
WORCESTER POLYTECHNIC INSTITUTE

MASTER’S THESIS

Multi-modal Deep Learning

Author:
Si LIU

Advisor:
Dr. Randy PAFFENROTH

Reader:
Dr. Xiaozhong LIU

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Data Science.

May 2022

Advisor Date

Reader Date

wpi.edu
https://www.wpi.edu/people/faculty/rcpaffenroth
https://www.wpi.edu/people/faculty/xliu14

i

Abstract

Si LIU

Multi-modal Deep Learning

In many problems in machine learning, the same underlying phenomena can be ob-
served using different types of data. We call such problems “multi-modal” since they
allow multiple different views of the same problem. However, many current deep
learning techniques are not designed for such multi-modal data, and here we study
how to utilize more than one dataset to improve the performance of deep learning
models. In particular, we demonstrate how deep neural networks performance can
be improved using our proposed multi-modal learning compared with single-modal
learning. Additionally, we explore effective and efficient ways to combine different
data modalities. This research demonstrates our techniques on many multi-modal
problems, including autoencoders trained with the MNIST dataset and deep neural
network classifiers trained with real-world chemistry data. We propose the no-harm
factor, a method to ensure that adding another modality doesn’t harm the perfor-
mance of models in the presence of a small amount of multi-modal data. The no-harm
factor is easy to apply and is practical, especially in chemical analysis tasks where
limited labeled data are available.

ii

Acknowledgements

Thank you to my advisor Dr. Randy Paffenroth and reader Dr. Xiaozhong Liu.

iii

Contents

List of Figures v

List of Tables vii

1 Executive Summary 1

2 Introduction 4
2.1 Overview . 4
2.2 Multi-modal Deep Learning . 5
2.3 Justification for the Experiments . 7
2.4 Contribution . 7
2.5 Background . 8

2.5.1 Autoencoder . 8
Encoders, Embeddings, and Representations 9

2.5.2 Multilayer Perceptron - MLP . 9
2.5.3 Convolutional Neural Network - CNN 10
2.5.4 Multi-modal Representation Learning 11

Barlow Twins . 12
2.5.5 Multi-modal Fusion Techniques 14

Controlling Factors during Fusion 15

3 Methodology 16
3.1 Datasets and Prepossessing . 16

3.1.1 MNIST Dataset and Its Synthesized Datasets 16
3.1.2 Chemical Structure and Raman Spectrum Datasets 17
3.1.3 Public Biodegradation Dataset 19

3.2 Architecture and Optimization . 20
3.2.1 Reconstructing MNIST Modality Using Encoder-decoders . . . 20
3.2.2 Predicting Double Bond of Chemicals Using MLP and CNN . . 20
3.2.3 Predicting Biodegradation of Chemicals Using MLP and CNN . 21

No-harm factor . 23
3.3 Training and Implementation . 26

3.3.1 Multi-modal Training Method 26
3.3.2 Implementation Algorithms . 27

Multimodal-learning with Synthesized MNIST Data 27
Multimodal-learning with Limited Chemical Data 28
Coordinated Representation using Barlow Twins 29
Multimodal-learning with Public Chemical Data 30

4 Results 31
4.1 Multi-modal Learning with Incomplete Information 31
4.2 Multi-modal Learning with Limited Data 34

4.2.1 Representation Learning using Barlow Twins 35

iv

4.3 Multi-modal Learning with Public Datasets 37

5 Conclusions and Discussions 39
5.1 Conclusions . 39
5.2 Discussion . 39

A More Details in 3 Experiments 41
A.1 Experiment 1 . 41

A.1.1 Encoder-Decoder architecture . 41
A.2 Experiment 2 . 41

A.2.1 Image Modality - CNN . 41
A.2.2 Architecture for Raman Table Modality - MLP 42

A.3 Experiment 3 . 42
A.3.1 Architecture for Image Modality - Chemception 42

Bibliography 47

v

List of Figures

1.1 Overview of this research. 2
1.2 Implementation of no-harm factor λ . 2

2.1 Implementation of no-harm factor λ . 8
2.2 An example of an autoencoder. 9
2.3 Activation functions . 10
2.4 An example of convolution and pooling. 11
2.5 Number of weights in one convolution: CNN vs. MLP. 11
2.6 Two general types of multi-modal representation. 12
2.7 Barlow Twins original implementation. 13
2.8 Multi-modal Barlow Twins implementation. 13
2.9 Two general types of multi-modal fusion. 15

3.1 Examples of synthesized modalities of the MNIST data 17
3.2 An example of a chemical with two modes. 18
3.3 Raman Spectroscopy . 18
3.4 Convert a Raman spectrum into 1D vector. 18
3.5 Convert a SMILES string to an augmented image. 19
3.6 Architecture of the encoder + decoder neural network in Task 1. 20
3.7 The architecture of the multi-modal deep neural network to predict

double bonds. 21
3.8 Baseline model to predict biodegradation 21
3.9 Building blocks of of baseline model to predict biodegradation 22
3.10 Detailed building blocks of baseline to predict biodegradation 23
3.11 Implementation of no-harm factor λ . 24
3.12 No-harm factor λ in multi-modal neural networks 25
3.13 2 examples of training options for multi-modal neural networks. . . . 26

4.1 Sample loss plots of MNIST data reconstruction. 31
4.2 Loss values of modality combinations in MNIST data reconstruction

(view 1). 32
4.3 Loss values of modality combinations in MNIST data reconstruction

(view 2). 33
4.4 Sample input and output in MNIST data reconstruction 34
4.5 Bootstrap results of multi-modal and single-modal learning in double

bonds prediction . 34
4.6 Results of multi-modal and single-modal learning in double bonds

prediction . 35
4.7 Barlow Twins cross-correlation matrix sample result 1 36
4.8 Barlow Twins cross-correlation matrix sample result 2 36
4.9 Barlow Twins sample loss plots in training 37
4.10 Biodegradation prediction results 1 . 37

vi

5.1 Results of no-harm factor λ . 40

A.1 Building blocks of inception module and residual Learning 43

vii

List of Tables

1.1 Results of no-harm factor λ . 3

3.1 MNIST dataset . 16
3.2 Chemical structure and Raman Spectrum datasets 17
3.3 Biodegradability classification dataset 19

4.1 Table of results of Experiment 1. 32
4.2 Results of no-harm factor λ . 38
4.3 Results of fixed and learnable no-harm factors 38

1

Chapter 1

Executive Summary

Multi-modal deep learning is a field of building deep neural network models that
can process information from multiple sources. Each source relates to one modality
or mode. In our research, we use deep neural network models to process information
represented by two modalities (Figure 1.1). First, we synthesize two modalities using
MNIST data to better understand the algorithms of multi-modal learning. Second,
we use two real-world datasets to conduct chemical analysis using multi-modal
techniques.

Chemical analysis is important in many aspects of human lives, from environ-
mental impact to drug discovery. However, it is very challenging, because there is
a wide range of machine learning tasks but a small amount of data that are highly
heterogeneous and expensive to gather and label. We use these multi-modal experi-
ments to improve chemical machine learning tasks that are usually single-modal by
utilizing the multi-modal characteristic of chemical data. We also explore deep neural
networks’ designs and training methods that can effectively and efficiently combine
multiple modalities.

The main contribution of this paper is the no-harm factor, a method to make sure
that multi-modal learning should not be worse than single-modal learning with either
of the modalities. Multi-modal neural networks gain complexity when new layers
are needed for an additional modality. Preventing performance drop is especially
practical when there are insufficient data points because the complexity gained from
multi-modal architecture might aggravate the overfitting problem.

A typical multi-modal neural network architecture is to combine the embeddings
of the modalities later in the network. The no-harm factor λ is a learnable parameter
that controls the importance of one embedding c1 over another embedding c2. As
shown in Figure 1.2, the embeddings are the second last layers of Neural Network
1 and 2 (their last layers are predicting layers, which are not shown in this figure).
When λ equals 0 or 1, this whole model is the same as either of the neural networks.
The benefits of the no-harm factor are:

• It is easy to apply because we do not need to explicitly explore how and where
to combine the embeddings.

• It learns the importance of embeddings without introducing too many learnable
parameters, thus limiting the complexity gain.

• It simplifies the design of the multi-modal neural networks.

Chapter 1. Executive Summary 2

FIGURE 1.1: Overview of this research. The goal of the multi-modal
deep learning is to create deep neural networks that can process in-
formation using two modalities of the information. In our research,
we had three major experiments, and each experiment had differ-
ent information represented by two modalities (mode 1 and mode
2). In Experiment 1, using the MNIST dataset, we synthesized two
modalities: partial images (mode 1) and smaller images (mode 2).
We used an encoder-decoder neural network to reconstruct original
information/modality using synthesized modality. In Experiment 2,
the dataset comprises chemical data represented by their molecular
images (mode 1) and Raman spectrum data (mode 2). Raman spectra
are considered the fingerprints of chemicals [21]. As far as we know,
chemical Raman spectroscopy, an important real-world measurement
technique, has never been used in multi-modal deep learning in chem-
ical analysis. The task in Experiment 2 was to predict the number
of double bonds, i.e., the number of two parallel lines in molecular
images. In the third experiment, the first mode consists of chemical
data represented by their molecular images (mode 1) with chemical
characteristics [17], and the second mode consists of 41 descriptors.
The chemical characteristics and descriptors were both selected by
domain experts. The prediction task in Experiment 3 was to predict if
a chemical was biodegradable in the natural environment.

FIGURE 1.2: Implementation of no-harm factor λ in multi-modal
architecture. λ controls the importance of one embedding c1 over
another embedding c2. When λ is a scalar, λ is shared by all neurons
in embedding c1. When λ is a vector, each neuron in embedding c1
has a specific λi value. c2 gets 1 − λ in the same way.

Chapter 1. Executive Summary 3

Table 1.1 shows the results of multi-modal learning with the no-harm factor
compared to single-modal learning. Model 1 and Model 2 are the two single-learning
models trained with single modalities, and Model 2 is the baseline because it has
better performance than Model 1. Red values are the test and validation metrics
of the baseline single-modal model. Blue values are lower than red values, which
means these models outperform the baseline model when trained via specific training
methods and the no-harm factor. Green values are the best results in test or validation
time. This table shows that if the model is trained properly, multi-model learning
with the no-harm factor can improve the performance of single-modal learning. With
the no-harm scalar, the best test result is 8.2% better than that of the baseline when
both of the pretrained models were frozen. Even though the no-harm factor can’t
guarantee better performance all the time, with very few learnable parameter added
to the model, no-harm factor provides a good estimation of how much an additional
modality can improve model performance when its embedding is combined with
current embedding in linear way. Training methods in this table will be explained in
Section 3.

TABLE 1.1: Results of multi-modal learning with no-harm factor.
Green values are the test and validation metrics of the baseline model.
Blue values are lower than green values, which means these models
outperform the baseline single-modal model when trained via specific
training methods and the no-harm factor.

4

Chapter 2

Introduction

2.1 Overview

This world is multi-modal. It combines what we see, smell, touch, hear, etc. Our
senses create different representations of the world. Multi-modal deep learning is
a field of building deep neural network models that can process information from
multiple sources. Each source relates to one modality or mode. We can have image,
audio, and text datasets to represent the same data entities. Each representation
is a modality or mode. On the contrary, single-modal data has one modality. In
this era of big data, data are usually multi-modal because it is the natural form for
information flow in the real world. They are usually collected from different resources.
For example, the exponential growth of multi-modal content on the Internet leads
to a massive volume of unstructured data such as text, audio, image, and video
contributed by Web users through social media, blogs, online communities [53]; the
advances in the medical device industry have allowed the physicians to collect a vast
amount of multi-modal data such as x-ray imaging, magnetic resonance imaging
(MRI), and recordings of the electrical activity of organs, etc. [22]. Big data technology
has increased the availability and accessibility of multi-modal data, and multi-modal
learning is vital in big data research to embrace the variety of information. Big
data contain abundant information that is beneficial but challenging to traditional
multi-modal machine learning tasks ranging from the Internet of Things, vehicular
networks to social networks [14]. Thus, multi-modal deep learning is a timely topic.

Multi-modal deep learning aims to learn deep neural networks that process and
relate information from multiple modalities [3]. Due to the superior performance in
multiple domains, there has been an explosion of interest in multi-modal deep learn-
ing tasks such as analyzing audio-visual scenes [45], matching images and sentences
[39], combining medical imaging and electronic health records [29], interpreting user
activity and context captured using multi-sensor data [48], and recognizing objects
using RGB and depth image data pair[13]. This research uses two modalities to train
multi-modal neural networks that can process information from image-image or
image-table modalities. Our main task is comparing single-modal and multi-modal
learning; thus, two modalities are enough for us to understand multi-modal algo-
rithms and explore how to train these algorithms efficiently and effectively. The
topics specific to a higher number of modalities are out of the scope of this research.

In multi-modal tasks, limited resources for data collection affect the quality and
availability of modalities. We usually spend fewer resources collecting lower-quality
data than higher-quality data. For example, it is cheaper to take blurry or partial im-
ages than high-resolution images, or to record audio with huge background noise on
the street than clear audios in professional studios. Different modes require different
resources to be collected. When resources are limited, it is important to determine
which modes are most valuable and should be concentrated on to achieve the best

Chapter 2. Introduction 5

performance. For example, when designing multiple sensors for an autonomous vehi-
cle, multiple sensors are needed to fully perceive the surroundings. Researchers have
been looking for low-cost combinations in terms of computation, amount of resource
needed, or price. In this paper [35], researchers combined RGB image and LiDAR
laser sensor [11] data for a low-cost navigation system. In this research [8], lower
resolution and cheaper sensors were used to detect road conditions. It is practical
to explore cost-effective ways to combine multiple modalities, especially when only
lower quality data is available because of limited resources. One of our experiments
is to understand why and how two low-quality modalities combined can achieve
comparable or better performance than a higher-quality modality alone.

Another common problem, especially with machine learning in the chemical
field, is that only a limited amount of labeled data is available despite a tremendous
number of unlabeled data. This problem leads to challenges such as overfitting
and unstable model performance. Some researchers in the chemistry domain have
utilized more than one dataset to compensate for the lack of labeled data to some
extent. For example, researchers have combined molecular images and chemical
property data to improve the prediction of biodegradation using 1055 data samples
[18]. However, multi-modal learning is still not extensively studied in chemical
analysis like in other domains such as computer vision and speech recognition.
Chemical analysis is important in many aspects of human lives, from environmental
impact to drug discovery. However, it is very challenging, one of the main reasons
is that there are a wide range of machine learning tasks but a small amount of data
that is highly heterogeneous and expensive to gather and label. Unlike collecting
data such as online images or videos, obtaining precise and accurate chemical data is
expensive because it typically requires special device and expert supervision [67]. We
have conducted two chemical analysis experiments, both of which were to predict a
chemical property using imagery and tabular modalities of limited labeled samples.
We use these experiments to utilize the multi-modal characteristics of chemical data
to improve chemical machine learning tasks that are usually single-modal.

Motivated to explore these two real-world applications of multi-modal learning,
we have carried out this research to explore practical multi-modal deep learning
methods. First, we synthesize low-cost modalities using MNIST data [70] to better
understand the cost-effectiveness and algorithms of multi-modal learning. Second,
we use two real-world multi-modal datasets to improve the performance of single-
modal learning with a small amount of labeled data. We explore several aspects of
effective and efficient multi-modal deep learning, such as training methods, fusion
techniques, and representation learning.

2.2 Multi-modal Deep Learning

Multi-modal deep learning is a large field with active literature.The following refer-
ences provide overviews of multi-modal deep learning and their challenges including
representation, translation, alignment, fusion and co-learning [3], [50], [59]. There
are dedicated reviews on some of these challenges, such as how to fuse learned
multi-modal representations from various deep learning architectures [14]; key issues
of deep learning techniques in representation learning that narrow heterogeneity
gap among different modalities [22]; challenges of co-learning, which addresses the
problem such as one or more modalities are missing or noisy, lacking labeled data,
having unreliable labels, or are scarce in training or testing or both [49]. Compre-
hensive reviews on multi-modal alignment are missing but this topic can be found

Chapter 2. Introduction 6

in specific areas such as matching features of multiple modalities in computer vi-
sion [4], aligning common pixels in images [33], and aligning music information
[54]. The domain specified surveys on multi-modal translation cover topics such as
audio-visual speech synthesis that maps data between audio modality and visual
modality [42], cross-modal retrieval that takes one type of data as the query to retrieve
relevant data of another type [65]. Despite its outstanding performance, multi-modal
deep learning’s social acceptance and usability are limited by the complex, opaque
and black-box nature, leading to commentary on explainability in multi-modal deep
neural networks [34].

Of particular interest for us in multi-modal deep learning are representation
learning and fusion – two multi-modal deep learning topics that have been dis-
cussed together often. For example, in this survey, researchers discussed learning
multi-modal representation, fusing multi-modal signals at various levels, and their
applications [74]. In one of the first multi-modal deep learning applications, learn-
ing features over multiple modalities and combining them via different techniques
were both key concepts [44]. Last but not least, representation learning and fusion
were also important in decomposing single-modal representation into multi-modal
dynamics using recurrent neural fusion architecture [40]. Facing unique challenges
in multi-modality tasks, researchers have proposed specific techniques such as how
to train deep learning models to focus on information from more reliable modalities
while reducing the emphasis on the less reliable modalities [38], to learn the joint
distribution of modalities in different modality domains [30], and to balance the
trade-off between inter-modal fusion and intra-modal processing [64].

In the domain of deep learning for chemistry problems, there is a significant body
of work where the researchers have taken advantage of the diverse representations of
chemicals so that a collective performance could exceed the individual performance
of each neural network trained with one representation. For example, domain experts
have used text, images, and numerical features to predict toxicity levels of chemi-
cal compounds [36]. In drug repurposing, researchers utilized chemical structures
and deferential gene expression data to discover medicines remarkably similar to
the proposed medications [28]. In drug-drug interaction events, researchers have
combined various drug features, including chemical substructures, targets, enzymes
and pathways, to learn cross-modality representations of drug-drug pairs and predict
their interactions [12].

In Section 2.5.1, we will talk about autoencoders that we use in our first experiment
and explain the importance of embeddings heavily used in our research. In Section
2.5.3 and 2.5.2, we will talk about 2 classic neural network types that handle multiple
modalities – image and tabular data – in our datasets. In section 2.5.4, we will talk
about multi-modal representation learning. The final representation is where multiple
representations are usually summed up, averaged, or concatenated. The combination,
or fusion, methods will be discussed in Section 2.5.5.

In Section 2.5 of this chapter, we will talk more about the background of related
topics in terms of deep learning and multi-modal learning. Then in Chapter 3, we
will talk about each experiment in detail, explaining how we did it and showing the
results. On top of the standard training methods for traditional single-modal deep
neural networks, there are unique options to think about when training multi-modal
deep learning models, and we will mention the training options we use in Section
3.3.1. We did these experiments sequentially, and the results of each one led to the
next experiment. In Chapter 4, we will show the results of these experiments. In
Chapter 5, we will conclude the research and discuss the results. Finally, in Appendix
A, we will give more details on all the architectures of our deep learning models.

Chapter 2. Introduction 7

2.3 Justification for the Experiments

We do not always have the ideal modality of observed entities in real-life machine
learning problems, but there are other accessible modalities for the same task. For
example, sometimes a company can not afford high-cost sensors that render high-
resolution images. However, the budget can still cover more and cheaper sensors
that generate low-resolution or partial images. We want to know if the multi-modal
substitute is as useful as the ideal modality despite the incomplete information in the
substitute. One way to examine the potential of the substitute is to use an autoencoder
[20] to reconstruct the original modality with full information using the substitute
with partial information. If the encoder learns enough useful information in the
hidden layer, the decoder doesn’t need all the information from a original image
to reconstruct a original image. More details about encoding and hidden layer will
be discussed in Section 2.5.1. In our first experiment, the baseline model used the
original modality to reconstruct the original modality. The only difference among the
autoencoders was the input layer size dependent on the size of combined modalities.
We then compared the losses of baseline autoencoder and multi-modal autoencoders.
If multi-modal models achieved comparable performance to the baseline, we could
combine less ideal modalities to substitute for the ideal modality.

Based on the results of the first experiment, we got the intuition that multi-
modal learning could improve the performance of single-modal learning, especially
when the performance of single-modal learning is really bad. However, in real-
world problems, we do not always have as many data as in the MNIST dataset,
so it’s practical to check if multi-modal learning can handle the lack of data. We
used experiment 2 to examine whether multi-modal learning could improve single-
modal learning when either modality had sufficient real-world data entries. In the
second experiment we combined Raman spectra with chemical molecular image
to predict a chemical property: double bonds. As far as we are aware, chemical
Raman spectrum from Raman spectroscopy, an important real-world measurement
technique, has never been used in multi-modal deep learning in chemical analysis. If
adding Raman modality to molecular modality could improve model performance,
we would consider collecting more Raman data and using this combination to work
on other chemical tasks.

In our last experiments, to test our models on a public dataset, we found a research
paper that proposed the first effective multi-modal CNN-MLP neural network for
chemistry property prediction [18]. We also used image-tabular modalities and CNN-
MLP architectures in the second experiment, making our models comparable given
the same dataset. While both of our experiments aimed to address the lack of labeled
data in chemistry, our work explored more multi-modal techniques so that we may
improve their models.

2.4 Contribution

First, we applied multi-modal learning to a unique combination of Raman spectro-
graph and molecular images. As far as we are aware, chemical Raman spectrograph,
an important real-world measurement technique, has never been used in multi-modal
deep learning in chemical analysis.

Second, we proposed the no-harm factor, a method to make sure that multi-modal
learning is at least as good as single-modal learning with either of the modalities.
Preventing performance drop is especially practical when there are insufficient data

Chapter 2. Introduction 8

because the complexity gained from multi-modal architecture might aggravate over-
fitting problem. A typical multi-modal neural network architecture is to combine the
embeddings of the modalities later in the network. A no-harm factor λ is a learnable
parameter that controls the importance of one embedding c1 over another embedding
c2. As shown in Figure 2.1, the embeddings are the second last layers of Neural
Network 1 and 2 (their last layers are predicting layers, which are not shown in this
figure). When λ equals 0 or 1, this whole model is the same as either single-modal
neural network.

The benefits of the no-harm factor are as follows, and we will talk about these
benefits in detail in Section 3.2.3:

• It is easy to apply because we do not need to explicitly explore how and where
to combine the embeddings.

• It learns the importance of embeddings without introducing too many learnable
parameters, thus limiting the complexity gain.

• It simplifies the design of the multi-modal neural networks.

FIGURE 2.1: Implementation of no-harm factor λ in multi-modal
architecture. λ controls the importance of one embedding c1 over
another embedding c2. When λ is a scalar, λ is shared by all neurons
in embedding c1. When λ is a vector, each neuron in embedding c1
has a specific λi value. The same goes to c2.

2.5 Background

2.5.1 Autoencoder

An autoencoder is a type of neural network that learns a representation of input data
in an unsupervised manner [20]. In particular, an autoencoder is a pair of functions
called an encode and a decoder, which can be defined as functions ϕ and ψ. For
example, in the MNIST problem, the encoder maps the high dimensional input data
X ∈ R784 into a low dimensional space H ∈ R15 and the decoder maps from the low
dimension space H back to the high dimensional space X̂ ∈ R784 (Figure 2.3). These
two functions are composed to have the mapping from the high dimensional space
back to the high dimensional space be as close to the identity function as possible.
Of course, the exact values for the first two dimensions are dependent on the size of
input modalities.

ϕ : X → H

ψ : H → X̂

Chapter 2. Introduction 9

FIGURE 2.2: An example of an autoencoder. The encoder “compresses”
input data into hidden space, and the decoder mirrors the encoder
to reconstruct the input data using compressed representation. The
goal of autoencoder is to learn a lower dimension representation that
captures most important parts of the data in an unsupervised manner.

ϕ, ψ = arg min
ϕ,ψ

||X − (ψ ◦ ϕ)X||2

To foreshadow the key results of this thesis, we observe that autoencoders are
only the most basic architecture that we have studied. As we will show in Section 3,
the architectures, input modalities, and training methods all play essential roles in
maximizing model performance using multi-modal data.

Encoders, Embeddings, and Representations

The architecture of autoencoders is non-trivial since the high dimensional is being
“compressed” into the low dimensional space, and this compression can only be
accomplished if the encoder “understands” something about the structure of the data.
Our goal is to test what exactly the encoder is doing to effectively compress the data.
The low dimensional space H is usually called embedding of the input. Data X can
have multiple embeddings H as the outputs of multiple encoders functions ϕ, and
each embedding is a representation of this data mapped into a lower dimension. In
the rest of this paper, we will call a neural network an encoder if it compresses inputs
into lower-dimensional space and a lower dimension vector an embedding. If we use
these embeddings for downstream tasks, they will be called representations because
the downstream tasks only need a representation of the full input features.

2.5.2 Multilayer Perceptron - MLP

A multilayer perceptron is a collection of fully connected layers where each neuron
of a layer is connected to all neurons in the next layer. A fully connected layer is a
function from Rm → Rn. Each linear layer is usually followed by a nonlinear function
called activation function σ. The i-th layer yi ∈ Rm is computed as follows where wi
is a learnable weight assigned to each neuron, and b is the bias:

yi = σ(wix1 + . . . + wmxm) + b

Without activation functions, a neural network is just a linear function whose
complexity is limited. No matter how many layers the neural network has, hidden
layers have no effect because the output is a linear combination of the input [27]. Two
activation functions are used in this research: sigmoid and ReLU [37]. The sigmoid
function is a squashing function as it squashes input values within range (0,1), which

Chapter 2. Introduction 10

FIGURE 2.3: Activation functions we have used in this research. We
use ReLu function (left) to transform input values so that they were
not negative. We use sigmoid function (right) to squash input values
into range (0,1).

is especially useful when we have to predict the probability as an output. It is denoted
by:

y = 1/(1 + exp(−x))

ReLU stands for rectified linear unit, a function that outputs 0 if the input is equal
or smaller than 0, and outputs the input directly if the input is positive. It is denoted
by:

y = max(0, x)

One major advantage of ReLU is sparsity. Sparsity arises when x is smaller than 0;
thus using ReLU gives rise to truly sparse representations. Some of the reasons that
make parse representations appealing are: it can disentangle information as small
input changes will not modify the following non-zero features; it creates variable-size
representation because a variable number of zero neurons allows a model to control
the effective dimensionality of the representation; it makes the representations more
likely to be linearly separable in high-dimensional space [15].

2.5.3 Convolutional Neural Network - CNN

Convolutional Neural Networks(CNN) are specialized to learn useful features in
higher dimension data such as images [1]. CNNs are consist of convolution, pooling,
and fully connected layers. As shown in Figure 2.4, the convolutional layers utilize 2D
kernels, matrices of weights, to capture 2D features such as lines or corners. Pooling
layers usually follow convolutional layers to “summarize” the learned features. An
output of convolution or pooling is also called a feature map.

The advantage of CNN over an MLP is a smaller number of parameters, and
this advantage has prompted many achievements in complex tasks that are too
challenging or inefficient for MLPs [1]. For example, in Figure 2.5 to learn a 2x2
feature map over a 3x3 image, a convolutional layer only needs 4 weights of a kernel.
In contrast, a fully connected layer needs a sparse 9x4 kernel matrix, whose first
dimension is the total number of pixels in the image and whose second dimension is
the total number of convolutions.

Chapter 2. Introduction 11

FIGURE 2.4: An example of convolution and pooling. In this example,
the stride is 1x1, which means the kernel, or filter, slides on the input
image one pixel at a time from left to right and from up to down. Each
convolution output a pixel in the output image, so an output of a 2x2
image is the result of 4 convolutions. Max pooling is to output the
max value over a window, which is the 2x2 output in this example.
Average pooling is to output the mean value over a window.

FIGURE 2.5: Number of weights in one convolution: CNN vs. MLP. To
learn a 2x2 feature map over a 3x3 image, a convolutional layer only
needs a 2x2 kernel (Figure 2.4), while a fully connected layer needs a
sparse 9x4 kernel matrix, whose first dimension is the total number of
pixels in the image and whose second dimension is the total number
of convolutions.

2.5.4 Multi-modal Representation Learning

Although it is easy for human beings to perceive the world through comprehen-
sive information from multiple sensory organs [43], how to endow machines with
analogous cognitive capabilities brings up many challenges, one of which is the
heterogeneity gap in multi-modal data [22]. In addition, multi-modal representa-
tions should capture the complementary information and avoid redundancy among
modalities [3]. In this paper, we use representation and embedding interchangeably
as the representations are embedded in the hidden layers of neural networks. The
models learn to map higher-dimensional inputs to lower-dimensional embeddings
to extract essential features of the modalities for downstream tasks. Based on what
we understand from the papers mentioned above, there are two main categories of
representation learning: joint representation and coordinated representation (Figure
2.6).

Joint representation projects uni-modal representations into a multi-modal space
through operations such as concatenation [18] or tensor fusion [72]. Coordinated
representation synchronizes uni-modal representation learning with restrains. The

Chapter 2. Introduction 12

FIGURE 2.6: Image from [3]. Two general types of multi-modal repre-
sentation: joint representation and coordinated representations. Joint
representation projects uni-modal representations into a multi-modal
space. Coordinated representation keeps uni-modal representations
and synchronizes representation learning with restrains such as rein-
forcing similarity, correlation, or clustering.

restrains can enforce high similarity [68], high correlation [25], or clustering [69]
among multiple representations. With these restraints, each uni-modal represen-
tation can capture intra-modality and inter-modality information by adjusting to
representations from other modalities.

Due to this thesis’s scope, we only experimented with a limited amount of repre-
sentation learning techniques. We used join representation first because it allowed
us to train end-to-end models. We mostly concatenated or summed the penultimate
layer of uni-modal neural networks as the data representation. Then we worked on
coordinated representation to improve the correlation between modalities, using a
self-supervised learning technique called Barlow Twins [73].

Barlow Twins

As we mentioned in the last section, multi-modal representations should avoid redun-
dancy among modalities [3]. When we pretrained single-modal models or trained
multi-modal models end-to-end on the same task, our only goal was to reduce the
prediction loss. We didn’t measure how redundant the representations were to each
other or enforce any representation qualities such as similarity or correlation between
them. Therefore we used Barlow Twins, a similarity enforcing and redundancy re-
ducing representation learning technique [73]. Barlow Twins is not a multi-modal
representation learning method, but it uses data augmentation to randomly distort
batches of samples to learn representations invariant under these distortions. In
multi-modal learning, we see two modalities as nature’s distortions of the same
objects. Barlow Twins can take two modalities as two augmented views and increase
correlations and avoid redundancy between embeddings of these views (Figure 2.7).
Its objective function measures the cross-correlation matrix between the embeddings
of two distorted versions of a batch of samples and tries to make this matrix close to
the identity. As Barlow Twins is also relatively new, conceptually simple, and easy to
implement, we decided to use this technique in our multi-modal experiments.

There is only one change needed to make Barlow Twins multi-modal. Instead of
using the same encoder, we use different encoders to create embeddings because the
modalities were heterogeneous (Figure 2.8). The encoders are the same single-modal

Chapter 2. Introduction 13

FIGURE 2.7: Figure 1 in [73]. Barlow Twins original implementation.
Distorted batches of input samples share the same encoder and projec-
tor as function fθ , which outputs embeddings that are as correlated
as possible while avoiding redundancy between the components of
these vectors. The closer the cross-correlation matrix is to the identity
matrix, the smaller the loss value.

neural networks (MLP for tabular data and CNN for image data) without prediction
layers, and the embeddings are the second-last layers of these networks.

FIGURE 2.8: Multi-modal Barlow Twins implementation. Instead of
using the same encoder, we use different encoders to create embed-
dings because the modalities are heterogeneous. The encoders are
the same single-modal neural networks, and the embeddings are the
second last layers of these networks.

Barlow twin’s loss function was designed to increase correlation and reduce redun-
dancy of the embeddings. This loss function measures how close the cross-correlation
matrix is to its identity matrix. The loss function contains 2 terms: invariance term
and redundancy reduction term. The invariance term is the sum of squared differ-
ences between diagonal elements of the cross-correlation matrix and the identity
matrix. The invariance term makes the embeddings invariant to the heterogeneity
of modalities. The redundancy reduction term is the sum of the squared value of
off-diagonal elements of the cross-correlation matrix. This term decorrelates the dif-
ferent components of the embeddings. Lambda term λ decides the trade-off between
correlation increasing and redundancy reducing.

Barlow Twins distinguishes itself from other methods by its innovative loss
function LBT :

Chapter 2. Introduction 14

LBT ≜ ∑
i
(1 − Cii)

2

︸ ︷︷ ︸
invariance term

+ λ ∑
i

∑
j ̸=i

C2
ij︸ ︷︷ ︸

redundancy reduction term

The cross-correlation matrix is computed between the embeddings along the
batch dimension. Below is the equation, where b indexes batch samples and i, j index
the vector element of the embeddings. Cij is a square matrix whose dimensions are
the sizes of embedding zA and zB , and with values comprised between -1 (i.e., perfect
anti-correlation) and 1 (i.e., perfect correlation).

Cij ≜
∑b zA

b,iz
B
b,j√

∑b(zA
b,i)

2
√

∑b(zB
b,j)

2

2.5.5 Multi-modal Fusion Techniques

Multi-modal fusion is to integrate information from multiple modalities for classifica-
tion or regression. Dating to 33 years ago [71], it is one of the most researched topics
of multi-modal machine learning [24], [55], [5], [46], [61], [14], [75], [9]. Encouraged by
the growing availability of multi-modal data, researchers have explored multi-modal
fusion to capture complementary information not observed in a single modality. The
multi-modal fusion approaches are generally categorized based on three aspects: how
to fuse, when to fuse, and what model is used to fuse [3], [2], [64].

As regards how to fuse, there are aggregation-based fusion, alignment-based
fusion, and a mixture of them [64]. Aggregation-based fusion uses a particular
operation (e.g., averaging, concatenation) to combine multiple neural networks into
one network (A in Figure 2.9). Alignment-based fusion uses an additional term that
regularizes certain properties between modalities (e.g., embedding distance [56], [63],
pixel similarity [10]) (B in Figure 2.9). This regularization term is added to the loss
function to make embeddings adaptive to other modalities. The regularization loss
can be added to prediction loss for full model gradient descent, and it can be used
alone for coordinated representation learning.

As regards when to fuse, multi-modal fusion can be specified as early, late, and
hybrid fusion [3]. Early fusion learns to exploit the interactions between low-level
features. The early fusion occurs at the input level so that one network is needed
for multiple modalities. Late fusion combines uni-modal decisions, allowing more
flexible single modal training while ignoring low-level interactions between modali-
ties. Hybrid fusion exploits the advantages of both methods mentioned above. We
start with early fusion and late fusion in our experiments because they are easier to
apply. Our late fusion layers are not the decision layers but the second last layers of
uni-modal neural networks.

Regarding the models used for fusion, the model-based fusion categories [3] are
multi-modal kernel learning [6], graphical models [23], and neural networks [32], [3],
[56]. Because our topic is multi-modal deep learning and the related methods within
this scope, we only explore the neural network fusion.

Chapter 2. Introduction 15

FIGURE 2.9: Two general types of multi-modal fusion: Aggregation-
based fusion and Alignment-based fusion. Aggregation-based fusion
(A) aggregates (e.g., averaging, concatenation) representations learned
in both networks to get a joint representation. Alignment-based fusion
(B) introduces an additional loss term to make embeddings adaptive
to each other, and the adaptive embedding layers are not limited to
one layer. The representations learned can be aggregated for the same
downstream tasks or stay separated for different tasks. We can add
regularization loss to prediction loss or use it alone for coordinated
representation learning.

Controlling Factors during Fusion

We consider our proposed no-harm factor lambda as a controlling factor that “con-
trols” the weight of one modality to another. There are other such control factors in
the literature. For example, in [62], a controlling factor was calculated using error
metrics so that the individual model with higher error should be given less weightage
as compared to another individual model at the fusion layer. However, the error
metrics were not computed in training time and researchers needed to use the right
combination of metrics to correctly indicate which modality was more important. On
the contrary, the no-harm factor is a simple learnable parameter like other weights
between neural network layers. In [52], researchers used fusion gates to control the
degree to which modalities contribute to the final prediction. The fusion gates were
made of highway layers [57] that defined how much of a modality embedding should
be transformed or passed directly to the next layer. Compared to the no-harm factor,
this method requires more hyperparameter tuning, such as the number of gates and
size of linear layers inside of the gates, while the no-harm factor does not introduce
any new hyper-parameter. Therefore, even though methods that control the weights
of modalities are not new, we consider the no-harm factor a contribution because it is
straightforward, easy to apply, and practical in our unique problems.

16

Chapter 3

Methodology

3.1 Datasets and Prepossessing

3.1.1 MNIST Dataset and Its Synthesized Datasets

To better understand multi-modal learning with a sufficient amount of data, we have
created synthetic multi-modal data using the MNIST dataset [70]. MNIST is a dataset
of 70000, 28x28 pixel grey-scale images of handwriting digits from 0 to 9. 60,000
images are in training and validation sets, and 10,000 images are used as a testing
set (Table 3.1). The first modality is the original modality missing some bottom rows,
and the second modality was the blurry and smaller version of the original modality.
We cut the original images by rows from the bottom up and interpolated the original
images into small and blurry images to create different data modes(Figure 3.1). In
this case, the synthesized modalities do not have the complete information of the
original modality. To make the synthesized modalities have various amount of partial
information, we cut the bottom rows by 5, 10, 15 and 20, and interpolated the images
by 1/2, 1/4 and 1/7. So when a modality missing 20 bottom rows was combined
with the modality scaled down by 1/7, the information combined should be less than
a modality missing 5 bottom rows was combined with the modality scaled down by
1/2.

TABLE 3.1: MNIST dataset. Pre-split train-test dataset from PyTorch.
Because this is for an unsupervised task, no label is needed.

Chapter 3. Methodology 17

FIGURE 3.1: Examples of synthesized modalities of the MNIST data.
Mode 1 is the partial versions(e.g., remaining top 8 rows if we cut
bottom 20 rows) of the original data. Mode 2 is the blurry and small
version(e.g, 1/2 size) of the original data. The purpose of the synthetic
data was to extract partial information from the original data.

3.1.2 Chemical Structure and Raman Spectrum Datasets

We have chemical structure images and Raman tabular data of 72 chemicals. Because
the double bond labels are highly imbalanced, we created new labels based on double
bond ranges (Table 3.2). Each chemical has two modes (Figure 3.2). On the left side of
the figure, a chemical in mode 1 is a structure image of 80x80 pixels. The single-line
edges are single bonds, and the double-line edges are double bonds. In chemistry, a
double bond is a covalent bond between two atoms sharing two pairs of electrons as
opposed to one pair in a single bond [58].

On the right side, each Raman table of mode 2 is the tabular version of a Raman
spectrum, which is considered the “fingerprint” of a chemical [21]. (Figure 3.3). Each
Raman tabular sample has two columns — Intensity and Wavelength – that represent
the intensity of the scattered photons (y-axis) for each energy (frequency/wavenum-
ber/Raman shift) of light (x-axis). To convert 2D Raman data into 1D vectors to train
an MLP, we used the min and max wavelength values in training set to define fixed
windows of 10 wavelength units, then averaged the intensity in these windows, so
each Raman sample became a vector of length 332 (Figure 3.4).

TABLE 3.2: Chemical structure and Raman spectrum datasets. double
bonds labels are highly imbalanced in this small dataset, so we created
a new label that categorized double bonds into 3 balanced classes: 0
as double bonds is smaller than 6, 1 as double bonds is equal to 6, 2
as double bonds is bigger than 6. The test set was created after the
training/validation dataset, and the labels are imbalanced.

Chapter 3. Methodology 18

FIGURE 3.2: An example of a chemical with two modes. Mode 1 is
the black and white structure image of 80x80 pixels. Mode 2 is the
Raman tabular data. The structure image shows that this chemical
has 3 double bonds(two-line edges), so the label of this sample is 0
because the double bond number < 6.

FIGURE 3.3: Figure 2 in [51]. Schematic of the measurement principle
in a Raman spectroscopy. A laser light source hits the sample and
the light interacts with the molecules and is scattered in all directions.
While almost all the the light just pass thought the sample without
interaction, a small percentage of this light is Raman scattered. Each
Raman scattered light waves has a different wavelength compared to
the laser light source because the sample absorbs a certain amount of
energy. And such differences in wavelength are recorded along with
the intensities of the Raman scattered light waves, leading to the final
spectrum.

FIGURE 3.4: Convert a Raman spectrum into a 1D vector. The Raman
tabular data we have are 2D data that was converted from the Raman
spectrum. We averaged the intensity of Raman data in fixed windows
in the size of 10 wavenumbers. These windows started from the
minimum and ended on the maximum wavenumber value among all
training set Raman samples. Each Raman spectrum was eventually
converted into an intensity vector of 332 features. Each vector makes
up one row of the Raman dataset as a table.

Chapter 3. Methodology 19

3.1.3 Public Biodegradation Dataset

We used the same QSAR biodegradation dataset [47] that was used to predict
biodegradability by Goh et al. [18]. The 41 selected chemical descriptors, referred to as
Ballabio-40, were obtained from Mansouri et al. [41]. Following the steps in the paper,
we mixed and split training, validation, and test datasets while keeping their original
sizes. There are 1725 data points in total. Each chemical is identified by a SMILES
string, 41 selected chemical descriptors, and a label as either non-biodegradable
(NRB) or biodegradable (RB). SMILES stands for Simplified Molecular Input Line
Entry Specification, a notation that describes chemical structures [66]. We created the
image modality of this dataset using the same preparation mentioned in [18] based
on two previous papers [16] and [17]. Each image of 80x80 pixels has four channels
that capture 5 different chemical properties (Figure 3.5).

TABLE 3.3: Biodegradability classification dataset. “RB” means
biodegradable, and “NRB” means non-biodegradable. The original
full dataset has 1725 data points with fixed training, validation and
test sizes. We kept these sizes after shuffling and splitting the full
dataset.

FIGURE 3.5: Convert a SMILES string to an augmented image. Picture
in the right is from [17]. Each SMILE string was converted into an aug-
mented image of 80x80 pixels and 4 channels. Each channel contains
one or two chemical properties such as Atomic Identity or Valence.
The augmented images have more chemical information than black
and white single-channel molecular images in the last experiment
using Raman spectrum.

Chapter 3. Methodology 20

3.2 Architecture and Optimization

3.2.1 Reconstructing MNIST Modality Using Encoder-decoders

The architecture of the autoencoder is shown in Figure 3.6. The training batch size was
128. Layer sizes were fixed to [input_size, 128, 81, 128, 784] to control the architecture
in our experiments, despite the various input sizes because of modality changes.
More architecture details are in Appendix A. Strictly speaking, this model is not an
autoencoder but a combination of an encoder and a decoder because it reconstructed
the original images instead of the input images. We used Root Mean Square Error
(RMSE) as the loss function and Adam optimizer with a default learning rate of 0.001.
Each autoencoder was trained for 100 epochs with an early stopping criterion of
0.0005 for 10 epochs.

FIGURE 3.6: The architecture of the encoder + decoder neural network
in Experiment 1. Input images were flattened and then concatenated
into vector z, which was the input of the neural network. The input
layer size depended on the size of z, but the rest of the layers were
fixed as [128, 81, 128, 784]. Evaluated by mean square error loss, the
encoder + decoder network learned to output X̂, a reconstruction of
original image X.

3.2.2 Predicting Double Bond of Chemicals Using MLP and CNN

The architecture of the combined model was a combination of MLP and CNN models
(Figure 3.7). Model A was a convolutional neural network including convolutional,
pooling, and fully-connected layers. Model B was a feedforward MLP that took
Raman tabular data. We will not discuss the model in greater detail because we
did not focus on optimizing the model performance. In addition, our goal was to
compare multi-modal learning with single-modal learning, so the architectures of the
combined model should not add too much complexity to the single-modal models.
More architecture details are in Appendix A. We used CrossEntropyLoss as the loss
function. For the uni-modal model trained with the Raman table, we used stochastic
gradient descent (SDG) optimizer with a learning rate of 0.5. The CNN model was
optimized by SGD with a learning rate of 0.01. The third modal, a multi-modal MLP,
used SGD with a learning rate of 0.5. The training batch size was 32.

Chapter 3. Methodology 21

FIGURE 3.7: The architecture of the multi-modal deep neural network
to predict double bonds. Model A and B are the single-modal neural
networks for modality 1 and 2. Mode 1 is single channel structure
image data of 80x80 pixels, and mode 2 is the Raman tabular data.
Raman tabular data were converted into vectors of intensity as the
intensity values were aggregated (mean or sum) over fixed windows
of wavelengths.

3.2.3 Predicting Biodegradation of Chemicals Using MLP and CNN

Benchmarking using the original dataset was not our goal. Because we randomly
mixed and split the datasets, the data samples in our training, validation, and test
datasets should be different from theirs. In this case, it is not convincing to compare
the performance of our models with the performance they reported, so we used the
architecture of their best model (Figure 3.8) as a baseline for our validation and test
sets. Of all the training methods explored in the baseline experiments, pretraining
two models separately was not mentioned. For modality fusion, the baseline model
used concatenation, leaving other fusion methods such as averaging or tensor fusion
[72] to be explored.

FIGURE 3.8: Figure 1 in [19]. Baseline model to predict biodegradation.
In the sequential setup, the Chemception CNN model was first trained
on the chemical images to predict biodegradation. After the training
was completed, the CNN weights were frozen. Then the penultimate
layer output was concatenated with the chemical descriptors. Finally,
an MLP network used the combined vector to classify the chemicals.

The CNN block is called Chemception [16] as shown in Figure 3.9 and Figure 3.10.
Chemception is a general-purpose neural network in chemical research that processes
molecular images. The MLP block is a standard feed-forward neural network that
uses molecular descriptors as the input data. In the baseline model, the descriptors
were concatenated with the penultimate layer from Chemception. Then the joined
vector was fed into an MLP classifier. However, to improve model performance, Goh
et al. eventually used a more comprehensive set of 1400 descriptors and pre-trained

Chapter 3. Methodology 22

the Chemception block on numerous chemical rules [19] and fine-tuned it using the
current dataset. Since our goal is not to benchmark, we have focused on improving
the model using our multi-modal techniques without pretraining on other datasets
or changing the descriptor modality.

FIGURE 3.9: Figure 3 in [16]. Building blocks of the baseline model
to predict biodegradation. a) Typical convolutional neural network
and b) High-level architecture of Chemception. Each block of Chem-
ception contains some convulsion and/or pooling layers and serves
unique purposes. Stem, Reduction-A, and Reduction-B blocks in-
crease channel numbers from 4 to 16 to 64 to 126 and decrease the
input sizes(width, height) from (80,80) to (39, 39) to (19, 19) to (9, 9).
Inception-Resnet-A, Inception-Resnet-B, Inception-Resnet-C use com-
binations of different convolutions layers for feature learning without
changing input dimensions. See more details in Appendix A.

The metric is called classification error rate (Er) [19] , which is a function of sensitiv-
ity (Sn) and specificity (Sp) calculated based on true negative(TN), true positive(TP),
false negative(FN), and false positive(FP):

Er = 1 − (Sp + Sn)/2

Sp = TN/(TN + FP)

Sn = TP/(TP + FN)

Because our dataset is imbalanced – we have 356 labeled as positive and 699 as
negative – this metric can capture how well the model learns to predict imbalance
labels. We used binary cross entropy loss (BCELoss) as the loss function. We used
the random search for hyper-parameter tuning. For the uni-modal MLP trained with
descriptors, we used Adam optimizer with a learning rate of 0.00006, batch size 64,
300 epochs, and a dropout rate of 0.58 in each layer. For Chemception CNN, we used
the Adam optimizer with a learning rate of 0.0001, batch size 32, and 150 epochs. The
third modal, a leaner layer, had the same hyper-parameters mentioned for the MLP.

Chapter 3. Methodology 23

FIGURE 3.10: Figure 4 in [16]. Details of the inception/reduction
blocks in Chemception. The Inception-ResNet blocks combine the
Inception models and Residual learning. The Inception aspect of these
blocks is using different convolution kernels on the same input. The
Residual learning aspect of these blocks is adding the input of blocks
to the output of convolution layers. Reduction blocks reduce input
sizes(width, height) while increasing input channels. See more details
in Appendix A.

No-harm factor

We designed a no-harm factor λ as a fusion technique. The goal of the no-harm
factor λ was to guarantee that the performance of the combined model was at least
as good as the best single modal. When λ was a scalar, it controlled the importance
of the embeddings c. When λ was a vector, each element in the vector controlled
the importance of the corresponding neuron in the embeddings. We assigned λ to
one embedding and 1 - λ to the other embedding as we only used two modalities. If
lambda was learned to be 1 or 0, one of the embeddings would be ignored, which
meant adding the ignored modality did not help the performance. There was a
trade-off between the complexity of the model and performance protection when
choosing between concatenation (Figure 3.11, right) and a no-harm factor (Figure
3.11, left). The concatenation fusion method could learn intra-embedding and inter-
embedding relationships, while the no-harm factor only captured simpler inter-
embedding relationships. The intra-embedding relationship within an embedding
means that the neurons of this embedding are connected with other neurons. The
inter-embedding relationship between two embeddings means that the neurons in
one embedding are connected with the neurons in the other embedding.

c = (1 − λ) ∗ c1 + λ ∗ c2

Chapter 3. Methodology 24

FIGURE 3.11: Implementation of no-harm factor λ on embedding
layers and following prediction layer. Compared to embedding con-
catenation, the no-harm factor learns to control embedding importance
and reduces learnable parameters during training. First, λ controls the
importance of one embedding c1 over another embedding c2. When
λ is a scalar, λ is shared by all neurons in embedding c1. When λ is a
vector, each neuron in embedding c1 has a specific λi value. The same
goes to c2. Second, when using a no-harm factor, the learnable parame-
ters connecting these layers are λ, W, b, with W, b as the weight matrix
and bias term that connect embedding c and the prediction layer.
When using concatenation, the learnable parameters are W1, b1, W2, b2.
W1, b1 are the weight matrix and bias term that connect concatenated
embeddings c1, c2 and embedding c. W2, b2 are the weight matrix and
bias term that connect embedding c and the prediction layer.

We combined the no-harm factor with different training methods to see how
well the model could learn the no-harm factor and other weights in different model
sections. For example, if we trained the model end-to-end, all model weights could
update along with the no-harm factor during backpropagation. Moreover, if we
trained the model with both MLP and Chemception pre-trained and frozen, only the
weights of the last layer could adjust with the no-harm factor. The combined model
would learn differently under different dynamics between the number of learnable
model weights and the no-harm factor.

There are 3 main benefits of the no-harm factor. First, it is easy to apply. Because
it fixes the way we combine the embeddings, we only need to consider combining
embeddings of the same length. Second, it learns the importance of embeddings
without introducing too many learnable parameters, thus limiting the complexity
gain. The excessive complexity of the model is important when the data size is
small. As shown in Figure 3.11, when a no-harm factor is a scalar, it only adds
one learnable parameter to the overall model; when it is a vector, the number of
learnable parameters added equals the number of neurons in one embedding: N. In
the meantime, concatenation of embeddings adds learnable parameters W1 and b1,
whose number of elements is N2 + 1. Third, This architecture design ensures that if
the learned λ is 0 or 1, the combined model is the same as the best single model, thus
causing no harm by adding a modality that’s not useful. To achieve this purpose, the
single-model networks should have the same layers after their embeddings, and the
layers after combined embedding should be the same. This method also simplifies
the design of a multi-modal neural network.

One example of the no-harm factor architecture is shown in Figure 3.12. The
layers combined with the no-harm factor should have the same length. The following
layers after the combination should be the same as the layers after the embeddings
in a best single-model neural network. In this case, if the no-harm factor is learned
to be 1, the architecture of the combined neural network is the same as the best

Chapter 3. Methodology 25

single-model neural network because the other modality is ignored because of 0
weight at the fusion layer. This design ensures that if the inferior modality is not
useful, the multi-modal output is as close to the best single-modal output as possible.

FIGURE 3.12: The architecture of the combined model with no-harm
factor λ. The layers combined with the no-harm factor should have
the same length. The following layers after the combination should be
the same as the layers after the embeddings in the best single-model
neural network. In this case, if the no-harm factor is learned to be 1,
the architecture of the combined neural network is the same as the best
single-model neural network because the other modality is ignored
because of 0 weight at the fusion layer. This design ensures that if the
inferior modality is not useful at all, the multi-modal output is as close
to the best single-modal output as possible.

Chapter 3. Methodology 26

3.3 Training and Implementation

3.3.1 Multi-modal Training Method

We combined modalities by concatenating the last hidden layers of two models. We
had two options to train the combined modal (Figure 3.13). The first training option
was to train a combined model end-to-end. The second training option was split
into two phases. In the first phase, we pretrained one single-modal network (model
A or model B) or both single-modal networks (model A and model B) for the same
classification task and froze the pretrained model(s). In the 2nd phase, we combined
the second-last layers of the first two models as the input of the third network (model
C). Then we train the third network with the individual models pretrained. Models
A and B needed very different learning rates when we pretrained them. Thus, it
was easier for us to set up separate pretraining than combined training and monitor
both networks’ training losses. The downside of this separated training method is
that models A and B learned representations of their modalities in individual tasks,
missing the chance of catching inter-modality information. We first used option II
because our goal was to compare multi-modal and single-modal learning. If the easier
choice could deliver a better result, we would decide later if we want to optimize the
combined model or not.

FIGURE 3.13: 2 examples of training options for multi-modal neural
networks. Option I allowed us to train combined model end-to-end,
Option II was to train two domain-specific models as model A and B,
then froze the trained models, so model C got the best hidden layers
c1 and c2 as representations, or “compressed” information,of mode 1
and mode 2.

Chapter 3. Methodology 27

3.3.2 Implementation Algorithms

Multimodal-learning with Synthesized MNIST Data

To combine the two modes, we flattened both images and then concatenated them
as a single input for the encoder-decoder network. Like in a normal autoencoder,
the goal of this encoder was to “understand” something about the structure of the
input data so the decoder could map the compressed information back to original
images. First, we trained the autoencoders using the single mode of partial or full
images. Second, we introduced the scaled image to the partial images to check if
a second mode could improve the performance of a single-modal autoencoder. If
there was an improvement, we wanted to know if multi-modal learning with com-
promised modalities could perform better than single-model learning with complete
information.

We used 5-fold cross-validation on the training set. The best models were chosen
based on the best validation loss. Then we tested these 5 learned models on the test
set. The training process is shown in Algorithm 1.

Algorithm 1 PyTorch-style pseudocode for multi-modal learning with synthetic
MNIST data

1: mode1 = cut images by n rows
2: mode2 = interpolate images by a scale factor
3: for i in range(5) do
4: split train and validation datasets from mode1 and mode2 combined
5: Make data loader with datasets
6: model = encoder_decoder()
7: for m1, m2 in loader do
8: c = cat(m1.flatten(), m2.flatten())
9: ŷ = model(c)

10: loss.backward()
11: optimizer.step()
12: end for
13: end for

Chapter 3. Methodology 28

Multimodal-learning with Limited Chemical Data

The deep learning task was to predict the number of double bonds of each chemical.
We only have 72 data samples. We bootstrapped (with replacement) 100 times on
the 72 samples to make training data. We used the out-of-bag samples as validation
data. We trained and validated all models 100 times and took the average accuracy
to evaluate the performance. If the results showed a significant increase from single-
modal to multi-modal learning, we wanted to know that the increase was not because
of different model architectures. In the multi-modal setting, we added controlled
experiments by replacing either mode with random noise. If the combined model
with random noise and normal modality could outperform the single model with
either normal modality, we would want to remove the effect of the architecture
change. The implementation is in Algorithm Algorithm 2.

Algorithm 2 PyTorch-style pseudocode for multi-modal learning with limited chemi-
cal data

1: for b = 1, 2, . . . , 100 do
2: Bootstrap with replacement from training and validation sets combined
3: Pretrain and freeze classifier model1 with mode1, and classifier model2 with

mode2
4: model1 = fθ(m1)
5: model2 = hϕ(m2)
6:
7: for m1, m2 in loader do
8: # calculate embeddings
9: c1 = model1(input = m1, embedding_layer = -2)

10: c2 = model2(input = m2, embedding_layer = -2)
11:
12: # concatenate embeddings
13: c = cat(c1, c2)
14:
15: # use MLP network as model3 to predict
16: ŷ = model3(c)
17:
18: # optimize model3
19: loss.backward()
20: optimizer.step()
21: end for
22: end for

Chapter 3. Methodology 29

Coordinated Representation using Barlow Twins

We wanted to know if Barlow Twins could improve model performance by increasing
correlation and reducing redundancy between modality representations. Before we
combined the learned representations from Barlow Twins, we needed to examine
the quality of the embeddings by visualizing the cross-correlation matrix. If the
cross-correlation matrix is far from the identity matrix, we doubt that the represen-
tations learned could be useful in downstream multi-modal learning tasks. The
implementation is shown in Algorithm 3.

Algorithm 3 PyTorch-style pseudocode for multi-modal Barlow Twins

fθ : encoder network for mode1
fϕ: encoder network2 for mode2
lambda: weight on the off-diagonal terms
N: batch size
D: dimensionality of the embeddings
mm: matrix-matrix multiplication
eye: identity matrix
off_diag: off diagonal elements of a matrix

create multi-modal data loader using mode1, mode2
for ya, yb in loader: do

ya is a batch from mode1, yb is a batch from mode2
Compute representations
za = fθ(ya)
zb = fϕ(yb)

normalize representations along batch dimension
za_norm = (za - za.mean(0)) / za.std(0)
zb_norm = (zb - zb.mean(0)) / zb.std(0)

cross-correlation matrix
c = mm(za_norm, zb_norm) / (N - 1)

loss
c_diff = (c - eye(D)).pow(2)
off_diag(c_diff).mul_(lambda)
loss = c_diff .sum()

optimize step
loss.backward()
optimizer.step()

end for

Chapter 3. Methodology 30

Multimodal-learning with Public Chemical Data

Algorithm 4 shows the process of pre-training single-modal models and then learning
no-harm factor and prediction. The algorithm shown is just one of the many training
examples.

Algorithm 4 PyTorch-style pseudocode for multi-modal learning with biodegradabil-
ity data

Pretrain and freeze classifier model1 with mode1, and classifier model2 with mode2
model1 = fθ(m1)

3: model2 = hϕ(m2)
for m1, m2 in loader do

calculate embeddings
6: c1 = model1(input = m1, embedding_layer = -2)

c2 = model2(input = m2, embedding_layer = -2)

9: # combine embeddings using no-harm factor
c = c1 ∗ λ + c2 ∗ (1 − λ)

12: # use last linear layer to predict
ŷ = sigmoid(liner_layer(c))

15: # optimize last linear layer and lambda
loss.backward()
optimizer.step()

18: end for

31

Chapter 4

Results

4.1 Multi-modal Learning with Incomplete Information

We combine multiple modalities – with missing information to some extent – to
reconstruct the original modality with full information. The baseline model of this
experiment is an autoencoder that uses original MNIST images and outputs images
that are as similar to the inputs as possible. We tracked the training, validation, and
test losses to ensure the models did not overfit or underfit and the results were not
random. During training, the baseline model improved steadily and did not overfit
because the training and validation lines are smooth and close in the loss plot (Figure
4.1, left image). Also, the test loss is very close to the best validation loss. The same
learning pattern goes to a multi-modal encoder-decoder, as shown in the right-side
plot of Figure 4.1.

FIGURE 4.1: Sample loss plots of MNIST data reconstruction. The
left plot shows the learned losses from single-modal learning, i.e.,
reconstructing original images using the original images. The right
plot shows the learned losses from multi-modal learning, i.e., recon-
structing original images using the top 8 rows (mode 1) and scaled
by 1/7 (mode 2). We used early stopping, so the total epochs in these
plots vary. To test the model, we used the best model saved when the
validation loss was the lowest, so the test loss (green dot) on the plot
is located at the epoch where the best model was saved.

The baseline test loss was 0.0123 (Table 4.1). In single-modal learning using
partial or scaled images only, i.e., the second column or sixth row, none of the models
achieved comparable performance to baseline. However, the more rows or smaller
the scale, the lower the loss because the modalities contain more information or the
images to be reconstructed. Moreover, as we introduced the second modalities, the
performance increased. The loss was as good as the baseline when we combined
partial images with the top 23 rows and scaled images by 1/2. To illustrate the

Chapter 4. Results 32

TABLE 4.1: Table of results of Experiment 1. Table values are MSE loss
of predictions on the test set. The baseline model has the lowest loss:
0.0123. The single-modal learning models, i.e., column 2 and row 6, did
not outperform the baseline model. However, as the second modality
was combined with the single modality, the model’s performance
improved. When the top 23 rows of images were combined with
images scaled by 1/2, the test loss was equal to the baseline.

effectiveness of adding the second modalities, we use Figure 4.2 and Figure 4.3 as 2
image views of Table 4.1.

The first view (Figure 4.2) shows the results of adding partial images to scaled
images. Each line shows a decreasing trend when partial images with more and
more top rows were added to scaled images. The second view (Figure 4.3) shows the
results of adding scaled images to partial images. Each line shows a decreasing loss
trend when each partial image was combined with a bigger and bigger down-scaled
image. As shown in the bottom right of both figures, where all lines converge, when
the partial images were combined with images scaled by 1/2, the losses were very
close to the baseline.

FIGURE 4.2: Loss values of modality combinations in MNIST data
reconstruction (view 1). Each colored line represents a modality of
smaller images scaled down by factors of 1/7, 1/4, or 1/2. Each
column represents a modality of partial images, which are the top n
rows of the original images. The first column is single-modal learning
with only scaled images, and the baseline is the single-modal learning
with original images (dotted green line).

The decreasing trend in both figures indicates that with more information added
to the first modality, the encoder-decoder network could reconstruct the full images
better. We assumed that the synthesized modalities could have compensated for

Chapter 4. Results 33

FIGURE 4.3: Loss values of modality combinations in MNIST data
reconstruction (view 2). Each colored line represents a modality of
partial images, which are the top n rows of the original images. Each
column represents a modality of scaled images by factors of 1/7, 1/4,
or 1/2. The first column is single-modal learning with only partial
image, and the baseline is the single-modal learning with original
images (dotted green line).

each other’s missing information. To better understand the compensation, we drew
some examples of the reconstructed images. Figure 4.4 shows the sample input and
output of baseline and multi-modal learning with partial images combined with
scaled images.

The images were sampled from the validation set. The output of the model using
original images are not perfect, but the numbers are clear to human eyes. When
the input is the top 8 rows, the reconstructions are a lot more blurry, and the third
last image, number 9, was reconstructed as number 4. When the input is the top 8
rows and the scaled images by 1/4, the reconstructions are less blurry, and the third
last number 9 was reconstructed as 9. Because the scaled images provided some
useful information about the missing rows in the first modality, the model was more “
certain ” about the bottom rows to create more clear lines.

When the input is scaled images by 1/4, the output is close to the baseline when
the digits are simple, such as the first 7 numbers. However, the last 3 outputs are
wrong “ guesses ” of the original numbers where lines and circles are both present. It is
worth noticing that the reconstructions of the third last image are both wrong numbers
in single-modal learning but is correct in multi-modal learning. The information in the
two modalities has compensated for each other when reconstructing full information.

However, the extra information from the second modality does not always help.
For example, the last sample image, number 9, was reconstructed as a blurry 9 when
the model only had the top 8 rows. However, it was reconstructed like a 7 when the
model also considered the scaled images. The first and last scaled images look like 7
even though they are interpolations of original numbers 7 and 9. There is a limit to
multi-modal learning when the two modalities cannot compensate well enough.

Chapter 4. Results 34

FIGURE 4.4: Sample input and output in MNIST data reconstruction.
The baseline model used original images as input to output reconstruc-
tions of original images. In single-modal learning, only images with
top 8 rows or images scaled by 1/4 were used as input, so the output
was more blurry than baseline output. When we combined these two
modalities, the output was less blurry because the modalities have
compensating information. However, the compensation is still not
enough for the multi-modal encoder-decoder to reconstruct images
and baseline autoencoder.

4.2 Multi-modal Learning with Limited Data

Because the size of the dataset was small, a single validation split from the training
dataset might not be a good representation of the data. So we bootstrapped 72
data samples with replacement 100 times, and we used the out-of-bag data as the
validation dataset. Each model was trained from scratch for its bootstrap samples.
We collected the best validation accuracy of each model in each bootstrap and made
this plot (Figure 4.5) to see if multi-modal learning could help single-modal learning
models improve. Sometimes the combined models were worse than the single models,
and we assumed that this is because the learned representation of the second modality
was not helpful in specific bootstraps.

FIGURE 4.5: Bootstrap results of multi-modal and single-modal learn-
ing in double bonds prediction. Sometimes the combined models were
worse than single models, but the mean accuracy of the combined
model was better than either single model.

Chapter 4. Results 35

In a clearer view of how much multi-modal learning outperformed both single-
modal learning models, we created a bar chart (Figure 4.6) to compare the mean
accuracy among all bootstraps (Figure 4.5). In the single-modal learning with either
mode, the accuracy was 71.55% with mode 2 and 80.49% with mode 1. The accuracy
increased to 84.35% with both modes. We wanted to know if the performance
improvement was not because of the change in architecture, so we used random
noise as the second modality. When either of the two modes was random, multi-
modal learning did not improve significantly compared to single-modal learning.
The performance increased when mode2 was combined with the random noise as
mode1. Based on the results, we recommend that in multi-modal learning, when
the multi-modal architecture is different from single-modal architecture, it is worth
checking how much the architecture change affected the performance. Especially
when there are more parameters in multi-modal neural networks, we do not want
to waste extra computation on other modalities that are not useful to improve the
model.

FIGURE 4.6: Results of multi-modal and single-modal learning in dou-
ble bonds prediction. The accuracy was 84.35% when we combined
mode 1 and mode 2. single-modal learning achieved an accuracy of
80.49% with mode 1, and 71.55% with mode 2. In the controlled Ex-
periments, the accuracy was 79.49% when mode 1 was combined with
random noise and 73.68% when mode 2 was combined with random
noise. Multi-modal learning outperformed single-modal learning or
controlled Experiments of multi-modal learning.

4.2.1 Representation Learning using Barlow Twins

Before using representations learned in Barlow Twins for the downstream multi-
modal prediction task, we found that the cross-correlation matrices we got were
not ideal because they were not close to the identity matrix of the same dimensions.
For example, when the embedding size was 10, the beginning and best validation
cross-correlation matrices and the identity matrix are shown in Figure 4.7. Ideally,
the red color should be as dark as possible on the diagonal line, and the colors in
the off-diagonal area should be as light as possible. Compared to the matrix at the
beginning of the training, the best validation cross-correlation matrix showed lighter
colors overall but did not show dark red on the diagonal line, meaning that the
model failed to learn the correlation and did not reduce enough redundancy between

Chapter 4. Results 36

embeddings. The worse result goes to larger embedding sizes, as shown in Figure
4.8.

FIGURE 4.7: Barlow Twins cross-correlation matrix sample result 1.
The cross-correlation matrices should be as close to the identity matrix
as possible. Compared to the matrix in the beginning of the training,
the best validation cross-correlation matrix shows lighter colors over-
all, but doesn’t show dark red on the diagonal line, which means that
the model failed to learn the correlation and didn’t reduce enough
redundancy between embeddings.

FIGURE 4.8: Barlow Twins cross-correlation matrix sample result 2.
The embedding size is 50 on the left and 32 on the right. These two
results are also not ideal as they are not close to their identity matrices.

Because the data size is too small, the learning process is not stable and as the
embedding size increases, the model tends to overfit more.Because of the time limit
and the scope of this research, we decided not to continue working on improving
Barlow Twins.

Chapter 4. Results 37

FIGURE 4.9: [Barlow Twins sample loss plots in training. The learning
process is not stable and as the embedding size increases, the model
tends to overfit more.

4.3 Multi-modal Learning with Public Datasets

In the beginning, contrary to the work of Goh et al. [18], our combined model did
not perform better than the best single model (Fig 4.10). Unlike in Figure 3.11, the
concatenation was connected to the prediction layer directly. After using the no-harm
factor, we started to see improvement in multi-modal learning.

FIGURE 4.10: The results when combined model’s MLP part was
trained without the no-harm factor λ. The combination of modali-
ties did not help the best single model improve and was worse than
single-modal learning. Unlike in Figure 3.11, the concatenation was
connected to the prediction layer directly.

Table 4.2 shows the results of multi-modal learning with the no-harm factor
compared to single-modal learning. The effect of the no-harm factor varied based on
the training methods, and the no-harm factor did not always prevent performance
drop. Specifically, the model performed better on validation and testing sets when
we froze both pretrained models or trained the best single model with the no-harm
factor. The Concatenation fusion is the right figure in Figure 3.11, a fusion method
used to compare with the no-harm factor because they have the same amount of
layers. Model 1 and Model 2 are the two single-learning models trained with single
modalities, and Model 2 is the baseline because it has better performance than Model
1. Red values are the test and validation metrics of the baseline single-modal model.
Blue values are lower than red values, which means these models outperform the
baseline model when trained via specific training methods and the no-harm factor.

Chapter 4. Results 38

Green values are the best results in test or validation time. This table shows that
if the model is trained properly, multi-model learning with the no-harm factor can
improve the performance of single-modal learning. With the no-harm scalar, the
best test result is 8.2% better than the baseline when both pretrained models were
frozen. Even though the no-harm factor cannot always guarantee better performance,
with very few learnable parameters added to the model, it estimates how much an
additional modality can improve model performance.

TABLE 4.2: Results of multi-modal learning with no-harm factor.
Green values are the test and validation metrics of the baseline model.
Blue values are lower than green values, which means these models
outperform the baseline single-modal model when trained via specific
training methods and the no-harm factor.

To prove that the model can learn effective no-harm factor, we compared the
model with a no-harm scalar λ and models with fixed no-harm scalar λ values: 0,
0.25, 0.5, 0.75, 1. In most training cases, the learnable no-harm scalar was better,
despite a few cases. Values of fixed lambda marked in green are better than the
learnable no-harm scalar. We think the reason is that the learned no-harm scalar
values are mostly around 0.65, and models with λ in the range 0.5 to 0.75 tend to
perform similarly. Overall, the learnable no-harm scalar λ is better, and it is worth
the time saved from trying multiple fixed values.

TABLE 4.3: Results of fixed and learnable no-harm factors. When the
no-harm factors (as a scalar) were fixed, the results were mostly worse
than learnable no-harm factors(green). Only a few are better than the
learnable no-harm factor. In general, the learnable no-harm scalar is
better than the fixed ones.

39

Chapter 5

Conclusions and Discussions

5.1 Conclusions

We used three experiments to explore the effectiveness of multi-modal deep learning
compared with single-modal learning. In our second experiment, the combination
of Raman spectrum modality and molecule image modality in chemical analysis is
unique in multi-modal deep learning. We have experimented and demonstrated
several aspects of multi-modal learning compared to single-modal learning. First,
multi-modal learning with incomplete information can achieve comparable perfor-
mance as single-modal learning with complete information. Second, multi-modal
learning can improve single-modal learning that cannot achieve ideal performance
due to a lack of data. Third, multi-modal deep learning does not guarantee better
performance than single-modal learning due to the complexity of training, model
design, or lack of data. To mitigate this problem, we propose a no-harm factor to
prevent performance drop after combining the second modality. In general, the
multi-modal learning methods we used in these experiments are viable approaches
in the physical science domain, such as chemistry, where the amount of labeled data
is significantly smaller than those available in conventional deep learning research.

5.2 Discussion

First, when comparing the performances of multi-modal and single-modal learning,
many variables were involved because of different model architectures and input
types. It might be worth considering fixing the model design when comparing their
performance. For example, by summing up two image inputs in the same shape from
two modes, we fix the input shape of multi-modal and single-modal learning. We
can train the same deep neural network to compare the results in this scenario.

Second, we noticed that when combining modalities from small datasets, the
complexity of the modal induced by multiple modalities might dominate, weakening
the model performance [31]. In this case, the no-harm factor is practical in designing
multi-modal baseline architectures. While there are other ways to compensate for
the lack of data, the no-harm factor is straightforward to implement. However, its
simplicity limits the potential of the fusion layer. For now, between the embeddings
of two modes, the interaction is not flexible as the ith neuron in embedding 1 can only
be connected with the ith neuron in embedding 2. One direction is to explore no-harm
options that encourage more intra-embedding or inter-embedding interactions. Intra-
embedding interaction means that elements within an embedding can be connected
to other elements in the same embedding. Inter-embedding interaction means that
elements within an embedding can be connected to other elements in the same
embedding, regardless of their indices.

Chapter 5. Conclusions and Discussions 40

Moreover, we can consider non-linear no-harm factor fusion such as:

c = e(1−λ) ln(c1)+λ ln(c2)

Third, the results of the Barlow Twins were not ideal, and we did not focus on
improving the model because of the scope of this research. One way to improve is
to collect more unlabeled chemical data. Regarding self-supervised deep learning
with multi-modal chemical data, several researchers have proposed similar solutions
using other self-supervised methods such as SIMCLR [7]. However, at least for now,
we have not found a published paper that experimented on Barlow Twins. One
challenge of this task is that input molecules can have arbitrary sizes and components,
highly variable connectivity, and many three-dimensional conformers [67]. It might
be challenging to learn a large number of molecules in a fixed dimension. On the
other hand, it can be much easier to collect one modality than the other. For example,
collecting Raman spectra takes time and effort of domain experts, while molecular
structures are highly available online. So large-scale self-supervised learning on both
modalities can be difficult to apply to some modality combinations.

Last but not least, our fusion techniques are not the most advanced ones because
when we were mostly dealing with small data sizes, we started to focus on the no-
harm factor to ensure that the complexity added to the model would not aggravate the
overfitting problem. We have explored a fusion technique called Tensor Fusion [72],
which reserves single-modal features and multi-modal interactions in the combined
embedding. However, the result was not better when we used the same hyper-
parameters and appeared to overfit (Figure 5.1). One thing we like about no-harm
factor is that it doesn’t require extra hyper-parameter tuning. In future studies, if our
goal is to improve a model as much as possible, especially in benchmarking, more
advanced fusion techniques are needed.

FIGURE 5.1: When sharing the same hyper-parameters with no-harm
factor and trained and validated on the same datasets, the tensor
fusion model appears to overfit a lot.

41

Appendix A

More Details in 3 Experiments

A.1 Experiment 1

A.1.1 Encoder-Decoder architecture

The encoder-Decoder was made of 7 fully connected layers including the input layer,
each followed by a ReLU activation function. The layer sizes were [input_size, 250,
128, 81, 128, 250, 784], and the input_size was the sum of sizes of flattened modalities.

EncoderDecoder(
(linear1) : Linear(input_size, 250)
(relu) : ReLU()
(linear2) : Linear(250, 128)
(relu) : ReLU()
(linear3) : Linear(128, 81)
(relu) : ReLU()
(linear4) : Linear(81, 128)
(relu) : ReLU()
(linear5) : Linear(128, 250)
(relu) : ReLU()
(linear6) : Linear(250, 784)
(relu) : ReLU()

)

A.2 Experiment 2

A.2.1 Image Modality - CNN

CNN(
(conv_1): Conv2d(1, 16, kernel_size=(5,5) , padding=2),
(bn_1): BatchNorm2d(16),
(maxpool_1): MaxPool2d(kernel_size=(2,2)),
(conv_2): Conv2d(16, 32, kernel_size=(5,5) , stride=1, padding=2)
(bn_2): BatchNorm2d(32)
(maxpool_2): MaxPool2d(kernel_size=(2,2))
(flatten) : Flatten ()
(linear_1) : Linear(32 * 20 * 20, 126)
(bn_3): BatchNorm1d(126)
(linear_2) : Linear(126, 3)

)

Appendix A. More Details in 3 Experiments 42

A.2.2 Architecture for Raman Table Modality - MLP

The architecture of model for tabular data was made of 4 fully connected feedforward
layers in sizes: [325, 160, 80, 20], and the output size is 3 as there were 3 classes to
predict. Each of first 3 layers were followed by sigmoid activation function.

MLP(
(linear1) : Linear(325, 160)
(sigmoid): Sigmoid()
(linear2) : Linear(160, 80)
(sigmoid): Sigmoid()
(linear3) : Linear(80, 20)
(sigmoid): Sigmoid()
(linear4) : Linear(20, 3)

)

A.3 Experiment 3

A.3.1 Architecture for Image Modality - Chemception

Customized to chemical properties, Chemception [16] is based on Google’s Inception-
ResNet. Inception [60] networks provide multiple kernel sizes in each convolution
step while avoiding the extra expense by adding 1x1 convolution layers before each
kernel. When deeper networks are able to start converging, with the network depth
increasing, accuracy gets saturated and then degrades rapidly. ResNet [26] networks
addresses this degradation problems in very deep networks.

On top of the combination of these to networks, the chemical domain knowledge
of Goh et al. led to the creation of Chemception that is well suited to use chemical
properties in domain tasks.

The Chemception model is consist of a Stem section and 4 Inception-Resnet
blocks: InceptionResnetA, ReductionA, InceptionResnetB, ReductionB, Inception-
ResnetC. Each block either reduces the size of images(shape of 2D feature maps)
while increasing the number of channels(number of feature maps), or keeps the
input shape. Through all blocks and individual layers, the shape(batch_size, channel,
width, height) of a batch of images changes in this order: (batch_size, 4, 80, 80) →Stem
→(batch_size, 16, 39, 39) →InceptionResnetA →(batch_size, 16, 39, 39) →ReductionA
→(batch_size, 64, 19, 19) →InceptionResnetB →(batch_size, 64, 19, 19) →ReductionB
→(batch_size, 126, 9, 9) →InceptionResnetC →(batch_size, 126, 9, 9) →AvgPool2d
→(batch_size, 126, 1, 1) →reshape →(batch_size, 126) →linear layer →(batch_size, 1).
Below is the high level architecture of Chemception, and we will explain each block
in detail afterward.

Chemception(
(stem): Stem(self. base_filters , self . input_channels)
(inception_blocks): (

InceptionResnetA(num_filters=16, input_channels=16),
ReductionA(num_filters=16, input_channels=16),
InceptionResnetB(num_filters=16, input_channels=64),
ReductionB(num_filters=16 input_channels=64),
InceptionResnetC(num_filters=16, input_channels=126)

Appendix A. More Details in 3 Experiments 43

FIGURE A.1: Figure 2 in [60] and Figure 2 in [26]. Building blocks of in-
ception module(left) and residual Learning(right). Inception networks
provide multiple kernel sizes in each convolution step while avoiding
the extra expense by adding 1x1 convolution layers before each kernel.
ResNet networks are used to ease the training of neural networks that
are very deep.

)
(avg_pooling): AvgPool2d(kernel_size=(9, 9), stride=(1, 1))
(last_linear) : Linear(126, n_classes)

Stem block used 16 4x4 kernels with stride 2x2 to reduce the size of the image from
80x80 to 39x39, while increasing the channels from 3 to 16. The convolution layer is
followed by a ReLU activation. The output of Stem is passed to InceptionResnetA.

Stem(
Conv2d(4, 16, kernel_size=(4, 4) , stride =(2,2))
ReLU()

)

InceptionResnetA uses 3 blocks of different sizes of kernels – conv_block1, conv_block2,
conv_block3 – to transform the input. The feature maps after these pooling layers
are concatenates over the channel dimension, leading to 16 channels of 39x39 feature
maps, which are followed by a convolution layer in conv_concat_block. All convo-
lution layers of InceptionResnetA are followed by a ReLU activation. The output of
InceptionResnetA is passed to ReductionA block.

InceptionResnetA(
(conv_block1): (

Conv2d(16, 16, kernel_size=(1, 1) , stride =(1,1) , padding="same")
ReLU()

)
(conv_block2): (

Conv2d(16, 16, kernel_size=(1, 1) , stride =(1,1) , padding="same")
ReLU()
Conv2d(16, 16, kernel_size=(3, 3) , stride =(1,1) , padding="same")
ReLU()

)
(conv_block3): (

Conv2d(16, 16, kernel_size=(1, 1) , stride =(1,1) , padding="same")

Appendix A. More Details in 3 Experiments 44

ReLU()
Conv2d(16, 24, kernel_size=(3, 3) , stride =(1,1) , padding="same")
ReLU()
Conv2d(16, 32, kernel_size=(4, 4) , stride =(1,1) , padding="same")
ReLU()

)
(conv_concat_block): (

Conv2d(64, 16, kernel_size=(1, 1) , stride =(1,1) , padding="same")
)

ReductionA has a self-explanatory name because it reduces the size of the feature
maps from 39x39 to 19x19, while increasing the channels from 16 to 64. It reduces
the size of the feature maps in 2 ways: max pooling(pool_block1) and convolu-
tion(conv_block1, conv_block2). Like InceptionResnetA, ReductionA uses different
sizes of kernels in sequentially in conv_block2. All pooling and convolution layers are
followed by ReLU activation. The outputs of pool_block1, conv_block1, conv_block2
are concatenated over channel dimension so we get more channels. The output of the
concatenation will be sent to InceptionResnetB.

ReductionA(
(pool_block1): (

MaxPool2d(kernel_size=(3, 3), stride=2)
ReLU()

)
(conv_block1): (

Conv2d(16, 24, kernel_size=(3, 3) , stride =(2,2) , padding="valid")
ReLU()

)
(conv_block2): (

Conv2d(24, 16, kernel_size=(1, 1) , stride =(1,1) , padding="same")
ReLU()
Conv2d(16, 16, kernel_size=(3, 3) , stride =(1,1) , padding="same")
ReLU()
Conv2d(16, 24, kernel_size=(3, 3) , stride =(2,2) , padding="valid")
ReLU()

)

InceptionResnetB uses 2 blocks – conv_block1, conv_block2 – to transform the
output from ReductionA. In conv_concat_block, the feature maps after these pooling
layers are concatenates over the channel dimension, which are followed by a con-
volution layer. All convolution layers of InceptionResnetB are followed by a ReLU
activation. The output of InceptionResnetB is passed to ReductionB block.

InceptionResnetB(
(conv_block1): (

Conv2d(64, 16, kernel_size=(1, 1) , stride =(1,1) , padding="same")
)
(conv_block2): (

Conv2d(64, 16, kernel_size=(1, 1) , stride =(1,1) , padding="same")
ReLU()
Conv2d(16, 20, kernel_size=(1, 7) , stride =(1,1) , padding="same")

Appendix A. More Details in 3 Experiments 45

ReLU()
Conv2d(20, 24, kernel_size=(7, 1) , stride =(1,1) , padding="same")
ReLU()

)
(conv_concat_block): (

Conv2d(40, 64, kernel_size=(1, 1) , stride =(1,1) , padding="same")
)

ReductionB is like ReductionA. It reduces the size of the feature maps from
19x19 to 9x9, while increasing the channels from 64 to 126. It reduces the size of the
feature maps in 2 ways: max pooling(pool_block1) and convolution(conv_block1,
conv_block2, conv_block3). All pooling and convolution layers are followed by ReLU
activation. The outputs of pool_block1, conv_block1, conv_block2, conv_block3 are
concatenated over channel dimension so we get more channels. The output of the
concatenation will be sent to InceptionResnetC.

ReductionB(
(pool_block1): (

MaxPool2d(kernel_size=(3, 3), stride=2)
)
(conv_block1): (

Conv2d(64, 16, kernel_size=(1, 1) , stride=1, padding="same")
ReLU()
Conv2d(16, 24, kernel_size=(3, 3) , stride =(2,2) , padding="same")
ReLU()

)
(conv_block2): (

Conv2d(64, 16, kernel_size=(1, 1) , stride =(1,1) , padding="same")
ReLU()
Conv2d(16, 18, kernel_size=(3, 3) , stride =(2,2) , padding="valid")
ReLU()

)

(conv_block3): (
Conv2d(64, 16, kernel_size=(1, 1) , stride =(1,1) , padding="same")
ReLU()
Conv2d(16, 18, kernel_size=(3, 1) , stride =(1,1) , padding="same")
ReLU()
Conv2d(18, 20, kernel_size=(3, 3) , stride =(2,2) , padding="valid")
ReLU()

)

InceptionResnetC has the same block structure as InceptionResnetB, except the
kernel sizes and numbers customized to the output of ReductionB. In conv_concat_block,
the feature maps after these pooling layers are concatenates over the channel dimen-
sion, which are followed by a convolution layer. All convolution layers of Inception-
ResnetC are followed by a ReLU activation. The output of InceptionResnetB is passed
to a global average pooling layer, which takes the mean value of each (9x9) feature
map.

InceptionResnetC(

Appendix A. More Details in 3 Experiments 46

(conv_block1): (
Conv2d(126, 16, kernel_size=(1, 1) , stride =(1,1) , padding="same")
ReLU()

)
(conv_block2): (

Conv2d(126, 16, kernel_size=(1, 1) , stride =(1,1) , padding="same")
ReLU()
Conv2d(16, 19, kernel_size=(1, 3) , stride =(1,1) , padding="same")
ReLU()
Conv2d(19, 21, kernel_size=(3, 1) , stride =(1,1) , padding="same")
ReLU()

)
(conv_concat_block): (

Conv2d(37, 126, kernel_size=(1, 1) , stride =(1,1) , padding="same")
)

47

Bibliography

[1] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. “Understanding of a
convolutional neural network”. In: 2017 International Conference on Engineering
and Technology (ICET). Ieee. 2017, pp. 1–6.

[2] Pradeep K Atrey et al. “Multimodal fusion for multimedia analysis: a survey”.
In: Multimedia systems 16.6 (2010), pp. 345–379.

[3] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. “Multimodal
machine learning: A survey and taxonomy”. In: IEEE transactions on pattern
analysis and machine intelligence 41.2 (2018), pp. 423–443.

[4] Khaled Bayoudh et al. “A survey on deep multimodal learning for computer
vision: advances, trends, applications, and datasets”. In: The Visual Computer
(2021), pp. 1–32.

[5] Samy Bengio et al. “Confidence measures for multimodal identity verification”.
In: Information Fusion 3.4 (2002), pp. 267–276.

[6] Serhat S Bucak, Rong Jin, and Anil K Jain. “Multiple kernel learning for visual
object recognition: A review”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 36.7 (2013), pp. 1354–1369.

[7] Ting Chen et al. “A simple framework for contrastive learning of visual repre-
sentations”. In: International conference on machine learning. PMLR. 2020, pp. 1597–
1607.

[8] Yulu Luke Chen et al. “Inexpensive multimodal sensor fusion system for au-
tonomous data acquisition of road surface conditions”. In: IEEE Sensors Journal
16.21 (2016), pp. 7731–7743.

[9] Bowen Cheng et al. “Multi-task Learning and Multimodal Fusion for Road
Segmentation”. In: IEEE Access (2022).

[10] Yanhua Cheng et al. “Locality-sensitive deconvolution networks with gated
fusion for rgb-d indoor semantic segmentation”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017, pp. 3029–3037.

[11] RTH Collis. “Lidar”. In: Applied optics 9.8 (1970), pp. 1782–1788.

[12] Yifan Deng et al. “A multimodal deep learning framework for predicting drug–
drug interaction events”. In: Bioinformatics 36.15 (2020), pp. 4316–4322.

[13] Andreas Eitel et al. “Multimodal deep learning for robust RGB-D object recogni-
tion”. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2015, pp. 681–687.

[14] Jing Gao et al. “A survey on deep learning for multimodal data fusion”. In:
Neural Computation 32.5 (2020), pp. 829–864.

[15] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier
neural networks”. In: Proceedings of the fourteenth international conference on
artificial intelligence and statistics. JMLR Workshop and Conference Proceedings.
2011, pp. 315–323.

Bibliography 48

[16] Garrett B Goh et al. “Chemception: a deep neural network with minimal chem-
istry knowledge matches the performance of expert-developed QSAR/QSPR
models”. In: arXiv preprint arXiv:1706.06689 (2017).

[17] Garrett B Goh et al. “How much chemistry does a deep neural network need
to know to make accurate predictions?” In: 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV). IEEE. 2018, pp. 1340–1349.

[18] Garrett B Goh et al. “Multimodal deep neural networks using both engineered
and learned representations for biodegradability prediction”. In: arXiv preprint
arXiv:1808.04456 (2018).

[19] Garrett B Goh et al. “Using rule-based labels for weak supervised learning:
a ChemNet for transferable chemical property prediction”. In: Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2018, pp. 302–310.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[21] PRGDJ Graves and D Gardiner. “Practical raman spectroscopy”. In: Springer
(1989).

[22] Wenzhong Guo, Jianwen Wang, and Shiping Wang. “Deep multimodal repre-
sentation learning: A survey”. In: IEEE Access 7 (2019), pp. 63373–63394.

[23] Mihai Gurban et al. “Dynamic modality weighting for multi-stream hmms
inaudio-visual speech recognition”. In: Proceedings of the 10th international con-
ference on Multimodal interfaces. 2008, pp. 237–240.

[24] David L Hall and James Llinas. “An introduction to multisensor data fusion”.
In: Proceedings of the IEEE 85.1 (1997), pp. 6–23.

[25] David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. “Canonical corre-
lation analysis: An overview with application to learning methods”. In: Neural
computation 16.12 (2004), pp. 2639–2664.

[26] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–
778.

[27] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1026–1034.

[28] Seyed Aghil Hooshmand et al. “A multimodal deep learning-based drug re-
purposing approach for treatment of COVID-19”. In: Molecular diversity (2020),
pp. 1–14.

[29] Shih-Cheng Huang et al. “Fusion of medical imaging and electronic health
records using deep learning: a systematic review and implementation guide-
lines”. In: NPJ digital medicine 3.1 (2020), pp. 1–9.

[30] Xun Huang et al. “Multimodal unsupervised image-to-image translation”. In:
Proceedings of the European conference on computer vision (ECCV). 2018, pp. 172–
189.

[31] Yu Huang et al. “What Makes Multimodal Learning Better than Single (Prov-
ably)”. In: arXiv preprint arXiv:2106.04538 (2021).

[32] Xu Jia et al. “Guiding the long-short term memory model for image caption
generation”. In: Proceedings of the IEEE international conference on computer vision.
2015, pp. 2407–2415.

Bibliography 49

[33] Xingyu Jiang et al. “A review of multimodal image matching: Methods and
applications”. In: Information Fusion 73 (2021), pp. 22–71.

[34] Gargi Joshi, Rahee Walambe, and Ketan Kotecha. “A review on explainability
in multimodal deep neural nets”. In: IEEE Access (2021).

[35] Ikhyun Kang et al. “Fusion drive: End-to-end multi modal sensor fusion for
guided low-cost autonomous vehicle”. In: 2020 17th International Conference on
Ubiquitous Robots (UR). IEEE. 2020, pp. 421–428.

[36] Abdul Karim et al. “Toxicity prediction by multimodal deep learning”. In:
Pacific Rim Knowledge Acquisition Workshop. Springer. 2019, pp. 142–152.

[37] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature
521.7553 (2015), pp. 436–444.

[38] Kuan Liu et al. “Learn to combine modalities in multimodal deep learning”. In:
arXiv preprint arXiv:1805.11730 (2018).

[39] Lin Ma et al. “Multimodal convolutional neural networks for matching image
and sentence”. In: Proceedings of the IEEE international conference on computer
vision. 2015, pp. 2623–2631.

[40] Sijie Mai, Haifeng Hu, and Songlong Xing. “A unimodal representation learning
and recurrent decomposition fusion structure for utterance-level multimodal
embedding learning”. In: IEEE Transactions on Multimedia (2021).

[41] Kamel Mansouri et al. “Quantitative structure–activity relationship models
for ready biodegradability of chemicals”. In: Journal of chemical information and
modeling 53.4 (2013), pp. 867–878.

[42] Wesley Mattheyses and Werner Verhelst. “Audiovisual speech synthesis: An
overview of the state-of-the-art”. In: Speech Communication 66 (2015), pp. 182–
217.

[43] Harry McGurk and John MacDonald. “Hearing lips and seeing voices”. In:
Nature 264.5588 (1976), pp. 746–748.

[44] Jiquan Ngiam et al. “Multimodal deep learning”. In: ICML. 2011.

[45] Andrew Owens and Alexei A Efros. “Audio-visual scene analysis with self-
supervised multisensory features”. In: Proceedings of the European Conference on
Computer Vision (ECCV). 2018, pp. 631–648.

[46] Norman Poh and Samy Bengio. “How do correlation and variance of base-
experts affect fusion in biometric authentication tasks?” In: IEEE Transactions
on Signal Processing 53.11 (2005), pp. 4384–4396.

[47] QSAR biodegradation Data Set. URL: https://archive.ics.uci.edu/ml/
datasets/QSAR+biodegradation.

[48] Valentin Radu et al. “Multimodal deep learning for activity and context recog-
nition”. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 1.4 (2018), pp. 1–27.

[49] Anil Rahate et al. “Multimodal Co-learning: Challenges, Applications with
Datasets, Recent Advances and Future Directions”. In: arXiv:2107.13782 (2021).

[50] Dhanesh Ramachandram and Graham W Taylor. “Deep multimodal learning:
A survey on recent advances and trends”. In: IEEE signal processing magazine
34.6 (2017), pp. 96–108.

[51] Raman Spectrum. URL: https://wiki.anton-paar.com/en/basics-of-raman-
spectroscopy/raman-spectroscopy-applications/.

https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation
https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation
https://wiki.anton-paar.com/en/basics-of-raman-spectroscopy/raman-spectroscopy-applications/
https://wiki.anton-paar.com/en/basics-of-raman-spectroscopy/raman-spectroscopy-applications/

Bibliography 50

[52] Morteza Rohanian, Julian Hough, Matthew Purver, et al. “Detecting Depression
with Word-Level Multimodal Fusion.” In: INTERSPEECH. 2019, pp. 1443–1447.

[53] Nusrat J Shoumy et al. “Multimodal big data affective analytics: A comprehen-
sive survey using text, audio, visual and physiological signals”. In: Journal of
Network and Computer Applications 149 (2020), p. 102447.

[54] Federico Simonetta, Stavros Ntalampiras, and Federico Avanzini. “Multimodal
music information processing and retrieval: Survey and future challenges”. In:
2019 International Workshop on Multilayer Music Representation and Processing
(MMRP). IEEE. 2019, pp. 10–18.

[55] Cees GM Snoek, Marcel Worring, and Arnold WM Smeulders. “Early versus
late fusion in semantic video analysis”. In: Proceedings of the 13th annual ACM
international conference on Multimedia. 2005, pp. 399–402.

[56] Sijie Song et al. “Modality compensation network: Cross-modal adaptation for
action recognition”. In: IEEE Transactions on Image Processing 29 (2020), pp. 3957–
3969.

[57] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Highway
networks”. In: arXiv preprint arXiv:1505.00387 (2015).

[58] Eric Stauffer, Julia A. Dolan, and Reta Newman. “CHAPTER 3 - Review of
Basic Organic Chemistry”. In: Fire Debris Analysis. Ed. by Eric Stauffer, Julia
A. Dolan, and Reta Newman. Burlington: Academic Press, 2008, pp. 49–83.
ISBN: 978-0-12-663971-1. DOI: https://doi.org/10.1016/B978-012663971-
1.50007-5. URL: https://www.sciencedirect.com/science/article/pii/
B9780126639711500075.

[59] Jabeen Summaira et al. “Recent Advances and Trends in Multimodal Deep
Learning: A Review”. In: arXiv preprint arXiv:2105.11087 (2021).

[60] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[61] Valentin Vielzeuf et al. “Centralnet: a multilayer approach for multimodal
fusion”. In: Proceedings of the European Conference on Computer Vision (ECCV)
Workshops. 2018.

[62] Aarohi Vora, Chirag N Paunwala, and Mita Paunwala. “Improved weight
assignment approach for multimodal fusion”. In: 2014 International Confer-
ence on Circuits, Systems, Communication and Information Technology Applications
(CSCITA). IEEE. 2014, pp. 70–74.

[63] Jinghua Wang et al. “Learning common and specific features for RGB-D seman-
tic segmentation with deconvolutional networks”. In: European Conference on
Computer Vision. Springer. 2016, pp. 664–679.

[64] Yikai Wang et al. “Deep multimodal fusion by channel exchanging”. In: Ad-
vances in Neural Information Processing Systems 33 (2020).

[65] Yunchao Wei et al. “Cross-modal retrieval with CNN visual features: A new
baseline”. In: IEEE transactions on cybernetics 47.2 (2016), pp. 449–460.

[66] David Weininger. “SMILES, a chemical language and information system.
1. Introduction to methodology and encoding rules”. In: Journal of chemical
information and computer sciences 28.1 (1988), pp. 31–36.

[67] Zhenqin Wu et al. “MoleculeNet: a benchmark for molecular machine learning”.
In: Chemical science 9.2 (2018), pp. 513–530.

https://doi.org/https://doi.org/10.1016/B978-012663971-1.50007-5
https://doi.org/https://doi.org/10.1016/B978-012663971-1.50007-5
https://www.sciencedirect.com/science/article/pii/B9780126639711500075
https://www.sciencedirect.com/science/article/pii/B9780126639711500075

Bibliography 51

[68] Ran Xu et al. “Jointly modeling deep video and compositional text to bridge
vision and language in a unified framework”. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence. Vol. 29. 1. 2015.

[69] Yan Yang and Hao Wang. “Multi-view clustering: A survey”. In: Big Data
Mining and Analytics 1.2 (2018), pp. 83–107.

[70] Christopher J.C. Burges Yann LeCun Corinna Cortes. THE MNIST DATABASE
of handwritten digits. http://yann.lecun.com/exdb/mnist/.

[71] Ben P Yuhas, Moise H Goldstein, and Terrence J Sejnowski. “Integration of
acoustic and visual speech signals using neural networks”. In: IEEE Communi-
cations Magazine 27.11 (1989), pp. 65–71.

[72] Amir Zadeh et al. “Tensor fusion network for multimodal sentiment analysis”.
In: arXiv preprint arXiv:1707.07250 (2017).

[73] Jure Zbontar et al. “Barlow twins: Self-supervised learning via redundancy re-
duction”. In: International Conference on Machine Learning. PMLR. 2021, pp. 12310–
12320.

[74] Chao Zhang et al. “Multimodal intelligence: Representation learning, infor-
mation fusion, and applications”. In: IEEE Journal of Selected Topics in Signal
Processing 14.3 (2020), pp. 478–493.

[75] Yifei Zhang et al. “Deep multimodal fusion for semantic image segmentation:
A survey”. In: Image and Vision Computing 105 (2021), p. 104042.

	List of Figures
	List of Tables
	Executive Summary
	Introduction
	Overview
	Multi-modal Deep Learning
	Justification for the Experiments
	Contribution
	Background
	Autoencoder
	Encoders, Embeddings, and Representations

	Multilayer Perceptron - MLP
	Convolutional Neural Network - CNN
	Multi-modal Representation Learning
	Barlow Twins

	Multi-modal Fusion Techniques
	Controlling Factors during Fusion

	Methodology
	Datasets and Prepossessing
	MNIST Dataset and Its Synthesized Datasets
	Chemical Structure and Raman Spectrum Datasets
	Public Biodegradation Dataset

	Architecture and Optimization
	Reconstructing MNIST Modality Using Encoder-decoders
	Predicting Double Bond of Chemicals Using MLP and CNN
	Predicting Biodegradation of Chemicals Using MLP and CNN
	No-harm factor

	Training and Implementation
	Multi-modal Training Method
	Implementation Algorithms
	Multimodal-learning with Synthesized MNIST Data
	Multimodal-learning with Limited Chemical Data
	Coordinated Representation using Barlow Twins
	Multimodal-learning with Public Chemical Data

	Results
	Multi-modal Learning with Incomplete Information
	Multi-modal Learning with Limited Data
	Representation Learning using Barlow Twins

	Multi-modal Learning with Public Datasets

	Conclusions and Discussions
	Conclusions
	Discussion

	More Details in 3 Experiments
	Experiment 1
	Encoder-Decoder architecture

	Experiment 2
	Image Modality - CNN
	Architecture for Raman Table Modality - MLP

	Experiment 3
	Architecture for Image Modality - Chemception

	Bibliography

