisterReadShort(22))
 {
 // ending ring
 if(shtInspectionFeature == 0)
 {
 if(InspectProduct5())
 {
 setInspectionPass();
 DebugPrint("Feature 9 : Inspection Passed");
 }
 else
 {
 setInspectionFail();
 DebugPrint("Feature 9 : Inspection Failed:
Status Code: " + getSensorStatus());
 }
 }
 else if(shtInspectionFeature == 1)
 {
 if(InspectProduct2())
 {
 setInspectionPass();
 DebugPrint("Feature 10 : Inspection Passed");
 }
 else
 {
 setInspectionFail();
 DebugPrint("Feature 10 : Inspection Failed:
Status Code: " + getSensorStatus());
 }
 }
 else if(shtInspectionFeature == 2)
 {
 if(InspectProduct6())

 140

 {
 setInspectionPass();
 DebugPrint("Feature 11 : Inspection Passed");
 }
 else
 {
 setInspectionFail();
 DebugPrint("Feature 11 : Inspection Failed:
Status Code: " + getSensorStatus());
 }
 }
 else if(shtInspectionFeature == 3)
 {
 if(InspectProduct4())
 {
 setInspectionPass();
 DebugPrint("Feature 12 : Inspection Passed");
 }
 else
 {
 setInspectionFail();
 DebugPrint("Feature 12 : Inspection Failed:
Status Code: " + getSensorStatus());
 }
 }
 else
 {
 DebugPrint("Error Condition - Ending Ring Else Clause");
 }
 }
 else
 {
 // middle rings
 if(shtInspectionFeature == 0)
 {

 if(InspectProduct1())
 {
 setInspectionPass();
 DebugPrint("Feature 5 : Inspection Passed");
 }
 else
 {
 setInspectionFail();
 DebugPrint("Feature 5 : Inspection Failed:
Status Code: " + getSensorStatus());

 141

 }
 }
 else if(shtInspectionFeature == 1)
 {

 if(InspectProduct4())
 {
 setInspectionPass();
 DebugPrint("Feature 6 : Inspection Passed");
 }
 else
 {
 setInspectionFail();
 DebugPrint("Feature 6 : Inspection Failed:
Status Code: " + getSensorStatus());
 }
 }
 else if(shtInspectionFeature == 2)
 {
 if(InspectProduct5())
 {
 setInspectionPass();
 DebugPrint("Feature 7 : Inspection Passed");
 }
 else
 {
 setInspectionFail();
 DebugPrint("Feature 7 : Inspection Failed:
Status Code: " + getSensorStatus());
 }
 }
 else if(shtInspectionFeature == 3)
 {
 if(InspectProduct2())
 {
 setInspectionPass();
 DebugPrint("Feature 8 : Inspection Passed");
 }
 else
 {
 setInspectionFail();
 DebugPrint("Feature 8 : Inspection Failed:
Status Code: " + getSensorStatus());
 }
 }
 else

 142

 {
 DebugPrint("Error Condition - Middle Ring Else Clause");
 }
 }
 }

 if(getTaskAckFlag() == 11) // If a task has been acknowledged
 {
 DebugPrint("Task Ack'd clearing flags");
 setTaskStep(10); // reset the task counter for next new
ring
 clearTaskCompletedFlag();
 }

} // end Inspect()

} // end Class

