
1 

 

Development of the Boundary Element Fast Multipole Method for 

Quasistatic Electromagnetic Modeling of the Brain 
 

A Thesis 

 

Submitted to the Faculty 

 

of the 

  

WORCESTER POLYTECHNIC INSTITUTE 
 

In partial fulfillment of the requirements for the 

 

Degree of Master of Science 

 

in 

 

Electrical and Computer Engineering 

 

by 

 

William Wartman 

 

_______________________________ 

 

May 2021 

 

 

APPROVED: 
 

 

_____________________________ 

Professor Aapo Nummenmaa 

 

 

_____________________________ 

Doctor Kyoko Fujimoto 

 

 

_____________________________ 

Doctor Konstantin Weise 

 

 

_____________________________ 

Professor Sergey Makarov, Advisor  



2 

 

Abstract 
In this thesis, several algorithmic improvements of the Boundary Element Fast Multipole 

Method (BEM-FMM) for quasistatic electromagnetic modeling of multi-tissue anatomical 

human models have been suggested and implemented. These improvements include: 

- Fast solid-angle approach for neighbor E-field integral calculations – FMM 

implementation 

- Fast cubatures for neighbor potential and E-field integral calculations – FMM 

implementation 

 

In addition, several pre/post-processing improvements of the modeling pipeline have been 

suggested and implemented.  They include: 

- Automated detection and removal of coincident faces for meshes with duplicated 

boundaries; 

- Approach for automated volumetric labeling for BEM problems with large surface 

meshes; 

 

The application examples discussed in this thesis include: 

- Simulation of the MIDA head model (with 11 M triangular surface elements and 100+ 

tissue compartments) 

- Transcranial magnetic stimulation, transcranial electrical stimulation, and 

electroencephalography/magnetoencephalography modeling toolkits with the BEM-FMM 

 

Appropriate MATLAB scripts are given in the text.  The corresponding BEM-FMM modeling 

toolkits, along with the documentation and application examples (MATLAB platform), are 

available at the following locations: 

 

Transcranial Magnetic Stimulation:  https://tmscorelab.github.io/TMS-Modeling-Website/ 

Transcranial Electrical Stimulation:  https://tmscorelab.github.io/TES-Modeling-Website/ 

EEG/MEG Forward Solver:   https://tmscorelab.github.io/EEG_MEG-Modeling-Website/ 

 

The software should run as is on Windows systems running MATLAB r2019a or newer. 

 

  

https://tmscorelab.github.io/TMS-Modeling-Website/
https://tmscorelab.github.io/TES-Modeling-Website/
https://tmscorelab.github.io/EEG_MEG-Modeling-Website/
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I. Introduction and Background 
This introduction has been largely excerpted from [1] (published in April 2019) and [2]  (under review at the time 

of writing).  It has been generalized to better contextualize the broader scope of this thesis. 

  

I.A. Motivation 
 Neuropsychiatric disorders are a leading source of disability. Along with critical ailments 

related to the senior population, depression has been the leading cause of disability in the US 

among young people ages 15 to 44 [3],[4].  Since such disorders are thought to result from 

aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given 

their potential for manipulating circuits directly [5].   

 Brain stimulation therapies are important and effective treatments for people with 

depression (a fourfold US surge in 2020 [6]) and other mental disorders. 50-60% of people with 

depression who have failed to receive benefit from medications experience a clinically 

meaningful response with brain stimulation. About one-third of them experience a full remission 

[4]. Over the past fifteen years, the number of brain stimulation devices to undergo the US Food 

and Drug Administration (FDA) market authorization has grown exponentially in number and 

has shown significant sustained interest [7]. This behavior has been true for the most challenging 

implanted invasive devices: those targeting Parkinsonian symptoms and tremors [7]. Other 

demanding clinical applications include presurgical mapping in epileptic patients and accurate 

motor mapping prior to brain tumor surgery (cf. [8]-[10]), as well as brain-computer interfaces 

(cf. [11]-[16]). Major electric brain stimulation modalities to date include: 

- Transcranial magnetic stimulation (TMS) – a noninvasive, noncontact method which uses 

magnetic induction to generate current internal to the brain remotely via a coil placed next to 

the subject’s head [17], [18],[19]) . More recently, the same physical principles have been 

also employed in embedded microcoils targeting selected populations of neurons while 

avoiding problems associated with the tissue-electrode interface ([20], [21],[22]). Due to the 

non-invasive nature of TMS, computational modeling of the electric fields within a patient-

specific head model is the major and often only way to foster spatial targeting and/or obtain a 

quantitative measure of the required stimulation intensity. 

- Transcranial electrical stimulation (TES) – including transcranial direct current stimulation 

(tDCS) and transcranial alternating current stimulation (tACS) – a low-cost portable 

application technique with applied currents usually less than 1-2 mA. Its uses include therapy 

for chronic conditions, mostly depressive disorders, electroanesthesia, or better sleep and 

memory consolidations [5], [23]-[26]. 

- Cortical stimulation (CS) and intracortical microstimulation (ICMS) – invasive yet precise 

versions of TES with smaller injected currents. Small implanted electrodes may 

target/activate selected populations or nuclei of neurons and have applications in brain and 

motor mapping pertinent to epilepsy [27],[28], neuro-oncology [29],[30], vision [31],[32] as 
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well as in brain/machine and brain/computer interfaces [33]-[35]. Cortical and introacortical 

stimulation is often combined with direct recordings using subdural or intraparenchymal 

depth electrodes. A modern high-resolution intracranial recording technique – intracranial 

electroencephalography or iEEG – is blossoming in various fields of human neuroscience 

[36],[37]. 

- Deep brain stimulation (DBS) – an invasive technique with a permanently implanted 

neurostimulator targeting deep parts of the brain, such as the subthalamic nucleus and 

forebrain bundle, to reduce symptoms of treatment-resistant depression and Parkinson’s 

disease [38]-[40]. The success of subthalamic deep brain stimulation for Parkinson’s disease 

is highly dependent on knowledge of the anatomical extent of the electric field surrounding 

the active electrode contact [41],[42]. 

 

 While several alternatives exist (Sim4Life, ANSYS Maxwell), the predominant FEM-

based electromagnetic brain stimulation modeling software is currently SimNIBS v. 1-3 [43]-

[48]. This software uses robust formulations of the finite element method (FEM). In switching 

from the open-source 1st order FEM solver getDP to a more robust 1st order FEM formulation 

enabled by SimNIBS 3.0, the software achieves a remarkable performance improvement: an 

iterative FEM solution computed in less than 30 sec using a head model with a nodal density of 

0.5 nodes/mm2, processed on an Intel i7-7500U laptop processor (2 cores) with a clock speed of 

2.7-3.5 GHz [47],[48].  

 In this thesis, an alternative modeling approach for fast, high-resolution electromagnetic 

stimulation modeling is described. The mathematical algorithm is based on the direct 

formulation of the boundary element method (BEM) in terms of induced charge density at the 

interfaces naturally coupled with the fast multipole method (FMM), or BEM-FMM, originally 

described in [49],[50]. Some distinct features of the BEM-FMM based modeling approach 

developed herein include: 

i. High numerical accuracy, which was recently shown to exceed that of the comparable FEM 

of the first order ([51]). 

ii. Unconstrained numerical field resolution close to and across cortical surfaces, including 

both the outer cortical surface (the interface between gray matter (GM) and cerebrospinal 

fluid (CSF) following terminology of [52]) and the inner cortical surface (the interface 

between white matter (WM) and GM). Since the solution is fully determined by the 

conductivity boundaries, the BEM-FMM numerical field resolution within the cortex is not 

limited by the FEM volumetric mesh size and may reach a micron scale if desired.  

iii. Zero post-processing time for the normal components of the electric field close to and across 

cortical interfaces, once the solution for the induced surface charge density is known. 

iv. Comparable speed. For a head segmentation with approximately 1 M facets (default 

example Ernie of SimNIBS 3.x), the present implementation of the BEM-FMM algorithm 

computes the complete numerical solution in approximately 38 seconds (excluding 

preprocessing time, which occurs once per head model), while SimNIBS takes 32 seconds 
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for the matrix solution step alone on the same 2.1 GHz multicore server.  Future versions of 

the BEM-FMM algorithm will be even faster. 

v. Scalability to large-scale / high-resolution models. A surface model with 70 M facets has 

been considered and computed within two hours, demonstrating the vast potential that the 

method has to solve large-scale and/or high-resolution problems. 

vi. Precise coil modeling and optimization. By employing the FMM, it is possible to model and 

optimize off-the-shelf and/or custom-designed coil CAD models composed of hundreds of 

thousands of elementary current elements [53]. 

 

 This thesis describes several key improvements and extensions of the BEM-FMM 

numerical algorithm.  These range from direct speed improvements to extensions to different 

model types to extensions to other stimulation methods – notably transcranial electrical 

stimulation (TES), in which brain stimulation is achieved by placing electrodes directly on the 

scalp.  Application examples are provided for several computationally-intensive TMS and TES 

stimulation modeling problems, especially regarding field strength and focality at given target 

regions. 

 Appendices B and C describe the TMS and TES BEM-FMM software packages and walk 

users through specific computation steps of pertinent examples. The complete computational 

toolkits, along with supporting documentation, are available for academic purposes via GitHub 

repositories [54]-[56]. 

 

I.B. BEM-FMM Formulation 
 In the past, the BEM-FMM algorithm was successfully applied to the modeling of high-

frequency electromagnetic [57][58] and acoustic [59]-[63] scattering and radiation problems in 

non-medical fields with a focus on defense applications. Successful implementation of the 

method for quasistatic bioelectromagnetic problems, however, was lacking. One such 

implementation was suggested in [49], [50], based on accurate coupling of the canonic general-

purpose FMM [64]-[66] and the direct (without using reciprocity) quasistatic BEM formulated in 

terms of induced surface charge density, also known as the adjoint double layer formulation 

[67],[68]. Below, we describe the complete BEM-FMM algorithm along with its most recent 

improvements and establish the method’s convergence. 

 

I.B.1. Direct charge-based BEM in a conducting medium 

 Induced charges with a surface charge density 𝜌(𝒓) in C/m2 reside on macroscopic or 

microscopic tissue conductivity interface(s) 𝑆 once an external electromagnetic stimulus (a 

primary electric field 𝑬𝑝(𝒓), either conservative or solenoidal) is applied. The induced surface 

charges alter (typically block and/or redirect) the primary stimulus field. The total electric field 

anywhere in space except the charged interfaces themselves is governed by Coulomb’s law 
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𝑬(𝒓) = 𝑬𝑝(𝒓) + 𝑬𝑠(𝒓) = 𝑬𝑝(𝒓) + ∫
𝜌(𝒓′)

4𝜋휀0

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝑑𝒓′

𝑆

,    𝒓 ∉ 𝑆 (1) 

 

where 휀0 is dielectric permittivity of vacuum. The electric field is discontinuous at the interfaces. 

When approaching a charged interface 𝑆 with a normal vector 𝒏 from either direction (inside or 

outside with regard to the direction of the normal vector), the electric field is given by 
 

𝑬𝑖𝑛/𝑜𝑢𝑡 = 𝑬𝑝 + ∫
1

4𝜋휀0

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜌(𝒓′)𝑑𝒓′ ∓ 𝒏(𝒓)

𝜌(𝒓)

2휀0𝑆

, 𝒓 ∈ 𝑆 (2) 

 

An integral equation for 𝜌(𝒓), is obtained after substitution of Eq. 2 into the quasistatic boundary 

condition, which enforces the continuity of the normal current component across the interface, 

that is  
 

𝜎𝑖𝑛𝒏(𝒓) ∙ 𝑬𝑖𝑛 = 𝜎𝑜𝑢𝑡𝒏(𝒓) ∙ 𝑬𝑜𝑢𝑡, 𝒓 ∈ 𝑆 (3) 
 

The result has the form (the adjoint double layer formulation, see [68]) 
 

𝜌(𝒓)

2
− 𝐾𝒏(𝒓) ∙ ∫

1

4𝜋

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜌(𝒓′)𝑑𝒓′

𝑆

= 𝐾𝒏(𝒓) ∙ 휀0𝑬
𝑝(𝒓), 𝒓 ∈ 𝑆 (4) 

 

where the electric conductivity contrast 𝐾 =
𝜎𝑖𝑛−𝜎𝑜𝑢𝑡

𝜎𝑖𝑛+𝜎𝑜𝑢𝑡
 is defined at the interface(s). Here, 𝜎𝑖𝑛, 𝜎𝑜𝑢𝑡 

are the conductivities inside and outside with regard to the direction of the normal vector, 

respectively. Note that if we solve Eq. 4 and then substitute the result for 𝜌(𝒓) in Eq. 1, the 

normalization constant 휀0 will cancel out. Therefore, its exact value does not matter for the 

subsequent analysis. 

 

I.B.2. Treatment of interfaces 

 If the surface is a 2-manifold object with no contact to other surfaces (a “nested” 

topology where each of the surfaces is associated with a single unique exterior compartment), 𝒏 

is simply the outer normal vector to the surface; 𝜎𝑖𝑛 is the conductivity inside the object; and 

𝜎𝑜𝑢𝑡 is the conductivity of the surrounding medium. If two objects (1 and 2) are in contact with 

each other as shown in Fig. 1, the joint interface between them should be counted only once. In 

Fig. 1, this interface is counted only for object 1 with 𝜎1 being the inner conductivity and 𝜎2 

being the outer conductivity (in the direction of the normal vector 𝒏1). Facets of object 2 at the 

interface are now ignored to avoid double-counting. Alternatively, the interface may belong only 

to object 2, with the direction of the normal vector and the conductivity values switched. In that 

case, facets of object 1 at the interface would be ignored. 
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Fig. 1. For two objects (1 and 2) in contact with each other, the joint interface between them should be counted 

only once. In the figure, this interface is counted only for object 1 with 𝝈𝟏 being the inner conductivity and 𝝈𝟐 

being the outer conductivity (in the direction of the normal vector 𝒏𝟏). Facets of object 2 at the interface are 

ignored to avoid double-counting.  

 

 From the formal point of view, one needs a composite mesh without double coincident 

facets. Then, for an arbitrary triangular facet 𝑡𝑚 of the mesh with a given unit normal vector 𝒏𝑚, 

one needs to know the conductivity 𝜎𝑚,𝑜𝑢𝑡 “outside” (i.e. in the direction of 𝒏𝑚) and the 

conductivity 𝜎𝑚,𝑖𝑛 “inside” (i.e. in the opposite direction of 𝒏𝑚). This information is sufficient to 

completely describe the model. 

 

I.B.3. Normal electric fields at the interfaces 

 A significant and previously unnoticed advantage of the above approach is an ability to 

precisely obtain electric fields normal to the cortical surfaces (or any other interfaces) without 

additional computational cost or postprocessing. Only the solution for the surface charge density 

is necessary. After taking the scalar product of Eq. 2 with the surface normal vector 𝒏, Eq. 4 may 

then be substituted to explicitly find the normal electric field just inside the surface, 𝒏 ⋅ 𝑬𝑖𝑛(𝒓); 

the normal electric field just outside the surface,  𝒏 ⋅ 𝑬𝑜𝑢𝑡(𝒓); and the normal field discontinuity 

for any conducting interface, 𝑑𝒏 ⋅ 𝑬. All three quantities are directly proportional to each other. 

One has, for any conducting interface 𝑆 and any observation point 𝒓 ∈ 𝑆, 
 

𝒏 ⋅ 𝑬𝑖𝑛(𝒓) =
𝜎𝑜𝑢𝑡

𝜎𝑖𝑛 − 𝜎𝑜𝑢𝑡

𝜌(𝒓)

휀0
,   𝒏 ⋅ 𝑬𝑜𝑢𝑡(𝒓) =

𝜎𝑖𝑛

𝜎𝑖𝑛 − 𝜎𝑜𝑢𝑡

𝜌(𝒓)

휀0
,   𝑑𝒏 ⋅ 𝑬 =

𝜌(𝒓)

휀0
 (5) 

 





n1



object 1

object 2n1 n2



this is a boundary between objects:
the normal vector points from

inner conductivity  to outer1

conductivity 
this is a boundary between objects:
the normal vector points from

inner conductivity  to outer2

conductivity 

this is a boundary between objects:
the normal vector points from

inner conductivity  to outer1

conductivity 

object 3
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 We should note that the normal component of the total E-field just inside/outside 

conductivity boundaries depends explicitly only on the induced surface charge density. For 

example, Eq. 5 immediately predicts that the normal component of the field just inside the 

outermost skin surface is always zero (there is indeed no current into air) since 𝜎𝑜𝑢𝑡 is equal to 

zero in the first expression of Eq. 5. However, both the surface charge density and the normal 

component of the field just outside the outermost surface are certainly different from zero. 

 

I.B.5. Model discretization  

 The surface charge density is expanded into pulse bases (zeroth-order basis functions) on 

triangular facets 𝑡𝑚 with area 𝐴𝑚. The charge density is thus constant for every facet. Defining 

the conductivity contrast  
 

𝐾 = 
𝜎𝑖𝑛 − 𝜎𝑜𝑢𝑡

𝜎𝑖𝑛 + 𝜎𝑜𝑢𝑡
, 

 

(6) 

the Galerkin method is then applied to Eq. 4 to obtain a system of M linear equations for 

unknown expansion coefficients 𝑐𝑚 in the form 
 

𝑐𝑚

2
−

𝐾

𝐴𝑚
∑ (𝒏𝑚 ∙ ∬

1

4𝜋

(𝒓 − 𝒓′)

|𝒓 − 𝒓′|3
𝑑𝒓′𝑑𝒓

𝐴𝑚𝐴𝑛

) 𝑐𝑛

𝑀

𝑛=1

=
𝐾

𝐴𝑚
휀0 ∫ 𝒏𝑚 ∙ 𝑬𝑝(𝒓)𝑑𝒓

𝐴𝑚

, 𝑚

= 1:𝑀 

(7) 

 

 The double potential integrals present in Eq. 7 require care in their numerical evaluation. 

Facets which are spatially close to one another (i.e., not considered well separated on the lowest 

level of the FMM octree) cannot be treated with the FMM. The close facets are those whose 

center-to-center distances are on the order (i.e. 1-10 times) of a linear face size computed, for 

high-quality surface meshes, as the square root of the face area.  

 The corresponding nearfield potential integrals are instead directly calculated and stored 

in the sparse nearfield BEM matrix using analytical integration for the inner integral and a 

Gaussian quadrature of 10th degree of accuracy for the outer integrals [50]. The number of 

geometrical (based on Euclidian distance) neighbors in Eq. 7 may vary, but a relatively small 

number may be adequate. It must be noted that these geometrical neighbors may belong to 

different tissue compartments. 

 

I.B.6. Fast multipole method  

 The general-purpose FMM and its most recent freeware distribution ([66], also updated 

in March 2020) is applied to compute the remainder of the integrals of type defined by Eq. 7 

using the center-point approximation at face centers 𝒓𝑚, yielding 
 

∫ ∫
𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝑑𝒓𝑑𝒓′

𝑡𝑛𝑡𝑚

≈ 𝐴𝑚𝐴𝑛

𝒓𝑚 − 𝒓𝑛

|𝒓𝑚 − 𝒓𝑛|3
 (8) 
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 This problem is equivalent to finding the electric field at target points 𝒓𝑚 generated by 

the point charges located at source points 𝒓𝑛. The accuracy of the FMM (the number of levels) is 

conventionally estimated for arbitrary volumetric charge distributions. However, for surface-

based charge distributions, a much better relative accuracy is observed. For example, with the 

intrinsic method accuracy set as 휀 = 0.1, the mean error for the pial cortical surface (GM shell) 

may be as low as 0.1% with respect to the electric field amplitude and 0.08 deg with respect to 

the field angle deviation as compared to the most accurate solution (i.e., the solution where FMM 

precision is set to maximum). 

 

II. Numerical Development of BEM-FMM 
 This chapter describes several additions and improvements that have been made to the 

BEM-FMM engine as described in [1].  Most notably, the method has been made compatible 

with a new format of model, its preprocessing phase has been substantially accelerated, and 

support for additional postprocessing data has been added. 

 

II.A. Solid-Angle Approach for Nearfield Neighbor Integrals 
 The solid-angle approach is a computationally-efficient approach for computing surface 

integrals of the form 𝒏𝑚 ∙ ∫
(𝒓𝑝−𝒓′)

|𝒓𝑝−𝒓′|
3 𝑑𝒓′

𝐴𝑛
 (see Eq. 9 below), which naturally arise when solving 

the core BEM-FMM integral equation over discrete triangular surface elements (Eq. 7).  

Rewriting the method’s neighbor integrals to take advantage of the solid-angle approach results 

in a substantial speed increase during the model preprocessing phase and increases the numerical 

stability of the integrals themselves. 

 

II.A.1. Derivation of Discretized Neighbor Integrals 

 The Boundary Element Fast Multipole Method (BEM-FMM) is based on behavior and 

interactions of charges that accumulate at interfaces between media.  A suitable model for BEM-

FMM simulation consists of a collection of surfaces 𝑆, where each surface represents the outer 

boundary of a conductive material with given conductivity 𝜎. For conductive materials, it is 

known that any free charges must accumulate at interfaces between materials of different 

conductivity.  For any collection of surfaces 𝑆 discretized into infinitesimal surface elements 

located at 𝒓′ and carrying charge density 𝜌(𝒓′), the total electric field 𝑬 at observation point 𝒓 

(equal to the sum of the primary field 𝑬𝑃and the secondary field 𝑬𝑆) is given by Eq. 1, 

reproduced below. 

 

𝑬(𝒓) = 𝑬𝑝(𝒓) + 𝑬𝑠(𝒓) = 𝑬𝑝(𝒓) + ∫
𝜌(𝒓′)

4𝜋휀0

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝑑𝒓′

𝑆

,    𝒓 ∉ 𝑆 (1) 
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 When the observation point 𝒓 approaches the surface 𝑆 (where 𝑆 has normal vector 

𝒏(𝒓)), the secondary electric field takes on an additional term, as given in Eq. 2).  Here, 𝑬𝑖𝑛 is 

defined as the electric field just inside (in the opposite direction of the normal vector) the 

surface, and 𝑬𝑜𝑢𝑡 is defined as the electric field just outside the surface. 

 

𝑬𝑖𝑛/𝑜𝑢𝑡 = 𝑬𝑝 + ∫
1

4𝜋휀0

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜌(𝒓′)𝑑𝒓′ ∓ 𝒏(𝒓)

𝜌(𝒓)

2휀0𝑆

, 𝒓 ∈ 𝑆 (2) 

 

 Eq. 3 imposes a current conservation boundary condition on Eq. 2: the current density 

𝒏(𝒓) ∙ 𝑱(𝒓) flowing from an inner material with conductivity 𝜎𝑖𝑛 to an outer material with 

conductivity 𝜎𝑜𝑢𝑡 across location 𝒓 ∈ 𝑆 must be equal in both materials.  Recalling that 𝑱(𝒓) =

𝜎𝑬(𝒓),  

 

𝜎𝑖𝑛𝒏(𝒓) ∙ 𝑬𝑖𝑛 = 𝜎𝑜𝑢𝑡𝒏(𝒓) ∙ 𝑬𝑜𝑢𝑡, 𝒓 ∈ 𝑆 (3) 

 

 Substituting Eq. 2 into Eq. 3, an expression is obtained for charge density 𝜌(𝒓) in terms 

of the primary field 𝑬𝑃.  Here, 𝐾 =  
𝜎𝑖𝑛−𝜎𝑜𝑢𝑡

𝜎𝑖𝑛+𝜎𝑜𝑢𝑡
. 

 

𝜌(𝒓)

2
− 𝐾𝒏(𝒓) ∙ ∫

1

4𝜋

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜌(𝒓′)𝑑𝒓′

𝑆

= 𝐾𝒏(𝒓) ∙ 휀0𝑬
𝑝(𝒓), 𝒓 ∈ 𝑆 (4) 

 

 When the interfaces 𝑆 are discretized into 𝑀 triangular surface elements, the 𝑚th surface 

element has area 𝐴𝑚, piecewise-constant surface charge density 𝑐𝑚, and normal vector 𝑛𝑚.  

Converting Eq. 4 to act on discrete surface elements following these conventions, Eq. 7 is 

obtained.  Note that 𝒓 lies on the surface of the observation triangle (𝑚) and 𝒓′ lies on the surface 

of the source triangle (𝑛). 
 

𝑐𝑚

2
−

𝐾

𝐴𝑚
𝒏𝑚 ∙ ∑ (𝑐𝑛 ∬

1

4𝜋

(𝒓 − 𝒓′)

|𝒓 − 𝒓′|3
𝑑𝒓′𝑑𝒓

𝐴𝑚𝐴𝑛

)

𝑀

𝑛=1

=
𝐾

𝐴𝑚
휀0 ∫ 𝑬𝑝(𝒓)𝑑𝒓

𝐴𝑚

, 𝑚 = 1:𝑀 (7) 

 

 If triangles 𝑚 and 𝑛 are sufficiently far from each other, the triangles referenced in the 

double-integral can be approximated as point charges, yielding Eq. 8. 

 

∬
𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝑑𝒓𝑑𝒓′

𝐴𝑚𝐴𝑛

≈ 𝐴𝑚𝐴𝑛

𝒓𝑚 − 𝒓𝑛

|𝒓𝑚 − 𝒓𝑛|3
 (8) 

 

 Assuming all triangles are sufficiently distant for the approximation of Eq. 8 to hold, the 

summation in Eq. 7 can be rewritten as  
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𝒏𝑚 ∙ ∑ (𝑐𝑛 ∬
1

4𝜋

(𝒓 − 𝒓′)

|𝒓 − 𝒓′|3
𝑑𝒓′𝑑𝒓

𝐴𝑚𝐴𝑛

)

𝑀

𝑛=1

≈
1

4𝜋
𝐴𝑚𝒏𝑚 ∙ ∑ 𝑐𝑛𝐴𝑛

𝒓𝑚 − 𝒓𝑛

|𝒓𝑚 − 𝒓𝑛|3

𝑀

𝑛=1

 (9) 

 

 The right-hand-side of Eq. 9 is naturally well-suited for treatment using FMM. 

 If 𝐶𝑚 is defined as the set of triangles too close to triangle 𝑚 to be treated using the 

approximation of Eq. 8, then a correction can be applied to Eq. 9 as follows: 

 

𝒏𝑚 ∙ ∑ (𝑐𝑛 ∬
1

4𝜋

(𝒓 − 𝒓′)

|𝒓 − 𝒓′|3
𝑑𝒓′𝑑𝒓

𝐴𝑚𝐴𝑛

)

𝑀

𝑛=1

 

≈
1

4𝜋
𝐴𝑚𝒏𝑚 ∙ ∑ 𝑐𝑛𝐴𝑛

𝒓𝑚 − 𝒓𝑛

|𝒓𝑚 − 𝒓𝑛|3

𝑀

𝑛=1

− 
1

4𝜋
𝐴𝑚𝒏𝑚 ∙ ∑ 𝑐𝑛𝐴𝑛

𝒓𝑚 − 𝒓𝑛

|𝒓𝑚 − 𝒓𝑛|3
𝑛∈𝐶𝑚

 

+ ∑ (𝑐𝑛𝒏𝑚 ∙ ∬
1

4𝜋

(𝒓 − 𝒓′)

|𝒓 − 𝒓′|3
𝑑𝒓′𝑑𝒓

𝐴𝑚𝐴𝑛

)

𝑛∈𝐶𝑚

 

(10) 

 

 Here, the first term on the right-hand side is the initial FMM result for all triangles in the 

model, the second term on the right-hand side removes the FMM contribution of triangles too 

close to be accurately treated with FMM, and the third term adds back in an exact contribution 

from those triangles. 

 By introducing a set of 𝑃 discrete integration points 𝒓𝑝 with weights 𝑤𝑝 at the surface of 

triangle 𝑚, the double-integral in the third term of Eq. 10 can be reduced to 

 

𝒏𝑚 ∙ ∬
1

4𝜋

(𝒓 − 𝒓′)

|𝒓 − 𝒓′|3
𝑑𝒓′𝑑𝒓

𝐴𝑚𝐴𝑛

≈ ∑
𝑤𝑝

4𝜋
(𝒏𝑚 ∙ ∫

(𝒓𝑝 − 𝒓′)

|𝒓𝑝 − 𝒓′|
3 𝑑𝒓′

𝐴𝑛

)

𝑃

𝑝=1

, 𝒓𝑝 ∈ 𝐴𝑚 ∀ 𝑝 = 1: 𝑃 (11) 

 

 A naïve approach to solving the expression in parentheses in Eq. 10 is to compute the full 

integral over triangle 𝑛, and then take the dot product of the result with normal vector 𝑛𝑛, an 

algorithm for which is given in [69].  However, this computational task can be simplified by 

recognizing the expression in parentheses as the solid angle 𝛀 subtended by triangle 𝐴𝑛 at field 

point 𝑟𝑝. An efficient method for computing such solid angles, which results in 32 

multiplications, 20 additions, 3 square roots, and 1 ATAN2, is given in [70]: 
 

tan (Ω/𝟐) =
𝑹1 ∙ (𝑹2 × 𝑹3)

𝑅1𝑅2𝑅3 + (𝑹1 ∙ 𝑹2)𝑅3 + (𝑹1 ∙ 𝑹3)𝑅2 + (𝑹2 ∙ 𝑹3)𝑅1
 (12) 
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where 𝑹1,2,3 are vectors drawn from integration point 𝑟𝑝 to the vertices of triangle 𝑛, and 𝑅1,2,3 

denote the magnitudes of those respective vectors. 

 

 All MATLAB code developed for the algorithms described in the following sections can 

be found in Appendix A, section AA.1. 

 

II.A.2. Accelerating triangle-to-point integrals via the solid angle approach 

 

II.A.2.a. Functions under consideration 

 The three functions under test are potint2, potint4, and potint4b.  The function potint2 

computes the full integral over one triangle at multiple observation points using the method of 

[69].  The functions potint4 and potint4b both compute the normal components of this integral 

using the solid angle approach of [70].  The core difference between these methods is that 

potint4 is vectorized for N triangles and iterates over M observation points, where potint4b is 

vectorized for N triangles and M observation points simultaneously. 

 

II.A.2.b. Estimated Memory Usage 

The function potint4 must store three three-dimensional vertices per triangle, plus one 

three-dimensional position per observation point.  With N triangles and M observation points, 

initial memory consumption (just for input argument storage) is 9N + 3M doubles (double-

precision floating point numbers), and the storage for the output argument is MN.  Within the 

loop over the observation points, the temporary variables require combined storage space of 15N 

doubles.  The approximate number of doubles required by potint4 is 24N + 3M + MN, yielding 

(assuming 8 bytes in a double) 192N + 24M + 8MN bytes of storage.  During the main loop, 

only 16N + 3 doubles (128N + 24 bytes) are accessed per iteration, excluding memory 

requirements of functions acting on those doubles. 

 The function potint4b, being fully vectorized, must store all intermediate calculations as 

3-dimensional matrices.  The input and output arguments once again require 9N + 3M doubles 

and MN doubles, respectively.  The intermediate variables require 7(3MN) + 6(1MN) + 3M 

doubles.  The approximate number of doubles required by potint4b is 9N + 6M + 28MN, 

corresponding to 72N + 48M + 224MN bytes, again excluding memory requirements of 

functions acting on this data. 

 Since these memory estimates do not attempt to account for intermediate memory 

requirements of mathematical operations or function calls (e.g. atan2), and the actual memory 

used is likely to be substantially larger. 

 

II.A.2.c. Test 1: Accuracy for one triangle 

In Test 1, potint4 and potint4b were tested against potint2 using a test setup comprising a 

single triangle of area 50 cm2 and approximately 360 observation points placed in a circle around 

the triangle, as shown in Fig. 2.  The radius of the circle was varied from 1 mm to 1 km, and 
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relative error in Ω(𝒓) was computed at each observation point as 𝑒 =  
Ω𝑡𝑒𝑠𝑡−Ω𝑏𝑎𝑠𝑒

Ω𝑏𝑎𝑠𝑒
, where Ω𝑡𝑒𝑠𝑡 is 

the solid angle computed by potint4 or potint4b and Ω𝑏𝑎𝑠𝑒 is the solid angle computed by taking 

the dot product of the triangle’s normal vector with the full field integral computed by potint2. 

 
Fig. 2. Test setup showing observation points (red) in a 0.05-m-radius circle around the test triangle of area 

0.005 m2.  ‘delta’ in the title refers to a parameter that determines the triangle size. 

 

 Figures 3 and 4 below show the maximum, mean, and minimum (absolute value of) error 

in Ω(𝒓) with respect to distance from the triangle for potint4 and potint4b, respectively.  The 

minimum relative error is zero until all observation points are more than 100 meters from the 

triangle.  The maximum relative error is on the order of machine precision until the observation 

points are approximately 0.5 m from the triangle, and reaches 1e-8 when the observation points 

are approximately 1 km from the triangle.  This result was additionally found to be almost 

completely independent of triangle size. 
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Fig. 3. Maximum, minimum, and mean relative error between the triangle-vectorized solid angle approach 

(potint4) and the normal-of-full-integral approach (potint2) as the radius of the circle of observation points 

increases. 

 

 
Fig. 4. Maximum, minimum, and mean relative error between the fully-vectorized solid angle approach 

(potint4b) and the normal-of-full-integral approach (potint2) as the radius of the circle of observation points 

increases. 
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Even as the radius of the circle of observation points approaches 1000 meters, the 

maximum error observed by any individual observation point is below 10^-8.  The partially-

vectorized and fully-vectorized solid-angle approaches produce virtually identical results to the 

normal-of-full-integral approach for this test configuration. 

 

II.A.2.d. Test 2: Accuracy for multiple triangles 

Fig. 5 below shows the test setup employed to verify that potint4 and potint4b produce 

results equivalent to potint2 for multiple triangles and multiple observation points.  This test case 

uses four triangles and a circle of 360 observation points with radius 0.05 m.  The triangles are 

positioned and oriented in a manner that prevents meaningful symmetry from occurring for most 

observation points.  For this test case, the maximum error between either solid-angle approach 

and the normal-of-full-integral approach was 2.61e-11. 

 
Fig. 5. Test setup showing observation points (red) in a 0.05-m-radius circle around four test triangles.  The 

triangles’ normal vectors are denoted by small red arrows. 

 

II.A.2.e. Test 3: Performance comparison 

 The performance of potint2, potint4, and potint4b was tested by running each function on 

an increasing number of triangles and observation points.  The number of observation points was 

varied from 1 to 1000 in steps of 10, and the number of triangles was varied from 4 to 1000 in 
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steps of 4.  The triangles used were duplicates of the test setup for Test 2 (see Fig. 5), occupying 

identical spaces.  The observation points were evenly spaced on a circle of radius 0.05 meters in 

the XY plane centered on [x, y, z] = [2, 3, 4], as also shown in Fig. 5.  For each combination of 

number of observation points and number of triangles, the functions potint2, potint4, and 

potint4b were run and timed 30 times each, outlier times were removed, and the remaining (non-

outlier) times were averaged for each function. 

 Figs. 6 through 8 below show the dependence of execution time on number of 

observation points and triangles for potint2, potint4, and potint4b, respectively.  Figs. 9 through 

11 show the relative speedup obtained by using, respectively: potint4 in place of potint2, 

potint4b in place of potint2, and potint4b in place of potint4.  In each of these figures, a red plane 

has been drawn at the level where relative speedup is equal to 1 (i.e., the break-even point 

between the compared methods).  Finally, Figs. 12 through 17 show the same results, but focus 

on the region bounded by 100 observation points and 100 triangles to demonstrate performance 

in more typical cases.  Note that the speedup plots have opposite x and y axis directions from the 

execution time plots to better capture the shape of the data. 

 
Fig. 6. Execution time for the normal-of-full-integral approach (potint2) as a function of number of observation 

points and number of triangles. 
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Fig. 7. Execution time for the triangle-vectorized solid-angle method (potint4) as a function of number of 

triangles and number of observation points.  Note that the vertical scale is one-fifth that of Fig. 5. 

 
Fig. 8. Execution time for the fully-vectorized solid-angle method (potint4b) as a function of number of triangles 

and number of observation points.  Note that the scale is again one-fifth that of Fig. 6. 
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Fig. 9. Relative speedup obtained by using the triangle-vectorized solid-angle method (potint4) in place of the 

normal-of-full-integral method (potint2).  Function potint4 is many times faster for small numbers of observation 

points, and is still five times faster even in the worst case with 1000 triangles and 1000 observation points. 
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Fig. 10. Relative speedup obtained by using the fully-vectorized solid-angle method (potint4b) in place of the 

normal-of-full-integral method (potint2).  Even in the worst case with 1000 triangles and 1000 observation 

points, function potint4b is 4.4 times faster than potint2. 
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Fig. 11. Relative speedup obtained by using the fully-vectorized solid-angle method (potint4b) in place of the 

triangle-vectorized solid-angle method (potint4).  A translucent red plane is drawn where the speedup factor is 

equal to 1, so in a region where this plane is visible, potint4 is faster than potint4b.  For small numbers of 

triangles, function potint4b is several times faster than potint4, especially as the number of observation points 

increases. 
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Fig. 12. Execution time for the normal-of-full-integral approach (potint2) as a function of number of observation 

points and number of triangles, bounded to 100 observation points and 100 triangles to present a more typical 

use case. 

 
Fig. 13. Execution time for the triangle-vectorized solid angle approach (potint4) as a function of number of 

observation points and number of triangles, bounded to 100 observation points and 100 triangles to present a 

more typical use case.  Note that the vertical scale is one-sixth that of Fig. 12. 
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Fig. 14. Execution time for the fully-vectorized solid-angle approach (potint4b) as a function of number of 

observation points and number of triangles, bounded to 100 observation points and 100 triangles to present a 

more typical use case.  Note that the vertical scale is one-fifth that of Fig.12. 
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Fig. 15. Relative speedup obtained by using the triangle-vectorized solid-angle approach in place of the normal-

of-full-integral approach, bounded to 100 triangles by 100 observation points to present a more typical use case. 
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Fig. 16. Relative speedup obtained by using the fully-vectorized solid-angle approach in place of the normal-of-

full-integral approach, bounded to 100 triangles by 100 observation points to present a more typical use case. 
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Fig. 17. Relative speedup obtained by using the fully-vectorized solid-angle approach in place of the triangle-

vectorized solid-angle approach, bounded to 100 triangles by 100 observation points to present a more typical 

use case. 
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II.A.2.f. Discussion: triangle-to-point integral acceleration 

 Test 1 and Test 2 show that both solid-angle-based methods return equivalent results to 

the normal-of-full-integral method for both a single triangle and for multiple triangles for 

distances ranging from 1 mm to 1 km.  Test 3 shows that both potint4 and potint4b are always 

faster than potint2, as expected.  The execution time of potint2 varies strongly with the number 

of triangles, the execution time of potint4 varies strongly with number of observation points, and 

the execution time of potint4b varies strongly with both.  For this machine, Figs. 11 and 17 show 

that potint4b is faster than potint4 when the number of triangles is smaller than 30. 

 Large discontinuities in execution time are clearly visible in Figs. 6, 7, and 8. These 

likely occur when the amount of working data exceeds that which can be stored solely in a given 

level of the processor cache, thus causing the processor to stall while it awaits data from the next 

lower (and slower) level.  If this is the case, then the call to atan2 is likely the largest contributor 

to memory usage (when evaluating memory usage instruction by instruction). 

 

II.A.3. Updating triangle-to-triangle integrals to use the solid-angle based 

triangle-to-point integrals 

 

II.A.3.a. Triangle-to-triangle integrals  

 For charged triangles sufficiently far from each other, the integral of one triangle’s 

electric field over the surface of the other triangle (and vice versa) can be approximated by 

Coulomb’s Law, and the FMM can be applied to compute trillions of such interactions within 

seconds.  For triangles not far enough from each other for this approximation to hold, a 

correction must be applied to the FMM-computed result.  For the full model, this correction 

takes the form of a sparse matrix 𝐸𝐶.  𝐸𝐶 is the sum of two other sparse matrices: 𝐼𝐶, which 

subtracts out the Coulomb’s Law contribution from neighboring triangles, and 𝐼𝑁, which adds 

back in the exact integral contribution from those triangles.  Following from Eq. 10 and Eq. 11, 

these matrices are given by: 

𝐸𝐶 = 𝐼𝑁 − 𝐼𝐶 (13) 

 

𝑖𝑛𝑚,𝑛 =
1

4𝜋
(𝒏𝑚 ∙ ∬

1

4𝜋

(𝒓 − 𝒓′)

|𝒓 − 𝒓′|3
𝑑𝒓′𝑑𝒓

𝐴𝑚𝐴𝑛

) , 𝑛 ∈  𝐶𝑚, 𝑚 = 1:𝑀 (14) 

 

𝑖𝑐𝑚,𝑛 =
1

4𝜋
𝐴𝑚𝒏𝑚 ∙ ∑ 𝐴𝑛

𝒓𝑚 − 𝒓𝑛

|𝒓𝑚 − 𝒓𝑛|3
𝑛∈𝐶

, 𝑛 ∈  𝐶𝑚, 𝑚 = 1:𝑀, (15) 

 

 The functions that can be used to compute EC are meshneighborints, 

meshneighborints_1b, and meshneighborints_2.  The function meshneighborints computes both 

potential integrals and electric-field integrals using the full integral method, the function 
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meshneighborints_1b computes only electric-field integrals using the same method as 

meshneighborints, and meshneighborints_2 computes only electric-field integrals using the solid-

angle approach.  The function meshneighborints_1b exists mainly for timing comparisons 

between the solid-angle neighbor integral method and the normal-of-full-integral neighbor 

integral method. 

 

II.A.3.b. Stability of the solid-angle approach for triangle-triangle integrals 

 To test the stability of the solid angle approach compared to the full integral approach, an 

adverse test setup involving two perpendicular triangles was employed as shown in Fig. 18.  The 

matrix 𝐼𝑁 for this system was computed using both methods.  Note that symmetry of the 

problem ensures that the contribution of the first triangle to the second is equal to the 

contribution of the second triangle to the first, so only one entry of the 2x2 matrix 𝐼𝑁 needs to be 

considered.  Both methods employed barycentric triangle subdivision to find integration points 

on the triangle surfaces, and subdivision parameters increased from 10 to 1000 in steps of 10 

(corresponding to 100 to 1M subdivided triangles).  Figs. 19 and 20 below show the results of 

this test. 

 
Fig. 18. Test setup for stability of the solid-angle method versus the normal-of-full-integral method 
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Fig. 19. Absolute convergence of the solid-angle approach and the normal-of-full-integral approach as the 

subdivision parameter used for integration is varied from 10 to 1000, corresponding to 100 to 1000000 

subdivisions. 

 
Fig. 20. Relative convergence of the solid-angle approach and the normal-of-full-integral approach as the 

subdivision parameter used for integration is varied from 10 to 1000. 

 

0 100 200 300 400 500 600 700 800 900 1000

Subdivision parameter

1.42

1.44

1.46

1.48

1.5

1.52

1.54

In
te

g
ra

l v
a
lu

e

Absolute value of integrals with respect to subdivision parameter

Full integral value

Solid-angle integral value

0 100 200 300 400 500 600 700 800 900 1000

Subdivision parameter

10-8

10-6

10-4

10-2

100

R
e
la

tiv
e
 r

e
s
id

u
a
l

Convergence of integrals with respect to subdivision parameter

Full integral value

Solid-angle integral value



36 

 

 As shown in Figs. 19 and 20, the integral computed by the solid-angle approach 

converges far more rapidly than the normal-of-full-integral approach, and in terms of the relative 

residual, the initial state of the solid-angle approach (with a subdivision parameter of 10, 

corresponding to 100 subdivided triangles) is approximately 30 times more accurate than the 

initial state of the full integral. 

 

II.A.3.c. Validation using Connectome Subject 110411 

 The solid-angle based neighbor integral method was tested in a realistic application by 

computing the correction matrix EC and the neighbor integrals 𝐼𝑁 for Connectome Subject 

110411, processed using the SimNIBS pipeline [43]-[48]. For every triangle, four neighbor 

triangles were selected based on proximity.  The error between the solid-angle approach and the 

normal-of-full-integral approach was quantified as 

Δ𝐼𝑁 =
‖𝐼𝑁 𝑡𝑒𝑠𝑡 − 𝐼𝑁 𝑏𝑎𝑠𝑒‖

‖𝐼𝑁 𝑏𝑎𝑠𝑒‖
 (16) 

Δ𝐸𝐶 =
‖𝐸𝐶𝑡𝑒𝑠𝑡 − 𝐸𝐶 𝑏𝑎𝑠𝑒‖

‖𝐸𝐶𝑏𝑎𝑠𝑒‖
 (17) 

Where 𝐼𝑁 𝑡𝑒𝑠𝑡 is 𝐼𝑁 as computed by the solid-angle approach, 𝐼𝑁 𝑏𝑎𝑠𝑒 is 𝐼𝑁 as computed by the 

normal-of-full-integral approach, and 𝐸𝐶 𝑡𝑒𝑠𝑡 and 𝐸𝐶𝑏𝑎𝑠𝑒 follow the same convention. 

For meshneighborints_2 versus meshneighborints, Δ𝐼𝑁 is 0.0365 and Δ𝐸𝐶 is 0.0091. 

 

II.A.3.d. Timing for solid-angle method for computing neighbor integrals 

 To compare execution times between the solid-angle approach and normal-of-full-

integral approach, timing commands were inserted directly into the functions under test.  The 

function meshneighborints_1b is a version of meshneighborints from which the potential 

integrals have been removed for equivalent comparison with meshneighborints_2.  The timing 

results for these three functions are summarized in Tables 1 through 3 below. 

 

Table 1: Timing of the neighbor integral methods for 15 threads and 4 neighbor triangles 
Operation meshneighborints meshneighborints_1b meshneighborints_2 

Parallel Pool Initialization 26.8779 s 21.5561 s 17.0392 s 

Neighbor Integral Calculation 36.9135 s 19.6503 s 9.5485 s 

Parallel Pool Shutdown 4.5772 s 4.5504 s 4.4606 s 

EC Assembly 7.6812 s 9.6602 s 3.8905 s 

 

Table 2: Timing of the neighbor integral methods for 15 threads and 25 neighbor triangles 
Operation meshneighborints meshneighborints_1b meshneighborints_2 

Parallel Pool Initialization 21.3189 s 21.3625 s 17.1404 s 

Neighbor Integral Calculation 102.7413 s 54.9546 s 17.5118 s 

Parallel Pool Shutdown 4.2269 s 4.2748 s 4.2201 s 

EC Assembly 13.5727 s 24.0857 s 7.4383 s 
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Table 3: Timing of the neighbor integral methods for 15 threads and 100 neighbor triangles 
Operation meshneighborints meshneighborints_1b meshneighborints_2 

Parallel Pool Initialization 21.3765 s 21.3910 s 16.9151 s 

Neighbor Integral Calculation 356.3959 s 182.3036 s 55.1158 s 

Parallel Pool Shutdown 4.2482 s 4.4992 s 4.1493 s 

EC Assembly 87.2093 s 72.8173 s 20.5396 s 

 

II.A.4. Considerations for higher-level code 

 

II.A.4.a. Removing dependence on full neighbor integral solutions 

 Initially, the full neighbor integrals calculated by the function meshneighborints had been 

saved along with the correction matrix 𝐸𝐶 and thus were available to high-level code.  Their 

primary use was in calculating and displaying fields that occurred exactly at surfaces of the 

model.  However, switching to the solid-angle approach eliminated the intermediate step of 

calculating the full neighbor integrals required for this operation.  Instead, triangle subdivision 

(Gaussian or barycentric) coupled with FMM can be used to obtain the electric field at surfaces. 

 The subdivision methods tested were Gaussian (with 4, 7, 13, and 25 subdivisions) and 

barycentric (with parameters of 2, 3, 4, 5, and 6, corresponding to 4, 9, 16, 25, and 36 

subdivisions respectively).  After finding the charge distribution on Connectome Subject 110411 

due to a coil placed above the motor hand area, the secondary electric field was calculated at 

each facet of the model.  Solutions were first obtained using full neighbor integrals with 4, 64, 

and 128 neighbors for each triangle.  Error was calculated as 
‖𝐸𝑠𝑢𝑏𝑑𝑖𝑣−𝐸𝑎𝑛𝑎𝑙𝑦𝑡‖

‖𝐸𝑎𝑛𝑎𝑙𝑦𝑡‖
 in each case, where 

𝐸𝑎𝑛𝑎𝑙𝑦𝑡 is the electric field calculated using corrections from the exact neighbor integrals, 

𝐸𝑠𝑢𝑏𝑑𝑖𝑣 is the electric field calculated through subdivision, and ‖∗‖ denotes the matrix 2-norm. 

 Table 4 below shows the computation time and error for several subdivision methods 

when applied to Connectome Subject 110411.  Error is shown for the 4-neighbor case (requiring 

7 seconds if exact neighbor integrals are known), the 64-neighbor case (requiring 10 seconds if 

exact neighbor integrals are known), and the 128-neighbor case (requiring 14 seconds if exact 

neighbor integrals are known). 
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Table 4: Subdivision method accuracy with respect to analytical neighbor integrals 
Subdivision 

Method 

Subdivision 

Parameter 

Runtime Error  

(4 nbrs.) 

Error 

(64 nbrs.) 

Error 

(128 nbrs.) 

Gaussian 4 11.1866 s 0.0432 0.0415 0.0415 

Gaussian 7 14.1866 s 0.0410 0.0385 0.0385 

Gaussian 13 35.6007 s 0.0349 0.0322 0.0322 

Gaussian 25 56.9180 s 0.0252 0.0219 0.0219 

Barycentric 2 11.2613 s 0.0190 0.0187 0.0187 

Barycentric 3 19.7735 s 0.0136 0.0123 0.0123 

Barycentric 4 43.1691 s 0.0114 0.0091 0.0091 

Barycentric 5 55.7387 s 0.0104 0.0072 0.0071 

Barycentric 6 73.6604 s 0.0099 0.0059 0.0059 

 

Based on the data in Table 4, barycentric subdivision with subdivision parameter 3 

(corresponding to 9 subdivided triangles) appears to provide the best balance of accuracy and 

speed. 

 

II.A.4.b. Validation using ANSYS Maxwell and a simple test setup 

 This test setup was a model of a homogeneous block of dimensions 0.5 m by 0.5 m by 

0.5 m with two imprinted voltage electrodes held at +1 V and -1 V (see Fig. 21).  This system 

was simulated using ANSYS Maxwell Electronics Desktop 2019 R1 and the electric field was 

calculated at two sets of points: one 100-by-100 point uniform grid in the Z = 300 mm plane, and 

in a 50-by-50-by-50 point uniform grid throughout the cube’s volume.  The electric field at these 

points was also calculated using BEM-FMM, relying first on the solid-angle neighbor integrals 

method and second on the normal-of-full-integral method.  Two error metrics were calculated. 

The first error metric, the 2-norm error, is calculated as 

Δ𝐸2𝑛𝑜𝑟𝑚 =
‖𝐸𝑏𝑒𝑚𝑓𝑚𝑚 − 𝐸𝑎𝑛𝑠𝑦𝑠‖

‖𝐸𝑎𝑛𝑠𝑦𝑠‖
 (18) 

where ‖∗‖ indicates the matrix 2-norm. 

 

The second error metric, the R2 error, is calculated as 

Δ𝐸𝑅2 =
‖ |𝐸𝑏𝑒𝑚𝑓𝑚𝑚 − 𝐸𝑎𝑛𝑠𝑦𝑠| ‖

‖ |𝐸𝑎𝑛𝑠𝑦𝑠| ‖
 (19) 

where |∗| indicates a row-wise vector 2-norm and ‖∗‖ indicates a column-wise vector 2-norm. 

 The results from this test are summarized in Table 5. 
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Figure 21: Homogeneous block with dimensions 0.5 m by 0.5 m by 0.5 m and two imprinted voltage electrodes 

 

Table 5: Comparison with ANSYS Maxwell for a homogeneous brick 
Integral Method  Observation Point Set R2 Error 2-Norm Error 

Solid-Angle z = 300 mm plane 0.0053 0.0063 

Normal of Full Integral z = 300 mm plane 0.0054 0.0063 

Solid-Angle Full volume 0.0057 0.0057 

Normal of Full Integral Full volume 0.0058 0.0058 

 

II.A.4.c. Validation between charge solutions for the solid-angle approach and normal-of-

full-integral approach 

 For this test, an MRi-B91 MagVenture coil was positioned above the motor hand area of 

Connectome Subject 110411.  The coil was driven with 5 kA at 3 kHz, resulting in a maximum 

current time-derivative of 94 A/µs.  The charge solution (charge density at every triangle, 

normalized by 𝜖0) for this test setup was computed using both the solid-angle approach and the 

normal-of-full-integral approach, and error between the charge solutions was computed as 

follows (where 𝑐𝑡𝑒𝑠𝑡 is the charge solution that arises from the solid-angle approach, 𝑐𝑏𝑎𝑠𝑒 is the 
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charge solution that arises from the normal-of-full-integral approach, and ‖∗‖ denotes the vector 

2-norm). 

Δ𝑐 =
‖𝑐𝑡𝑒𝑠𝑡 − 𝑐𝑏𝑎𝑠𝑒‖

‖𝑐𝑏𝑎𝑠𝑒‖
 (20) 

The error in the charge solution was found to be 0.0039. 

 

II.B. Coincident Facet Detection and Resolution 
 

II.B.1. Motivation  

 When the BEM-FMM is employed to compute the surface charge density solution for a 

given model, the total electric field incident on a given facet is computed in two steps.  First, an 

initial approximation is generated using the FMM, which treats all other facets as point charges 

and vastly accelerates the solution.  Next, the point-charge-approximated contributions from 

several (typically between 4 and 32 depending on model complexity) nearby facets are 

subtracted out, and precise integral contributions from those facets are computed and added back 

in. 

 If the model has at least one facet that shares a coincident centroid with the current facet, 

then the distance between the facets’ centroids will be zero, and the FMM-approximated 

contribution from the coincident facet to the current facet will be NaN.  Since the result of any 

arithmetic operation performed on a NaN is also NaN, the NaN will propagate to all other facets 

on the next solver iteration and corrupt simulation results.  If a model contains coincident facets, 

they must be detected and resolved prior to simulation. 

 One common reason for the occurrence of coincident facets is that a model’s components 

are fully self-contained; in other words, each component of the model specifies all of its 

boundaries and does not depend on other components to supply missing information.  When two 

such components share a boundary, each component contributes its own segmentation of that 

boundary.  These two segmentations typically contain facets that are exact duplicates of each 

other.  An example of a model in which each component is fully self-contained is the MIDA 

model [71]. Some models in which components are not self-contained are the Connectome 

subjects [72], [78]. In these models, only the outer boundaries of components are segmented, and 

information about a given component’s inner boundary is contributed by the outer boundary of 

the next nested component. 

 

II.B.2. Resolution 

 Coincident facets can be detected as follows.  First, each facet’s nearest neighboring facet 

is found (by a fast method such as, for example, the knnsearch function of MATLAB’s Statistics 

and Machine Learning Toolbox) based on centroid-centroid distance.  If the distance between the 

centroids of a given facet and its nearest neighbor is smaller than a certain threshold, the facets 

are flagged as having coincident centroids.  Of the facets that are flagged to have coincident 
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centroids, those whose vertices are also closer than a certain threshold are additionally flagged as 

fully coincident. 

 Facets that share coincident centroids but which are not fully coincident can be resolved 

by a small perturbation of their centroids along their respective normal vectors.  These instances 

are usually rare, since the probability that two non-identical triangles share the same centroid is 

very small.  The process for resolving fully coincident facets is more involved. 

 The BEM-FMM boundary conditions are based on the numerical contrast between 

material properties (e.g. electrical conductivity or dielectric constant) across model boundaries.  

Each object is initially assigned a known inside conductivity and an assumed outside 

conductivity.  As previously mentioned, coincident facets typically occur when two components 

(Object 1 and Object 2) both segment their mutual boundary.  This can be taken to mean that the 

outer material for the coincident facet of Object 1 should be the inner material of Object 2, 

instead of the assumed outer material.  Likewise, the outer material for the coincident facet of 

Object 2 should be the inner material of Object 1. 

 For each pair of fully coincident facets, one facet is designated as the facet to be kept, and 

the other is designated as the facet to be deleted.  The outside material of the facet to be kept is 

updated to match the inside material of the facet to be deleted.  The other facet and associated 

data (centroid, vertices, area, etc.) are then removed from the model. 

 The MATLAB code implemented for coincident facet resolution can be found in 

Appendix A, section AA.2. 

 

II.B.3. Example: Coincident facets in the MIDA model 

 The MIDA model is one of the most detailed human head models currently available, 

comprising 115 distinct tissue compartments and roughly 11 M triangular surface elements.  As 

previously mentioned, every tissue compartment is fully enclosed by its associated mesh.  Where 

any two compartments touch, one boundary is contributed by each compartment.  Fig. 22 below 

illustrates a tiny fraction of the coincident boundaries in this model. 
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Fig. 22. Left: MIDA model’s cerebrospinal fluid (pale yellow), gray matter (gray), veins (blue), arteries (red), and 

nerves (dark yellow).  Right: The cerebrospinal fluid mesh presented in isolation from the other tissues; note the 

tight channels for the veins and arteries, the hollow areas for the gray matter, and the multitude of small, 

isolated facets. 

 

 The total number of facets in the MIDA model decreases from 11 M to 5.6 M after the 

coincident facet resolution step, and the operation requires approximately 81 seconds.  

Coincident facets need to be resolved only once during the model preprocessing phase; the time 

taken to resolve coincident facets does not affect the charge solution time once the model has 

been constructed. 

 Chapter VI will discuss an application example based on the MIDA model. 

 

II.B.4. Example: a simple T-junction geometry 
This section has been excerpted from Appendix B of [1]. 

 

II.B.4.a. Junction Geometry 

 We consider a T-junction of three distinct, non-nested conducting objects as shown in 

Fig. 23 below. We assume that Object 1 has conductivity 𝜎1 (where 𝜎1 ≠ 0), Object 2 has 

conductivity 𝜎2 (where 𝜎2 ≠ 0 and 𝜎2 ≠ 𝜎1), and Object 3 has conductivity 𝜎3 = 0 (i.e. air). The 

junction line, marked by a gray circle near the top of the figure, extends out of the page. The 

cross section shown is perpendicular to the junction line, and the joint boundary between Object 

1 and Object 2 is assumed to extend some distance in the direction of the junction line (out of the 

page).  The primary electric field, marked in Fig. 23 by a red arrow, is parallel to the top of the 

T-junction (and thus perpendicular to the joint boundary between Object 1 and Object 2). 
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Fig. 23. Simple non-nested T-junction geometry with three objects. The joint interface between Object 1 and 

Object 2 is counted only for Object 2, with 𝝈𝟐 being the inner conductivity and 𝝈𝟏 being the outer conductivity (in 

the direction of the outer normal vector 𝒏𝟐). 

 

 As previously explained, the joint interface between Object 1 and Object 2 in Fig. 23 

must be counted only once. Here, we decide that it is only counted for Object 2, and thus Object 

1’s copies of the boundary facets will be discarded. In this case, 𝜎2 is assigned as the inner 

conductivity and 𝜎1 is assigned as the outer conductivity (in the direction of the normal vector 

𝒏2) for this boundary as shown in Fig. 23. 
 

II.B.4.b. Geometry Model with Secondary Field. Source Positioning 

 The geometry shown in Fig. 23 could be straightforwardly realized with two distinct 

hemispheres in air. However, a homogeneous precisely spherical geometry does not generate the 

secondary field for the most relevant co-axial magnetic dipoles (small coils). Therefore, we 

cannot directly compare the effect of the secondary electric field for the nested geometry with 

the additional effect of the junction for a similar yet non-nested geometry. 

 A more appropriate example is perhaps a composite cylinder consisting of two 

homogeneous cylinders joined together tip-to-tip as shown in Fig. 24a. A horizontal coil in the 

form of a single ring of current shown in the same figure does generate a secondary field even if 

the composite cylinder is homogeneous. The cylindrical geometry model and the coil model in 

Fig. 24a are characterized as follows (note that all dimensions have default units of meters, but 

they could be scaled as appropriate): 

i. the two joined cylinders each have the radius of 1 m and the same height of 1 m; 

ii. the conductivity of the rightmost cylinder in Fig. 24a (object 1) is 0.1 S/m, and the 

conductivity of the left cylinder (object 2) is 0.5 S/m. The ambient medium (object 3) is 

air with zero conductivity; 

iii. the torus (single-ring coil) of current has the major radius of 0.25 m and the minor 

radius of 0.025 m; it is located at the height of 1.2 m above the center of the axis of the 

composite cylinder; 

iv. the coil’s 𝑑𝐼/𝑑𝑡 is chosen as 2𝜋 × 3000 A/s. For harmonic excitation used in ANSYS 

FEM software, which will be employed in what follows for comparison purpose, this 

would correspond to coil current amplitude of 1 A at 3 kHz. 
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II.B.4.c. BEM-FMM Result 

 The BEM-FMM solution for the geometry of Fig. 24a with 16 iterations runs in 

approximately 2 seconds on a 2.1 GHz multicore server; the final relative residual is 10-8. Fig. 

24b shows the resulting distribution of the surface charge density on the outer surface of the 

composite cylinder. A “wind rose” with four petals seen on top of the cylinder is the induced 

surface charge density that also exists for the homogeneous cylinder. It is responsible for the 

secondary (conservative) electric field of the homogeneous cylinder without the junction.  

 However, the two prominent narrow strips of charge with opposite polarity also seen on 

top of the cylinder are the effect of the junction. This effect appears to be quite strong. It is 

stronger than the conventional induced surface charge density.  

 Next, Fig. 24c shows the corresponding total electric field (magnitude) just inside the 

outer cylinder surface. A large gradient (or, strictly speaking, discontinuity) of the field is 

observed near the junction, in the direction perpendicular to the junction line.  

 Finally, Fig. 24d demonstrates the total electric field in a cross-section plane (marked 

white in Fig. 24a) which is located close to the cylinder top and at ¾ of the cylinder radius from 

the cylinder axis. A large gradient of the field is again observed near the junction, in the direction 

perpendicular to the junction line. 
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Fig. 24. a) – Geometry of the composite cylinder along with the single-ring coil and a cross-section plane marked 

white. b) – Resulting distribution of the surface charge density on the outer surface of the composite cylinder. c) 

– Total electric field (magnitude) distribution just inside the cylinder’s outer surface. d) – Total electric field 

(magnitude) distribution in the observation plane marked white in a). 

 

II.B.4.d. ANSYS Maxwell Result 

 An equivalent project was created in ANSYS Maxwell Electronics Desktop 2019 R1 

commercial FEM software (the eddy current solver) with adaptive mesh refinement. The FEM 

solution uses 5 adaptive passes and the final mesh with ca 0.6 M tetrahedra. The final energy 

error is 0.02%. The execution time is 1 hour on a 2.2 GHz multicore server.  

 Fig. 25 shows the corresponding problem geometry in ANSYS Maxwell and the total 

electric field distribution in the observation plane marked black in Fig. 25a. The observation 

plane is again located at ¾ of the cylinder radius from the cylinder axis. Note that, in contrast to 

Fig. 25 b and c, the ANSYS Maxwell eddy current modeling software does not output the 
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surface charge distributions and/or the electric field distribution just inside or outside model 

surfaces. 

 

 
Fig. 25. a) – Equivalent problem geometry in ANSYS Maxwell ED 2019 R1 with the observation plane cut marked 

black. b) – Total electric field (magnitude) distribution in the observation plane marked black in a). 

 

II.B.4.e. Comparison of Two Solutions 

 The two solutions for the electric field 𝑬 in the same observation plane with 𝑁 = 40,000 

observation points (shown in Fig. B2d and Fig. B3b, respectively) have been compared with 

each other. The relative least-squares vector-field error has been calculated according to  

 

Error =  √∑ ‖𝑬𝑛
𝐵𝐸𝑀 − 𝑬𝑛

𝐹𝐸𝑀‖2
𝑁

𝑛=1
/√∑ ‖𝑬𝑛

𝐹𝐸𝑀‖2
𝑁

𝑛=1
 (21) 

where ‖𝑬‖ is the least-squares vector norm. The relative error in Eq. (B1) is equal to 3.7%, 

which confirms the accuracy of both solutions. The relative 2-norm (default of MATLAB) error 

between the two vector fields is 3.4%. 

 

II.B.4.f. Conclusion 

 The surface junction in a non-nested tissue topology may cause strong localized surface 

charge accumulation and a (very) strong associated gradient of the electric field. The BEM-FMM 

solution adequately describes this effect.  

 

 

equivalent problem geometry in ANSYS 
Maxwell with observation plane cut (black)

a) b)

total electric field on the obs. plane
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II.C. Material Property Assignment to Volumetric Observation 

Points 
 

II.C.1. Motivation 

 Several field quantities of interest depend on material properties of the observation points 

at which they are computed.  The electric current density 𝑱 at a given observation point, for 

instance, depends on both the electric field 𝑬 at that point and the electrical conductivity 𝜎 at that 

point.  In FEM and FDM systems, the material type and properties are already known at each 

volumetric element.  In the surface-mesh-based BEM-FMM system, there are no volumetric 

elements, and material properties are assigned to the surface meshes.  Material properties at 

volumetric observation points are thus not initially known.  To compute material-dependent field 

quantities like current density and Lorentz force, material types for given observation points 

must be extrapolated based on nearby surface meshes. 

 

II.C.2. Algorithm and Example 

To assign a tissue type to a given observation point 𝒓, the following method is used: 

 

For each mesh index 𝑛: 

 Find the facet on mesh 𝑛 whose centroid 𝒓′𝑛 is nearest to 𝒓; save this centroid. 

 Assign inside/outside status to 𝒓′𝑛 according to 𝑠𝑖𝑔𝑛(𝒏′
𝑛 ∙ (𝒓′

𝑛 − 𝒓)) 

  𝒏′ denotes the unit normal vector of the selected facet. 

  If the expression is positive: the observation point is enclosed by mesh 𝑛. 

  If the expression is negative: the observation point is not enclosed by mesh 𝑛. 

Remove from consideration any meshes which do not enclose the observation point. 

From the remaining centroids (one per mesh), select the mesh index 𝑚 that minimizes |𝒓′𝑚 − 𝒓|. 

This mesh index 𝑚 is taken as the mesh whose material is present at the observation point. 

 

The MATLAB code for this algorithm can be found in Appendix A, section AA.3. 

  

 Fig. 26 below shows an example of this algorithm applied to Connectome Subject 

110411.  Despite the complex geometry of the region shown, the algorithm correctly assigns 

tissue types to every location in a grid of 200x200 observation points.  For these 40k observation 

points and this 7-compartment 860k facet model, the tissue types were assigned within 1.84 

seconds. 
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Fig. 26. Left: Transverse cross-section of Connectome Subject 110411 showing tissue meshes (red - skin; orange - 

skull; yellow - cerebrospinal fluid; cyan - gray matter; purple - white matter) against subject MRI data.  Right: 

Tissue types assigned to a grid of 200x200 observation points in the cyan rectangle in the left figure, following 

the same color scheme.  The white dots visible in the right figure are interstitial spaces between observation 

points. 
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III. TMS-Focused BEM-FMM Toolkit 
This chapter has been excerpted from [1], published in April 2020.  It describes specific ways in which the method 

was tailored to solve TMS problems and provides an example based on sixteen subjects of the Human 

Connectome Project. 

 

III.A. TMS-Specific Implementation Details 
 

III.A.1. Charge conservation law  
In addition to excerpts from [1] proper, this section contains excerpts from Appendix C of that publication. 

 

 Before applying a TMS pulse, the human head or the entire human body is assumed to 

have the total charge 𝑄 equal to zero, i.e. be electrically neutral. Since the electric charge is a 

physical quantity carried by electrons or ions, and since there is no direct conduction (or charge 

transport) path between the head and a coil separated from the head by a gap, the total charge of 

the head must not change. Therefore, the total charge must be equal to zero at any time instant.  

 This observation is valid not only for TMS excitation but also for any isolated, 

conducting, or dielectric object in an external electromagnetic field. Examples pertinent to static, 

eddy-current, and full-wave problem statements are given in [73] and [74].  

 The charge conservation law is not explicitly included in Eq. 4; it can be enforced in the 

form  
 

∫ 𝜌(𝒓′)𝑑𝒓′ = 0
𝑆

 (22) 

 

 In Eq. 22, 𝑆 is now the combination of all interfaces. Proper implementation of Eq. 22 

implies a direct combination with Eq. 4 with a certain weighting; it provides a significantly better 

and unconstrained convergence rate of the iterative solution and prevents excess charge 

accumulation at sharp corners of the model. Section III.B.3 discusses the charge conservation 

law (Eq. 22) in detail and presents examples that demonstrate its impact on solution convergence 

and accuracy. 

 

III.A.2. Primary TMS field  

 An arbitrary TMS coil is modeled in the form of a very large number of small straight 

elements of current 𝑖𝑗(𝑡) with orientation vector 𝒔𝑗 and center coordinate vector 𝒑𝑗. Those 

elements can be either uniformly (Litz wire) or non-uniformly (skin effect) distributed over every 

conductor’s cross-section. The magnetic vector potential 𝑨𝑝 of a current element with orientation 

𝒔𝑗 and position 𝒑𝑗  at an observation point 𝒄𝑖 is given by [74] 
 

𝑨𝑝(𝒄𝑖, 𝑡) =
𝜇0

4𝜋

𝑖𝑗(𝑡)𝒔𝑗

|𝒄𝑖 − 𝒑𝑗|
 (23) 
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where 𝜇0 is magnetic permeability of vacuum and index 𝑝 denotes the primary field. The 

corresponding solenoidal electric field is 𝑬𝑝 = −𝜕𝑨𝑝 𝜕𝑡⁄ . Substitution of Eq. 23 yields  
 

𝑬𝑝 =
𝜇0

4𝜋

𝒔𝑗

|𝒄𝑖 − 𝒑𝑗|
{−

𝑑𝑖𝑗

𝑑𝑡
} (24) 

 

 The multiplicative factor in curly brackets is a known characteristic of the coil pulse 

waveform. For every observation point, the primary electric field in Eq. 24 is computed via the 

FMM as a potential of a single layer repeated three times, i.e., separately for each component of 

the field. Examples of detailed TMS coil models are shown in Fig. 27; the coil geometry 

generator of the toolkit is described in Appendix B. 
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Fig. 27. Solid CAD models created using the MATLAB-based coil geometry generator. Figs. 27a-b are generic 

double figure-eight spiral coil models with different conductor cross-sections and bootstrapped interconnections. 

Figs. 27c-g are simplified commercial coils of MagVenture, Denmark. Fig. 27c is a MRi-B91 TMS-MRI coil with 

elliptical conductors of a rectangular cross-section used in the example; Fig. 27d is a MagPro C-B60 coil model; 

Fig. 27e is a compact Cool B-35 coil; Fig. 27f is a D-B80 coil; Fig. 27g is Cool-40 Rat small animal coil model. Fig. 

27h is a three-axis multichannel TMS coil array radiator [75][76]. 

 

a) b)

c) d)

e) f)

g) h)



52 

 

III.A.3. Excitation 

 The excitation is the term on the right-hand side of Eq. 4, which depends on 𝑬𝑝. It is first 

evaluated at mesh nodes via the FMM, and then an average value for every facet center is 

obtained. The initial guess of an iterative solution is proportional to the excitation term. Based on 

analytical solutions for the sphere and ellipsoid, a scalar weighting parameter for the initial guess 

may be chosen in the range from 1 to 10. 

 

III.A.4. Iterative solution 

 In the iterative matrix-free solution, Eqs. 4 and 22 are added together and solved 

simultaneously. The weighting parameter for the conservation law normalized by the total 

surface area is chosen as 0.5. The generalized minimum residual method (GMRES) was found to 

converge better than the bi-conjugate gradients method and its variations. Several sparse near-

field preconditioners have been constructed, but so far none has provided a significantly better 

convergence speed. The relative residual of 10-10 is achieved in approximately 60 iterations for a 

typical head model discussed further. However, such a large number of iterations is not 

necessary as shown below. 

 

III.A.5. Discretization error and surface charge averaging 

 From the viewpoint of electromagnetic field theory [77], any sharp edge in the surface 

mesh will lead to an infinite value of the surface charge density at that location, which indeed 

results in an infinite electric-field value when the mesh surrounding this edge is refined. 

Fortunately, this is an integrable singularity [77]. In order to compare models with different 

surface resolutions, we must therefore introduce averaging (integration) over a consistent and 

small surface area. For practical purposes, it is convenient to introduce equally weighted surface 

charge averaging (low pass filtering) over three or more immediate topological neighbors. After 

the solution is obtained, we substitute (for three topological neighbors) 
 

𝜌(𝑡𝑚) →
1

4
(𝜌(𝑡𝑚) + 𝜌(𝑡𝑚1) + 𝜌(𝑡𝑚2) + 𝜌(𝑡𝑚3))  (25) 

 

where triangles 𝑡𝑚𝑛 share an edge with triangle 𝑡𝑚. Eq. 25 has been implemented in the code. 

For a very fine mesh, it could be applied twice to expand the relative averaging domain. 

 

III.A.6. Postprocessing 

 The normal electric field just inside/outside an interface is computed directly from the 

known surface charge density following Eqs. 5. The total electric field just inside/outside an 

interface follows Eq. 2 with all neighbor potential integrals computed analytically. The total 

electric field anywhere in the volume follows Eq. 1 with all neighbor potential integrals again 

computed analytically. 
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III.A.7. Available subject head models 

 Sixteen Human Connectome Project (HCP) head models [78] with an initial isotropic 

voxel resolution of 0.7 mm are available with the software [72]. These MRI data have been 

converted to surface models using the SimNIBS v2.1 pipeline; each model includes seven brain 

compartments (skin, skull, CSF, GM, WM, ventricles, cerebellum). Each model has been 

checked against the original NIfTI images, and mesh manifoldness has been strictly enforced and 

confirmed using ANSYS HFSS mesh checker. The default average cortical surface mesh edge 

length is 1.5 mm, the cortical nodal density is 0.55 nodes per mm2, and the total number of facets 

is 0.9 M.  

 Any other surface model may be used in *.stl or *.mat (MATLAB) format. A chief 

example is the MIDA model or its parts [71]. Additionally, the fifty CAD models included in the 

Population Head Model Repository or PHM [79],[80] may be used, which have been made 

available by the IT’IS Foundation, Switzerland via the web [81].  Note that some inconsistencies 

were observed when overlapping these PHM models with the original NIfTI images. 

 

III.A.8. Model remeshing and surface mesh registration 

 The MATLAB package also makes use of CM2 SurfRemesh®, a mesh generation 

program from Computing Objects, France, that enables the user to create coarser and/or finer 

surface representations while minimizing the surface deviation error from the master mesh. A 

NIfTI viewer available in the core MATLAB package facilitates surface mesh registration in any 

plane by overlapping surface mesh cross-sections on NIfTI images. We should note that for most 

accurate registration the original MRI data header information should be used, and the provided 

viewer is predominantly to facilitate quick visualization in MATLAB. 

 

III.A.9. Implementation and distribution 

 The complete BEM-FMM algorithm is implemented entirely in MATLAB 2019b for 

both Windows (runs as is, but may require machine-specific compilation of the FMM library for 

further speed up) and Linux (may require machine-specific compilation of the FMM library). As 

mentioned above, the software includes the recent FMM library [66], is compatible with its latest 

modifications, and is bundled together with remeshing and registration modules. The complete 

package is available to interested researchers via a GitHub repository [54]. 

 

III.B. Results 
 

III.B.1. Necessary number of iterations for the iterative solution 

 A critical point for the both the speed and performance of the method is the number of 

GMRES iterations to be used in the iterative solution. This number, which determines the overall 

algorithm’s speed, was not quantified before.  
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 In order to establish the representative estimate, six Connectome Project head models 

(subject numbers 110411, 117122, 120111, 122317, 122620, 124422), [78] and the 

corresponding surface models obtained via the SimNIBS v2.1 pipeline and described above were 

tested. The average cortical surface mesh edge length is 1.5 mm; the cortical nodal density is 

0.55 nodes per mm2; the total number of facets is 0.9 M.  

 Further, the remeshing program described above was applied. As a result, a coarser set 

with an average cortical edge length of 1.9 mm and an average cortical nodal density of 0.32 

nodes per mm2 was created; the total number of facets is 0.4 M. Likewise, a finer set with an 

average cortical edge length of 0.99 mm and a cortical nodal density of 1.2 nodes per mm2 was 

created; the total number of facets is 1.8 M.  

 The models were augmented with the material conductivities identical to the default set 

of SimNIBS TMS software package: scalp average – 0.465 S/m, skull – 0.01 S/m, CSF – 1.654 

S/m, GM – 0.275 S/m, cerebellum – 0.126 S/m, WM – 0.126 S/m, ventricles – 1.654 S/m. Note 

that the available literature data vary widely; the corresponding conductivity ranges have been 

reviewed in [82]. In particular, the IT’IS database of tissue properties [83] reports somewhat 

different values:  skull – 0.0203 S/m, CSF – 2.0 S/m, GM – 0.106 S/m, cerebellum – 0.126 S/m, 

WM – 0.065 S/m, ventricles – 2.0 S at 3 kHz center frequency. 

 The widely used MRI compatible TMS coil MRi-B91 (MagVenture, Denmark) located 

above the motor hand area of the precentral gyrus (the hand knob area [84]), was employed in 

these tests. A detailed coil model has been constructed and approximated by 26 thousand 

elementary current segments in Eq. 24. The coil was driven by a time-varying current of  
𝑑𝐼

𝑑𝑡
=

9.4𝑒7 𝐴𝑚𝑝𝑒𝑟𝑒𝑠/𝑠𝑒𝑐. The primary coil field was computed using Eq. 24.  

 In every case, the coil was positioned in order to follow three geometrical rules: 

i. align the approximately identified hand knob area of the right precentral gyrus with the 

coil centerline;  

ii. set the coil centerline approximately perpendicular to the skin surface, and position the 

coil 100.25 mm from the skin along this centerline; 

iii. have the dominant field direction (the x-axis of SimNIBS coordinate system) 

approximately perpendicular to the gyral crown (and associated sulcal walls) of the 

precentral gyrus pattern at the target point. 

These rules uniquely define the coil position and the rotation angles.  

 The most sensitive error parameter is the value of the absolute maximum field observed 

at the cortical interfaces and the exact position of this local maximum. Figs. 28 a,b,c show the 

error in the maximum value of the total field just inside the pial cortical surface or the GM shell 

(red) and just inside the inner cortical surface or the WM shell (blue) as a function of iteration 

number versus the most accurate solution with 100 iterations for the three different model 

resolutions described above. Figs. 28 d,e,f give the error in the position of this maximum field in 

millimeters as a function of iteration number versus the most precise solution for the same three 

cases. The vertical line in every plot corresponds to the 15th iteration. Results are only given for 

subject #110411 of the Connectome Project Database, but nearly identical results have been 
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observed for the five other subjects considered. Based on these results we conclude that 14-15 

iterations are sufficient to obtain a maximum-field error below 1% and a maximum-field position 

error below 0.25 mm. 

 
Fig. 28. a,b,c) – Error in the maximum value of the total field just inside the GM shell (red) and WM shell (blue) as 

a function of iteration number versus the most accurate solution with 100 iterations for three different model 

resolutions. d,e,f) – Error in the position of this maximum field in millimeters as a function of iteration number 

versus the most precise solution for three different model resolutions. The vertical line in each plot corresponds 

to the 15th iteration. Results are given for subject #110411 of the Connectome Project Database. Very similar 

results were observed for the five other subjects considered. 
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 Table 6 gives the error in the maximum value of the total field just inside the inner 

cortical surface and the error in the position of this maximum field in millimeters versus the most 

accurate solution available (with 1.2 nodes/mm2, 1.8 M facets, 100 iterations) for the two lower 

model resolutions. Results are given for all six subjects listed above. This surface-charge 

averaging area in Eq. 25 has been defined as 3 mm2. One can see that both errors are relatively 

small, even for the coarser model with 0.4 M facets.  

 

Table 6. Error in the maximum value of the total field just inside the inner cortical surface (the 
WM shell) and the error in the position of this maximum field in millimeters versus the more 
precise solution (with 1.2 nodes/mm2, 1.8 M facets) for two lower model resolutions. Results 
are given for six subjects of the Connectome Project Database. 

Connectome 

subject 

Max field error 

for 1.5 mm edge 

length 

(0.55 nodes/mm2, 

0.9 M facets) 

Error in the 

position of the 

max field 

(0.55 nodes/mm2, 

0.9 M facets) 

Max field error 

for 1.9 mm edge 

length 

(0.32 nodes/mm2, 

0.4 M facets) 

Error in the 

position of the 

max field 

(0.32 

nodes/mm2, 0.4 

M facets) 

110411 0.6% 0.2 mm 3.8% 0.9 mm 

117122 1.2% 0.1 mm 1.2% 1.7 mm 

120111 0.9% 0.2 mm 0.2% 1.1 mm 

122317 0.3% 0.7 mm 2.3% 1.5 mm 

122620 0.5% 1.1 mm 2.1% 0.9 mm 

124422 2.2% 0.6 mm 3.5% 0.8 mm 

Average 0.9 % 0.5 mm 2.2% 1.2 mm 

 

Table 7. BEM-FMM run times for different model resolutions obtained with 14 iterations. 
These data were compiled using an Intel Xeon E5-2698 v4 CPU (2.10 GHz) server, 256 GB 
RAM, MATLAB 2019a. 

Model 

resolution 

Preprocessing 

time (once per 

model) 

Solution time for 14 

iterations (cf. Fig. 1) 

Post processing time for 

normal surface cortical fields 

and field discontinuities*) 

1.2 nodes/mm2, 

1.8 M facets 
110 sec 74 sec 0 sec 

0.55 

nodes/mm2, 0.9 

M facets 

70 sec 34 sec 0 sec 

0.32 

nodes/mm2, 0.4 

M facets 

50 sec 18 sec 0 sec 

*) Post-processing time for the total/tangential interfacial fields should also approach zero once the last GMRES 

iterations are made available in the workspace. 
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III.B.2. Overall method speed 

 Based on results shown in Fig. 28 and quantified in Table 6, we estimate the speed of the 

method sufficient for an accurate solution pertinent to different model resolutions in Table 7. A 

significant speed improvement by a factor of approximately 3 as compared with previous results 

[49],[50] is achieved by using an improved FMM algorithm, by employing the proper number of 

iterations, by lowering the intrinsic FMM precision to an acceptable level without compromising 

the overall method accuracy, and by the explicit inclusion of the charge conservation law into the 

iterative solution. 

 

III.B.3. Impact of the charge conservation law 
In addition to excerpts from [1] proper, this section contains excerpts from Appendix C of that publication. 

 The global charge conservation law (Eq. 22 of III.A.1) is normalized as follows:  

 

∫ 𝜌(𝒓′)𝑑𝒓′/∫ 𝑑𝒓′

𝑆

= 0
𝑆

 (26) 

 

where 𝑆 is the combined area of all head compartments. Then, it is added to Eq. 4 of I.B.5. with 

the weight of ½ (found empirically – in fact, any weight value between 0.01 and 100 might also 

be acceptable). After that, modified Eq. 4 is solved iteratively using the generalized minimum 

residual method or GMRES. A MATLAB GMRES implementation (Drs. P. Quillen and Z. 

Hoffnung of MathWorks, Inc) is used. 

 

III.B.3.a. Solution Convergence 

 Fig. 29 demonstrates the outcome of this correction on the solution convergence for three 

different models: the present example with three spheres (0.06 M facets) – Fig. 29a; the example 

of the main text for Connectome subject 110411 (0.86 M facets) – Fig. 29b; and the default Ernie 

head model of SimNIBS with 0.96 M facets [85] – Fig. 29c. Here, we compare two convergence 

curves: with (blue) and without (red) the conservation law. 

 In all three cases, the conservation law allows us to avoid convergence saturation at 

certain values of the relative residual and thus achieve a nearly uniform convergence rate for any 

residual values. In all three cases, the non-saturated convergence reduces the final relative 

residual by approximately two orders of magnitude or even slightly more. 

 In the first case in Fig. 29a, the plateau of saturated convergence is not very well visible. 

However, it becomes more apparent and increases in length when the model complexity 

increases (Figs. 29b and 29c). Also, the saturation zone in Fig. 29 moves toward smaller (and 

more important) values of the relative residual when model complexity increases. From the 

user’s point of view, the plateau of saturated convergence creates a concern. 

 Note that in the exact spherical geometry and for a uniform primary field, the charge 

conservation is already satisfied very well. Introducing the conservation of charge has only a 

minor effect. 
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Fig. 29. GMRES convergence rates with (blue) and without (red) charge conservation with increasing model 

complexity. a) – The three-sphere example. b) – Connectome subject 110411. c) – Ernie model of SimNIBS. A 

horizontal line marks the iteration number where the two curves start to deviate. 
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III.B.3.b. Charge solution accuracy 

 As an example, we now consider the non-nested geometry of the composite cylinder 

previously studied in I.B.4. Fig. 30a shows the solution convergence for the example of I.B.4. 

with (blue) and without (red) charge conservation, while Fig. 30b displays the map of the 

solution error for the example of I.B.4 between the solutions with and without charge 

conservation, respectively. The solution error for the primary unknown – the surface charge 

density – is further quantified in Table 8. Despite small values of the relative residual in both the 

cases, the relative solution error (2-norm) reaches 3.1% while the maximum relative solution 

error versus the absolute mean charge density reaches 12.5%. 

 

Table 8. Solution performance after 17 iterations (the first iteration is trivial) for the example 
of I.B.4. The solution error is given versus the solution with charge conservation law (Eq. 26). 

Solution type Relative 

residual 

Relative error in 

global charge cons. 

law, % 

Solution error for 

surface charge density 

(2-norm), % 

Maximum relative 

solution error vs. 

absolute mean charge 

density, % 

With charge 

conservation 

(Eq. 26) 

5.9e-10 -3.2e-04 0 0 

Without charge 

conservations 

3.2e-07 -4.6e-02 3.1% 12.5% 

 

 
Fig. 30. a) – Solution convergence for the example of I.B.4 with (blue) and without (red) charge conservation. b) – 

plot of the solution error for the example of I.B.4 between the solutions with and without charge conservation, 

respectively. 
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III.B.4. Modeling example: computing total, tangential, and normal fields at 

the interfaces 

 The developed algorithm is applied to accurately compute normal, tangential, and total 

electric fields anywhere in the cerebral cortex for a specific subject and a specific coil 

orientation. In this example, particular attention is paid to modeling the field in the vicinity of the 

folded WM-GM interface (the inner cortical surface). 

 Electric fields in the brain were simulated using the MRi-B91 coil model, located above 

the motor hand area of the right hemisphere in six distinct subject models of the Connectome 

Project described above in section III.B.1. Only the finer resolution models with an average 

cortical edge length of 0.99 mm, a cortical nodal density of 1.2 nodes per mm2, and a total 

number of facets of 1.8 M have been used for simulations. We employed straightforward 

geometrical coil positioning as described in section 3.1 above. 

 Fig. 31a shows the computed magnitude of the total surface electric field for subject 

#110411 just inside the pial cortical surface (the GM shell). This is the typical non-focal gray-

matter field distribution observed in many relevant studies. The field distribution includes a 

number of sparse local maxima, one of which is located close to the coil centerline. The absolute 

total-field maximum for the plot is 123.6 V/m. In Fig. 31a, some red spots span small groups of 

triangles. We believe that this happens when the GM shell is situated very close to the CSF so 

that a “capacitor effect” occurs. 

 In general, the field just inside the GM shell corresponds to cortical layer I, which is 

likely of little interest for TMS activation as it is a molecular layer, and contains few scattered 

neurons [86]. 

 A different situation might occur when we evaluate the total field magnitude just outside 

or inside the inner cortical surface (the WM shell), as shown in Fig. 31b. For this particular 

example, the absolute total-field maximum just inside the WM shell is somewhat higher, at 133.4 

V/m. Interestingly, the field has become quite focal; the maximum field is concentrated in a 

well-defined domain marked by an arrow in Fig. 31b. 

 Remarkably, this focal domain resides in the area of the superior parietal lobule, just 

behind the postcentral sulcus and rather far from the targeted hand knob area of the precentral 

gyrus. The distance from the coil centerline intersection with the WM shell to the center of the 

depicted hot spot is 32 mm. The distance from the coil centerline intersection with the GM shell 

is even longer. This observation is consistent with the previously established fact that the 

apparent TMS motor map may extend due to remote hotspot activation [87]. 

 Which field component generates this local maximum? To answer this question, Fig. 31c 

plots the absolute value of the normal field just inside the WM shell. In this instance, the focal 

area is even more pronounced with an absolute field maximum of 130.4 V/m. Comparing this 

number with the previous value of 133.4 V/m, we conclude that the normal field component is 

primarily responsible for this maximum.  
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Fig. 31. a) – Computed total surface electric field (magnitude) distribution just inside the pial surface (GM shell) 

for subject #110411. The absolute field maximum for the plot is 123.6 V/m. b) – The same result just inside the 

WM shell; the absolute field maximum there is even higher: 133.4 V/m. c) The normal-field magnitude just inside 

the WM shell; the field maximum is 130.4 V/m.  
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III.B.5. Modeling example: computing normal fields and their discontinuities 

at the WM-GM interface 

 The field normal to the inner cortical surface (the WM-GM interface) is the field parallel 

to the long, either straight or bent pyramidal axons of the fast-conducting pyramidal tract 

neurons passing through this interface. The normal field discontinuity (or, rather, a very rapid 

field variation) across the WM-GM interface creates a strong gradient of the component of the 

electric field along the axon, including the effect of the axonal bending [88][89]. It has been 

suggested that such a gradient may cause stimulation [88][89]. The stimulation of pyramidal 

axons of the fast-conducting pyramidal tract neurons results in D (direct or earliest) TMS wave 

generation [90]-[95]. 

 The TMS activation mechanisms are complex. The most common TMS response 

observed at lower suprathreshold field intensities are not the D waves but multiple I (or indirect) 

waves, which originate from indirect, trans-synaptic activation of pyramidal neurons [91]-[94], 

[96]-[98]. 

 Fig. 32 shows the WM-GM interfaces (the WM shells) for the six Connectome subjects 

considered. Small blue spheres are drawn at the center of every WM facet where the absolute 

normal field value just inside the surface is in the range of 80-100% of the maximum normal-

field value for the same surface. Identical “hot spots” would also be observed for the normal 

component just outside the interface and for the normal field discontinuity across the interface, 

according to Eq. 5.  

 In every case, the TMS coil is targeting the motor hand area of the right hemisphere. The 

total WM areas with the normal-field values within 80-100% of the maximum normal-field value 

are 40, 55, 120, 150, 139, and 79 mm2; the standard deviations of all high-field values from the 

maximum-field position are 5.5, 8.3, 8.4, 9.9, 15, and 6.0 mm for the six Connectome subjects 

110411, 117122, 120111, 122317, 122620, and 124422 respectively. 

One can see that, in the majority of cases in Fig. 32, the TMS response with regard to the normal 

inner cortical field becomes sparse and often significantly deviates from the coil centerline. The 

intersubject variations are also strong. 

  In this example, the most remarkable result has been observed for subject #110411 (Fig. 

32a). The total WM area covering 80-100% of the maximum field in Fig. 32a is compact; its size 

is only 43 mm2 (approximately 6.6 mm  6.6 mm). According to Eq. 5, the same focal area is 

observed for both the normal field just outside the inner cortical surface and for the normal field 

discontinuity across the inner cortical surface. Note again that the maximum values of the field 

just inside and outside the WM shell are 134.2 V/m and 82.3 V/m, respectively, demonstrating 

significantly higher field values just inside the inner cortical surface and a large field 

discontinuity. This result directly follows from Eq. 5 when the corresponding conductivity values 

are substituted. 
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Fig. 32. Distribution of E-field “hot spots” for the normal-field component at the inner cortical surfaces using 

geometrical coil positioning. a)– f) – Inner cortical surfaces (WM-GM interfaces) for six Connectome subjects 

with small blue spheres drawn at the center of every WM facet where the absolute normal-field value just inside 

the surface is in the range of 80-100% of the maximum normal-field value for the same surface. In every case, 

the MagVenture MRiB91 coil is targeting the motor hand area of the right hemisphere via geometrical 

positioning. The total WM areas with the normal-field values within 80-100% of the maximum normal field are 

43, 119, 120, 170, 197, and 82 mm2; the standard deviation of all high-field values from the maximum-field 

position is 2.4, 9.0, 8.5, 12, 17, and 6.6 mm for Connectome subjects 110411, 117122, 120111, 122317, 122620, 

and 124422 respectively. 
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 A separate study has been performed to test if the result for subject #110411 is stable 

with respect to perturbations in the coil position. In order to accomplish this, the algorithm was 

straightforwardly modified to run in a parametric loop with no graphical output. It was found 

that, if the variations in the coil rotation angles and in the three coil coordinates do not each 

exceed 3%, both the focal position and the focal field value remain stable. 

 

III.B.6. Modeling example: computing high-resolution volumetric field 

distributions 

 To demonstrate the BEM-FMM numerical field resolution capability, we consider the 

region in the vicinity of the E-field maximum in Fig. 32a, where the electric field likely changes 

very rapidly. The corresponding results for three principal planes passing through the field 

maximum position in Fig. 32a are given in Figs. 33, 34, and 35. In Figs. 33a, 34a, and 35a, the 

surface mesh has been overlaid on top of the relevant NIfTI slice to demonstrate mesh 

registration with the original imaging data. The red dots again signify the centers of intersected 

WM facets where the absolute normal-field value is in the range of 80-100% of the maximum 

normal-field value. Field localization in these planes is very good. 

 The volumetric field distribution in Figs. 33b, 34b, and 35b was obtained in the areas 

labeled by white rectangles in Fig. 33a, 34a, and 35a. Each area is 2020 mm2 and is centered 

exactly at the location of the absolute field maximum. Each area contains 500500 observation 

points, resulting in a field resolution of 40 µm. The volumetric field distribution is given for the 

magnitude of the total electric field. Specific colors designate interfaces: blue corresponds to the 

pial cortical surface, purple defines the inner cortical surface, and yellow defines the skull-CSF 

interface.  

 We see in Figs. 33b, 34b, and 35b that the local volumetric field inside the narrow WM 

gyrus changes very rapidly, at the submillimeter scales. The same is valid for the surrounding 

GM. The volumetric divergence of the electric field or its one-dimensional counterpart, the 

activating function 𝑑𝐸/𝑑𝑧, easily reaches 1-10 V/mm2 in both the WM gyral crown/lip and in 

the WM sulcal walls.  
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Fig. 33. a) – Sagittal plane passing through the location of the maximum field at the WM-GM interface and 

superimposed onto the corresponding NIfTI slices when using the MagVenture MRiB91 coil located above the 

hand knob area of the right precentral gyrus of subject #110411. The red dots indicate the centers of intersected 

WM facets where the absolute field value is in the range of 80-100% of the maximum field value. b) – volumetric 

total field (magnitude) distribution within the small white rectangle in Fig. 33a. Blue color – CSF-GM interface, 

purple color – WM-GM interface, yellow color – skull-CSF interface.  
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Fig. 34. a) – Transverse plane passing through the location of the maximum field at the WM-GM interface and 

superimposed onto the corresponding NIfTI slices for the MagVenture MRiB91 coil located above the hand knob 

area of the right precentral gyrus of subject #110411. The red dots depict the centers of intersected WM facets 

where the absolute field value is in the range of 80-100% of the maximum field value. b) – volumetric total field 

(magnitude) distribution within the small white rectangle in Fig. 34a. The same notations from Fig. 33 are used. 
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Fig. 35. a) – Coronal plane passing through the location of the maximum field at the WM-GM interface and 

superimposed onto the corresponding NIfTI slices for the MagVenture MRiB91 coil located above the hand knob 

area of the right precentral gyrus of subject #110411. The red dots show the centers of intersected WM facets 

where the absolute field value is in the range of 80-100% of the maximum field value. b) – volumetric total field 

(magnitude) distribution within the small white rectangle in Fig. 35a. The same notations from Fig. 33 are used. 
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III.C. Discussion 
 

III.C.1. Comparison with analytical solutions and with other software 

packages/numerical methods 

 Three separate computational studies [49]-[51] have been performed to compare the 

method’s performance in application to TMS problems. For the canonic multisphere geometry 

and an external magnetic-dipole excitation where the analytical solution is available, the BEM-

FMM algorithm was tested against a fast open-source getDP solver running within the SimNIBS 

2.1.1 environment [50]. It was observed that the BEM-FMM algorithm gives a smaller solution 

error for all mesh resolutions and runs significantly faster for high-resolution meshes when the 

number of triangular facets exceeds approximately 0.25 M [50]. The algorithm was further tested 

for 10 realistic head models of the Population Head Model Repository [79]-[81] excited by a 

realistic coil geometry. The algorithm’s performance was compared against a high-end 

commercial FEM software package ANSYS Maxwell 3D with adaptive mesh refinement [49]. 

Excellent agreement was observed for electric field distribution across different intracranial 

compartments, and the BEM-FMM algorithm achieved a speed improvement of three orders of 

magnitude over the commercial FEM software [50]. 

 A detailed and rigorous comparison study was recently performed independently by 

another group [51]. For MRI-derived head models, the method of the present study – the 0th 

order BEM-FMM – was determined to be the most accurate method that could be run with 

available computational resources. Other methods (from least to most accurate [51]): FDM or 

finite difference method, 1st order FEM, SPR (superconvergent patch recovery)-FEM, 2nd order 

FEM, 1st order BEM, and 3rd order FEM were benchmarked against the present method. It was 

concluded that, whereas at present the 1st order FEM is most commonly used, the 0th order 

BEM-FMM appears to be the judicious strategy for achieving negligible numerical error relative 

to modeling error, while maintaining tractable levels of computation. 

 

III.C.2. Method speed and model size 

 The algorithm runs best on multicore workstations/servers and multicore PCs due to the 

inherent parallelization of MATLAB and the FMM package. The number of cores seems to be 

more important than the clock speed. According to Table 7, the numerical TMS solution for the 

head segmentation with 0.55 nodes/mm2 and 0.9 M facets in total executes with the improved 

BEM-FMM in approximately 34 sec using a 2.1 GHz multicore server. This is threefold 

improvement compared to the initial formulation ([49]or [50]). The numerical TMS solution 

with 1.8 M facets in total from Table 7 executes in approximately 74 sec, i.e. scales nearly 

linearly with the number of facets.  

 A surface model with 70 M facets has been considered and computed with the present 

toolkit. For the same 2.1 GHz multicore server listed in Table 7, the corresponding execution 

time reaches approximately two hours. 
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 However, for a laptop computer, the BEM-FMM algorithm is expected to run 

significantly slower than the FEM pipeline of SimNIBS 3.0 ([48]) when a comparable resolution 

model is used. The BEM-FMM algorithm is also, in the present version, unable to handle WM 

anisotropy.  

 Also, the BEM-FMM approach requires relatively large preprocessing times (on the order 

of one minute or longer) for an individualized head model in order to compute and store 

necessary neighbor electrostatic potential integrals on triangular facets. However, this 

preprocessing step is required only once for each head model.  

 

III.C.3. Volumetric field resolution 

 In contrast to FEM, the BEM-FMM numerical resolution in the cortex is not limited by 

the volumetric tetrahedral mesh size; it may reach a micron scale if necessary. The key 

difference is that the solution is completely determined by the incident field and the induced 

charge distribution on the conductivity boundary surfaces, and the E-fields at arbitrary points of 

the 3D space can be subsequently evaluated. In the present study, we have demonstrated the 

ability to accurately compute TMS fields within the cortex at submillimeter scales with a field 

resolution of 40 µm as well as close to and across the cortical interfaces, in particular across the 

WM-GM interface.  

 The method accuracy is only limited by the surface segmentation itself and not by the 

volumetric mesh size. A meaningful solution is obtained at any distance from the interface, 

including a distance approaching zero. For example, for two interfaces separated by 2 mm, 

BEM-FMM is expected to generate more accurate results than the first-order FEM of SimNIBS 

at the distances of 0.5 mm or less from either interface unless many tetrahedra across the 2 mm 

gap or higher-order FEM basis functions are used. Indeed, the segmentation accuracy itself 

provides a limit on the overall modeling accuracy. However, detailed segmented models with 

isotropic resolution of 0.5 mm are already available [71]. 

 Furthermore, it is seen in Figs. 33, 34, and 35 that the field in the cortex may change very 

rapidly and at submillimeter scales. Accurate high-resolution field modeling may therefore be 

important for subsequent multiscale modeling pertinent to evaluating the neuron activating 

function [99]-[101]. 

 

III.C.4. Interfacial field resolution 

 The electric field is discontinuous at the interfaces of brain compartments with different 

conductivities, due to surface charge accumulation and the abrupt jump of the normal field 

component across a single monopolar layer of charges. In the present study, we distinguish the 

normal field just inside the interface, the normal field just outside the interface, and the normal 

field discontinuity across the interface. The BEM-FMM approach (and any BEM method) 

accurately accounts for the interface field discontinuities. The ability of BEM-FMM to 

accurately simulate field changes across the GM/WM interface might allow for better 

estimations of the potential changes along axons passing this interface [88], [89]. 
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III.C.5. Biophysical limitations 

 The present BEM-FMM algorithm rests on the assumption of isotropic conductivities 

inside the tissue compartments, which is not biologically accurate. Simulations suggest that 

taking WM anisotropy into account may change the TMS field by up to 20% in WM regions 

close to the brain surface. While GM anisotropy, as assessed with diffusion tensor imaging 

(DTI), is far less on a macroscopic scale, it might well matter when considering the microscopic 

scale of 40 μm presented in section 3.5. It is likely that the different cortical layers differ in their 

conductivity. It is also likely that the conductivity is anisotropic in some of the layers, in 

particular the lower layers. While the present BEM-FMM algorithm is numerically accurate at a 

microscopic scale, this should thus not be confused with “closer to the ground truth”, as it is 

based on a number of simplifying assumptions. Further method development may overcome 

some of them. 

 

III.D. Conclusions 
 In this chapter, we have described the improved BEM-FMM numerical algorithm for 

TMS modeling. Compared with previous results, the BEM-FMM algorithm has been improved 

in several novel ways. First, we have established fast, non-saturated solution convergence by 

incorporating an explicit global charge conservation law. Second, we utilized a simple analytical 

approach for obtaining electric fields (and electric field discontinuities) normal to the cortical 

surface (or any other interfaces) at no extra computational cost and without any postprocessing. 

Third, we established a minimum sufficient number of iterations for obtaining an accurate 

solution. Finally, we have incorporated a fully general treatment of boundary interface 

geometries, allowing non-nested surface models to be used. 

 The improvements have increased the method speed by a factor of approximately 3, 

while maintaining the same accuracy, and have provided fast non-saturated convergence to 

arbitrarily small values of the relative residual. The numerical TMS solution for the head 

segmentation with 0.55 nodes/mm2 and 0.9 M facets in total now executes in approximately 34 

sec using a 2.1 GHz multicore server. 

 The algorithm is based on the new general-purpose FMM kernel developed and 

supported by the group of L. Greengard [66]. The algorithm, coupled with tools that support 

surface remeshing and registration with corresponding NIfTI data, is implemented entirely in 

MATLAB and employs a few necessary toolboxes. It runs best on multicore machines due to the 

inherent parallelization of its platform. The number of cores seems to be more important than the 

clock speed. The complete computational code for this study, along with supporting 

documentation (Appendix B), is available online via a GitHub repository [54]. 

 In the present chapter, we have demonstrated the ability to accurately compute TMS 

fields within the cortex at submillimeter scales as well as close to and across the cortical 

surfaces, in particular across the WM-GM interface. The method accuracy is only limited by the 

surface meshing itself and not by the nominal volumetric resolution of the MRI data. A 

meaningful solution is obtained at any distance from the conductivity boundary, including a 
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distance approaching zero. It was found that it is possible to scan through electric fields normal 

to interfaces in real time and without postprocessing. The same functionality is true for the 

tangential and total interface fields once an intermediate integral in Eq. 2 is computed or 

acquired from the last step of the iterative solution. 

 The computational method developed may be useful for navigated TMS [87],[102],[103] 

and robotic TMS systems [104] operating with the guidance of available high-resolution MRI 

imaging and providing accurate and stable coil position and orientation. 

 The mention of commercial products, their sources, or their use in connection with 

material reported herein is not to be construed as either an actual or implied endorsement of such 

products by the Department of Health and Human Services. 
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IV. TMS Toolkit Application Example: Focality Estimates 

for Total Electric Field on Intracortical Surfaces 
This chapter has been excerpted from [105], under review at the time of writing. In this application example, the 

TMS-focused BEM-FMM modeling toolkit is applied to search for a coil position and orientation that produces 

the most focal fields at certain sites in the brain. 

 

IV.A. Introduction 
 Transcranial Magnetic Stimulation (TMS) activation zones are linked to the induced 

electric field in the cortex. The activation zone can be anywhere where the field exceeds the 

activation threshold, which does vary over space. Furthermore, different directions of the 

induced electric field (or electric current) within these domains can excite different intracortical 

circuits or the same circuits but at different sites [91] [106]-[108].  

 The domains of field maxima with respect to a certain field component – total, tangential, 

or normal to the cortical surfaces – are determined by the coil winding geometry, position and 

orientation in space as well as by the unique gyral pattern of the subject. Several such domains 

may simultaneously be generated, e.g., a primary domain in the originally targeted motor cortex 

or M1 and secondary “hot spots” in the somatosensory and/or premotor cortexes. Also, the size 

of the primary domain and the type of the dominant field component may vary. 

 All three electric-field components – total, tangential, and normal – separately, are 

considered in different TMS models of activation mechanisms for different neural populations 

[88],[89], [97],[101], [109]-[113]. Most important is likely the magnitude of the total TMS 

electric field along the gyral crown [97],[101],[109] although other studies have observed 

predominantly sulcal activations [88],[89],[111]-[113]. Detailed neuronal models have 

elucidated the different neuronal elements and their activation thresholds [112]. From the 

macroanatomical perspective, the activated region is considered as a comprise of the locations 

where the field intensity is highest [109]. 

 A number of computational approaches have been developed to solve the TMS “forward 

problem”: determine the corresponding intracranial E-field distributions given the coil 

position/orientation and the subject-specific anatomically realistic volume conductor geometry 

via a numerical solution of the quasistatic Maxwell equations using either the finite element 

method (cf. [48],[51], [114]) or the boundary element method (cf. [1],[49],[115]).  

 On the other hand, the TMS “inverse problem” or TMS-IP studied in this chapter aims to 

determine the coil position and orientation that will optimally focus the total TMS induced 

electric field around a user-specified cortical target point and minimize it otherwise.  

In this study, the performance or degree of improvement of a TMS-IP solution will be quantified 

as compared to the well-known sulcus-aligned mapping of the M1HAND (the hand knob [84]) 

area. The sulcus-aligned mapping is a common projection approach for the primary motor cortex 

or M1 with the 90° local sulcal angle [87],[108],[116], also called CURVED − 90𝑓𝑙𝑒𝑥
o  [108]. This 

promising approach allows one to readily probe the within-hand motor somatotopy [107] in 
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M1HAND with neuronavigated TMS that follows the sulcal shape and creates a tissue field/current 

perpendicular to the central sulcus at all mapping sites [108]. Furthermore, using sulcus-shape 

based mapping, novel evidence has been provided that fast sensorimotor integration in M1HAND 

displays a center-surround organization, engaging center inhibition and surrounding facilitation 

[116].  

 In other words, we aim to answer the following questions: 

(i)  By how much would the TMS-IP solution help us to increase the focality of the 

CURVED − 90𝑓𝑙𝑒𝑥
o  mapping; and 

(ii)  By how much would it help us to better differentiate between neighbor targets in 

M1HAND? 

 For a comprehensive and statistically accurate characterization of the TMS-IP 

performance, we analyze 16 subject-specific head models, each with six target points in the 

M1HAND area as described in [108],[116], employ two different coil types (large MRiB91 and 

small CoolB35 coils, both of MagVenture), two different intracortical field observation surfaces, 

and two different segmentation models for the same subject (mri2mesh and headreco), both 

implemented in the SimNIBS segmentation pipeline [46].  

 As a focality metric or the cost function of the TMS-IP solution, we choose an average 

absolute deviation (AAD) of the field magnitude, ‖𝑬‖, from the target point with respect to a 

certain field percentile – chosen as the 80th percentile in this study. The total electric field is 

evaluated either on the mid-surface between gray and white matter or on a surface shifted toward 

the white matter boundary, with the separation ratio of 4:1, or on a white matter interface itself. 

While the mid surface approximately corresponds to the cortical layer 2/3 (L2/3), the second 

observation surface approximately corresponds to the (bottom of) cortical layer 5 (L5, cf., for 

example, [101]).  

 The major stability considerations for the TMS-IP solution to be taken into account are  

(i) Inverse-problem solution stability and deviation with respect to geometrical 

uncertainties in the relative coil-head position and with respect to all three coil 

coordinates and three orientation angles; 

(ii) Inverse-problem solution stability and deviation caused by variations in tissue 

properties; 

(iii) Inverse-problem solution stability and deviation with respect to the segmentation 

accuracy. 

 The numerical implementation of the TMS-IP solution uses the boundary element fast 

multipole method (BEM-FMM) [1],[49] as the forward solver and a simple gradient descent 

search method with a small step size in a full six-dimensional search space as the inverse solver. 

This search space includes three independent coil co-ordinates and three independent coil 

rotation angles as suggested in the recent TMS protocol [110]. The expected outcome is the best 

position and orientation of the coil for the given subject head model and for the given target 

point.  
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 The gradient search method is tested and confirmed against the most reliable exhaustive 

approach applied previously in a comprehensive and detailed relevant study [109]. The method 

can be applied for studying multiple geometrical model variations and arbitrary field observation 

surfaces, arbitrary coil positions different from those strictly tangential to the scalp, and it does 

not require extra mesh conditioning.  

 Our main result shows that the TMS-IP solution may further improve the focality of the 

sulcus-aligned motor mapping approach for the total field in the gyral crown. This relative 

improvement is stable, consistent with an average value of 25%, and is weakly dependent on the 

coil type and the observation surface type. However, it is moderate. When the coil 

position/orientation and conductivity uncertainties are included into consideration, the focality 

improvement compared to the sulcus-aligned mapping is further reduced to 20% on average. 

 In addition, we demonstrate that the TMS-IP solution simultaneously improves the 

“somatotopic resolution” of TMS for the M1HAND area of the precentral gyrus (the hand knob) 

which could in principle be “scanned” with a relatively high resolution when moving the focal 

hot spot for the likely most important magnitude of the TMS total field [97],[100],[109] along 

the gyral crown.  

 One significant problem that we encounter is related to the model segmentation 

uncertainty, which may considerably affect the TMS-IP solution at M1 and diminish its value. 

This is because different segmentation models lead to considerably different electric-field 

distributions [117].  

 

IV.B. Materials and Methods 
 The major parameters of the present inverse-problem solution are initially summarized in 

Table 9 and then described in detail below in this section. 166222=768 individual inverse 

problem solutions have been analyzed following the different parameter permutations from Table 

9. 
 

Table 9. Subjects, models, and methods of the TMS inverse-problem solution. 
Type Number Short description 

Subjects 16 Connectome [78] subjects 101309, 110411, 117122, 120111, 

122317, 122620, 124422, 128632, 130013, 131722, 138534, 

149337, 149539, 151627, 160123, 198451 

Brain segmentation 

models (surfaces) 

2 mri2mesh (based on FreeSurfer and FSL [118]) or 

headreco (based on SPM/CAT [119]), both from 

SimNIBS. 

Coil models 2 Small Cool B35 coil (Fig. 1a) and a relatively large MRiB91 

coil (Fig. 1b), both of MagVenture (Fig. 1). 

Target domains 1(l+r) 

 

M1HAND of the left hemisphere, M1HAND of the right 

hemisphere. 

Target points per 

domain 

3+3(l+r) Three target points separated by approx.10 mm on gray 

matter interface within each M1HAND domain (Fig. 2). 
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Initial guess 1 Sulcus-aligned mapping: 90𝑓𝑙𝑒𝑥
o [108], [116] as an initial 

guess 

Field observation 

domains 

2 a. Mid-surface between gray/white matter (1:1, ~Layer 

2/3); 

b. Surface shifted toward white matter (4:1, ~Layer 5) 

Field type 1 Total field magnitude 

Cost function 

(focality metric) 

1 Average absolute deviation (AAD) of the field from target – 

Eq. (1) below 

Somatotopy 

improvement metric 

1 Average relative difference (ARD) in the field between 

neighboring target points – Eq. (2) below 

Search method  Gradient descent in the ℜ6 search space (coil pos.+ orient.) 

Forward solver 1 BEM-FMM Error! Reference source not found.,[1] 

Uncertainty sources 

under study 

2 Coil position/orientation uncertainties, conductivity and 

segmentation model uncertainties 

 

IV.B.1. Subject MRI data 

 MRI T1/T2 data for sixteen Human Connectome Project (HCP) healthy subjects ([78], 

head only) with an initial isotropic voxel resolution of 0.7 mm have been selected [50]. The 

subjects’ IDs are listed in Table 9 above. Those subjects were selected for their sufficiently good 

skull quality, which was observed visually after segmenting the models via the mri2mesh 

option of SimNIBS [50]. 

 

IV.B.2. Segmentation of MRI data 

 Two of the automated segmentation routines available in SimNIBS 3.1 software have 

been used: mri2mesh (based on FreeSurfer and FSL [118]) and headreco (based on 

SPM/CAT [119]), both with default options. By using the two segmentation routines, we aim to 

evaluate the effect of intra-segmentation variability on the computed TMS focality. It is known 

from the literature that segmentation results appear somewhat different in both cases [120].  

These segmentation routines create surface triangular meshes for the six main brain 

compartments under study: skin, skull, cerebrospinal fluid (CSF), gray matter, white matter, and 

ventricles. The cerebellum was combined with the white matter in both cases. Every subject 

dataset was thus segmented twice, which resulted in 32 computational models in total. The 

typical model size is approximately 1 M (million) triangular facets for both segmentation 

pipelines.  

Table 10 quantifies the resulting average distance 𝑑 between CSF shells, gray matter shells, 

and white matter shells for both segmentation routines used in the study. This distance was 

determined as the mean of the shortest distances from every triangle centroid of one shell to all 

triangle centroids of the other shell, whose triangular mesh was previously refined with the ratio 

of 36:1 to achieve good accuracy. These results are only valid for the upper part of the cerebral 

cortex, strictly above the corpus callosum. 
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Table 10. Average distance 𝒅 (in millimeters) between the CSF shells, the gray matter (GM) 
shells, and the white matter (WM) shells for both segmentation routines used in this study. 
Subject number (first row of the table) corresponds to the Connectome list from Table 9.  
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

𝑑𝐶𝑆𝐹 0.9 1.5 0.8 0.7 0.8 0.7 0.7 0.9 0.7 1.0 0.7 0.8 1.1 0.8 0.7 1.2 

𝑑𝐺𝑀 0.4 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 

𝑑𝑊𝑀 0.3 0.3 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.4 0.2 0.3 0.2 0.2 0.3 0.3 

 

IV.B.3. Selection of TMS coils 

 A small Cool B35 TMS coil (Fig. 36, top) and a relatively large elliptical MRiB91 TMS 

coil (Fig. 36, bottom), both of MagVenture, Inc., were converted to CAD models according to 

the manufacturer’s datasheets. By using two different coils with the size ratio of approximately 

two to one, we aim to evaluate the effect of the absolute coil size on the computed TMS focality. 

The coils are approximated by ~100,000-120,000 elementary current dipoles, and the coil fields 

are computed via the FMM [50]. 

 

Fig. 36. Two coil models (Cool B35 and MRiB91) used in this study, presented to scale. The coil dimensions in the 

direction of the coil handle (induced electric field) differ by approximately a factor of 2. Principal rotation angles 

of the coil – pitch 𝜶, roll 𝜷, and yaw 𝝋– are shown in the top figure. 
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IV.B.4. Selection of TMS target domains and target points 

 For every subject, six TMS target points, 𝑻, within the M1HAND areas on the crown of the 

precentral gyrus have been identified on the gray matter interface in global MRI co-ordinates – 

three points per every hemisphere. These points are illustrated in Fig. 37 for subject 120111 by 

blue spheres. The M1HAND areas were defined with the help of a neuroanatomist. Exactly the 

same target points (166=96 in total) have been used for both segmentation types (mri2mesh 

and headreco). Following the relevant experimental setup in [108],[116], the average linear 

distance between the target points was maintained at 10 mm, with the standard deviation of less 

than 1.2 mm. The center of a target cloud approximately coincides with the center of the 

respective M1HAND area found using its posterior convexity as central reference [84]. 

 Simultaneously, Fig. 37 shows the directions of the coil axis (black lines) and the 

directions of the induced electric field (the coil handle, white lines) which will be used in the 

sulcus-aligned motor mapping – the initial guess of an optimization solution. 

 

IV.B.5. Selection of initial coil positions: sulcus-aligned coil mapping 

 The initial coil position is based on a direct projection onto the cortical surface with the 

field direction being perpendicular to the nearest sulcal wall. It is constructed following three 

steps: 

iv. make the coil centerline pass through a given target point 𝑻 defined in global MRI 

coordinates (on the gray matter interface);  

v. make the coil centerline perpendicular to the skin surface at the skin-centerline intersection, 

and position the coil bottom at a distance of 100.25 mm from the skin surface along this 

centerline; 

vi. make the dominant coil field direction (coil handle) approximately perpendicular to the sulcal 

wall (of the central sulcus for M1HAND) nearest to the target point, which is the sulcus-

aligned approach [108],[116],[87]. 

The examples of the initial coil positioning for subject 120111 are shown in Fig. 37. 
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Fig. 37. Six TMS target points 𝑻 within left and right 𝑴𝟏𝑯𝑨𝑵𝑫 areas of subject 120111 (superimposed onto 

mri2mesh gray matter segmentation) as indicated by blues spheres. Directions of the coil axis (black lines) and 

the directions of the induced electric field (coil handle, white lines) are shown used in the sulcus-aligned motor 

mapping. 

 

IV.B.6. Selection of observation domains 

 To be consistent with the previous relevant studies [109],[82] and with the biophysical 

activation mechanisms, the first E-field observation domain was chosen as a mid-surface 

between gray and white matter. The total electric field (field magnitude, ‖𝑬‖) was sampled on 

this surface. Another observation surface was also chosen, shifted closer toward the white matter 

boundary, with the separation ratio of 4:1. While the mid surface approximately corresponds to 

the cortical layer 2/3 (L2/3), the second observation surface approximately corresponds to the 

bottom of cortical layer 5 (L5, cf., for example, [101]).  

 The two observation surfaces were created by finding the shortest vector distances from 

every triangle centroid of the gray matter shell to all triangle centroids of the white matter shell, 

whose triangular mesh was previously refined with the ratio of 36:1 to achieve sufficient 

accuracy. Then, the nodes of the observation surfaces were defined as the centroids of gray 

matter facets moved along the established vector distances, with the appropriate relative 

separation from both boundaries (1:1 or 4:1). 

 

IV.B.7. Cost function (focality metric) of the inverse problem 

 Consider any target point 𝑻 on the gray matter interface of a subject’s head model shown, 

for example, in Fig. 37. The goal of the present TMS-IP is to vary the TMS coil’s position and 

orientation in order to maximize the field on the observation surface close to the target point 𝑻 
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and minimize it everywhere else. In other words, the best coil focality is sought in the vicinity of 

the target point. Other formulations of the inverse problem are indeed possible. 

 The search space is a six-dimensional space (denoted by ℜ6) that includes the three 

Cartesian coordinates of the coil center and the three coil rotation angles (pitch-roll-yaw) shown 

in Fig. 36. The only physical constraint imposed on the search space requires that the nearest 

distance from any part of the coil metal conductor (without the plastic case) to the skin of the 

subject under study is no less than 10 mm. This constraint is enforced by monitoring the 

minimum distance between the scalp and the coil windings, for every coil position and 

orientation. 

 The cost function to be minimized is defined in this study as the mean or average 

absolute deviation (𝐴𝐴𝐷) of the field maxima from the target point 𝑻 in 3D, that is 
 

𝐴𝐴𝐷 = 𝑚𝑒𝑎𝑛(‖𝑻 − 𝑻𝑖‖)  [mm],   𝑖 = 1,… ,𝑁  (27) 
 

with ‖∙‖ being the Euclidian norm, and 𝑻𝑖 being 𝑁 nodes of the observation surface where the 

absolute field value ‖𝑬‖ of interest is in the range of 80-100% of the maximum field value. The 

measure of Eq. 27 does not square the distance from the target, so it is less affected by a few 

extreme observations than the variance and standard deviation. The threshold value of the 80th 

percentile used in this study is a soft estimate; it may be altered if necessary.  

 

IV.B.8. Target differentiation or “somatotopy” metric 

 In addition to the absolute focality, it is useful to know how different the field would 

become at the immediate neighbor target points after the 𝐴𝐴𝐷 has been minimized for one of 

them. Note that in the present case and in the background experimental studies [108],[109],[116] 

the neighboring target points are separated by 10 mm (7-10 mm in [109]). This “somatotopy” 

metric may be defined as an average ratio (𝐴𝑅𝐷) of the electric-field values 𝑬𝑻 and 𝑬𝑻𝒏
 between 

the selected target point 𝑻 and its immediate neighboring target points 𝑻𝑛, respectively. One has 
 

𝐴𝑅𝐷 = 1 −  𝑚𝑒𝑎𝑛 (
‖𝑬𝑻𝒏

‖

‖𝑬𝑻‖
)  [𝑎. 𝑢. ],   𝑛 = 1,2 (28) 

 

 In the present case, the number of immediate neighbors, 𝑛, is equal to two. Eq. (28) 

predicts a zero 𝐴𝑅𝐷 when the fields at the neighbor targets are equal to the field at the selected 

target. On the other hand, it predicts the ARD of one (or 100%) when the fields at the neighbor 

targets are vanishingly small compared to the field at the target in question (maximum 

differentiation).  

 

IV.B.9. Search method; forward solver 

 A simple (perhaps the simplest) gradient descent search method with a sequential 

variable-by-variable update and a relatively small step size was tested. For eight test cases 

considered (target points #1 and #2 were tested for two subjects, for two coil types, and two 

observation surfaces), the gradient descent search method generated nearly the same results as 
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the straight exhaustive search method. In the one situation where this was not the case, the 

exhaustive-search solution appeared unstable and was forced to revert to the previous stable 

solution.  

 Therefore, the gradient descent method in the six-dimensional space of three coil 

coordinates and three rotation angles shown in Fig. 36 was chosen in this study, along with a 

relatively small and fixed step size. The constraint on the minimum coil-scalp distance of 10 mm 

was additionally imposed. The method is based on variations 
 

𝑥 = 𝑥0 ± ∆𝑥, 𝑦 = 𝑦0 ± ∆𝑦, 𝑧 = 𝑧0 ± ∆𝑧, 𝛼 = 𝛼0 ± ∆𝛼, 𝛽 =  𝛽0 ± ∆ 𝛽 , 𝜑 = 𝜑0 ± ∆𝜑   (29) 
 

executed and processed sequentially. First, the coil azimuthal angle 𝜑 = 𝜑0 ± ∆𝜑 in Fig. 36 is 

varied about its initial state 𝜑0, and the angle providing the minimum of the cost function is 

selected. Next, angles 𝛼 = 𝛼0 ± ∆𝛼 and 𝛽 =  𝛽0 ± ∆ 𝛽, which characterize the direction of the 

coil axis, are varied similarly. Finally, we vary the three spatial coordinates of the coil: 𝑥 = 𝑥0 ±

∆𝑥, 𝑦 = 𝑦0 ± ∆𝑦, 𝑧 = 𝑧0 ± ∆𝑧 sequentially and then update the cost function (and coil position) at 

every individual iteration step.  

 The iterative process repeats until the solution saturates (i.e. no longer changes or 

converges). Given sufficiently small step values, no step refinement was required. We found that 

the following values: ∆𝑥 = ∆𝑦 = ∆𝑧 = 2 mm and ∆𝜑 = ∆𝛼 = ∆𝛽 = 0.1 𝑟𝑎𝑑 = 5.7° provide 

convergence in 4-10 iterations. 

 For the forward-problem solution, we use the boundary element fast multipole method 

formulated in terms of induced surface charge density 𝜌(𝒓) residing at the conductivity 

interfaces or BEM-FMM [1],[49],[54]. The method possesses high numerical accuracy, which 

was shown to exceed that of the comparable finite element method of the first order [51]. Most 

recent efforts made it possible to obtain the forward-problem solution in approximately 12-14 

sec for a head model with 0.9 million facets and with 7 brain compartments using a 2.8 GHz 

server. The RAM requirements (6-12 Gbytes) of the forward solver are moderate; the number of 

cores is more critical: 16 or more cores are preferred. Without parallelization of the search 

algorithm, a single-target optimization run (the TMS-IP solution) requires approximately 3-5 

min. 

 

IV.B.10. Testing numerical accuracy of the inverse-problem solution 

 While the BEM-FMM solver itself was tested previously [1],[49],[51], the inverse-problem 

solution was not. To do so, we have rerun 

(i) 96 inverse problems with a different number of iterative passes (12 instead of 6); 

(ii) 8 inverse problems (target points #1 and #2 for two subjects, for two coil types, and two 

observation surfaces) with the straight exhaustive search method; 

(iii)  8 inverse problems with a different mesh resolution (using a 4 barycentric mesh 

refinement).  
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 In every case, the differences in the mean 𝐴𝐴𝐷 values reported below in Table 11 did not 

exceed 1-5%, which was considered satisfactory. In one case (ii), a better but unstable solution 

was found. 

 

IV.B.11. Solution stability vs geometrical uncertainties in coil position; 

stability correction 

 The stability of the inverse problem solution against uncertainties in coil position and 

orientation, as well as model segmentation defects is critical. The geometrical stability has been 

checked for every single TMS-IP solution by introducing a relative average de-focalization, 𝐷𝐹, 

in the following way. Assume that in Eq. 29, index 0 now denotes the final solution with the cost 

function 𝐴𝐴𝐷0. Its variations corresponding to ∆𝑥 = ∆𝑦 = ∆𝑧 = 1.5 mm and ∆𝜑 = ∆𝛼 = ∆𝛽 =

0.1 𝑟𝑎𝑑 = 5.7° are tested. These dimensions approximately correspond to the accuracy of a 

modern robotized TMS navigator or cobot [121] (controlled 2 mm linear and 4 deg angular coil 

placement accuracy). These solution variations give us 12 more 𝐴𝐴𝐷 values. The relative 

average defocalization 𝐷𝐹𝑐𝑜𝑖𝑙 (always greater or equal than one) is found in the form: 
 

𝐷𝐹𝑐𝑜𝑖𝑙 = 𝑚𝑒𝑎𝑛
𝑛=0:12

(𝐴𝐴𝐷𝑛)/𝐴𝐴𝐷0 ≥1 (30) 
 

 When 𝐷𝐹 exceeded 1.25 at the last iteration, the inverse-problem solution was classified 

as unstable. This has been found in approximately only 1-2% of all considered cases. The 

iterative solution was then reverted to the second-to-last iteration and the stability check was 

performed again, etc., until the inequality 𝐷𝐹<1.25 is met. We were able to accomplish this task 

in all cases. 

 

IV.B.12. TMS-IP solution result; measure of success 

 After the TMS-IP solution is obtained, the cost function for the initial coil position, 

𝐴𝐴𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , is compared with the final cost function, 𝐴𝐴𝐷𝑓𝑖𝑛𝑎𝑙. The dimensionless relative 

difference of these (greater than one) or the absolute difference (in mm) is the field focality 

improvement. If the final ratio is substantially greater than one, the usefulness of the TMS-IP 

solution will be proven. 

 This relative difference should further be adjusted to include the effect of defocalization, 

𝐷𝐹, from Eq. 30 or elsewhere to obtain a more realistic estimate. The corrected relative focality 

improvement to within the main order of magnitude can then be formulated in the form 
 

𝐹𝑜𝑐𝑎𝑙𝑖𝑡𝑦 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝐴𝐴𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐷𝐹1 × 𝐷𝐹2 …× 𝐴𝐴𝐷𝑓𝑖𝑛𝑎𝑙

𝐴𝐴𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 (31) 

 

where 𝐷𝐹1,2, … are the individual focality corrections (comprising the average defocalizations of 

𝐴𝐴𝐷𝑓𝑖𝑛𝑎𝑙) due to the different uncertainty mechanisms. In this study, the focality corrections due 

to position/orientation inaccuracy and inaccuracy in tissue conductivities were explicitly 

included. 
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IV.C. Major Results 
 

IV.C.1. Typical optimization results for the mid-surface 

 Fig. 38 shows a typical optimization result b) and d) as compared to the original sulcus-

aligned mapping a) and c) for subject 120111 and for the large MRiB91 coil. The total field at 

the mid-surface is projected on the gray matter interface and then plotted, both in binary and 

continuous form. The 𝐴𝐴𝐷 value (which may perhaps be treated as an “effective radius” of the 

suprathreshold area) moderately decreases from 9.4 mm to 6.7 mm. This is at the expense of 

increasing the subthreshold field spread, mostly in the premotor area. At the same time, the 

initially observed second suprathreshold maximum in the somatosensory area presumably 

becomes subthreshold. 

 Fig. 39 shows a typical optimization result b) and d) as compared to the original sulcus-

aligned mapping a) and c) for the same subject 120111 but for the small CoolB35 coil and a 

different target point. The total field at the mid-surface is projected on the gray matter interface 

and then plotted, both in binary and continuous form. The 𝐴𝐴𝐷 value (the “effective radius” of 

the suprathreshold area) now decreases more significantly as compared to the previous case, 

from 10.2 mm to 5.2 m. This is again at the expense of some increasing the subthreshold field 

spread, in the premotor area and in the M1HAND itself. At the same time, the initially observed 

second suprathreshold maximum in the somatosensory area again becomes subthreshold. 
 

IV.C.2. Summary of focality improvement for the mid-surface 

 Table 11 summarizes the average absolute deviation, 𝐴𝐴𝐷, at the mid-surface before and 

after the inverse-problem solution, along with the defocalization, 𝐷𝐹𝑐𝑜𝑖𝑙, estimates. 

 

Table 11. Focality and its improvement, and the defocalization due to coil 
position/orientation uncertainty for the mid-surface. Every number is an averaged value for 
96 targets points (6 points per subject for 16 subjects). The standard-deviation (STD) values 
are given using a small font. 
 

Segmentation type mri2mesh headreco 

Coil type MRiB91 CoolB35 MRiB91 CoolB35 

𝐴𝐴𝐷 for sulcus-aligned 

mapping, mm 

9.99 

2.8 

7.94 

2.4 

8.81 

2.5 

7.12 

2.1 

𝐴𝐴𝐷 optimized via TMs-

IP, mm 

7.67 

2.2 

5.86 

1.5 

6.27 

2.3 

5.25 

1.7 

Defocalization, 𝐷𝐹𝑐𝑜𝑖𝑙, a.u. 1.02 1.03 1.02 1.02 
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Fig. 38. MRiB91 (large coil) of MagVenture targets the left motor hand area of Connectome subject 120111; TMS 

pulse strength is 9.4e7 A/s. Target point 𝑻𝟐 (𝑴𝟏𝑯𝑨𝑵𝑫) on the gray matter surface is shown by a small magenta 

sphere. a) and c) – 80th percentile and continuous electric field magnitude, respectively, for the sulcus-aligned 

mapping; b) and d) – the same result after the AAD optimization. For plotting, the total electric field at the mid-

surface is projected on the gray matter surface and then plotted. 
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Fig. 39. CoolB35 (small coil) of MagVenture targets the left motor hand area of Connectome subject 120111; 

TMS pulse strength is 9.4e7 A/s. Target point 𝑻𝟑 (𝑴𝟏𝑯𝑨𝑵𝑫) on the gray matter surface is shown by a small 

magenta sphere. a) and c) – 80th Percentile and continuous electric field magnitude, respectively, for the sulcus-

aligned mapping; b) and d) – the same result after the AAD optimization. For plotting, the total electric field at 

the mid-surface is projected on the gray matter interface and then plotted in the binary and continuous form. 

 

 Every number in Table 11 is an averaged value for 96 targets points. The corresponding 

standard-deviation values are given using a small font. The corresponding target-by target 

individual raw data are given in Fig. 40. 
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Fig. 40. Target-by-target 𝑨𝑨𝑫 and stability results for the mid-surface. The target points are numbered 

sequentially. Average data reported in Table 11 are shown by straight lines. 
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IV.C.3. Degree of “somatotopic” resolution improvement for the mid-surface 

 Table 12 summarizes the average relative difference or the somatotopy metric, 𝐴𝑅𝐷, at 

the mid-surface before and after the inverse-problem solution, respectively. The corresponding 

target-by target individual raw data are given in Fig. 41. We emphasize that inverse-problem 

solution is not originally meant to improve the somatotopy; its original cost function is 𝐴𝐴𝐷.  
 

Table 12. Somatotopy percentage and its improvement for the mid-surface. Every number is 
an averaged value for 96 targets points (6 points per subject for 16 subjects). STD values are 
given using a small font. Very similar results have been obtained for the 4:1 observation 
surface. 
 

Segmentation type mri2mesh headreco 

Coil type MRiB91 CoolB35 MRiB91 CoolB35 

𝐴𝑅𝐷 for sulcus-aligned 

mapping, % 

14.2 

14.4 

21.4 

15.5 

13.5 

20.0 

21.3 

21.1 

𝐴𝑅𝐷 for inverse-problem 

solution (TM-IP), % 

19.5 

13.7 

27.3 

14.2 

19.7 

20.4 

27.3 

22.0 

 

 
 

Fig. 41. Target-by-target ARD percentage for the mid-surface. The target points are numbered sequentially. 

Average data reported in Table 12 are shown by straight lines. 
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IV.C.4. Summary of field loss for the mid-surface 

 The inverse-problem solution is characterized by an overall field intensity decrease or 

field loss at the target point. Table 13 summarizes the average ratio of the maximum total field 

magnitudes at the mid-surface before and after the inverse-problem solution, respectively.  

𝐹𝑖𝑒𝑙𝑑 𝐿𝑜𝑠𝑠 = 100% × (𝑚𝑒𝑎𝑛 (
𝑚𝑎𝑥(‖𝑬sulcus aligned‖)

𝑚𝑎𝑥(‖𝑬inverse problem‖
) − 1)   (32) 

 The corresponding target-by target data are given in Fig. 42. 
 

Table 13. Field loss for the mid-surface. Every number is an averaged value for 96 target 
points (6 points per subject for 16 subjects). The standard-deviation values are given using a 
small font. Very similar results have been obtained for the 4:1 observation surface. 
 

Segmentation type mri2mes headreco 

Coil type MRiB91 CoolB35 MRiB91 CoolB35 

Field loss, % 5.4/6.9 6.2/8.7 5.2/8.5 6.6/9.4 

 

 
 

Fig. 42. Target-by-target field loss percentage for the mid-surface. The target points are numbered sequentially. 

Average data are shown by straight lines. 
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IV.C.5. Effect of observation surface position: results for the 4:1 intracortical 

observation surface between gray and white matter 

 The observation surface now approximately corresponds to the bottom of L5 with thick-

tufted pyramidal cells with an early bifurcating apical tuft [101]. Only the results for headreco 

segmentation are shown here. Table 14 summarizes the average absolute deviation, 𝐴𝐴𝐷, at the 

4:1 surface before and after the inverse-problem solution and defocalization, 𝐷𝐹𝑐𝑜𝑖𝑙, estimates. 

Every number is an averaged value for 96 targets points. The relevant target-by target data are 

given in Fig. 43. 
 

Table 14. Focality improvement and uncertainty driven defocalization at the 4:1 observation 
surface. Every number is an average for 96 targets points. STD values are given using a small 
font. 
 

Coil type MRiB91 CoolB35 

𝐴𝐴𝐷 for sulcus-aligned mapping, mm 8.91/2.8 7.22/2.4 

𝐴𝐴𝐷 optimized via TMs-IP, mm 6.37/2.2 5.31/1.5 

Defocalization, 𝐷𝐹𝑐𝑜𝑖𝑙, a.u. 1.02 1.03 

 

 
 

Fig. 43. Target-by-target AAD and stability results for the 4:1 surface. The target points are numbered 

sequentially. Average data reported in Table 14 are shown by straight lines. 
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IV.C.6. Differences in optimized coil positions/orientations for 1:1 and 4:1 

intracortical observation surfaces 

 Table 15 summarizes deviations between the two sets of the TMS-IP results for the final 

coil position/orientation: one for the 1:1 mid-surface and another for the 4:1 surface. Every 

number is an averaged value for 96 targets points. The standard-deviation values are given using 

a small font. Only the results for headreco segmentation are shown here. 
 

Table 15. Deviations between the two sets of the TMS-IP results for the final coil 
position/orientation: the 1:1 mid-surface optimization vs. the 4:1 surface optimization. Every 
number is an average for 96 targets points. Standard-deviation values are given using a small 
font. 
 

Coil position/angle deviation MRiB91 CoolB35 

Average medial-lateral deviation (x), mm 0.0/2.4 -0.1/2.4 

Average posterior-anterior deviation (y), mm 0.0/3.5 -0.1/2.7 

Average superior-inferior deviation (y), mm 0.3/2.7 0.0/2.2 

Deviation in coil handle (E-field) angle, deg 0.4/9.8 0.4/10.3 

 

IV.D. Discussion 

 In the present chapter, we perform, arguably for the first time, a rather comprehensive 

investigation aimed to focus the TMS induced electric field close to a specified target point 

defined on the gray matter interface in the M1HAND area while otherwise minimizing it. The goal 

is to numerically evaluate the usefulness and degree of improvement of the TMS-IP (inverse 

problem) solution relative to the well-known sulcus-aligned mapping. The TMS-IP is an 

extremely interesting and complicated problem, with many important questions yet to be 

answered. 

 Our major finding is that the TMS-IP provides a moderate yet stable and consistent 

average improvement, which implies reducing the size of the total electric field “hot spot” with 

the respect to the 80th percentile and its deviation from the target. This hot spot is determined via 

the average absolute deviation (𝐴𝐴𝐷) of the field maxima from the target point 𝑻 in 3D given by 

Eq. 27 and evaluated over an observation surface. The observation surface is either the 1:1 mid-

surface between the gray and white matter or its 4:1 counterpart located significantly closer to 

the white matter interface, or the white matter interface itself. 

 Below, we quantify this result with respect to different geometrical parameter 

configurations and other conditions while paying special attention to coil angles, attempt to link 

our modeling results to the recent experimental data [109],[108], and finally discuss the 

limitations of the study. 
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IV.D.1. TMS-IP solution moderately improves 𝑨𝑨𝑫–based TMS focality by 

approximately 25% 

 Based in particular on Tables 11 and 14, we observe that the TMS-IP solution provides 

only a moderate improvement of the TMS focality for M1HAND at both the mid-surface (~L2/3) 

and the 4:1 (~L5) surface as compared to the sulcus-aligned motor mapping (CURVED − 90𝑓𝑙𝑒𝑥
o  

[108],[116]). This improvement – the percentage of the 𝐴𝐴𝐷 reduction as compared to the 

original 𝐴𝐴𝐷 of the sulcus-aligned mapping – is slightly greater than 25% on average. 

Table 16 summarizes the percentage of the 𝐴𝐴𝐷 reduction as compared to the original 𝐴𝐴𝐷 

of the sulcus-aligned mapping, along with its standard deviation. These results are consistent. 

There are some secondary minor variations due different coil types, segmentation types, and 

observation surface types.  
 

Table 16. Percentage of the 𝑨𝑨𝑫 reduction as compared to the original 𝑨𝑨𝑫 of the sulcus-
aligned mapping. Every number is an averaged value for 96 targets points (6 points per 
subject for 16 subjects). The standard-deviation values are given using a small font. 
 

Segmentation type mri2mes headreco 

Coil type MRiB91 CoolB35 MRiB91 CoolB35 

𝐴𝐴𝐷 reduction, L2/3 mid-

surface, % 

23 

14 

26 

15 

29 

17 

26 

16 

𝐴𝐴𝐷 reduction, 4:1 L5 

surface, % 

24 

14 

27 

16 

29 

17 

26 

15 

 

IV.D.2. TMS-IP solution simultaneously and consistently improves TMS 

somatotopic resolution 

 It is observed that the 𝐴𝐴𝐷 optimization simultaneously and consistently improves the 

𝐴𝑅𝐷 given by Eq. 28 – i.e., enables a potentially better M1HAND somatotopy-based scanning. 

Although this improvement is quite modest in terms of the absolute 𝐴𝑅𝐷 numbers as reported in 

Table 12, the relative 𝐴𝑅𝐷 increase might be higher. 

 

IV.D.3. TMS-IP solution is stable with regard to small variations of coil 

position and orientation 

 Results of Tables 11 and 14 predict exemplary solution stability at both the 1:1 mid-

surface and at the 4:1 observation surface: the average de-focalization (increase in the 𝐴𝐴𝐷 size) 

does not exceed 2-3% when coil is moved/rotated by ±1.5 mm and by ±0.1 rad about the 

optimized position. These dimensions approximately correspond to the accuracy of a modern 

robotized TMS navigator or cobot [121] (controlled 2 mm linear and 4 deg angular coil 

placement accuracy). 
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IV.D.4. TMS-IP solution does not change the electric-field direction (coil 

handle direction) significantly and leads to a moderate field loss 

 It is well known that the direction of the induced electric field has a large influence on 

TMS performance [91],[108]. Furthermore, TMS applied to M1HAND excites corticospinal 

neurons most optimally, if the TMS pulse induces an electrical current that flows perpendicular 

to the central sulcus in a posterior to anterior direction [91]. Table 17 shows the deviation of the 

coil handle angle and its STD between the initial the sulcus-aligned motor mapping (CURVED −

90𝑓𝑙𝑒𝑥
o  [116]) and the final position, respectively. The mean deviation is rather modest while the 

maximum deviation never exceeds 45°. All tested deviations of the coil handle angle average to 

approximately 17°. 

 

Table 17. Deviation of the coil handle angle and its STD between the initial the sulcus-aligned 
motor mapping (𝐂𝐔𝐑𝐕𝐄𝐃 − 𝟗𝟎𝒇𝒍𝒆𝒙

𝐨  [116]) and the final position, respectively. Every number 

is an averaged value for 96 targets points (6 points per subject for 16 subjects). The standard-
deviation values are given using a small font. 
 

Segmentation type mri2mesh headreco 

Coil type MRiB91 CoolB35 MRiB91 CoolB35 

Mean angle deviation, deg 16 

11 

17 

12 

18 

12 

17 

11 

 

 A moderate field loss of approximately 6% on average (Table 13) is simultaneously 

observed for all tested configurations after the application of the TMS-IP solution as compared to 

the sulcus-aligned mapping.  
 

IV.D.5. TMS-IP solution slightly lifts the coil up to provide space for a small 

tilt, moves it slightly anterior, and does change the medial-to-lateral position 

on average. Strictly tangential TMS-IP solution might yield comparable 

results 

 The following numbers characterize the average coil movement with respect to the initial 

sulcus-aligned projection approach given that the field observation surface is the mid-surface. 

The mean value of the relative vertical coil movement is +2 mm with the standard deviation of 3 

mm. This means that the coil is slightly lifted up to provide some space for a more adequate tilt. 

For all considered cases, the coil is moved slightly anterior on average, with the mean value of 

+1.5 mm and with the standard deviation of 4 mm. The medial-to-lateral movement does not 

have such an offset; it is characterized by an average value close to 0 mm and by the standard 

deviation of 3 mm. The total coil movement is 6 mm on average with a 4 mm standard deviation 

for both intracortical observation surfaces. 
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 A practically interesting question is: what happens if we reduce the search space to three 

parameters (i.e., restrict ourselves to the only tangential coil movements and rotations)? The 

relevant simulations have been performed for the headreco segmentation and for the mid-

surface as the field observation surface. In this case, the improvement reported in Table 16 above 

is reduced from 29% to 20% for the MRiB91 coil and from 26% to 20% for the CoolB35 coil, 

respectively. In other words, the tangential TMS-IP might be a simpler viable alternative to the 

more general solution. 

 

IV.D.6. Focality improvement is reduced from 25% to approximately 20% 

due to coil position uncertainty and tissue properties uncertainty  

 The focality improvement discussed in Section IV.D.1 further deteriorates due to 

uncertainties in the coil position and uncertainties in the tissue properties. According to Tables 

11 and 14, the average defocalization factor, 𝐷𝐹𝑐𝑜𝑖𝑙, in the studied range of position variations, is 

limited by the value 𝐷𝐹𝑐𝑜𝑖𝑙 = 1.03. As to the conductivity uncertainties, we will employ here the 

results of previous very comprehensive relevant studies reported in [82] and [109], respectively. 

There and for TMS, the mean of the electric field on the gyral crown is characterized by a 

relatively small error of generally less than 5% for a wide range of the electrical conductivities 

assigned to the different tissue types [82]. We therefore assume the corresponding defocalization 

factor in the form: 𝐷𝐹𝑐𝑜𝑛𝑑 = 1.05. According to Eq. 31, the corrected focality improvement to 

within the main order of magnitude could then be estimated as 
 

𝐹𝑜𝑐𝑎𝑙𝑖𝑡𝑦 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝐴𝐴𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐷𝐹𝑐𝑜𝑖𝑙 × 𝐷𝐹𝑐𝑜𝑛𝑑 × 𝐴𝐴𝐷𝑓𝑖𝑛𝑎𝑙

𝐴𝐴𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 (33) 

 

 Plugging in the number computed previously gives us an average value of the corrected 

focality improvement of slightly higher than 20%, for all cases considered in this study. 

 

IV.D.7. Similar overall focality improvement of the total field is observed for 

the white matter surface 

 As shown in Tables 11, 14, and 15, the TMS-IP solution is weakly affected by the type of 

the intracortical field observation surface: either the 1:1 surface (the mid-surface between the ray 

and white matter) or the 4:1 surface. 

 An interesting question is: what will happen to the TM-IP solution when the field 

observation surface is the white matter interface itself? In this case, the normal field is 

discontinuous, so we need to distinguish between the two states: either just outside or just inside.  

 In short, the results for both sides of the conductivity interface look similar but not 

identical when the total field is concerned. The average TMS-IP based 𝐴𝐴𝐷 improvement might 

be somewhat higher. This is because the fields close to the white matter interface are less 

homogeneous due to the localized surface charges at this interface. The stability against coil 
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position/orientation error is approximately the same (only slightly lower), but the total field loss 

increases. 

 As an example, Fig. 44 shows a TMS-IP optimization example (the volumetric total 

electric field is shown) for one target point for Connectome subject 101309 when the 𝐴𝐴𝐷 just 

inside the white matter interface is maximized in the vicinity of the target point. The mri2mesh 

segmentation has been used in this case. 

 When the normal field (quite significant at the white matter interface) is concerned, the 

results become very different. The average TMS-IP based 𝐴𝐴𝐷 improvement becomes much 

higher, and the absolute 𝐴𝐴𝐷 values become lower. This is because the fields close to the white 

matter interface are less homogeneous due to the localized surface charges at this interface. 

Simultaneously, the stability against coil position/orientation error decreases and the field loss 

increases.  
 

 

Fig. 44. Volumetric cortical electric fields (total field magnitude, sagittal plane) before and after the TMS-IP 

solution when the field observation surface is exactly the white matter interface (just inside) and using the Cool 

B35 coil. TMS pulse strength is 9.4e7 A/s. a) – Initial (dark copper) and final (light copper) coil positions. b), c) – 

Fields before and after the TMS-IP solution. The target point on the gray matter interface is shown by a magenta 

circle; the coil axis is marked red. Color scale expand from 0 to the 75th percentile of the maximum total field 

within the CSF shell. The fields within the scalp and the skull are not plotted for clarity. Numerical field resolution 

is 100 µm. 
 

IV.D.8. TMS-IP solution strongly depends on the segmentation accuracy 

 To demonstrate this fact, we consider two extreme cases. In the first one, we perform 

optimization with the headreco segmentation but assume that the ground truth is the 

mri2mesh segmentation. We therefore compute the final 𝐴𝐴𝐷 for the mri2mesh model but 

based on the TMS-IP solution for headreco. The results for the two coil types are shown in 

Fig. 45a,c. In the second case, we perform optimization with the mri2mesh segmentation but 

assume that the ground truth is the headreco segmentation. We therefore compute the final 

𝐴𝐴𝐷 for the headreco model but based on the TMS-IP solution for mri2mesh. The results 

for the two coil types are shown in Fig. 45b,d.  
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 In Fig. 45, the results are somewhat different for the initial 𝐴𝐴𝐷 (by 1.5-3%) since the 

normal vectors to the skin surface are slightly different for both segmentations. However, the 

results are quite significantly different for the final 𝐴𝐴𝐷: a very minor 𝐴𝐴𝐷 improvement is 

observed in Fig. 44 in general. This is in stark contrast with Fig. 40 and Fig. 43, respectively. 

 To explain this fact, we overlapped both segmentations onto the T1 data for several 

subjects and observed the differences. As an example, Fig. 46 shows both segmentation types for 

Connectome subject 120111 targeting the motor hand area, M1HAND, of the left hemisphere and 

superimposed onto the original T1 images. 
 

 

Fig. 45. An extreme case illustrating the effect of segmentation uncertainties on TMS-IP solutions. There is 

almost no improvement of 𝑨𝑨𝑫 when mri2mesh is the ground truth but optimization is done for headreco 

and a minor improvement when headreco is the ground truth but optimization is done for mri2mesh. 

Average data are shown by straight lines. 
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Fig. 46. Segmentation data for mri2mesh (thick curves) and headreco (thin curves) superimposed onto T1 

data for Connectome subject 120111 in three planes when targeting the motor hand area, 𝑴𝟏𝑯𝑨𝑵𝑫. The target 

point is shown by a magenta circle. 
 

 In Fig. 46, segmentation data for mri2mesh are shown by thick curves; segmentation 

data for headreco are shown by thin curves. While the average deviation between the two 

models is still modest (cf., e.g., Table 10), the white matter interfaces in Fig. 46 deviate quite 

significantly, specifically in the M1HAND and also in the entire motor cortex area. This 

difference, also known from a number of previous studies [109], [117],[122],[123], appears to 

have a large influence on the TMS-IP performance as observed in Fig. 45. 
 

IV.D.9. Link to recent experimental data [108],[109]  

 In Ref. [109], the hotspots (the anticipated target points) of a high congruence factor 

between the applied electric field and the motor evoked potential (MEP) have been initially 

determined for three subjects while recording MEPs over the first dorsal interosseous muscle 

belly and one at the proximal interphalangeal joint. A CB60 coil of MagVenture was used in that 

experiment, which is similar in size to the first coil of the present study (MRiB91).  

 Next, using an exhaustive search with ~5,000 search points, the coil positions and 

orientations were found that maximize the electric-field magnitude in the hotspots or the target 

points in M1HAND. The subsequently measured (over 16 experiments with the similar scan 

spacing of 7-10 mm) motor thresholds were always lowest for the predicted optimal positions 

and orientations. This study specifically mentions that these optimal coil orientations were 

similar to the commonly used 45° angle towards the fissura longitudinalis (cf. [109], Fig. 46) or 

CURVED − 45𝑓𝑖𝑥
o  in terms of Ref. [108].  

 While we were unable to perform our own relevant experiments, we could establish 

quantitative correlations with regard to the optimal angular coil positioning. The sulcus-aligned 

mapping (the initial guess shown for one head model in Fig. 37) gave us the (absolute) angle 

towards the fissura longitudinalis of 29° on average for 16 subjects and 96 target points (cf. Fig. 

37). The TMS-IP solution increased this average value to 36° (headreco segmentation) or to 

35° (mri2mesh segmentation) for both coil types, with a 19° standard deviation. This means a 
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closer agreement with the observation stated above for the minimum motor threshold given the 

limited angular experimental resolution. 

 On the other hand, Ref. [108] reports a similar experimental somatotopic resolution for 

the CURVED − 90𝑓𝑙𝑒𝑥
o  and CURVED − 45𝑓𝑖𝑥

o  approaches, respectively, when abductor digiti 

minimi and first dorsal interosseus muscles are concerned. Still, the cross-correlation was the 

lowest for the CURVED − 90𝑓𝑙𝑒𝑥
o  approach [108]. Our average angular TMS-IP data are almost 

in between the two approaches, but with a small yet visible bias toward the CURVED − 90𝑓𝑙𝑒𝑥
o  

approach too. 

One must emphasize that only the average angular directions for the coil handle are reported 

here. Certain TMS-IP solutions may significantly deviate from them as shown in Figs. 38 and 39, 

respectively. 
 

IV.D.10. Study limitations 

 The M1HAND area has been the main focus of his study. Along with this, we have also 

collected and processed some less extensive results related to the dorsolateral left prefrontal 

cortex (DLPFC), which is pathophysiologically linked to depression [17],[124],[125],[126]. A 

single observation point was chosen at the middle frontal gyrus of DLPFC and TMS-IP has been 

solved for all 16 subjects. Generally, these results look similar to the results reported in this 

study, but they will need additional verification and extensions to multiple observation points. 

 With respect to the numerical modeling, the major drawback of the BEM-FMM approach 

used in this study is an inability to straightforwardly include into consideration the white matter 

anisotropy, which may be quite significant in the subcortical white matter [123] and which may 

have a substantial effect of the E-field distribution [82]. On the other hand, this approach is free 

of volumetric field averaging throughout the gray matter volume. The method requires a 

relatively small amount of RAM (6-12 Gbytes for the present head models), but it runs best on 

multicore machines due to inherent FMM parallelization. 

 Powerful mathematical tools have recently been developed and implemented [127],[128] 

for fast computations of the TMS-IP solution via the auxiliary dipole method (ADM) or the 

magnetic stimulation profile approach, for determining the optimum coil position and 

orientation. The goal of the present study is not to compete with these tools, but is rather to 

evaluate the usefulness and degree of improvement of the TMS-IP solution itself. We attempted 

to answer the question by how much the TMS-IP solution can improve the focality of one 

common projection approach – the CURVED − 90𝑓𝑙𝑒𝑥
o  mapping – and by how much it can help 

us to differentiate between the neighbor targets. For this purpose, we employ a much slower but 

more general traditional approach. This approach might be more flexible for studying multiple 

geometrical model variations and arbitrary field observation surfaces, arbitrary coil positions 

(slightly) different from those strictly tangential to the scalp, and it does not require extra mesh 

conditioning.  
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 From the practical point of view, the solution of a particular TMS-IP will likely be best 

accomplished by using specialized highly efficient algorithms such as [127],[128] instead of the 

straightforward yet slow approach of this study.  
 

IV.E. Conclusions 
 The ideal TMS inverse-problem solution studied in this chapter predicts a stable focality 

improvement of approximately 25% on average in the M1HAND area for all considered subjects, 

for two coil distinct coil types, and for both intracortical observation surfaces under study. The 

solution is using the average absolute deviation, 𝐴𝐴𝐷, from target given by Eq. 27 as the cost 

function. The predicted improvement is relative to the projection-based perpendicular-to-sulcus 

initial coil placement or the sulcus-aligned mapping (CURVED − 90𝑓𝑙𝑒𝑥
o  [108],[116]). The 

inverse-problem solution simultaneously and consistently improves the somatotopic TMS 

resolution, although this improvement is also moderate. Last but not least, the TMS-IP solution 

does not significantly change the electric-field direction (coil handle direction) and leads to a 

moderate field loss of approximately 6% on average. 

 When the coil position/orientation and conductivity uncertainties are included into 

consideration, the improvement deteriorates. Given the applied level of uncertainties, the focality 

improvement is reduced to approximately 20% for the total electric field with its maximum 

located mostly close to the gyral crown. A similar final estimate is obtained for white matter as 

an observation surface. The present results will change when the levels of uncertainties change. 

The results could be expanded by considering more representative cases and by performing a 

more rigorous uncertainty power analysis [129]. 

 The TMS-IP solution strongly depends on the segmentation accuracy. For the extreme 

case when the solution for one realistic segmentation model (mri2mesh or headreco) is used 

in another model and vice versa, the TMS-IP solution generates minor, if any, improvement.  

The mention of commercial products, their sources, or their use in connection with material 

reported herein is not to be construed as either an actual or implied endorsement of such products 

by the Department of Health and Human Services. 
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V. TES-Focused BEM-FMM Toolkit 
This chapter has been mainly excerpted from [2]  (under review at the time of writing). 

 

V.A. Introduction 
 The finite element method (FEM) is widely and successfully used to solve the 

corresponding bioelectric field problem for different electrode configurations using anatomical 

isotropic and anisotropic head models. The leading open-source TES FEM software is SimNIBS 

[46] along with ROAST [130], but commercial packages such as Ansys Maxwell and COMSOL 

are also frequently used [131]. In the past, DBS problems have been subject to extensive FEM 

investigations [41],[42],[132]-[134]. 

 In this chapter, we formulate, validate, and demonstrate possible applications of an 

alternative numerical approach to model electric brain stimulation. This is the boundary element 

fast multipole method or BEM-FMM, which is formulated in terms of the induced surface charge 

density. The approach possesses numerically unconstrained field resolution close to fine 

anatomical structures or miniature electrodes. This resolution is not limited by the size of the 

underlying tetrahedral mesh. Therefore, it might potentially be capable of modeling multiscale 

problems with different mesh resolutions at macroscopic (major brain compartments) and 

microscopic (submillimeter and finer) scales, respectively. In the past, the BEM-FMM approach 

was formulated for transcranial magnetic stimulation (TMS) [1],[49],[50] and 

electroencephalography/magnetoencephalography (EEG/MEG) recording problems [135]. 

Models of voltage and current electrodes require modifications and extensions of the algorithm.  

 The chapter is organized as follows. Section V.B. describes the implementations of 

voltage, shunt, current, and floating electrodes, either surface or embedded. Section V.C. 

presents several validation examples. Section V.D. discusses two application examples pertinent 

to DBS and ICMS, respectively. Section V.E. discusses the results, and Section V.F. concludes 

the study. 

 

V.B. TES-Specific Implementation Details 
 Fig. 47 schematically illustrates the electrode configurations under study. They may 

include (i) imprinted TES surface electrodes, (ii) embedded ICMS electrode arrays of different 

configurations (planar or laminar), and (iii) embedded DBS electrodes. 
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Fig. 47. Different electrode types modeled by BEM-FMM: (i) imprinted TES surface electrodes, (ii) embedded 

ICMS electrode arrays of (planar or laminar), and (iii) embedded DBS electrodes. 

 

 As compared to a simpler excitation by a prescribed external volumetric field (e.g., a 

primary coil field of TMS [1],[49],[50] or a primary field of internal EEG/MEG dipole 

sources[135]), the integral equation of the BEM-FMM algorithm has to be modified for voltage, 

shunt, current, and/or floating electrodes with reference (Fig. 47). The voltage electrodes may 

refer to TES surface electrodes, ICMS embedded electrode arrays, and DBS embedded 

electrodes. These electrodes may be normalized to generate a constant total current. In that case, 

they are often called current electrodes (or shunt electrodes [136][136]). True current electrodes 

(with a strictly uniform current distribution over the entire electrode surface and a non-uniform 

voltage distribution) may approximate contact sponges [137] and are useful as a tool for 

reciprocity analyses [138],[139]. 
 

V.B.1. Integral equation for tissue conductivity interfaces 

 Induced electric charges with a surface charge density 𝜌(𝒓) will reside on every 

macroscopic or microscopic tissue conductivity interface 𝑆 including the electrode surfaces 𝑆𝑒. 

These induced surface charges will alter the field created by the electrodes in vacuum or in a 

background homogeneous medium to fulfill the law of current conservation across the 

boundaries. The electric field generated by all surface charges anywhere in space except the 

charged interfaces themselves is governed by Coulomb’s law, 
 

𝑬(𝒓) =
1

4𝜋휀0
∫

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜌(𝒓′)𝑑𝒓′

𝑆

,    𝒓 ∉ 𝑆 (1) 

 

where 휀0 is dielectric permittivity of vacuum. The electric field in Eq. 1 is discontinuous at the 

interfaces. When approaching a charged interface 𝑆 with a certain normal vector 𝒏 and assigning 
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index in to the medium from which 𝒏 is pointing and index out to the medium toward which 𝒏 is 

pointing, the electric field close to the boundary is given by two limiting values [140] 
 

𝑬𝑖𝑛/𝑜𝑢𝑡(𝒓) =
1

4𝜋휀0
∫

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜌(𝒓′)𝑑𝒓′ ∓ 𝒏(𝒓)

𝜌(𝒓)

2휀0𝑆

, 𝒓 ∈ 𝑆 (2) 

 

where 𝑬𝑖𝑛/𝑜𝑢𝑡(𝒓) ≡ lim  
∆→0

𝑬(𝒓 ∓ ∆𝒏(𝒓)) and 𝒓 ∓ ∆𝒏(𝒓) is not on the surface. The second term on 

the right-hand side of Eq. 2 is a continuous contribution of all other surface charges while the last 

term is a discontinuous contribution of a local planar sheet of charge located exactly at 𝒓 

resulting in a jump of the normal electric field by 
𝜌(𝒓)

𝜀0
. Another “discrete” numerical 

interpretation is that the integral on the right-hand side of Eq. 2 is the continuous contribution of 

surface charges of all facets except the facet located exactly at 𝒓. The last term on its right-hand 

side is a discontinuous contribution of the facet located exactly at 𝒓. This facet is locally a planar 

sheet of charge when 𝒓′ → 𝒓. 

 An integral equation for 𝜌(𝒓), which is the Fredholm equation of the second kind, is 

obtained after substitution of Eq. 2 into the quasistatic boundary condition which enforces the 

continuity of the normal component of the electric current across the interface. That is,  
 

𝜎𝑖𝑛𝒏(𝒓) ∙ 𝑬𝑖𝑛(𝒓) = 𝜎𝑜𝑢𝑡𝒏(𝒓) ∙ 𝑬𝑜𝑢𝑡(𝒓), 𝒓 ∈ 𝑆\𝑆𝑒 (3b) 
 

Here, 𝜎𝑖𝑛, 𝜎𝑜𝑢𝑡 are the conductivities just inside and outside with respect to the direction of the 

normal vector. After combining the similar terms, the result has the form of the homogeneous 

Fredholm equation of the second kind, 
 

𝜌(𝒓)

2
− 𝐾(𝒓)𝒏(𝒓) ∙ ∫

1

4𝜋

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜌(𝒓′)𝑑𝒓′

𝑆

= 0, 𝒓 ∈ 𝑆\𝑆𝑒 (4b) 

 

where 𝐾 is the electric conductivity contrast 𝐾 =
𝜎𝑖𝑛−𝜎𝑜𝑢𝑡

𝜎𝑖𝑛+𝜎𝑜𝑢𝑡
. Here, the integration surface 𝑆 

contains all charged interfaces including those of the electrodes. For a harmonic excitation with 

angular frequency 𝜔 in a medium with permittivity 휀, the contrast value in Eq. 4b becomes 

complex in the form 𝜎 → 𝜎 + 𝑗𝜔휀. It is noted that homogeneous Eq. 4b is applicable to the tissue 

interfaces but not to the electrode surfaces, which have to be treated separately. 
 

V.B.2. Integral equation for voltage electrodes (or shunt electrodes 

normalized by constant current) 

 For a voltage electrode, we assume that a certain voltage 𝑉 is impressed at a certain 

electrode surface 𝑆𝑒. The voltage may be different for each electrode. The electrode surfaces may 

be considered as an imprinted part of other closed surfaces, for example a part of the insulated 

lead surface for DBS electrodes. At the electrode surface(s), the electric potential generated by 
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all surface charges must be equal to the prescribed voltage(s). The Fredholm integral equation of 

the first kind is therefore imposed instead of Eq. 4b. That is, 
 

 
1

4𝜋휀0
∫

𝜌(𝒓′)

|𝒓 − 𝒓′|𝑆

𝑑𝒓′ = 𝑉, 𝒓 ∈ 𝑆𝑒  (34) 

 

V.B.3. Integral equation for current electrodes with uniform inflowing 

current density 

 True current electrodes inject a constant current density 𝑗𝒆 into the volume conductor. 

Numerically, it is convenient to point the normal vector 𝒏(𝒓) from a contact tissue (in) toward the 

electrode material (out). The current continuity across the electrode surface requires that  
 

𝑗𝒆 = −𝜎𝑖𝑛𝒏(𝒓) ∙ 𝑬𝑖𝑛, 𝒓 ∈ 𝑆𝑒 (35) 
 

given that a positive current flows from the electrode. Here, 𝜎𝑖𝑛 is the conductivity of the tissue in 

contact and 𝑬𝑖𝑛 is the total electric field close to the contact. Substituting Eq. 35 into Eq. 2, one 

obtains 
 

𝜌(𝒓)

2
− 𝒏(𝒓) ∙ ∫

1

4𝜋

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜌(𝒓′)𝑑𝒓′ =

휀0𝑗𝒆
𝜎𝑖𝑛𝑆

     𝒓 ∈ 𝑆𝑒 (36) 

 

Eq. (36) has the same form as Eq. (4b) with 𝐾 = 1 and, additionally, with the extra source term 

describing current injection. 
 

V.B.4. Integral equation for floating metal electrodes 

 For floating metal electrodes (constant but unknown voltage over the electrode surface), 

Eq. (4b) can still be used, but with 𝐾 = −1 which physically corresponds to a very high metal 

(copper, platinum iridium, etc.) conductivity as compared to the conductivity of the surrounding 

tissues. 
 

V.B.5. Current conservation law (Kirchhoff’s current law) on electrodes 

 The current conservation law is essential for voltage electrodes. It integrates the resulting 

normal current density, 𝜎𝑖𝑛𝒏(𝒓) ∙ 𝑬𝑖𝑛, over all 𝑁𝑒 electrode surfaces and requires the net result to 

be zero, i.e. 
 

∑ ∫ 𝜎𝑖𝑛 {
𝜌(𝒓)

2
− 𝒏(𝒓) ∙ ∫

1

4𝜋

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜌(𝒓′)𝑑𝒓′

𝑆

}
𝑆𝑒

𝑑𝒓

𝑁𝑒

𝑛=1

= 0 (37) 

 

Scalar Eq. 38 will be enforced in a “weak” form, i.e. by additively combining it with Eqs. 4b, 34, 

and/or 36.  
 

V.B.6. Discretization and preconditioning 

 The surface charge density is expanded into pulse bases (zeroth-order basis functions) on 
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triangular facets 𝑡𝑚 with area 𝐴𝑚. The standard Galerkin method is then applied. When only 

voltage (and/or shunt/floating) electrodes are used, Eq. 4b and Eq. 34 are solved simultaneously, 

which gives us a system of 𝑀 + 𝑁 linear equations for unknown expansion coefficients 𝑐𝑚. 

Here, 𝑀 is the number of electrode facets and 𝑁 is the number of all other facets. In a matrix 

formulation, one introduces the corresponding matrices ℝ and ℤ, and produces the system of 

equations in the following form: 
 

     (38) 

Coupled Eqs. 38 are solved iteratively. The iterative solution does not require the explicit matrix 

formulation; only the vector-matrix product in 38 needs to be formed. A proper preconditioner 

must be used for the first 𝑀 electrode equations. Otherwise, an iterative solution will not 

converge. The simple diagonal preconditioner ℳ is as follows:  
 

ℳ𝑚 = [
1

4𝜋휀0
∬

1

|𝒓 − 𝒓′|
𝑑𝒓′𝑑𝒓

𝐴𝑚𝐴𝑚

] ,       𝑚 = 1:𝑀 (39a) 

 

The full left electrode preconditioner, ℳ, for the first 𝑀 electrode equations, reads: 
 

ℳ𝑚𝑛 = [
1

4𝜋휀0
∬

1

|𝒓 − 𝒓′|
𝑑𝒓′𝑑𝒓

𝐴𝑚𝐴𝑛

] ,      𝑚, 𝑛 = 1:𝑀 (39b) 

 

The preconditioner dramatically improves performance. Facets of different electrodes are put up 

front of the combined mesh, and the matrix on the right-hand side of Eq. 39b is computed for all 

electrodes at once. Matrix ℳ is easily and explicitly invertible; it solves the Fredholm integral 

equation(s) of the first kind (Eq. 38) exactly if only the electrodes were present. 

 The double potential integrals present in Eqs. 38 and 39 require care. Uniformly charged 

facets, which are spatially close to one another, cannot be accurately approximated by point 

charges located at their centers and cannot therefore be treated with the FMM. The 

corresponding facet-to-facet nearfield potential integrals in Eqs. 38 and 39 are instead directly 

calculated and stored in a sparse near-field BEM matrix using analytical integration for the inner 

integral and a Gaussian quadrature of 10th degree of accuracy for the outer integrals at the 

[
 
 
 
 ℝ𝑚𝑛 = ∬

1

4𝜋휀0

1

|𝒓 − 𝒓′|
𝑑𝒓′𝑑𝒓

𝐴𝑚𝐴𝑛

𝑚 = 1:𝑀, 𝑛 = 1:𝑀 + 𝑁 ]
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[∫ 𝑉𝑑𝒓
𝐴𝑚

] 

𝑚 = 1:𝑀 

[
 
 
 
 ℤ𝑚𝑛 =

1

2
𝛿𝑚𝑛 − 

𝐾

𝐴𝑚
𝒏𝑚 ∙ ∬

1

4𝜋

(𝒓 − 𝒓′)

|𝒓 − 𝒓′|3
𝑑𝒓′𝑑𝒓

𝐴𝑚𝐴𝑛

𝑚 = 𝑀 + 1:𝑀 + 𝑁, 𝑛 = 1:𝑀 + 𝑁 ]
 
 
 
 

  

[
 
 
 
 
0
0
0
…
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preprocessing stage. The number of geometrical (based on Euclidian distance) neighbors in Eqs. 

38 may vary, but a relatively reasonable number (4-16 for TES/DBS/ICMS problems, specified 

below in every case) was found to be adequate. It must be noted that the spatially close facets 

may belong to different tissues or implanted devices when tightly-coupled structures (e.g., brain 

membranes) are considered. 
 

V.B.8. Fast multipole method. Iterative solution 

 The general-purpose fast multipole method (FMM) [64] and its most recent software 

implementation [66] are applied to compute the matrix-vector product in Eqs. 38. Applying the 

FMM is equivalent using the center-point approximation at face centers 𝒓𝑚, yielding in Eqs. 38 
 

∫ ∫
𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝑑𝒓𝑑𝒓′

𝐴𝑛𝐴𝑚

≈ 𝐴𝑚𝐴𝑛

𝒓𝑚 − 𝒓𝑛

|𝒓𝑚 − 𝒓𝑛|3
, ∫ ∫

1

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′

𝐴𝑛𝐴𝑚

≈ 𝐴𝑚𝐴𝑛

1

|𝒓𝑚 − 𝒓𝑛|
   

(40) 

 

In terms of an iterative solution, the problem is thus equivalent to finding the electric field and 

the potential at target points 𝒓𝑚 generated by the point charges located at source points 𝒓𝑛. The 

accuracy of the corresponding FMM (the number of levels) is unlimited; it is conventionally 

estimated for arbitrary volumetric charge distributions. However, for surface-based charge 

distributions, a better relative accuracy is observed than for the arbitrary volumetric distributions. 

Therefore, the relative FMM precision levels of 10−2 to 10−3 were found to be adequate when 

compared to the most accurate numerical solution. 

 In the iterative matrix-free solution, Eqs. 38 are solved simultaneously and the FMM is 

applied at every iteration step for the matrix-vector computation. Then, the inaccurate near-field 

contributions due to Eq. 40 are subtracted, and accurate double potential integrals are used 

instead as explained in the previous section. 

 The generalized minimum residual method (GMRES) [141] and its flexible version [142] 

used in this study were found to converge better than the bi-conjugate gradients method and its 

variations. Since the Fredholm equation of the second kind is essentially solved, with a strong 

diagonal dominance, the relative residual error approaches the relative solution error. 

 

V.C. Results – Validation Examples 
 In the following, we investigated the performance and accuracy of the BEM-FMM for 

different validation examples and compared the solutions against analytical and numerical 

reference solutions. The validation examples are available online with appropriate 

documentation [55]. All codes are written in MATLAB and do not require extra dependencies or 

downloads.  
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V.C.1. Comparison with analytical solution 

 The problem geometry is shown in Fig. 48a. It includes a sandwiched brick with sixteen 

1 mm thick layers having interleaving static conductivities of 0.5 S/m and 0.2 S/m, respectively. 

The brick has the dimensions of 303016 mm. The media are isotropic, with the same values of 

the dielectric constant. Two electrodes ( 10 V, chosen as infinitely thin plates for the BEM-

FMM solution) cover the top and the bottom of the brick. The goal is to obtain the BEM-FMM 

numerical solution and compare it with the analytical reference solution. The analytical solution 

inside (but not outside) the brick implies one-dimensional z-directed current density and electric 

field distributions, and a linear electric potential distribution which satisfy all the necessary 

boundary conditions and Laplace equation. The electric current density is constant inside the 

volume, while the electric field is piecewise constant. Using the corresponding lumped-circuit 

model, one has 
 

𝐼𝑡𝑜𝑡𝑎𝑙 = 0.3214 A , 𝐽𝑧 = 357.143
𝐴

𝑚2
, 𝐸𝑧1 =  714.286

𝑉

𝑚
, 𝐸𝑧2 =  1785.714

𝑉

𝑚
 (41) 

 

 
 

Fig. 48. a) – Problem geometry under study. The top electrode (+10 V) is marked in red. Coarse b) and fine c) 

surface meshes used for the solution are shown. The inner facets separating every conducting layer are not 

shown. 

 

 The observation grid is composed of the centers of cubic voxels inside the grid. Two 

voxel sizes are considered: 0.50.50.5 mm (0.12 M voxels in total) and 0.2 mm (1.8 M voxels 

in total), respectively. The error in the vector electric field, 𝑬𝑡(𝒓), is computed as a relative 2-

norm error as follows: 
 

𝐸𝑟𝑟𝑜𝑟𝑡 =
‖𝑬𝑡(𝒓) − 𝑬′

𝑡(𝒓)‖

‖𝑬𝑡(𝒓)‖
    

  
(42) 

 

where the BEM-FMM solution is marked by apostrophe, and the analytical solution is unmarked. 

 The BEM-FMM solution uses 20 adaptive passes, precise analytical expressions for 

sixteen neighbor surface integrals, relative FMM precision of 10−2, and the full left 

preconditioner (Eq. 39b) for the electrode surfaces. The BEM-FMM solution runs in 
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approximately 2-7.5 sec on a 2.1 GHz Windows server (MATLAB 2020b) depending on the 

surface mesh size. Two surface meshes are considered: an extruded coarse transversally 

unstructured mesh with 7,693 facets and an extruded fully structured mesh with 69,593 facets, 

respectively, as shown in Fig. 48b,c. Table 18 reports the 2-norm relative error values (computed 

from the electric field observed at the center of each voxel) and the BEM-FMM iterative solution 

run times for both meshes. The error is somewhat larger in the second case due to smaller 

distances from the electrodes. 
 

Table 18. 2-Norm relative error values computed at the center of each voxel for two different 
BEM-FMM meshes. Voxels are used for error calculations only. 
 

Voxel size 𝐸𝑟𝑟𝑜𝑟𝑡 for the 

BEM-FMM 

mesh with 

7,693 facets 

𝐸𝑟𝑟𝑜𝑟𝑡 for the 

BEM-FMM 

mesh with 

69,593 facets 

Solution time 

for the mesh 

with 7,693 

facets 

Solution time for 

the mesh with 

69,593 facets 

0.5 mm 

(0.1152 M voxels) 

3.96% 0.83% 2.4 sec 7.5 sec 

0.2 mm  

(1.8 M voxels) 

4.34% 1.44% 2.4 sec 7.5 sec 

 

 Surface field recovery times just inside/outside any surface are less than 0.5 sec. 

Volumetric field recovery times at the voxel centers are significantly longer. For the BEM-FMM 

mesh with 69,593 facets, they are 42 sec (0.5 mm voxel size) and 392 sec (0.2 mm voxel size), 

respectively. Sub-percent vector field accuracy can be obtained for both voxel grids with the 

BEM-FMM meshes of ~100,000 triangular facets in 7.5-10 sec on a 2.1 GHz machine. Fine 

tuning (e.g., reducing the number of iterations) substantially reduces the execution times in Table 

18. 

 

V.C.2. Comparison to FEM for simple geometries 

 The geometry shown in Fig. 49a is tested first. A brick with the side of 1 m has two 

square surface electrodes at  1 V on its top with the size of 0.20.2 m each, and separated by 

0.3 m. The isotropic conductivity is set as 𝜎 = 0.1  S/m. The BEM-FMM solution is compared 

to an FEM solution obtained by Ansys Maxwell (Ansys Electronics Desktop 2020 R2), which 

is using 35 adaptive mesh refinement passes and a final mesh with ca 1.2 M tetrahedra. The 

BEM-FMM solution is using a structured surface triangular mesh created with three brick 

subdivision schemes detailed in Table 19. The GMRES-based BEM-FMM with sixteen neighbor 

integrals was run for 15 iterations, and the relative residual values are in the range of 10−4 to 

10−5. 

 The observation domain includes centers of all cubic voxels of a structured mesh within a 

smaller brick having the side of 0.9 m as shown in Fig. 49a. This was done in order to (i) support 
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a more realistic scenario where smaller fields at a certain distance from the electrodes (e.g., in 

the in gray and white matter) are most important and; (ii) eliminate larger interpolation errors 

very close to the electrodes which could mask the rest of the solution. A 2-norm relative error 

percentage in the vector electric field from Eq. 40 within the observation domain is then 

compared for the two numerical solutions. The corresponding results are given in Table 19. In 

the last column of Table 19, the error for all voxel centers within the entire brick volume is 

given.  
 

 
 

Fig. 49. Electrode assembly for surface electrode testing and comparison against FEM solutions. a) – 

Homogeneous isotropic brick model, b) – heterogeneous isotropic brick model, and c) – electric field distribution 

of the heterogeneous brick model. 
 

Table 19. 2-Norm relative error in the vector electric field within the 0.9 m observation volume 

in Fig. 49a and within the entire volume, respectively. Voxels are used for error calculations 

only. 

Mesh res./ base 

brick voxel 

subdivisions 

Surface mesh 

size, facets 

Solution time 𝐸𝑟𝑟𝑜𝑟𝑡 for the 0.9 

m subdomain 

𝐸𝑟𝑟𝑜𝑟𝑡 for the 

entire domain  

202020 4,800 1.3 sec 3.2% 4.2% 

404040 19,200 2.0 sec 1.8% 2.8% 

808080 76,800 4.0 sec 0.9% 2.1% 

 

 The geometry of Fig. 49b is tested next. The brick of the previous example is made 

composite. It consists of an outer shell to emulate an insulating domain such as skull with a 

thickness of 0.1 m. It has a low isotropic conductivity of 0.01 S/m. The inner brick, representing 

the brain, has a much higher conductivity of 0.1 S/m. This geometry is more challenging since 

the outer shell blocks the field as shown in Fig. 49c and a larger relative error may be observed 

within the inner volume. The observation domain included all voxel centers within a smaller 
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brick with a side-length of 0.7 m. The corresponding results are given in Table 20. In the last 

column, the error for all voxel centers within the inner volume including those close to its 

boundary is given.  
 

Table 20. 2-Norm relative error in the vector electric field within the 0.7 m observation 
volume in Fig. 49b and within the entire inner-brick volume, respectively. Voxels are used for 
error calculations only. The GMRES-based BEM-FMM iterative solution uses 25 iterations. 
 

Mesh res./ base 

brick voxel 

subdivisions 

Surface mesh 

size, facets 

Solution time 𝐸𝑟𝑟𝑜𝑟𝑡 for the 0.7 

m subdomain 

𝐸𝑟𝑟𝑜𝑟𝑡 for the 

entire inner brick 

domain  

202020 9,600 1.8 sec 4.7% 4.7% 

404040 38,400 3.5 sec 2.7% 2.8% 

808080 153,600 10.0 sec 2.1% 2.4% 

 

V.C.3. Comparison to FEM considering a realistic head model 

 A validation example pertinent to TES is adopted from [50] and subsequently revised. 

Two electrodes with a fronto–medial placement and with diameters of 30 mm each are applied 

onto the skin surface of subject #110411 of the Connectome database [78] as shown in Fig. 50a. 

Surface meshes are obtained with the SimNIBS 2.1 pipeline [46] using mri2mesh; tissue 

properties are adopted from [83]. The composite model has 0.86 M facets. The model of current 

electrodes (with a uniform current distribution and total current of 1 mA) from Eq. 36 is used. A 

numerical solution is again compared to FEM using Ansys Electronics Desktop 2020 R2 but 

with voltage electrodes generating the same current. Fig. 50b shows the resulting electric field 

distribution (field magnitude) in the intracranial volume using BEM-FMM with eight neighbor 

integrals. Fig. 50c displays an arc connecting the electrode centers. Fig. 50d compares the 

electric field magnitude for both methods computed along the arc connecting the electrode 

centers. The FEM curve is shown in red, while the BEM-FMM curve is blue. Table 21 compares 

both simulations. For BEM-FMM, the required RAM did not exceed 4 Gbytes for the iterative 

solution while the FEM solution required 8 Gbytes for three adaptive passes and nearly 30 

Gbytes of RAM for 6 adaptive passes. 

 

Table 21. Comparative performance of the two modeling methods. The FEM run times are for 
Intel Xeon E5-2698 v4 CPU (2.20 GHz) server with 256 Gbytes of RAM. The BEM-FMM run 
times are given for Intel Xeon E5-2683 v4 CPU (2.1 GHz) based server. The relative error in the 
field magnitude is given for intracranial tissues (CSF, gray/white matter) only. 
 

Ansys FEM 
Ansys sol. 

time (8 cores) 

BEM-

FMM sol. 

Time 

Intracranial rel. 

field magn. error 

for an arc in Fig. 4c 

Intracranial rel. field 

magn. error in the 

entire coronal plane 
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4.8 M tets, 3 

adapt. passes 
2 h 29 m 

~60 sec 

(rel. 

residual of 

10-3)  

3.1% 6.31% 

6.9 M tets, 4 

adapt. passes 
6 h 23 m 3.0% 6.15% 

9.0 M tets, 5 

adapt. passes 
8 h 43 m 2.9% 6.06% 

 

 
Fig. 50. a) – Conformal electrodes with a fronto–medial placement for Connectome subject #110411; b) – Electric 

field magnitude in the intracranial volume in the sagittal plane; c) – Electric field magnitude in a plane 

containing an arc connecting electrode centers. Tissue intersections (CSF and GM) are shown by green dots. d) – 

Comparison of electric field magnitude along the arc connecting electrode centers with Ansys FEM software.  
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V.D. Results – Application Examples 

V.D.1. DBS electrodes in a multicompartment model: Field and potential 

distributions 

 A multi-compartment head-body model with a fully implanted DBS device and DBS 

electrodes (Fig. 51a) was constructed based on a realistic device configuration extracted from CT 

images of a patient at Northwestern University, Chicago IL (Figs. 51b,c).  
 

 
Fig. 51. a) – BEM-FMM Electrode mesh assembly around insulating urethane lead. Active electrode is assigned –

1 V vs IPG (held at zero voltage), and no specific voltage is assigned to other electrodes (floating condition); b) –

CT of insulating lead/IPG with the electrodes; the second electrode relates to another device. c,d) – IPG Device 

with the lead and electrodes embedded into the CAD model; d,e) – magnitude of the derivative of the tangential 

electric field (the second derivative of the electric potential) along a small fraction of the polyline with the length 

of 3 mm shown in Fig. 51a which starts in the middle of the active electrode held at –1 V for homogeneous (d) 

and inhomogeneous (e) head/torso model, respectively. Ansys Maxwell FEM solution is marked red; BEM-FMM 

solution is marked blue. 
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 A head model was further combined with a torso of another subject having multiple 

tissue objects to additionally model the fields close to the IPG when necessary. The device 

trajectory was manually segmented, and a 3D model of the implant was constructed and 

registered to a heterogeneous human body model consisting of 77 individual head/upper torso 

compartments. The DBS electrode is a Medtronic 3389 electrode (Medtronic® Inc, Minneapolis, 

MN, USA) implanted into the thalamus volume.  

 The resulting surface-based CAD model was imported into FEM software Ansys® 

Maxwell 3D Electromagnetics Suite 2019 R1 and assigned the corresponding conductivity 

values adopted from [83]. The identical model was used in the BEM-FMM algorithm.  

 Fig. 51a shows the BEM-FMM electrode mesh assembly around the insulating 

urethane lead (assigned zero conductivity). Every electrode is assigned an independent voltage 

vs IPG (which is held at zero volts) following Section V.B.2, or no specific voltage is assigned to 

some electrodes (the floating condition, Section V.B.4).  

 Fig. 51b shows an original CT image of the IPG device with embedded lead and 

electrode assembly. Fig. 51c shows the resulting multi-tissue human model with the registered 

lead and electrodes. Figs. 51d,e show the activation function, i.e. the magnitude of the derivative 

of the tangential electric field (second derivative of the electric potential [99],[143]-[148]) along 

a small fraction of a polyline with the length of 3 mm shown in Fig. 51a. The polyline itself 

starts in the middle of the active electrode (#1) held at –1 V for both homogeneous (d) and 

inhomogeneous (e) head/torso models, respectively, and terminates at the IPG. All other 

electrodes are floating. The Ansys Maxwell FEM solution is marked in red and the BEM-FMM 

solution is marked in blue in both plots. 

 The ANSYS FEM solution with 7 adaptive passes executes in approximately 1 h 36 

min using a PowerEdge R815 4 AMD Opteron 6378/32 cores 2.4 GHz Windows S 2016 server 

using the high-performance parallel computing (HPC) option of ANSYS. The BEM-FMM 

solution with 50 iterations, sixteen neighbor integrals, and a relative residual of 10-6 executes in 

approximately 2.2 min using an Intel Xeon E5-2683 v4 CPU/48 cores 2.1 GHz Windows S 2016 

server and MATLAB® 2020b platform. This relatively large execution time (the model has only 

0.4 M facets) is due to (i) a larger number of iterations needed and; (ii) a larger number of 

neighbor analytical integrals (128) needed in the solution. Such a number is found to be 

important because the model has facets of very different sizes.  

 For the polyline connecting the center of the active electrode and the IPG, the least-

squares error for the electric potential between the two solutions is 2.3%. The least-squares error 

in the tangential component of the electric field along the polyline is 2.0% despite the fact that 

both solutions change abruptly when passing through the tissue interfaces. Overall, both 

solutions for the electric potentials and the electric fields are hardly distinguishable visually. 

Similar results have been obtained for the homogeneous model.  

 Close to the electrode surface in Fig. 51a, the tangential electric fields along the 

polyline are similar to each other for both numerical solutions. However, the tangential-field 
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derivatives, which are proportional to the activating function of an axonal fiber [99],[143]-[148], 

are not. Figs. 51d,e show the magnitude of the derivative of the tangential electric field (the 

second derivative of the electric potential) computed along a small fraction of the polyline (Fig. 

51a). The ANSYS FEM solution is marked red while the BEM-FMM solution is marked blue in 

both plots. The BEM-FMM solution is much smoother compared to the FEM solution. 

 

V.D.2. Epidural planar ICMS array 

 A planar rectangular epidural ICMS array of size 550.5 mm with 100 circular 

electrodes was embedded into the head model of a 27 year old healthy female above the M1HAND 

area of the left hemisphere. The surface meshes were generated with T1 and T2 images (Siemens 

Skyra fit 3 T, Max Planck Inst., Leipzig) using the "headreco" pipeline from SimNIBS 3.1. The 

default SimNIBS conductivity values have been used. Additionally, a dura (combined with 

arachnoid) mater shell was constructed with a thickness of 1.21 mm and a conductivity of 0.1 

S/m by expanding the CSF shell and reducing the overall skull thickness accordingly. Fig. 52 

shows the topology of the surface mesh superimposed onto T1 NifTI data of the subject in the 

sagittal plane along with the synthetic dura shell. Fig. 53a shows the array electrode assembly 

and dimensions. 
 

 
Fig. 52. Topology of the surface mesh (sagittal plane) along with the synthetic dura shell superimposed onto T1 

NifTI data of the subject and the cross-section of the embedded array. The array position is indicated by a white 

arrow. The observation plane(s) (4040 mm, also used in Fig. 54 below) is indicated by the blue transparent 

rectangle. 
 

 The array case in Fig. 53a is made insulating. The electrodes are driven as follows. 

Electrode #91 is assigned +1 V, electrode #10 is assigned – 1 V, and all other electrodes are 

assigned zero volts. After appropriate mesh refinement and adding the dura mater, the total 

number of faces in the model approached 2.55 M. The solution time of the BEM-FMM with four 
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neighbor integrals was approximately 200 secs for 20 iterations and the relative residual of 10−3 

on a 2.1 GHz Windows server (MATLAB 2020b); the required RAM did not exceed 11 Gbytes. 

 Fig. 53b shows the magnitude of the resulting total electric field at a mid-layer between 

the gray and white matter interfaces. The array is targeting the M1HAND area (-shaped in the 

figure) of the left hemisphere. Simulation results reveal that, for the given array position and 

assembly, reasonable values of the electric field at the mid-layer (approximately corresponding 

to cortical layers 2,3) will be generated. These values approach 1 V/m, despite the small array 

size. Next, the array fields were computed just outside the white matter shell (approximately 

corresponding to cortical layer 5). The field values there approach 0.6 V/m, and the field 

becomes more disperse in the median-lateral direction.  The distance between the array and the 

white matter shell is 8 mm. The same array could be used for iEEG recordings. 
 

 
Fig. 53. a) – Planar ICMS array assembly. The insulating case is yellow. The array thickness is 0.5 mm. b) – 

Magnitude of the electric field at the mid-layer between the gray and white matter shells. The array is targeting 

the 𝑴𝟏𝑯𝑨𝑵𝑫 area of the left hemisphere. 
 

 To examine the array field distribution into the depth, Figs. 54a and 54b demonstrate 

spatial distributions of the magnitude of the electric field in the coronal and sagittal planes, 

respectively, centered at the array center. The observation domain is 4040 mm in every case. 

One may note a blocking effect of the cerebrospinal fluid, which is clearly seen in Fig. 54b. 
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Fig. 54. a), b) – Magnitude of the total electric field in the coronal and sagittal planes, respectively. Both planes 

are centered at the array center, whose cross-section is shown in red.  

 

V.E. Discussion 
 We formulated the BEM-FMM solution for electric stimulation by implementing the 

current and charge conservation laws in a weak form, i.e. by adding the corresponding scalar 

functional to be minimized to the right-hand side of the integral equation.  

 We further provide necessary modifications of the governing charge-based BEM 

equations to model voltage, shunt, current, and floating electrodes. After obtaining the solution 

for the surface charge density [1], it is possible to precisely obtain electric fields normal to the 

cortical surfaces (or any other interfaces) in real time and without postprocessing. 

 The present validation and application examples demonstrate that the BEM-FMM 

approach may be a viable tool for modeling electric brain stimulation with macro- and 

microelectrodes. While the concepts of the voltage, shunt, and floating electrodes are common, 

the model of the true current electrodes is rarely used and not implemented in any software 

packages known to the authors. On the other hand, it may be useful for the surface electrodes 

with sponges as well for modeling neurophysiological recordings via the reciprocity principle 

[138],[139]. The quasistatic reciprocity theorem allows us to interrelate the original field of 

intracortical sources and an auxiliary field obtained by injecting external electric current at the 

same EEG electrodes. 

 The BEM-FMM execution times are ~ 3 sec per iteration for the realistic head model 

with 0.86 M facets and ~10 sec per iteration for the model with 2.55 M facets using a 2.1 GHz 

server. Thus, the simulation time scales nearly linearly with increasing mesh size for the surface-

based model, which is an advantage compared to FEM [64],[66]. In consequence, we observed 
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that the memory requirements of the BEM-FMM may be twofold or even sixfold less than for 

the FEM (Section V.C.3; see also Section V.D.2) when the same problem is solved. It should be 

noted that the differences between BEM-FMM and FEM are not solely originating from 

inaccuracies of the BEM-FMM. They also result from the approximate nature of the FEM model 

due to coarse discretizations as shown by Gomez et al. 2020 [51] in the framework of TMS. In 

this case, the FEM solution should not be interpreted as a reference solution. Rather, it is a 

comparative solution. 

 The BEM-FMM computational speeds reported in this study are slower than those for 

TMS modeling [1] due to inclusion of a larger number of neighbor potential integrals and due to 

the fact that a typical electrode-based solution requires around 20-25 iterations to resolve the 

field singularities at the electrodes reasonably well. It is well known that both the surface charge 

density and the electric field are singular at the electrode rims [77]. 

 For the DBS application example in Section V.D.2, one observes that the FEM solution 

on a submillimeter scale shows numerical noise for both the homogeneous and the 

inhomogeneous models. In this respect, BEM-FMM offers the possibility to calculate much more 

accurate electric field profiles on a small scale without the necessity of volumetric mesh 

refinement, which plays a crucial role especially when these models are coupled with neuron 

models. A numerically unconstrained spatial resolution was further observed for the ICMS 

modeling solution in Section V.D.2. 

 The present approach is not without its limitations. While the memory requirements of 

the BEM-FMM are more advantageous, the FMM algorithm used in this study requires heavy 

parallelization. All results reported above have been obtained on two servers with 40 and 48 

cores, respectively. Our experience indicates that the number of cores is much more critical than 

the amount of RAM. The low RAM requirement and the good scalability in terms of CPU cores 

opens the possibility of an efficient GPU implementation which may reduce the computing time 

significantly. Additionally, the BEM-FMM cannot yet account for anisotropic tissue 

conductivities as opposed to the FEM. 

 

V.F. Conclusions 
 In this chapter, the boundary element fast multipole method (BEM-FMM) was 

formulated as an alternative to the finite element method (FEM) for modeling electrode-induced 

fields in the brain. The suggested method implementation is based on two properly coupled 

integral equations: one for tissue interfaces and another for the electrodes. It supports voltage, 

shunt, floating, and current electrodes. 

 Comparison with the analytical solution and with the commercial FEM software 

demonstrated high accuracy of the BEM-FMM algorithm for various models, both in the vicinity 

of the electrodes as well as in the entire tissue volume. The method can be easily combined with 

existing head modeling pipelines such as headreco or mri2mesh by using the segmented and 

meshed surfaces. The simulation time is similar to fast TES FEM solvers such as SimNIBS and 
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exceeds the speed of the commercial solvers (Ansys Maxwell and COMSOL) by approximately 

two orders of magnitude. 

 Two application examples demonstrated the advantage of the BEM-FMM, namely its 

potential applicability to model multiscale problems with submillimeter (and finer if necessary) 

resolution. 
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VI. TES Toolkit Application Example: Multilayer Skull 

Effect on TES Simulations 
This chapter was excerpted from [153], a submission to the 10th International IEEE EMBS Conference on Neural 

Engineering 

 

VI.A. Introduction 
 Transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES) 

are noninvasive neurostimulation methods in which electrical currents are induced via an 

electromagnetic coil (TMS) or injected via electrodes placed on the scalp (TES). Due to the 

complicated geometry of the brain itself, coupled with insulating properties of the skull and 

conducting properties of the cerebrospinal fluid (CSF), electric field behavior within the brain is 

unintuitive.  Computational electromagnetic modeling methods must be applied to precisely 

predict the electric field induced by either of these stimulation methods; common methods 

include the finite element method (FEM) and finite difference method (FDM).  The human head 

models employed for this task often lack data on two major tissue types that may affect the total 

electric field in the cortical volume: the cancellous bone of the skull and the dura mater [50] 

[149].  The high-definition MIDA head model [71] was employed for computational modeling of 

these tissues’ effects on the electric fields induced by both TMS and TES using the boundary 

element fast multipole method (BEM-FMM). 

 

VI.B. Background 
 

VI.B.1. MIDA Model 

 The surface-based MIDA model developed by Iacono et al. [71] comprises 116 triangular 

surface meshes with a total of 11 M facets, making it one of the most detailed head models 

currently available [151].  For example, the superior region of the skull is composed of three 

distinct surfaces: two for the exterior and interior layers of cortical bone, respectively, and one 

for the cancellous bone (the skull diploë) between those layers of cortical bone.  The model also 

contains explicit segmentations of adipose tissue between the skin and skull; the dura mater; 

major nerves, veins, and arteries; as well as gray matter (GM), white matter (WM), cerebrospinal 

fluid (CSF), and other large tissues.  The detailed anatomical representation of the head renders 

the MIDA model an ideal candidate for exploration of the effects of simplifying assumptions on 

solutions to simulations of noninvasive transcranial stimulation methods. 

 

VI.B.2. Boundary Element Fast Multipole Method 

 The Boundary Element Fast Multipole Method (BEM-FMM), described in [49] and 

available at [54][55][56], is a computational alternative to the Finite Element Method (FEM) or 

Finite Difference Method (FDM).  Based on charges that accumulate at interfaces between 

tissues of different electrical conductivity, the BEM-FMM operates directly on surface meshes 
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rather than operating on volumetric meshes generated from those surface meshes.  For extremely 

detailed meshes like the MIDA model, the BEM-FMM is likely to require two-fold to six-fold 

less memory and execute just as fast (or faster) while maintaining equivalent accuracy [50],[51].  

Additionally, observation points for various field quantities may be placed arbitrarily close to 

surfaces since the field resolution is unconstrained by a volumetric FEM/FDM grid.  To the 

authors’ knowledge, this is the first application of the BEM-FMM to modeling of TES. 

 

VI.C. Materials and Methods 
 

VI.C.1. Numerical verification of BEM-FMM results via Sim4Life results for 

a TMS test case 

 The first task was to establish accuracy of the BEM-FMM algorithm against a 

commercial FEM magneto quasi-static solver (Sim4Life [152]).  The test setup used a single-

loop coil with a radius of 5 mm, cross-sectional radius of 1 mm, and 16 elementary current 

filaments.  The coil was placed 10 mm above the skin surface as shown in Fig. 55.  It was driven 

with current amplitude I0 = 5 kA and dI/dt = 94 A/µs, representing a sinusoidal current of 

frequency 3 kHz at the moment of maximum dI/dt.  For this test and all subsequent simulations, 

conductivities were assigned to the MIDA model’s tissues according to the IT’IS Foundation’s 

Database of Tissue Properties [83]. 

 
Fig. 55. Test setup for the comparison of results between the BEM-FMM and Sim4Life 

  

 The test setup was simulated using both Sim4Life and BEM-FMM.  The induced electric 

field was calculated throughout the head volume on a grid with 0.5 mm resolution.  The absolute 

error at each observation point was calculated as 
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   Δ𝐸 =  ‖�⃑� 𝐵 − �⃑� 𝑆‖,       (43) 

where  �⃑� 𝐵 is the field calculated using BEM-FMM, �⃑� 𝑆 is the field calculated using Sim4Life, and 

‖∗‖ denotes the Euclidean vector norm. 

 

VI.C.2. Effect of skull simplification on TMS simulation 

 The next task was to evaluate the error introduced by neglecting the effects of certain 

large tissues on the TMS E-field.  To eliminate the contribution of the dura mater to the TMS E-

field, it was assigned a conductivity equal to that of cerebrospinal fluid.  Similarly, the skull 

diploë’s conductivity was replaced by that of cortical bone, approximating the case (common to 

other head models) where the entire skull is treated as homogeneous cortical bone. 

 The test setup is shown in Fig. 56 below.  The motor hand area was targeted for 

stimulation by a MagVenture MRi-B91 figure-eight coil model, which was positioned according 

to several simple geometric rules: (i) The coil’s centerline is approximately perpendicular to the 

surface of the gyral crown at the targeted region; (ii) The dominant incident E-field direction is 

approximately perpendicular to the sulcal walls of the targeted region; and (iii) The coil’s 

centerline intersects the skin surface approximately 9 mm from the coil’s origin. 

 
Fig. 56. Test setup for evaluation of the impact of the diploë and dura mater on TMS simulations.  The coil used 

for this test was an MRi-B91 coil placed roughly above the motor hand area. 

 

 Two simulations were run with this test setup: the base case with all tissues present, and 

the test case where both the skull diploë and dura mater were neglected.  In each case, the total 

electric field magnitude was evaluated on a grid with 0.5 mm resolution in the sagittal plane 

where the coil’s centerline intersected the GM surface.  Error between the test case and the base 

case was computed as described in Section VI.C.1.   

 

VI.C.3. Effect of skull simplification on TES simulation 

 The final task was to evaluate the error introduced by neglecting the effects of the dura 

mater and the skull diploë on the TES-induced E-field.  Sixty-four electrodes were placed on the 
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skin surface in an approximate 10-10 configuration as shown in Fig. 57.  Each electrode’s E-field 

was computed independently at the gray matter and white matter surfaces by assigning the 

currently-active electrode a potential of 1 V and assigning all inactive electrodes potentials of 0 

V.  The set of 64 E-field solutions was computed for two cases.  In the base case, the skull diploë 

and dura were assigned their own respective properties.  In the test case, the skull diploë and 

dura mater were subsumed into the cortical bone of the skull.  The white matter and gray matter 

were used as observation surfaces because a single sagittal plane (as applied in the prior sections) 

would not capture all effects of all electrodes. 

 
Fig. 57. Test setup for the TES dura/diploë sensitivity test.  5-mm-radius electrodes were imprinted on the MIDA 

model’s epidermis mesh in an approximate 10-10 configuration. 

 

 For each electrode, an attempt was made to find a coefficient α that scales the vector of 

test-case E-field magnitudes 𝑬𝑡𝑒𝑠𝑡 at the WM or GM surfaces to match the vector of base-case E-

field magnitudes 𝑬𝑏𝑎𝑠𝑒. This scalar was chosen to minimize the error expression, 

   Δ𝐸 = ‖𝛼𝑬𝑡𝑒𝑠𝑡 − 𝑬𝑏𝑎𝑠𝑒‖/‖𝑬𝑏𝑎𝑠𝑒‖.     (44) 

VI.D. Results 
 

VI.D.1. BEM-FMM validation via Sim4Life 

 Fig. 58 below shows the magnitude of the electric field in the sagittal cross section 

coplanar with the single-loop coil’s centerline as evaluated by BEM-FMM and Sim4Life, 

followed by the magnitude of the difference between the two fields. 
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Fig. 58. E-field predicted by BEM-FMM (top), E-field predicted by Sim4Life (center), and magnitude of absolute 

error vector between the two cases (bottom).  E-field units are V/m. 

 

VI.D.2. Effect of skull simplification on TMS simulations  

 Fig. 59 below shows results in the sagittal cross-section where the coil’s centerline 

intersects the gray matter surface for the full and simplified models.  The magnitude of the total 



121 

 

E-field is shown for the full model and the simplified model, along with the magnitude of the 

absolute difference in the E-field between the two cases. 

 

 

 

 
Fig. 59. TMS E-field magnitude evaluated for the base case (top), E-field magnitude evaluated for the simplified 

case (center), and magnitude of absolute difference in the E-fields for those cases (bottom).  E-field units are 

V/m. 
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VI.D.3. Effect of skull simplification on TES simulations 

 The electrode-specific coefficients for the white matter surface ranged from 0.5 to 0.9 with 

a clear and reasonable dependence on electrode positions.  The electrode-specific coefficients for 

the gray matter surface ranged from 0.5 to 0.8 and exhibited a visually similar dependence on 

electrode position to the white matter case.  Aggregate error at the white matter surface between 

the scaled E-field predicted by the simplified model and the E-field predicted by the full model 

was between 6% and 13%, with a single outlier at 19%.  The aggregate error at the gray matter 

surface ranged from 21% to 34% with no apparent outliers.   

 Fig. 60 below shows mappings of the electrode-specific coefficients 𝛼 onto the skin 

surface, as well as the least-squares error that results when those coefficients are used to scale the 

E-field from the simplified model to match the E-field from the full model.  The coefficients 

measure the change in absolute overall field strength, while the least-squares errors measure the 

change in spatial distribution of the relative electric field strength. 

 
Fig. 60. Top left: Corrective coefficients to scale the TES E-field from the simplified model to match the E-field 

from the full model at the WM surface, mapped to the regions of the skin surface dominated by their respective 

electrodes.  The maximum coefficient is 0.92 (dark red), and the minimum is 0.5 (dark blue).  The lower half of 

the head, free of electrodes, is assigned a coefficient of 0.5. Top right: Corrective coefficients for the gray matter 

surface, ranging from 0.5 to 0.8.  Bottom left: Aggregate error post-scaling for the E-field at the WM surface, 

ranging from 6 % (pale blue) to 19% (dark red).  Bottom right: Aggregate error post-scaling for the E-field at the 

GM surface, ranging from 21% to 34%. 
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VI.E. Discussion 
 The error between the BEM-FMM simulation and the Sim4Life simulation appears to be 

fully restricted to regions very close to tissue boundaries. This behavior is expected, since nearby 

E-fields vary quickly due to charge accumulation at those boundaries. For a first-order FEM 

approach, the electric field is constant within a single element, so further analysis is necessary to 

obtain higher-order derivatives (e.g., evaluating potential values on a regular grid and calculating 

the derivatives using finite differences) [154]. Thus, FEM/FDM typically fail in these cases due 

to limited spatial resolution, while the quick field variation is accurately captured by the BEM-

FMM.  Within volumes sufficiently distant from boundaries, the two methods agree well, so we 

are confident in predictions based on BEM-FMM results. 

 For the TMS skull simplification test, the error in the E-field is almost fully constrained 

to the skull.  Absolute differences in the field within the WM do not exceed 3 V/m (less than 3% 

relative error), and absolute differences in the field within the GM do not exceed 5 V/m (less 

than 5% relative error) except in locations close to (or touching) the outer CSF boundary.  Since 

the maximum field magnitude in the joint GM/WM volume exceeds 100 V/m, these errors are 

sufficiently small to claim that the dura mater and skull diploë do not heavily affect the electric 

field induced within the brain by TMS.  This is a reasonable result because the TMS E-field is 

induced by a time-varying magnetic field, which is not affected by intervening tissues between 

the coil and brain. 

 TES E-fields, on the other hand, appear to be very strongly affected by properties of the 

skull diploë and the dura mater.  The fields measured at the WM surface for the base case are 

typically between 50% and 90% as strong as the fields measured for the test case, and the fields 

measured at the GM surface for the base case are typically between 50% and 80%.  Based on the 

post-scaling field error at the WM surface, the field generated by the simplified model at that 

surface may be linearly scalable to the full-model field at that surface.  Based on the post-scaling 

field error at the GM surface, however, the field computed at the GM surface by the simplified 

case is likely not linearly scalable to the field computed at the GM surface by the simplified 

model.  The large change in the E-field observed when neglecting the diploë and dura is 

reasonable because these tissues’ properties should directly affect the path of current from the 

active electrode to the brain and the return electrodes. 

 

VI.F. Conclusion 
 We have demonstrated that the Boundary Element Fast Multipole Method obtains good 

agreement with Sim4Life for the MIDA model, that transcranial magnetic stimulation 

simulations likely are not strongly affected by neglecting the cancellous bone of the skull or the 

dura mater, and that transcranial electric stimulation simulations likely are strongly affected by 

both materials.  We have further investigated a simple method of compensation for neglect of 

these tissues, namely applying electrode-specific coefficients to the E-fields at the gray matter 

surface and the white matter surface separately.  While this method may be applicable to the E-



124 

 

field at the white matter surface, it is less applicable (or not applicable) to the fields at the gray 

matter surface.   

 To further explore and validate these results, the experiment should be undertaken with a 

larger set of highly detailed human head models.  It would also be worthwhile to explore the 

interactions that cause the post-scaling error to be relatively high for the gray matter surface and 

relatively low for the white matter surface.  Further attention should be given to simplifications 

other than those presented here – for example, the treatment of the skin and fat as the same 

uniform tissue, or an investigation of the results when the dura is subsumed into CSF instead of 

cortical bone. Finally, investigation of these results’ frequency-dependence is also 

recommended. 
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Appendix A: Code Segments 
 

AA.1.Neighbor Integrals 
 

AA.1.a. potint2.m 
function [Int] = potint2(r1, r2, r3, normal, ObsPoint) 

%   This function computes potential integrals grad(1/r) for a single triangle 

%   The integrals are not divided by the area 

%   Vectorized for an arbitrary number of observation points 

% 

%   Copyright SNM 2004-2020 

  

%   Test (comparison with Wang et. al., 2003): 

% %     clear all; 

% %     format long; 

% %     r1 = [62.5 25.0 0]; 

% %     r2 = [62.5 25.0 2]; 

% %     r3 = [62.5 37.5 0]; 

% %     ObsPoint = [62.5 0.0 0.0]; 

% %     tempv           = cross(r2-r1, r3-r1);  %   correct normal sign! 

% %     temps           = sqrt(tempv(1)^2 + tempv(2)^2 + tempv(3)^2); 

% %     normal          = tempv/temps; 

% %     Area            = temps/2;    

% %     %   Analytical integral 

% %      [coeff, weights, IndexF] = tri(25, 10); 

% %      Int = [0 0 0]; 

% %      for m = 1:length(coeff)      

% %          Point = coeff(1, m)*r1 + coeff(2, m)*r2 + coeff(3, m)*r3; 

% %          R = ObsPoint - Point; 

% %          Int = Int - Area*weights(m)*R/(sqrt(sum(R.*R)))^3; 

% %      end 

% %      Int 

% %      Int = potint2(r1, r2, r3, normal, ObsPoint) 

  

    N           = size(ObsPoint, 1); 

    I           = zeros(N, 3); 
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    S           = zeros(N, 9); 

    Int         = zeros(N, 3); 

    BetaTerm    = zeros(N, 3); 

  

    %   Create r+ and r- coordinates 

    temp = [r2 r1 r3 r1 r3 r2]; 

    r    = repmat(temp, N, 1); 

  

    %   Create l coordinates 

    normabsl1 = sqrt(sum((r2-r1).^2)); 

    normabsl2 = sqrt(sum((r3-r1).^2)); 

    normabsl3 = sqrt(sum((r3-r2).^2)); 

    temp = [(r2-r1)./normabsl1 (r3-r1)./normabsl2 (r3-r2)./normabsl3]; 

    l    = repmat(temp, N, 1); 

  

    %   Create unit normal to the edges of the triangle 

    u(1:3) = +cross((r2-r1)./normabsl1, normal); 

    u(4:6) = -cross((r3-r1)./normabsl2, normal); 

    u(7:9) = +cross((r3-r2)./normabsl3, normal); 

    u      = repmat(u, N, 1); 

  

    %   Create projection vector of the observation point 

    NORM = repmat(normal, N, 1); 

    ndot = sum(ObsPoint.*NORM, 2); 

    p    = ObsPoint - repmat(ndot, 1, 3).*NORM; 

  

    %   Is the projection point on the triangle edge or its continuation? 

    %   Calculate midpoints of the edges of a triangle 

    temp     = 0.5*[r1+r2 r1+r3 r2+r3]; 

    midpoint = repmat(temp, N, 1); 

    %   Calculate vectors from observation point project to midpoints 

    vector = midpoint - [p p p]; 

      %   Move the observation  point (projection) from the edge 

    factor = 1e-6; 

    factor1 = factor*normabsl1; 

    factor2 = factor*normabsl2; 

    factor3 = factor*normabsl3; 

    check1 = sum(vector(:, 1:3).*u(:, 1:3), 2); 

    check2 = sum(vector(:, 4:6).*u(:, 4:6), 2); 

    check3 = sum(vector(:, 7:9).*u(:, 7:9), 2);  
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    index  = (abs(check1)<factor1); ObsPoint(index, :) =  ObsPoint(index, :) - factor1*u(index, 1:3);     

    index  = (abs(check2)<factor2); ObsPoint(index, :) =  ObsPoint(index, :) - factor2*u(index, 4:6); 

    index  = (abs(check3)<factor3); ObsPoint(index, :) =  ObsPoint(index, :) - factor3*u(index, 7:9); 

    ndot   = sum(ObsPoint.*NORM, 2); 

    p      = ObsPoint - repmat(ndot, 1, 3).*NORM; 

  

    % Calculation of the analytical formula 

    count = 0; 

    for c1 = 0:2     

        %   Distance of observation point perpendicular to the plane with triangle 

        temporary   = ObsPoint - r(:, [1:3] + 3*(count + 1)); 

         %%  Changes compared to potint.m    

        distanceobs = sum(NORM.*temporary, 2);      

         %%  End of changes compared to potint.m    

  

        %   Calculate p+ and p- 

        d1 = sum(NORM.*r(:, [1:3] + 3*count), 2); 

        d2 = sum(NORM.*r(:, [1:3] + 3*(count + 1)), 2); 

  

        pplus  = r(:, [1:3] + 3*count)       - NORM.*repmat(d1, 1, 3); 

        pminus = r(:, [1:3] + 3*(count + 1)) - NORM.*repmat(d2, 1, 3); 

  

        %   Calculate l+ and l- 

        lplus  = sum(l(:, [1:3] + 3*c1).*(pplus - p), 2); 

        lminus = sum(l(:, [1:3] + 3*c1).*(pminus - p), 2); 

  

        %   Perpendicular distance from projection vector to edge 

        P0 = abs( sum(u(:, [1:3] + 3*c1).*(pminus-p), 2) ); 

  

        %   Distances to l+ and l- from projection vector 

        PPLUS  = sqrt(P0.*P0 + lplus.*lplus); 

        PMINUS = sqrt(P0.*P0 + lminus.*lminus); 

  

        %   Vector containing line P0 measured 

        PHAT = (pminus - p - repmat(lminus, 1, 3).*l(:, [1:3] + 3*c1))./repmat(P0, 1, 3); 

  

        %   Distances to l+ and l- from observation point 

        RPLUS  = sqrt(PPLUS.*PPLUS + distanceobs.*distanceobs); 

        RMINUS = sqrt(PMINUS.*PMINUS + distanceobs.*distanceobs); 

        R0     = sqrt(P0.*P0 + distanceobs.*distanceobs); 
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        %  Changes compared to potint.m 

        %   A value of one term of the analytic sum 1/R          

        d1      = atan(P0.*lplus./(R0.*R0 + abs(distanceobs).*RPLUS)); 

        d2      = atan(P0.*lminus./(R0.*R0 + abs(distanceobs).*RMINUS)); 

        d3      = log((RPLUS + lplus)./(RMINUS + lminus)); 

  

        % End of changes compared to potint.m 

  

        dotPHATu= sum(PHAT.*u(:, [1:3] + 3*c1), 2);         

  

        %  Changes compared to potint.m         

        BetaTerm(:, c1+1) = dotPHATu.*(d1 - d2); 

        S(:, 1 + 3*c1) = d3.*u(:, 1 + 3*c1); 

        S(:, 2 + 3*c1) = d3.*u(:, 2 + 3*c1); 

        S(:, 3 + 3*c1) = d3.*u(:, 3 + 3*c1); 

        % End of changes compared to potint.m 

        count = count + 2;       

    end 

  

    %  Changes compared to potint.m          

    Beta = sum(BetaTerm, 2); 

  

    I(:, 1) = S(:, 1) + S(:, 4) + S(:, 7); 

    I(:, 2) = S(:, 2) + S(:, 5) + S(:, 8); 

    I(:, 3) = S(:, 3) + S(:, 6) + S(:, 9); 

  

    %   find sign of distanceobs 

    Sign = sign(distanceobs);  

  

    %   value of integral for 1/R 

    Int(:, 1) = -normal(1)*Sign.*Beta - I(:, 1); 

    Int(:, 2) = -normal(2)*Sign.*Beta - I(:, 2); 

    Int(:, 3) = -normal(3)*Sign.*Beta - I(:, 3); 

  

    %   Contribution is zero when the projection point on the edge (Wilton et al. 1984, p. 279)     

    Int(isnan(Int)) = 0;  Int(isinf(Int)) = 0;     

    % End of changes compared to potint.m 

end 
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AA.1.b. potint4.m 
% This function calculates n*grad(1/r) at a given observation point obsPoint 

% given a triangle with vertices r1, r2, and r3 and normal vector normal. 

% It uses the solid-angle approximation of Van Oosterom and Strackee 1983 

% to quickly compute the normal component of the field in the vicinity of 

% the triangle. 

% r1: Nx3 first triangle vertex location for N triangles 

% r2: Nx3 second triangle vertex location for N triangles 

% r3: Nx3 third triangle vertex location for N triangles 

% normal: Nx3 triangle normal vectors for N triangles 

% obsPoint: Mx3 list of observation points at which electric field should be evaluated 

% Int: MxN matrix of integral contributions to each point.  Right-multiply by column 

%  vector of triangle weights (e.g. charges) to obtain total contribution to each 

%  observation point. 

  

% Copyright William Wartman 2020 

function [Int] = potint4(r1, r2, r3, obsPoint) 

     N = size(r1, 1);        %N triangles 

     M = size(obsPoint, 1);  %M observation points 

  

    Int = zeros(M, N); 

    for j = 1:size(obsPoint, 1) 

        %Observation point to vertex vectors for observation point j (Nx3) 

        R1 = r1 - obsPoint(j,:); 

        R2 = r2 - obsPoint(j,:); 

        R3 = r3 - obsPoint(j,:); 

         

        %Vector magnitudes of R1, R2, R3 (Nx1) 

        R1norm = vecnorm(R1, 2, 2); 

        R2norm = vecnorm(R2, 2, 2); 

        R3norm = vecnorm(R3, 2, 2); 

         

        %Triple product of R1, R2, R3 (Nx1) 

        numerator = dot(R1, cross(R2, R3, 2), 2); 

         

        %Nx1 

        denominator = (R1norm .* R2norm .* R3norm) + R3norm .* dot(R1, R2, 2) + R2norm .* dot(R1, R3, 2) + R1norm .* 

dot(R2, R3, 2); 
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        %Nx1 

        omega = 2*atan2(numerator, denominator); 

         

        % M observation points by N solid angles to have proper dimensions for charge weighting! 

        Int(j,:) = transpose(omega); 

    end 

end 

 

AA.1.c. potint4b.m 
% This function calculates n*grad(1/r) at a given observation point obsPoint 

% given a triangle with vertices r1, r2, and r3 and normal vector normal. 

% It uses the solid-angle approximation of Van Oosterom and Strackee 1983 

% to quickly compute the normal component of the field in the vicinity of 

% the triangle. 

% r1: Nx3 first triangle vertex location for N triangles 

% r2: Nx3 second triangle vertex location for N triangles 

% r3: Nx3 third triangle vertex location for N triangles 

% obsPoint: Mx3 list of observation points at which electric field should be evaluated 

% Int: MxN matrix of integral contributions to each point.  Right-multiply by column 

%  vector of triangle weights (e.g. charges) to obtain total contribution to each 

%  observation point. 

  

% Copyright William Wartman 2020 

  

function [Int] = potint4b(r1, r2, r3, obsPoint) 

    %Vectorize operation for triangles and observation points simultaneously 

     N = size(r1, 1);        %N triangles 

     M = size(obsPoint, 1);  %M observation points 

      

    %Dimension 1: triangle index.  Dimension 2: 3. Dimension 3: Observation point index 

    r1Exp = repmat(r1, 1, 1, M); 

    r2Exp = repmat(r2, 1, 1, M); 

    r3Exp = repmat(r3, 1, 1, M); 

  

    obsPointExpA = zeros(1, 3, M); 

    obsPointExpA(1, :, :) = transpose(obsPoint); 

    obsPointExp = repmat(obsPointExpA, N, 1, 1); 
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    %Vectors from observation points to triangle vertices (N by 3 by M) 

    R1 = r1Exp - obsPointExp; 

    R2 = r2Exp - obsPointExp; 

    R3 = r3Exp - obsPointExp; 

     

    %Norms of vectors (N by 1 by M) 

    R1norm = vecnorm(R1, 2, 2); 

    R2norm = vecnorm(R2, 2, 2); 

    R3norm = vecnorm(R3, 2, 2); 

     

    %N by 1 by M 

    numerator = dot(R1, cross(R2, R3, 2), 2); 

     

    %N by 1 by M 

    denominator = (R1norm .* R2norm .* R3norm) + R3norm .* dot(R1, R2, 2) + R2norm .* dot(R1, R3, 2) + R1norm .* 

dot(R2, R3, 2); 

     

    omega = 2*atan2(numerator, denominator); 

     

    %Squeeze out the middle dimension and shape omega properly to be scaled 

    %by a column vector of triangle charges 

    if(N ~= 1)  

        Int = transpose(squeeze(omega)); 

    else 

        % If there is only one triangle, the first dimension is 1 and thus 

        % is squeezed out along with the second dimension, leaving a row  

        % vector as desired. 

        Int = squeeze(omega); 

    end 

        

end 

 

AA.1.d. meshneighborints_1b.m 
function [integralxc, integralyc, integralzc, ... 

          integralxe, integralye, integralze, ... 

          EC] = meshneighborints_1b(P, t, normals, Area, Center, RnumberE, ineighborE, numThreads) 

%   Accurate integration for electric field/electric potential on neighbor facets 

%   Copyright SNM 2017-2020 

    tic  
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    N = size(t, 1); 

    integralxe      = zeros(RnumberE, N);    %   exact Ex integrals for array of neighbor triangles  

    integralye      = zeros(RnumberE, N);    %   exact Ey integrals for array of neighbor triangles  

    integralze      = zeros(RnumberE, N);    %   exact Ez integrals for array of neighbor triangles  

  

    integralxc      = zeros(RnumberE, N);    %   center-point Ex integrals for array of neighbor triangles  

    integralyc      = zeros(RnumberE, N);    %   center-point Ey integrals for array of neighbor triangles  

    integralzc      = zeros(RnumberE, N);    %   center-point Ez integrals for array of neighbor triangles  

  

    gauss       = 25;   %   number of integration points in the Gaussian quadrature   

                        %   for the outer potential integrals 

                        %   Numbers 1, 4, 7, 13, 25 are permitted  

    %   Gaussian weights for analytical integration (for the outer integral) 

    if gauss == 1;  [coeffS, weightsS, IndexS]  = tri(1, 1); end; 

    if gauss == 4;  [coeffS, weightsS, IndexS]  = tri(4, 3); end; 

    if gauss == 7;  [coeffS, weightsS, IndexS]  = tri(7, 5); end; 

    if gauss == 13; [coeffS, weightsS, IndexS]  = tri(13, 7); end; 

    if gauss == 25; [coeffS, weightsS, IndexS]  = tri(25, 10); end; 

    W           = repmat(weightsS', 1, 3); 

  

    %   Main loop for analytical double integrals (parallel, 24 workers) 

    %   This is the loop over columns of the system matrix 

    tic 

    parpool(numThreads); 

    parpoolStartTime = toc 

    tic 

    parfor n = 1:N                  %   inner integral; (n =1 - first column of the system matrix, etc.)         

        r1      = P(t(n, 1), :);    %   [1x3] 

        r2      = P(t(n, 2), :);    %   [1x3] 

        r3      = P(t(n, 3), :);    %   [1x3]   

        index   = ineighborE(:, n); %   those are non-zero rows of the system matrix for given n 

        ObsPoints   = zeros(RnumberE*IndexS, 3);    %   to compute RnumberE outer integrals numerically 

        I           = zeros(RnumberE, 3);           %   for rhe field 

        %   Accurate electric-field integrals 

        for q = 1:RnumberE 

            num = index(q); 

            for p = 1:IndexS 

                ObsPoints(p+(q-1)*IndexS, :)  = coeffS(1, p)*P(t(num, 1), :) +  coeffS(2, p)*P(t(num, 2), :) +  

coeffS(3, p)*P(t(num, 3), :); 

            end 
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        end     

        J = potint2(r1, r2, r3, normals(n, :), ObsPoints); %   Outer integral is computed analytically, for all inner 

IntPoints   

        for q = 1:RnumberE 

            I(q, :) = sum(W.*J([1:IndexS]+(q-1)*IndexS, :), 1);  

        end 

        I(1, :)          = 0;           %   self integrals will give zero 

        integralxe(:, n) = -I(:, 1);    %   accurate integrals, entries of non-zero rows of n-th column 

        integralye(:, n) = -I(:, 2);    %   accurate integrals, entries of non-zero rows of n-th column 

        integralze(:, n) = -I(:, 3);    %   accurate integrals, entries of non-zero rows of n-th column   

        %   Center-point electric-field integrals 

        temp    = repmat(Center(n, :), RnumberE, 1) - Center(index, :); %   these are distances to the 

observation/target triangle 

        DIST    = sqrt(dot(temp, temp, 2));                             %   single column                 

        I       = Area(n)*temp./repmat(DIST.^3, 1, 3);                  %   center-point integral, standard format     

        I(1, :) = 0;                                                    %   self integrals will give zero 

        integralxc(:, n) = -I(:, 1);    %   center-point integrals, entries of non-zero rows of n-th column 

        integralyc(:, n) = -I(:, 2);    %   center-point integrals, entries of non-zero rows of n-th column 

        integralzc(:, n) = -I(:, 3);    %   center-point integrals, entries of non-zero rows of n-th column         

    end 

    integralTime = toc 

     

    tic 

    delete(gcp('nocreate')); 

    parpoolShutdownTime = toc 

     

    tic 

    %%  Define useful sparse matrices EC, PC (for GMRES speed up)     

    N               = size(t, 1); 

    const           = 1/(4*pi);   

    integralc       = zeros(RnumberE, N);    %   normal integral component for array of neighbor triangles (center 

point) - to speed up GMRES 

    integrale       = zeros(RnumberE, N);    %   normal integral component for array of neighbor triangles (exact) - to 

speed up GMRES 

    for n = 1:N                  %   inner integral; (n =1 - first column of the system matrix, etc.)              

        index = ineighborE(:, n); %   those are non-zero rows of the system matrix for given n 

        integrale(:, n)  =       +(integralxe(:, n).*normals(index, 1) + ... 

                                   integralye(:, n).*normals(index, 2) + ... 

                                   integralze(:, n).*normals(index, 3));  

        integralc(:, n)  =       +(integralxc(:, n).*normals(index, 1) + ... 
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                                   integralyc(:, n).*normals(index, 2) + ... 

                                   integralzc(:, n).*normals(index, 3)); 

    end  

    ii  = ineighborE; 

    jj  = repmat([1:N], RnumberE, 1); 

    EC  = sparse(ii, jj, const*(-integralc + integrale));               %   almost symmetric 

    save('integrals_base', 'integrale', 'integralc'); 

    ECConstructionTime = toc 

end 

 

AA.1.e. meshneighborints_2.m 
function [EC] = meshneighborints_2(P, t, normals, Area, Center, RnumberE, ineighborE, numThreads) 

%   Accurate integration for electric field/electric potential on neighbor facets 

%   Copyright WAW 2020 

    N = size(t, 1); 

    integralxc      = zeros(RnumberE, N);    %   center-point Ex integrals for array of neighbor triangles  

    integralyc      = zeros(RnumberE, N);    %   center-point Ey integrals for array of neighbor triangles  

    integralzc      = zeros(RnumberE, N);    %   center-point Ez integrals for array of neighbor triangles  

     

    gauss       = 25;   %   number of integration points in the Gaussian quadrature   

                        %   for the outer potential integrals 

                        %   Numbers 1, 4, 7, 13, 25 are permitted  

    %   Gaussian weights for analytical integration (for the outer integral) 

    if gauss == 1;  [coeffS, weightsS, IndexS]  = tri(1, 1); end 

    if gauss == 4;  [coeffS, weightsS, IndexS]  = tri(4, 3); end 

    if gauss == 7;  [coeffS, weightsS, IndexS]  = tri(7, 5); end 

    if gauss == 13; [coeffS, weightsS, IndexS]  = tri(13, 7); end 

    if gauss == 25; [coeffS, weightsS, IndexS]  = tri(25, 10); end 

    if gauss == 0;  [coeffS, weightsS, IndexS]  = tri(40); end 

    %W           = repmat(weightsS', 1, 3); 

     

  

    %   Main loop for analytical double integrals (parallel, 24 workers) 

    %   This is the loop over columns of the system matrix 

    tic 

    parpool(numThreads); 

    parpoolStartTime = toc 

    tic 

    integrale = zeros(N, RnumberE); 
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    parfor n = 1:N                  %   inner integral; (n =1 - first column of the system matrix, etc.)         

        % Calculate observation points on this triangle 

        ObsPoints = zeros(IndexS, 3); 

        for p = 1:IndexS 

            ObsPoints(p, :)  = coeffS(1, p)*P(t(n, 1), :) +  coeffS(2, p)*P(t(n, 2), :) +  coeffS(3, p)*P(t(n, 3), :); 

        end 

         

        % Get vertices of neighbor triangles acting on this triangle 

        index = ineighborE(:,n); 

        r1 = P(t(index, 1), :); %get first vertex of each neighbor triangle 

        r2 = P(t(index, 2), :); %get second vertex of each neighbor triangle 

        r3 = P(t(index, 3), :); %get third vertex of each neighbor triangle 

         

        %Int_temp stores the contribution of each triangle (column) to each observation point (row) 

        Int_temp = potint4b(r1, r2, r3, ObsPoints); 

        Int_temp(:,1) = 0; %kill self-term 

        %Now weight and sum each column of Int_temp properly to get a single row 

        %weightsS: row vector containing contribution of each observation point to final triangle 

        Int = weightsS*Int_temp; % Exploiting dimensions of weightsS and Int_temp to ensure proper product occurs 

        integrale(n, :) = Int;        

            

        %   Center-point electric-field integrals 

        temp    = repmat(Center(n, :), RnumberE, 1) - Center(index, :); %   these are distances to the 

observation/target triangle 

        DIST    = sqrt(dot(temp, temp, 2));                             %   single column                 

        I       = Area(n)*temp./repmat(DIST.^3, 1, 3);                  %   center-point integral, standard format     

        I(1, :) = 0;                                                    %   self integrals will give zero 

        integralxc(:, n) = -I(:, 1);    %   center-point integrals, entries of non-zero rows of n-th column 

        integralyc(:, n) = -I(:, 2);    %   center-point integrals, entries of non-zero rows of n-th column 

        integralzc(:, n) = -I(:, 3);    %   center-point integrals, entries of non-zero rows of n-th column         

         

    end 

    integralTime = toc 

    tic 

    delete(gcp('nocreate')); 

    parpoolShutdownTime = toc 

     

    tic 

    %% Properly weight integrale with the self-triangle area instead of the neighbor-triangle area 

    area_neighbor = Area(transpose(ineighborE)); 
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    area_self = repmat(Area, 1, RnumberE); 

    integrale = integrale .* area_self ./ area_neighbor; 

     

    %%  Define useful sparse matrices EC, PC (for GMRES speed up)     

    const           = 1/(4*pi);   

    integralc       = zeros(RnumberE, N);    %   normal integral component for array of neighbor triangles (center 

point) - to speed up GMRES 

     

    for n = 1:N                  %   inner integral; (n =1 - first column of the system matrix, etc.)              

        index = ineighborE(:, n); %   those are non-zero rows of the system matrix for given n 

        integralc(:, n)  =       +(integralxc(:, n).*normals(index, 1) + ... 

                                   integralyc(:, n).*normals(index, 2) + ... 

                                   integralzc(:, n).*normals(index, 3)); 

    end  

     

    ii  = ineighborE; 

    jj  = repmat([1:N], RnumberE, 1); 

    EC  = sparse(ii, jj, const*(-integralc + transpose(integrale)));               %   almost symmetric 

     

    ECConstructionTime = toc 

    save('integrals_test', 'integrale', 'integralc'); 

end 

 

 

AA.2. Coincident Facet Resolution 
function [P, t, normals, centroids, areas, Indicator, condin, condout, contrast] = clean_coincident_facets(P, t, 

normals, centroids, areas, Indicator, tissue, condin, condout, contrast) 

%   This function searches for facets that are duplicates of other facets, or otherwise have centroids that are 

%   too close together to be properly treated by BEM-FMM.  It removes one copy of each of these duplicate facets 

%   to ensure that the algorithm executes properly. 

  

%   Copyright WAW/SNM 2019-2020 

  

    %---Find nearest neighbors for every facet--- 

    disp('  Evaluating nearest neighbors ...'); 

    [index, DIST] = knnsearch(centroids, centroids, 'k', 2); 

    %Now find entries where DIST is zero 

    index_trimmed = index(DIST(:,2) < 100*eps,:); 

    index_trimmed = sort(index_trimmed, 2, 'descend');  %Higher index first in each row 
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    index_trimmed = sortrows(index_trimmed); %Order rows lowest to highest 

    k = reshape(1:size(index_trimmed, 1), [],1); %Every other row is a duplicate 

    index_trimmed(mod(k,2) == 1,:) = [];     %Delete duplicate rows 

  

    %Now find the facets associated with each index 

    facetList1 = t(index_trimmed(:,1), :); 

    facetList2 = t(index_trimmed(:,2), :); 

  

    %---Check that coincident facets have identical vertices--- 

    disp('  Evaluating coincident facets ...'); 

    coincidentFacetsCounter = 0; 

    coincidentCentroidsCounter = 0; 

    coincidentFacets = zeros(size(facetList1,1), 2); 

    coincidentCentroids = zeros(size(facetList1,1), 2); 

    for j = 1:size(facetList1,1) 

        %Can probably do this outside the for loop - assign vertices1 and 

        %vertices2 exactly as they are, but replace 'j' with ':'.  If it turns 

        %out that one pair of rows doesn't match, take int(rownumber)/3+1 to 

        %find offending entry in facetList. 

        vertices1 = [P(facetList1(j, 1), :); P(facetList1(j, 2), :); P(facetList1(j,3),:)]; 

        vertices2 = [P(facetList2(j, 1), :); P(facetList2(j, 2), :); P(facetList2(j, 3),:)]; 

        %Make sure the vertices are listed in the same order 

        % (Need to do this intelligently if we want to take this outside the 

        % for loop) 

        vertices1 = sortrows(vertices1); 

        vertices2 = sortrows(vertices2); 

        %Check for coincident vertices 

        if(all(abs(vertices1 - vertices2) < eps)) 

            coincidentFacetsCounter = coincidentFacetsCounter + 1; 

            coincidentFacets(coincidentFacetsCounter,:) = index_trimmed(j,:);     

        else 

            coincidentCentroidsCounter = coincidentCentroidsCounter + 1; 

            coincidentCentroids(coincidentCentroidsCounter,:) = index_trimmed(j,:); 

        end 

    end 

    %Clean out unused rows 

%     coincidentFacets(coincidentFacets == 0) = []; 

%     coincidentCentroids(coincidentCentroids == 0) = []; 

    coincidentFacets( (coincidentFacets(:, 1) == 0) & (coincidentFacets(:, 2) == 0), : )= []; 

    coincidentCentroids( (coincidentCentroids(:, 1) == 0) & (coincidentCentroids(:, 2) == 0), : )= []; 
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    disp(['  Found ' num2str(coincidentFacetsCounter) ' duplicate facets']); 

    if(coincidentCentroidsCounter ~= 0) 

        % For coincident centroids but not coincident facets: pull the offending centroids' vertices apart by a very 

small distance. 

        warning(['Found ' num2str(coincidentCentroidsCounter) ' facets with coincident centroids that do not have 

coincident vertices.  Resolving by perturbing vertices of both meshes']); 

        centroids(coincidentCentroids(:, 2), :) = centroids(coincidentCentroids(:, 2), :) - 1e-8 * 

normals(coincidentCentroids(:, 2), :);       

    end 

  

    %---Update conductivity information for duplicated facets--- 

    disp('  Resolving duplicate facets ...'); 

    if(~isempty(coincidentFacets)) 

        keepFacet = coincidentFacets(:,1); 

        deleteFacet = coincidentFacets(:,2); 

        condout(keepFacet) = condin(deleteFacet); 

        contrast(keepFacet) = (condin(keepFacet) - condout(keepFacet))./(condin(keepFacet) + condout(keepFacet)); 

        contrast(isnan(contrast)) = 0; %  

  

        %---Now, delete duplicated facets and all associated information--- 

        areas(coincidentFacets(:,2),:) = []; 

        centroids(coincidentFacets(:,2),:) = []; 

        Indicator(coincidentFacets(:,2),:) = []; 

        normals(coincidentFacets(:,2),:) = []; 

        t(coincidentFacets(:,2),:) = []; 

        condin(coincidentFacets(:,2),:) = []; 

        condout(coincidentFacets(:,2),:) = []; 

        contrast(coincidentFacets(:,2),:) = []; 

    end 

         

    %Remove unreferenced vertices 

    [P, t] = fixmesh(P, t, 0); 

end 
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AA.3. Observation Point Material Assignment 
 
function [id] = assign_tissue_type_volume(obsPoints, n, Center, Indicator) 

    %This function determines the tissue type that exists at user-specified 

    %observation points based on proximity to model surfaces. 

    % obsPoints (Mx3): Observation points whose tissue types are to be determined 

    % n (Nx3): normal vectors of model facts 

    % Center (Nx3): centroids of model facets 

    % Indicator (N): tissue codes of model facets 

     

    % id (M): tissue codes for observation points 

    %Copyright WAW/SNM 2020 

 

    %Preallocate 

    distTriangles = zeros(size(obsPoints, 1), max(Indicator)); 

    pointInsideShell = -ones(size(obsPoints, 1), max(Indicator)); 

    %Construct matrices telling which surfaces enclose/don't enclose which observation points 

    for j = 1:max(Indicator) 

        eligibleCenters = Center(Indicator == j, :); 

        eligibleN = n(Indicator == j, :); 

         

        %For the current tissue, find the triangle closest to each observation point 

        [nearestTriangles, distTriangles(:,j)] = knnsearch(eligibleCenters, obsPoints, 'K', 1); 

         

        %Get vectors from observation points to nearest triangles 

        r = eligibleCenters(nearestTriangles, :) - obsPoints; 

         

        %If the dot product of [vector from point to triangle center] and [triangle normal] is positive, the point is 

inside the current shell. 

        pointInsideShell(:,j) = dot(r, eligibleN(nearestTriangles, :), 2) > 0; 

    end 

     

    %Knowing which observation points are within which surface, find the tissue type at the observation point 

    id = zeros(size(obsPoints, 1), 1); 

    for j = 1:size(obsPoints, 1) 

        %Catch the case where the observation point lies completely outside the model 

        if(all(pointInsideShell(j,:) == 0)) 

            id(j) = 0; 
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            continue; 

        end 

         

        %The tissue type assigned to the point is the tissue type of the closest outside shell 

        insideIndices = find(pointInsideShell(j,:)); 

        tempDistances = distTriangles(j, insideIndices); 

        [~,insideIndicesIndex] = min(tempDistances); 

        id(j) = insideIndices(insideIndicesIndex); 

    end 

end
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Appendix B: TMS-Focused BEM-FMM Toolkit Manual 
 This appendix is excerpted from Appendix A to [1]. 

AB.1. Use, System Requirements, and Third-Party Components 
 The toolkit is intended for academic use only. The software platform is MATLAB 2019a 

or newer (Windows/Linux). While the Windows implementation is stable and fast, the Linux 

implementation of the method may require extra recompilation of the FMM distributables [66] as 

described in the FMM software manual. 

 The following toolboxes (usually supplied with the MATLAB Academic Package) are 

required: Image Processing Toolbox (for NIfTI data processing), Partial Differential Equations 

or Antenna Toolbox (for model remeshing), and Statistics and Machine Learning Toolbox (for 

geometrical search of nearest neighbors used in the volumetric fields plots). Those toolboxes are 

not absolutely necessary, but the TMS toolkit must be modified to operate without them, and its 

performance will somewhat degrade. The FMM engine [66] and example setups with SimNIBS 

segmentation [46] of Human Connectome Project subjects 101309, 110411, 117122, 120111, 

122317, 122620, 124422, 128632, 130013, 131722, 138534, 149337, 149539, 151627, 160123, 

and 198451 [78], as well as example setups with the SimNIBS Ernie model [43] and the IT’IS 

Foundation’s MIDA model [71], have been included with permission in the redistributable 

software package. A GitHub folder [54] contains the base code for Human Connectome Project 

subject 110411. An additional Dropbox folder contains example setups for all 18 head models 

referenced above. 

 

AB.2. Toolkit Organization  
 Multiple copies of the toolkit, each using a different head model, are available at the 

Dropbox repository. For purposes of this walkthrough, we focus specifically on the “light” 

toolkit containing Connectome Subject 110411 (TMS_Master_Spring_2020). The other 

toolkit copies differ primarily in the contents of their Model subfolders and in the coil 

positioning transformations applied in bem1_setup_coil.m. 

 Each toolkit contains a number of short MATLAB or MATLAB-compatible scripts 

organized within three subfolders – Model, Coil, and Engine – and a number of scripts 

located in the main folder, as shown in Fig. A1. 
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Fig. A1. Low-level organization chart of the toolkit. 
 

The main folder and three subfolders are organized as follows: 

 The main folder contains all major computational scripts which define coil/head position, 

perform computations, and output electric fields both on surfaces and in volume. If NIfTI data 

are available, surface meshes and fields can be registered against NIfTI slices using the built-in 

NIfTI viewer. 

 The subfolder Model contains the head model that will be used for analysis. It also 

contains tools for remeshing (coarsening or refining) the head model and for performing 

necessary precomputations, such as double potential integrals for neighbor facets.  

 The subfolder Coil is devoted to coil definition, construction of the coil wire and CAD 

models, and, optionally, separate coil testing/optimization.  

The subfolder Engine contains computational scripts and functions serving different purposes, 

including the BEM-FMM engine. 

 All scripts can be changed/modified and rearranged to organize parametric loops if 

necessary. The scripts of the main folder can be executed at any time for the default 

configuration. 

 

Subfolder Model Main folder Subfolder Coil 
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AB.3. Default Application Example 
 In the following computation example, we will consider Connectome subject model 

#110411 and the MRi-B91 TMS-MRI coil model targeting the hand area of the primary motor 

cortex, located above the precentral gyrus of the right hemisphere (the hand knob area). The 

tissue conductivity values are those of SimNIBS TMS software package, though others may be 

used. The coil is driven with a time-varying current of 
𝑑𝐼

𝑑𝑡
= 9.4𝑒7 𝐴𝑚𝑝𝑒𝑟𝑒𝑠/𝑠𝑒𝑐. 

 

AB.4. Coil Selection and Analysis (subfolder Coil) 

AB.4.a. Coil selection 

 Start with subfolder Coil. Here, dedicated MATLAB scripts generate coil models (both 

wire and CAD), with one script per coil. The coil conductor centerline is defined manually using 

either an analytical formula or a set of points in three dimensions. After that, the corresponding 

script automatically generates the volumetric computational wire grid coil model and the coil 

CAD model. The default coil axis is the z-axis. Run scripts coil01* through coil03*. This 

generates several coil models, some of which are shown in Fig. A2.  

 Finally, run the script coil03_MagVenture_MRiB91.m. This will generate and save the 

MRI compatible TMS coil model MRi-B91 from MagVenture, Denmark shown in Fig. A2a. 

This model, centered at the origin of the Cartesian coordinate system, will be used in further 

analysis below. 
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Fig. A2. Some solid CAD models created using the MATLAB-based coil geometry generator. Fig. A2a is a 

simplified MRi-B91 TMS-MRI coil model (MagVenture, Denmark) with elliptical conductors of a rectangular 

cross-section used in this example; Fig. A2b is a simplified MagPro C-B60 coil model (MagVenture, Denmark); 

Fig. A2c is a generic double figure-eight spiral coil model with an elliptical cross-section and two bootstrapped 

interconnections; Fig. A2d is a simplified Cool-40 Rat small animal coil model (MagVenture, Denmark); Fig. A2e 

is a three-axis multichannel TMS coil array radiator [75]. The red “X” denotes the default coil model. 
 

AB.4.b. Coil fields in free space 

 After the coil model MRi-B91 has been selected, a number of scripts in subfolder Coil 

will allow us to examine the coil’s electric and magnetic fields. These are line plots 

(coil05_tester_line_e/m.m, Fig. A3a,b) as well as high-resolution 2D contour plots 

d) e)

a)

b)

c)

X
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(coil05_tester_plane_coronal_e/m.m etc.) for any component of the electric and/or 

magnetic field in the coronal, sagittal, and transverse planes. The coil’s time-varying current, 

𝑑𝐼/𝑑𝑡, must be specified at the beginning of every script. For the magnetic field, only the steady-

state current, 𝐼0, is required. Scripts coil05_tester_plane_coronal_e/m.m may be run to 

obtain Fig. A3c,d. Note that these scripts also define the observation plane window. This window 

will not be reused for head-coil computations of the main folder. 

 While performing mathematical (mesh generation, FMM computations) and graphical 

operations, these scripts call several functions from the subfolder Engine. A coil mesh 

generator script and a field computation script may be further combined into one script and 

augmented with a parametric loop to enable coil analysis and design (cf., for example,[53]).  

 

AB.4.c. Changing coil geometry/optimizing coil fields 

 All geometry parameters are to be given in the respective coil scripts. This coil is 

constructed as many elliptical coaxial rings of a finite cross-section where the ring axis is the z-

axis. The script introduces the coil geometry by defining intersections of the conductor 

centerlines with the xz- and yz-planes, respectively.  Parameters at the beginning of the script 

coil03_MagVenture_MRiB91.m define the conductor’s characteristics. Rectangular (flag 2) 

and elliptical (flag 1) cross-sections are permitted.  

 Both the computational wire grid and the coil CAD model are generated by the function 

meshcoil.m. This function is specifically applicable to a particular coil geometry consisting of 

a (large) number of concentric loops; it creates the wire coil model all at once. The input are 

intersection points of the loop centerlines with xz- and yz planes. Either a Litz wire model 

(parameter sk = 0) or a skin-layer model (parameter sk = 1) may be used. In the former 

case, the current distribution across a conductor’s cross-section is nearly uniform. In the latter 

case, the wire grid is situated close to the surface of the conductor. The density of the wire grid 

depends on the cross-section triangulation; it is controlled by parameter M – the number of cross-

section subdivisions. The grid resolution in the direction of the conductor centerline is controlled 

by the original centerline discretization. 

 Function meshwire.m of subfolder Engine is more general than meshcoil.m. This 

function creates the wire mesh for an arbitrary single conductor. Either closed loops 

(coil01_SingleRing.m) or open conductors (coil01_SingleRung.m) may be 

generated. The computational wire grid coil model consists of straight, short, infinitely-thin 

current filaments or segments. The current filaments are defined as short straight lines joining 

centroids of triangles of the cross-sectional mesh, which are replicated along the conductor’s 

centerline as many times as required. The cross-section is always perpendicular to the 

conductor’s centerline, so the filaments are always parallel to the conductor’s centerline.  

In either case, the computational coil grid is the structure strcoil with the following fields: 
 

Pwire – nodes of elementary wires inside the conductor 

Ewire – edges (start & end points) of elementary wires inside the conductor 

Swire - weights of elementary wire segments given total current of 1A 
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Weights are required to ensure that the total current through the conductor’s cross-section is 1 A. 
 

 
 

Fig. A3. Coil evaluation example. Electric (a,c) and magnetic (b,d) fields on a line or in a plane with 0.25 M 

observation points for the MRi-B91 TMS-MRI coil (MagVenture). Conductor cross-section is marked in red. The 

coil is driven with a time-varying current of 
𝒅𝑰

𝒅𝒕
= 𝟗. 𝟒𝒆𝟕 𝑨𝒎𝒑𝒆𝒓𝒆𝒔/𝒔𝒆𝒄. An equivalent definition would be a 

conductor current of 5 kA and a CW frequency of 3 kHz. 
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 A solid CAD model (as opposed to a wire mesh model) for the coil conductor can be 

constructed using the function meshsurface.m of subfolder Engine. This script creates a 

structured triangular surface mesh (comprising array of nodes P and array of facets t) for the 

conductor’s side surface. The coil CAD model should properly define the normal vectors of the 

triangular surface patches and the corresponding triangle orientation. Once converted to *.stl 

format using MATLAB’s built-in function stlwrite, this coil model may be used in FEM-

based software packages (e.g. ANSYS Electronics Desktop). Fig. A4 shows a detailed concept of 

the combined wire/CAD coil model using in this software. 

 At present, the coil geometry modeler is restricted to predominantly flat or moderately 

bent conductor loops or nearly planar curves. H-coils with sharp conductor bends in all three 

planes may be constructed if necessary, but only using the circular conductor cross-section. 
 

 
 

Fig. A4. Concept and construction of the coil model. Filaments of current (red) within 

conductor’s surface CAD model are shown. a) – Uniform current distribution (Litz wire); b) – 

modeling the skin effect (a solid conductor at a high frequency). 

 

 

 

 

a)

b)
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AB.5. Head Model Import, Remeshing, and Analysis (subfolder 

Model) 

 

AB.5.a. Two acceptable model formats 

 The head model files should always be located in the dedicated folder Model with 

contents shown in Fig. A1. The primary set are *.stl (stereolithography) files for every individual 

brain compartment in the form of a faceted shell. The *.stl files use triangular facets with normal 

vectors facing out of the shell. This is the standard output of the SimNIBS segmentation pipeline 

and other relevant software packages. The number of shells may be arbitrary. The script 

model02_stl_to_mat_optional.m converts *.stl files, either binary or ASCII, to equivalent 

MATLAB data files (using MATLAB’s built-in function stlread) containing arrays of vertices 

𝑷, facets 𝑡, and normal vectors 𝒏. Every MATLAB data file can further be inspected and 

visualized using the function viewer.m from the same subfolder (as shown in Fig. A5a below). 

Repeat this last operation for every brain compartment in the folder. 

 

AB.5.b. Built-in head models 

 For computational studies that do not involve MRI data collection, the Dropbox location 

provides 16 realistic head models for 16 Connectome Project [78] subjects with isotropic voxel 

resolution of 0.7 mm. These are subjects #101309, 110411, 117122, 120111, 122317, 122620, 

124422, 128632, 130013, 131722, 138534, 149337, 149539, 151627, 160123, and 198451. The 

datasets have been converted to surface models with the help of the SimNIBS 2.1 pipeline; every 

model includes seven brain compartments (skin, skull, CSF or cerebrospinal fluid, GM or gray 

matter, WM or white matter, ventricles, cerebellum). Every model has been checked and 

confirmed against the original NIfTI images and with regard to mesh manifoldness [72]. The 

default average cortical surface mesh edge length is 1.5 mm, the cortical nodal density is 0.55 

nodes per mm2, and the total number of facets is 0.9 M. 

 In addition to the Connectome Project head models, the Dropbox location also includes 

the default example model of the SimNIBS 2.1 pipeline, the Ernie model. This model is 

comparable in complexity to the Connectome models, with 0.9M facets and seven tissue meshes. 

The final model included is the MIDA model [71] with 11M facets and 117 tissues. 

 Any other surface model obtained from SimNIBS pipeline may be used in *.stl or *.mat 

(MATLAB) format. In particular, fifty CAD models, known as the Population Head Model 

Repository or PHM [79],[80] have been made available from the website of the IT’IS 

Foundation, Switzerland [81]. 

 The default head geometry in the folder Model is subject 110411 with the following 

seven 2-manifold watertight enclosed brain compartments: white matter (WM), gray matter 

(GM), cerebrospinal fluid (CSF or inner skull), skull, skin, cerebellum, and ventricles. These 

brain compartments, with the exception of the cerebellum and ventricles, are shown in Fig. A5a. 
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AB.5.c. Processing NIfTI Data 

 NIfTI data (if available) should be located in the same subfolder Model as shown in Fig. 

A1. For example, the Connectome Project database contains T1 and T2 NIfTI data for every 

subject, which were made available with permission. The default application example uses 

subject 110411. 

 
 

Fig. A5. a): Brain compartments of the default package head model # 110411: white matter (WM), gray matter 

(GM), cerebrospinal fluid (CSF or inner skull), skull, and skin. b-d): Head cross-sections in three principal planes. 
 

AB.5.d. Model remeshing 

 A CM2 SurfRemesh® remeshing program from Computing Objects, France is included in 

the MATLAB package. This software enables creation of coarser and/or finer surface 
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representations while minimizing the surface deviation error from the master mesh. MATLAB 

script model03_remesher_optional.m performs automated remeshing to any required 

maximum edge length, which should be given at the beginning of the script. 

 For example, the remeshing program generates a coarser model with the average cortical 

edge length of 1.9 mm and the average cortical nodal density of 0.32 nodes per mm2 when the 

maximum edge length is chosen as 3 mm; the total number of facets is 0.4 M. On the other hand, 

the same program generates a finer model with the average cortical edge length of 0.99 mm and 

average cortical nodal density of 1.2 nodes per mm2 when the maximum edge length is chosen as 

1 mm; the total number of facets is 1.8 M. Fig. A6 shows the corresponding surface meshes for 

the gray matter shell along with the original segmentation. The red circle labels the targeted 

stimulation area close to the precentral gyrus crown. The remeshing procedure may require 

significant time. 
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Fig. A6. a) – Coarser model with average cortical edge length of 1.9 mm and average cortical nodal density of 

0.32 nodes per mm2; b) – default meshing with average cortical surface mesh edge length of 1.5 mm and 

average cortical nodal density of 0.55 nodes per mm2; c) – finer model with average cortical edge length of 0.99 

mm and average cortical nodal density of 1.2 nodes per mm2. The red circle labels the targeted stimulation area 

close to the precentral gyrus crown.  
 

AB.5.e. Creating combined head mesh 

 The combined mesh for the entire head is created by appending individual meshes. This 

is done by running the script model01_main_script.m. The combined mesh is stored in the 

MATLAB data file CombinedMesh.mat. An additional data file, CombinedMeshP.mat, is 

generated in the same folder.  This file contains precomputed double surface electrostatic 

integrals over triangles necessary for accurate BEM-FMM simulations. The default (minimum) 

a)

b)

c)
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number of neighbors is 3. Integrals are computed in parallel, using 15 cores by default. The 

numThreads variable on line 85 of model01_main_script.m may be adjusted depending on the 

computer configuration. Run the script model01_main_script.m. 

 The script model01_main_script.m reads from a tissue index file (always named 

tissue_index.txt) in the Model subfolder to determine which *.mat tissue files to assemble 

into the final model and what conductivity values should be assigned to each of those tissues. 

Each line of a tissue index file provides the following information: tissue name (for reference in 

subsequent scripts), tissue source file, tissue conductivity, and enclosing tissue.  It then assigns 

initial conductivity information to each facet of each tissue: the facet’s interior conductivity (in 

the opposite direction of the facet’s normal vector), the facet’s exterior conductivity (in the 

direction of the facet’s normal vector), and the conductivity contrast across the facet. 

 This script also checks the combined mesh for duplicate facets and for facets whose 

centroids are too close to be treated with the BEM-FMM algorithm. For the Connectome models, 

there should be none of these complications, because tissues of these models surround and 

enclose each other without touching – they are hollow shells, where each shell segments a 

boundary between exactly two tissue types. For the MIDA model, however, the interior and 

exterior boundaries of every tissue are explicitly segmented. This means, for example, that the 

MIDA model’s white matter and gray matter both independently segment their mutual boundary, 

producing a large number of duplicate facets. These duplicate facets would produce singularities 

that invalidate simulation results, so they are resolved as follows. 

 For each pair of duplicate facets, one is designated the facet to be deleted, and the other is 

designated the facet to be kept.  The outer conductivity of the facet to be kept is set equal to the 

inner conductivity of the facet to be deleted, and associated conductivity contrast information is 

updated for the facet to be kept.  The facet to be deleted, and all associated information, is then 

removed from the model.  Fig. A7 below illustrates the results of this operation. 
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Fig. A7. Object 3 (with interior conductivity 𝝈𝟑) surrounds and encloses both Object 1 (with interior conductivity 

𝝈𝟏) and Object 2 (with interior conductivity 𝝈𝟐), so Object 1 and Object 2 initially list 𝝈𝟑 as the exterior 

conductivity for all facets in their respective meshes. Because Object 1 and Object 2 have each explicitly 

segmented their mutual interface, that interface initially contains coincident facets contributed by both objects. 

In this example, Object 2’s copies of the interface facets have been removed, and Object 1’s copies of the facets 

remain.  Object 1’s facets at the interface still list 𝝈𝟏 as their interior conductivity, but have changed their 

exterior conductivity from 𝝈𝟑 to 𝝈𝟐. 

 

AB.6. Computational Workflow (main folder) 
 The computations are performed in the main folder. The scripts of the main folder should 

be executed sequentially. 

 Go to the main folder and execute the script bem0_load_model.m first. This script 

imports head model data into the MATLAB workspace and sets the MATLAB path. It also 

imports the previously computed solution if available. Next (and before running the simulations), 

the coil position above the head as in Fig. A8 must be defined. 
 

AB.6.a. Coil positioning/tissue properties  

Run the script bem1_setup_coil.m. This script 

(i) initializes the coil’s time-varying current, 𝑑𝐼/𝑑𝑡;  

(ii) defines the steady-state current, 𝐼0, which is necessary to compute the magnetic field;  

(iii) defines coil position above the head by proper rotation and translation. The 

corresponding steps include coil rotation about its axis, tilt, and translation;  

(iv) determines coil centerline or another observation line;  
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(v) displays the combined head-coil geometry (skin, skull, GM, or WM shell) as shown 

in Fig. A8; and 

(vi) displays (nearest) intersection points between the tissues and the coil’s centerline; 

also displays the corresponding distances from the bottom of the coil to the 

intersection points. 
 

 

 
 

Fig. A8. Output of the script bem1_setup_coil for the same coil-model configuration: a) Coil position above 

the skin shell. The distance from the coil bottom to the skin shell along the coil centerline is 10.8 mm; b) – Coil 

position above the GM shell. The distance from the coil bottom to the GM shell along the coil centerline is 26.2 

mm. 
 

 Coil position adjustment may be performed by running the script bem1_process_data 

multiple times. When performing mathematical (e.g. coil rotation) and graphical operations, this 

script calls several functions from subfolder Engine. 

 Specifically, coil positioning is done in three steps starting at line 25: 
 

coilaxis        = [0 0 1];                 %   Transformation 1: rotation 

axis 

theta           = 0;                       %   Transformation 1: angle to 

rotate 

Nx = +0.45; Ny = 0.0; Nz = 1.0;            %   Transformation 2: New coil 

centerline 

MoveX = +42e-3; MoveY = 0; MoveZ = 79.5e-3;%   Transformation 3: New coil 

position 
 

AB.6.b. BEM-FMM engine  

 The next script to be executed is bem2_charge_engine.m. This script  

(i) computes the primary field of the coil on every head interface (face nodes then face 

centers by interpolation) using the FMM;  

(ii) computes the iterative solution of the BEM integral equation for the induced surface 

charge density using the FMM, precomputed near-field potential integrals, and 

MATLAB GMRES (generalized minimum residual method [141]); and  

a) b)
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(iii) displays the time for every iteration step in the MATLAB command window and 

plots the entire convergence history when completed.  

 Fig. A9a shows the typical convergence rate (relative residual of the iterative solution); 

Fig. A9b is the same result when the charge conservation law is ignored; and Fig. A9c is the 

same result when the neighbor potential electrostatic integrals are replaced by the crude center-

point approximation.  

 While the convergence without the charge conservation law might appear acceptable for 

this particular example, this solution typically converges to an incorrect result where charges 

accumulate at the sharp boundaries of the bottom of the head. 

 As for the near-field integration accuracy of the default example, three double potential 

integrals for three neighbor triangular patches (default value is given in the script 

model02_mesh_combiner.m) are computed precisely. For non-neighbor triangles, the center-

point approximation is used for the double potential integrals and FMM. The number of neighbor 

integrals can be increased at the expense of a larger storage. 
 

 
 

Fig. A9. a) –typical convergence rate of the solution for the default example; b) –the same result when the 

charge conservation law is ignored; and c) –the same result when the neighbor potential electrostatic integrals 

are replaced by the center-point approximation. 

 

AB.6.c. Surface charge averaging 

 For practical purposes, it is convenient to introduce weighted surface charge averaging 

(i.e., to low pass filter the surface charge density). The default option averages over the target 

facet and its three immediate topological neighbor triangles. After the solution is obtained, we 

substitute in the script bem2_charge_engine.m 
 

c = (c.*Area + sum(c(tneighbor).*Area(tneighbor), 2))./(Area + 

sum(Area(tneighbor), 2)); 

 

This rule can be modified if necessary. 

 When performing mathematical (FMM) operations, the scripts of this folder call original 

and derived FMM functions from the subfolder Engine. 
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AB.7. Fields Output (main folder) 
 

AB.7.a. Fields just inside/outside tissue interfaces  

 The script bem3_surface_field_e computes (via the FMM) and displays the generally 

discontinuous electric field just inside or outside any head compartment. It can be the total, 

normal, or the tangential field. The tangential field component is continuous through the 

interface. The script bem3_surface_field_m performs a similar operation for the magnetic 

field, which indeed remains continuous across boundaries. Scripts bem3_surface_field_c.m 

and bem3_surface_field_p.m perform the same operation for surface charge density and 

surface potential. Fig. A10 shows the output of bem3_surface_field_m.m and 

bem3_surface_field_e.m for the gray matter interface. The total electric field just inside the 

gray matter shell is plotted. 
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Fig. A10. a) – Magnitude of total magnetic field on the gray matter surface. b) – Magnitude of total electric field 

just inside the gray matter shell (the top level of the cortical layer).  

 

AB.7.b. Normal fields just inside/outside tissue interfaces 

 Due to the geometry and electrophysiological characteristics of cortical neurons, the 

electric field component perpendicular to the cortical layer might be significant for 

neurostimulation. The scripts bem3_surface_field_th_gm/wm.m display the normal field 

component just inside or just outside the gray matter and white matter surfaces, respectively. 

Those components are directly obtained from the already-known surface-charge solution without 

extra computations.  
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 To better estimate the focal area for the normal component at the interfaces, a small blue 

sphere is drawn at the center of each GM/WM facet where the absolute field value is in the range 

80-100% of the maximum field value observed just inside (or outside) the shell. The parameter 

of 80% is the field threshold margin; it is assigned in the script bem1_setup_coil.m as 
 

margin = 0.80; 

 

and can be changed at any time if necessary. 

 Fig. A11 shows the corresponding display for the normal fields just inside the GM and 

WM shells, respectively, for the default example. One can see that the normal coil field just 

inside the WM shell appears to be quite focal in this particular case; however, the focal area is 

located not directly underneath the coil. 
 

 
 

Fig. A11. Focal area of the normal field just inside GM (a) and WM (b).  The blue spheres indicate facets whose 

normal field magnitudes are 80-100% of the corresponding maximum field magnitude. 
 

AB.7.c. Segmentation surface cross-section precomputation  

 Next, run the script bem4_process_cross_sections.m. This script pre-computes 

segmentation (triangular surface mesh) cross-sections that will be used in the field output plots. 

The following computations are reasonably fast (real time). 

a)

b)

Normal field magnitude: 80-100%

Normal field magnitude: 80-100%
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 If NIfTI data are available (e.g. T1w.nii), run the script bem4_nifti_import.m to 

import the data and find the required voxel resolution.  Subsequent visualizations will 

superimpose the normal field onto the corresponding NIfTI slices. 

 

AB.7.d. Field focal location in three principal planes  

 With precomputations complete and optional NIfTI data loaded, run the scripts 

bem5_cross_section_XY/XZ/YZ.m to view the surface field superimposed on the corresponding 

NIfTI slices. The default planes have been selected such that they pass through the position at 

which the field maximum occurs. The NIfTI field viewer runs in real time and is assembled to 

display a sequence of slices (a movie) if desired. 

 Figs. 33a-35a of the main paper text show the display for the focal area of the normal 

fields just within the WM shell. Here, the focal area is represented in the form of pink balls 

residing at the interfaces superimposed onto the corresponding NIfTI slices in three principal 

planes. This focal area is defined as the set of all facets whose normal E-field magnitude is 80% 

or higher of the maximum observed normal E-field magnitude. 

 

AB.7.e. Volumetric fields in principal planes  

 The scripts bem6_volume_XY/XZ/YZ.m compute and output the electric field (any of its 

Cartesian components or a magnitude) in the three principal planes. The plane position and its 

size are specified at the beginning of every script. Since the previously computed mesh cross-

sections are used again, these scripts should be made compatible with the previous scripts 

bem5_cross_section_XY/XZ/YZ.m. To calculate (but not visualize) the electric field in a three-

dimensional grid, use the script bem7_volume_xyz.m.  

 The volumetric field computations require significantly more time since the potential 

integrals are no longer precomputed and must be calculated at the time of execution, depending 

on the position of a given observation point versus the nearest interface(s). The critical numerical 

parameter here is the dimensionless (vs. average triangle size) radius, 𝑅, of an integration sphere 

within which integration of the surface charge density is performed. Its default value is 2; higher 

numbers (e.g. 𝑅 = 5 ) will provide better field accuracy but simultaneously slow down the 

computations. 

 Figs. 33b-35b of the main paper text illustrate the total electric field (magnitude) 

distribution for the default example in the three principal planes with the size of 2020 mm each. 

The default field resolution (given in the same scripts) is 100 micrometers. These planes are 

centered at the positions of the maximum normal field just inside the white matter shell shown in 

Figs. 33a-35a of the main text. Direct overlap with the NIfTI data can thus be established. 
 

AB.8. Control of Numerical Accuracy 
 For a given surface mesh resolution, the numerical accuracy of the method is controlled 

by the following parameters: 
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1. RnumberE, found in Model\model01_main_script.m:  Number of neighbor potential 

electrostatic double surface integrals (electric field + electric potential) to be computed precisely. 

The default number is 3. The maximum number is unlimited, but is subject to memory 

constraints. Numbers above 16 do not affect the overall solution accuracy significantly. 
 

2. prec, found in Engine\bemf4_surface_field_electric.m and in all other FMM-related 

sxripts: Intrinsic FMM precision (Gimbutas et al., 2019). The default value is 0.1-0.01 (10-1%). 

Values smaller than 0.01 do not affect the overall solution accuracy significantly. 
 

3. iter, found in bem2_charge_engine.m in the main folder: Number of GMRES iterations 

used. The default value is 14. The maximum number is unlimited, but is subject to speed 

constraints. Numbers above 20 do not affect the overall solution accuracy. 
 

4. tneighbor, found in Model\model01_main_script.m: Number of neighbor facets for 

averaging the computed surface charge density after the solution had been obtained. The default 

number is 3.  
 

5. R, found in bem6_volume_XY/XZ/YZ.m and in bem7_volume_XYZ.m (in the main folder): 

Dimensionless (vs. average triangular face size) radius 𝑅 of an integration sphere within which 

precise integration of the surface charge density is performed when computing volumetric fields. 

The default value is 2. The maximum number is unlimited, but is subject to speed constraints.  

 

AB.9. Test of Numerical Accuracy 
 In application to TMS problems, the BEM-FMM algorithm was previously tested and 

validated against analytical and FEM numerical solutions by [49] and [50]; a very detailed and 

rigorous independent comparison study was further performed by [51]. 
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Appendix C: TES-Focused BEM-FMM Toolkit Manual 

AC.1. Computational Workflow Overview 
 The overall structure and workflow of the TES toolkit are very similar to those of the 

TMS toolkit described in Appendix B.  Figure A12 below shows the toolkit organization.  Note 

that the Coil subfolder has been replaced by an Electrodes subfolder, which contains 

computational scripts and functions for several electrode assemblies.  In general, the same 

parameters and scripts are used for both this toolkit and the TMS toolkit; as such, this section 

will focus mainly on features unique to the TES toolkit. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A12. Low-level organization chart of the toolkit. 

 

 The computations are performed in the main folder. The scripts of the main folder should 

initially be executed sequentially but may subsequently be executed in any order since all the 

data will have already been computed. 

Subfolder Model Main folder Subfolder Electrodes 
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 The first script, bem0_load_model.m, imports head model data into the MATLAB 

workspace and sets the MATLAB path. It also imports the previously computed charge solution, 

if available.  

 The second script bem1_configure_electrodes.m loads pre-existing electrode 

configuration and initializes electrode voltages. The electrode configuration itself is defined and 

assembled in subfolder Electrodes via a separate MATLAB script and prior to performing 

any computations. Electrodes are accurately imprinted, and the skin surface mesh is modified 

accordingly. After every new geometrical electrode assembly, you must rerun the 

model01_main_script.m script in the Model folder to update the complete head mesh. 

Otherwise, incorrect results will be generated. 

 The next script to be executed is bem2_charge_engine.m. This script  

(i) computes the iterative solution of the BEM integral equation for the induced surface 

charge density using the FMM, precomputed near-field potential integrals, and 

MATLAB GMRES (generalized minimum-residual method, Saad 2003);  

(ii) displays the time for every iteration step in the MATLAB command window and plots 

the entire convergence history when completed; 

(iii) computes the resulting surface electric fields (the principal component) and surface 

electric potentials via triangle subdivision (optional). 

 As for the near-field integration accuracy, the double potential integrals for three 

neighbor triangular patches (default value is given in the script model01_main_script.m) are 

computed precisely using the solid-angle approach. For non-neighbor triangles, the center-point 

approximation is used for the double potential integrals and FMM. The number of neighbor 

integrals can be increased at the expense of larger memory usage. 

 For practical purposes, it might be convenient to introduce weighted surface charge 

averaging (i.e., to low pass filter the surface charge density). One option is to average over the 

target facet and its three immediate topological neighbor triangles. After the solution is 

obtained, we might substitute in the script bem2_charge_engine.m 
 

c = (c.*Area + sum(c(tneighbor).*Area(tneighbor), 2))./(Area + 

sum(Area(tneighbor), 2)); 

 

This rule can be modified if necessary. 

When performing mathematical (FMM) operations, the scripts of this folder call original and 

derived FMM functions from the subfolder Engine. 

 After the computations have been completed, the scripts 

bem3_surface_field_c/e/p/th.m display the surface charge density distribution, the surface 

electric field just inside/outside any interface, the continuous electric potential/voltage at the 

interfaces, and thresholded electric field just inside/outside any interface. 

 The next script is bem4_define_planes.m. This script defines three principal 

observation planes and prepares mesh cross-sections that will be used in the field output plots.  
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If NIfTI data are available (e.g. T1w.nii), they will be included in subsequent visualizations 

which will superimpose mesh cross-sections and/or fields onto the corresponding NIfTI slices. 

 The scripts bem5_volume_e/p_XY/XZ/YZ.m compute and output the electric field (any of 

its Cartesian components or a magnitude), and the electric potential in the three principal planes. 

The plane position and its size are specified in the script bem4_define_planes.m.  

The volumetric field computations require more time since the potential integrals are no longer 

precomputed and must be calculated at the time of execution, depending on the position of a 

given observation point relative to the nearest interface(s). The critical numerical parameter here 

is the dimensionless (vs. average triangle size) radius, 𝑅, of an integration sphere within which 

integration of the surface charge density is performed. Its default value ranges between 2 and 5; 

higher numbers (e.g., 𝑅 = 10) may provide better field accuracy but simultaneously slow down 

the computations. 

 A comparison with Ansys Maxwell Electronics Desktop FEM software solutions 

obtained using adaptive mesh refinement and very large tetrahedral meshes is performed in two 

separate folders: Version 0.3_example1_single_brick and Version 

0.3_example2_composite_brick. 

 

AC.2. Application Example 1: Two electrodes on the surface of a 

cube 
 In this example (folder Version 0.3_example1_single_brick), two voltage electrodes 

have been imprinted on one side of a conducting cube with a side length of 1 m. The major goal 

of this (somewhat simplified) example is to become familiar with code functionality and 

execution flow, and compare the results with another numerical solver – Ansys Electronics 

Desktop Maxwell. The main computational script bem2_charge_engine.m should execute in 

approximately 5 seconds (using a 2.4 GHz multicore server).  
 

AC.2.a. Assigning cube conductivity  

 There is only one “tissue” mesh in this folder (subfolder Model): a brick named 

brick01.mat. It has a size of 1000 mm and approximately 35,000 facets. The average triangle 

quality (twice the ratio of the inradius to the circumradius) is 0.81, and the average edge length 

(mesh resolution) is 20.6 mm. Run viewer.m and inspect the cube mesh and its properties.  

The assigned cube conductivity value is 0.1 S/m. This value is given in the editable tissue index 

file (named tissue_index.txt) in the same subfolder Model.  
 

AC.2.b. Defining and imprinting electrodes  

 Go to subfolder Electrodes and run the script electrodes01_imprint.m. This script 

imprints two surface electrodes with the radius of 100 mm each separated by 500 mm on one 

(top) side of the brick. 
 

AC.2.c. Assembling model and computing potential integrals  
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 Now, go to subfolder Model and run the script model01_main_script.m. Reduce the 

number of cores for parallel computations (the numThreads variable) if necessary. This script has 

to be executed only once. 
 

AC.2.d. Running simulations  

 After that, go to the main folder of the example. Run the first script, 

bem0_load_model.m. Next, open and run the second script bem1_configure_electrodes.m, 

which defines electrode voltages and a set of other parameters: 
 

% Voltage (V) applied to each electrode 

electrodeVoltages = [+1, -1];                % For electrode configuration 1 

 

The next script to be executed is bem2_charge_engine.m. This script  

(i) computes the iterative solution of the BEM integral equation for the induced surface 

charge density using the FMM, precomputed near-field potential integrals, and 

MATLAB GMRES (generalized minimum-residual method); 

(ii) displays the time for every iteration step in the MATLAB command window and plots 

the entire convergence history when completed; 

(iii) computes resulting surface electric potentials. 
 

AC.2.e. Visualizing surface fields  

 The next scripts to execute are bem3_surface_field_c/p.m. These scripts display the 

surface charge distribution and the continuous surface electric potential.  
 

AC.2.f. Comparing two numerical solutions  

 The next script to execute is bem6_volume_comparison_XYZ.m. This script computes the 

vector electric field within the cube for 0.125 M points uniformly distributed in space. The 

minimum offset from the boundary is 50 mm. Next, it compares the field with another numerical 

solution obtained using Ansys Electronics Desktop 2019 Maxwell FEM software with 5 adaptive 

meh refinement passes and with the final mesh of 2 M tetrahedra. The Ansys solution executes in 

44 min on the same server. 

 For the present example, the script generates two metrics of error for the vector electric 

field: the relative 2-norm (maximum singular value) 

 

𝐸𝑟𝑟𝑜𝑟2𝑛𝑜𝑟𝑚(𝑬𝐵𝐸𝑀, 𝑬𝐹𝐸𝑀) =  ‖𝑬𝐵𝐸𝑀 − 𝑬𝐹𝐸𝑀‖/‖𝑬𝐹𝐸𝑀‖  
 

and the vector field norm given by (symbol ‖∙‖ now denotes the Euclidean vector norm) 

𝐸𝑟𝑟𝑜𝑟𝑉(𝑬𝐵𝐸𝑀, 𝑬𝐹𝐸𝑀) =
√∑ ‖𝑬𝑘,𝐵𝐸𝑀 − 𝑬𝑘,𝐹𝐸𝑀‖

2𝐾
𝑘=1

√∑ ‖𝑬𝑘,𝐵𝐸𝑀‖‖𝑬𝑘,𝐹𝐸𝑀‖𝐾
𝑘=1

   

Both electric-field errors appear to be 0.57%.  
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AC.2.g. Visualizing volumetric fields  

 Run the script bem4_define_planes.m next to define the observation planes. The 

following scripts bem5_volume_e/p_XY/XZ/YZ.m will finally plot the volumetric electric fields 

and potential distributions in the observation planes. 

AC.3. Application Example 2: Two electrodes on the surface of a 

cube 
 This example (folder Version 0.3_example1_composite_brick) is identical to the 

previous one, but a composite brick with approximately 71,000 facets is considered shown in 

Fig. A13. 
 

 
 

Fig. A13. Problem geometry and electrode position. 
 

 The code sequence of the previous example is executed in approximately 11 seconds 

(using a 2.4 GHz multicore server). The script bem6_volume_comparison_XYZ.m computes the 

vector electric field within the cube for 0.125 M points uniformly distributed in space. The 

minimum offset from the inner boundary in Fig. 5 is again 50 mm. Next, it compares the field 

with another numerical solution obtained using Ansys Electronics Desktop 2019 Maxwell FEM 

software with 9 adaptive meh refinement passes and with the final mesh of 2 M tetrahedra. 

Ansys solution executes in 1 h 42 min on the same server. The script generates both electric-field 

errors of 0.40%.  

 

Electrodes

 = 0.1 S/m

 = 0.01 S/m
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AC.4. Application Example 3: Fronto-Medial Electrode 

Configuration for Connectome Subject 110411 
 In this example, we consider a realistic head model – Connectome subject 110411 – with 

seven head compartments [72]. The default average cortical surface mesh edge length is 

approximately 1.4 mm, the cortical nodal density is 0.55 nodes per mm2, and the total number of 

facets is 0.9 M. The main computational script bem2_charge_engine.m should execute in less 

than 1-2 min (using a 2.4 GHz multicore server). However, the execution time is typically larger 

than for EEG/MEG or TMS modeling with the BEM-FMM. 
 

AC.4.a. Defining electrodes  

 The corresponding example folder is Version 0.3_example3_subject110411. The 

electrode configuration itself is defined and assembled in subfolder Electrodes via a separate 

MATLAB script (electrodes01_imprint.m) and prior to performing any computations. 

Electrodes are accurately imprinted, and the skin surface mesh is modified accordingly. After 

every new geometrical electrode assembly, you must rerun the model01_main_script.m script 

in the Model folder to update the complete head mesh. Otherwise, incorrect results will be 

generated. 

 

AC.4.b. Assigning conductivities of spherical compartments, assembling 

combined geometry, and computing potential integrals.  

 There are seven tissue meshes (skin, skull, CSF, GM, WM, cerebellum, ventricles) in this 

folder (subfolder Model); six of them are shown in Fig. A5. The meshes are inspected with the 

function viewer.m from the same subfolder. 

 The assigned conductivity values are the standard values used in the SimNIBS package 

[46]. These values are again given in the editable tissue index file (tissue_index.txt) in the 

same subfolder Model.  

 Now, run the script model01_main_script.m, which combines all partial meshes 

(including the skin mesh with embedded electrodes) together and computes necessary potential 

integrals. Reduce the number of cores for parallel computations (the numThreads variable) if 

necessary. This script has to be executed only once. 

 Next, go to the main folder of the example. Run the first script, bem0_load_model.m. 

After that, open and run the second script bem1_configure_electrodes.m to define electrode 

voltages and other parameters. 
 

AC.4.c. Running simulations  

 The next script to be executed is bem2_charge_engine.m. This script  

(i) computes the iterative solution of the BEM integral equation for the induced surface 

charge density using the FMM, precomputed near-field potential integrals, and 

MATLAB GMRES (generalized minimum-residual method, Saad 2003);  
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(ii) displays the time for every iteration step in the MATLAB command window and plots 

the entire convergence history when completed; 

(iii) computes resulting surface electric fields (the principal component) and surface electric 

potentials via triangle subdivision (optional). 
 

AC.4.d. Visualizing surface fields 

 After the computations have been completed, the scripts 

bem3_surface_field_c/e/p/th.m display the surface charge density distribution, the surface 

electric field just inside/outside any interface, the continuous electric potential/voltage at the 

interfaces, and thresholded electric field just inside/outside any interface or compartment. The 

compartment identifier is variable tissue_to_plot. 

 

AC.4.e. Plotting volumetric fields  

 Run the script bem4_define_planes.m next to define the observation planes. The 

following scripts bem5_volume_e/p_XY/XZ/YZ.m will finally plot the volumetric electric fields 

and potential distributions in the observation planes. The plot resolution is controlled by variable 

Ms; the field threshold (for graphics) is controlled by variable(s) th; the number of plot levels is 

controlled by variable levels.  

 

 

 


