

ENVIRONMENT
COCKPIT

A Major Qualifying Project Report

submitted to the Faculty
of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the Degree of

Bachelor of Science by

Qiu CHEN Ruoqing FU

Zhen HE Siqi WANG

3/14/2012

This report represents the work of one or more WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement.WPI routinely publishes these reports on its web site

without editorial or peer review.

Page 2 of 157

Abstract
The Environment Cockpit was designed for the BNP Paribas eCommerce technical

support team: just as pilots use a cockpit to control an aircraft, our Environment Cockpit

is a tool to help visualize and control computing facilities. Specifically, it serves to

centralize information from existing tools and to provide a user-friendly and dynamic

graphical representation of different elements of the system to help diagnose alerts

accurately and effectively. This project defined the scope of the tool, implemented a

project prototype with WPF and Graph# library, designed a user interface model and

constructed a prototype implementation.

Authorship
 The main part of this report was developed during B term 2011 by Qiu Chen and Ruoqing

Fu. During C term 2012, Qiu Chen worked with Zhen He and Siqi Wang to write

Appendix D, which was done to meet the graduation requirements for their respective

double majors.

Page 3 of 157

Table of Contents

INTRODUCTION... 6

BACKGROUND ... 11

THE GENERAL CONCEPT OF A SERVER ... 11

THE GENERAL CONCEPT OF A CLIENT .. 11

THE CONCEPT OF DEPENDENCY BETWEEN PROCESSES .. 12

THE WIRE ... 12

DISCOVERY SERVICE ... 15

WPF .. 17

MVVM DATA BINDING... 17

THE IDEA OF AN ‘ABSTRACT’ ITEM ... 19

EXISTING APPLICATIONS AND SERVICES IN THE ECOMMERCE ENVIRONMENT .. 21

Heartbeat ... 21

BMC and MQ .. 21

ITRS ... 25

SAM .. 26

GRAPH THEORY IN THE COCKPIT .. 26

AGILE DEVELOPMENT ... 27

LAYOUT ALGORITHM .. 28

DEVELOPMENT.. 30

CHALLENGE .. 30

The scale of Environment Cockpit ... 30

Difficulties ... 31

Current Difficulties Supporting the Environment .. 31

Display Difficulties ... 32

Technical difficulties .. 33

Implementation difficulties ... 34

STRATEGY .. 35

Initial design ideas .. 35

Graphing tool comparison .. 37

OUTCOME... 39

PROJECT ARCHITECTURE DIAGRAM .. 39

PROJECT PROTOTYPE .. 40

PROTOTYPE FUNCTIONALITIES SUMMARY.. 44

The tab view.. 44

Abstract items and data flow representations... 45

Hierarchical relationships representations .. 47

Logical view and physical view filter ... 48

Adding and deleting different types of connections .. 50

Importing and exporting graph files ... 52

Detailed information and log files display ... 52

Zoom box .. 53

Double click vertices .. 53

Page 4 of 157

USER STORIES ... 53

User story I – tracing alerts ... 53

User story II – adding connections... 56

User Story III – Deleting Connections ... 56

User story IV – Exploring real data ... 57

COCKPIT PROTOTYPE IMPLEMENTATION STRATEGY ... 58

CODING ANALYSIS .. 58

Two open source libraries ... 58

Three self-implemented libraries .. 59

One test package .. 59

Two builds... 60

The Little Cockpit GUI code analysis ... 60

THE ENVIRONMENT COCKPIT GUI .. 62

THE ENVIRONMENT COCKPIT PROOF OF CONCEPT .. 65

METHODOLOGY .. 70

CONCLUSION .. 73

ACKNOWLEDGEMENTS .. 75

REFERENCES .. 76

APPENDIX .. 80

APPENDIX A.1 – COCKPIT PROTOTYPE CODE .. 80

CockpitService.cs.. 80

CockpitServerStartupConsole.cs .. 82

EdgeControl.xaml ... 83

ClientTest.cs .. 89

Brushes.xaml .. 90

DesignerItem.xaml.. 91

Connector.cs ... 90

EdgeRouteToPathConverter.cs ... 91

Singleton.cs... 92

APPENDIX A.2 – SERIALIZED COCKPIT ITEM .. 93

APPENDIX B – ITEMS LIST AND ATTRIBUTES .. 99

APPENDIX C – TIMELINE ... 101

APPENDIX D – STRUCTURED FINANCE .. 103

 Figure 1: Sam .. 7

Figure 2: Proteus monitoring alerts.. 7

 Figure 3 Block diagram of the Environment Cockpit (Sunai Patel, Project Description) 10

Figure 4: Wire discovery service flow chart (The Wire).. 15

Figure 5: Discovery Illustration flow chart (The Wire.) ... 16

Figure 6: MVC diagram ... 18

Figure 7: Transmitting deal data from EFX to FXO (Storey).. 22

Figure 8: Deal information data flow (Storey) .. 23

Figure 9: Snapshot of deal data transmitting in BMC I (Storey) ... 24

Figure 10: Snapshot of deal data transmitting in BMC II (Storey) .. 25

Page 5 of 157

Figure 11: Sam working diagram (Sam.) ... 26

Figure 12: EFX flow environment display ... 31

Figure 13 Logical view and physical view combined .. 33

Figure 14 the Bubble View ... 35

Figure 16 Grid View .. 36

Figure 15 Grid View .. 36

Figure 17 The Environment Cockpit architecture diagram... 40

Figure 18 Wire service Window.. 41

Figure 19 Cockpit Prototype snapshot I ... 42

Figure 20 Tab view demonstration ... 44

Figure 21 The cockpit prototype snapshot II .. 45

Figure 22The cockpit prototype snapshot III .. 45

Figure 23 Cockpit Prototype snapshot IV ... 47

Figure 24 Logical view filter ... 49

Figure 25 Physical view filter—location view .. 49

Figure 26 Connection Type ... 50

Figure 27 Connectors.. 50

Figure 28 Cockpit Prototype Snapshot V .. 51

Figure 29 Connection pop up box Figure 30 Warning message box 51

Figure 31 Load and Save button ... 52

Figure 32 Log Information .. 52

Figure 33 Detailed Information .. 52

Figure 34 Zoom Box .. 53

Figure 35 ... 54

Figure 36 Logical View .. 55

Figure 37 Overall view .. 55

Figure 38 Physical View .. 55

Figure 39 Adding Connection ... 56

Figure 40 Delete Connection .. 56

Figure 41 Group View of Monza ... 57

Figure 42 Gfit Processes and Servers.. 57

Figure 43 UX team Gui Design I .. 63

Figure 44 UX team Gui Design II ... 64

Figure 45 UX team Gui Design III .. 65

file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139039
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139041
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139042
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139043
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139044
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139047
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139051
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139052
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139055
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139056
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139057
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139058
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139059
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139060
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139061
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139062
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139063
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139064
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139065
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139066

Page 6 of 157

Introduction

BNP Paribas, headquartered in Paris, is one of the biggest banking groups in the

world. The bank can be viewed from both the retail aspect and the investment aspect. The

eCommerce Group is a crucial part of investment banking at BNP Paribas because it is

chiefly in charge of foreign exchange trading.

In order to support the trading events within the eCommerce group, the

eCommerce Application Production Support Group (APS Group) functions to resolve

alerts raised by applications, fix non-functioning servers and broken data flow, and

maintain all eCommerce machines, applications and processes.

Currently, the eCommerce APS group utilizes many small applications to monitor

the department environment. These small applications include Sam (Figure 1), a

relatively new application used for starting and stopping processes, and Proteus(Figure 2),

one of the most widely used applications by the APS group supporters to monitor alerts.

Each of these applications has its own purpose, yet displays a small portion of the

eCommerce environment, so it is difficult for the APS group supporters to understand the

status of the general health condition of the environment. Therefore, it would be very

convenient to pull all the environment data and information together and display the

entire system in one application. In this way, the APS group supporters can easily view

the system and quickly respond to the environment alerts.

Page 7 of 157

Figure 1: Sam

Figure 2: Proteus monitoring alerts

The need for a central application to monitor many small applications brought

about the idea of ― environment cockpit‖ proposed by Wells Powell, the head of

Page 8 of 157

eCommerce Technology Group. Our project consisted of carrying out the first stage of

Environment Cockpit development with the eCommerce architecture team.

The first stage of the cockpit development includes collecting user requirements,

developing the cockpit prototype and designing a user interface. After meetings and

discussions with the eCommerce APS supporters and the architecture group, we

concluded that the user interface should be a dynamic and graphic representation of the

environment. Functionality requirements were adjusted daily to meet the rising business

need.

Throughout a timeframe of seven weeks, we actively communicated with different

stakeholders and produced the definition, functionalities summary and development

strategies of Environment Cockpit. By definition, the Environment Cockpit is a support

monitoring tool that can visually present system information and manage the entire

environment for the eCommerce group. It borrows the idea from the plane cockpit, where

pilots sit to control the whole aircraft. Similarly, for APS supporters, the environment

cockpit graphically displays a large number of environment elements in use, both

production and non-production, to allow easier management and diagnostics .With this

solution, the APS supporters will be able to view the overall environment and efficiently

control and manage the system.

The primary goal of the cockpit is to show infrastructure setup and ultimately give

users control to manage the environment. The first phase , which is to show infrastructure

setup ,includes showing which processes are running, where the processes are located,

communication and dependencies between processes, alerts being raised, log information,

Page 9 of 157

server statistics and links to other internal and external environments. By centralizing all

of this information from existing tools, system usage can be monitored more

conveniently and effectively to achieve the maximum utilization. Moreover, developers

can quickly diagnose issues by viewing alerts from the Environment Cockpit and identify

the source of the alert by using just one application rather than looking into many

different ones. On the second phase, the Environment Cockpit may potentially allow

control of the environment, such as having the ability to start and stop processes or move

processes between servers. In order to move a process from one server to another, the

APS supporters have to switch between applications. The Environment Cockpit will

potentially allow users to drag and drop processes between servers, which will reduce the

number of steps to be taken. This kind of control will significantly improve the efficiency

of supporters. If the Environment Cockpit is proven to be successful in the future, other

teams in the bank could apply its design idea, user interface and all the related

technologies to their system maintenance and usage control management.

Considering the complex nature of the project itself, implementing such an

Environment Cockpit application will take years of effort. Given the project timeframe of

seven weeks, we decided to implement a prototype to explore and research different

possibilities of the GUI design and implementation strategies. We then worked with the

User Experience (UX team) to develop a mature user interface design. Based on the

prototype and GUI design, we proposed a proof of concept of how the Environment

Cockpit can be implemented in the future.

The diagram shown below demonstrates the simplified Environment Cockpit

dataflow. From right to left, server information flows to the existing control agents and

Page 10 of 157

monitoring tools. Server information and traffic information (alerts, heartbeats) flows to

the Environment Cockpit represented by the control box on the left

Figure 3 Block diagram of the Environment Cockpit (Sunai Patel, Project Description)

Page 11 of 157

Background

The general concept of a server

In the Environment Cockpit project, servers have two different meanings. The

two meanings are distinct and cannot be confused with each other. First, servers can refer

to the machines that are used in the bank for processing applications such as Bloomberg,

SAM and TOC. The Environment Cockpit displays the status of these servers. Second,

servers can also represent the server component in the environment cockpit client-server

architecture diagram (Figure 16). In the Environment Cockpit, they are the crucial

machines that are running to collect the environment data from plug-ins and dealing with

the requests of the clients.

The general concept of a client

A client is an application or a system that accesses a service made available by a

server. A client could be connected to a server via network remotely or by inter-process

communication techniques on the same machine. One way of connection applies to

devices that are not capable of running their own programs but communicate with

computers by way of network. The other way of connection is founded on the client-

server model that client and server can run on the same machine and connect through

Unix domain sockets, shared memory, named pipes or other inter communication

methods (Client). The Environment Cockpit was developed by the first means. Various

Page 12 of 157

sources of information about the production environment are gathered up into a couple of

central servers, and then distributed to the Cockpit GUI.

The concept of dependency between processes

When one process cannot occur until another process is completed, there is a

dependency between the two processes. Theoretically, process dependency come in two

forms—resource dependency and data dependency. Resources dependency means

―several segments cannot be executed in parallel if they aren‘t sufficient processing

resources‖ and data dependency means ―data modified by one segment must not be

modified by another parallel segment‖. (Borysowich)

When one process produces or modifies some tangible resource or data that is

used by another process, the affected process cannot proceed until the prior process

completes modification. For example, the CDP service contains streaming services that

include pricing data service while 360T is an application that depends on the pricing data

service for further display and computation.

The wire

The wire is a set of libraries that are developed internally by BNP Paribas about

half a year ago. It was defined as ―a set of components designed to enable client-server

and server-server communication‖ on BNP Paribas Wiki page. Both server and client

Page 13 of 157

machines can send message between each other by utilizing the wire library, which can

be accessed in C#, Java and C++ language. There are three key components in the wire.

 Data Object - the definition of the message sent between servers and clients.

 Client - the component to make requests for the message.

 Server - the component to service requests for the message

Data Object:

All the information and data in the message have to be encrypted in a protocol

buffer in order to be transmitted through the wire. The protocol buffer was developed by

Google and defined as ―a language-neutral, platform-neutral, extensible way of

serializing structured data for use in communications protocols, data storage, and more‖

(Developer Guide). The protocol buffer was implemented as a standard for free

transmission between multiple platforms and applications in the bank. Developers need to

define the structure of the message being sent in a file ending with .proto. The file

extension follows not only the protocol buffer syntax rules on the Google Code, but also

a set of stricter rules of naming and syntax required by the bank. All the .proto files have

to be maintained in the definition folder of the DCTV repository in SVN with a rigid

folder structure. Each folder inside the definition folder maps to a .NET binary file in the

output folder. After developers saves .proto files in SVN, the protocol buffer definition

will be automatically converted to an equivalent source code in C#, Java and C++. This

compilation can be realized either locally or remotely in SVN, which usually takes about

20 to 30 minutes. C# and java binary code can then be generated from the output file. By

referencing the generated binary libraries in the wire, developers can directly use setter

Page 14 of 157

and getter methods that are automatically generated through the compilation to

manipulate all the fields defined within the protocol buffer.

Client:

A wire client instantiates either a request or a subscription and sends it to a wire

service. The client references the protocol buffer definition structure in the request

message and will wait for responses from the service after. The difference between a

request and a subscription is that a request will only receive a single synchronous

response from a server immediately while a subscription set up can receive multiple

asynchronous responses from a server whose results will be streamed as they are created.

Before setting up a wire client, the wire environment needs to be configured correctly.

Server:

Each wire service endpoint is defined by its environment and location. A client has

two ways to connect to a wire service endpoint. One way is simply to connect to the

target service by using its hostname and its port number; the other way is to use the wire

discovery service by setting up a unique service identifier and then having the client

request the service identifier. Then, the wire discovery service will provide service

location information according to the service identifier to the client. The second way is a

better mechanism for its simple server migration.

Page 15 of 157

Figure 4: Wire discovery service flow chart (The Wire)

Discovery service

Before getting into the discussion of discovery service, it would be necessary to introduce

a few concepts.

Application: ―a logical name for a deployable component that runs as one or more

processes on one or more hosts.‖ (eCommerce)

Process: ―a separate unit of execution that can be started and stopped by OS

commands.‖ (eCommerce)

Service: ―It consists of a named collection of Protocol Buffer message types, that are

interpreted as inputs, and is associated with a specified Endpoint. Services with the same

name are assumed to implement the same functionality. For simple cases it‘s perfectly

acceptable for an Application name and Service name to be the same.‖ (eCommerce)

Page 16 of 157

Endpoint: ―a Hostname and port number in the TCP implementation, Other wire

implementation are possible and their Endpoints may differ.‖ (eCommerce)

MF Heartbeat:” an MF message on RV that includes a subject, the final part of the

subject being the Application.‖ (The Wire.)

Discovery service identifies applications if they generate the appropriate MF heartbeats.

As indicated by the graph shown below, a service provider transmits the

information through heartbeat. Then the discovery service makes the endpoint

information available to let users view the current service end points. Afterwards, the

discovery service publishes the information onto service data RV for the other instances

in the other regions to discover (The Wire.).

Figure 5: Discovery Illustration flow chart (The Wire.)

Page 17 of 157

WPF

WPF, short for Windows presentation Foundation, is a computer-software

graphical subsystem to make the user interface. It was developed by Microsoft and

released as a part of .NET Framework. XAML scripts are used in WPF for defining and

linking various UI elements. In WPF, users can define the look of an element directly or

with the internal templates and styles indirectly. The styles can be composed by a bunch

of property settings on different types of templates provided in WPF, such as the control

template and the data template that we use a lot for our project (Windows Presentation

Foundation.).

MVVM data binding

Model-View-ViewModel (MVVM) design pattern is a widely spread design

pattern within the software world recently. It was originally developed by John Gossman

in 2005, based on the idea of a very classic design pattern called MVC (Model View

Controller). Model-View-Controller pattern contains the View (what you see on the

screen), the Model (the data displays on the screen) and the Controller (the component

that hooks the view and the model together). The figure below shows the relationship

between these three components graphically. (Bucanek)

Page 18 of 157

Figure 6: MVC diagram

This pattern above enables the isolation of the application logic from the user

interface. Developers who are specialized in the interface design and the backend

implementation are able to develop in a rather independent and simultaneous way. The

loose coupling of developing user interface and backend will also create a smooth

designer and developer workflow and then allow efficient coding process.

The difference between MVVM pattern and the classic MVC pattern is that

MVVM pattern replaces the Controller with the ViewModel component. The

ViewModel‘s advantage over Controller is that it not only serves as a data binding

between the view and the model, but also is an abstraction of the view. It‘s a specialized

aspect of the Controller that exposes public properties and abstractions. However the

discussion of their differences is still an ongoing area as the MVVM pattern is getting

more standardized.

Page 19 of 157

There is a fundamental connection between MVVM and WPF. To simplify the

creation of the user interface, MVVM model is introduced as a standardized way to

leverage somecore features of WPF, which as we mentioned before, contains XAML files

for the view and .Net files for the Model and the Viewmodel. WPF is well suited to

MVVM pattern. Most importantly, by binding the View to the ViewModel, the loose

coupling provided by WPF entirely removes the need for writing codes in the

ViewModel that directly updates a View. Other useful features include the data templates

which can apply Views to the ViewModel objects shown in the user interface and

resource system that can automatically locate and apply the templates. The ViewModel

classes are easy to unit test too. The testability of the ViewModel can assist in properly

designing the user interface because developers can write unit tests for the ViewModel

without actually creating any UI object.

The idea of an ‘abstract’ Item

In the environment, there are different types of components that the APS team

monitors, such as servers, processes, bubbles and so on. In order to represent these

different types of environment elements, it is very useful to develop the idea of an

‗abstract‘ item for the Environment Cockpit first. In the cockpit, an item is a unit of data

that we have to manage, such as a process, a computer, a data center, a sub-net, a

component, a group, a domain, a suite or a database (Roberts). All the items can be

assembled into item hierarchies. For example, the processes running on a server that is in

a data center or the processes that are streaming in an application within a group. The

Page 20 of 157

types of hierarchy will be system generated from the API plug in applications, which

local users have no right to change them. The relationships between items can also be

defined in other ways, such as process connections and data flows between processes. All

types of connections between items are rooted in process connection. For instance, when

two servers are connected to each other, it is actually the processes running on each

server that transmit information between each other, rather than the servers themselves.

The concept of process connection is very important because it reflects the dependency

between each item.

Each item has its unique id, which is used for the environment identification or

hierarchy inferring, a type and a collection of item attributes associated with it (Roberts).

For example, servers have attributes called CPU usage or disk size. Not all item attributes

are fixed. Some of them can be updated over time from the company‘s real system data

(Roberts). With the concept of an ‗abstract‘ item, Environment Cockpit can transmit

information between server and clients. The wire just needs to send a collection of items

without knowing what type of information it is transmitting. A list of abstract items and

their attributes was summarized and attached in Appendix B - a list of abstract items and

attributes.

Page 21 of 157

Existing applications and services in the eCommerce

environment

The information that the Environment Cockpit GUI displays is entirely gathered

from the API plug in applications, including Autopilot, BlackbirdMonitor, SamGUI,

StarGazer, TOCAdmin, Cab Admin, ITRS, RMDS, Syslog, RV, Proteus and so on

(Patel). RV is a messaging framework and Proteus is the most widely used alerts

monitoring tool. Below list a few other important applications that can potentially

provide information for the Environment Cockpit.

Heartbeat

A heartbeat is a broadcast to application monitoring tools about the life and death

of services. There are many kinds of heartbeats, like MF heartbeat and wire heartbeat.

MF heartbeat is used to help the discovery service identify the applications. Although a

Wire instance may support several services, only one heartbeat needs to be sent.

Heartbeat usually includes the application name and the specific services that are

included in the body of the message. MF heartbeat is broadcast on RV whereas a wire

heartbeat is a point to point TCP/IP message between the client and the server

(Heartbeat).

BMC and MQ

BMC is a MQ monitoring tool, known as Queuepasa in the bank. MQ is a queue

component to transmit data between different environments and systems. All the data put

in MQ will for sure reach its destination sooner or later. BMC is mainly used by

infrastructure team to check the MQ data transferring status and speed in the

environment. For example, if an alert is raised by the high latency of the data transferring

Page 22 of 157

process that used MQ component, such as from EFX to FXT, supporters can then explore

the specific MQ queue to check the work flow processing status, speed, data flow size

and other important information on BMC GUI. There are two types of MQ transmitting.

One is inter-application data transferring. Below is a graph to illustrate this type of

transfer. The graph shows an example of transmitting deal data from EFX to FXO

through MQ directly without duplicating the data (Storey).

EFX
including Bloomberg, TOC

and so on

Exporter

MQ Server

To FXT MQ

(in XML format)

Importer

FXT (Primarily used by

front and middle office)

FXO (Primarily used

by back office

settlement team)

Figure 7: Transmitting deal data from EFX to FXO (Storey)

Page 23 of 157

The second type of MQ data transmitting is called intra-application data

transferring. This involves duplicating data and distributing the information to different

places. Below is a graph to illustrate the data flow. As you can see, the deal data gets

duplicated and is transferred by MQ from FXT London to FXT New York, FXT

Singapore and FXT Tokyo (Storey).

FXT London

MQ Server

MQ

(in XML format)

Data Replication

FXT NY FXT Tokyo FXT Singapore

Figure 8: Deal information data flow (Storey)

BMC has another functionality of monitoring transaction process. People can see

the specific timing of when a data flow get transmitted from one source to the other

Page 24 of 157

source. However this functionality has not been used very often by supporters yet

(Storey).

Figure 9: Snapshot of deal data transmitting in BMC I (Storey)

Page 25 of 157

Figure 10: Snapshot of deal data transmitting in BMC II (Storey)

ITRS

ITRS, a third party environment monitoring tool, is a very powerful application

and was already used by several teams within the bank. ITRS provides both hardware and

applications information. Furthermore, it allows users to customize a dashboard overview

of graphically displaying the environment elements that the users are concerned about.

The data on the dashboard overview will also update in the real time. This functionality

seems to be very similar to the Environment Cockpit requirements. However after the

team interacted with Sebastien Dubuisson, an expert on ITRS from Market Data Team,

we discovered that there is a very long learning curve of ITRS and in addition, the budget

is also another huge concern for the eCommerce APS group to adopt ITRS in a short

period of term (Dubuisson).

Page 26 of 157

SAM

SAM stands for Service Agent Manager to manage and monitor server-side

eCommerce processes. Sam provides a database of process descriptors which describe the

processes that run on different machines, a controlling process that manages the

processes schedule, a GUI for viewing and manipulating process descriptors, and an

agent process - SamSon that runs on each server to manage the individual process

lifecycle (Sam.).

Figure 11: Sam working diagram (Sam.)

Graph theory in the cockpit

Dots connected by lines comprise a graph. A ―dot‖ is called a vertex. A ―line‖ is

called an edge. The connecting edges between vertices indicate the relationship between

all the items. The way that dots and lines are presented makes up the layout of a graph

(West). In the Cockpit GUI solution, we defined a few basic classes - PocVertex,

Page 27 of 157

PoxEdge and PocGraph. In the PocVertex class, each item is assigned with an unqiue ID.

These unique IDs are identified in PocEdge for the connection use. When users move the

mouse over an item, four sticking rectangles that belong to the connector class will show

up. Each rectangle has a vertex inherited from PocVertex associated with it. When we say

connecting two items, it is actually the vertices encompassed in the rectangles that are

connected to each other.

Agile development

‗Agile Development‖ is an umbrella term for several iterative and incremental

software development methodologies such as Extreme Programming, Scrum and Lean

Development. Though different methods have their own approaches, they all share a

common rule of incorporating iteration and continuous feedbacks to develop a software

system. ―They all involve continuous planning, continuous testing, continuous

integration, and other forms of continuous evolution of both the project and the software.

As important, they all focus on empowering people to collaborate and make decisions

together quickly and effectively.‖ Agile methods break the whole projects into discrete

tasks and these tasks involve a software development cycle, including ―planning,

requirements analysis, design, coding, unit testing, and acceptance testing when a

working product is demonstrated to stakeholders‖ (Martin). However, in the case of our

project, we worked separately in different locations. Though we didn‘t really follow the

agile method rules that emphasize more face-to-face communications in the same office

because of the physical constraint, we had daily discussions with sponsors to make sure

http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Acceptance_test

Page 28 of 157

that we were following the requirements of the users. Other than the daily conference

meetings with our sponsors, we also had our own discussions to assign daily independent

tasks and facilitate team spirit. The advantage of agile methods is to minimize the overall

risk and make the project more adaptable to customer requests quickly.

Layout algorithm

There are two types of layout algorithm commonly used. They are force-directed

algorithm and parallel algorithm. Force-directed algorithm is often used to draw general

graphs, with the goal of finding the minimum energy to represent the most aesthetically

pleasing drawings. This algorithm employs partitioning of the spatial domain, clever

initial positioning of vertices and multi-level approaches (Fruchterman and Reingold).

Parallel layout algorithm involves three approaches involving multi-level force-directed

graph layout algorithm, parallel simulated annealing algorithm, and graph and

visualization on display walls (Brent and Kung). The Environment Cockpit prototype

made use of force-directed algorithm that the graph# library brought in. However, with

this type of algorithm, the prototype encountered some technical difficulties that users

have to rearrange the layout to get a clear view. This resulted from the compound view

mechanism built on the prototype. Simply put, graph# restricted in computing local and

global attractive and repulsive forces between all the compound layers. Thus far, the

vertex positions could not be updated as accurately at once to reach an equilibrium state

that is to have all the attractive and repulsive forces between nodes balanced.

Consequently, nodes that are supposed to be attracted to each other may act repulsively

Page 29 of 157

on the graph, resulting in an unpleasant visual effect. This can be where the future

Environment Cockpit improves on.

Page 30 of 157

Development

Challenge

The scale of Environment Cockpit

In order to understand the purpose of the Environment Cockpit, it is necessary to

depict the environment numerically. EFX Flow Environment is used here as an example

for simple illustration. In this environment, there are more than 80 running machines

across 4 different regions, around 225 unique process applications, 450 processes and

numerous technologies. These technologies include two operating systems—Windows

and Linux, four programming languages — C#, C++, Java and Python and about 20

different middleware such as RMDS, MQ, RV, LQ2 and FQP. Additionally, as the

picture indicates, the complex data flow between each service collection makes it very

difficult for users to understand the environment situation at a glance.

Page 31 of 157

Figure 12: EFX flow environment display

Difficulties

Current Difficulties Supporting the Environment

First, the eCommerce APS supporters are currently using multiple applications to

manage the system, such as SAM, TOC and Proteus. These existing monitoring

applications all provide different perspectives to the environment and, therefore, take up

much of the screen. When all the applications cannot fit into a supporter‘s screen, he or

she needs to switch between applications, which decreases his or her efficiency.

Second, there is no easy way to view the overall health of applications and

services. Although the APS supporters have various monitoring tools to view different

Page 32 of 157

perspectives of the environment, there is no straightforward way for them to view the

overall system.

Third, there is no easy way to view information about where the servers are

located, overall servers‘ health and where firewalls are located. Also, the relationship

between processes is not displayed by any existing environment monitoring tool.

Although experienced supporters are familiar with the data flow and relationships within

the system, Environment Cockpit will increase their efficiency and provide a

representation of data flow. For new employees, it will provide a central point from

which they can learn.

Display Difficulties

The environment can be displayed in two different perspectives. The first view is

logical view, which displays the logical hierarchy relationship within the system, for

example, processes located in different service groups and service groups located in

different domains. The second view is the physical view, which demonstrates the

physical hierarchy of relationships .This includes processes located in different servers,

servers located in different zones, and zones located in different locations. In order to

show the most of the environment hierarchical relationships, the Environment Cockpit

combines both physical view and logical view together and displays both perspectives in

one graph. The graph in figure 13 is an example of combining physical and logical view.

Page 33 of 157

The physical view on this graph displays servers in different locations and

processes working on different servers. The logical view displays processes belonging to

different applications and the data flow between processes. This is only a very small

portion of the environment. There are actually more than 500 processes within the eFX

flow environment in the bank. There is information for all processes within physical and

logical view, therefore it is a diffult feat to display all this information clearly.

London Server 1 NY Server 3

Process 1

BlackBird Process 5

Process 2
Process 6

Server 2

Process 3

Server 4

Process 7

Process 4 CDP Process 8

Figure 13 Logical view and physical view combined

Technical difficulties

First, it is not possible to retrieve all the logical relationships between processes

from the system, especially for database connections. For example, the program, electro,

is using an SQL query to get information from the database and there is currently no way

for the system to detect when the program is actually accessing the database. This leads

to the impossibility for the Environment Cockpit to create and remove the connections on

Page 34 of 157

its GUI accordingly. Another example is that currently there is a list of wire service end

points available within the bank, but there is no mechanism to get information about

which clients or applications are actually connecting to which wire services.

Second, there are currently no plug-ins developed to get information from the

Wire, Sam, TOC and other applications, so developers don‘t know what information they

will bring to Environment Cockpit, what the format of the data is and how difficult it is to

integrate all the data.

Implementation difficulties

There are numerous monitoring applications out there to assist the APS supporters

with system management. All of these monitoring applications depict the system in

different ways, but there is currently no single application supporters can use exclusively

to gather all environment information. The Environment cockpit was designed to

compensate for this deficiency. Its most distinct feature is to centralize and integrate all

environment data collected from different existing tools such as, RMDS, RV, MQ, SAM,

SAMSON, and TOC. The integration of data from different resources makes the

Environment Cockpit more challenging to implement than the other monitoring tools.

Since the Environment Cockpit deals with a large amount of environment data,

the maintenance is difficult. To resolve maintenance issues, the Environment Cockpit

will utilize automation where appropriate. For example, when any team in the bank

Page 35 of 157

deploys a new process, it will automatically be informed and will display the update on

the GUI.

Strategy

Initial design ideas

The bubble view was one of the original ideas for the Environment Cockpit

proposed by Wells Powell. It was designed to display different elements in the

environment. As the

Network1

Machine 6

1. Disk usage :

2. ...

CDP
1. Disk usage

2. ...

Revolution

Network2

Machine 1

1. Disk usage :

2. ...

Machine 2
1. Disk usage :

2. ...

CDP

1. Disk usage

2. ...

Revolution
1. Disk usage

2. ...

Machine 5
1. Disk usage :

2. ...

Machine 7
1. Disk usage :

2. ...

Machine 8
1. Disk usage :

2. ...

1. Disk usage

2. ...

Machine 9

1. Disk usage :

2. ...

Machine 3
1. Disk usage :

2. ...

Machine 4

1. Disk usage :

2. ...

Figure 14 the Bubble View

Figure 14 indicates, each bubble represents a network and within each network. Users

can view a list of machines with service, data flow, disk usage and other information

related to each machines.

Page 36 of 157

Figure 16 Grid View

The grid view was another original design idea of the Environment Cockpit

proposed by Huw Roberts. Similar to the bubble view, the grid view was also designed to

show all the elements in the environment but in a different way. As shown below in

Figure 15, the outside rectangles represent environment locations such as London and

Tokyo. The second largest rectangles divide the environment in different locations by

service groups such as CDP and Wibble. Within each service group, it contains many

booking processes. The colors red, yellow and green indicate how busy the processes are.

The color red, for instance, means that the process is handling a relatively large number

of bookings per second and indicates that the process is overloaded. The advantage of

this view is that it can fit the largest amount of information with the smallest space used

and shows the health condition of all the processes.

booking1

 booking2

CDP

booking3

booking4

booking1

booking2

LDN
Wibble

booking3

booking4

booking1

 booking2

CDP

booking3

booking4

booking1

booking2

LDN
Wibble

booking3

booking4

...eaming1 ...eaming3

...eaming2 ...eaming4

...eaming1 ...eaming3

...eaming2 ...eaming4

...tor_360t ...tor_CNX

Doobrey

...eaming1 ...eaming3

...eaming2 ...eaming4

...eaming1 ...eaming3

...eaming2 ...eaming4

...tor_360t ...tor_CNX

Doobrey

...eaming1 ...eaming3

 ...eaming2 ...eaming4

...eaming1 ...eaming3

 ...eaming2 ...eaming4

...tor_360t ...tor_CNX

Doobrey

...eaming1 ...eaming3

...eaming2 ...eaming4

...eaming1 ...eaming3

...eaming2 ...eaming4

...tor_360t ...tor_CNX

Doobrey
booking1 booking3 booking1 booking3 booking1 booking3 booking1 booking3

booking2 booking4 booking2 booking4 booking2 booking4 booking2 booking4

...eaming1 ...eaming3

...eaming2 ...eaming4

...eaming1 ...eaming3

...eaming1 ...eaming3

...eaming2 ...eaming4

...eaming1 ...eaming3

...eaming1 ...eaming3

...eaming2 ...eaming4

...eaming1 ...eaming3

...eaming1 ...eaming3

...eaming2 ...eaming4

...eaming1 ...eaming3

booking1

 booking2

CDP

booking3

booking4

Wibble

Doobrey

TYO

Doobrey

...eaming1 ...eaming3

 ...eaming2 ...eaming4

...eaming1 ...eaming3

 ...eaming2 ...eaming4

...tor_360t ...tor_CNX

Figure 15 Grid View

Page 37 of 157

Graphing tool comparison

Below are the comparison results between different graphing tools after detailed

investigation into each of them

Graphing Tools Advantages Disadvantages

Nshape • able to drag items on the graph

• able to create template

• able to customize the size of the

view

• able to generate XML format of

image files that suit the project

needs

• only 10 basic shapes

• very complicated to create

shapes

Visio • able to select templates

• look very professional

• easy to add graph

• not possible to develop a

WPF or.Net based application

Ywork • plenty of documentation and

tutorial

• super nice automatic layout

• able to present overview and

detailed view at the same time

• too expensive to buy the

license

Page 38 of 157

 • Convenient users control such as

expanding or collapsing nodes and

hovering over effects

QuickGraph • able to add shapes dynamically

•simple to code with

• not enough documentation or

tutorial

Graphviz • open source

• searching algorithms

• using Dot text language to define a

graph

• flexible and fancy views

• Reliable

• impossible to be directly

used without a viewer

Graph# • WPF based

• relatively more documentation

• completely free

• able to customize features

• not enough documentation

and tutorial

Table 1: Graph Tool Comparison

Page 39 of 157

Outcome

Project architecture diagram

To start with, it is important to demonstrate project architecture diagram and to

understand the information that feeds into the Environment Cockpit. As indicated by the

architecture diagram below, information travels a long way before it reaches the cockpit.

The blue boxes on the top of the graph are the existing applications that BNP ecommerce

team is using to analyze the environment. For example, HB provides process lifetime

information, ITRS provides hardware monitoring information, SAM provides processes

and services general information, and ADDM manages hardware specification

information. Because all these applications present information in different ways, they

have to be unified and managed on a common user interface that converts all kinds of

information display techniques into one that servers can identify. The API Plug in plays

the role of being the common interface, and it is a very important component in passing

all the information to the server. After the server gets the information, the data goes

through the wire environment that is used to transmit information between client and

server. Ultimately, the cockpit receives, organizes and displays the information on the

GUI.

Page 40 of 157

Sam

HB

BAM+

MF Discovery
ITRS ADDM ServiceN

ow

API Plug in

Server

wire

Client

Environment Cockpit

Figure 17 The Environment Cockpit architecture diagram

Project prototype

As the report stated previously, the banking environment is extremely large and

complex with a large number of applications, technologies, processes, servers and others

statistics concerned. Given the seven weeks of the project timeframe, it is improbable to

develop an application that incorporates all the environment information and meets the

entire functionality requirements. Therefore, the team decided to build a prototype to

explore different aspects of environment cockpit GUI designs, and investigate a few

important implementation technologies as a start up practice for the future development.

Based on the architecture diagram and the original design ideas proposed by the BNP

ecommerce groups, we summarized a list of functionalities that were intended to be

Page 41 of 157

implemented on the Environment Cockpit and these functionalities will potentially

revolutionize the way of how the existing monitoring tools manage the environment.

These new functionalities include alerting mechanism, data flow representation,

hierarchy relationship, logical and physical view filter, adding and deleting connections,

saving and loading files and displaying

detailed information of different

elements in the environment.

In the Environment Cockpit, we

successfully configured the wire

environment, established both server

and client sides, and enabled the

communication between the server and the

Figure 18 Wire service Window

client. The cockpit prototype users need to make sure that they start the cockpit wire

service before they can run the cockpit prototype user interface program. The window in

figure 17 shows up after the wire service is established successfully. The client side is

embedded and used as a libraries reference to the prototype user interface development.

When users run the cockpit GUI, the cockpit client subscribes to the cockpit discovery

service automatically, and thus enables the communication between the client and the

server.

Page 42 of 157

Figure 19 Cockpit Prototype snapshot I

Figure 18 is the cockpit prototype GUI which consists of two tabs. One is the GFit

processes and servers view with the real data generated from the Gfit database while the

other is the Processes Collection View with dummy data that the team defined. We used

dummy data for two reasons. One is the time constraints of the seven weeks period,

which makes it impossible to put changes into production to collect all the environment

information from the existing monitoring tools; the other is that even if we get the

information from the production, there is still the technical difficulty of integrating all the

collected information into one universal presenting format that the cockpit server can

recognize and take in. Because of these reasons, we implemented the user interface with

the dummy data to illustrate the useful functionalities that the real environment cockpit

can possibly have in the future.

Page 43 of 157

Page 44 of 157

Prototype functionalities summary

The tab view

Figure 20 Tab view demonstration

In the Environment Cockpit, tabs can be created by double clicking on the CDP

service collection. A new tab will appear to show all the processes within the CDP

service collection. Tabs can also be closed by clicking the cross button on the right side

of each tab. The leftmost small tab is the tabs overview, which shows the thumbnails and

overall condition of all the existing tabs (Figure 19). Users can enter each tab for more

information by double clicking its thumbnail.

Page 45 of 157

Abstract items and data flow representations

Figure 21 The cockpit prototype snapshot II

Figure 22The cockpit prototype snapshot III

Page 46 of 157

Each vertex in the Environment Cockpit represents an abstract item. An item, as

mentioned before in the Analysis chapter, can be any processes, process collections,

groups, domains, locations and servers. The shape and logo of each vertex are designed

to be easily identified as the type of an abstract item. The color indicates the health

condition of each domain, group and process. For example, as shown in Figure 21, the

red and yellow vertices represent the domains with more than 90% and 50% of alerts-

generating processes, respectively. The green vertices mean the domains are in a healthy

condition. Each edge represents the dataflow, the correlation and the dependency from

one process to the other process. The bidirectional edge stands for the two processes are

exchanging data. With the similar design idea to that of the vertices, the edges have

different colors and thickness set also to differentiate the connection types (such as RV,

MQ or Wire), the health condition of these connections and the data traffic flow. When

an alert on a certain process is raised, the Environment Cockpit gets informed from the

system. The vertex of the process and the service collection that contains the error

process flash red at the same time.

Page 47 of 157

Hierarchical relationships representations

Figure 23 Cockpit Prototype snapshot IV

There are two kinds of relationship for all the abstract items, including

hierarchical relationship and dataflow relationship. Hierarchical relationship is a

containment connection between abstract items. For example, 360TPricing process

belongs to 360T service collections; nycl00057274 server belongs to New York server

collections; and 360TPricing process runs on nycl00057274 server. The hierarchical

relationships are represented by means of compound boxes (Figure 22). Dataflow

relationship is demonstrated with arrow connections. For example, EFXMarkSe process

is pointed to 360TPricing, which takes market data from EFXMarkse. It is also very easy

to differentiate which items represent processes because only processes can have

dataflow relationships.

Page 48 of 157

Logical view and physical view filter

Hierarchical relationship is then classified into two groups--logical hierarchical

relationship and physical hierarchical relationship. Logical hierarchical relationship

demonstrates the processes‘ properties logically. For example, the RTFXPricing process

runs on the RTFX service collection. While physical hierarchical relationship describes

the tangible locations of processes. All of the relationships, consisting of the logical and

physical hierarchical relationship and dataflow relationship, can be displayed on the

cockpit GUI (Figure 22). However, as we have demonstrated in the Analysis chapter, it is

not very easy for users to quickly identify the relationships between items with physical

and logical views both present. Especially in a relatively large banking environment,

there are numerous processes running, and complex dataflow, which make it very

difficult for users to discover the underlying condition in the environment. To address

this issue, we implemented a filter that can allow users to choose which view they want

to see, logical (Figure 23) or physical (Figure 24), in order to fully understand what is

going on in the environment. Users can pick either ―Logical View‖ or ―Physical View‖

from the combo box on the toolbar.

Page 49 of 157

Page 50 of 157

Figure 24 Logical view filter

Figure 25 Physical view filter—location view

Page 51 of 157

Adding and deleting different types of connections

As we have previously discussed in the Analysis chapter, it is not

possible to automatically retrieve all the logical dataflow

relationships from the system, especially for

Figure 27

Connectors
database connections. Thus, for a better management of

the dataflow connections, Environment Cockpit

gives users the control to add and delete connections. Users can add

Figure 26

Connecti

on Type

different types of connections, such as RV, Wire, MQ and unspecified, from the

connections type toolkit box on the left bottom side of the screen (Figure 25). The

dataflow connection can be selected as bidirectional, or unidirectional. Users can also

adjust the connection flow amount to stress how large the traffic amount is. With the

desired dataflow connection type and flow amount selected, users can then link the two

processes by clicking any one of the four square controls surrounding each process

(Figure 26). As shown in Figure 27 below, the unidirectional and small amount wire

dataflow from FXCurrenexMMCantor2 process to EFXMonitorAgent process, the

unidirectional and large amount RV dataflow from FXCurrenexMMCantor2 process to

EEFXIntelHedge-4Intel process and the bidirectional and large amount RV dataflow

between EEFXIntelHedge-4Intel process and EfxCdpBok process were manually added

by the users.

Page 52 of 157

Figure 28 Cockpit Prototype Snapshot V

Figure 29 Connection pop up box Figure 30 Warning message box

Users can also delete any dataflow by hovering over and then right clicking the

connection that they would like to remove. A context menu box will show up. If the users

choose the option of ―Delete the connection,‖another message box that writes ―Are you

sure you want to delete the connection‖ will pop up to confirm users‘ action (Figure 28).

If the users choose ―yes,‖ the dataflow connection will then be successfully removed

from the canvas. The whole graph will re-layout automatically again according to the re-

layout algorithm. However, users do not have the right to delete any system generated

dataflow connections. When they try to delete a system generated connection, a warning

box of ―Oops, you can‘t remove a system generated connection‖ will appear to prevent

them from doing so because system generated connections are surely correct (Figure 29).

Importing and exporting graph files

The changed graph can be

saved by clicking the save

button on the toolbar (the

Figure 31 Load and Save button

third button from the left in Figure 30). The modifications will then be serialized and

transmitted to the cockpit server. On the opposite, if users choose to reload the display,

(the second button from the left in Figure 30), the changed graph will be de-serialized and

reloaded from the cockpit server into the cockpit prototype GUI. The reloaded graph may

not have the exact same layout as saved before. This is caused by the limitations of

graph# libraries that restricted re-layout algorithm and should be improved in the future

implementation of the Environment Cockpit. The system only button (the first button

from the left in Figure 30) is used for generating system only graph without showing any

changes that the users make.

Detailed information and log files display

When users left click

Figure 33 Detailed Information

Page 52 of 157

Figure 32 Log Information

Page 53 of 157

on a process or service collections vertex, the detailed information box at the bottom of

the GUI will be updated, showing different versions, locations, machines and schedules

of the clicked process (Figure 31). Users can also right click on each vertex to see the log

information (Figure 32) of the process. However, at the moment, log file only contains

dummy data since we have not yet built any plug-ins to retrieve the log information from

the system. When the users hover over on vertices or connection lines, a yellow tooltip

box will appear showing brief information about different vertices and edges.

Zoom box

At the right side of the GUI display, users can

control the percentage axis at the top of the zoom box

(Figure 33) to expand and diminish the size of the graph.

In addition, the zoom box also provides a thumbnail of the

whole graph. The framed small black box is used to

signify the part that the user is zooming into.

Double click vertices

Figure 34 Zoom Box

Service Collections, Domains and Groups Vertices are double-clickable and can

then be expanded to their containing items collections.

User stories

User story I – tracing alerts

Page 54 of 157

From the processes collection view

with dummy data, users can notice

that the CDP service is blinking

red (Figure 34). This means alerts

Figure 35 were just raised from the system. If users want to

troubleshoot the errors inside CDP service

collection, they can simply double click on the CDP services to view all the processes

within CDP service

collection. Since the

cockpit prototype does

not always generate a

perfect graph layout,

users can click on the

re-layout button to

generate a clearer

view.

Page 55 of 157

From the overall view (Figure 35),

Figure 37 Overall view

users can observe the environment in both

logical and physical perspectives. In logical

Figure 36 Logical View

view, the cockpit GUI gives

information about which

processes are sitting in the

corresponding service

collection such as CDP, RTFX

Figure 38 Physical View

and 360T. In the physical view, the GUI displays which processes are running in different

locations, like New York or London. The dataflow is already all over the place with a few

processes shown on the graph (Figure 37). Imagine there are many more processes and

much more complex data flow in the real world. The view that combines both physical

view and logical view gives too much information for users to handle. Furthermore, as

users, they can hardly find out why alerts were generated and how these alerts were

related. In order to investigate more about the cause of these alerts, users can utilize the

built-in filter to separate out the information they are not concerned about and gain a

better knowledge of the information they care about. If users choose ―logical view‖

(Figure 36), all the processes will be relocated into different service collections. Similarly,

if users switch to ―location view‖ (Figure 37), all the processes will be relocated into

different locations. From the location view, it is obvious that all the processes in New

Figure 33

Page 56 of 101

York are red. This means that the New York servers have something going wrong and

generate these alerts.

User story II – adding connections

As the APS supporters, if they discover that

there should be a small amount wire data

flowing from FXCurrenexMMCantor2

process to EFXMonitorAgent process but

this connection is not detected or displayed

Figure 39 Adding Connection by the cockpit prototype. The supporters can

then manually add the connection by selecting ―Connection Type‖ as ―Wire‖ and then

click on the two processes. A connection will be added on the graph (Figure 38).The new

connection information will be transmitted into the cockpit server to be saved and

distributed throughout all the other users.

User Story III – Deleting Connections

As the APS supporters, if

they decide that there

shouldn‘t be any dataflow

connections from

EFXMarkSe process to

360TPricing process,

they can just delete the

connections by right

Figure 40 Delete Connection

Page 57 of 101

clicking on the data flow line. However, since the connection between

EFXMarkSeprocess and 360TPricing process is system generated, users don‘t have the

right to delete them manually. A pop up warning box will appear to remind the supporters

that this connection cannot be removed (Figure 38).

User story IV – Exploring real data

From the GFit processes and servers View (Figure 41), if the

APS supporters want to dig out why Monza domain (red on the

graph) is in a seriously ill condition, they can double click on the

―Monza‖ domain, and enter the two groups, ―CORE‖ and

Figure 42 Gfit Processes and Servers
―MONZA‖ within the ―Monza‖

domain. As Figure 40 indicates,

Figure 36

both ―CORE‖ and ―MONZA‖ groups are red too. If the supporters double click on the

―MONZA‖ group, all the processes within the group (Figure 41) will

show up in red, meaning every item within ―MONZA‖ group is

generating alerts. This indicates the whole Monza system is down.

Figure 41 Group

View of Monza

Page 58 of

Figure 41: Double click on “Monza”

Cockpit prototype

implementation strategy

The Environment Cockpit prototype uses WPF as its major coding platform. We

implemented both of the GUI and the back end sides, using xaml and C# programming

language respectively. The Wire and graph# are the two major technologies used in the

prototype. The Wire, an in-house developed middleware tool, and protocol buffer are

applied to transmit information between the cockpit server and clients. Graph#, a WPF

platform based library, is employed to construct the GUI display.

The two major concepts developed in the cockpit prototype are the idea of

abstract item and server with plug-ins. As mentioned before in the Analysis section, an

abstract item can be any process, server and service collections. Each item was assigned

with a unique ID, type and different attributes. In this way, the wire can transmit

information between the server and clients without knowing what type of information it

is transmitting. Server with plug-ins can provide a common interface for all the

information generated from the different existing applications.

Coding analysis

Two open source libraries

We utilized two online open source libraries downloaded from the CodePro

website. They are FabTab, a very popular tab view library, and graph#, a WPF platform

supported library based on GraphViz that provides a powerful and fundamental graph

Page 59 of

drawing resource for the cockpit prototype. Graph# includes more than ten layout

algorithms with one compound layout algorithm, the one that the cockpit prototype is

currently using. Although the compound layout is not ideal and sometimes doesn‘t

produce a perfect layout, graph# is still a pioneer library that can provide the technology

for compound vertices. However, since graph# cannot manage the compound vertices

and update the graph at the same time, the team revised the Graphsharp.control library to

make graph# better fit into the cockpit prototype. In the future, the Environment Cockpit

development team is recommended to keep track of the development of graph#, a

powerful and free graphing tool.

Three self-implemented libraries

We implemented three library packages with about 1146 lines of code. The

package consists of GFitDataBase, Service and Client packages. GFitDataBase is a

library connecting to the Gfit database and retrieving real life data of the processes and

servers basic information from the database. Service library is made up of

MockItemSource and LittleCockpitService as two major classes to create dummy data

and set up the wire discovery service to transmit both the dummy and real data that

GFitDataBase library produces. The dummy data mocks the future ideal data generated

from the system. Client is a library creating the wire client to subscribe the dummy data

and the real data from the wire discovery service.

One test package

We also implemented a test package with about 90 lines of code. The test package

consists of one major test to check if the wire is installed correctly. This is a very useful

package during the debugging process because it can analyze whether the error is caused

by the wire or by the cockpit prototype GUI.

Page 60 of

Two builds

There are two builds within the cockpit prototype, including

WireServiceStartUpConsole (26 lines of code) and the LittleCockpit builds.

WireServiceStartUpConsole should be run at first to register the cockpit wire service.

Users can then run the client side, which is the LittleCockpit build to boot the cockpit

prototype GUI.

The Little Cockpit GUI code analysis

Little Cockpit GUI includes four folders, which are GraphBits, Images, Resources

and ViewModels folders, five windows and seven separated classes.

GraphBits contains 470 lines of code, including PocEdge, PocVertex and PocGraph

scripts, which define the customized vertex, edge and graph, respectively so that each

control can bear many self-implemented attributes. For example, in the cockpit prototype,

a vertex has not only ID as one of its basic attributes, but also health condition, status,

color and double clickable as the other added-on attributes. After processes and processes‘

attributes are transmitted from the wire, they are then translated into different color and

shape of vertices to be displayed on the GUI. Images folder contains image files used in

the cockpit prototype. Resources folder defines the style of almost all of the UI elements

within the cockpit prototype and provides some useful templates and brushes. The

resources folder, with around 1900 lines of code in total, contains the style scripts of

expander, scrollbar, scrolling viewer, slider, toolbar, toolbox, tooltip and zoom box, a

brushes library with different colors and gradients, and most importantly, a DesignerItem

xaml markup that defines the style of vertices and edges. By using data binding provided

by WPF, the cockpit prototype binds different attributes of vertices and edges to different

vertex color or shapes and edge thickness.

Page 61 of

MainwindowViewModel C# script with a total of 1135 lines of code is the part

that connects the backend data to the view. To be more specific,

MainwindowViewModel‘s main functionality is to produce the view of the graph with

the backend data. With the data transmitted from the wire, MainwindowViewModel

calculates how many vertices there should be to be put on the canvas, and determines the

attributes of these vertices. MainwindowViewModel also provides methods of producing

different types of view, for example, loadlogicalview method will ignore the physical

locations aspect of the processes and only display the logical belongings while

loadLocationview method will only focus on the location aspect of different vertices.

Five windows include CDPMainWindow (437 lines of code),

DummyProcessCollectionMainWindow (111 lines of code), GFitWindow (494 lines of

code), InfoLog (60 lines of code) and MainWindow (240 lines of code). The

MainWindow window utilizes FabTab library to set up a basic tab view and then adds

DummyProcessCollectionMainWindow and GFitWindow for the ―Processes Collection‖

and the ―GFit Processes and Servers‖ tabs, respectively, within the prototype GUI. When

users double click on the CDP service collection vertex, they trigger the

CDPMainWindow window to show up in a new tab and the infoLog window is triggered

by right clicking on the ―Show Log information‖ option on each vertex.

Each of the seven separated classes plays a very important role in the cockpit

prototype. Connector class (125 lines) implements the connector control around each

vertex. This class incorporates a mouse clicking event control function that can memorize

the last two clicked vertices and add the edge between them. MoveThumb class (182

lines) allows vertices to be movable and resizes the canvas according to the whole

Page 62 of

vertices layout. In addition, MoveThumb class implements the functionalities of left

button clicking to update the detailed information box and double clicking to dig into a

deeper level of the graph. Singleton class (49 lines) is another crucial class to expose

several essential entities so that they can be used globally, for example, the previously

clicked vertex, the current clicked vertex, the main window and so on. PocSerialzeHelper

class (92 lines) is to facilitate the save and reload process and

EdgeRouteTopathConverter (134 lines) is used to draw the arrow head shape of the

connections. Toolbox (29 lines) and Zoom box (117 lines) classes implement the toolbox

and zoom box functionalities respectively.

Within the past seven weeks, the team learned WPF, C# and xmal by themselves,

worked with graph#, the wire and FabTab libraries and then implemented around 5000

lines of code. At the end of the project, they successfully realized several crucial

functionalities, such as filter, connection management and alerting system within the

cockpit prototype GUI, and proved the idea and feasibility of the Environment Cockpit.

Because of the size of the code, it is not feasible to attach all of the cockpit prototype

code in this report. Thus only several important pieces of sample code are demonstrated

in Appendix A.1 – Cockpit Prototype Code and a small piece of the serialized cockpit

item is illustrated in Appendix A.2 – Serialized Cockpit Item

The Environment Cockpit GUI

In order to define a clearer Environment Cockpit GUI design for future

implementation of the real Environment Cockpit, the architecture group and our team

Page 63 of

actively interacted with UX team and the APS team supporters. The UX team and our

team came up with the following GUI design.

Figure 43 UX team Gui Design I

From figure 42, on the top of the toolbar, the Environment Cockpit is currently

showing FX Global Environment. The green boxes indicate the health of each service

collection and the lines demonstrate the dataflow. From the toolbar on the top, users can

choose to view different layers of information, such as processes status or processes

connection status. Users can also click on ―Edit‖ button to add and remove connections

within the graph. In the bottom of the GUI, users can view the alerts grouped by

difference source, process group, application, or type and also the alerts log that shows

the history record of the alerts. From the graph canvas, users can tell the blackbird service

is going wrong with one red box. Users can then double click on the service collection to

get a detailed logical view about why the Blackbird service is giving error. From the

Page 64 of

processes view below in figure 43, it is clear that the red connection of the data flowing

from the RMDS is actually giving error information into the Blackbird process.

Figure 44 UX team Gui Design II

From the top right hand side, users can also switch to the physical view of the

Blackbird services collection (Figure 44). The middle panel shows different black boxes

of servers or server collections sitting in grey boxes of zones within London or New York

locations. From the toolbar on the top, users can filter out different types of connections

by picking ―All connections,‖ ―Manual Connections,‖ ―System Connections,‖ tabs. In the

bottom, users can view the detailed information of servers that the Blackbird service

collection is running on, which includes location, zone, memory, CPU and disk space of

Page 65 of

the servers. If the users double click on a server collection, for example, Nirvana Servers

Collection, the bottom detailed information box will be updated to the servers‘

information that is only related to the Nirvana Servers Collection.

Figure 45 UX team Gui Design III

The Environment Cockpit proof of concept

The Environment Cockpit is designed by the architecture team and our team to fill

in the blanks of the current existing monitoring tools and to accommodate various

requirements from the APS supporters. Within all the functionalities proposed in the

Environment Cockpit, developers were especially concerned with the functionality of

giving users the right to add and delete connections. Developers generally doubted that

Page 66 of

the users will actually take the time to add and delete connections and maintain the

Environment Cockpit dataflow by themselves. Through many interviews and discussions,

there were several APS supporters confirmed that they would like to see and utilize this

functionality; however, there were also opposed voice from others. Thus, we strongly

recommend to investigate more and to collect more precise users‘ responses regarding to

this functionality.

Except the main functionalities described in the Environment Cockpit GUI section

above, several other functionalities were very popular among the APS supporters and it

will be very beneficial to consider the implementation of them in the future. First is

placing layers on vertices. For the APS supporter, the most important information that

matters to them is the status of applications and the status of alerts. Thus showing these

two parts of information straightforwardly by placing extra information layers on top of

each vertex within the Environment Cockpit will be very useful. Second is dynamic alerts

notification. Because users usually customize several filters to focus on the areas of the

environment that they are interested in, they will often neglect the health condition and

alerts in the other part of the environment. Thus, it is recommended to have a small spot

in the GUI to indicate the health condition and the alerts happening in the part of the

environment other than the users‘ focus area. Third is automation. The Environment

Cockpit is going to include enormous complex data of the whole environment and the

maintenance of this giant data entity is for sure going to be problematic. Because of this,

the Environment Cockpit is designed to use automation as much as possible. For example,

whenever a team deploys a new process, the Environment Cockpit should get informed

and display the newly added process at real time.

Page 67 of

Some other user stories were also depicted by the APS supporters and developers,

who expressed the hope for the Environment Cockpit to have these abilities in the future.

One user case is to have detecting ability of ineffectiveness in the dataflow. For example,

if process A locating in London acquires data from process B in New York, while there is

process C in London offering exactly the same service as process B, it is quite obvious

that using process C will remove the data transmission overseas and, as a result, improve

efficiency. The environment cockpit should be able to display, detect and highlight this

kind of inefficiency for users so that users can make improvements of the environment

dataflow. The other user case is to show server resource usage within the system. For

example, if there are several processes providing the same service and only one of these

processes is actually requested by many other clients, this process will be way overloaded

and the speed of computing will decrease; while the other processes providing the same

service are just left idle. The Environment Cockpit should again have the ability of

detecting and demonstrating this kind of inefficiency in the system and alerting users

about it.

Throughout the requirements collection period, our team not only gathered

suggestions specifically for the environment cockpit, but also pulled together some other

ideas of improving the monitoring system in the bank as a whole. For example, the

existing tools name the same applications and processes differently and this is very

confusing for users when they want to evaluate the same process across different

platforms. Thus, there is an urge demand to have a unified application name within the

system across all the monitoring platforms. The unified status type of the application is

also recommended because different tools display different types of status for the

Page 68 of

processes. The current alert message was also said to be not accurate and straightforward

by the APS supporters. Thus, developers are highly suggested to write good alert

message for their products.

The technology of Graph# was proven to be a cheap, useful, appealing and

suitable for the Environment Cockpit through the prototype development. However, there

are a couple points that need to be noticed by future developers. First, Graph# is still

under development. The current version used in the cockpit prototype is the most recent

Oct 2011 version and future developers should follow the Graph# Code Project

homepage to retrieve the updated version with more methods. Second, as we have

mentioned in the prototype section before, Graph# does not always generate a perfect

graph layout with compound boxes. Thus, efforts can be made to improve the existing

compound graph layout algorithm in graph#. Third, when people save graph, they expect

to reload the exact same layout as the saved graph. Therefore, the Environment Cockpit

in the future should have the ability of disabling the automatic layout algorithm imposed

by Graph#.

Through the seven weeks‘ work, the Environment Cockpit is proven to be not

only a powerful monitoring tool and highly expected by users, but also feasible in

implementation through the development of the prototype. As the progress of the

Environment Cockpit continues after the leave of our team, the cockpit developers can

refer to the cockpit prototype for some useful technology, such as Graph# and the Wire.

They can also implement according to the architecture diagram and follow the GUI

design illustrated in the above Outcome section. They can consider the other user

requirements collected by our team and keep users actively involved throughout their

Page 69 of

implementation of the Environment Cockpit to create a well-designed, popular and

powerful monitoring tool.

Page 70 of

Methodology

A major difficulty of the project was the long distance development between the

two WPI team members. Qiu worked in the BNP Paribas London site while Linda

worked in the BNP Paribas New York site. The time difference and the communication

difficulties at first obstructed the project progress. The major communication tool used in

the bank, Windows Communicator, took some time to be set up in New York. The first

several meetings were spent resolving technical difficulties involving international

conference calling. In addition, Qiu and Linda had to overcome the time difference to

work together on the project. The mid-project presentation and one final presentation

were successful although the two team members were in different countries.

The first few days of working on the project, we familiarized ourselves with the

internal environment monitoring software such as Sam, BlackBird, TOC and so on. Then,

we met with the APS group to learn about the limitations of the existing applications. The

aim was to gain a full understanding of the existing monitoring tools in order to better

design the Environment Cockpit.

Since the Environment Cockpit is a start up project in the bank, the first task was

to define the project scope and gather user requirements. We had a few meetings with the

stakeholders and different teams, including the APS group and the architecture team, to

discuss what features they would like to include in the cockpit and their ideas on the

implementation of the project in the future. Although we were in different locations, we

Page 71 of

still adopted the Agile development working method as the project proceeded. On a daily

basis, we managed to speak to our sponsors to ensure the functionality requirements and

project scope suited business needs. Meanwhile, we held daily discussions in order to

separate daily tasks , and discuss about development strategies and implementation plans.

These frequent communications greatly helped project development and allowed the

project to be adaptable to the ongoing client requests.

Soon after the project scope was cleared, we started implementing the user

interface prototype. The goal was to create visuals that are practical and useful in

accordance with functionality, but also pleasing to the user. This required not only

excellent coding skills, but also the use of a proper graphing tool. The team investigated

numerous graphing technologies such as Nshape, graphviz, Yworks, graph# and others.

Graph# turned out to be the best fit for the project though it was relatively new and there

was not much documentation available. The options were considered carefully given the

constraints of the limited project timeline and the restricted option of programming

languages (the programming languages were restricted to C# and WPF).

We encountered many technical challenges as the project went on. For example,

the physical view and logical view were difficult to combine and display graphically.

There was so much information that it was a struggle to create a user interface that was

both practical and thorough. The visual aesthetics of the user interface were limited by

practicality. As the Outcome chapter stated, data flow between different elements in the

environment would become messy and disordered with every piece of information

shown. To address this issue, we vigorously interacted with the architecture team in the

eCommerce group, brainstormed, experimented and finally discovered the solution of

Page 72 of

implementing a filter that would allow users to choose views. The views can be either

logical or physical. This solution was rather successful because it practically presented all

the important information without ruining the aesthetics of the GUI.

WPI student team also worked with the UX group for user interface design, and

outlined a solid proof of concept regarding how environment cockpit project could be

developed and who else it could benefit in the future. The future steps are to establish the

back end connection, develop environment control and implement UX group‘s user

interface design. A timeline of the implementation and workflow steps of the WPI

student team‘s project work is attached in Appendix C – Timeline.

Page 73 of

Conclusion

The seven weeks of working on the Environment Cockpit project was a fantastic

learning experience. We were honored to be given such a great opportunity to work with

so many intelligent and friendly people from a world-class top-notch bank. We were

extremely appreciative of all the given guidance, support and inspiration along the way.

The aim of the Environment Cockpit project was to deliver a business solution to

help supporters efficiently monitor and maintain the system. Inspired by the original idea,

bubble view and grid view, proposed by Wells Powell and Huw Roberts respectively, we

developed a user interface that could visually present all the environment information and

allow users to control, manage and maintain the environment. Environment Cockpit

centralizes all the environment information, provides a dashboard overview of the system

status, and displays the general health condition of the environment. In addition,

Environment Cockpit is able to display the complex data flow among all the elements,

which no other existing application currently does.

The Environment Cockpit can revolutionize the way supporters monitor the

environment. With the Cockpit, they do not have to open all the discreet existing

monitoring tools, fit them into a handful of screens, and analyze the environment‘s

overall health condition from all the complex and huge tables of existing tools. Instead,

they could just open up one application, the Environment Cockpit, view the system health

graphically, dig out the real cause of the alerts, understand environment dynamic, and

have better control of the system. Specifically, if anything in the environment goes

Page 74 of

wrong, alerts would be generated to inform the users. Users could quickly locate the

error, what caused the error, and quickly discover the other applications that the error

may affect. This was achieved by displaying two forms of information in the

Environment Cockpit— the physical view and the logical view. Depending on what

information they would like to know, users can choose which type of view they want to

see. Users are also given certain controls such as adding/deleting connections to monitor

system data flow and saving/loading files from the cockpit server. A log file, tooltip and

information box were also provided to reflect the system situation in different ways.

Upon the completion of the Cockpit prototype, we recommended a few steps that

the future Environment Cockpit development group could take to continue the project

and summarized the other user requirements that haven‘t been implemented in the

prototype or designed in the GUI, but were strongly expressed by the supporters. By

defining the project scope, investigating graphing tools, constructing the prototype, and

providing an implementation strategy for the future, WPI‘s student team intended to

initiate the huge environment cockpit project for the bank. Ultimately, the Environment

Cockpit will improve the supporters‘ efficiency and provide better assistance for

monitoring trading events.

Page 75 of

Acknowledgements

From BNP Paribas

• Wells Powell – Head of eComm Group

• Huw Roberts – eComm Architecture

• Sunai Patel – Configuration Management Lead

• Nicolas Wright - Configuration Management --New York

• Martin Gittins – Architecture Developer

• Daniel Slater – Architecture Developer

• Mohammed Abu Sharikh—Architecture Developer

• Nick Matterson – User Experience Team

• Emmanuel Philipon – Application Production Support

• Amine Bakkali Yedri – Application Production Support—New York

• Sebastien Dubuisson – Market Data Team

From WPI

• Professor Arthur Gerstenfeld—WPI School of Business

• Professor Daniel Dougherty— WPI Department of Computer Science

• Professor Xingming Huang—WPI Department of Electrical and Computer Engineering

• Professor Jon Abraham—WPI Department of Mathematical Science

Page 76 of

References

―The server.‖,Comer, Douglas E.; Stevens, David L. (1993). Vol III: Client-Server

Programming and Applications. Internetworking with TCP/IP. Department of Computer

Sciences, Purdue University, West Lafayette, IN 47907: Prentice Hall. pp. 11d.

ISBN 0134742222.

“Client‖ Wikipedia, Dec 20
th

. Web. ‹

http://en.wikipedia.org/wiki/Client_%28computing%29›.

Borysowich, Craig. "Overview of Dependency Diagrams." IT Communities - Share

Knowledge at Toolbox.com. 25 May 2007. Web. 29 Dec. 2011.

<http://it.toolbox.com/blogs/enterprise-solutions/overview-of-dependency-diagrams-

16493>.

“Developer Guide‖ Protocol Buffers Google Code, Dec 20
th

. Web. ‹

http://code.google.com/intl/zh-CN/apis/protocolbuffers/docs/overview.html›.

Roberts, Huw. ECommerce Cockpit Straw Man. Tech. 1.0st ed. London: BNP Paribas

ECommerce, 2011. Print.

Bucanek, Jame. Learn Objective-C for Java Developers. Apress, 2009. Print.

"Discovery Service." BNP Paribas Wiki. BNP Paribas London, 2009. Web. 26 Oct. 2011.

Patel, Sunai. Personal interview. Oct 30
th

. 2011.

Beal, Vangie. "What Is A Server Platform? ?? Webopedia.com." Webopedia: Online

Computer Dictionary for Computer and Internet Terms and Definitions. 28 Jan. 2005.

Web. 29 Dec. 2011.

<http://www.webopedia.com/DidYouKnow/Hardware_Software/2005/servers.asp>.

"The Wire." BNP Paribas Company Wiki. Web. Nov 15
th

. 2011. <

http://wiki.london.echonet/display/DC/Discovery+Service+Overview >

"Heartbeat." BNP Paribas Company Wiki. Web. Nov 15
th

. 2011.

Storey, Sean. Personal interview. Nov 30
th

. 2011.

http://en.wikipedia.org/wiki/Prentice_Hall
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Client_%28computing%29%E2%80%BA
http://it.toolbox.com/blogs/enterprise-solutions/overview-of-dependency-diagrams-
http://code.google.com/intl/zh-CN/apis/protocolbuffers/docs/overview.html%E2%80%BA
http://www.webopedia.com/DidYouKnow/Hardware_Software/2005/servers.asp
http://wiki.london.echonet/display/DC/Discovery%2BService%2BOverview

Page 77 of

Dubuisson, Sebastien. Personal interview. Nov 30
th

.2011.

"Sam." BNP Paribas Company Wiki. Web. Nov 15
th

. 2011.

West, Douglas B. Chaos: Introduction to Graph Theory. Prentice Hall, 2001. Print.

“Windows Presentation Foundation.‖ Microsoft, Dec 20
th

. Web. ‹

http://msdn.microsoft.com/en-us/library/ms754130.aspx›.

Martin, Robert Cecil. Agile Software Development: Principles, Patterns, and Practices.

Prentice Hall, 2003. Print.

Fruchterman, Thomas M.J. Reingold, Edward M. "Graph drawing by force-directed

placement" Software: Practice and Experience 21.11 (1991): 1129-1164. Print.

Brent, R.P. Kung, H.T. "A Regular Layout for Parallel Adders" IEEE Transactions on

Computers C-31.3 (1982): 260-264. Print.

Ashcraft, B.Adam, and Til Schuermann. “Understanding the Securitization of Subprime

Mortgage Credit.” Federal Reserve Bank of New York Staff Reports no. 318. Print.

Mar. 2008. Feb. 2012

Bank of China. Underwriting of Structured Product Financing. Retrieved February-17
th

,

2012 http://www.boc.cn/cbservice/cb2/cb24/200807/t20080710_817.html

Barnett-Hart, K. Anna. “The Story of the CDO Market Meltdown: An Empirical Analysis.”

Harvard College Cambridge, Massachusetts. Print. 19 Mar. 2009. Feb. 2012

Bigio, Saki, and Jennifer La’O. “The 2008 Financial Crisis: Institutional Facts, Data and

Economic Research.” Print. 29 Aug. 2011. Feb. 2012.

Black, Fischer and Myron Scholes. “The pricing of Options and Corporate Liabilities.”

Journal of Political Economy. Vol 81, No. 3 (May – June., 1973) 637-654, Print.

Capone, P. Elisa. “Collateralized Debt Obligations(CDOs): An Introduction.” RGE

monitor. Print. 7 Mar.2007. Feb. 2012.

Dowd, Kevin. “Moral Hazard and The Financial Crisis.” Cato Journal, Vol.29, No. 1. Cato

http://msdn.microsoft.com/en-us/library/ms754130.aspx%E2%80%BA
http://www.boc.cn/cbservice/cb2/cb24/200807/t20080710_817.html

Page 78 of

Institute. Print. Winter. 2009. Feb. 2012

Fabozzi, Frank J., Henry A.Davis and Moorad Choudhry. Introduction to Structured

Finance. The United States of Amrica: John Wiley & Sons, Inc, 2006. Print.

Fagan, Mark, and Frankel Tamar. “MBS, ABS, SPV, CDS, ARM, BBB+: Understanding

the Alphabet Soup of Securitization.” Copyright Fagan and Frankel. Print.

Oct.2008. Feb.2012.

Fender, Ingo, and John Kiff. “CDO rating methodology: Some thoughts on model risk and

its implications.” Bank for International Settlements Working Papers No. 163.

Monetary and Economic Department. Print. Nov. 2004. Feb. 2012

Gonzalez, Carlos. “Why Securitization?” Stewart title Latin America. Print. Feb. 2012.

“House of Cards” CNBC. 12 Feb. 2009. Media. Feb. 2012

Jobst, Andreas. “What Is Securitization?” Financial & Development. Print. Sept. 2008.

Feb. 2012

Katz, Jonathan, Emanuel Salinas, and Constantinos Stephanou. “Credit Rating Agencies.”

Crisis response. Print. Oct. 2009. Feb. 2012

Library of Economics and Liberty. Takeovers and Leveraged Buyouts. Retrieved Feb-23
rd

 ,2012

http://www.econlib.org/library/Enc1/TakeoversandLeveragedBuyouts.html

Lowenstein, Roger. The End of Wall Street. New York: Penguin, 2010. Print. Feb. 2012

O’Kane, Dominic and Stuart Turnbull. “Valuation of Credit Default Swaps.” Lehman

Brothers, Quantitative Credit Research April 2003: Print.

Song, Shin Hyun. “Securitization and Financial Stability.” The Economic Journal, 119

(March), 309-332. Royal Economic Society. Print. 2009. Feb. 2012

Stewart, Frances. “The 2008-9 crisis and developing countries: implications for poverty.”

Print. Feb. 2012

http://www.econlib.org/library/Enc1/TakeoversandLeveragedBuyouts.html

Page 79 of

"2008 Financial Crisis." Concept:. Web. 29 Feb. 2012.

<http://www.wikinvest.com/concept/2008_Financial_Crisis>.

“Report on securitization incentives”. Joint Forum. Web. Feb.

2012.http://www.bis.org/press/p110713.html

http://www.bis.org/press/p110713.html

Page 80 of

Appendix

Appendix A.1 – Cockpit Prototype Code

CockpitService.cs

using System;using System.Collections.Generic;

using System.Linq;

using System.Threading;

using Bnpp.Gfit.Proto.Wire.Samples;

using Bnpp.Gfit.Wire;

using Bnpp.Gfit.Wire.Entities;

using Bnpp.Gfit.Wire.Services;

using Bnpp.Gfit.Wire.Transport;

namespace QiuLindaService{

class Program{

private const string WireServiceName = "EfX.Wire.BlotterSample";

private const int ChunkSize = 100;

private readonly String name;

private readonly ReaderWriterLockSlim rwLock = new ReaderWriterLockSlim();

private WireServer wireServer;

public QiuLindaService(String name)

Page 81 of

{

this.name = name;

}

private static void InitialisewireEnvironment(){

if (WireEnvironment.Current == null)

{

WireEnvironment.Default.Location = "LON";

WireEnvironment.Default.Environment = "Dev";

WireEnvironment.Default.SubEnvironment = Environment.MachineName

+ Environment.UserName;

WireEnvironment.Default.Initialise();

this.wireServer = new WireServer(WireServiceName);

this.wireServer.SetMessageHandler<GetQiuLindaSubscription>(this.HandleQiuL

indaSubscription);

this.wireServer.Error += (s, error) => Console.WriteLine("WireListener

Error:" + error.Exception);

this.wireServer.Start();

}

}

private void HandlePingPongSubscription(GetPingPongSubscription message,

Channel channel)

{

Page 82 of

this.rwLock.EnterReadLock();

do

{

GetPingPongSubscription name = new GetPingPongSubscription();

Console.WriteLine("Received " +

GetpingPongSubscriptionMessage.Message)

channel.SendMessage(name);

}

finally

{

this.rwLock.ExitReadLock();

}

}

}

CockpitServerStartupConsole.cs

using System;

using Bnpp.Gfit.Proto.Wire.Samples;

using Bnpp.Gfit.Wire;

using Bnpp.Gfit.Wire.Entities;

using Bnpp.Gfit.Wire.Services;

using Bnpp.Gfit.Wire.Transport;

Page 83 of

namespace QiuLindaService{

class Program

{

static void Main(string[] args)

{

InitialiseWireEnvironment();

using (var server = new QiuLindaService())

{

server.SetMessageHandler<PingPong>(HandlePingPongSubscription);

server.Start();

server.handlePingPongSubscription();

Console.WriteLine("Press return to exit");

Console.ReadLine();

}

}

EdgeControl.xaml

<Style TargetType="{x:Type graphsharp:EdgeControl}">

<Setter Property="Template">

<Setter.Value>

<ControlTemplate TargetType="{x:Type graphsharp:EdgeControl}">

Page 84 of

<Grid DataContext="{Binding RelativeSource={RelativeSource

TemplatedParent}}" >

<Path

MinWidth="1" MinHeight="1"

ToolTip="{TemplateBinding ToolTip}"

x:Name="edgePath">

<Path.Stroke>

<Binding RelativeSource="{RelativeSource TemplatedParent}"

Path="Edge.Type"/>

</Path.Stroke>

<Path.StrokeThickness>

<Binding RelativeSource="{RelativeSource TemplatedParent}"

Path="Edge.Thickness"/>

</Path.StrokeThickness>

<Path.StrokeDashArray>

<Binding RelativeSource="{RelativeSource TemplatedParent}"

Path="Edge.IsDashed"/>

</Path.StrokeDashArray>

<Path.Data>

<PathGeometry>

<PathGeometry.Figures>

<MultiBinding Converter="{StaticResource

routeToPathConverter}">

Page 85 of

<Binding RelativeSource="{RelativeSource TemplatedParent}"

Path="Source.(graphsharp:GraphCanvas.X)" />

<Binding RelativeSource="{RelativeSource TemplatedParent}"

Path="Source.(graphsharp:GraphCanvas.Y)" />

<Binding RelativeSource="{RelativeSource TemplatedParent}"

Path="Source.ActualWidth" />

<Binding RelativeSource="{RelativeSource TemplatedParent}"

Path="Source.ActualHeight" />

<Binding RelativeSource="{RelativeSource TemplatedParent}"

Path="Target.(graphsharp:GraphCanvas.X)" />

<Binding RelativeSource="{RelativeSource TemplatedParent}"

Path="Target.(graphsharp:GraphCanvas.Y)" />

<Binding RelativeSource="{RelativeSource TemplatedParent}"

Path="Target.ActualWidth" />

<Binding RelativeSource="{RelativeSource TemplatedParent}"

Path="Target.ActualHeight" />

<Binding RelativeSource="{RelativeSource TemplatedParent}"

Path="RoutePoints" />

<Binding RelativeSource="{RelativeSource TemplatedParent}"

Path="Edge.IsBidirectional"/>

</MultiBinding>

</PathGeometry.Figures>

</PathGeometry>

</Path.Data>

</Path>

Page 86 of

<Grid.ContextMenu>

<ContextMenu ItemsSource="{Binding

RelativeSource={RelativeSource TemplatedParent}, Path=Edge.Commands}">

<!--<ContextMenu ItemsSource="{TemplateBinding Vertex, }">-->

<ContextMenu.ItemContainerStyle>

<Style TargetType="MenuItem">

<Setter Property="Command" Value="{Binding}"/>

<Setter Property="Header" Value="{Binding

SimpleCommandText}"/>

</Style>

</ContextMenu.ItemContainerStyle>

</ContextMenu>

</Grid.ContextMenu>

</Grid>

</ControlTemplate>

</Setter.Value>

</Setter>

<Setter Property="graphsharp:GraphElementBehaviour.HighlightTrigger"

Value="{Binding RelativeSource={RelativeSource Self},

Path=IsMouseOver}" />

<Setter Property="MinWidth"

Value="1" />

<Setter Property="MinHeight"

Value="1" />

<Setter Property="Background"

Page 87 of

Value="Red" />

<Setter Property="Foreground"

Value="Silver" />

<Setter Property="Opacity"

Value="0.5" />

<Style.Triggers>

<Trigger Property="graphsharp:GraphElementBehaviour.IsHighlighted"

Value="True">

<Setter Property="Foreground"

Value="Black" />

</Trigger>

<Trigger Property="graphsharp:GraphElementBehaviour.IsSemiHighlighted"

Value="True">

<Setter Property="Foreground"

Value="Yellow" />

</Trigger>

<MultiTrigger>

<MultiTrigger.Conditions>

<Condition

Property="graphsharp:GraphElementBehaviour.IsSemiHighlighted"

Value="True" />

<Condition

Property="graphsharp:GraphElementBehaviour.SemiHighlightInfo"

Value="InEdge" />

</MultiTrigger.Conditions>

<Setter Property="Foreground"

Page 88 of

Value="Red" />

</MultiTrigger>

<MultiTrigger>

<MultiTrigger.Conditions>

<Condition

Property="graphsharp:GraphElementBehaviour.IsSemiHighlighted"

Value="True" />

<Condition

Property="graphsharp:GraphElementBehaviour.SemiHighlightInfo"

Value="OutEdge" />

</MultiTrigger.Conditions>

<Setter Property="Foreground"

Value="Blue" />

</MultiTrigger>

</Style.Triggers>

</Style>

Page 89 of

'

r1MI

:1.!............._,
.. .::1- .r -

.J_

.·g.:..1."-. '- , --.
I!•"' !• • Ol.rt("lo..to ..., tt•,.in")J

V"""""'-""" -
U• <IAu 1 •..;,. oul.t.o •

,.,..,,,.10 1-U<U -.uo.lr .,..l,..1 too•-j.o •-'-'D)0(\-1""1 ..-..........,.., "TI'V, \T1o"'l1

.,.,.,.,, ••l· uu•.c.<••I•CU"""'

............ . --· l1-.dlo•-.••

.,.h.,... '"--" " Utt.W-U'kr¥.ko.

-.,..,. •-ou • a..-

dVohlhU-1",t.,•.,o..•,.-.•_,.,. '""'-',; .,..,u,
tlob U1-tlre.do••iU-Ia •._ J tloloi••W• \1"0' n - "(Jih)U

,_,,,., j

-·---_, . ,1.;.._...-..-..o...-il-jluoo.;o*d'!.O-o·...._-..-......,.-..,...,...".t_-,.I.J,I..._, ..

.w-uzr•v
,_;1-Vlf

O.«ooooooo."p' .fh-_._

..,.-.,--
·O; 11Jo,f-!_. o. c.­.l.l.ol

 -$loall. .-...-. -

Page 90 of

'"

... .,. -- uo..

Bru.sh.es.xa:ml
' n • yo. :

t :'7"='-.:"':: !'r<ll a 7ftfn • fl it>llfiY •-;;:a .:;. :rff'"?l • lii!J f? rn r1 f1f\ l • 1= r)(

uu-:..c,.•.,u _....,,n v...o i•u.. ":1'i Iii

-•lloo.•.".'.l.t.t.•."•' ''-'••"..·.o-..l.,...,._..,,,..,.......,..."..'..,.._,,_..,..,.,., . "'...u:.·

o •...,,.•..•....1..,....,'.....•.•.• · u' -...l.•f•noolo ' t•o..., •' •"" -lt!••'1l,l '•

'"'"a"......-.t.o-t·..-1...-. w - onoo- r;.

d--'1•....... &:.1 • "'-CC"' ''••'•'1r'lo
. d .lf<otlta ull.td

<n.boo...-.u_.,...,.

e.hn·•-wtH<, u .,.. ,.·--uno"''',.....,N,,.,..-.,.-
,_l<>t•'•,a·

. . , ,•••, ._ .. . l!...

1.\n . .

...-••..."""" r.
_
.s
,
.
i
.-
ro
.
•ooo

-
.

.....
.
.
·
.,
.
.
t
.
.
-
r'
•
l•

w

......-....·... ...-...-........-....... .
-
. ,........_ ..-..... -. :..........--...··

.olro,...-uo,,_,.,,.,,
drwlk•Uue l_ •..._. •J"o....•'l.,'l•
oP-eol\,o'"":c.... ,,._., .._..,.. , ..,.

'.'.I,",U_1 . . ,.ot"""j.).O,(.'.J.e.j..".".
,1\J,... -
..... ...,.·-u.u···....,._,....,,.--..,..··

..,.........10oo .. ._
··

o iii ,

....... . .,.'"
,,

" ,
,
.
.
_
,..
,
..·
,
,
.
C
.
h
.
o.

.
.

,.._Gtf.. l.a.J..ftl.., ·-
.
........

.

. ...
·--·

..__ c -,..... tblo..,. """"......ll.ll

I 41«(-ol ll l.

Page 91 of

 h·

=

 ·

 "

DesigneJ:'ItetnxaJ:nl

·· - '·

lll.t_tr.l.¥1 " " - ,,..·,-j oo :. -·...-.---

r-'1"

•ort:-:< '11.; -- 't!'!l • r:t ••"l 1) '!11!' ' O:. •""f.lr• · ·E1UJt' ,u. v,- , .: ovi'I""Y' • Ql t'

.. - -..... -·
..;n ,

>

llt:.·.

··-·-

...

• •• • · -' _.._. ' j. '-- · -.....

''"'-', .
olloonl• .M-• •'-·,..- "'*'"1l U.....a:•r ,,,..... l.l t, .loC

.....,......,.,_t-·•·rit.u..•.- ... •Nl•-llll't•

i:l

:!>T -

;,';";';!.'-
••

o-

:a
;

-..
-

.. !':1'110
-
'01
-
.'1.... - ..

·-iiJ!o_-

0.0 t

Co t

ol'O oU !,..,_.toiU!'kl ..._,

.,_,.,,161•• ll,oo.l •1!"1' 11....1•,)II ,.., .I.. o:.-"U.- •H""ioot'•
.-.ut..._, ttotc-•nWuo

.....,-._",, . _ 1,1.. 1 ••_,..,............... _

f't•
•10ot 1•l.,..f<otu.t..-u••••

<r'OlttoT•If.l.o•o
1..-tg....

w.-o.l.o Xol«-..•

·.-,.,-. .-....·.·......
e· •IMJ-lo

.....U..\..tl>••

•n..w..-.
Udd'.o•l

<1'•·••-.1••"-'''....
•llloh1t. .. lt>i' ·:.l-'11. .

.S.ou-o pU....'loop',...,....,.,..I'Ui*Utty•W.•"Vbo.Jo"'•

........ ••· -"111'. _...... . ..,.,,

!J ...

;;o
s-

r...."
l

,.
l

..
i

.,"
M..',

•

.-
o

.
l

,"
l

.
i

.
o'..

t

.
ti

.-.
t

."
!

,
.

,
,

.
le

.."
o

..
Q.,,.

l

._
.

.
l

.
l(.(

...,.....

.e..,...,.. _..'lll:ll"l.".._"._"."ll"f.A., --to.J-O·'"l)"(.,.. ._ ...

..

,_,

,..,

,_
c

-
.o:.,·.-

.

·
. -

....

·
. ""-'

l ...--.-1fluo ---._,.-..-...
...

Page 90 of 157

 ...

 ,..,._.,. ..u""'

CoJ:u\ectoJ:".cs

lOIIIt•....-tJ......U -..hM -(-1 -•• •1
I "....-....n...••,,

•• ·""'11"\· tv 0 ,..jj,.,....,,,,.. ,,
I• (•._.....1...-tO>(I............,o ;...,u W.. ·F<lloo()._._! • U... <loorto.ocool j..t

I

I• I ••I • .U."...._,(),l -l k.l \o l!.,. ltfv..,.tl ,... 'Ull.lo.t.ood• Q! 1!.. _...

I
,,. .,...:oo(-). -OJ'It4ll•(•

J,. , ••I•!# '"'h..-l). f....Cu.·., S.tofto.S.-•- n>:...l 1- ·••... ,_..1-.h.-·"1T •..-oou

I
P'l l!.-n\) ·ll"ltooo*l-·,..tdpt\ .-. .,.u....u••o•t t-•• .-.. t -·

u
I

,...,...,.....JN1••noC I·--• o ,..I!J

I
dM
I

·-· 1 •-
o ,w,.. ...,.

. - ·.OMJ.It •••u•.,.....-•.,., """'....,..,.•
........"

o
"""..

o
._ .

-
......,

--
.,

.-
.

...
.

.

.

.

.

....
.........tl¥

.,.._.. ..._w_..._.,0_0,_(_

Page 91 of 157

uteToPathCon.vetteJ:".cs

4",'<..11(1 - _"u''•'-........
,.. "··- I()
• • , . .t..o(tl I· , •.,.....,..,...............,w..t. I t! v•bn1•J o
t.t),

..
.

...
. .

.
t .l

.
t

.
)

.
•

.
•

.......
.. ·- ••..-- , , , ... 1 ..).

·-.. -......·.·. -­
.--: .­·.-..-...-.

,
o !.H•-!11

I<Wt;o • t ,..l""'l[IJ I·........_,...._,1,-"""o!.w f (-:0)41o. n(.l) o t,t).
...,..• (ool-•flJ h • .-o...l- > ,_1•1...,"-'--t-J II •)

h

.._·:l ..·..-"'·'"

':'.,......., u,...- ..,.u,•. •-,,...,.
,., ...,..,......,·- I(I

c • s(-} I· •..-m.lw ' !,....ll...,..•f•l• •·••·
V • (H 1. .. _..._._.,. 1 ,_.,...lM>t1lI e.t o

!io'-' lloo:o ..

-s.

li '- "'"o -- •

- v,.o ,

••
 .,.,_
1

,_....,

"'- ,,,..... rot

• t•'III'ISI.it • - I o()

Idol\.$ • holo.of r l •·:...,.,._,.,._,.,s,,..yd.., (.U.;.)-. .a>(• l t t),
........ • (nh•t('IJI • •! II .-.'oal"''l 0 l....'l>lo..I:M>Itl') t,t)

p1 ""'to I! I --W•

'; '
...\ PM ...

.....

-n-· l..v..•t•l • -...,.., ._----.w. •1 ·-H)owloonl•l • ..uu

O..r._,............ . . "_"·-··>· ...-..-......................

l·o>'G-(·IJ

...

=...,..=.,ww.,.._:::r"'"._=. --= $1..:.....:.. ••

'W'wr&..ot to...........,.......-··

1 < >---..,..g..-n....,......._

Page 92 of 157

Singleton.cs

Page 93 of 157

Appendix A.2 – Serialized Cockpit item

<?xml version="1.0" ?>

- <ArrayOfCockpitItem xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

- <CockpitItem>

<id>LONS00109273</id>

<type>Server</type>

- <Attributes>

- <Attr>

<attributeKey>Application</attributeKey>

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 94 of 157

- <attributeValue>

- <AttrValue>

<attributeValueValue>Revolution</attributeValueValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

</Attr>

- <Attr>

<attributeKey>Description</attributeKey>

- <attributeValue>

- <AttrValue>

<attributeValueValue>Revolution HA External Nirvana LIVE</attributeValueValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

</Attr>

- <Attr>

<attributeKey>Env</attributeKey>

- <attributeValue>

- <AttrValue>

<attributeValueValue>Prod</attributeValueValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

</Attr>

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 95 of 157

- <Attr>

<attributeKey>Agent_status</attributeKey>

- <attributeValue>

- <AttrValue>

<attributeValueValue>agent is alive</attributeValueValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

</Attr>

- <Attr>

<attributeKey>Location</attributeKey>

- <attributeValue>

- <AttrValue>

<attributeValueValue>LON</attributeValueValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

</Attr>

</Attributes>

</CockpitItem>

- <CockpitItem>

<id>reuters-autoquote-k1bpqq.us.net.intra</id>

<type>Server</type>

- <Attributes>

- <Attr>

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 96 of 157

<attributeKey>Application</attributeKey>

- <attributeValue>

- <AttrValue>

<attributeValueValue>Reuters Autoquote</attributeValueValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

</Attr>

- <Attr>

<attributeKey>Description</attributeKey>

- <attributeValue>

- <AttrValue>

<attributeValueValue>NY MDFD Reuters Keystations-K1BPQQ</attributeValueValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

</Attr>

- <Attr>

<attributeKey>Env</attributeKey>

- <attributeValue>

- <AttrValue>

<attributeValueValue>Prod</attributeValueValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 97 of 157

</Attr>

- <Attr>

<attributeKey>Agent_status</attributeKey>

- <attributeValue>

- <AttrValue>

<attributeValueValue>agent is alive</attributeValueValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

</Attr>

- <Attr>

<attributeKey>Location</attributeKey>

- <attributeValue>

- <AttrValue>

<attributeValueValue>NYK</attributeValueValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

</Attr>

</Attributes>

</CockpitItem>

- <CockpitItem>

<id>nycs00057562</id>

<type>Server</type>

- <Attributes>

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 98 of 157

- <Attr>

<attributeKey>Application</attributeKey>

- <attributeValue>

- <AttrValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

</Attr>

- <Attr>

<attributeKey>Description</attributeKey>

- <attributeValue>

- <AttrValue>

<attributeValueValue>Xiphias Swap</attributeValueValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

</Attr>

- <Attr>

<attributeKey>Env</attributeKey>

- <attributeValue>

- <AttrValue>

<attributeValueValue>Dev</attributeValueValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 99 of 157

</Attr>

- <Attr>

<attributeKey>Agent_status</attributeKey>

- <attributeValue>

- <AttrValue>

<attributeValueValue>agent is alive</attributeValueValue>

<attributeValueType>String</attributeValueType>

</AttrValue>

</attributeValue>

</Attr>

Appendix B – Items List and Attributes

Items Items Attributes

Environment  Name

 Function/Owner

 Hardware Location

 Name in Config

 Share

 App server

 DNS

 Cube1/Cube2

Server  Usage

 OS

 Location

 Server

 Cores

 Memory

Process  Status

 Status Change Time

 Enabled

 Version

 modifiedBy

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 100 of 157

  TimeModified

 Monitored?

 Process Descriptor History

 Invocation History

 Status History

 Log

 Service history

Process

descriptor
 Name

 Sub Environment

 Group

 Location

 CommandLine(Name of Service)

 Is service?

 Machine

 Schedule

 RetrySchedule

 KillAfter

 Is Wire Service

 Mf Service Id

 Mf Heartbeat Subject

 Working Directory

Alerts  Type

 Subject

 State

 Creation Time

 Last Modified Time

 Severity

 Instance number

 Login

 Date

 STAR LON/ STAR TYO/STAR SIN

 Version

 Owner

 Server Name

 Description



Heartbeat  Subject

 Server Name

 Server id

 Process name

 Service Type

 Expected HBs

 Received HBs

 Last HB

Page 101 of 157

 Status

Appendix C – Timeline

10/24/11(Monday)-10/28/11(Friday) Get familiar with the exisiting

monitoring tools, set up communication

devices , request all the potentially used

softwares, investigate graphing tool

technology and gather user

requirements

10/31/11(Monday)-11/4/11(Friday) MileStone1: Define the scope of

environment cockpit

11/7/11(Monday)-11/10/11(Thursday) MileStone 2:Configure the Wire

environment

11/10/11(Thursday)-11/15/11(Tuesday) MileStone 3: Build basic frame of

environment cockpit user interface

prototype

11/16/11(Wednesday) - 11/ 21/11(Monday) Milestone 4: Add simple arrows

Report: Background first draft

11/21/11(Monday) Finish arrow toolbox

11/22/11(Tuesday) – 11/23/11(Wednesday) Finish adding different types of arrows

11/24/11(Thursday) -11/25/11(Friday) Milestone 5: Delete arrows

Report: Background finished, Current

difficulties first draft

11/28/11(Monday) - 11/29/11(Tuesday) Finish Pop up box

11/30/11(Wednesday) Milestone 6 : Show information in the

detailed information box

Page 102 of 157

12/1/11(Thursday) -12/2/11(Friday) Organize code

Finish save and load , design user interface

with UX team

Report: Current difficulties finished,

Outcome and methodology first draft

12/2/11(Friday) Finish the project requirement!!!

12/5/11(Monday) – 12/9/11(Friday) Refine codes &add additional features

Finish Filter ,tab view, compound view

improve the overlook look of the user

interface

Report: Finish Report first draft.

12/12/11(Monday) – 12/14/11(Wednesday) Wrap up presentation

Report: Finish Report by 12/14/11

Page 103 of 157

Appendix D – Structured Finance

Definition
Structured Finance is a broad term. A summarization of some commonly used

concepts is that structured finance is used to describe a sector of finance that was created to

help transfer risk using complex legal and corporate entities. Typically the process of risk

transferring involves activities that will not heavily affect the balance sheet. The term

“structured finance” implies that the corporations or entities are using special purpose entitles

or special purpose vehicles (SPE or SPV) to exchange future cash flow from an existing asset

or portfolio while financing the corporation or entity leveraged by the asset. This risk transfer

as applied to securitization of various financial assets (e.g. mortgages, credit card receivables,

auto loans, etc.) has helped to open up new sources of financing to consumers. However, the

asset allocation from certain assets of corporation to cash flows in the balance sheet is risky,

as the increasing cash flow comes from the condition that the asset-liability ratio is

unchanged. Structured finance also includes the innovation of new financial instruments

which allows for re-transfer funds to investors (as asset-backed securities)

Classification
Usually, structured finance is divided into two categories: Asset Financing and Capital

Financing. Asset Financing is further divided into Current Asset and Fixed Asset.

Examples of Asset Financing:

Current Asset classes: cash financing (a loan-deposit); accounts receivable financing

(factoring, payments); inventory financing (warehouse financing); order financing (credit

packing, red clause letter of credit), etc.

Page 104 of 157

Fixed Assets classes: mortgage, hire purchase, and finance lease of fixed assets.

The main types of Capital Financing are stock and equity financing; swaps; leveraged

buyouts

Terminology used in this section:

Factoring: A business sells its accounts receivable to a third party at a discount rate in

order to hasten the finance process.

Warehouse financing: A form of inventory financing. Loans are usually made to

manufacturers and processors on the basis of goods or commodities held in trust as collateral

for the loans.

Credit packing: A loan given to the beneficiary by the bank to enable the individual to

purchase raw materials. The beneficiary is usually requested to deposit the DC with the bank

as security.

Red clause letter of credit: A specific type of letter of credit which enables a buyer to

extend an unsecured loan to a seller. Red Clause Letters of Credit permit documentary credit

beneficiaries to receive funds for any merchandise outlined in the letter of credit.

Hire purchase: A persons usually agree to pay for goods in parts or a percentage at a

time at an amount of interest.

Leverage buyout: A type of acquisition that acquires a controlling interest in a

company's equity with a small amount of cash flow, but a significant percentage of the

purchase price is financed through leverage (borrowing)

Page 105 of 157

Specification
Companies can finance themselves in a variety of ways based on different financing

structures, but mainly by traditional finance or structured finance. Traditional finance is based

on assets, while structured finance is based on credit: it fulfills the purpose of financing by

constructing a rigorous transaction model. Companies can use integrated finance methods

which may involve both traditional finance and structured finance. The best capital structure

allows the limited assets to generate maximum value of present cash flow.

Traditional ways of financing are usually achieved by increasing corporate debt (debt

financing) and increasing equity (equity financing) two ways. Debt financing and equity

financing reflect the activities of the both left-hand-side and right-hand-side of the balance

sheet. Structured finance, unlike the other two, mainly involves with relatively small activities

on the balance sheet. Traditional finance involved mainly with fixed assets, such as a house or

a newly started company, while structured finance mainly involves with financial assets, such

as securities or derivatives.

In order to better illustrate the differences between traditional finance and structured

finance, here is a scenario of a small bank: this bank grant loans to multiple individuals, and

then the bank uses these loans to construct CDO products and sell these CDOs to investors. In

the process, the bank realizes it has problems with its cash flow, so the executives of the bank

decide to borrow money from another institution. The borrowing and loans here are ways of

traditional finance, and CDOs are examples of structured finance. The observation towards

changes in the balance sheet is provided:

The balance sheet of the bank at the beginning would be like this. They have large

amounts of accounts receivable, meaning that the bank has released many mortgage loans to

its clients:

Page 106 of 157

Figure 1: The initial balance sheet

All of a sudden, the bank has a new business opportunity, but the deal requires a 20

million dollar investment. Unfortunately, due to its poor liquidity, the bank doesn’t have

$20m cash on hand. In order to secure this profitable deal, the bank turns to a mutual fund

MFLA and borrows $20m from the MFLA. Therefore the bank has more cash now, as well as

accounts payable (for the easiness of the balance sheet, the interest is set to 0 here):

Balance Sheet
22-Feb-12

Assets

Cash $5,000,000.00

Accounts Receivable (AR) $20,000,000.00

Property, Plant and Equipment (PP&E) $5,000,000.00

Total Assets $30,000,000.00

Liabilities

Accounts Payable (AP) $5,000,000.00

Debt $0.00

Total Liabilities $5,000,000.00

Shareholders' Equity

Common Stock and Additional Paid-In Capital (APIC) $10,000,000.00

Retained Earnings $15,000,000.00

Total Shareholders' Equity $25,000,000.00

Total liabilities and shareholders' Equity $30,000,000.00

Balance Sheet
23-Feb-12

Assets

Cash $25,000,000.00

Accounts Receivable (AR) $20,000,000.00

Property, Plant and Equipment (PP&E) $5,000,000.00

Total Assets $50,000,000.00

Liabilities

Accounts Payable (AP) $25,000,000.00

Debt $0.00

Total Liabilities $25,000,000.00

Shareholders' Equity

Common Stock and Additional Paid-In Capital (APIC) $10,000,000.00

Retained Earnings $15,000,000.00

Total Shareholders' Equity $25,000,000.00

Total liabilities and shareholders' Equity $50,000,000.00

Page 107 of 157

Figure 2: Balance sheet after the bank received money from the mutual fund

Everything is going smoothly, and the bank is waiting the mortgage payment from

those individuals. However, executives at the bank heard bad news about their clients. If their

clients are about to default, the bank will experience heavy losses and may even go bankrupt.

The balance sheet for the bank after the default would be like the following (they might

experience heavy losses in their retained earnings and common stock, but that’s not the topic

we are concerned with here):

Figure 3: If those clients default, the bank will have its account receivable sets to $0

A $20m loss is unaffordable for a small bank. The executives of the bank won’t allow

the defaults to happen. But what can they do to reduce its loss?

 Here is where the CDO becomes crucial. The executives of the bank are very smart, and

they have thought about the probability of default in the past. In early days, they have created

a CDO product and put it into the market. The CDO has following rules: if the clients didn’t

default, whoever has the CDO would enjoy the free cash; but if the clients default, then the

holder of CDO would pay back the loss of the bank.

Page 108 of 157

 Investment bank IBLB has shown great interest in the very beginning. So the small bank

had a deal with IBLB, with the price of CDO was finalized at $1m. Now it is time for IBLB to

pay the losses of the bank, which is $20m. Clearly, without the help of CDO, the bank could

be bankrupted because of the default of its clients.

 The last balance sheet would be look like this:

Figure 4: Last balance sheet

 Compare figure 1 and 2, we can see that the balance sheet has changed a lot during a

traditional finance process. However, compare figure 2 with figure 4, we could see that

balance sheet only changed a little. Here is one of the most important advantages of structured

finance: it allows the corporate to use their limited assets to generate great revenue.

Advantages of structured finance are list below:

1. Provide clients long term future cash flows

2. Improve the client’s asset turnover ratio

Balance Sheet
23-Feb-12

Assets

Cash $24,000,000.00

Accounts Receivable (AR) $20,000,000.00

Property, Plant and Equipment (PP&E) $5,000,000.00

Total Assets $49,000,000.00

Liabilities

Accounts Payable (AP) $25,000,000.00

Debt $0.00

Total Liabilities $25,000,000.00

Shareholders' Equity

Common Stock and Additional Paid-In Capital (APIC) $10,000,000.00

Retained Earnings $14,000,000.00

Total Shareholders' Equity $24,000,000.00

Total liabilities and shareholders' Equity $49,000,000.00

Page 109 of 157

3. Reduce client’s asset liability ratio (assuming the structured finance product will not 100%

default)

4. Credit enhancement, lower financing costs, diversifies investment products for investors.

5. Self-liquidating, one of the most important specifications of structured finance. Unlike

other finance methods, structured finance products typically do not require additional

mortgages or warranties (or requires a little), allows corporate to use their limited mortgage

assets into other finance activities.

Process
Typically, a structured finance product will go through following process:

1. Divestiture of current assets, identify the suitable vehicle for issuing the bond/security,

establish the asset pool.

2. Finish the writing for required documents for offering, complete every preparation work for

issuing.

3. Obtain the approvals from the central bank and other regulatory authorities to issue bonds

and/or securities.

4. Debt/equity/mortgage pay back;

5. Registration for claims and liabilities, disclosure of obligatory information according to the

agreement.

Parts from the above, specific tasks might require different processes and operations.

For example, partial credit guarantees usually involves with the lender utilizes their credit

rating to help clients expanding their financing channels, while securitization includes the

Page 110 of 157

collection and the actual sale of certain financial assets, then issue securities which aims to

generate cash flows used to repay these assets.

No matter what product is constructing, the credit supply process is always the key

factor in the whole process. Any potential instability of credit supply process would

jeopardize the whole product severely.

Environmental Requirements
The United States has a good tradition of growing structured finance market and

highest revenue among the world. If we looking back the U.S. structured finance market in

terms of history, we can conclude that there are eight elements have played an important role

to maintain the growth potential of both the market and revenue. These factors often

complement each other, and development of one element could promote the development of

other elements, therefore improve the overall quality of U.S. structured finance system.

Well-established regulatory system
There should be a well-established legal framework to protect investors and their

legitimate underlying assets for each securitization transaction. Most importantly, when the

sponsor / seller in the situation bankruptcy, the law/regulation must protect investors’ right to

recover the asset and cash flows in the securities of the bankrupted entities. Therefore,

speaking of securitization transactions, a special purpose entity which will not bankrupt and

have good credits must be established. In addition, the regulation and laws should have clear

items about the responsibilities and obligations among issuers, trustees, credit managers and

people from service side.

Accurate analysis of cash flows

From the perspective of financing, securitization is essentially a process to help the

Page 111 of 157

credit side to raise an amount of capital equals to present value of current assets in future cash

flows after deducting the cost of securitization. In the beginning of the securitization, the

issuer must conduct a careful cash flow analysis to determine whether the special purpose

entity could fully repay the debt on time.

To conduct an analysis about pricing of future cash flow requires a lot of prerequisite

assumptions. In addition to using assumed discount rate to calculate present value and pricing

of future assets, a well-rounded cash flow analysis must have their own assumed indexes,

such as the general economic conditions within the loan period, borrower’s ability to repay

loans, and the probability of default. Only by researching a large amount of historical data can

the researcher be able to come up with reliable assumptions for analysis of cash flows.

Clear and reliable accounting activities
During the process of asset securitization, there might be three relatively important

accounting issues: firstly, the accounting activities towards the interest income of securities.

As the securities issued by special purpose entities to which the loans have interest, it should

be taxed on the special purpose entity accordingly. In order to avoid double taxation, as long

as the special purpose entity meet the requirement of being a "grantor trust ", it will be

deemed "grantor trust" and will be granted federal tax exemption in the United States;

secondly, to protect investors by clarifying the periodic cash flow between the loans

(including interest and principal) of the accounting records.; thirdly, all cash flows generated

by transactions should be subject to the strict inspection from professional accountants.

Accredited public rating organizations
As the securities issued from lender are supported by its sponsored loans or

commercial loans, stock investors will be more concerned about credit risks of loans and

corresponding securities. For example, the housing mortgage-backed securities are credited by

Page 112 of 157

the Government National Mortgage Association (Finnie Mae), Federal National Mortgage

Association (Fannie Mae) and Federal Home Loan Mortgage Corporation (Freddie Mac). If

any housing mortgage-backed securities, commercial mortgage-backed securities and asset-

backed securities didn’t receive credit from any of these three institutions, then either the

security will try a variety of ways to improve its credit rating, or the investors will be in big

trouble.

In general, there are four meaningful ways to improve one’s credit rating:

first/secondary structure of cash flow (or over-collateralization), parent company guarantee,

Guarantee Bond (Performance Bond), and letters of credit. Every security wants to get triple-

A rating from big 3 credit rating agencies, which are Standard & Poor, Fitch and Moody’s.

Comprehensive Investment Banking Service
IPO’s and sales of new securities underwriting are the responsibilities of investment

bankers. Investment banks acts like a bridge between issuers and investors. However, during

the securitization process, the investment banks are essential to the success of a securitization.

Investment Bank is responsible for coordinating and helping issuers to deal with legal,

accounting, tax and cash flow analysis issues. In addition, investment banks also play the role

of dealers: securities pricing, purchasing all issued securities and sold them to individual and

corporate investors. After the IPO, investment banks are served as the "market maker" in the

secondary market: they actively trade securities in order to ensure the liquidity.

Healthy Treasury Bills and Notes market
In order to ensure the healthy development of securities markets, a healthy and stable

bonds and treasury bills market is necessary. Because the government bonds are almost risky

free (exception includes bond governments in turmoil such as Greek Government and Italian

Government), so the trading of such bonds on the market will be the beacons for the risk-free

Page 113 of 157

return rates in different terms. In terms of risk-free, the curve that describes the relationship

between terms and yield was called the ‘U.S. Treasury Yield Curve’. This yield curve

provides a benchmark for the pricing of fixed-income securities with different risk and

different terms in the primary market and secondary market.

Active secondary market
A successful primary market securities must supported by an active secondary market.

An active and healthy secondary market should provide useful information for the upcoming

IPOs and pricing information. Once after the issue of new securities, investors need an active

secondary market to trade securities and securities need these active markets for its own

liquidity. By doing so, investors will be able to trade in a relatively stable the market.

However, it should be noted is that investors are the key to a very active secondary

market. If investors in a market simply hold securities rather than engage in any transaction, it

will be very hard for those investment banks to keep the active of the market. To rely on

investment banks to ensure the liquidity in the secondary market is very difficult.

Diversified investors
An important factor that contributes the success in the current structured finance

market is the rapid growth of investor groups. Investor group includes various types of

investors, from short-term money market investors, to the portfolio managers of commercial

banks, or the long-term pension fund managers.

In addition, with the increasing globalization of capital market development, foreign

investors will be more and more important. Also, the success in the current structured finance

market can also be attributed to the innovative development of structured finance securities

themselves. With products developed in the different kinds, different credits levels and

different terms, structured finance securities are able to meet the demand from all investors.

Page 114 of 157

High-yield securities can attract "income-oriented" investors, securities with various period of

maturity can attract the "term-oriented" investors, and securities with different levels of credit

rating can attract those "credit-oriented" investors.

Valuation and Assessment
This section will explain on a macro level of how to evaluate a structured finance

product. There will be a section later to detailed explain the valuation of specific products.

 Typically, the target being evaluated is an amount of assets of mortgage securities. As

discussed above, the operation of a structured finance product usually doesn’t involve the with

the management activities of original asset holder, therefore a key element to value a

structured finance product is to separate the credit/mortgage with original assets.

Besides, there are certain factors that may affect the pricing model of a structured

finance product. First of all, the quality of the collateral adequacy matters. Usually the better

of quality of collateral, the better of asset turnover ratio is, the better of previous payment

history is, and the better the product is. In most cases, the quality of product contributes most

in the pricing of structured finance. In addition, the structure of involved transaction’s cash

flow determines. Investors need their money before the deadline, so the better cash flow

structure the transaction associates, the more likely the investor would like to pay for a higher

price. Finally, regulation system is a crucial part of valuing a structured finance product,

because of those the legal and tax considerations. The legitimacy of collateral

representatives’, the legitimacy of the cash flow, impacts of cash flow from tax perspectives,

everything above will affect the pricing and assessment of a structured finance product.

Besides, the political economy will affect the valuation of the product. Generally, in a

political stable nation, the price of a structured finance product would be higher than those of

Page 115 of 157

political unstable countries.

Page 116 of 157

Futures Contracts
Future contract is by definition a standardized contract between two parties to

exchange a specified asset of some quantity and quality for a priced agreed today. The assets

are going to be delivered at a specified future date. This contract itself theoretically costs

nothing to enter. The buyer expects that the price to increase which means in the future they

can receive the asset at cheaper price than the future market price. However the seller wants

the price to decrease. If so, in the future the seller will be able to sell their asset above the

future normal asset price. Because the future contracts are standardized, they are traded in

exchanges. The future contracts are introduced by Japan in 1930s and became very popular

later on. The underlying asset used to be traditional commodities. Now the assets expand to

currencies, securities, financial instruments and intangible assets.

Here is a timeline to better demonstrate future contracts.

Figure 5: Timeline for future contracts

In the current finance world, the future contracts are carried out in the following way.

Even though we mentioned before that theoretically the future contract costs nothing to enter,

in real world, in order to minimize the counterparty risk, both buyer and seller need to deposit

some money, called margin, which is normally proportional to the asset that they are

Maturity date: seller
delivers the assets to the
buyer and the buyer pays
money according to the
contract

Start date: seller and buyer
enter the future contract
and deposit margins

Futures being traded in
organizational exchange

Clearinghouse monitors to
ensure that both parties
perform their contract.

Page 117 of 157

contracted on. Since future contract is marked to market daily. The daily profits and losses

will be shown in the traders’ account operated by a clearinghouse. At the settlement day, the

futures will be settled by either commodities or cashes.

Pricing Model

)()()(tTretStF 

Here T means maturity and r is risk-free return. F(t) is the expected future price of the

asset and S(t) is the current price of the asset. This formula assumes continuous compounding

and the future asset price equals to the current asset price with continuous compound interest.

Risk Exposure

In addition to the fluctuation of the market price of the assets, both parties in the future

contract are subject to counterparty risk, which is the risk that the other party doesn’t deliver

the goods or doesn’t pay the money according to the contract. And a clearinghouse is the one

who guarantees both parties performance.

Some Commonly Traded Future Contract

Eurodollar CD future’s underlying instrument is 3-month (90 days) Eurodollar CD. It

is currently traded on Chicago Mercantile Exchange and London International Financial

Futures Exchange. It has $1 million face value with cash settlement contract. This means at

the maturity date, the Eurodollar CD future is settled in cash for the value of a Eurodollar CD

based on London Interbank Offered Rate - LIBOR. Many people use Eurodollar CD futures

for hedging (Fabozzi, 24).

Interest Rate Swaps
Interest rate swap is a contract for two parties who agree to exchange interest

payments during certain future period. Normally one party agrees to pay a fixed interest

Page 118 of 157

payment periodically. They are called fix-rate payers and while the other party will pay at a

floating rate according to some reference rate (the most commonly used reference rate is

London Interbank Offered Rate – LIBOR). They are called fixed-rate receivers. The interest

rate swap is an over-the-counter instrument, and thus has a lot of varieties. It can be in

different currencies and except for the previously mentioned most common kind of fixed-for-

floating-rate swap. There is also floating-for-floating-rate swap. The interest rate swap is

majorly used by companies who desire to change its financing structure from fixed rate to

floating or from floating to fixed-rate in order to reduce funding costs. Interest rate swaps are

a very popular instrument and it is now the largest component of global over-the-counter

derivative market.

The timeline is demonstrated as below:

Figure 6: Timeline for interest rate swaps

When interpreting the interest rate swap, you can view it as a package of forward

contracts with each payment as one forward contract between the fixed-rate receiver and

fixed-rate buyer. Interest rate swap can also be viewed as a package of cash market

instruments. For example, interest rates swap which exchanges LIBOR rate with 10% fixed

interest rate paid annually for 5 years. An investor as a fixed rate receiver entering this interest

rate swap equals to buy a 5-year fixed rate bond and financing this purchase by borrowing the

notional amount of money for 5 years with LIBOR rate interest paid every year.

Pricing Model

The value of the fixed leg is:

Exchange Exchange interest
payment

Enter interest
rate swap

Exchange

Page 119 of 157

PVfixed = C * present value of the sum of the future payments (C is the swap rate)

)(
1

i

M

i i

i
fixed df

T

t
PCPV  



Here P is the notional amount, ti is the number of days in period i, Ti is the basis

according to the day count convention (It may possibly be 365 or be 360 for calculation

convenience) and dfi is the discount.

For the present value of floating interest rate, since we don’t know what the future

interest rate will be. Thus we predict the future interest rate from forward rates which are

derived from the yield curve. And the value of the floating leg will be:

)(
1

j

j

j
N

j
jfloat df
T

t
fPPV 



In this formula, N is the number of payments, Fj is the forward rate, P is the notional

amount, tj is the number of days in period j, Tj is the basis according to day count convention

and dfj is the discount factor. The present value of both fixed and floating legs are essentially

the sum of the present value of future payments. And when the PVfixed and PVfloat equal to

each other, there will be no upfront payment from any party.

Risk exposure

There are two kinds of risks that traders may expose to. One is interest rate risk, which

related to the fluctuation of the interest rate and the other is counterparty risk, which mainly

concerns about the in-the-money party facing the risk of possible default of the other party.

Since interest rate swap is traded over-the-counter without any clearinghouse in between. The

counterparty risk of defaulting may be significant (Fabozzi, 26).

Case study – how interest rate swap benefit both parties

Next we are going to demonstrate a very interesting case to better explain the

incentives of entities which are willing to involve in an interest rate swap.

Page 120 of 157

There are two corporations. Corporation Good is a great company and it was rated A

by more than 8 rating agencies. It issues a $1000 million fixed-rate bonds for 5 years at 6%.

While Corporation Bad is not very promising and it was rated C- by rating agencies last year.

Thus Corporation Bad can only issue high-yield debt, borrows $1000 million from a bank at

6-month LIBOR plus 2%. Here is some more background information. The interest rate that

must be paid by the Corporation Good and Corporation Bad in both floating rate and fixed-

rate markets are as below. For Corporation Good, it needs to pay 6-month LIBOR + 40 basis

points in floating rate market and 6 percent in fixed rate market; while for Corporation Bad, it

needs to pay 6-month LIBOR + 200 basis points in floating rate market and 10 percent in

fixed rate market.

Now a very smart financial analyst of Corporation Good figures out a way to lower its

funding cost by swapping into floating rate debt and another very brilliant financial analyst of

Corporation Bad also sees an opportunity to lower its cost by entering this interest rate swap

that is offered by Corporation Good. Their interest rate swap is agreed as following. For

Corporation Good, it is going to pay floating rate of 6-month LIBOR and to receive fixed rate

of 6.2%; for Corporation Bad, it is going to pay fixed rate of 6.45% and receive floating rate

of 6-month LIBOR. The 0.25% that is paid by Corporation Bad but is not received by

Corporation Good is for swap dealer. Let’s hear the reasons from the two smart financial

analysts.

For Corporation Good, it needs to pay fixed-rate bonds issued of 6% and the interest

rate swap of 6-month LIBOR. It will then receive 6.2% from the interest rate swap. Thus in

total it pays 6% + 6-month LIBOR – 6.2% = 6-month LIBOR – 20bp. This number is lower

compare to what Corporation Good should pay within floating rate market of 6-month LIBOR

+ 40bp as we mentioned in the background. Thus the interest rate swap is a benefit contract

Page 121 of 157

for Corporation Good.

For Corporation Bad, it needs to pay 6-month LIBOR + 200 bp to the bank and 6.45%

to the swap dealer. It will receive 6-month LIBOR from Corporation Good. Thus in total it

pays 6-month LIBOR + 200 bp + 6.45% - 6-month LIBOR = 8.45%. This is also a number

lower than what Corporation Bad should pay within fixed rate market of 10% as we

mentioned before in the background. By entering the interest rate swap contract, although

both company exposed to certain amount of counterparty risk, they can achieve lower

financial costs than by directly borrowing from the market and this is the fascinating power of

the interest rate swap (Fabozzi, 33).

Options
An option is a contract that grants an option, not an obligation for the option buyers to

buy or sell things such as commodities at a specific rate to the option sellers, also called as

option writer, at a specific future time. The buyer will need to pay premium to the option

writer in order to have this kind of option in the future. The specific rate that is agreed upon

the option contract is called strike price and the specific future time when the seller needs to

exercise the option is called the expiration date.

The timeline is demonstrated as below:

Figure 7: Timeline for options

Options can be classified by four different ways. First, if an option grants buying right

Option buyers and sellers
enter the contract

Option buyers pay the premium
according to the contract

Expiration date: the option
seller exercise the contract
according to the buyers’ will

Page 122 of 157

to the option buyer, it is called a call. If an option grants selling right to the option buyer, it is

called a put. Second, if an option can be exercised at any time up to the expiration date, it is

called an American option. If it can only be exercised at the expiration date, it is called a

European option. If the early option is possible but restricted, it is called a Bermuda option,

which is a hybrid between American and European options. Third, there are also exchange-

traded options and over-the-counter options. Exchange-traded options have standardized

contract and there is a clearinghouse connecting the buyers and sellers. Over-the-counter

options are tailor-made for big corporation or institution and usually investment banks and

commercial banks will act as brokers in over-the-counter market. These options can be very

complex and less liquid than the exchange-traded options. As the option product evolved, in

order to compete with over-the-counter market, the flexible Treasury futures option was

introduced in 1994 in Chicago Board of Trade (CBOT) which allow investors to customize

option with certain limitations. Fourth, options can be classified according to its underlying. If

the underlying is a fixed-income security, then the option is called options on physicals. If the

underlying is interest rate futures, the option is named as futures options (Fabozzi, 36).

Pricing Model

The value of the options is the intrinsic value, which is the economic value if the

option is exercised immediately. For example, for a call option, if the current price of the

underlying security is smaller than the strike price, the intrinsic value is negative and vice

versa. A more mathematical way of valuing an option is by using the famous Black-Scholes

option pricing model, which gives the valuation for European-style options. The most

important concept to derive the Black-Scholes option is that we can reconstruct an option by a

risk-free bond and a stock and we can get the same pay-off as the given option. Below are

some important assumptions:

Page 123 of 157

 The stock price follows a geometric Brownian motion process

 There is no transaction costs or taxes

 No dividends during the life of the option

 No risk-free arbitrage opportunities

Let’s say the price of the option is a function of St, the price of the stock, and t, the

time. We represent the option price as c(S, t). The risk-free bond B with risk-free rate r will

hold: and the stock with geometric Brownian motion will hold:

 . According to Ito’s lemma
1
, the option price will hold:

 (

) . First we need to reconstruct an option with

x shares and y bond.

Different the above formula, we get:

 ()

With the formula for dc above, we get two equations as results:

() (

)

We can easily get . Plugging this into , we get

() Plugging

both and

() into () (

). We finally

obtain the Black-Scholes equation (Black, 637):

Page 124 of 157

1. Ito’s lemma for Brownian motion is () (()

 ())

 () . In this equation () and () are deterministic function of x and t, and z

represents a standard Brownian motion.

Page 125 of 157

Risk exposure

The risk exposure of option is a little different from the risk exposure for futures. It is

asymmetric. The largest loss an option buyer will suffer is the premium and the gain that the

buyer will get is going to be offset by the premium that he paid before. While for an option

seller, he will gain at most the premium and the premium will also offset the downside risk.

Concerning about counterparty risk, after the option buyers finish paying all premiums, he

fulfilled his entire obligation to the option sellers. In contrast, option sellers are required to put

down margin according to their position marked to market to ensure they will carry out the

contract if the option buyers choose to exercise their right.

 Credit Default Swaps
In credit default swaps, there are two parties and a reference entity. One can be called

the protection buyer who pays a fee to the protection seller so that when any credit event

happens to the reference entity, the protection buyer will receive payments from the seller. If

nothing happens by the end of the contract, then the protection seller will win the fee that

protection buyer pays at the beginning and doesn’t need to pay out anything. There are

normally eight types of credit events, which include bankruptcy, credit event upon merger,

cross acceleration, cross default, downgrade, failure to pay, repudiation or moratorium and

restructuring. Here for the convenience of explanation, we will assume that the credit event

happens to a company is bankruptcy, also called as defaults. In real world, Credit Default

Swap is normally five years and the protection buys pays the fee separately rather than

upfront. Each swap premium payment can be calculated by multiplying notional amount,

swap rate and the percentage of days within one payment period over 360. The protection

buyer is possibly the one who holds bonds of the reference entity and exposes to the default

risk of the reference entity. There is another condition for the protection buyer to buy credit

Page 126 of 157

default swaps, which is for speculative reasons and they think that the reference entity is very

risky and going to default. For these buyers, they are like holding short position of the

reference entity’s bonds and the protection sellers are like buying reference entity’s bonds.

And credit default is like a tool that can create short position of bonds for individual, who is

not very possible in real world without CDS and create a leveraged credit exposure for the

protection seller since they are bearing similar risk as holding reference entities’ bonds, while

not paying the principal. When reference entity defaults, there are two kinds of settlement.

One is cash settlement, which means the protection seller will pay the amount of money that

is determined by the decline of the reference entity’s bond price to compensate the loss for the

protection buyer. The other method is physical settlement. The protection buyer will give the

bad bonds of the reference entity to the seller and the seller is promised to pay the protection

buyer the par value of the bonds. The Credit Default Swap is currently taking the largest part

of the credit derivatives market.

Below is a timeline to demonstrate credit default swap:

Figure 8: Timeline for CDSs

Except from the customized credit default swap arrangements between two

counterparties, Dow Jones also manages Credit default swap index, which is essentially a

standardized basket of credit risk of many corporations as reference entities. The biggest

difference between a normal credit default swap and a credit default swap index is that the

premium payments stop when a credit event happens to a normal credit default swap; while

Typically protection buyers pay
the premium over several
settlements rather than upfront.

CDS buyer and
seller enter the
contract

payment payment payment
CDS either expired or a credit
event occurs and the
protection sellers need to pay.

Page 127 of 157

for CDS index, since it has a basket of reference entities, when one of the corporation

defaults, the index buyers need to continue paying premium, but just with less money because

the notional amount decreases as a result of the corporation defaulting (Fabozzi, 48).

Pricing Model

Let’s start exploring from a simple example. Suppose we have a CDS with swap rate

of 300 basis points and face value of $10 million. This means the protection buyer needs to

make quarterly payments of . Then let’s assume after 1

month, the reference entity suffers a credit event. We also know the recovery price as well,

which is $45 per $100 of face value (recovery price can be interpreted as the remaining value

of the reference entity after the credit event). After the credit event, the protection seller then

needs to pay the protection buyer for the loss, which is ()

 , and the protection buyer needs to pay the 1-month accrued premium, which

is

 .

Next we are going to explain how CDS mark-to-market value works. Let’s consider a

protection buyer purchases 5-year protection on a corporation with swap rate of 60 basis

points and tries to value his position after one year. On the date after one year, the 4-year CDS

is quoted with 170 basis points in the market. Then the

Mark-to-Market Value

= current market value of 4-year Protection - expected present value of 4-year

premium leg at 60 basis points

= expected present value of 4-year premium leg at 170 basis points - expected

present value of 4-year premium leg at 60 basis points.

Page 128 of 157

=

=

The Risky PV01 (RPV01) is defined as the expected present value of 1bp paid on the

premium leg until a credit event happens or the CDS expires. In order to calculate this

RPV01, we will need a more complex model because we need to consider the possibility of a

credit event happening over the CDS contract period which will essentially terminate the

premium paying. Now for the protection buyer to realize this mark-to-market value gain, he

can unwind it with the protection buyer for a cash rewind value, which will be equal to the

mark-to-market position.

The most common approach to model the probability of credit events of the reference

entities is the reduced-form approach. The probability of a credit event is modeled as Poisson

counting process, which means the probability of a credit event happening within [t, t + dt]

conditional on the surviving to time t and is proportional to a function (), which is called as

hazard rate.

 [|] ()

 We can interpret this model as the reference entity defaulting in a time dt with

probability ()dt or it surviving through the time dt with probability 1- ()dt. We are also

going to simply assume that the hazard rate process is deterministic, which also means it is

independent of interest rates or recovery rates. Here is a picture that can clearly demonstrate

this model.

Page 129 of 157

Figure 9: The equivalent of a binomial tree in the modeling of default.

According to this model, we can compute the continuous time survival probability to

time T conditional on surviving to time tv by having dt-> 0. And then

 () (∫ ())

 Next we are going to value the premium leg, which includes all the premiums made

until the credit event happens. Let’s assume there is in total N payments if the CDS makes to

maturity and the swap rate is S (t0, tN). We are also going to ignore premium accrued for now.

Then the premium leg of existing contract is:

 () ()∑ () () ()

 () is the day count fraction, () is the Libor discount factor and

 () is the arbitrage-free survival probability of the reference entity conditional on

Page 130 of 157

surviving to . Next let’s consider the premium accrued, which we will need to consider the

possibility of defaulting between the two payments. Then formula will look like:

 () ()∑∫ () () () ()

The above formula can be approximated as the following equation by taking the

average accrued premium as half of the full premium which is set to be paid at the end of the

payments period.

 () ()

 ()

∑ () ()(() ())

Thus we get equation for RPV01 for accrued premiums as

∑ () ()(() ())

Next we are going to value the protection leg, which is contingent payment of (100%-

recovery rate) of the face value of the CDS depending on the credit event. The following

timeline can clearly demonstrate the calculation logic of the protection leg.

Page 131 of 157

Figure
10

The formula can be written as the following:

 ()∫ () () ()

Here R represents the expected recovery rate if a credit event happens. Z is the Libor

discount factor and () is the arbitrage-free survival probability of the reference entity

living to time s.

With the present value of both protection leg and premium leg available, we can then

equate them to get the breakeven swap rate, plug in the RPV01 value to get the mark-to-

money value and find out the current market spread to maturity (O’Kane, 1).

Risk exposure

The protection buyer is facing the risk of not receiving the payments promised by the

seller. Thus a common way to prevent such a risk is asking protection the seller to post

collateral for its responsibility to pay the protection buyer whenever a credit event happens.

Page 132 of 157

Cash Flow Collateralized Debt Obligations
A collateralized debt obligation (CDO) typically has a CDO portfolio manager. He is

in charge of first raising money by issuing its own bonds and then invests the money he raises

into either bonds, loans, or other assets. The assets the manager invests are the underlying

assets of the portfolio. Then the payments on the asset portfolio can be used to repay the

bonds that the CDO raises its money from. The manager will also collect fees for actively

managing the portfolio. This is only the basic idea of CDO. The most important feature of

CDO “credit tranching”, which means a CDO can issue different classes of bonds, for

example, senior debt, mezzanine debt, subordinate debt and equity. Each class is exposed to a

different level of risk. The most senior debt is the least risky debt because the more senior

class will have higher priority to receive the asset repayments than the less senior class. Thus

naturally, the less senior class demands higher interest rate because it is exposed to greater

risk. CDO is invented in 1987 and then became a fast growing sector. There are two kinds of

bankers who can take advantage of CDOs. First kind is called arbitrage CDO, which bankers

can make money from the spread between the yield that CDO earns on the underlying asset

and the payments that CDO pays out for CDO investors. The other kind is called balance

sheet CDO, which can help a bank move its assets from the balance sheet to a CDO portfolio

so that there will be less asset on the bank’s balance sheet.

CDO life-cycle

First, ramp – up phase is when the CDO manager raises money from issuing CDO

bonds and then uses the money to set up the initial portfolio. There are regulations from CDO

governing documents to constrain the portfolio’s average maturity date and other parameters.

Second is revolving period when the CDO manager receives the payments from underlying

assets and repays CDO bonds. When an underlying asset reaches its maturity date, the CDO

Page 133 of 157

manager doesn’t have to amortize some of the CDO bonds, and instead he can reinvest the

money into other assets. Third phase is the amortization phase when the manager amortizes

all the CDO’s asset and finishes repaying all the bonds that the CDO issues.

Different types of CDOs

CDOs can be classified by the underlying assets. Below is a table for this kind of

classification:

Underlying Portfolio Different types of CDO

Bonds Collateralized bond obligation (CBO)

Loans Collateralized loan obligation (CLO)

Asset-backed Securities or Mortgage- backed

securities

Structured finance CDO

Mix of bonds, loans, asset-backed Securities Multisector CDO

Other CDOs CDO squared

CDS Synthetic CDO

Table 1: Classification of CDOs

CDO can also be classified by its repayment method. If the CDO repays its bonds with

cash and a set interest rate, this is called cash flow CDO. If the CDO repays its bonds

depending on the market value of the underlying assets, this is called market value CDO.

Synthetic CDOs

Synthetic CDO’s underlying portfolio consists of credit default swaps. Synthetic CDO

works slightly different from the normal CDOs. The CDO portfolio acts as a protection seller

of a credit default swap. As we mentioned before, the CDO portfolio can then receive

Page 134 of 157

payments from protection buyers. The CDO may also invest money on low risk securities and

then the payments from the underlying CDS and interest from low risk securities can pay the

bonds that the CDO issues. The reason that synthetic CDO invests money on low risk

securities is because when a credit event happens in the underlying CDS, CDO manger can

use the money in the low risk securities to pay the protection buyer according to the CDS

contract. The effect of the credit event in synthetic CDOs is similar to the effect of when the

asset defaults within regular CDOs because both events will potentially decrease the ability

for the CDO to repay its bonds and decrease the CDO’s rating.

In the synthetic CDO, there is an additional class called unfunded class. The investors

who buy this class will act like a protection seller themselves. They don’t need to pay

anything upfront and they will receive payment from the CDO portfolio as a protection seller.

However, when a credit event happens, the unfunded class investors will need to pay money

to the protection buyer through the synthetic CDO (Fabozzi, 119).

Page 135 of 157

The year 2008 marked down an unprecedented global financial crisis in human

history. From mid-2007 to 2008, the world experienced a series of collapse of financial

institutions, bailout of banks by governments, and downturns in stock market worldwide.

Three out of the five largest investment banks failed – Lehman Brothers filed for

bankruptcy protection, Merrill Lynch was purchased by Bank of America, and Bear Stearns

was absorbed by JP Morgan. In addition to this, Fannie Mae and Freddie Mac were

completely taken over by the federal government. American International Group (AIG)

survived only after receiving an $85 billion capital injection from the government. Starting

from Monday October 6
th

, the stock market declined for a week straight in which the Dow

Jones Industrial plunged 1874 points.

Although the exact cause of this crisis was still under debate, this crisis was largely

coined with three words: Housing Bubble, Securitization, and Subprime Mortgages. This

section was devoted to explore the cause of the 2008 crisis around these three concepts,

examine the major game players, and understand how they interacted with each other.

Overview
The crisis was largely the net product of the three interactive factors and it is hard to

isolate any one of them to account for the crisis. The three factors affected and reinforced

each other in an endless loop only to worsen the situation. Their interaction can be illustrated

as follows.

Page 136 of 157

Figure 11: Three concepts in 2008 crisis

As the start, housing bubble planted the seed of evil. Initially fueled by a healthy

increase in natural demand after World War II, rising house prices was soon artificially

boosted by well-intended government policies. In order to increase homeownership, the fed

government broke the law of natural demand and supply and created a favorable environment

for home buyers fueled by “cheap money”. Urged by the government, mortgages lenders

began to lower their standards to include more people with weaker credit. Subprime

mortgages were created to cater to the growing appetite of the real estate industry. House

prices continued to skyrocket. Soon after investment banks on Wall Street saw profits in

subprime, they joined mortgages lenders. In order to be less exposed to the risk of subprime,

banks securitized subprime mortgages and created complicated second level securities backed

by these mortgages. They then shipped thousands of them to investors all over the world.

With rapid growth in economy, developing countries were more than happy to purchase these

financial products with their excess capital. Capital flew back into U.S. As securitization

proved successful in diversifying and managing risk, more funds went to subprime loans. In

turn, more subprime loans increased demand for housing, leading to even higher house prices.

Housing
Bubble

Securitization Subrime

Page 137 of 157

The chain effect of housing bubble, subprime mortgages, and securitization process

moved in a cycle just like electricity moved in a short circuit. They ran freely without

disturbance from outside and overheated each other until the “wire” could no longer bear the

heat. The crisis then broke out.

Key Concepts

Housing Bubble
One thing noticeable about the outbreak of the crisis was the coinciding collapse of

U.S real estates in 2007. Before then, house prices had been skyrocketing at an unusual pace

for a decade. Below are some quick facts.

 House prices rose steadily from the 1990s to 2006.

 The appreciation in house prices exceeded 10% per year from early 2004 to early 2006

 The home-ownership rate rose to a record level of 68.6% of households by 2007

 In Boston, the median home, which had sold for a reasonable 2.2 times median income

in the mid-90s, rose to 4.6 times income in 2000s.

Notably, the last piece of information revealed a very interesting fact about the U.S

house market – its growth went far ahead of the growth of household income. As Fannie

Mae’s managers pointed out (Lowenstein), if we overlay a graph of house prices with a graph

of incomes, the two lines tracked each other from 1976 to 1999. During that period, home

prices grew in response to income growth. As a matter of fact, every blip in income growth

was reflected in a corresponding change in home prices. As time moved into 20
th

 century,

however, the two lines deviated. Household income experienced a growing rate of only 2

percent while home prices rocketed alone. The growth of home prices by itself was very

unnatural.

Page 138 of 157

Generally, a mere rise in the price of an asset does not necessarily give rise to an

inflation bubble (Lowenstein). As long as the increased price is aligned with changes in the

assets’ demand or supply, the rise in value is healthy to the economy. A bubble market, on the

other hand, is one that lost its connection to the natural demand and supply. Since there was

no sign of increased buying power in the 2000s – household income did not gain much, rapid

appreciation of houses turned the housing market into a bubble market. The bubble market

then fostered the rapid growth of subprime mortgages, with the latter transformed into

securities which were traded all over the world and widely spread out the seed of the crisis.

If it was not the income to back the home price up, it must have been something else

that could account for the expanding house market. As analysis later in this report showed, the

U.S. government, along with Wall Street banks and investors overseas, was responsible for

the start and growth of the housing bubble.

Subprime Mortgages
Subprime mortgages, to the opposite of prime mortgages, are a type of mortgages that

are made to borrowers with shaky credit ratings. The word “Subprime” refers to the low

credit rating of the borrower. Subprime mortgages borrowers usually have a credit rating

below 600 on a scale of 300 to 900 while a typical consumer can have as high as 700.

Since the borrowers of subprime mortgages are riskier – the chance that they make late

payments or even go bankruptcy is much higher, interest rates charged on subprime

mortgages are usually higher than prime mortgages. Still, they can vary wildly based on

factors such as the actual credit score of the borrower, size of down payments and number of

late payments.

Subprime Mortgages played a very important role in the 2008 financial crisis. During

Page 139 of 157

the pre-crisis period, especially into the 2000s, subprime mortgages issued to home buyers

enjoyed a sharp rise in response to the increase in the U.S. house prices. The percentage of

low-quality subprime mortgages rose from 8% to approximately 20% within 2004-2006

timeframe. Among them over 90% were adjustable-rate mortgages which are mortgages with

an initial low interest rate that would grow much higher in a process called mortgage reset.

Subprime mortgages would normally have added much instability to the banking

system and the U.S. economy. However, when house prices continued to rise, no problem

surfaced in the early 2000s. Nobody questioned about subprime mortgages even if the

borrower paid down little or even paid up. It was largely believed that, if a borrower was short

of money paying his first mortgage, he could always take on a second one because higher

value of his home gave him more collateral. After all, he could sell his house at a higher price

to pay off the first mortgage.

As subprime mortgages defaulted moderately and subprime lending appeared

profitable, Wall Street banks joined mortgage lenders in the game of subprime. Instead of

being exposed directly to subprime mortgages, investments created securities backed by these

mortgages through the process of securitization. They also introduced Credit Default

Obligation (CDO) as the second layer of securitization. Through these products, subprime

mortgages were packaged and shipped to different parts of the world and traded as completely

different products to various investors.

Subprime mortgages began to fall back to their real value soon after house prices

declined steeply after 2006. Refinancing became much more difficult to home buyers without

the backup of real estate boom. They soon found themselves paying even higher interest than

what they already could not afford. Securities backed by subprime mortgages slumped in their

Page 140 of 157

value, deeply wounding investment banks. Global investors no longer purchased mortgage-

related products as a result of loss of credit confidence. Subsequent to the deflation of housing

bubble, subprime mortgages generated waves of default and failure throughout the global

financial system.

Securitization
Unlike the previous two concepts which are widely accepted as ill-advised,

securitization gained its bad reputation only recently, just because of the subprime mortgage

crisis. Before then, it was thought as an innovative financial practice to manage risk.

Definition

Securitization is the process of pooling various types of assets and repackaging them

into interest-bearing securities. The interest and principal payments from the assets (i.e.

houses) are passed through from the originator (i.e. home mortgage issuer) to purchasers of

the securities (i.e. investors).

Historical Review

Securitization was started in the 1970s. Back then, U.S. government-backed agencies

were the only players in the business. Fannie Mae and Freddie Mac, two giants in the

industry, securitized only prime mortgages. Starting from the 1980s, other income-producing

assets began to be securitized. The market of securities backed by risky subprime mortgages

also grew drastically. Entering into the 2000s, increasing numbers of financial institutions

joined the game of securitization as they saw lucrative profits out of the business of subprime

mortgages. Investment banks, insurance companies, pension funds, and hedge funds were

eager to bite away their share. The scale and prevalence of the crisis explained how broadly

and wildly securitization was practiced in the decade preceding the outbreak of the crisis.

Page 141 of 157

Process Illustration

Figure 12: Securitization process

The process basically involves two steps. It starts with a company which wants to

remove the loans or other assets they hold onto out of its balance sheet. The company, also

called the originator in this process, pools these unwanted assets into so-called reference

portfolio. It then sells the asset pool to an issuer (arranger), such as a special purpose vehicle

(SPV). SPV, a bankruptcy-remote trust set up by a financial institution, has its specialty in

acquiring these assets and writing them down the balance sheet for the originator. At the

second step, the issuer fiancés the acquisition of the pooled assets by issuing tradable, interest-

bearing securities that are sold to capital market investors (Jobst 2008). The investors receive

fixed or variable rate payments from a trustee account funded by the cash flows generated by

the reference portfolio (Jobst 2008). Thus, credit risk is transferred from issuers to investors.

In the real world, rating agencies and securities brokers also facilitate the process.

They help to bridge the information asymmetry between SPV and investors. Rating agencies

assign investment grade to the securities traded in the market. The grades provide guideline to

investors. Securities brokers provide counseling to investors.

Tranches

Tranching is an innovative way issuers created to market the reference portfolio.

Transfer of assets from

the originator to the

issuing vehicle

SPV issues debt

securities (asset-

backed) to investors

Asset originator
Issuing agent (e.g.,

special purpose
vehicle [SPV])

Investors

Credit Rating Agency

Securities Broker

Page 142 of 157

Instead of selling the entire portfolio as a big chunk, they slice it into tranches, each of which

has a different level of risk and marketed separately. Investment return varies dramatically

among different tranches. The safer the tranche is, the higher its priority to get its share of

income generated by the underlying assets. On the other hand, the riskier the tranche is, the

higher the rate of return.

Based on the seniority of the risk, tranches are classified as junior, mezzanine, and

senior tranches. The most risky junior tranche, usually the smallest of the three, bears most of

the credit exposure and receives the highest return. The senior tranche, to the opposite, are the

least expected to default. However, the expectation is very sensitive to changes in the quality

of the underlying asset. When the borrowers of subprime mortgages began to have problems

making payments, junior tranches were first to be affected but loss of confidence among

senior tranche holders fired panic among investors. That caused a fire sale of such securities.

Rationale for Securitization

Securitization represents a new way for companies to raise money, the way that

actually increases capital availability. Suppose a leasing company wants to raise cash. Under

traditional procedures, the company has to do so by issuing bonds or loans. Its ability to do so,

poorly or well, and the cost incurred, is largely determined by the overall financial health of

the company and its credit rating. If the company is not functioning so well recently or if it

does not meet some standard criteria, it will not be able to issue quality bonds or loans that are

attractive to investors at a low cost. If only it could sell some of its leases directly to potential

buyers, that would have solved its problem of issuing bonds or loans. However, there is no

secondary market where individual leases can be traded. But by securitization, the company

can raise the cash it wants by pooling the leases and selling the package to an issuer, with the

latter convert the pool into a tradable security.

Page 143 of 157

Moreover, securitization lowers the cost of capital. Since the assets are now detached

from the originator’s balance sheet, the credit grade of the security issued is no longer tied to

the overall credit rating of the originator. This means issuers can finance the pool of assets

they purchase more cheaply than normal and in turn costing originator less to sell the pool.

For example, by securitization, a company with an overall “B” rating with a triple-A rated

asset pool is able to raise funds at the rate for triple-A instead of “B”. Also unlike

conventional debt, securitization does not inflate a company’s liabilities because the assets are

now off-balance-sheet.

Investors also benefit from securitization because it creates a broad array of attractive

investment options. From the same asset pool, people who want steady and stable return with

the least risk exposure can take away senior tranches while speculators can gamble with their

risky junior tranches at extremely high rate of return. The flexibility of securitization

transactions also help pension funds and other collective investment schemes which require a

diverse range of highly rated long-term fixed-income investments beyond what the public

debt issuance by governments can provide (Jobst 2008).

Securitization and 2008 Financial Crisis

Despite its great attributes in raising capital, lowering cost, and diversifying

investment options, securitization played its negative to the extreme in the crisis.

The process of securitization encouraged predatory lending in the relationship between

the mortgagor and originator and the relationship between the originator and the issuer.

Predatory lending describes fraudulent and deceptive practices by the loan lender that aim to

mislead and take advantage of the borrower. In particular, subprime mortgagors could be very

financially unsophisticated. They were either unaware of the variety of mortgage products

available to them or unable to make a choice between the available options. That opened the

Page 144 of 157

door for predatory lending. Especially when the originator saw the huge profits generated

from subprime mortgage securitization, it had stronger tendency to trick the borrower into

buying unsuitable mortgages. Predatory lending also occurred between the originator and the

issuer. When the pool of mortgage loans was bought by the issuer, it had the responsibility to

check the originator’s credit status and the quality of the underlying mortgage pool. The

detail of the deal between them was then finalized by the result of the examination. However,

with the information asymmetry existing between the originator and the issuer, the originator

had the tendency to misrepresent the quality of the mortgage borrower in order to write more

mortgages off their balance sheet. This led to mortgage fraud. Predatory lending and mortgage

fraud clearly knocked financial soundness off the chain of securitization and brought

unpredictable instability to the whole process. Theoretically the issuer could put due diligence

on the originator to help prevent the spread of mortgage fraud but in reality, especially in

those days when securitization was fervently practiced by Wall Street investment banks, the

close check was usually skipped.

Securitization also created moral hazards. A moral hazard refers to a situation where

one party holds responsibility for another but has the incentive to put his or her own interests

first (Dowd 2009). Most moral hazards involve excessive risk- taking: why not take the

gambling if “heads I win, tails you lose” is the rule? After all, I do not have to assume any

loss since you bear the risk for me. Moral hazards, if not controlled properly, often lead large-

scale risk-overtaking just as what happened in the crisis.

Traditionally when a mortgage lender granted a loan to the borrower, he or she held

onto it until its maturity. If the mortgage holder defaulted, the lender assumed all the loss.

Therefore, it was natural for the lender to scrutinize the borrower before granting a mortgage.

In this way, not many subprime borrowers would have been successful getting a mortgage.

Page 145 of 157

However, under the new securitization process, the originator did not have the incentive to

make serious check on the borrower because they did not expect to hold the mortgage for very

long. They were only concerned about the payment it got for originating the mortgage. Now

even the doziest mortgage broker could originate subprime mortgages for the least

creditworthy borrowers (Dowd 2009). Unfortunately, this giant Ponzi scheme could only last

as long as the housing bubble continued to inflate and new entrants continued to come into the

market. Once interest rates started to rise and house prices began to fall, the supply of suckers

inevitably dried up and the whole edifice began to fall in on itself (Dowd 2009). In the 2008

financial crisis, investment banks and investors all over the world helped to “relay” the crappy

subprime mortgages in a string of securitization. When the head of the string burned soon

after the collapse of housing market, the entire string got fire in a flash.

Furthermore, securitization introduced complex financial products which attracted

misuse and abuse. Securitization was initially used to finance simple, self-liquidating assets

such as mortgage. However, potentially all types of assets with a steady cash flow could be

structured into a reference portfolio which after pooling could be converted to securities. In

addition to mortgages, corporate and sovereign loans, consumer credit, project finance,

lease/trade receivables, and individualized lending agreements could all be used to back up

securities. The securities created this way generally are called asset-backed securities (ABS)

though those securities backed by mortgage loans are called mortgage-backed securities

(MBS) more precisely. Moreover, a variant called collateralized debt obligation (CDO) was

created more recently to include an even more diverse range of assets.

Given the complexity and variety of instruments, it was very difficult for the investors

to figure out what was the right choice for them. It was even difficult for rating agencies or

securities brokers to understand the instruments they were grading or offering counseling on.

Page 146 of 157

Commented by Allen Greenspan, former chairman of Federal Reserve, “I have not shallow

background in mathematics and I have access to hundreds of top math phDs. But even I could

not completely understand those CDOs. Could anybody in the world possibly understand

them? I doubt.” (House of Cards 2009)

Since nobody could have a thorough insight, buyers could largely be manipulated by

sellers. That was exactly how Narvik, Norway, a town far above the Arctic Circle, was fooled

to buying CDOs in 2006 (House of Cards 2009). The town of 17,000 people, suffering from a

shrinking population and a growing budget deficit, needed money. So when sales people

showed up, selling what they claimed “safe with high yield” products from Citigroup, the

mayor and her counseling were overjoyed. From everything they examined they found no sign

of problems except the content of the product remained mysterious. The product was rated

triple-A – that was all they need to know to invest. Narvik thought their budget problem was

over. However, when the subprime mortgage broke out, the products they held suddenly

turned into nothing. Now the town is crashing and its residents have to pay the price of this

poor investment for over a decade.

Securitization can be a valuable tool. It was the oversight in regulation and greedy in

human nature that spoiled the good will of the tool. The lesson is: don’t just throw out the

water at the baby; monitor the temperature and change the water accordingly. Water can

sustain you as well as kill you!

Major Game Players

The U.S. Government – Over interfered the housing market
The initial rise of the housing bubble was thought to be a product of government

Page 147 of 157

interference with the natural demand and supply.

During 1930’s Great Depression, the United States had experienced the greatest

mortgage crisis ever in its history. About half of mortgage was in default and the amount of

mortgage lending had fallen by about 80 percent. In response to this, in 1938, Fannie Mae was

created as a government agency to help with home mortgage lending market. In addition,

Congress charted Freddie Mac in 1970. These two companies functioned as private

corporations but were sponsored by the government. Their intimate relationship with the

government resulted in the companies’ dominance in the industry on the one hand. On the

other hand, however, it restrained the companies’ freedom from political influence.

Initially Fannie and Freddie only held onto prime mortgages. They set strict industry

standards that only those with strongest credit would be issued home mortgages. Starting from

the 1990s, however, they were pushed by Congress to accept documented loans available to

borrowers with spotty credit history. The goal claimed by the government, was to increase

home ownership. By lowering standards, it was hoped that more people could afford loans

issued by Fannie and Freddie.

Originally backed by the Democrats and the Clinton Administration, the policy was

further pushed by the Bush Administration. As time moved on into year 2001, the overall

mortgage environment became more and more favorable for home buyers.

The terrorist attack on September 11
th

 2001 also unintentionally helped with the on-

going housing boom. As the result of the attack, the country was immersed in a mood of terror

and depression. The economy halted as people were afraid to go out shopping. Allen

Greenspan, the Chairman of Federal Reserve at that time, feared that a financial crisis of

decades would come. The only way to prevent the crisis, as he believed, was to encourage

Page 148 of 157

people spending. Starting from 2001, Greenspan made a series of cuts for short-term interest

rates all the way to 2003 until the rates finally dropped to only 1 percent – history lowest of

the generation. The inflation rate was at a time equal to or even greater than the interest rate.

Banks were effectively borrowing money for nothing. People were spending far more than

they could afford.

Investment Banks
Among all that experienced huge loss in the crisis, investment banks on Wall Street

have won the least sympathy. Quite to the contrary, they were blamed intensely for their

irresponsible conducts and insatiable greedy. The oversight in the risk they were taking in

securitization and subprime mortgages not only cost themselves high price but also blew the

storm of credit crisis over the globe.

Investment banks helped to supply capital from oversea investors to the U.S. housing

market and sustained the housing bubble for quite a long time. Breaking the exclusive right of

Fannie & Freddie to securitize, investment banks offered an alternative for mortgage lenders

to write the loans off their balance sheet in the 2000s. They soon became a steady source for

these lenders. By issuing securities converted from subprime mortgages and other kinds of

other debt overseas and recycling capital back to the domestic housing market, investment

banks expanded the appetite of the housing industry and subprime mortgage business

dramatically.

To be less exposed to direct risk transfer from subprime market, investment banks

sought ways to further enhance the practice of securitization. They soon invented CDOs – a

vehicle to offload unwanted risk and make a fortune in the process. The table below lists the

top CDO underwriters and how many deals they had from 2002 to 2007.

Page 149 of 157

Underwriter 2002 2003 2004 2005 2006 2007 TOTAL

Merrill Lynch 0 3 20 22 33 18 107

Citigroup 3 7 13 14 27 14 80

Credit Suisse 10 7 8 9 14 6 64

Goldman

Sachs

3 2 6 17 24 7 62

Bear Stearns 5 2 5 13 11 15 60

Wachovia 5 6 9 16 11 5 52

Deutsche

Bank

6 3 7 10 16 5 50

UBS 5 2 5 10 16 6 35

Lehman

Brothers

3 4 3 6 5 6 35

Bank of

America

2 2 4 9 10 2 32`

TOTAL

DEALS

47 44 101 153 217 135 697

Table 2: CDO underwriters

Sometimes it was hard to sell the mezzanine CDO tranches because unlike the most

senior tranches, they usually did not get an investment grade. To solve this problem,

investment banks repackaged them into new CDOs. In this way, the mezzanine CDO tranches

were turned into part of new AAA bonds. This development was the notorious “CDO

squared” or sometimes “CDO cubed”. On the one hand, it held investors more distant from

Page 150 of 157

the underlying mortgages they were actually investing in. Investors were literally investing in

something riskier than they thought. On the other hand, it deteriorated the CDO quality and

made investors more exposed to the risk without them knowing it.

The banks went further and further down the road of securitization. They often

conducted many iterations of securitization on their products. It was shown that Merrill Lynch

created “CDO
2
“with as much as 15% of the assets from their prior CDO transactions. It also

bought 59% of its CDO tranches that were resold into CDO
2
. The table below summarizes the

amount of repackaging done by the banks. In particular, Merrill Lynch topped with an average

4.79 iterations on their CDO assets. As the amount of repackaging increased, the complexity

involved in these products multiplied. It became more and more difficult to perform analysis

on their underlying collaterals.

Bank Largest CDO Buyer of

Bank’s CDOs

Largest CDO

Supplier to Bank’s

CDOs

LEVEL

BoA Citigroup Bank of America 3.00

Barclays Merrill Lynch Barclays Capital 2.79

Bear Stearns Citigroup Bear Stearns 3.94

Citigroup Citigroup Citigroup 4.17

Credit Suisse Merrill Lynch Credit Suisse 2.07

Deutsche Bank Merrill Lynch Deutsche Bank 1.62

Goldman Sachs Goldman Sachs Goldman Sachs 2.32

JP Morgan Merrill Lynch JP Morgan 2.79

Page 151 of 157

Lehman Merrill Lynch Lehman Brothers 2.99

Merrill Lynch Merrill Lynch Merrill Lynch 4.79

Table 3: CDO repackaging level (Barnett-Hart 2009)

Investment banks soon felt tired of relying on mortgage lenders and other loan

originators to provide them with the collateral required for CDOs. Instead, they wanted to be

their own originator. They began to repackage their own collateral into CDOs. Bear Sterns

underwrote CDOs with as much as 30% of the collateral issued by their in-house RMBS

(Residential Mortgage-Backed Securities) business. Merrill Lynch bought 32% of all its in-

house RMBS used in CDOs. Playing the role of both an originator and an issuer enabled the

banks create and trade ABS or MBS more freely. Now that nobody could restrain them

generating huge profit out of the business, nobody could also stop them over-taking risks.

While the Wall Street was wild packaging securities they created and enjoyed

“riskless” profits from CDOs, they were winding up tremendous amount of risk due to so-

called “super senior” tranches. Super senior tranches were created by chopping the uppermost

tier of the AAA portion of a CDO. The tier held “super” low credit risk and all the lower tiers

could be sold for higher yield than original. Many banks kept these super senior tranches to

themselves because: 1. Very least capital was required to keep AAA securities. 2. It was

difficult to sell these super senior tranches because of low yield. A JP Morgan report revealed

that banks held around $216 billion worth of super senior tranches of ABS CDOs in 2006 and

2007 (Barnett-Hart 2009).

The banks did not worry much about their increasing exposure to SS tranches because

they assumed the risk of default was zero. In order for super senior tranches to default, the

economy had to turn down completely from bottom to surface, which was very unlikely to

Page 152 of 157

happen. Under such assumption, banks treated their SS CDOs as fully hedged even if they

were only partially hedged – usually by credit-default swaps. However, this method of

hedging of hedging left the banks with counter-party risk from other financial institutions

(Barnett-Hart 2009). It turned out that later it was these positions that caused the majority of

bank’s write-downs. As Merrill put it,

“The bottom line is that we got it wrong by being over-exposed to subprime.

As the market for these (subprime) securities began to deteriorate, we began substantially

reducing our warehouse risk by constructing CDOs and retaining the highest parts of the

capital structure, which we expected then to be more resistant to market disruptions in terms

of both liquidity and price…our hedging of the higher-rated tranches was not sufficiently

aggressive nor was it fast enough.” (Barnett-Hart 2009)

In November 2008, Merrill Lynch, Citigroup, and Lehman Brothers, took write-downs

of $51.2, $46.8, and $15.3 billion, as the banks with the highest combined amounts of CDO

and subprime assets. (Asset-Backed Alert, Nov. 18, 2008) The massive write-downs

destroyed many of banks including Merrill and Lehman, pushing others to the brink of

disaster. Furthermore, CDO losses have spread far beyond the investment banks on Wall

Street, affecting very pool of investment money from pension funds to Norwegian villages.

(House of Cards 2009) It remained still unsolved how much impact exactly investment banks

had brought to the global economy.

Rating Agency
The violent crash of the asset-backed (especially the subprime mortgage backed)

structured finance market was believed as one of the major catalysts for the 2008 financial

crisis. Credit Rating Agencies have drawn much criticism for their role in fueling this

Page 153 of 157

unsustainable and problematic market.

Rating Agencies play a crucial role in financial markets. They have the responsibility

to assign an investment grade to various debt-related financial instruments, i.e. bonds.

Investors rely on these ratings to make their investment decisions. Due to the lower

transparency and higher complexity in the structured finance market, investors have an even

heavier reliance on rating agencies than any other market. Inflation of credit ratings easily

boosted the market to grow dramatically in a short period of time and subsequent downgrades

in ratings accelerated the collapse of the market. As many highly rated securities defaulted in

the crisis and rating agencies had no choice but to downgrade them, it was clear that these

agencies did not correctly place their rating at first place.

There were many reasons why these weathercocks made such huge miscalculation this

time. The data used to develop ratings was different from what was available before.

Traditionally, when rating agencies rated corporate debt, they based their ratings on publicly

available, audited financial statements. In contrast, structured debt ratings were based on

nonpublic, nonstandard, unaudited information supplied by the originator or issuer (Katz

2009). There could be potentially a lot of misrepresentation in the information, especially

when the entire industry went insane in subprime mortgage business. Moreover, since rating

agencies had no obligation to perform due diligence to check the accuracy of the information

and the new mortgage-backed securities and CDOs were so complex to examine, rating

agencies tended to and sometimes had to rely on representation and warranties provided by

the originator or issuer. This largely undermined rating agencies’ independence.

Rating agencies also fell behind updating their rating method to better fit the

structured financial products. More than often, they lacked extensive historical data to make

Page 154 of 157

the correct distribution assumption of the innovative products. In order to rate anyways, they

used older models that were created for traditional products. The models turned out to be

inadequate and inappropriate. For example, they failed to account for default correlation rise

in the pool of assets in response to declines in housing prices. Rating agencies were also

reluctant to invest in newer databases and rating models because they were costly and hurt

profits.

At the root, there is always this conflicting interest in the nature of credit rating.

Rating agencies run their business by charging securities issuers. The more securities they can

get to rate, the more they get paid. If the issuers are consistently unsatisfied with the grade

they get for their instruments, they will go to other agencies to get a better chance. This

“issuer pays” business model encourages rating agencies to relax their own criteria in order to

maintain or attract more market share. Moreover, a few large investment banks which

controlled much of the deal flow made it even worse. They often “shopped around” for the

highest ratings on their lucrative issuance deals by playing one rating agency against.

Continuing pressing rating agencies, these banks often landed the privilege to consult

agencies informally on structures they could create to achieve high ratings. The practice

inevitably caused an inflation of credit rating and adversely hurt the industry standard.

Misrepresented information provided by issuers, complex structured finance products

to rate, outdated rating models in use, and pressures to lower standard from peers and clients

all led credit rating agencies to creating a rating bubble in the period of pre- crisis. According

to a report issued by the BIS and Basel Committee’s joint forum (Report on securitization

incentives), between 1990 and 2006, assets with the highest credit ratings rose from a little

over 20 per cent of total rated fixed-income issues to almost 55 percent. It means more than

half of the world’s debt securities were considered risk-free. The report also says during the

Page 155 of 157

same period, Asset-Backed Securities (ABS) accounted for 64 percent of the total growth in

the amount of AAA-rated fixed income while public debt, corporate debt, and other debt

contributed only 27, 2, and 8 percent to the total, respectively.

The bubble did not sustain for very long. It soon crashed as house prices went down

and mortgages defaulted. As of 2007, triple-A rated CDOs were downgraded an average of 16

rating points (1 means AAA, 22 means D) (Barnett-Hart 2009). It was shocking that as many

as 70% of CDOs defaulted among all rated by some agencies. Numerous investors bore loss.

Structured finance market became as volatile as ever. With its careless use of power to blow a

credit rating bubble up and smash it in a flash, credit rating agencies helped to spill out the

evil.

Global Investors
It is never the heat itself that causes a fire. It is also the fuel. Global investors played

the role of fuel in the crisis. Without their help, the crisis would never become so widely

spread out and so profoundly influential. It might not have even happened.

Low interest rates not only encouraged spending instead of saving among consumers.

It also turned investors to higher-yielding securities. A variety of investors ranging from

professional investors and corporate CEOs to hospital funds and state pension funds began to

look at loans to private equity deals. They were assured that these loans were safe as well as

the mortgage pools. After all, when interest rates were low, the only way to earn more was to

assume more risk.

Low interest was not limited to the United States. It was a worldwide phenomenon at

the time. China, Japan, Germany, and oil-exporting nations were all experiencing the same

issue. Unlike the U.S., they were spending less than their income and thus had extra money to

Page 156 of 157

lend. Thus they became the investors who purchased higher-yielding securities backed by

private equity loans from the United States.

It was these investors’ dollars that fueled the credit binge. In 2000s, when borrowing

reached its peak, the United States along sopped up 70 percent of the surplus capital flowing

from the developing countries. It was largely argued that America was borrowing to spend

only because other countries were lending. Although it sounded like America was blaming

others for their own mistake, it was undeniable that global investors played their role in the

development of the crisis.

Page 157 of 157

