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Abstract

Modern cyber-physical systems are expected to perform increasingly complex tasks. Synthe-
sizing controllers to satisfy the assigned complex tasks with provable guarantees has received
extensive research attention. The prior works assume that the cyber-physical systems are
operated in benign environments where no adversary perturbs the system behaviors. Cyber-
physical systems, however, have been demonstrated to be attractive targets of malicious
attacks in a large variety of applications. To this end, the controllers designed for cyber-
physical systems need to be capable of satisfying the complex specifications in the presence
of malicious adversaries.

In this thesis, we consider cyber-physical systems operated in adversarial environments.
The systems aim at synthesizing controllers so as to satisfy some complex specifications
modeled using temporal logic formulas. We identify a sequence of important problem set-
tings, and propose a solution to each of them. We first study the problem of maximizing
the probability of satisfying a linear temporal logic specification, i.e., maximizing the satis-
faction probability. There exists an adversary that tampers with the input of the actuator,
aiming to minimize the satisfaction probability. We formulate the interaction between the
system and adversary as a stochastic game, and develop a value iteration algorithm to syn-
thesize the controller. We then extend the problem to the scenarios where the systems are
given multiple temporal logic specifications that may not be satisfied simultaneously. We
develop efficient algorithms to synthesize controllers that yield minimum violations of the
specifications.

Next, we study the problem of control synthesis for cyber-physical systems with par-
tial observabilities under linear temporal logic constraints. We formulate the interaction
between the system and adversary as a partially observable stochastic game. We synthe-
size a controller equipped with finite memory for the system. We further investigate the
problem of satisfying time sensitive specifications modeled using metric interval temporal
logic for cyber-physical systems in the presence of attack. Incorporating the notion of time
provides the adversary an additional attack surface, i.e., timing attack. We propose a du-
rational stochastic game to capture the interaction between the system and the adversary
that launches actuator attacks as well as timing attacks. We synthesize a controller for the



system to maximize the satisfaction probability.
Computing the aforementioned stochastic games is computationally demanding. In ad-

dition, synthesizing controllers using the stochastic games suffers from the curse of dimen-
sionality for systems of large scales. To mitigate the computations, we study the problem
of abstraction-free control synthesis for cyber-physical systems under linear temporal logic
specifications. The abstraction-free synthesis eliminates the procedure of abstracting the
cyber-physical system as a discrete finite abstraction. We decompose the linear temporal
logic specification into a sequence of sub-formulas, and use a set of control barrier function
based constraints to guarantee the satisfaction of each sub-formula.

Thesis Supervisor: Dr. Andrew Clark
Associate Professor, Electrical and Computer Engineering, WPI
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Chapter 1

Introduction

Cyber-physical systems (CPS) tightly integrate sensing, communication, computation, and
control [2]. CPS are already having transformative impact in applications including energy
systems [3], medical devices [4], robotics and smart transportation [5].

Due to the tight coupling between cyber and physical components, CPS are exposed
to new threats raised by malicious cyber attacks, which have been reported in multiple
CPS domains, including power systems [6], automobiles [7, 8, 9], surgical robots [10], and
nuclear reactors [11]. These attacks can modify the observations perceived by CPS, bias
the decisions, and manipulate the system behaviors. For instance, a malicious adversary
can manipulate the sensor readings by spoofing the sensors [12, 13, 14] and hijacking the
communication channel between the sensor and controller [15]. The control commands issued
by the controller can be manipulated by an adversary via false data injection attacks [16],
and can be jammed by an adversary via denial-of-service attacks [17].

CPS are additionally expected to perform increasingly complex tasks. To specify the
desired tasks and properties of CPS, we need an expressive, concrete, and rigorous ‘lan-
guage’. To this end, formal logic specifications modeled using linear temporal logic (LTL)
and computation tree logic (CTL) are widely adopted [18, 19]. Typical examples of tasks
that are encoded using temporal logics include liveness (e.g., “always eventually A”), safety
(e.g., “always not A”), and priority (e.g., “first A, then B”) [18]. For systems operated in
stochastic environments or imposed probabilistic requirements (e.g., “reach A with prob-
ability 0.9”), probabilistic extensions have also been proposed [20]. Autonomous control
synthesis with verifiable guarantees on the satisfaction of given specifications motivates the
concept of correct-by-construction control synthesis, which has received increasing attention.

The aforementioned challenges faced by CPS, namely the presence of malicious adver-
saries and correct-by-construction control synthesis, have been addressed separately at dif-
ferent levels. The security of CPS is mostly studied focusing on designing feedback control
laws and state estimations, without considering any complex system specification. The con-
trol synthesis under complex specifications normally focuses on the logical decision-making
controllers, assuming there exists no adversary that tampers with the behavior of the sys-
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Figure 1-1: Organization of this thesis.

tem. The main objective of the logical decision-making controllers is to satisfy the given
tasks by computing discrete and coarse control actions for CPS, which will be used to guide
the calculation of continuous control inputs from the motion-planning controllers. We detail
how each challenge is resolved as follows:

• Defenses and protections of CPS against cyber attacks have been extensively studied
using control- and game-theoretic approaches [21, 22, 12, 23, 24, 25]. These approaches
merely focus on detecting and isolating the attacks so as to continue perform the task,
e.g., minimizing a quadratic cost. When the CPS are assigned more complex tasks,
such approaches may not be applicable to provide any verifiable guarantee on the
satisfactions of the tasks.

• Multiple frameworks have been proposed to synthesize controllers for CPS operated
under benign environments [26, 27, 28, 29, 30]. Although these approaches are able
to consider the non-determinism and probabilistic behaviors of the CPS, they may
become suboptimal or invalid when applied to CPS in the presence of malicious ad-
versaries. The reasons are two-fold. First, unlike stochastic errors or modeling un-
certainties, intelligent adversaries are able to adapt their strategies to maximize their
impacts against a given controller, and thus exhibit strategic behaviors. Moreover,
CPS will have limited information regarding the objectives and strategies of the ad-
versaries, making techniques such as randomized control strategies potentially effective
in mitigating attacks.

To the best of our knowledge, however, automatic and secure correct-by-construction
control synthesis for CPS subject to malicious attacks has received limited research attention.
It is this gap that this thesis aims to fill. To this end, we model the adversary as an additional
decision making agent, and formulate the interaction between CPS and adversary using game
theory. We identify a sequence of important problem settings, as shown in Fig. 1-1. We
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formulate each problem, and propose one or multiple algorithms to solve each of them. We
show that the algorithms developed in this thesis are sound and converge within finitely
many iterations. The specific contributions are described as follows.

1.1 Maximizing Satisfaction Probability

Due to the presence of malicious adversaries, it might be overly conservative and restrictive
to consider deterministic or almost-sure satisfaction of the given temporal logic specification.
To this end, one may only be able to compute a control strategy such that the worst-case
probability of satisfying the given specification is maximized, where the worst-case scenario
models the fact that the adversary can intelligently act to minimize such probability.

We denote the probability of satisfying the specification as satisfaction probability, and
investigate the problem of control synthesis for CPS to maximize the worst-case satisfaction
probability of an LTL formula. We first propose a heuristic algorithm to abstract the CPS in
the presence of a malicious adversary as a stochastic game. We then prove that the worst-
case satisfaction probability is equivalent to the worst-case reachability probability to a
subset of states on the stochastic game. Such subset of states are those starting from which
we can guarantee almost-sure satisfaction of the specification, regardless of the strategy
committed by the adversary. We show that such set of states can be identified by verifying
the connectivities of the underlying graph of the stochastic game. We prove that the max-
min reachability probability admits a fixed point, and develop a value iteration algorithm
to compute the max-min reachability probability. Our case study implies that the control
policy synthesized using the proposed approach significantly outperforms the one obtained
using the existing approaches without considering the presence of the adversary.

1.2 Minimizing Invariant Constraint Violation Rate

As CPS are expected to perform increasingly complicated tasks, the specifications given to
CPS become more and more complex. Such complex specifications may overly constrain the
system behavior, leading to zero satisfaction probability and making the control synthesis
with maximal satisfaction probability infeasible. In this case, one may allow partial violation
on the specification so that the control synthesis becomes feasible. This problem can be
important and brutal in some scenarios. For example, we may have to synthesize a controller
to stablize an unstable CPS, i.e., satisfying a stability specification, at the cost of violating
some performance constraint.

We formulate a stochastic game which captures the interaction between the controller
of a CPS and an adversary. We consider the case where the LTL specification given to the
CPS is infeasible, i.e., satisfaction probability zero. We consider a class of LTL specifications
that consists of an arbitrary LTL formula 𝜙1 and an invariant property, where an invariant
property is one defined on each state of the stochastic game. We allow violations on the
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invariant property so as to obtain a feasible controller that can partially satisfies the original
LTL formula, i.e., satisfy 𝜙1. The goal is then to synthesize a controller that (i) maximizes
the satisfaction probability of 𝜙1, and (ii) minimizes the cost incurred due to violating the
invariant property.

The metric we use to measure the impact of violating the invariant constraint is the
average cost per cycle, where a cycle is defined as the time period between two consecutive
satisfactions of LTL specification 𝜙1. We solve the problem by bridging it with a problem
named average cost per stage problem studied on Markov decision processes. We derive
the optimality condition for minimizing invariant constraint violation rate, and develop a
policy iteration algorithm to synthesize a control policy such that the cost incurred due to
violating invariant constraint per cycle is minimized.

1.3 Minimum Violation Control Synthesis

In some applications, CPS are required to compute a control policy to satisfy multiple specifi-
cations. However, due to the incompatibility among these specifications and/or the presence
of the adversary, these specifications cannot be satisfied simultaneously. For instance, the
specifications requiring the system to always stay within regions 𝐴 and 𝐵 while 𝐴 and 𝐵
have empty intersection cannot be satisfied at the same time. This motivates the need for
minimum violation control synthesis for CPS.

We consider a stochastic game that is given a set of specifications modeled using LTL
co-safe. We assign a reward to each specification modeling its priority. We then formu-
late the minimum violation control synthesis problem by maximizing the expected reward
that can be achieved by satisfying the specifications. We additionally consider the limited
observation capability from the adversary, capturing the practical scenarios where human
adversaries normally cannot make perfect observations or are biased by their beliefs. We
show that the minimum violation control policy can be calculated by solving a mixed in-
teger non-linear program (MINLP). We propose two algorithms to solve the MINLP. The
first algorithm adaptively updates a reference distribution so as to approximate the optimal
solution to the MINLP. This algorithm converges to the optimal solution with probability
one, without any guarantee on the convergence rate. To overcome the potential slow con-
vergence incurred by this algorithm, we propose a heuristic algorithm as an approximate
solution. The heuristic algorithm converges to a local optimal solution within a certain num-
ber of iterations. Our numerical evaluation suggests that the heuristic algorithm achieves
near-optimal performance.
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1.4 Maximizing the Satisfaction Probability with Partial Ob-
servability

CPS may not always be capable of fully observing their state information. For example, it
may be economically or physically infeasible to equip the system with a multitude of sensors.
In these cases, CPS can only have partial observabilities. Control synthesis under partial
observabilities is different from that with full observations since the state information is not
directly known to either the CPS or the adversaries. Thus the CPS and adversaries need to
make their decisions based on their observations. It has been reported that determining the
optimal control policy for CPS with partial observabilities in the absence of the adversary
is NP-hard [31].

We formulate the problem of synthesizing a control policy that maximizes the satisfaction
probability for CPS with partial observabilities in the presence of adversaries. We formulate
the CPS with partial observabilities in the presence of adversaries using partially observable
stochastic games (POSGs). We represent the policies under partial observations using finite
state controller, and equivalently convert the problem of maximizing satisfaction probability
on POSGs to the problem of maximizing reachability probability. This conversion allows
us to develop a value iteration algorithm to compute finite state controllers for CPS as
approximate solutions. We also show that increasing the size of the finite state controllers
can improve the satisfaction probability, and present an algorithm to do so.

1.5 Control Synthesis under Time-Critical Constraints

Although LTL specifications specify the orders of the occurrence of the events, they are not
suitable to specify tasks for CPS involving deadlines or time intervals. When the CPS are
expected to perform time-critical specifications, other temporal logic specifications such as
metric interval temporal logic (MITL) can be used.

When the CPS is given a time-critical specification, we need to focus on the timed system
behavior. As a consequence, the adversary can exploit an additional surface to attack the
system and bias the system behavior, i.e., the adversary can either deviate the system
trajectory to some undesired state, or manipulate the time instance that certain properties
become true, to violate the time-critical specification, which makes control synthesis for
CPS with maximal satisfaction probability more challenging, compared with CPS under
LTL constraints.

We investigate the problem of control synthesis to maximize the satisfaction probability
of an MITL specification for CPS in the presence of adversaries. We consider the adversaries
that have two capabilities: (i) tamper with the control input applied by the system via an
actuator attack, and (ii) manipulate the timing information perceived by the system via a
timing attack. We propose an entity named durational stochastic game (DSG) to capture
the interaction between the CPS and adversary. DSGs are more powerful than stochastic
games in the sense that they are capable of not only modeling the ordering of the events as
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stochastic games are, but also the time consumption required for each event. We develop
a value iteration algorithm to compute the max-min satisfaction probability on DSG. Our
case study results indicate that the proposed approach outperforms the baselines where the
adversary can cause zero satisfaction probability via actuator and timing attacks.

1.6 Abstraction-Free Control Synthesis

The hierarchical architecture for control synthesis of CPS grants us the advantage to lift
from continuous domain to discrete domain via computing finite abstractions (e.g., stochas-
tic games, POSGs, DSGs), so as to be better aligned with the semantics of temporal logic
specifications, which are normally captured by finite state automata. We can then leverage
formal methods in the context of model checking [18] to synthesize controllers to satisfy the
given temporal logic specifications. The finite abstractions can be generated by partitioning
the state space and control input space of CPS with consistency guarantees (e.g., simulation
and bisimulation relations [32]). However, computing the abstractions can be computation-
ally demanding and may suffer from the curse of dimensionality. This motivates the topic of
abstraction-free control synthesis that aims at computing the control input for the system
while avoiding generating these abstractions.

We investigate the problem of abstraction-free control synthesis for CPS under LTL
specifications. Our solution approach leverages the paradigm of hybrid systems, where we
use the discrete automaton representing the LTL specification to track the satisfaction of
the specification, and use continuous system dynamics to constrain the system behavior.
Given the automaton corresponding to the LTL specification, we decompose an accepting
run on it into a sequence of sub-formulas. We then map the satisfaction of each sub-
formula to reaching a subset of continuous system states. We construct a set of control
barrier function constraints to guarantee that the system can reach the desired subset of
continuous states, and formulate a quadratic program to synthesize the continuous controller.
Although this problem has not incorporated the presence of any adversary, we believe this
is an important initial step for developing abstraction-free control synthesis for CPS in the
presence of adversaries.

1.7 Organization of this Thesis

This thesis is organized as follows. Chapter 2 introduces related work. Chapter 3 presents
some preliminary background. Chapter 4 develops a framework for automatic control syn-
thesis that maximizes the satisfaction probability. Chapter 5 gives the control synthesis
that minimizes the invariant constraint violation rate. Chapter 6 discusses the minimum
violation control synthesis under multiple LTL constraints. Control synthesis for systems
with partial observations is investigated in Chapter 7. Chapter 8 presents the control syn-
thesis for CPS under time-critical specifications in the presence of both actuator and timing
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attacks. Abstraction-free control synthesis is studied in Chapter 9. Chapter 10 concludes
the thesis and discusses some future work.
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Chapter 2

Related Work

This chapter presents an overview of the related work.

2.1 Control Synthesis under Temporal Logic Constraints in
the Absence of Adversaries

Temporal logics such as LTL and CTL are widely used to specify and verify system prop-
erties [18], especially complex system behaviors. In this section, we review the literature on
control synthesis to satisfy temporal logic specifications when there exists no adversary. We
divide the related work into two categories: namely the abstraction-based approaches and
abstraction-free approaches.

The abstraction-based approaches follow a hierarchical architecture. These approaches
rely on computing a finite abstraction of the CPS model. Typical examples of finite abstrac-
tions include finite transition systems [29, 27, 33], tree structures [34, 35], Markov decision
processes (MDPs) [26, 28, 36, 30]. In the meantime, the temporal logic specifications are
expressed using finite automata. Then the finite abstraction representing the system model
and the finite automaton modeling the temporal logic specification are integrated together.
Applying off-the-shelf model checking algorithms on this integrated entity yields the higher
level controllers with verifiable guarantee on the satisfaction of the temporal logic specifica-
tion [18]. Finally, a lower level continuous controller can be computed by guaranteeing that
(i) the requirements specified by the higher level controller are met, and (ii) the system dy-
namics are satisfied. These approaches, however, do not consider the presence of malicious
adversaries that can tamper with the behaviors of the CPS. For CPS operated in adversarial
environments, the aforementioned approaches may be suboptimal or invalid. In Chapter 4
to 8, we investigate how to synthesize the higher level controllers under different settings
to satisfy the temporal logic constraints. We use stochastic games to better formulate the
strategic interactions between the controller and adversary [37].

Abstraction-free approaches aim at mitigating the intense computation required when
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constructing the finite abstractions of CPS. An optimization based approach is proposed
in [38]. The authors encode the LTL constraints as mixed-integer linear constraints. The
authors of [39] study control synthesis under co-safe LTL specifications. They compute
the controller by solving a sequence of stochastic constrained reachability problems, which
relies on solving nonlinear PDEs. The authors of [40] formulate a hybrid system using
the automaton and the continuous system, and compute the controller by solving a mixed
continuous-discrete HJB equation. Normally PDEs and HJB equations are approximately
solved using computationally expensive numerical approaches such as Finite-Difference [41].
In Chapter 9 of this thesis, we give a different control barrier function (CBF) based approach
to synthesize a controller by solving a quadratic program at each time.

The concept of CBF extends barrier function to CPS with control inputs [42]. Recent
works have developed CBF based approaches for safety-critical systems [43, 44]. LTL spec-
ifications, however, capture a richer set of properties that cannot be modeled by safety
constraints alone.

CBFs have gained popularity for CPS under LTL constraints [45, 46] and signal temporal
logic (STL) constraints [47, 48]. The authors of [45, 46] investigate the problem of control
synthesis of multi-robot system under LTL constraints using CBFs. Under their approaches,
they solved a sequence of reachability problems using CBFs, and proposed a relaxation of
CBF based constraints. Our approach differs from [45, 46] in the following two aspects.
First, our approach considers a broader fragment of LTL compared to [45]. A fragment of
LTL specification named LTL𝑅𝑜𝑏𝑜𝑡𝑖𝑐 is considered in [45], while we consider LTL without
next operator. Second, we propose a different approach to resolve the infeasibility between
CBF constraints compared to [45, 46]. As we will demonstrate later, our proposed approach
in Chapter 9 synthesizes a controller for a specification that is infeasible using the approaches
in [45, 46], and thus serves as a complement to [45, 46].

2.2 CPS Security and Reactive Synthesis

CPS security has been investigated using game- and control- theoretic approaches [21, 22,
12, 23, 24, 25]. Secure state estimation is investigated in [21, 24, 25]. CPS security and
privacy using game-theoretic approach is surveyed in [22]. LQG controller design under false
data injection attacks is studied in [12]. Game theory based resilient control is considered
in [23]. CPS security under Stackelberg setting and Nash setting are studied in [49] and
[50], respectively. Stochastic Stackelberg security games have been studied in [51, 52] and
references therein. These works mostly focus on the lower level controller design, e.g., LQG
controller design, and thus are not readily applicable to systems that are subject to high
level specifications such as temporal logic constraints.

Reactive synthesis under temporal logic constraints aims at automatic control synthesis
to fulfill tasks in which the system behavior depends on the information gathered at run-
time. In this case, the environment is treated as an adversary to capture the worst-case
system behavior [19, 53, 54, 55, 56]. There are several aspects that distinguish this thesis
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with the treatment in reactive synthesis [19, 53, 54, 55, 56]. First, turn-based games are
normally considered in reactive synthesis, while concurrent game is considered in this the-
sis. In turn-based games, exactly one player is allowed to take action at each time step.
Turn-based games are used to model the case where the players interact in asynchronous
way. In concurrent games, all the players take actions simultaneously at each time step,
and thus is more general compared with turn-based game. Moreover, reactive synthesis nor-
mally assumes the agent has full knowledge of the environment and information asymmetry
between players cannot be captured. In this thesis, the Stackelberg setting is considered as
shown in Chapter 4 to 8, which captures the hierarchical structure when players commit to
strategies. Additionally, the approaches given in this thesis can be easily extended to handle
the scenarios where the players have limited observation capabilities (see Chapter 6 and 7).

2.3 Partial Satisfaction of Temporal Logic Constraints

Failure of controller synthesis is first investigated in [57, 58]. The authors of [59] diagnose the
unrealizable part of a specification, i.e., the part of specification that cannot be implemented
by the system. Following [57, 58], minimum violation problem of deterministic systems is
investigated in [60, 61, 62, 63, 64]. In [65], the problem of partial satisfaction of LTL safety
specification on deterministic transition system is investigated. The authors of [65] divide
the LTL specifications into hard and soft specifications, and solves the problem by proposing
a quantitative semantics of LTL. A penalty structure is designed in [66] for motion planning
under LTL constraint. Control synthesis for deterministic finite transition systems under
infeasible temporal logic constraints is studied in [67, 68, 69, 70]. These works propose some
metrics as measures to partial satisfaction of specifications, and solve the control synthesis
problem as an optimization problem with respect to the proposed metrics. Another approach
to address unrealizable specification is to repair the model [71, 72] – that is, introducing
small changes to the model to make the original specification realizable.

In Chapter 5, we study the problem of control synthesis with minimum invariant property
violation per cycle. In Chapter 6, we investigate the minimum violation control synthesis
under multiple LTL constraints. In both chapters, we consider the presence of a malicious
adversary who can adjust its strategy accordingly, which leads to an additional decision
maker in the system. The presence of the adversary cannot be captured by any of the
aforementioned work. Additionally, the frameworks that we will propose in Chapter 5 and
6 are applicable to stochastic systems, which are more general than deterministic transition
systems.

2.4 Control Synthesis under Partial Observabilities

This section discusses related work on control synthesis under partial observabilities, in
the contexts of partially observable MDPs (POMDPs) and partially observable stochastic
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games (POSGs). A policy in a POSG (or POMDP) at time 𝑡 depends on actions and
observations at all previous times. A memoryless policy, on the other hand, only depends
on the current state. Heuristics to approximately solve POMDPs include belief replanning
[73], most likely belief state policy and entropy weighting [74], grid-based methods [75], and
point-based methods [76]. The synthesis of parameterized finite state controllers (FSCs) for
a POMDP to maximize the probability of satisfying of an LTL formula (in the absence of
an adversary) is proposed in [77] and [1]. This is an approximate strategy since it does not
use the observation and action histories; it uses only the most recent observation in order
to determine an action. This restricts the class of policies that are searched over, but the
finite cardinality of states in an FSC makes the problem computationally tractable. The
authors of [78] show the existence of 𝜖−optimal FSCs for the average cost POMDP. Similar
to MDP, a POMDP is only capable of representing the presence of one decision maker,
i.e., the system controller, and thus is not sufficient to model the interaction between the
controller and adversary.

Dynamic programming for POSGs for the finite horizon setting was studied in [79].
When agents cooperate to earn rewards, the framework is called a decentralized-POMDP
(Dec-POMDP). The infinite horizon case for Dec-POMDPs is presented in [80], where the
authors proposed a bounded policy iteration algorithm for policies represented as joint FSCs.
A complete and optimal algorithm for deterministic FSC policies for DecPOMDPs is pre-
sented in [81]. Optimization techniques for ‘fixed-size controllers’ to solve Dec-POMDPs are
investigated in [82]. A survey of recent research in Dec-POMDPs is presented in [83].

In Chapter 7, the problem of control synthesis to satisfy an LTL formula in partially
observable adversarial environments is studied. FSCs are used to present the policies of the
system and adversary. Chapter 7 presents a value iteration based procedure with convergence
guarantee.

2.5 Control Synthesis under Time-Critical Specifications

We next discuss control synthesis for CPS under time-critical specifications. Time-critical
specifications are commonly seen in real world applications such as real time scheduling
problem [84, 85] and vehicle routing problem [86]. Time-critical tasks can be formulated
using temporal logic specifications such as metric temporal logic (MTL), metric interval
temporal logic (MITL), and signal temporal logic (STL), which not only specify the relative
ordering of the events, but also the time duration between consecutive events.

Semi-Markov decision processes (SMDPs) [87] are used to model Markovian dynamics
where the time taken for transitions between states is a random variable. SMDPs have been
typically used to analyze problems in production scheduling [88, 89] and optimization of
queues [90, 91, 92]. Similar to MDPs, SMDPs are not applicable to capture the interaction
between two decision makers, i.e., the controller and adversary in the context of this thesis.
The satisfaction of an MITL formula in a motion-planning context was studied in [86, 93, 94].
In [86], the authors propose a mixed-integer linear programming procedure that solved
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the problem to optimality. The authors of [93] synthesize switching controllers for non-
linear dynamical systems in order to satisfy MTL formulas. They present a correct-by-
construction procedure which ensured that closed-loop trajectories of the system satisfied
the MTL formulas. A timed automaton (TA) based approach to generate a plan for a robot
to accomplish a task specified as an MITL formula is proposed in [94]. Control synthesis
under STL constraints is studied in [47, 48]. However, the aforementioned works are tailored
for a single agent, and do not consider the presence of an adversary. Moreover, the analysis
in [86, 93, 94] restricts their focus to MITL formulas with reachability accepting conditions.
The treatment in Chapter 8 is broader in scope, and considers arbitrary MITL formulas.

A parallel body of work proposes the incorporation of probabilities to a TA [95] to yield
a probabilistic timed automaton (PTA). Two-player stochastic games are used as an ab-
straction of the PTA to present tight bounds on the aforementioned probabilities in [96].
Stochastic timed games, defined in [97], assumed two players choosing their actions deter-
ministically, and the environment as a ‘half-player’ whose actions are probabilistic. The
existence of a strategy for one player such that the probability of reaching a set of states
under any strategy of the other player and the randomness in the environment is shown
to be undecidable in general. The authors of [98] study a two-player stochastic game and
showed that it was not possible for a player to have an optimal strategy that guaranteed
the ‘equilibrium value’ against every strategy of the opponent. However, they show the
existence of an almost-sure winning strategy for one player against any strategy of the other
player. This was not a Markovian policy, since it depends on not only the most recent state,
but also on previous states. In all the papers mentioned here, the games are turn-based,
and there exists no temporal logic formula that had to be satisfied.
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Chapter 3

Background

This chapter introduces necessary background on Markov decision processes (MDPs) along
with their solution algorithms and stochastic games (SGs). We also present a class of games
named Stackelberg games. We additionally introduce background on linear temporal logic
(LTL) and metric interval temporal logic (MITL).

3.1 Markov Decision Processes

Markov decision processes (MDPs) are widely used to model the decision making of a single
agent in a stochastic environment. At each state of an MDP, the agent (decision maker)
takes an action, and the state of the agent changes in a stochastic manner in response to
the action. An MDP is formally defined as follows.

Definition 3.1 (Markov Decision Process (MDP)). A Markov Decision Process ℳ is a
tuple ℳ = (𝑆,𝑈, 𝑃, 𝑆0), where

• 𝑆 is a finite set of states.

• 𝑈 is a finite set of actions that can be taken by the agent.

• 𝑃 : 𝑆 × 𝑈 × 𝑆 → [0, 1] is a transition function where 𝑃 (𝑠′|𝑠, 𝑢) is the probability of
transitioning from state 𝑠 ∈ 𝑆 to state 𝑠′ ∈ 𝑆 when taking action 𝑢.

• 𝑆0 ⊆ 𝑆 is the set of initial states.

Note that Definition 3.1 focuses on the class of finite MDPs since the state and action
spaces 𝑆 and 𝐴 are finite. There are other variants of MDPs with infinite state and/or action
spaces [99, 100]. We define the set of admissible actions for any state 𝑠 ∈ 𝑆 as 𝑈(𝑠) ⊆ 𝑈 ,
i.e., the set of actions that can be taken by the agent at state 𝑠.

Fig. 3-1 gives an example of MDP, modeling a robot navigating in a 2×3 grid world. In
this example, the set of states 𝑆 = {1, 2, 3, 4, 5, 6}, representing the set of grids in the envi-
ronment. The robot has four actions 𝑈 = {𝐿,𝑅,𝑈,𝐷}, representing ‘moving left’, ‘moving
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Figure 3-1: An example of MDP modeling a robot navigating in a 2×3 grid world. Each grid
is a state of the MDP. The robot has four actions, denoted as 𝑈 = {𝐿,𝑅,𝑈,𝐷}, representing
‘moving left’, ‘moving right’, ’moving up’, and ‘moving down’.

right’, ’moving up’, and ‘moving down’. The robot suffers from transition uncertainty when
executing the action at each state. For instance, the robot can transition from state 2 to 3
with probability 0.8 when executing action 𝑅, and it has probability 0.2 to transition from
state 2 to 5. Such transition uncertainty is captured by the transition matrix 𝑃 .

Given an MDP, there are two categories of strategies (or policies) that can be taken by
the agent:

• Pure strategy : A pure strategy 𝜇 : 𝑆 → 𝑈 gives the action of the agent as a determin-
istic function of the state.

• Mixed strategy : A mixed strategy 𝜇 : 𝑆 × 𝑈 → [0, 1], which maps each state and
admissible action to a probability distribution over the set of actions 𝑈(𝑠) available at
state 𝑠.

Given a policy 𝜇 for an MDPℳ, MDP reduces to a policy-induced Markov chain (MC),
which is defined as follows.

Definition 3.2 (Policy-Induced Markov Chain). A policy-induced Markov chain from an
MDP ℳ = (𝑆,𝑈, 𝑃, 𝑆0) using policy 𝜇 is a tuple ℳ𝜇 = (𝑆, 𝑃𝜇, 𝑆0), where 𝑆 and 𝑆0 are as
defined in Definition 3.1, and 𝑃𝜇 is the transition probability given as

𝑃𝜇(𝑠′|𝑠) =
∑︁
𝑢∈𝑈

𝑃 (𝑠′|𝑠, 𝑢)𝜇(𝑢|𝑠).

We say MDPℳ is a unichain MDP if for any control policy 𝜇, the policy-induced MC is
irreducible, i.e., the probability of reaching any state from any state on the MC is positive.

3.2 Classical Problems and Algorithms on Markov Decision
Processes

In this section, we introduce three classical problems on MDPs and their solution algorithms.
Given a policy 𝜇 for an MDP ℳ, it is evaluated using a reward function 𝑅 : 𝑆 × 𝑈 → R.
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Reward function 𝑅 defines the reward the agent can collect via a one-step transition. There
are various metrics that have been used to evaluate a policy.

3.2.1 Discounted Total Reward Maximization Problem

The discounted total reward 𝐽 captures the expected total reward the agent can collect over
an infinite time horizon, where the agent gives higher weight that can be obtained in the
near future. The discounted total reward is defined as

𝐽 = lim
𝑇→∞

𝑇−1∑︁
𝑡=0

E𝜇,𝑆0 [𝛾𝑅(𝑠𝑡, 𝑢𝑡)] , (3.1)

where 𝛾 ∈ (0, 1] is a discount factor, E𝜇,𝑆0 [·] represents the expectation with respect to
policy 𝜇 and the distribution over the initial states 𝑆0, 𝑠𝑡 is the state the at 𝑡-th step, and
𝑢𝑡 is the action taken by the agent following policy 𝜇 at 𝑡-th step. The discounted total
reward maximization problem is then stated as follows.

Problem 3.1 (Discounted Total Reward Maximization). Given an MDPℳ = (𝑆,𝑈, 𝑃, 𝑆0)
and a reward function 𝑅 : 𝑆 × 𝑈 → R, compute a policy 𝜇 such that

max
𝜇

lim
𝑇→∞

𝑇−1∑︁
𝑡=0

E𝜇,𝑆0 [𝛾𝑅(𝑠𝑡, 𝑢𝑡)] (3.2)

In the following, we introduce the solution algorithms to Problem 3.1. Let 𝑉 𝜇 : 𝑆 → R
be a value function. Here 𝑉 𝜇(𝑠) gives the expected reward starting from state 𝑠 following
policy 𝜇. It has been shown that 𝑉 𝜇 adopts the following recursive property:

𝑉 𝜇(𝑠) =
∑︁
𝑠′

𝑃𝜇(𝑠′|𝑠)(𝑅(𝑠, 𝑢) + 𝛾𝑉 𝜇(𝑠′)), (3.3)

where 𝑃𝜇 is the transition of the policy-induced Markov chain of ℳ when using policy 𝜇.
Let 𝑉 * be the optimal value function. It has been proved that the optimal value function
𝑉 * obeys the following Bellman’s optimality condition:

𝑉 *(𝑠) = max
𝜇

[︃∑︁
𝑠′

𝑃𝜇(𝑠′|𝑠)(𝑅(𝑠, 𝑢) + 𝛾𝑉 *(𝑠′))

]︃
(3.4)

Motivated by Eqn. (3.4), one can compute 𝑉 * via a value iteration algorithm, which is
detailed in Algorithm 1. Algorithm 1 iteratively updates value function 𝑉𝑘 at each iteration
𝑘 using Eqn. (3.4) until the value functions between two consecutive iterations are 𝜖-close.
Algorithm 1 is characterized as follows.

Lemma 3.1 ([101]). Algorithm 1 converges to the unique optimal value 𝑉 *.
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Algorithm 1 Value Iteration.
1: Initialization: 𝑉0(𝑠)← 0 for all 𝑠 ∈ 𝑆, 𝑘 ← 0
2: repeat𝑉𝑘+1(𝑠)← max𝜇 [

∑︀
𝑠′ 𝑃

𝜇(𝑠′|𝑠)(𝑅(𝑠, 𝑢) + 𝛾𝑉𝑘(𝑠
′))] for all 𝑠 ∈ 𝑆

3: 𝑘 ← 𝑘 + 1
4: until 𝑉𝑘+1(𝑠)− 𝑉𝑘(𝑠) ≤ 𝜖 for all 𝑠 ∈ 𝑆
5: return 𝑉𝑘+1

Algorithm 2 Policy Iteration.
1: Initialization: A policy 𝜇0, 𝑘 ← 0
2: repeat
3: Policy Evaluation: Compute 𝑉𝑘(𝑠) such that 𝑉𝑘(𝑠) =

∑︀
𝑠′ 𝑃

𝜇𝑘(𝑠′|𝑠)(𝑅(𝑠, 𝑢) +
𝛾𝑉𝑘(𝑠

′)) for all 𝑠 ∈ 𝑆
4: Policy Improvement: Calculate policy 𝜇𝑘+1 as 𝜇𝑘+1 ←

argmax𝜇 [
∑︀

𝑠′ 𝑃
𝜇(𝑠′|𝑠)(𝑅(𝑠, 𝑢) + 𝛾𝑉𝑘(𝑠

′))] for all 𝑠 ∈ 𝑆
5: 𝑘 ← 𝑘 + 1
6: until 𝑉𝑘+1(𝑠)− 𝑉𝑘(𝑠) ≤ 𝜖 for all 𝑠 ∈ 𝑆
7: return 𝜇𝑘+1

The optimal value 𝑉 * can also be calculated using a method named policy iteration as
detailed in Algorithm 2. Similarly, the convergence of Algorithm 2 can be given as follows.

Lemma 3.2 ([101]). Algorithm 2 converges to the unique optimal value 𝑉 *.

3.2.2 Average Reward per Stage Problem

In this subsection, we consider the average reward per stage problem using a metric called
the average reward 𝐽𝑠𝑡𝑔, which models the reward that the agent can obtain via each one-step
transition on average. The average reward is defined as

𝐽𝑠𝑡𝑔 = lim
𝑇→∞

1

𝑇
E𝜇,𝑆0

[︃
𝑇−1∑︁
𝑡=0

𝑅(𝑠𝑡, 𝑢𝑡)

]︃
. (3.5)

The average reward per stage problem is stated as follows.

Problem 3.2 (Average Reward per Stage). Given an MDPℳ = (𝑆,𝑈, 𝑃, 𝑆0) and a reward
function 𝑅 : 𝑆 × 𝑈 → R, compute a policy 𝜇 such that

max
𝜇

lim
𝑇→∞

1

𝑇
E𝜇,𝑆0

[︃
𝑇−1∑︁
𝑡=0

𝑅(𝑠𝑡, 𝑢𝑡)

]︃
. (3.6)

The optimality condition of Problem 3.2 is given as follows.
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Lemma 3.3 ([101]). Consider a unichain MDP. We have that:

• The optimal average reward per stage 𝐽*
𝑠𝑡𝑔 is independent of initial state 𝑠0.

• There exists an |𝑆|-dimensional vector ℎ* such that

𝐽*
𝑠𝑡𝑔 + ℎ*(𝑠) = max

𝜇

{︁∑︁
𝑠′

𝑃𝜇(𝑠′|𝑠)𝑅(𝑠, 𝑢) +
∑︁
𝑠′∈𝑆

𝑃𝜇(𝑠′|𝑠)ℎ*(𝑠′)
}︁
. (3.7)

Eqn. (3.7) is the Bellman’s equation for average reward per stage problem. The counter-
parts of value iteration and policy iteration algorithms proposed for discounted total reward
maximization problem can be developed for average reward per stage problem using Eqn.
(3.7).

3.2.3 Average Reward per Cycle Problem

Average reward per stage problem studies the reward an agent can earn at each stage. In
some applications, one may concern the average reward that an agent can earn spanning
multiple stages, e.g., a function cycle consisting of multiple stages. This motivates the
average reward per cycle problem. Here a cycle is completed if a subset of states 𝑆 ⊆ 𝑆 is
visited by the agent. Denote the number of cycles that have been completed until stage 𝑁
as 𝐶(𝑁). The average reward per cycle problem is described as follows:

Problem 3.3 (Average Reward per Cycle). Given an MDP ℳ = (𝑆,𝑈, 𝑃, 𝑆0), a reward
function 𝑅, and a subset of states 𝑆 ⊆ 𝑆 capturing the completions of cycles, compute a
policy 𝜇 that maximizes

𝐽𝑐𝑦𝑐 = lim sup
𝑁→∞

E𝜇,𝑆0

{︃∑︀𝑁
𝑡=0

∑︀
𝑠𝑡+1

𝑃𝜇(𝑠𝑡+1|𝑠𝑡)𝑅(𝑠𝑡, 𝑢𝑡)
𝐶(𝑁)

}︃
. (3.8)

The optimality condition of average reward per cycle problem is given as follows:

Lemma 3.4 ([26]). Consider a unichain MDP. We have that:

• The optimal average reward per cycle 𝐽*
𝑐𝑦𝑐 is independent of initial state 𝑠0.

• There exists an |𝑆|-dimensional vector ℎ* such that

𝐽*
𝑐𝑦𝑐 + ℎ*(𝑠) = max

𝜇

{︁∑︁
𝑠′

𝑃𝜇(𝑠′|𝑠)𝑅(𝑠, 𝑢) +
∑︁
𝑠′∈𝑆

𝑃𝜇(𝑠′|𝑠)ℎ*(𝑠′) + 𝐽*
𝑐𝑦𝑐

∑︁
𝑠′∈𝑆

𝑃𝜇(𝑠′|𝑠)
}︁
.

(3.9)
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Figure 3-2: An example of MDP modeling a robot navigating in a 2 × 3 grid world. Each
grid is a state of the MDP. The robot and the adversary each has four actions, denoted
as 𝑈1 = 𝑈2 = {𝐿,𝑅,𝑈,𝐷}, representing ‘moving left’, ‘moving right’, ’moving up’, and
‘moving down’.

3.3 Stochastic Games

This section introduces stochastic games (SGs). Different with MDPs which model the
decision making of a single agent, SGs concern the decision makings and interaction of two
decision makers. An SG is formally defined as follows:

Definition 3.3 (Stochastic Game (SG)). A stochastic game (SG) 𝒢 is a tuple 𝒢 = (𝑆,𝑈1,
𝑈2, 𝑃, 𝑆0), where

• 𝑆 is a finite set of states.

• 𝑈1 is a finite set of actions of agent 1.

• 𝑈2 is a finite set of actions of agent 2.

• 𝑃 : 𝑆 × 𝑈1 × 𝑈2 × 𝑆 → [0, 1] is a transition function where 𝑃𝑟(𝑠′|𝑠, 𝑢1, 𝑢2) is the
probability of transitioning from state 𝑠 to state 𝑠′ when the agents 1 and 2 take actions
𝑢1 and 𝑢2, respectively.

• 𝑆0 ⊆ 𝑆 is the set of initial states.

For any state 𝑠 ∈ 𝑆, the set of admissible actions to agent 1 and 2 are denoted as
𝑈1(𝑠) and 𝑈2(𝑠), respectively. In an SG, both agents can take either pure strategies or
mixed strategies. Different from an MDP, the transition probabilities in an SG is jointly
determined by the actions taken by both decision makers.

Fig. 3-2 shows an example of SG, where a robot interacts with an adversary in a 2× 3
grid world. The adversary navigates in the grid world, attempting to evade from the robot’s
pursuit. Both the robot and adversary can take actions in {𝐿,𝑅,𝑈,𝐷} to move to the
adjacent grids. In this case, a state 𝑠 ∈ 𝑆 of the SG captures the joint location of the
robot and adversary, and thus there are 36 states in 𝑆. The transition probability matrix 𝑃
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captures how joint locations of the robot and adversary can change when they take actions
in {𝐿,𝑅,𝑈,𝐷}.

In an SG, the interaction between agents 1 and 2 needs to be understood. Game theory
is widely used to model the interaction between multiple agents (also known as players in
the context of games). In the sequel, we focus on a class of games named Stackelberg games,
which have been adopted in a variety of security applications [52, 102].

In a Stackelberg game, agent 1 (also called the leader) commits to a strategy first. Then
agent 2 (also known as the follower) observes the strategy of the leader and plays its best
response. The information structure under Stackelberg setting can be classified into the
following two categories:

• Turn-based games: Exactly one player is allowed to take action at each time step.
Turn-based games are used to model the case where the players interact in an asyn-
chronous way.

• Concurrent games: All the players take actions simultaneously at each time step. Con-
current games are used to model the case where the players interact in an synchronous
way.

The policies of the leader and follower in a Stackelberg game are evaluated via the
utilities achieved under these policies. Suppose that the leader and follower commit to
policies 𝜇 and 𝜏 , respectively. We denote the utility that the leader gains in a stochastic
game 𝒢 under leader follower strategy pair (𝜇, 𝜏)as 𝒬𝐿(𝜇, 𝜏). Analogously, the utility of the
follower is denoted as 𝒬𝐹 (𝜇, 𝜏). The solution concept of the Stackelberg games is called the
Stackelberg equilibrium (SE), whose definition is given as follows.

Definition 3.4 (Stackelberg Equilibrium (SE)). A pair of strategies (𝜇, 𝜏) is a Stackelberg
equilibrium if leader’s strategy 𝜇 is optimal given that the follower observes its strategy and
plays its best response, i.e.,

𝜇 = argmax
𝜇′∈𝜇
𝒬𝐿(𝜇′,ℬℛ(𝜇′)),

where 𝜇 is the set of all policies of the leader and

ℬℛ(𝜇′) = {𝜏 : 𝜏 ∈ argmax𝒬𝐹 (𝜇′, 𝜏)}

is the best response to leader’s strategy 𝜇′ played by the follower.

3.4 Formal Specifications: Temporal Logics and Automata

In this section, we introduce background on temporal logics and automata. Temporal logics
are concrete and rigorous tools to specify properties for cyber-physical systems. We mainly
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focus on two classes of temporal logics, namely linear temporal logic (LTL) and metric
interval temporal logic (MITL).

An LTL formula consists of [18]

• a set of atomic propositions Π;

• Boolean operators: negation (¬), conjunction (∧) and disjunction (∨).;

• temporal operators: next (○) and until (U).

An LTL formula is defined inductively as

𝜙 = 𝑇𝑟𝑢𝑒 | 𝜋 | ¬𝜙 | 𝜙1 ∧ 𝜙2 | ○𝜙 | 𝜙1 U 𝜙2.

Other Boolean operators can be defined leveraging connectives ∧ and ¬. For example,
implication operator =⇒ is defined as

𝜙1 =⇒ 𝜙2 := ¬𝜙1 ∧ 𝜙2.

Until operator can be used to derive other temporal operators as

3𝜙 := 𝑇𝑟𝑢𝑒U𝜙, 2𝜙 := ¬3¬𝜙,

where 3 and 2 are ‘eventually’ and ‘always’ operators.
The semantics of LTL formulas are defined over infinite words in 2Π [18]. Informally

speaking, 𝜙 is true if and only if 𝜙 is true at the current time step. 𝜓U𝜙 is true if and only
if 𝜓 ∧ ¬𝜙 is true until 𝜙 becomes true at some future time step. 2𝜙 is true if and only if
𝜙 is true for the current time step and all the future time. 3𝜙 is true if 𝜙 is true at some
future time. ○𝜙 is true if and only if 𝜙 is true in the next time step. A word 𝜂 satisfying
an LTL formula 𝜙 is denoted as 𝜂 |= 𝜙.

Given an LTL formula 𝜙, a deterministic Rabin automaton (DRA) can be constructed
to equivalently represent the formula. A DRA is defined as follows.

Definition 3.5 (Deterministic Rabin Automaton). A deterministic Rabin automaton (DRA)
is a tuple ℛ = (𝑄,Σ, 𝛿, 𝑞0,Acc), where

• 𝑄 is a finite set of states.

• Σ is a finite set of symbols called alphabet.

• 𝛿 : 𝑄× Σ→ 𝑄 is the transition function.

• 𝑞0 ∈ 𝑄 is the initial state.

• Acc = {(𝐿(1),𝐾(1)), (𝐿(2),𝐾(2)), · · · , (𝐿(𝑍),𝐾(𝑍))} is a finite set of Rabin pairs
such that 𝐿(𝑧),𝐾(𝑧) ⊆ 𝑄 for all 𝑧 = 1, 2, · · · , 𝑍 with 𝑍 being a positive integer.
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Figure 3-3: The DRA representing LTL formula 𝜙 = 3(𝑎∧3𝑏). The states are represented
by circles and the transitions are shown by arrows.

Fig. 3-3 presents the DRA of LTL formula 𝜙 = 3(𝑎∧3𝑏). LTL specification 𝜙 requires
to reach 𝑎 and 𝑏 sequentially. The state set of the DRA is 𝑄 = {0, 1, 2}, with each being
represented as circle in Fig. 3-3. The initial state is 𝑞0 = 0. The transitions are represented
by arrows. For example, we have that 𝛿(0,¬𝑎) = 0. There exists one Rabin pair in this
example, i.e., 𝐴𝑐𝑐 = {∅, {2}}.

A fragment of LTL, named co-safe LTL (scLTL) has also been extensively studied. Com-
pared to LTL, scLTL can be interpreted over finite words [18]. Specifically, scLTL is defined
as

Definition 3.6 (scLTL). Any LTL formula that contains only eventually and U temporal
operators when written in positive normal form (i.e., negation appears only in front of atomic
propositions) is syntactically co-safe.

Any scLTL formula can be expressd using a deterministic finite automaton (DFA), de-
fined as follows.

Definition 3.7 (Deterministic finite automaton). A DFA 𝒜 is a tuple 𝒜 = (𝑄, 𝑞0,Σ, 𝛿, 𝐹 ),
where

• 𝑄 is a finite set of states.

• 𝑞0 ∈ 𝑄 is the initial state.

• Σ is alphabet.

• 𝛿 : 𝑄× Σ→ 𝑄 is the set of transitions.

• 𝐹 ⊆ 𝑄 is the set of accepting states.
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A run 𝜌 of a DRA or DFA over a finite input word 𝜂 = 𝜂0𝜂1 · · · 𝜂𝑛 is a sequence of states
𝑄* = 𝑞0𝑞1 · · · 𝑞𝑛 such that (𝑞𝑘−1, 𝜂𝑘, 𝑞𝑘) ∈ 𝛿 for all 0 ≤ 𝑘 ≤ 𝑛. A run 𝜌 is accepted by a DRA
ℛ if and only if there exists a pair (𝐿(𝑧),𝐾(𝑧)) such that 𝜌 intersects with 𝐿(𝑧) finitely
many times and intersects with 𝐾(𝑧) infinitely often. A run 𝜌 is accepted by a DFA 𝒜 if
and only if there exists a 𝑞𝑘 ∈ 𝐹 for some 𝑘 ≤ 𝑛. Denote the satisfaction of a formula 𝜙 by
a run 𝜌 as 𝜌 |= 𝜙.

LTL specifies the order of the occurrence of events. However, it may not be suitable to
express time-critical tasks involving deadlines or time intervals. To this end, we consider a
class of temporal logics named metric interval temporal logic (MITL), which involves time
intervals associated with each temporal operator. An MITL formula is developed from the
same set of atomic propositions Π as in LTL and a time-constrained until operator U𝐼 , and
can be inductively written as:

𝜙 := 𝑇𝑟𝑢𝑒|𝜋|¬𝜙|𝜙1 ∧ 𝜙2|𝜙1U𝐼𝜙2,

where 𝐼 = [𝑎, 𝑏] with 𝑎 < 𝑏 is a finite time interval.
MITL formulas are interpreted using timed words. A timed word is a sequence 𝜂 =

{(𝜋𝑖, 𝑡𝑖)}∞𝑖=0, where 𝜋𝑖 ∈ 2Π, 𝑡𝑖 ∈ R≥0. A time sequence {𝑡𝑖}∞𝑖=0 associated with any timed
word 𝜂 must satisfy the following:

• Monotonicity: for all 𝑖 ≥ 0, 𝑡𝑖+1 > 𝑡𝑖;

• Progress: for all 𝑡 ∈ R≥0, there exists some 𝑡𝑖 ≥ 𝑡.

The semantics of MITL are given as follows:

Definition 3.8 (MITL Semantics). The satisfaction of an MITL formula 𝜙 at time 𝑡 by a
timed word 𝜂, written (𝜂, 𝑡) |= 𝜙, can be recursively defined in the following way:

• (𝜂, 𝑡) |= 𝑇𝑟𝑢𝑒 if and only if (iff) (𝜂, 0) is true;

• (𝜂, 𝑡) |= 𝜋 iff (𝜂, 𝑡) satisfies 𝜋 at time 𝑡;

• (𝜂, 𝑡) |= ¬𝜙 iff (𝜂, 𝑡) ̸|= 𝜙;

• (𝜂, 𝑡) |= 𝜙1 ∧ 𝜙2 iff (𝜂, 𝑡) |= 𝜙1 and (𝜂, 𝑡) |= 𝜙2;

• (𝜂, 𝑡) |= 𝜙1U𝐼𝜙2 iff ∃𝑘 ∈ 𝐼 such that (𝜂, 𝑡+𝑘) |= 𝜙2 and for all 𝑚 < 𝑘, (𝜂, 𝑡+𝑚) |= 𝜙1.

The satisfaction of the time-constrained operators relies on a set of clock constraints
Φ(𝐶) defined over a clock set 𝐶. A clock constraint is inductively defined as

𝜑 = 𝑇𝑟𝑢𝑒|𝐹𝑎𝑙𝑠𝑒|𝑐 ◁▷ 𝑡|𝜑1 ∧ 𝜑2, (3.10)

where ◁▷∈ {≤,≥, <,>}, 𝑐 ∈ 𝐶 is a clock, and 𝑡 ∈ Q is a non-negative constant. Any
MITL formula can be expressed by a timed Büchi automaton (TBA) using the set of clock
constraints. A TBA is defined as follows.
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Definition 3.9 (Timed Büchi Automaton). A timed Büchi automaton is a tuple 𝒯 =
(𝑄, 2Π, 𝑞0, 𝐶,Φ(𝐶), 𝐸, 𝐹 ), where

• 𝑄 is a finite set of states.

• 2Π is an alphabet over atomic propositions in Π.

• 𝑞0 ∈ 𝑄 is the initial state.

• 𝐸 ⊆ 𝑄×𝑄× 2Π × 2𝐶 × Φ(𝐶) is the set of transitions.

• 𝐹 ⊆ 𝑄 is the set of accepting states.

A transition ⟨𝑞, 𝑞′, 𝑎, 𝐶 ′, 𝜑⟩ ∈ 𝐸 if 𝒜 enables the transition from 𝑞 to 𝑞′ when a subset of
atomic propositions 𝑎 ∈ 2Π and clock constraints 𝜑 ∈ Φ(𝐶) evaluate to true. The clocks in
𝐶 ′ ⊆ 𝐶 are reset to zero after the transition.

Given the set of clocks 𝐶, we define the valuation of 𝐶 as v : 𝐶 → R|𝐶|. Given a constant
𝑡 ∈ Q, we let v + 𝑡 := [v(1) + 𝑡, · · · ,v(|𝐶|) + 𝑡]⊤. The configuration of 𝒯 is a pair (𝑞,v),
with 𝑞 ∈ 𝑄 and v being the valuation. A transition < 𝑞, 𝑞′, 𝑎, 𝐶 ′, 𝜑 > taken after 𝑡 time
units from (𝑞,v) to a configuration (𝑞′,v + 𝑡) is written (𝑞,v)

𝑎,𝑡−→ (𝑞′,v′), where v + 𝑡 |= 𝜑
and v′(𝑐) = v(𝑐) + 𝑡 for all 𝑐 /∈ 𝐶 ′. Given an input sequence 𝑎0, 𝑎1, · · · with 𝑎𝑖 ∈ Π, we can
construct a corresponding sequence of configurations 𝜌 = (𝑞0,v0)

𝑎0,𝑡0−−−→ (𝑞1,v1) · · · , called a
run of 𝒜. The run 𝜌 is feasible if for all 𝑖 ≥ 0 there exists a transition < 𝑞𝑖, 𝑞𝑖+1, 𝑎, 𝐶𝑖, 𝜑 >
in 𝒜 such that (i) v0 = 0, (ii) 0 + 𝑡0 |= 𝜑0, (iii) v1(𝑐) = v0(𝑐) + 𝑡0 for all 𝑐 /∈ 𝐶0, and (iv)
v𝑖 + 𝑡𝑖 |= 𝜑𝑖 and v𝑖+1(𝑐) = v𝑖(𝑐) + 𝑡𝑖 for all 𝑐 /∈ 𝐶𝑖.
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Chapter 4

Optimal Secure Control under LTL
Constraints

4.1 Introduction

Cyber-physical systems (CPS) are expected to perform increasingly complex tasks in appli-
cations including autonomous vehicles, teleoperated surgery, and advanced manufacturing.
An emerging approach to designing such systems is to specify a desired behavior using
temporal logic formulas, and then automatically synthesize a controller satisfying the given
requirements [26, 27, 28, 103, 36, 29].

The integration between cyber and physical components in CPS makes them vulnerable
to malicious attacks. An intelligent adversary targeting at CPS can degrade or even invali-
date the existing controller synthesis approaches for CPS under temporal logic constraints.
Currently, however, automatic synthesis of control systems in adversarial scenarios subject
to temporal logic constraints has received limited research attention.

In this chapter, we investigate the problem of computing a control strategy for a prob-
abilistic autonomous system in the presence of an adversary such that the probability of
satisfying an LTL specification is maximized. We abstract the system as a stochastic game
(SG), which is a generalization of Markov decision process (MDP), and consider a concur-
rent Stackelberg information structure, in which the adversary and controller take actions
simultaneously. We make the following specific contributions:

• We formulate an SG to model the interaction between the CPS and adversary. The
SG describes the system dynamics and the effects of the joint input determined by the
controller and adversary. We propose a heuristic algorithm to compute the SG given
the system dynamics.

• We investigate how to synthesize a control policy that maximizes the worst-case prob-
ability of satisfying an arbitrary specification modeled using LTL. We prove that this
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problem is equivalent to a zero-sum stochastic Stackelberg game, in which the con-
troller chooses a policy to maximize the probability of reaching a desired set of states
and the adversary chooses a policy to minimize that probability.

• We give an algorithm to compute the set of states that the system desires to reach.
We then propose an iterative algorithm for constructing an optimal stationary policy.
We prove that our approach converges to a Stackelberg equilibrium and characterize
the convergence rate of the algorithm.

• We evaluate the proposed approach using a numerical case study. We consider a
remotely controlled UAV under deception attack given different LTL specifications. We
compare the performance of our proposed approaches with the performance obtained
using existing approaches without considering the adversary’s presence. The results
show that our proposed approach outperforms existing methods.

The remainder of this chapter is organized as follows. Section 4.2 introduces the system
model and presents the problem formulation on maximizing the probability of satisfying a
given LTL specification. Section 4.3 presents our proposed solution approach. Section 4.4
evaluates our proposed approach and Section 4.5 concludes this chapter.

4.2 Sysem Model and Problem Statement

We consider the following discrete-time system

𝑥(𝑡+ 1) = 𝑓(𝑥(𝑡), 𝑢𝐶(𝑡), 𝑢𝐴(𝑡), 𝜗(𝑡)), ∀𝑡 = 0, 1, · · · , (4.1)

where 𝑥(𝑡) is the system state, 𝑢𝐶(𝑡) is the control input from the controller, 𝑢𝐴(𝑡) is the
attack signal from the adversary, and 𝜗(𝑡) is stochastic disturbance.

In system (4.1), there exists a strategic adversary that can tamper with the system
transition. For instance, an adversary that launches false data injection attack modifies
the control input as 𝑢(𝑡) = 𝑢𝐶(𝑡) + 𝑢𝐴(𝑡); an adversary that launches denial-of-service
attack manipulates the control input as 𝑢(𝑡) = 𝑢𝐶(𝑡) · 𝑢𝐴(𝑡), where 𝑢𝐴(𝑡) ∈ {0, 1}. Due
to the impact from the adversary, the system state transition is jointly determined by the
controller and adversary.

We propose a heuristic simulation based algorithm as shown in Algorithm 3, which is
generalized from the approaches proposed in [104, 30], to abstract system (4.1) as a stochastic
game. The difference between Algorithm 3 and the algorithms in [104, 30] is that Algorithm
3 considers the presence of adversary. Algorithm 3 takes the dynamical system (4.1), the
set of sub-regions of state space {𝑋1, · · · , 𝑋𝑛} and actions as inputs. We observe that the
choice of subregions 𝑋1, . . . , 𝑋𝑛 may affect the accuracy of the model, however, choice of
the subregions is beyond the scope of this chapter.
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Algorithm 3 Algorithm for constructing a stochastic game of a system.
1: Input: Dynamics (4.1), set of subsets 𝑋1, . . . , 𝑋𝑛

2: Output: Stochastic game 𝒢 = (𝑆,𝑈𝐶 , 𝑈𝐴, 𝑃, 𝑆0,Π,ℒ)
3: Initialize 𝑘
4: 𝑆 = {𝑋1, . . . , 𝑋𝑛} and ℒ is determined accordingly
5: Generate control primitive sets 𝑈𝐶 = {𝑢𝐶1 , 𝑢𝐶2 · · · , 𝑢𝐶Ξ

} and 𝑈𝐴 = {𝑢𝐴1 , 𝑢𝐴2 · · · , 𝑢𝐴Γ
}

6: for 𝑖 = 1, . . . , 𝑛 do
7: for all 𝑢𝐶 ∈ 𝑈𝐶 and 𝑢𝐴 ∈ 𝑈𝐴 do
8: for 𝑘 = 1, . . . , 𝑘 do
9: 𝑥← sampled state in 𝑋𝑖

10: �̂�𝐶 , �̂�𝐴 ← sampled inputs from 𝑢𝐶 , 𝑢𝐴
11: 𝑗 ← region containing 𝑓(𝑥, �̂�𝐶 , �̂�𝐴, 𝜗)
12: Invoke particle filter to approximate transition probabilities 𝑃 between sub-

region 𝑖 and 𝑗 for all 𝑖 and 𝑗.
13: end for
14: end for
15: end for

We consider the SG 𝒢 = (𝑆,𝑈𝐶 , 𝑈𝐴, 𝑃,Π,ℒ) returned by Algorithm 3 as an abstraction
of system (4.1), where 𝑆, 𝑈𝐶 , 𝑈𝐴, and 𝑃 are the state set, action set of the controller (agent
1 in Definition 3.3), action set of the adversary (agent 2 in Definition 3.3), and transition
probability, respectively. Here Π is a finite set of atomic propositions and ℒ : 𝑆 → 2Π is a
labeling function mapping each state to a subset of propositions in Π.

We consider the concurrent Stackelberg setting between the controller and adversary,
where the controller plays as the leader and the adversary plays as the follower. The con-
troller first commits to its control strategy 𝜇. The adversary can stay outside for indefinitely
long time to observe the strategy of the controller and then chooses its best response 𝜏 to
the controller’s strategy. However, at each time step, both players must take actions simul-
taneously.

The system is given an LTL specification 𝜙. The objective of the controller is to com-
pute a control strategy 𝜇 on SG 𝒢 so that the probability of satisfying specification 𝜙 is
maximized. In contrast, the objective of the adversary is to compute a strategy 𝜏 to deviate
the system from satisfying the specifications in 𝜙, given the controller’s strategy 𝜇. The
problem investigated in this chapter is formally stated as follows:

Problem 4.1. Given a stochastic game 𝒢 and an LTL specification 𝜙, compute a control
policy 𝜇 that maximizes the probability of satisfying specification 𝜙 under any adversary
policy 𝜏 , i.e.,

max
𝜇

min
𝜏

P𝜇𝜏 (𝜙), (4.2)

where P𝜇𝜏 (·) denotes the probability of an event.
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We denote the probability of satisfying LTL specification 𝜙 as satisfaction probability.
When the initial state is given, we use P𝜇𝜏 (𝜙|𝑠) to denote the satisfaction probability when
starting from state 𝑠 ∈ 𝑆. Problem 4.1 can be found useful in various applications. We
present two applications in the remainder of this section.

Infrastructure Protection in Power System. Problem 4.1 can be used to study attack-
defense problems [105] on power systems. The players involved are the power system ad-
ministrator (controller in Problem 4.1) and adversary. The adversary aims to disrupt the
transmission lines in power network, while the administrator deploys resources to protect
critical infrastructures or repair damaged infrastructures. Depending on the focus of the
administrator, the state may contain bus voltages, bus power injections, network frequency
and so on. The actions of the administrator 𝑈𝐶 and adversary 𝑈𝐴, respectively, are the
actions to protect (by deploying protection or repair resources) and damage (by opening the
breakers at ends of) the transmission lines. If an attack is successful, then the transmission
line is out of service, which will result in dramatic change on state. Thus the states evolve
following the joint actions of the administrator and adversary. Moreover, the probability of
the occurrence of events, i.e., the transmission line is out of service, is jointly determined
by the actions of adversary and administrator. The specifications that can be given to the
system might include reachability (e.g., ‘eventually satisfy optimal power flow equation’:
3𝑂𝑃𝐹 ) and reactivity (e.g., ‘if voltage exceeds some threshold, request load shedding from
demand side’: 2(𝑣𝑜𝑙𝑡𝑎𝑔𝑒_𝑎𝑙𝑎𝑟𝑚 =⇒ ○𝐷𝑅)).

Networked Control System under Attacks. In the following, we present an example on
control synthesis for networked control system under deception attacks. The state set 𝑆
consists of partitions of the state space of the networked control system. There exists an
intelligent and strategic adversary that can compromise the control input of the system
by launching deception attack [49]. Typical specifications that are assigned to the system
include stability and safety (e.g., ‘eventually reach stable status while not reaching unsafe
state’: 32stable ∧2¬unsafe).

4.3 Control Synthesis to Maximize Satisfaction Probability

This section presents the solution approach to Problem 4.1. The proposed solution approach
consists of three steps. We first calculate the probability of satisfying the LTL specification
𝜙. We then construct a product SG using SG 𝒢 and DRA ℛ, and convert the problem
of satisfying 𝜙 to the problem of reaching a subset of states, named generalized accepting
maximal end component (GAMEC), on the product SG. We finally develop an efficient value
iteration algorithm to compute a policy that maximizes the probability of satisfying 𝜙.

4.3.1 Computation of the Probability of Satisfying LTL Specification 𝜙

The policies 𝜇 and 𝜏 that achieve the max-min value of Eqn. (4.2) can be interpreted as
a Stackelberg equilibrium (see Definition 3.4) in a zero-sum Stackelberg game between the

30



controller and adversary, in which the controller first chooses a randomized policy 𝜇, and
the adversary observes 𝜇 and selects a policy 𝜏 to minimize satisfaction probability P𝜇𝜏 (𝜙).
By Von Neumann’s theorem [106], the satisfaction probability at equilibrium must exist.
We have the following preliminary lemma.

Lemma 4.1. Let satisfaction probability with initial state 𝑠 be 𝑣(𝑠) = max𝜇min𝜏 P𝜇𝜏 (𝜙|𝑠).
Then

𝑣(𝑠) = max
𝜇

min
𝜏

∑︁
𝑢𝐶∈𝑈𝐶

∑︁
𝑢𝐴∈𝑈𝐴

∑︁
𝑠′∈𝑆

𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑣(𝑠
′)𝑃 (𝑠′|𝑠, 𝑢𝐶 , 𝑢𝐴). (4.3)

Conversely, if 𝑣(𝑠) satisfies Eqn. (4.3), then 𝑣(𝑠) = max𝜇min𝜏 P𝜇𝜏 (𝜙|𝑠). Moreover, the
satisfaction probability 𝑣 is unique.

Proof. In the following, we will first show the forward direction. We let 𝑛 = |𝑆| and define
three operators 𝑇𝜇𝜏 : [0, 1]𝑛 → [0, 1]𝑛, 𝑇𝜇 : [0, 1]𝑛 → [0, 1]𝑛, and 𝑇 : [0, 1]𝑛 → [0, 1]𝑛 as

(𝑇𝜇𝜏𝑣)(𝑠) =
∑︁
𝑠′

𝑃 (𝑠′|𝑠, 𝜇, 𝜏)𝑣(𝑠′)

(𝑇𝜇𝑣)(𝑠) =min
𝜏

∑︁
𝑠′

𝑃 (𝑠′|𝑠, 𝜇, 𝜏)𝑣(𝑠′)

(𝑇𝑣)(𝑠) =max
𝜇

min
𝜏

∑︁
𝑠′

𝑃 (𝑠′|𝑠, 𝜇, 𝜏)𝑣(𝑠′)

where 𝑃 (𝑠′|𝑠, 𝜇, 𝜏) =
∑︀

𝑢𝐶∈𝑈𝐶

∑︀
𝑢𝐴∈𝑈𝐴

𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑃 (𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴) represents the tran-

sition probability induced by policies 𝜇 and 𝜏 . Suppose that 𝜇 is a Stackelberg equilibrium
with 𝑣(𝑠) equal to the satisfaction probability for state 𝑠, and yet Eqn. (4.3) does not hold.
We have that 𝑣 = 𝑇𝜇𝑣, since 𝑣 is the optimal policy for the MDP defined by the policy
𝜇 [101]. On the other hand, 𝑇𝜇𝑣 ≤ 𝑇𝑣. Composing 𝑇 and 𝑇𝜇 by 𝑘 times and taking the
limit as 𝑘 approaches infinity yields 𝑣 = lim𝑘→∞ 𝑇 𝑘𝜇𝑣 ≤ lim𝑘→∞ 𝑇 𝑘𝑣 ≜ 𝑣*. The convergence
of 𝑇 𝑘𝑣 to a fixed point 𝑣* follows from the fact that 𝑇 is a bounded and monotone non-
decreasing operator. Furthermore, choosing the policy 𝜇 at each state as the maximizer of
Eqn. (4.3) yields a policy with satisfaction probability 𝑣*. Hence 𝑣 ≤ 𝑣*. If 𝑣(𝑠) = 𝑣*(𝑠) for
all states 𝑠, then Eqn. (4.3) is satisfied, contradicting the assumption that the equation does
not hold. On the other hand, if 𝑣(𝑠) < 𝑣*(𝑠) for some state 𝑠, then 𝜇 is not a Stackelberg
equilibrium.

We next show that vector 𝑣 satisfying Eqn. (4.3) is unique. Since every Stackelberg
equilibrium satisfies Eqn. (4.3), if vector 𝑣 is unique, then vector 𝑣 must be a Stackel-
berg equilibrium. Suppose that uniqueness does not hold, and let 𝜇 and 𝜇′ be Stackelberg
equilibrium policies with corresponding satisfaction probabilities 𝑣 and 𝑣′. We have that
𝑣 = 𝑇𝑣 ≥ 𝑇𝜇′𝑣. Composing 𝑘 times and taking the limit as 𝑘 tends to infinity, we have
𝑣 = lim𝑘→∞ 𝑇 𝑘𝑣 ≥ lim𝑘→∞ 𝑇 𝑘𝜇′𝑣 = 𝑣′. By the same argument, 𝑣′ ≥ 𝑣, implying that 𝑣 = 𝑣′

and thus uniqueness holds.
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By Lemma 4.1, we have that the satisfaction probability for some state 𝑠 can be computed
as the linear combination of the satisfaction probabilities of its neighbor states, where the
coefficients are the transition probabilities jointly determined by policies 𝜇 and 𝜏 . Lemma 4.1
provides us the potential to apply iterative algorithm to compute the satisfaction probability.

4.3.2 Equivalence to the Problem of Maximizing Reachability Probability

In the following, we first construct a product SG which captures the transition probabilities
in SG and the satisfaction of LTL specification 𝜙. A product SG is defined as follows.

Definition 4.1. (Product SG): Given an SG 𝒢 = (𝑆,𝑈𝐶 , 𝑈𝐴, 𝑃, ,Π,ℒ) and a DRA ℛ =
(𝑄,Σ, 𝛿, 𝑞0,Acc) representing LTL specification 𝜙, a (labeled) product SG is a tuple 𝒢𝑝𝑟𝑜𝑑 =
(𝑆𝑝𝑟𝑜𝑑, 𝑈𝐶 , 𝑈𝐴, 𝑃𝑝𝑟𝑜𝑑,Acc𝑝𝑟𝑜𝑑), where

• 𝑆𝑝𝑟𝑜𝑑 = 𝑆 ×𝑄 is a finite set of states.

• 𝑈𝐶 is a finite set of control inputs.

• 𝑈𝐴 is a finite set of attack signals.

• 𝑃𝑝𝑟𝑜𝑑((𝑠
′, 𝑞′)|(𝑠, 𝑞), 𝑢𝐶 , 𝑢𝐴) = 𝑃 (𝑠′|𝑠, 𝑢𝐶 , 𝑢𝐴) if 𝛿(𝑞,ℒ(𝑠′)) = 𝑞′.

• Acc𝑝𝑟𝑜𝑑 = {(𝐿𝑝𝑟𝑜𝑑(1),𝐾𝑝𝑟𝑜𝑑(1)), (𝐿𝑝𝑟𝑜𝑑(2),𝐾𝑝𝑟𝑜𝑑(2)), · · · , (𝐿𝑝𝑟𝑜𝑑(𝑍),𝐾𝑝𝑟𝑜𝑑(𝑍))} is a
finite set of Rabin pairs such that 𝐿𝑝𝑟𝑜𝑑(𝑧),𝐾𝑝𝑟𝑜𝑑(𝑧) ⊆ 𝑆𝑝𝑟𝑜𝑑 for all 𝑧 = 1, 2, · · · , 𝑍
with 𝑍 being a positive integer. In particular, a state (𝑠, 𝑞) ∈ 𝐿𝑝𝑟𝑜𝑑(𝑧) if and only if
𝑞 ∈ 𝐿(𝑧), and a state (𝑠, 𝑞) ∈ 𝐾𝑝𝑟𝑜𝑑(𝑧) if and only if 𝑞 ∈ 𝐾(𝑧).

Definition 4.1 bridges SG 𝒢 and LTL specification 𝜙 in the following three aspects.
First, since the transition probability is determined by 𝒢 and the satisfaction condition is
determined byℛ, the satisfaction probability of 𝜙 on 𝒢 is equal to the satisfaction probability
of 𝜙 on the product SG 𝒢𝑝𝑟𝑜𝑑. Second, we can generate the corresponding path 𝑠0𝑠1 · · · on
𝒢 given a path (𝑠0, 𝑞0)(𝑠1, 𝑞1) · · · on the product SG 𝒢𝑝𝑟𝑜𝑑. Finally, given a control policy 𝜇
synthesized on the product SG 𝒢𝑝𝑟𝑜𝑑, a corresponding control policy 𝜇′ on 𝒢 is obtained by
letting 𝜇′(𝑠𝑖) = 𝜇((𝑠𝑖, 𝑞)) for all time step 𝑖 [18, 30]. Due to these one-to-one correspondence
relationships, in the following, we analyze Problem 4.1 on the product SG 𝒢𝑝𝑟𝑜𝑑 and present
an algorithm to compute the optimal control policy. When the context is clear, we use 𝑠 to
represent state (𝑠, 𝑞) ∈ 𝑆𝑝𝑟𝑜𝑑 in the remainder of this chapter.

We solve the problem of maximizing the satisfaction probability by converting it to the
problem of maximizing the probability of reaching a certain subset of states of the product
SG. We name this subset of states as Generalized Accepting Maximal End Component
(GAMEC), which is generalized from accepting maximal end component (AMEC) on MDP.
GAMEC is defined as the set of states when starting from which the satisfaction probability
of LTL specification 𝜙 is one. We give the definition of GAMEC in the following:
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Definition 4.2. (Sub-SG): A sub-SG of an SG 𝒢 = (𝑆,𝑈𝐶 , 𝑈𝐴, 𝑃 𝑟, 𝑠0,Π,ℒ) is a pair of
states and actions (𝐶,𝐷) where ∅ ≠ 𝐶 ⊆ 𝑆 is a set of states, and 𝐷 : 𝐶 → 2𝑈𝐶(𝑠) is an
enabling function such that 𝐷(𝑠) ⊆ 𝑈𝐶(𝑠) for all 𝑠 ∈ 𝐶 and {𝑠′|𝑃 (𝑠′|𝑠, 𝑢𝐶 , 𝑢𝐴) > 0,∀𝑢𝐴 ∈
𝑈𝐴(𝑠), 𝑠 ∈ 𝐶} ⊆ 𝐶.

By Definition 4.2, we have that a sub-SG is also an SG. Given Definition 4.2, a Gener-
alized Maximal End Component (GMEC) is defined as follows:

Definition 4.3. A Generalized End Component (GEC) is a sub-SG (𝐶,𝐷) such that the
underlying digraph 𝐺(𝐶,𝐷) of sub-SG (𝐶,𝐷) is strongly connected. A GMEC is a GEC (𝐶,𝐷)
such that there exists no other GEC (𝐶 ′, 𝐷′) ̸= (𝐶,𝐷), where 𝐶 ⊆ 𝐶 ′ and 𝐷(𝑠) ⊆ 𝐷′(𝑠) for
all 𝑠 ∈ 𝐶.

Definition 4.4. A GAMEC on the product SG 𝒢𝑝𝑟𝑜𝑑 is a GMEC if there exists some
(𝐿𝑝𝑟𝑜𝑑(𝑧),𝐾𝑝𝑟𝑜𝑑(𝑧)) ∈ Acc𝑝𝑟𝑜𝑑 such that 𝐿𝑝𝑟𝑜𝑑(𝑧) ∩ 𝐶 = ∅ and 𝐾𝑝𝑟𝑜𝑑(𝑧) ⊆ 𝐶.

By Definition 4.4, we have that a set of states constitutes a GAMEC if there exists a
control policy such that for any initial states in the GAMEC, the system remains in the
GAMEC with probability one and thus the specification is satisfied with probability one.
We denote the set of GAMECs as 𝒞, and the set of states that constitute GAMEC as
accepting states ℰ . Algorithm 4 is used to compute the set of GAMECs. Given a product
SG 𝒢, a set of GAMECs 𝒞 can be initialized as 𝐶 = ∅ and 𝐷(𝑠) = 𝑈𝐶(𝑠) for all 𝑠. Also,
we define a temporary set 𝒞𝑡𝑒𝑚𝑝 which is initialized as 𝒞𝑡𝑒𝑚𝑝 = 𝑆𝑝𝑟𝑜𝑑. Then from line 8 to
line 17, we compute a set of states 𝑅 that should be removed from GMEC. The set 𝑅 is
first initialized to be empty. Then for each state 𝑠 in each non-trivial strongly connected
component (SCC) of the underlying diagraph, i.e., the SCC with more than one states, we
modify the admissible actions at state 𝑠 by keeping the actions that can make the system
remain in 𝐶 under any adversary action. If there exists no such admissible action at state
𝑠, then the state 𝑠 is added into 𝑅. From line 18 to line 26, we examine if there exists
any state 𝑠′ in current GMEC that will steer the system into states in 𝑅. In particular, by
taking action 𝑢𝐶 at each state 𝑠′, if there exists some adversary action 𝑢𝐴 such that the
system is steered into some state 𝑠 ∈ 𝑅, then 𝑢𝐶 is removed from 𝑈𝐶(𝑠

′). Moreover, if there
exists no admissible action at state 𝑠′, then 𝑠′ is added to 𝑅. Then we update the GMEC
set as shown from line 27 to line 32. This procedure is repeated until no further update
can be made on GMEC set. Line 34 to line 40 is to find the GAMEC following Definition
4.4. Given the set of GAMECs 𝒞 = {(𝐶1, 𝐷1), · · · , (𝐶ℎ, 𝐷ℎ), · · · , (𝐶|𝒞|, 𝐷|𝒞|)} returned by
Algorithm 4, the set of accepting states ℰ is computed as ℰ = ∪|𝒞|ℎ=1𝐶ℎ.

Provided the definition of GAMEC, we then show that the max-min satisfaction prob-
ability is equivalent to maximizing (over 𝜇) the worst-case probability of reaching the set
of accepting states ℰ . We name the probability of reaching the set of accepting states ℰ
as reachability probability. In the following, we formally prove the equivalence between the
worst-case satisfaction probability of Eqn. (4.2) and the worst-case reachability probability.
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Algorithm 4 Computing the set of GAMECs 𝒞.
1: procedure Compute_GAMEC(𝒢𝑝𝑟𝑜𝑑)
2: Input: Product SG 𝒢𝑝𝑟𝑜𝑑
3: Output: Set of GAMECs 𝒞
4: Initialization: Let 𝐷(𝑠) = 𝑈𝐶(𝑠) for all 𝑠 ∈ 𝑆𝑝𝑟𝑜𝑑. Let 𝒞 = ∅ and 𝒞𝑡𝑒𝑚𝑝 = {𝑆𝑝𝑟𝑜𝑑}
5: repeat
6: 𝒞 = 𝒞𝑡𝑒𝑚𝑝, 𝒞𝑡𝑒𝑚𝑝 = ∅
7: for 𝐶 ∈ 𝒞 do
8: 𝑅 = ∅ ◁ 𝑅 is the set of states that should be removed
9: Let 𝑆𝐶𝐶1, · · · , 𝑆𝐶𝐶𝑛 be the set of nontrivial strongly connected components

(SCC) of the underlying diagraph 𝐻(𝐶,𝐷)

10: for 𝑖 = 1, · · · , 𝑛 do
11: for each state 𝑠 ∈ 𝑆𝐶𝐶𝑖 do
12: 𝐷(𝑠) = {𝑢𝐶 ∈ 𝑈𝐶(𝑠)|𝑠′ ∈ 𝐶 where 𝑃𝑝𝑟𝑜𝑑(𝑠′|𝑠, 𝑢𝐶 , 𝑢𝐴) > 0, ∀𝑢𝐴 ∈

𝑈𝐴(𝑠)}
13: if 𝐷(𝑠) = ∅ then
14: 𝑅 = 𝑅 ∪ {𝑠}
15: end if
16: end for
17: end for
18: while 𝑅 ̸= ∅ do
19: dequeue 𝑠 ∈ 𝑅 from 𝑅 and 𝐶
20: if there exist 𝑠′ ∈ 𝐶 and 𝑢𝐶 ∈ 𝑈𝐶(𝑠

′) such that 𝑃𝑝𝑟𝑜𝑑(𝑠|𝑠′, 𝑢𝐶 , 𝑢𝐴) > 0
under some 𝑢𝐴 ∈ 𝑈𝐴(𝑠′) then

21: 𝐷(𝑠′) = 𝐷(𝑠′) ∖ {𝑢𝐶}
22: if 𝐷(𝑠′) = ∅ then
23: 𝑅 = 𝑅 ∪ {𝑠′}
24: end if
25: end if
26: end while
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Algorithm 5 Algorithm 4 Contd.
27: for 𝑖 = 1, · · · , 𝑛 do
28: if 𝐶 ∩ 𝑆𝐶𝐶𝑖 ̸= ∅ then
29: 𝒞 = 𝒞𝑡𝑒𝑚𝑝 ∪ {𝐶 ∩ 𝑆𝐶𝐶𝑖}
30: end if
31: end for
32: end for
33: until 𝒞 = 𝒞𝑡𝑒𝑚𝑝
34: for do𝐶 ∈ 𝒞
35: for (𝐿𝑝𝑟𝑜𝑑(𝑧),𝐾𝑝𝑟𝑜𝑑(𝑧)) ∈ Acc𝑝𝑟𝑜𝑑 do
36: if 𝐿𝑝𝑟𝑜𝑑(𝑧) ∩ 𝐶 ̸= ∅ or 𝐾𝑝𝑟𝑜𝑑(𝑧) ̸⊆ 𝐶 then
37: 𝒞 = 𝒞 ∖ 𝐶
38: end if
39: end for
40: end for
41: return 𝒞
42: end procedure

Proposition 4.1. For any stationary control policy 𝜇 and initial state 𝑠, the minimum
probability over all stationary adversary policies of satisfying the LTL formula is equal to
the minimum probability over all stationary policies of reaching ℰ, i.e., given any stationary
policy 𝜇, we have

min
𝜏

P𝜇𝜏 (𝜙|𝑠) = min
𝜏

P𝜇𝜏 (reach ℰ|𝑠), (4.4)

where P𝜇𝜏 (reach ℰ|𝑠) is the probability of reaching ℰ under policies 𝜇 and 𝜏 .

Proof. By Definition of ℰ , if the system reaches ℰ , then 𝜙 is satisfied for a maximizing policy
𝜇. Thus min𝜏 P𝜇𝜏 (reach ℰ) = min𝜏 P𝜇𝜏 (𝜙).

Suppose that for some control policy 𝜇 and initial state 𝑠0,

min
𝜏

P𝜇𝜏 (𝜙|𝑠0) > min
𝜏

P𝜇𝜏 (reach ℰ|𝑠0), (4.5)

and let 𝜏 be a minimizing stationary policy for the adversary. The policies 𝜇 and 𝜏 induce an
MC on the state space (See Definition 3.2). By model checking algorithms on MC [18], the
probability of satisfying 𝜙 from 𝑠0 is equal to the probability of reaching a bottom strongly
connected component (BSCC) that satisfies 𝜙. By our assumption there exists a BSCC,
denoted 𝑆𝐶𝐶0, that is reachable from 𝑠0, disjoint from ℰ , and yet satisfies P𝜇𝜏 (𝜙|𝑠) = 1 for
all 𝑠 ∈ 𝑆0 (if this were not the case, then Eqn. (4.5) would not hold).

Choose a state 𝑠 ∈ 𝑆𝐶𝐶0. Since 𝑠 /∈ ℰ , there exists a policy 𝜏 such that P𝜇𝜏 (𝜙|𝑠) < 1
using policies 𝜇 and 𝜏 . Create a new adversary policy 𝜏1 as 𝜏1(𝑠′) = 𝜏(𝑠′) for all 𝑠′ ∈ 𝑆𝐶𝐶0

and 𝜏1(𝑠′) = 𝜏(𝑠′) otherwise. This policy induces a new MC on the state space. Furthermore,
since only the outgoing transitions from 𝑆𝐶𝐶0 are affected, the success probabilities of all
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sample paths that do not reach 𝑆𝐶𝐶0 are unchanged.
If there exists any state 𝑠′ that is reachable from 𝑠 in the new chain with P𝜇𝜏1(𝜙|𝑠′) < 1

under policies 𝜇 and 𝜏1, then the policy 𝜏1 strictly reduces the probability of satisfying 𝜙, thus
contradicting the assumption that 𝜏 is a minimizing policy. Otherwise, let 𝑆𝐶𝐶1 denote the
set of states that are reachable from 𝑠 under 𝜇 and 𝜏1 and are disjoint from ℰ (this set must be
non-empty; otherwise, the policy 𝜏 would lead to P𝜇𝜏 (𝜙|𝑠) = 1, a contradiction). Construct
a new policy 𝜏2 by 𝜏2(𝑠

′) = 𝜏(𝑠′) if 𝑠′ ∈ 𝑆1 and 𝜏2(𝑠
′) = 𝜏(𝑠′) otherwise. Proceeding

inductively, we derive a sequence of policies 𝜏𝑘 that satisfy P𝜇𝜏𝑘(𝜙) ≤ P𝜇𝜏 (𝜙). This process
terminates when either P𝜇𝜏𝑘(𝜙|𝑠0) < P𝜇𝜏 (𝜙|𝑠0), contradicting the minimality of 𝜏 , or when
P𝜇𝜏𝑘(𝜙|𝑠′′) = P𝜇𝜏 (𝜙|𝑠′′) for all 𝑠′′ that are reachable from 𝑠 under 𝜏 . The latter case, however,
implies that P𝜇𝜏 (𝜙|𝑠) = 1, contradicting the definition of 𝜏 .

Algorithm 6 Modifying product SG 𝒢𝑝𝑟𝑜𝑑.
1: Input: Product SG 𝒢𝑝𝑟𝑜𝑑, the set of GAMECs 𝒞
2: Output: Modified product SG 𝒢𝑝𝑟𝑜𝑑
3: 𝑆𝑝𝑟𝑜𝑑 := 𝑆𝑝𝑟𝑜𝑑 ∪ {𝑑𝑒𝑠𝑡},𝑈𝐶(𝑠) := 𝑈𝐶(𝑠) ∪ {𝑑}, ∀𝑠 ∈ 𝑆𝑝𝑟𝑜𝑑
4: 𝑃𝑝𝑟𝑜𝑑(𝑑𝑒𝑠𝑡|𝑠, 𝑑, 𝑢𝐴) = 1 for all 𝑠 ∈ ℰ ∪ {𝑑𝑒𝑠𝑡} and 𝑢𝐴 ∈ 𝑈𝐴(𝑠)

Proposition 4.1 implies that the problem of maximizing the worst-case success proba-
bility can be mapped to a reachability problem on the product SG 𝒢𝑝𝑟𝑜𝑑, where 𝒢𝑝𝑟𝑜𝑑 is
modified following Algorithm 6. A dummy state 𝑑𝑒𝑠𝑡 is added into the state space of 𝑆𝑝𝑟𝑜𝑑.
All transitions starting from a state in GAMECs are directed to state 𝑑𝑒𝑠𝑡 with probability
one regardless of the actions taken by the adversary. The transition probabilities and ac-
tion spaces of all other nodes are unchanged. We observe that the reachability probability
remains unchanged after applying Algorithm 6. Hence the satisfaction probability remains
unchanged. Moreover, the one-to-one correspondence of control policy still holds for states
outside ℰ . Therefore, Problem 4.1 is then equivalent to

max
𝜇

min
𝜏

P𝜇𝜏 (reach 𝑑𝑒𝑠𝑡) (4.6)

Then, the solution to Eqn. (4.2) can be obtained from the solution to Eqn. (4.6) by following
the optimal policy 𝜇* for Eqn. (4.6) at all states not in ℰ . The control policy for states in
ℰ can be any probability distribution over the set of enabled actions in each GAMEC.

4.3.3 Value Iteration Algorithm for Control Synthesis

Due to Proposition 4.1, in the following we focus on solving the problem (4.6). Our
approach to solving Eqn. (4.6) is to first compute a value vector 𝑣 ∈ R|𝑆𝑝𝑟𝑜𝑑|, where 𝑣(𝑠) =
max𝜇min𝜏 P𝜇𝜏 (reach 𝑑𝑒𝑠𝑡|𝑠). By Lemma 4.1, the optimal policy can then be obtained from
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Algorithm 7 Algorithm for computing a policy that maximizes the probability of satisfying
𝜙.
1: Input: product SG 𝒢𝑝𝑟𝑜𝑑, the set of GAMECs 𝒞
2: Output: Vector 𝑣 ∈ R|𝑆𝑝𝑟𝑜𝑑|, where 𝑣(𝑠) = maxmin𝑃𝜇𝜏𝑝𝑟𝑜𝑑(reach 𝑑𝑒𝑠𝑡|𝑠0 = 𝑠)

3: Initialization: 𝑣0 ← 0, 𝑣1(𝑠)← 1 for 𝑠 ∈ ℰ , 𝑣1(𝑠)← 0 otherwise, 𝑘 ← 0
4: while max {|𝑣𝑘+1(𝑠)− 𝑣𝑘(𝑠)| : 𝑠 ∈ 𝑆𝑝𝑟𝑜𝑑} > 𝛿 do
5: 𝑘 ← 𝑘 + 1
6: for 𝑠 /∈ ℰ do

7: Compute 𝑣 as 𝑣𝑘+1(𝑠) ← max𝜇min𝜏

{︂∑︀
𝑠′
∑︀

𝑢𝐶∈𝑈𝐶(𝑠)

∑︀
𝑢𝐴∈𝑈𝐴(𝑠) 𝑣(𝑠

′)𝜇(𝑠, 𝑢𝐶)

𝜏(𝑠, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴)

}︂
8: end for
9: end while

10: return 𝑣

𝑣 by choosing the distribution 𝜇 that solves the optimization problem (4.3) at each state
𝑠. Algorithm 7 gives a value iteration based algorithm for computing 𝑣. The idea of the
algorithm is to initialize 𝑣 to be zero except on states in ℰ , and then greedily update 𝑣(𝑠)
at each iteration by computing the optimal Stackelberg policy at each state. The algorithm
terminates when a stationary 𝑣 is reached.

The following theorem shows that Algorithm 7 guarantees convergence to a Stackelberg
equilibrium.
Theorem 4.1. There exists 𝑣∞ such that for any 𝜖 > 0, there exists 𝛿 and 𝑘 such that
‖𝑣𝑘 − 𝑣∞‖∞ < 𝜖 for 𝑘 > 𝑘. Furthermore, 𝑣∞ satisfies the conditions of 𝑣 in Lemma 4.1.

Proof. We first show that, for each 𝑠, the sequence 𝑣𝑘(𝑠) : 𝑘 = 1, 2, . . . , is bounded and
monotone. Boundedness follows from the fact that, at each iteration, 𝑣𝑘(𝑠) is a convex com-
bination of the states of its neighbors, which are bounded above by 1. To show monotonicity,
we induct on 𝑘. Note that 𝑣1(𝑠) ≥ 𝑣0(𝑠) and 𝑣2(𝑠) ≥ 𝑣1(𝑠) since 𝑣1(𝑠) = 0 for 𝑠 /∈ ℰ and
𝑣𝑘(𝑠) ≡ 1 for 𝑠 ∈ ℰ .

Let 𝜇𝑘 denote the control policy at step 𝑘. We have

𝑣𝑘+1(𝑠) ≥ min
𝜏

∑︁
𝑢𝐶∈𝑈𝐶(𝑠)

∑︁
𝑢𝐴∈𝑈𝐴(𝑠)

∑︁
𝑠′∈𝑆

𝑣𝑘(𝑠′)𝜇𝑘(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴) (4.7a)

≥ min
𝜏

∑︁
𝑢𝐶∈𝑈𝐶(𝑠)

∑︁
𝑢𝐴∈𝑈𝐴(𝑠)

∑︁
𝑠′∈𝑆

𝑣𝑘−1(𝑠′)𝜇𝑘(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴) (4.7b)

= 𝑣𝑘(𝑠) (4.7c)

Eqn. (4.7a) follows because the value of 𝑣𝑘+1(𝑠), which corresponds to the maximizing policy,
dominates the value achieved by the particular policy 𝜇𝑘. Eqn. (4.7b) holds by induction,
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since 𝑣𝑘(𝑠′) ≥ 𝑣𝑘−1(𝑠′) for all 𝑠′. Finally, Eqn. (4.7c) holds by construction of 𝜇𝑘 for each
state 𝑠. Hence 𝑣𝑘(𝑠) is monotone in 𝑘. We therefore have that 𝑣𝑘(𝑠) is a bounded monotone
sequence, and hence converges by the monotone convergence theorem. Let 𝑣∞ denote the
vector of limit points, so that we can select 𝛿 sufficiently small (to prevent the algorithm
from terminating before convergence) and 𝑘 large in order to satisfy ‖𝑣𝑘 − 𝑣∞‖∞ < 𝜖.

We now show that 𝑣∞ is a Stackelberg equilibrium. Since 𝑣𝑘(𝑠) converges, it is a Cauchy
sequence and thus for any 𝜖 > 0, there exists 𝑘 such that 𝑘 > 𝑘 implies that |𝑣𝑘(𝑠) −
𝑣𝑘+1(𝑠)| < 𝜖. By construction, this is equivalent to⃒⃒⃒
𝑣𝑘(𝑠)−max

𝜇
min
𝜏

∑︁
𝑢𝐶∈𝑈𝐶(𝑠)

∑︁
𝑢𝐴∈𝑈𝐴(𝑠)

∑︁
𝑠′∈𝑆

[︀
𝑣𝑘−1(𝑠′)𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠

′|𝑠, 𝑢𝐶 , 𝑢𝐴)
]︀⃒⃒⃒
< 𝜖,

and hence 𝑣∞ is within 𝜖 of a Stackelberg equilibrium for every 𝜖 > 0.

While this approach guarantees asymptotic convergence to a Stackelberg equilibrium,
there is no guarantee on the rate of convergence. By modifying line 8 of the algorithm so
that 𝑣𝑘+1(𝑠) is updated if

max
𝜇

min
𝜏

∑︁
𝑢𝐶∈𝑈𝐶(𝑠)

∑︁
𝑢𝐴∈𝑈𝐴(𝑠)

∑︁
𝑠′∈𝑆

[︁
𝑣(𝑠′)𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠

′|𝑠, 𝑢𝐶 , 𝑢𝐴)
]︁
> (1 + 𝜖)𝑣𝑘(𝑠)

(4.8)
and is constant otherwise, we derive the following result on the termination time.

Proposition 4.2. The 𝜖-relaxation of (4.8) converges to a value of 𝑣 satisfying max{|𝑣𝑘+1(𝑠)

− 𝑣𝑘(𝑠)| : 𝑠 ∈ 𝑆𝑝𝑟𝑜𝑑} < 𝜖 within 𝑛max𝑠

{︁
log
(︁

1
𝑣0(𝑠)

)︁
/log (1 + 𝜖)

}︁
iterations, where 𝑣0(𝑠) is

the smallest positive value of 𝑣𝑘(𝑠) for 𝑘 = 0, 1, . . ..

Proof. After 𝑁 updates, we have that 𝑣𝑁 (𝑠) ≥ (1 + 𝜖)𝑁𝑣0(𝑠). Hence for each 𝑠, 𝑣(𝑠)
will be incremented at most max𝑠

{︁
log
(︁

1
𝑣0(𝑠)

)︁
/log (1 + 𝜖)

}︁
times. Furthermore, we have

that at least one 𝑣(𝑠) must be updated at each iteration, thus giving the desired upper
bound on the number of iterations. By definition of (4.8), the set that is returned satisfies
|𝑣𝑘+1(𝑠)− 𝑣𝑘(𝑠)| < 𝜖𝑣𝑘(𝑠) < 𝜖.

4.4 Case Study

In this section, we present a case study to demonstrate our proposed method. In this case
study, we focus on the application of remotely controlled UAV, which conducts package
delivery service by navigating in a discrete bounded grid environment. The UAV carries
multiple packages and is required to deliver the packages to pre-given locations in particular
order (e.g., the solution of a travelling salesman problem). The label of each state is shown
in Fig. 4-1a. The UAV is required to deliver packages to three locations ‘dest1’, ‘dest2’,
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State (7, 8) (8, 8) (13, 8) (14, 8) (7, 13) (8, 13) (13, 13) (14, 13)

P𝜇𝜏 (𝜙) 0.6684 0.6028 0.5915 0.4893 0.8981 0.7126 0.6684 0.6028
P�̃�𝜏 (𝜙) 0.3619 0.3182 0.2878 0.1701 0.6146 0.5112 0.3619 0.3182

Improvement 84.69% 89.44% 105.52% 187.65% 46.13% 39.40% 84.69% 89.44%

Table 4.1: Comparison of probabilities of satisfying specification 𝜙 when starting from the
states located in intersections using proposed approach and approach without considering
the adversary.

and ‘dest3’ in this particular order after departing from its ‘home’. Then it has to return
to ‘home’ and stay there forever. Also during this delivery service, the UAV should avoid
colliding with obstacle areas marked as black in Fig. 4-1a to Fig. 4-1c. The LTL formula is
written as 𝜙 = home ∧3(dest1 ∧3(dest2 ∧3dest3)) ∧32home ∧2¬obstacle.

We compare the control policy obtained using the proposed approach with that synthe-
sized without considering the presence of the adversary. In Fig. 4-1a, we present the sample
trajectories obtained using these approaches. The solid line shows a sample trajectory ob-
tained by using the proposed approach, and the dashed line shows the trajectory obtained
by using the control policy synthesized without considering the presence of adversary. To
demonstrate the resilience of the proposed approach, we let the states located in the intersec-
tions be labelled as ‘home’ and hence are set as the initial states. We compare the probability
of satisfying the specification 𝜙 using the proposed approach and the approach without con-
sidering the adversary in Fig. 4-1b and Fig. 4-1c, respectively. We observe that the control
policy synthesized using the proposed approach has higher probability of satisfying specifi-
cation 𝜙. The detailed probability of satisfying specification 𝜙 is listed in Table 4.1. Denote
the probability of satisfying specification 𝜙 using the proposed approach and the approach
without considering the adversary as P𝜇𝜏 (𝜙) and P�̃�𝜏 (𝜙), respectively. By using the pro-
posed approach, the average of the improvements of the probability of satisfying the given
specification starting from intersection states achieves (P𝜇𝜏 (𝜙)− P�̃�𝜏 (𝜙))/P�̃�𝜏 (𝜙) = 90.87%.

Given the SG and DRA associated with specification 𝜙 are created within 1 and 0.01
second, respectively. The computation of product SG took 80 seconds. The product SG has
2000 states and 41700 transitions. It took 45 seconds to compute the control policy on a
Macbook Pro with 2.6GHz Intel Core i5 CPU and 8GB RAM.

4.5 Conclusion

In this chapter, we investigated the problem of computing a control policy to maximize the
probability of satisfying a given LTL specification in the presence of a malicious adversary.
We assumed that the adversary can initiate malicious attacks on the system by observing the
control policy of the controller and choosing an intelligent strategy. A stochastic Stackelberg
game was formulated to model the interaction between the controller and adversary. We
characterized the satisfaction probability when starting from each state as a linear combina-
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tion of those of its neighbor states. We proved that maximizing the satisfaction probability
is equivalent to maximizing the probability of reaching a set of states named GAMECs.
We developed an efficient value iteration algorithm to compute the equilibrium policy. The
potential ways to reduce the computation complexity include exploring the symmetry of the
environment, and applying receding horizon based control framework. In future work, we
will consider non-stationary control and adversary policies.
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Trajectory Comparison
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Figure 4-1: Comparison of the proposed approach and the approach without considering the
presence of the adversary. Fig. 4-1a gives the trajectories obtained using two approaches.
The solid blue line is the trajectory obtained using the proposed approach, while the dashed
red line represents the trajectory obtained using the approach without considering the pres-
ence of the adversary. Fig. 4-1b and Fig. 4-1c present the probability of satisfying the
LTL specification using the proposed approach and the approach without considering the
adversary when the initial state is set as each of the states lands in the intersections of the
grid world, respectively. The shade of gray level at the intersection states corresponds to
the satisfaction probability, with black being probability 0 and white being probability 1.
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Chapter 5

Secure Control under LTL
Constraints with Minimal Invariant
Constraint Violation Rate

5.1 Introduction

Chapter 4 studies the problem of maximizing the probability of satisfying a given LTL
specification. As the LTL formula becomes increasingly complex, the system may not be
able to satisfy it, and thus the approach proposed in Chapter 4 renders a trivial policy with
satisfaction probability zero. To this end, one may be interested in synthesizing a control
policy so that (i) allows partial violation of the given LTL specification, and (ii) maximizes
the probability of satisfying the rest part of the specification. Moreover, the control policy
should minimize the cost incurred due to partially violating the specification.

In this chapter, we focus on a subclass of LTL specification that combines an arbitrary
LTL specification with an invariant constraint using logical and connectives, where an in-
variant constraint requires the system to always satisfy some property. The specification of
interest is commonly required for CPS, where the arbitrary LTL specification can be used
to model properties such as liveness and the invariant property can be used to model safety
property. We relax the specification by allowing violations on the invariant constraint and
we select a control policy that minimizes the average rate at which invariant property viola-
tions occur while maximizing the probability of satisfying the LTL specification. We make
the following specific contributions:

• We formulate the problem of computing a stationary control policy that minimizes the
rate at which invariant constraint violations occur under the constraint that an LTL
specification must be satisfied with maximum probability. We capture the impact of
invariant constraint violation as average cost per cycle, where a cycle completion is
equivalent to satisfying the LTL specification.
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• We prove that this problem is equivalent to a zero-sum Stackelberg game in which the
controller selects a control policy that minimizes the average violation cost and the
adversary selects a policy that maximizes such cost. We solve the problem by building
up the connections with a generalized average cost per stage problem.

• We propose a novel policy iteration algorithm to compute an optimal stationary control
policy. We prove the optimality and convergence of the proposed algorithm.

• We evaluate the proposed approach using a numerical case study on a remotely con-
trolled UAV performing reach-avoid task. We compare the performance of our pro-
posed approaches with the performance obtained using existing approaches without
considering the adversary’s presence. The results show that our proposed approach
outperforms existing methods.

The remainder of this chapter is organized as follows. Section 5.2 introduces the sys-
tem model and problem formulation. Section 5.3 presents our proposed solution approach.
Section 5.4 evaluates our proposed approach and Section 5.5 concludes this chapter.

5.2 Sysem Model and Problem Statement

The system and adversary models considered in this chapter are as in Chapter 4. We consider
an SG 𝒢 = (𝑆,𝑈𝐶 , 𝑈𝐴, 𝑃,Π,ℒ) with concurrent Stackelberg setting between the controller
and adversary.

When the system is given an LTL specification, it might be impossible for the system
to satisfy the specification due to the presence of the adversary, i.e., max𝜇min𝜏 P𝜇𝜏 (𝜙) = 0,
where P𝜇𝜏 (𝜙) denotes the probability of satisfying 𝜙 under policies 𝜇 and 𝜏 . Thus, we need
to relax the specification by allowing partial violations of the specification.

In this chapter, we focus on a subclass of specifications of the form 𝜙 = 𝜙1 ∧ 𝜓, where
𝜙1 is an arbitrary LTL formula and 𝜓 is an invariant constraint. An invariant constraint
requires the system to always satisfy some property. The general LTL formula 𝜙1 can be
used to model any arbitrary properties such as liveness 𝜙1 = 23𝜋, while the invariant
property can be used to model collision avoidance requirements 𝜓 = 2¬obstacle. We allow
violations of the invariant constraint 𝜓. To minimize the impact of invariant constraint
violations, we investigate the problem of minimizing the invariant constraint violation rate.
In particular, given a specification 𝜙 = 𝜙1 ∧ 𝜓, the objective is to compute a control policy
that minimizes the expected number of violations of 𝜓 per cycle over all the stationary
policies that maximizes the probability of satisfying 𝜙1. We say that every visit to a state
that satisfies 𝜙1 completes a cycle. The problem investigated in this chapter is formally
stated as follows:

Problem 5.1. Compute a secure control policy 𝜇 that minimizes the violation rate of 𝜓,
i.e., the expected number of violations of 𝜓 per cycle, while maximizing the probability that
𝜑1 is satisfied under any adversary policy 𝜏 .
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We denote the probability of satisfying LTL specification 𝜙 as satisfaction probability.
When the initial state is given, we use P𝜇𝜏 (𝜙|𝑠) to denote the satisfaction probability when
starting from state 𝑠 ∈ 𝑆. Problem 4.1 can be found useful in various applications.

To investigate the problem above, we assign a positive cost 𝛼 to every transition initiated
from a state 𝑠 if 𝑠 ̸|= 𝜓. If state 𝑠 |= 𝜓, we let 𝑔(𝑠) = 0 for all 𝑢𝐶 and 𝑢𝐴. Thus we have for
all 𝑢𝐶 and 𝑢𝐴

𝑔(𝑠) =

{︃
𝛼 if 𝑠 ̸|= 𝜓

0 if 𝑠 |= 𝜓.
(5.1)

By Proposition 4.1, we have that two consecutive visits to the set of accepting states ℰ
corresponding to 𝜙1 complete a cycle. Based on the transition cost defined in Eqn. (5.1),
Problem 5.1 can be rewritten as follows.

Problem 5.2. Given a stochastic game 𝒢 and an LTL formula 𝜙 in the form of 𝜙 = 𝜙1∧𝜓,
compute an optimal control policy 𝜇 that maximizes the probability of satisfying 𝜙1 while
minimizing the average cost per cycle due to violating 𝜓 which is defined as

𝐽𝜇𝜏 = lim sup
𝑁→∞

E
{︂∑︀𝑁

𝑘=0 𝑔(𝑠𝑘)

𝐶(𝑁)

⃒⃒⃒
𝜂𝜇 |= 𝜙1

}︂
, (5.2)

where 𝐶(𝑁) represents the number of cycles completed up to stage 𝑁 and 𝜂𝜇 is the word
generated by the path on SG when the controller takes policy 𝜇.

5.3 Control Synthesis to Minimize Invariant Constraint Vio-
lation Rate

This section presents the proposed solution approach. Note that our objective is two-fold:
(i) maximize the probability of satisfying 𝜙1, and (ii) minimize the violation rate of 𝜓. To
achieve (i), we follow the product SG construction proposed in Chapter 4, i.e., construct a
product SG 𝒢𝑝𝑟𝑜𝑑 using SG 𝒢 and the DRA constructed using specification 𝜙1. To achieve
(ii), we generalize the average reward per stage problem in Chapter 2 to incorporate the
presence of the adversary, and derive the optimality condition by bridging Problem 5.2 with
the generalized average reward per stage problem. We propose a policy iteration algorithm
to compute the control policy leveraging the optimality condition.

Since 𝜙1 is required to be satisfied, similar to our analysis in Chapter 4, we first construct
a product SG 𝒢𝑝𝑟𝑜𝑑 = (𝑆𝑝𝑟𝑜𝑑, 𝑈𝐶 , 𝑈𝐴, 𝑃𝑝𝑟𝑜𝑑,Acc𝑝𝑟𝑜𝑑) using SG 𝒢 and the DRA constructed
using specification 𝜙1. Then we have the following observations. First, the one-to-one
correspondence relationships between the control policies, paths, and associated expected
cost due to violating 𝜓 on 𝒢𝑝𝑟𝑜𝑑 and 𝒢 hold. Furthermore, we observe that if there exists
a control policy such that the specification 𝜙 can be satisfied, it is the optimal solution to
Problem 4.1 in Chapter 4 with 𝐽𝜇𝜏 = 0. Finally, by our analysis in Chapter 4, specification
𝜙1 is guaranteed to be satisfied if there exists a control policy that can reach the set of
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accepting states ℰ . These observations provide us the advantage to analyze Problem 5.1 on
the product SG 𝒢𝑝𝑟𝑜𝑑 constructed using SG 𝒢 and the DRA constructed using 𝜙1. Hence,
in the following, we analyze Problem 5.1 on the product SG 𝒢𝑝𝑟𝑜𝑑. When the context is
clear, we use 𝑠 to refer to state (𝑠, 𝑞) ∈ 𝑆𝑝𝑟𝑜𝑑. Without loss of generality, we assume that
ℰ = {1, 2, · · · , 𝑙}, i.e., states {𝑙 + 1, · · · , 𝑛} ∩ ℰ = ∅.

5.3.1 Optimality Condition Derivation

In this subsection, we derive the optimality condition for minimizing the invariant constraint
violation rate. For an SG, the average reward per stage problem is to maximize

𝐵𝜇𝜏 (𝑠) = lim sup
𝑁→∞

1

𝑁
E

{︃
𝑁∑︁
𝑛=0

−𝑔(𝑠) | 𝑠0 = 𝑠

}︃
(5.3)

over all stationary control policies considering the adversary plays some strategy 𝜏 against
the controller. Since we consider a cost is incurred at each stage, we say 𝐵𝜇𝜏 is the average
cost per stage.

Given any stationary policies 𝜇 and 𝜏 , denote the induced transition probability matrix
as 𝑃𝜇𝜏 with 𝑃𝜇𝜏 (𝑠′|𝑠) =

∑︀
𝑢𝐶∈𝑈𝐶(𝑠)

∑︀
𝑢𝐴∈𝑈𝐴(𝑠) 𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠

′|𝑠, 𝑢𝐶 , 𝑢𝐴). Analo-
gously, denote the expected transition cost starting from any state 𝑠 ∈ 𝑆𝑝𝑟𝑜𝑑 as 𝑔𝜇𝜏 (𝑠) =∑︀

𝑢𝐶∈𝑈𝐶(𝑠)

∑︀
𝑢𝐴∈𝑈𝐴(𝑠) 𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑔(𝑠). Similar to [101], a gain-bias pair is used to char-

acterize the optimality condition. The gain-bias pair (𝐵𝜇𝜏 , 𝑏𝜇𝜏 ) under stationary policies 𝜇
and 𝜏 satisfies the following proposition, where 𝐵𝜇𝜏 is the average cost per stage and 𝑏𝜇𝜏 is
the differential or relative cost vector.

Lemma 5.1. Let 𝜇 and 𝜏 be proper stationary policies for a communicating SG, where a
communicating SG is an SG whose underlying graph is strongly connected. Then there exists
a constant 𝜁𝜇𝜏 such that

𝐵𝜇𝜏 (𝑠) = 𝜁𝜇𝜏 , ∀𝑠 ∈ 𝑆𝑝𝑟𝑜𝑑. (5.4)

Furthermore, the gain-bias pair (𝐵𝜇𝜏 , 𝑏𝜇𝜏 ) satisfies

𝐵𝜇𝜏 (𝑠) + 𝑏𝜇𝜏 (𝑠) = 𝑔𝜇𝜏 (𝑠) +
𝑛∑︁
𝑘=1

𝑃𝜇𝜏 (𝑘|𝑠)𝑏𝜇𝜏 (𝑘) (5.5)

Proof. Suppose 𝑠′ is a recurrent state under policies 𝜇 and 𝜏 . Define 𝜉(𝑠) as the expected cost
to reach 𝑠′ for the first time from state 𝑠, and 𝑜(𝑠) as the expected number of stages to reach
𝑠′ for the first time from 𝑠. Thus 𝜉(𝑠′) and 𝑜(𝑠′) can be interpretated as the expected cost
and expected number of stages to return to 𝑠′ for the first time from state 𝑠′, respectively.
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Based on the definitions above, we have the following equations:

𝜉(𝑠) = 𝑔𝜇𝜏 (𝑠) +
∑︁

𝑘∈𝑆𝑝𝑟𝑜𝑑∖𝑠′
𝑃𝜇𝜏 (𝑘|𝑠)𝜉(𝑘), ∀𝑠 ∈ 𝑆𝑝𝑟𝑜𝑑, (5.6)

𝑜(𝑠) = 1 +
∑︁

𝑘∈𝑆𝑝𝑟𝑜𝑑∖𝑠′
𝑃𝜇𝜏 (𝑘|𝑠)𝑜(𝑘), ∀𝑠 ∈ 𝑆𝑝𝑟𝑜𝑑. (5.7)

Define 𝜁𝜇𝜏 = 𝜉(𝑠′)/𝑜(𝑠′). Multiplying Eqn. (5.7) by 𝜁𝜇𝜏 and subtracting the associated
product from Eqn. (5.6), we have

𝜉(𝑠)− 𝜁𝜇𝜏𝑜(𝑠) = 𝑔𝜇𝜏 (𝑠)− 𝜁𝜇𝜏 +
𝑛∑︁

𝑘=𝑆𝑝𝑟𝑜𝑑∖𝑠′
𝑃𝜇𝜏 (𝑘|𝑠)(𝜉(𝑘)− 𝜁𝜇𝜏𝑜(𝑘)), ∀𝑠 ∈ 𝑆𝑝𝑟𝑜𝑑. (5.8)

Define a bias term
𝑏𝜇𝜏 (𝑠) = 𝜉(𝑠)− 𝜁𝜇𝜏𝑜(𝑠), ∀𝑠 ∈ 𝑆𝑝𝑟𝑜𝑑 (5.9)

Using Eqn. (5.9), Eqn. (5.8) can be rewritten as

𝜁𝜇𝜏 + 𝑏𝜇𝜏 (𝑠) = 𝑔𝜇𝜏 (𝑠) +

𝑛∑︁
𝑘=1

𝑃𝜇𝜏 (𝑘|𝑠)𝑏𝜇𝜏 (𝑘), ∀𝑠 ∈ 𝑆𝑝𝑟𝑜𝑑 (5.10)

which completes our proof.

The result presented above generalizes the one in [101] in the sense that we consider
the presence of adversary. The reason that we focus on communicating SG is that we will
focus on the accepting states which are strongly connected. Based on Lemma 5.1, we have
the optimality conditions for generalized average cost per stage problem expressed using the
gain-bias pair (𝐵, 𝑏):

𝐵(𝑠) = min
𝜇

max
𝜏

∑︁
𝑢𝐶∈𝑈𝐶

∑︁
𝑢𝐴∈𝑈𝐴

∑︁
𝑠′

𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴)𝐵(𝑠′) (5.11)

𝐵(𝑠) + 𝑏(𝑠) = min
𝜇∈𝜇*

max
𝜏∈𝜏*

[︂
𝑔𝜇𝜏 (𝑠) +

∑︁
𝑢𝐶∈𝑈𝐶

∑︁
𝑢𝐴∈𝑈𝐴

∑︁
𝑠′

𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴)𝑏(𝑠′)

]︂
(5.12)

where 𝜇* and 𝜏* are the optimal policy sets obtained by solving (5.11). Eqn. (5.11) can be
shown using the method presented in Lemma 4.1, and Eqn. (5.12) is obtained directly from
(5.10). Given the optimality conditions (5.11) and (5.12) for generalized average cost per
stage problem, we can derive the optimality conditions for Problem 5.2 by mapping Problem
5.2 to generalized average cost per stage problem.

We assume that |𝑆𝑝𝑟𝑜𝑑| = 𝑛. Denote the gain-bias pair of Problem 5.2 on the product
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SG 𝒢𝑝𝑟𝑜𝑑 under policies 𝜇 and 𝜏 as (𝐽𝜇𝜏 , ℎ𝜇𝜏 ), where 𝐽𝜇𝜏 = [𝐽𝜇𝜏 (1), 𝐽𝜇𝜏 (2), · · · , 𝐽𝜇𝜏 (𝑛)]⊤
and ℎ𝜇𝜏 = [ℎ𝜇𝜏 (1), ℎ𝜇𝜏 (2), · · · , ℎ𝜇𝜏 (𝑛)]⊤. We can express the transition probability matrix
𝑃𝜇𝜏 induced by control and adversary policy 𝜇 and 𝜏 as 𝑃𝜇𝜏 = 𝑃𝜇𝜏in + 𝑃𝜇𝜏out, where

𝑃𝜇𝜏in (𝑠′|𝑠) =

{︃
𝑃𝜇𝜏 (𝑠′|𝑠) if 𝑠′ ∈ ℰ
0 otherwise

, 𝑃𝜇𝜏out(𝑠
′|𝑠) =

{︃
𝑃𝜇𝜏 (𝑠′|𝑠) if 𝑠′ /∈ ℰ
0 otherwise

. (5.13)

Denote the probability that some accepting state 𝑠′ ∈ ℰ is visited from state 𝑠 under policies
𝜇 and 𝜏 as 𝑃𝜇𝜏 (𝑠′|𝑠). Then we see that 𝑃𝜇𝜏 (𝑠′|𝑠) is calculated as

𝑃𝜇𝜏 (𝑠′|𝑠) =
∑︁

𝑢𝐶∈𝑈𝐶(𝑠)

𝜇(𝑠, 𝑢𝐶)
∑︁

𝑢𝐴∈𝑈𝐴(𝑠)

𝜏(𝑠, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴)

+
∑︁

𝑢𝐶∈𝑈𝐶(𝑠)

𝜇(𝑠, 𝑢𝐶)
∑︁

𝑢𝐴∈𝑈𝐴(𝑠)

𝜏(𝑠, 𝑢𝐴)

𝑛∑︁
𝑘=𝑙+1

𝑃𝑝𝑟𝑜𝑑(𝑘|𝑠, 𝑢𝐶 , 𝑢𝐴)𝑃𝜇𝜏 (𝑠′|𝑘). (5.14)

The intuition behind Eqn. (5.14) is that the probability that 𝑠′ is the first state to be visited
consists of the following two parts. The first term in Eqn. (5.14) describes the probability
that the next state is in the set of accepting states ℰ . The second term in Eqn. (5.14) models
the probability that before reaching state 𝑠′ ∈ ℰ , the next visiting state is 𝑘 /∈ ℰ . Denote
the transition probability matrix formed by 𝑃 (𝑠′|𝑠) as 𝑃𝜇𝜏 . Since 𝑃𝜇𝜏out is substochastic and
transient, we have 𝐼 −𝑃𝜇𝜏out is non-singular [107], where 𝐼 is the identity matrix with proper
dimension. Thus 𝐼 − 𝑃𝜇𝜏out is invertible. Then using Eqn. (5.13), the transition probability
matrix 𝑃𝜇𝜏 is represented as

𝑃𝜇𝜏 = (𝐼 − 𝑃𝜇𝜏out)
−1𝑃𝜇𝜏in . (5.15)

Denote the expected invariant property violation cost incurred when visiting some ac-
cepting state 𝑠′ ∈ ℰ from state 𝑠 under policies 𝜇 and 𝜏 as 𝑔(𝑠). The expected cost 𝑔(𝑠) is
calculated as follows:

𝑔(𝑠) = 𝑔𝜇𝜏 (𝑠) +

𝑛∑︁
𝑘=𝑙+1

𝑃𝜇𝜏 (𝑘|𝑠)𝑔(𝑘). (5.16)

We denote the expected cost vector formed by 𝑔(𝑠) under policies 𝜇 and 𝜏 as 𝑔𝜇𝜏 . Then
using Eqn. (5.13), the expected cost vector (5.16) can be rearranged as follows:

𝑔𝜇𝜏 = 𝑃𝜇𝜏out𝑔
𝜇𝜏 + 𝑔𝜇𝜏 ⇒ 𝑔𝜇𝜏 = (𝐼 − 𝑃𝜇𝜏out)

−1𝑔𝜇𝜏 . (5.17)

Using Eqn. (5.15) and (5.17), we can rewrite (5.2) as

𝐽𝜇𝜏 = lim sup
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑘=0

𝑃𝜇𝜏
𝑘
𝑔𝜇𝜏 . (5.18)
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Policies 𝜇 and 𝜏 of the product SG 𝒢𝑝𝑟𝑜𝑑 for Problem 5.2 are related to proper policies
�̂� and 𝜏 for generalized average cost per stage problem as follows:

𝑃𝜇𝜏 = 𝑃 �̂�𝜏 , 𝑔𝜇𝜏 = 𝑔�̂�𝜏 , 𝐽𝜇𝜏 = 𝐵�̂�𝜏 . (5.19)

If we define a bias term ℎ𝜇𝜏 = 𝑏�̂�𝜏 , then a gain-bias pair (𝐽𝜇𝜏 , ℎ𝜇𝜏 ) is constructed for Problem
5.2. Under the worst-case adversary policy 𝜏 , the control policy that makes the gain-bias
pair of average cost per stage problem satisfy

𝐵 + 𝑏 ≤ 𝑔�̂�𝜏 + 𝑃 �̂�𝜏 𝑏 (5.20)

is optimal. That is, the control policy 𝜇* that maps to �̂�* is optimal.
To obtain the optimal control policy, we need to characterize Problem 5.2 in terms of

the control and adversary policies 𝜇 and 𝜏 . The following lemma generalizes the results
presented in [26] in which no adversary is considered. For completeness, we show its proof
which generalizes the proof in [26].

Lemma 5.2. The gain-bias pair (𝐽𝜇𝜏 , ℎ𝜇𝜏 ) of Problem 5.2 under policies 𝜇 and 𝜏 satisfies
the following equations:

𝐽𝜇𝜏 = 𝑃𝜇𝜏𝐽𝜇𝜏 , (5.21)
𝐽𝜇𝜏 + ℎ𝜇𝜏 = 𝑔𝜇𝜏 + 𝑃𝜇𝜏ℎ𝜇𝜏 + 𝑃𝜇𝜏out𝐽

𝜇𝜏 , (5.22)
𝑃𝜇𝜏𝑣𝜇𝜏 = (𝐼 − 𝑃𝜇𝜏out)ℎ

𝜇𝜏 + 𝑣𝜇𝜏 , (5.23)

for some vector 𝑣𝜇𝜏 .

Proof. Given the policies �̂� and 𝜏 for average cost per stage problem, we have

𝐽 �̂�𝜏 = 𝑃 �̂�𝜏𝐽 �̂�𝜏 ,

𝐽 �̂�𝜏 + ℎ�̂�𝜏 = 𝑔�̂�𝜏 + 𝑃 �̂�𝜏ℎ�̂�𝜏 ,

ℎ�̂�𝜏 + 𝑣�̂�𝜏 = 𝑃 �̂�𝜏𝑣�̂�𝜏 ,

Due to the connection between the control policy of Problem 5.2 and generalized average
cost per stage problem, we have

𝐽𝜇𝜏 = 𝑃 �̂�𝜏𝐽𝜇𝜏 = (𝐼 − 𝑃𝜇𝜏out)
−1𝑃𝜇𝜏in 𝐽

𝜇𝜏 .

By rearranging the equation above, we have

(𝐼 − 𝑃𝜇𝜏out)𝐽
𝜇𝜏 = 𝐽𝜇𝜏 − 𝑃𝜇𝜏out𝐽

𝜇𝜏 = 𝑃𝜇𝜏in 𝐽
𝜇𝜏 .

Thus
𝐽𝜇𝜏 = (𝑃𝜇𝜏out + 𝑃𝜇𝜏in )𝐽𝜇𝜏 = 𝑃𝜇𝜏𝐽𝜇𝜏 .
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The expression 𝐽𝜇𝜏 +ℎ𝜇𝜏 = 𝑔𝜇𝜏 +𝑃𝜇𝜏ℎ𝜇𝜏 +𝑃𝜇𝜏out𝐽
𝜇𝜏 can be rewritten using Eqn. (5.15) and

(5.17) as
𝐽𝜇𝜏 + ℎ𝜇𝜏 = (𝐼 − 𝑃𝜇𝜏out)

−1(𝑔𝜇𝜏 + 𝑃𝜇𝜏in ℎ
𝜇𝜏 ).

Manipulating the equation above, we see that (𝐼 − 𝑃𝜇𝜏out)(𝐽
𝜇𝜏 + ℎ𝜇𝜏 ) = 𝑔𝜇𝜏 + 𝑃𝜇𝜏in ℎ

𝜇𝜏 . Then
we can see that

𝐽𝜇𝜏 + ℎ𝜇𝜏 = 𝑔𝜇𝜏 + (𝑃𝜇𝜏in + 𝑃𝜇𝜏out)ℎ
𝜇𝜏 + 𝑃𝜇𝜏out𝐽

𝜇𝜏 = 𝑔𝜇𝜏 + 𝑃𝜇𝜏ℎ𝜇𝜏 + 𝑃𝜇𝜏out𝐽
𝜇𝜏 .

Start from ℎ�̂�𝜏 + 𝑣�̂�𝜏 = 𝑃 �̂�𝜏𝑣�̂�𝜏 . We see that ℎ�̂�𝜏 + 𝑣�̂�𝜏 = (𝐼 −𝑃𝜇𝜏out)
−1𝑃𝜇𝜏in 𝑣

𝜇𝜏 . Therefore we
have

(𝐼 − 𝑃𝜇𝜏out)ℎ
𝜇𝜏 + 𝑣𝜇𝜏 = 𝑃𝜇𝜏𝑣𝜇𝜏 ,

which completes our proof.

Lemma 5.2 indicates that the gain-bias pair can be solved as solutions to a linear system
with 3𝑛 unknowns. Thus we can evaluate any control and adversary policies using Lemma
5.2, which provides us the potential to implement iterative algorithm to compute the optimal
control policy 𝜇.

To compute the control policy 𝜇, we define two operators on (𝐽, ℎ), denoted as 𝑇 *(𝐽, ℎ)
and 𝑇 (𝐽, ℎ), given as:

(𝑇 *(𝐽, ℎ)) (𝑠) = min
𝜇

max
𝜏

[︂ ∑︁
𝑢𝐶∈𝑈𝐶(𝑠)

∑︁
𝑢𝐴∈𝑈𝐴(𝑠)

𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑔(𝑠)

+
∑︁

𝑢𝐶∈𝑈𝐶(𝑠)

∑︁
𝑢𝐴∈𝑈𝐴(𝑠)

𝑛∑︁
𝑠′=1

𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴)ℎ(𝑠′)

+
∑︁

𝑢𝐶∈𝑈𝐶(𝑠)

∑︁
𝑢𝐴∈𝑈𝐴(𝑠)

𝑛∑︁
𝑠′=𝑙+1

𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴)𝐽(𝑠′)

]︂
, ∀𝑠 (5.24)

(𝑇𝜇(𝐽, ℎ)) (𝑠) = max
𝜏

[︂ ∑︁
𝑢𝐶∈𝑈𝐶(𝑠)

∑︁
𝑢𝐴∈𝑈𝐴(𝑠)

𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑔(𝑠)

+
∑︁

𝑢𝐶∈𝑈𝐶(𝑠)

∑︁
𝑢𝐴∈𝑈𝐴(𝑠)

𝑛∑︁
𝑠′=1

𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴)ℎ(𝑠′)

+
∑︁

𝑢𝐶∈𝑈𝐶(𝑠)

∑︁
𝑢𝐴∈𝑈𝐴(𝑠)

𝑛∑︁
𝑠′=𝑙+1

𝜇(𝑠, 𝑢𝐶)𝜏(𝑠, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴)𝐽(𝑠′)

]︂
. ∀𝑠 (5.25)

Generally speaking, we can view them as mappings from (𝐽, ℎ) to 𝑇 *(𝐽, ℎ) ∈ R𝑛 and
𝑇𝜇(𝐽, ℎ) ∈ R𝑛, respectively. Note that in Eqn. (5.25), the transition probability is the one
induced under a certain control policy 𝜇. Based on the definitions of operators 𝑇 *(𝐽, ℎ) and
𝑇 (𝐽, ℎ), we present the optimality conditions for Problem 5.2 using the following theorem.
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Theorem 5.1. The control policy 𝜇 with gain-bias pair (𝐽𝜇𝜏 , ℎ𝜇𝜏 ) that satisfies

𝐽𝜇𝜏 + ℎ𝜇𝜏 = 𝑇 *(𝐽𝜇𝜏 , ℎ𝜇𝜏 ) (5.26)

is the optimal control policy.

Proof. Consider any arbitrary control policy �̂� and the worst-case adversary policy 𝜏 . By
definition of 𝑇 *(·) in Eqn. (5.24), we have that Eqn. (5.26) implies

𝐽𝜇𝜏 + ℎ𝜇𝜏 ≤ 𝑔�̂�𝜏 + 𝑃 �̂�𝜏ℎ𝜇𝜏 + 𝑃 �̂�𝜏out𝐽
𝜇𝜏 ,

where 𝑃 �̂�𝜏 and 𝑃 �̂�𝜏out are the transition probability matrix induced by policies �̂� and 𝜏 . Then
we have that

𝐽𝜇𝜏 + ℎ𝜇𝜏 − 𝑃 �̂�𝜏out𝐽
𝜇𝜏 ≤ 𝑔�̂�𝜏 + 𝑃 �̂�𝜏ℎ𝜇𝜏 = 𝑔�̂�𝜏 + (𝑃 �̂�𝜏in + 𝑃 �̂�𝜏out)ℎ

𝜇𝜏 .

Thus we observe that

(𝐼 − 𝑃 �̂�𝜏out)(𝐽
𝜇𝜏 + ℎ𝜇𝜏 ) ≤ 𝑔�̂�𝜏 + 𝑃 �̂�𝜏in ℎ

𝜇𝜏 .

Note that (𝐼 − 𝑃 �̂�𝜏out) is invertible. Thus the inequality above is rewritten as

𝐽𝜇𝜏 + ℎ𝜇𝜏 ≤ (𝐼 − 𝑃 �̂�𝜏out)
−1(𝑔�̂�𝜏 + 𝑃 �̂�𝜏in ℎ

𝜇𝜏 ).

Rewrite the inequality above according to Eqn. (5.15) and (5.17). Then we have

𝐽𝜇𝜏 + ℎ𝜇𝜏 ≤ 𝑔�̃�𝜏 + 𝑃 �̃�𝜏ℎ𝜇𝜏 ,

where �̃� and 𝜏 are the control and adversary policies in the associated average cost per cycle
problem. Thus, �̃�* satisfies Eqn. (5.20) and 𝜇 is optimal over all the proper policies.

5.3.2 Policy Iteration Algorithm for Control Synthesis

In the following, we focus on how to obtain an optimal secure control policy. First,
note that the optimal control policy consists of two parts. The first part, denoted as 𝜇reach,
maximizes the probability of satisfying specification 𝜙1, while the second part, denoted as
𝜇cycle, minimizes the violation cost per cycle due to violating invariant property 𝜓. Following
the procedure described in Algorithm 7 (see Chapter 4), we can obtain the control policy
𝜇reach that maximizes the probability of satisfying specification 𝜙1. Suppose the set of
accepting states ℰ has been reached. Then the control policy 𝜇cycle that optimizes the
long term performance of the system is generated using Algorithm 8. Algorithm 8 first
initializes the control and adversary policies arbitrarily (e.g., if 𝜇0 and 𝜏0 are set as uniform
distributions, then 𝜇0(𝑠, 𝑢𝐶) = 1/|𝑈𝐶(𝑠)| and 𝜏0(𝑠, 𝑢𝐴) = 1/|𝑈𝐴(𝑠)| for all 𝑠, 𝑢𝐶 and 𝑢𝐴).
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Algorithm 8 Algorithm for a control strategy that minimizes the expected number of
invariant constraint violations.
1: Input: product SG 𝒢𝑝𝑟𝑜𝑑, the set GAMECs 𝒞 associated with formula 𝜙1

2: Output: Control policy 𝜇cycle
3: Initialization: Initialize 𝜇0 and 𝜏0. Initialize iteration index 𝑘 ← 0.
4: while 𝑇 *(𝐽𝜇

𝑘𝜏𝑘 , ℎ𝜇
𝑘𝜏𝑘) ̸= 𝑇 *(𝐽𝜇

𝑘−1𝜏𝑘−1
, ℎ𝜇

𝑘−1𝜏𝑘−1
) do

5: Policy Evaluation: Given 𝜇𝑘 and 𝜏𝑘, calculate the gain-bias pair (𝐽𝜇𝑘𝜏𝑘 , ℎ𝜇𝑘𝜏𝑘) using
Lemma 5.2.

6: Policy Improvement: Calculate the control policy 𝜇 using 𝜇 =

argmin𝜇 argmax𝜏

{︁
𝑔𝜇𝜏 + 𝑃𝜇𝜏ℎ𝜇

𝑘𝜏𝑘 + 𝑃𝜇𝜏out𝐽
𝜇𝑘𝜏𝑘

}︁
.

7: 𝜇𝑘+1 ← 𝜇.
8: 𝑘 ← 𝑘 + 1.
9: end while

Then it follows a policy iteration procedure to update the control and the corresponding
adversary policies until no more improvement can be made. Given 𝜇reach and 𝜇cycle, we can
construct the optimal control policy for Problem 5.2 as

𝜇* =

{︃
𝜇reach, if 𝑠 /∈ ℰ
𝜇cycle, if 𝑠 ∈ ℰ

. (5.27)

We finally present the convergence and optimality of Algorithm 8 using the following
theorem.
Theorem 5.2. Algorithm 8 terminates within a finite number of iterations for any given
accepting state set ℰ. Moreover, the result returned by Algorithm 8 satisfies the optimality
conditions for Problem 5.2.

Proof. In the following, we first prove Algorithm 8 converges within a finite number of
iterations. Then we prove that the results returned by Algorithm 8 satisfies the optimality
conditions in Theorem 5.1. We denote the iteration index as 𝑘. The control policy at 𝑘-th
iteration is denoted as 𝜇𝑘. The worst-case adversary policy associated with 𝜇𝑘 is denoted
as 𝜏𝑘. Let 1 be a vector with all entries equal to one with appropriate size. Define a vector
𝜀 ∈ R𝑛 as

𝜀 = 𝐽𝜇
𝑘𝜏𝑘1+ ℎ𝜇

𝑘𝜏𝑘 − 𝑔𝜇𝑘+1𝜏𝑘+1 − 𝑃𝜇𝑘+1𝜏𝑘+1
ℎ𝜇

𝑘𝜏𝑘 − 𝑃𝜇
𝑘+1𝜏𝑘+1

out 𝐽𝜇
𝑘𝜏𝑘1.

By Lemma 5.2, we have that

𝐽𝜇
𝑘𝜏𝑘1+ ℎ𝜇

𝑘𝜏𝑘 = 𝑔𝜇𝜏 + 𝑃𝜇𝜏ℎ𝜇
𝑘𝜏𝑘 + 𝑃𝜇𝜏out𝐽

𝜇𝑘𝜏𝑘 .

By the definition of 𝑇 *(·) in Eqn. (5.24), the control policy at iteration 𝑘 + 1 is computed
by optimizing 𝑔𝜇𝜏 +𝑃𝜇𝜏ℎ𝜇𝑘𝜏𝑘 +𝑃𝜇𝜏out𝐽

𝜇𝑘𝜏𝑘 . Thus we have that for all 𝑠, 𝜀(𝑠) ≥ 0. Moreover,
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we can rewrite vector 𝜀 as

𝜀 = 𝐽𝜇
𝑘𝜏𝑘1+ ℎ𝜇

𝑘𝜏𝑘 − 𝑔𝜇𝑘+1𝜏𝑘+1 − 𝑃𝜇𝑘+1𝜏𝑘+1
ℎ𝜇

𝑘+1𝜏𝑘+1 − 𝑃𝜇
𝑘+1𝜏𝑘+1

out 𝐽𝜇
𝑘+1𝜏𝑘+1

1

+ 𝑃𝜇
𝑘+1𝜏𝑘+1

ℎ𝜇
𝑘+1𝜏𝑘+1

+ 𝑃𝜇
𝑘+1𝜏𝑘+1

out 𝐽𝜇
𝑘+1𝜏𝑘+1

1− 𝑃𝜇𝑘+1𝜏𝑘+1
ℎ𝜇

𝑘𝜏𝑘 − 𝑃𝜇
𝑘+1𝜏𝑘+1

out 𝐽𝜇
𝑘𝜏𝑘1

= 𝐽𝜇
𝑘𝜏𝑘1+ ℎ𝜇

𝑘𝜏𝑘 − 𝐽𝜇𝑘+1𝜏𝑘+1
1− ℎ𝜇𝑘+1𝜏𝑘+1 − 𝑃𝜇𝑘+1𝜏𝑘+1

(︁
ℎ𝜇

𝑘𝜏𝑘 − ℎ𝜇𝑘+1𝜏𝑘+1
)︁

− 𝑃𝜇
𝑘+1𝜏𝑘+1

out

(︁
𝐽𝜇

𝑘𝜏𝑘 − 𝐽𝜇𝑘+1𝜏𝑘+1
)︁
1,

where the second equality holds by Lemma 5.2. Thus 𝜀 can be represented as

𝜀 =
(︁
𝐼 − 𝑃𝜇

𝑘+1𝜏𝑘+1

out

)︁(︁
𝐽𝜇

𝑘𝜏𝑘 − 𝐽𝜇𝑘+1𝜏𝑘+1
)︁
1+

(︁
𝐼 − 𝑃𝜇𝑘+1𝜏𝑘+1

)︁(︁
ℎ𝜇

𝑘𝜏𝑘 − ℎ𝜇𝑘+1𝜏𝑘+1
)︁
,

(5.28)

where 𝐼 is the identity matrix. By multiplying
(︁
𝑃𝜇

𝑘+1𝜏𝑘+1
)︁𝑡

to both sides of Eqn. (5.28)
and calculating the summation over 𝑡 from 0 to 𝑇 − 1, we have that

𝑇−1∑︁
𝑡=0

(︁
𝑃𝜇

𝑘+1𝜏𝑘+1
)︁𝑡
𝜀 =

𝑇−1∑︁
𝑡=0

(︁
𝑃𝜇

𝑘+1𝜏𝑘+1
)︁𝑡 (︁

𝐼 − 𝑃𝜇
𝑘+1𝜏𝑘+1

out

)︁(︁
𝐽𝜇

𝑘𝜏𝑘 − 𝐽𝜇𝑘+1𝜏𝑘+1
)︁
1

+
𝑇−1∑︁
𝑡=0

(︁
𝑃𝜇

𝑘+1𝜏𝑘+1
)︁𝑡 (︁

𝐼 − 𝑃𝜇𝑘+1𝜏𝑘+1
)︁(︁

ℎ𝜇
𝑘𝜏𝑘 − ℎ𝜇𝑘+1𝜏𝑘+1

)︁
. (5.29)

Divide both sides by 𝑇 and let 𝑇 →∞. Then we have

lim
𝑇→∞

𝑇−1∑︁
𝑡=0

1

𝑇

(︁
𝑃𝜇

𝑘+1𝜏𝑘+1
)︁𝑡
𝜀

= lim
𝑇→∞

𝑇−1∑︁
𝑡=0

1

𝑇

(︀ (︁
𝑃𝜇

𝑘+1𝜏𝑘+1
)︁𝑡 (︁

𝑃𝜇
𝑘+1𝜏𝑘+1

)︁𝑡
𝑃𝜇

𝑘+1𝜏𝑘+1

out
)︀(︀
𝐽𝜇

𝑘𝜏𝑘 − 𝐽𝜇𝑘+1𝜏𝑘+1)︀
1 (5.30)

since the second term of (5.29) is eliminated when 𝑇 → ∞. Note that 𝑃𝜇
𝑘+1𝜏𝑘+1

out is a
substochastic matrix. We have that 𝑃𝜇

𝑘+1𝜏𝑘+1

out 1 ≤ 1. Furthermore, since 𝑃𝜇𝑘+1𝜏𝑘+1 is a
stochastic matrix, we see that 1− 𝑃𝜇

𝑘+1𝜏𝑘+1

out 1 ≥ 0. Thus we have(︂(︁
𝑃𝜇

𝑘+1𝜏𝑘+1
)︁𝑡
−
(︁
𝑃𝜇

𝑘+1𝜏𝑘+1
)︁𝑡
𝑃𝜇

𝑘+1𝜏𝑘+1

out

)︂
1 ≥ 0.

Given the inequality above and 𝜀 ≥ 0, we have that 𝐽𝜇𝑘𝜏𝑘 − 𝐽𝜇𝑘+1𝜏𝑘+1 ≥ 0 by observing
(5.30), which implies that 𝐽𝜇𝑘𝜏𝑘 ≥ 𝐽𝜇𝑘+1𝜏𝑘+1 .

Consider the scenario where 𝐽𝜇𝑘𝜏𝑘 = 𝐽𝜇
𝑘+1𝜏𝑘+1 . We further need to show that in this case
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ℎ𝜇
𝑘𝜏𝑘 ≥ ℎ𝜇

𝑘+1𝜏𝑘+1 . For each state that belongs to the recurrent class, the corresponding

entry of
∑︀𝑇−1

𝑡=0

(︁
𝑃𝜇

𝑘+1𝜏𝑘+1
)︁𝑡

is positive. By observing Eqn. (5.30), we have 𝜀(𝑠) = 0

for all 𝑠 belonging to the recurrent class. Thus according to Eqn. (5.29), we have that
ℎ𝜇

𝑘𝜏𝑘(𝑠) = ℎ𝜇
𝑘+1𝜏𝑘+1

(𝑠) for all 𝑠 in the recurrent class.
By Eqn. (5.29), we have that

lim
𝑇→∞

𝑇−1∑︁
𝑡=0

(︁
𝑃𝜇

𝑘+1𝜏𝑘+1
)︁𝑡

(ℎ𝜇
𝑘𝜏𝑘 − ℎ𝜇𝑘+1𝜏𝑘+1

) =ℎ𝜇
𝑘𝜏𝑘 − ℎ𝜇𝑘+1𝜏𝑘+1 − lim

𝑇→∞

𝑇−1∑︁
𝑡=0

(︁
𝑃𝜇

𝑘+1𝜏𝑘+1
)︁𝑡
𝜀

≤ℎ𝜇𝑘𝜏𝑘 − ℎ𝜇𝑘+1𝜏𝑘+1 − 𝜀.

Note that the elements corresponding to the transient states in
(︁
𝑃𝜇

𝑘+1𝜏𝑘+1
)︁𝑡

(ℎ𝜇
𝑘𝜏𝑘 −

ℎ𝜇
𝑘+1𝜏𝑘+1

) approach zero when 𝑡 → ∞. Thus we have ℎ𝜇𝑘𝜏𝑘(𝑠) − ℎ𝜇𝑘+1𝜏𝑘+1
(𝑠) ≥ 𝜀(𝑠) ≥ 0

for all transient states 𝑠. Combining all the above together, we have that 𝜇𝑘 = 𝜇𝑘+1 when
𝛿 = 0, otherwise ℎ𝜇𝑘𝜏𝑘(𝑠)− ℎ𝜇𝑘+1𝜏𝑘+1

(𝑠) ≥ 0 holds for some transient state 𝑠.
When Algorithm 8 terminates, we have that

𝑇 *(𝐽𝜇
𝑘+1𝜏𝑘+1

, ℎ𝜇
𝑘+1𝜏𝑘+1

) = 𝑇 *(𝐽𝜇
𝑘𝜏𝑘 , ℎ𝜇

𝑘𝜏𝑘). (5.31)

By Algorithm 8, the gain-bias pair (𝐽𝜇
𝑘𝜏𝑘 , ℎ𝜇

𝑘𝜏𝑘) is first evaluated using Lemma 5.2 at
each iteration 𝑘. Then using the gain-bias pair obtained in policy evaluation phase, the 𝑇 *

operator is calculated as shown in Algorithm 8. Thus according to Lemma 5.2, we see

𝜇 = argmin
𝜇

max
𝜏

{︁
𝑔𝜇𝜏 + 𝑃𝜇𝜏ℎ𝜇

𝑘𝜏𝑘 + 𝑃𝜇𝜏out𝐽
𝜇𝑘𝜏𝑘

}︁
. (5.32)

Note that the right hand side of Eqn. (5.32) is equivalent to how 𝑇 * is calculated in
Algorithm 8. Therefore, by combining Eqn. (5.31) and (5.32), we obtain that

𝐽𝜇
𝑘𝜏𝑘 + ℎ𝜇

𝑘𝜏𝑘 = 𝑇 *(𝐽𝜇
𝑘𝜏𝑘 , ℎ𝜇

𝑘𝜏𝑘).

By Theorem 5.1, we see that 𝜇𝑘 is the optimal control policy.

5.4 Case Study

In this section, we evaluate our proposed approach using a case study on the application
of remotely controlled UAV performing a reach-avoid task in a discrete bounded grid envi-
ronment. The UAV is given an LTL specification 𝜙 = 2(3(dest1 ∧ 3(dest2 ∧ 3dest3))) ∧
2¬obstacle consisting of liveness and invariant constraints. In particular, the lieveness con-
straint 𝜙1 = 2(3(dest1 ∧ 3(dest2 ∧ 3dest3))) models a surveillance task, i.e., the UAV is
required to patrol three critical regions infinitely often following a particular order, and the
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Trajectory Comparison

obstacle obstacle obstacle

obstacle obstacle obstacle

obstacle obstacle obstacle

home

dest1

dest2dest3

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

(a)

1 2 3 4 5 6 7 8 9 10

Iteration Index

0

50

100

150

200

250

300

350

400

450

500

E
x
p

e
c
te

d
 I

n
v
a

ri
a

n
t 

C
o

n
s
tr

a
in

t 
V

io
la

ti
o

n
 C

o
s
t

Comparison of Expected Invariant Constraint Violation Cost
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Figure 5-1: Comparison of the proposed approach and the approach without considering the
presence of the adversary. Fig. 5-1a gives the trajectories obtained using two approaches.
The solid blue line is the trajectory obtained using the proposed approach, while the dashed
red line represents the trajectory obtained using the approach without considering the pres-
ence of the adversary. Fig. 5-1b shows the expected invariant constraint violation cost with
respect to iteration indices.

invariant constraint 𝜓 = 2¬obstacle requires the UAV to avoid collisions with obstacles.
Once the critical regions are visited, a cycle is completed. During each cycle, the rate of
invariant constraint violation need to be minimized. The cost incurred at each violation is
assigned to be 20.

We compare the proposed approach with the approach without considering the adver-
sary. The sample trajectories obtained using these approaches are presented in Fig. 5-1a. In
particular, the solid line shows a sample trajectory obtained by using the proposed approach,
and the dashed line shows the trajectory obtained by using the control policy synthesized
without considering the presence of adversary. We observe that the control strategy syn-
thesized using the approach without considering the adversary uses less effort comparing to
the proposed approach. However, the proposed approach is more resilient since it uses more
control effort to deviate from the obstacles to minimize the violation cost. We present the
average invariant constraint violation cost incurred using the control policy obtained at each
iteration in Fig. 5-1b. We observe that the proposed approach incurs lower cost after con-
vergence. In Fig. 5-1b, the approach that does not consider the adversary incurs lower cost
compared to the proposed approach during iterations 2 to 6. The reason is that although the
proposed approach guarantees convergence to Stackelberg equilibrium, it does not guarantee
optimality of the intermediate policies. The average invariant constraint violation cost using
proposed approach is 23.90, while the average invariant constraint violation cost using the
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approach without considering the adversary is 40.52. The improvement achieved using the
proposed approach is 28.67%.

Given the transition probability, the SG and DRA associated with specification 𝜑 are
created within 1 and 0.01 second, respectively. The computation of product SG took 72
seconds. The product SG has 1600 states and 26688 transitions. It took 36 seconds to
compute the control policy on a Macbook Pro with 2.6GHz Intel Core i5 CPU and 8GB
RAM.

5.5 Conclusion

In this chapter, we investigated the problem of synthesizing a control policy for CPS under
malicious attack so as to minimize the invariant constraint violation rate while maximize
the probability of satisfying an LTL constraint. We formulated the interaction between
the controller and adversary as a concurrent Stackelberg game. We derived the optimality
condition of the problem of interest by connecting it with a generalized average cost per
stage problem. We developed a policy iteration algorithm to compute an optimal control
policy by exploiting the optimality condition. The proposed approach is evaluated using a
case study on a UAV performing surveillance task.
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Chapter 6

Optimal Minimum Violation Control
under Multiple LTL Constraints

6.1 Introduction

Chapter 4 and Chapter 5 focus on CPS subject to one LTL constraint. Currently, CPS
are expected to perform under multiple LTL constraints due to their emerging capabilities.
When the CPS are subject to multiple LTL constraints, we are faced with two challenges
when synthesizing controllers for CPS: (i) the specifications are incompatible and may con-
flict with each other, and (ii) uncertainties, stochastic errors, and malicious attacks can
curtail the satisfaction of the specifications. Both challenges may lead to unsynthesizable
controllers. Additionally, we assume that the adversary has perfect observation over the
policy taken by the CPS in Chapter 4 and Chapter 5, which may not hold in practice. This
motivates us to consider the scenario where the adversary has limited observation over the
controller’s policy.

In this chapter, we investigate minimum violation control synthesis for a finite-state
stochastic game (SG) which serves as an abstraction of CPS under attacks. The players
involved in the SG are the controller and adversary. The controller and adversary interact
with each other following a concurrent Stackelberg information pattern, in which the con-
troller is the leader and the adversary is the follower. At each state in the SG, both players
must take actions simultaneously. The controller is given a set of specifications modeled in
co-safe LTL (scLTL). We focus on the scenario where the specifications cannot be completely
satisfied, and synthesize the control strategy that minimizes the violations on specifications.
The objective of the controller is to maximize the expected reward it obtains when satisfying
the specifications, while the objective of the adversary is to compute a strategy to deviate
the system from satisfying the specifications, given the control strategy observed by the
adversary. To summarize, we make the following contributions:

• A concurrent Stackelberg SG is formulated to model the interaction between the con-
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troller and adversary. We use a linear anchoring bias model [108] to model the adver-
sary’s limited capability of observation [109]. A real-world application on patrolling
security game is presented to demonstrate the effectiveness of the proposed framework.

• The scLTL specifications are expressed using complete and deterministic finite au-
tomata. We compute a product SG using the SG and product of the set of automata.
A mixed integer nonlinear program (MINLP) is formulated on the product SG to solve
for a control strategy that minimally violates specifications.

• Two algorithms are presented to solve the MINLP. We first give an exact algorithm
which is based on model reference adaptive search (MRAS) method. We show that
MRAS method can be used to solve the proposed MINLP. With probability one, the
exact algorithm returns the optimal control policy, regardless of the initial input of
the algorithm. We then give an approximate algorithm. The approximate algorithm
returns a sub-optimal solution, with a faster convergence rate compared to the exact
algorithm.

• We present a numerical case study on patrolling security game to evaluate the pro-
posed framework. The proposed approaches are compared with two baselines, which
attempt greedily to satisfy the given specifications. The results show that the proposed
framework outperforms the baselines.

The remainder of this chapter is organized as follows. Section 6.2 presents problem
formulation and an example on patrolling security game. We formulate an MINLP in Section
6.3, and give two algorithms including an exact algorithm and an approximate algorithm
to solve the MINLP. A numerical case study is presented in Section 6.4. We conclude this
chapter in Section 6.5 and give a brief discussion on future work.

6.2 System Model and Problem Statement

In this section, we introduce the system model and the problem statement. We also present
a real-world security application that can be captured using the problem formulation inves-
tigated in this chapter.

We consider an SG 𝒢 = (𝑆,𝑈𝐶 , 𝑈𝐴, 𝑃,Π,ℒ) as defined in Chapter 4 and 5. The SG
can be viewed as an abstraction of a CPS in the presence of a malicious adversary. The
state transitions of the SG are jointly determined by the actions taken by the controller and
adversary.

Note that we consider the Stackelberg setting between the controller and adversary. The
controller commits to a control strategy 𝜇 first. Then the adversary observes the strategy
committed by the controller and responds to its observed strategy based on its own interest.
During this interaction process, several restrictions are imposed on both players. First, once
the controller commits to some strategy 𝜇, it has no chance to adjust the committed strategy.
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Second, the adversary may have limited observation capability. In this chapter, we consider
the linear anchoring bias model [108], in which the observation that the adversary perceives
is computed as

�̃�(𝑠, 𝑢𝐶) = 𝜆
1

|𝑈𝐶(𝑠)|
+ (1− 𝜆)𝜇(𝑠, 𝑢𝐶), ∀𝑠, 𝑢𝐶 (6.1)

where 𝜆 ∈ [0, 1] is a parameter that is known to the controller. Model (6.1) indicates
that the adversary observes the strategy committed by the controller �̃�, which is a linear
combination of a uniform distribution and the real control strategy at each state. Thus the
control strategy observed by the adversary does not necessarily equal to the control strategy
𝜇. We remark that the adversary does not know it is biased. The last restriction is that
at each state both the controller and adversary must take actions simultaneously, i.e., we
consider the concurrent Stackelberg setting. Under the concurrent setting, the players do
not know the realized actions that being taken by their opponents.

Let Φ = {𝜑1, 𝜑2, · · · , 𝜑𝑛} be a set of scLTL specifications. The controller assigns each
specification 𝜑𝑖 a reward 𝑟(𝜑𝑖), based on the specification’s importance. We assume that
the reward associated with each specification is known to the adversary. The objective of
the controller is to compute a control strategy 𝜇 on SG 𝒢 to maximize its expected total
reward. In contrast, the objective of the adversary is to compute a strategy 𝜏 to deviate the
system from satisfying the specifications in Φ, given its observation over the control strategy
𝜇. Considering the potential incompatibility among the specifications in Φ [58] and the
presence of adversary, violations of the specifications need to be considered. We formally
state the minimum violation problem on SG as follows:

Problem 6.1. Given an SG 𝒢 under concurrent Stackelberg setting and a set of specifications
Φ = {𝜑1, · · · , 𝜑𝑛} modeled in scLTL, with each 𝜑𝑖 ∈ Φ associated with a reward function
𝑟(𝜑𝑖), compute a control policy 𝜇 such that control policy 𝜇 and adversary policy 𝜏 ∈ ℬℛ(�̃�)
constitute Stackelberg equilibrium of game 𝒢, where �̃� is the policy observed by the adversary
as defined by the anchoring bias model (6.1).

In the remainder of this section, we present a real-world security application that can be
formulated as Problem 6.1.

Security Game with one type of adversary and execution uncertainty: Security games
such as green security game (GSG) [110] and patrolling security game (PSG) [51, 111] are
used for protection of wild life and critical infrastructure. In the following, we take PSG as
an example, and show how PSG is captured by the problem of interest.

A PSG consists of two players, denoted as the defender and adversary. The environment
is discretized into a finite set of cells 𝑁 = {𝑛1, · · · , 𝑛𝐾}. The defender has a finite set of
patrol units, e.g., mobile robots or uniformed patrol force. Each patrol unit can move among
the cells in 𝑁 following some schedule determined by the defender. A schedule specified by
the defender is a sequence of commands, with each command indicating the patrol unit
should reach some cell 𝑛 at time 𝑡. The adversary has control over a finite set of intruders.
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Each intruder can intrude in some cell at a certain time 𝑡 following the instruction from the
adversary.

When the patrol unit navigates in the environment following the commands of the de-
fender, there exists execution uncertainty, and hence the transition of each patrol unit be-
tween cells is stochastic [112]. For example, the patrol unit might deviate from the pre-
specified patrol schedule due to writing citations, felony arrest, and handling emergency
situations. Such stochastic behavior is captured by a transition probability distribution
between the cells, given the commands issued by the defender and adversary.

To show how PSG is modeled using the framework in this chapter, we give the following
mappings when there exist a single patrol unit and one intruder. The controller in SG 𝒢 is
the defender, and the adversary is that of the PSG. The set of states 𝑆 of SG is obtained as
𝑆 = 𝑁 ×𝑁 × 𝑇 , where 𝑇 is the finite set of discrete time instances. The Cartesian product
𝑁×𝑁 captures the joint locations of the patrol unit and intruder. The extension to multiple
patrol units and intruders can be obtained by taking the Cartesian product of the locations
among all patrol units and intruders, so that each state captures the joint locations of all
patrol units and intruders at each time 𝑡 ∈ 𝑇 . The finite set of control actions 𝑈𝐶 is the
set of commands issued by the defender. The finite set of adversary actions 𝑈𝐴 is the set
of intrusion actions of the intruder. The transition probability 𝑃 captures the execution
uncertainty. For example, when the defender moves the patrol unit from location 𝑛 to 𝑛′ at
time 𝑡′ and the adversary initiates no intrusion, the probability of transiting from (𝑛, 𝑡) to
(𝑛′, 𝑡′) is then given as 𝑃 ((𝑛′, 𝑡′)|(𝑛, 𝑡), 𝑢𝐶 , 𝑢𝐴).

Some typical specifications that can be given to the defender include: the reach-avoid
specification (eventually reach the target region and avoid the obstacles, i.e., ¬𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒U𝑡𝑎𝑟𝑔𝑒𝑡),
and eventually capture the intruder (3𝑐𝑎𝑝𝑡𝑢𝑟𝑒_𝑖𝑛𝑡𝑟𝑢𝑑𝑒𝑟). We finally remark that since time
index is incorporated in the state variable, time constrained specifications can also be given
to the defender.

6.3 Proposed Approach for Minimum Violation Control Syn-
thesis

In this section, we present the solution approach to Problem 6.1. We first construct a product
SG using SG 𝒢 and the set of DFAs representing the scLTL formulas in Φ. We then formulate
a mixed integer non-linear program (MINLP) on the product SG to compute the Stackelberg
equilibrium. We propose two algorithms to solve the problem. The first algorithm, denoted
as exact algorithm, is based on model reference adaptive search (MRAS) method. With
probability one the exact algorithm returns the optimal control policy. However, it has
relatively slow convergence rate. The second algorithm is a heuristic based approximate
algorithm, which returns a sub-optimal solution with faster convergence rate.
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6.3.1 Product SG Construction

Given the set of specifications Φ, we first construct a set of DFAs 𝒜 = {𝐴1, · · · , 𝐴𝑛} as
defined in Chapter 3.4, with each 𝐴𝑖 = (𝑄𝑖, 𝑞𝑖0,Σ, 𝛿

𝑖, 𝐹 𝑖). To capture the violations of
the specifications, we make all DFAs in 𝒜 complete. A DFA 𝐴 is said to be complete if
transition 𝛿(𝑞, 𝜎) is well-defined on 𝐴 for all 𝑞 ∈ 𝑄 and 𝜎 ∈ Σ. An incomplete DFA can be
made complete by the following procedure. We first augment the state set with an additional
absorbing state, denoted as 𝑠𝑖𝑛𝑘, and let 𝛿(𝑞, 𝜎) = 𝑠𝑖𝑛𝑘 if 𝛿(𝑞, 𝜎) is not defined in 𝐴. Note
that the completion procedure does not change the acceptance condition of each DFA 𝐴𝑖.
In the remainder of this chapter, with a slight abuse of notations, we use 𝐴𝑖 to denote the
complete DFA associated with specification 𝜑𝑖 and 𝒜 to denote the set of complete DFAs.

Given the set of complete DFAs 𝒜, we construct a product automaton defined as follows.

Definition 6.1. (Product automaton): A product automaton obtained from 𝒜 is a tu-
ple 𝐴𝑝𝑟𝑜𝑑 = (𝑄𝑝𝑟𝑜𝑑, 𝑞0,𝑝𝑟𝑜𝑑,Σ, 𝛿𝑝𝑟𝑜𝑑, 𝐹𝑝𝑟𝑜𝑑), where 𝑄𝑝𝑟𝑜𝑑 = 𝑄1 × · · · × 𝑄𝑛 is a finite set of
states, 𝑞0,𝑝𝑟𝑜𝑑 = (𝑞10, · · · , 𝑞𝑛0 ) is the initial state, Σ is the alphabet inherited from 𝒜, 𝛿𝑝𝑟𝑜𝑑 =
((𝑞1, · · · , 𝑞𝑛), 𝜎, (𝑞1, · · · , 𝑞𝑛)) if 𝛿𝑖(𝑞𝑖, 𝜎) = 𝑞𝑖 for all 𝑖 and 𝐹𝑝𝑟𝑜𝑑 = {(𝑞1, · · · , 𝑞𝑛)|𝑞𝑖 ∈ 𝐹 𝑖, ∀𝑖}.

Note that since each DFA 𝐴𝑖 is complete, the product automaton 𝐴𝑝𝑟𝑜𝑑 is also complete,
which allows us to investigate violations of any subset of specifications in 2Φ.

Given the product automaton, we then construct a product SG using SG 𝒢 and product
automaton 𝐴𝑝𝑟𝑜𝑑 as follows:

Definition 6.2. (Product SG): Given SG 𝒢 = (𝑆,𝑈𝐶 , 𝑈𝐴, 𝑃,ℒ,Π) and product automaton
𝐴𝑝𝑟𝑜𝑑 = (𝑄𝑝𝑟𝑜𝑑, 𝑞0,𝒫 ,Σ, 𝛿𝑝𝑟𝑜𝑑, 𝐹𝑝𝑟𝑜𝑑), a (weighted and labeled) product SG is a tuple 𝒢𝑝𝑟𝑜𝑑 =
(𝑆𝑝𝑟𝑜𝑑, 𝑈𝐶 , 𝑈𝐴, 𝑃𝑝𝑟𝑜𝑑, 𝐴𝑐𝑐,𝑊 ), where 𝑆𝑝𝑟𝑜𝑑 = 𝑆×𝑄𝑝𝑟𝑜𝑑 is a finite set of states, 𝑈𝐶 (resp. 𝑈𝐴)
is a finite set of control inputs (resp. attack signals), 𝑃𝑝𝑟𝑜𝑑((𝑠, 𝑞1, · · · , 𝑞𝑛)|(𝑠, 𝑞1, · · · , 𝑞𝑛), 𝑢𝐶 ,
𝑢𝐴) = 𝑃 (𝑠′|𝑠, 𝑢𝐶 , 𝑢𝐴) if ((𝑞1, · · · , 𝑞𝑛),ℒ(𝑠), (𝑞1, · · · , 𝑞𝑛)) ∈ 𝛿𝑝𝑟𝑜𝑑, 𝐴𝑐𝑐 = 𝑆 × 𝐹𝑝𝑟𝑜𝑑, and 𝑊
is a weight function assigning each transition a reward.

In the following, when the context is clear, we use 𝑠𝑝𝑟𝑜𝑑 to denote the state of product
SG 𝒢𝑝𝑟𝑜𝑑. The weight function of product SG 𝒢𝑝𝑟𝑜𝑑 is defined as follows:

𝑊 (𝑠′𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴) =
𝑛∑︁
𝑖=1

𝐼𝑖
(︀
𝑠𝑝𝑟𝑜𝑑, 𝑠

′
𝑝𝑟𝑜𝑑

)︀
𝑟(𝜑𝑖), (6.2)

where the 𝐼(𝜑𝑖) is the indicator function defined as

𝐼𝑖
(︀
𝑠𝑝𝑟𝑜𝑑, 𝑠

′
𝑝𝑟𝑜𝑑

)︀
=

{︃
1, if 𝑠𝑝𝑟𝑜𝑑 /∈ 𝑆 ×𝑄1 · · ·𝐹 𝑖 · · · ×𝑄𝑛 and 𝑠′𝑝𝑟𝑜𝑑 ∈ 𝑆 ×𝑄1 · · ·𝐹 𝑖 · · · ×𝑄𝑛,
0, otherwise.

Note that the accepting states 𝐹 𝑖 for each automaton 𝐴𝑖 are absorbing states. Thus by
definition (6.2), a path on product SG 𝒢𝑝𝑟𝑜𝑑 collects rewards by satisfying the specifications
in Φ at the first time.
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In the following, we characterize the expected rewards that the controller and adversary
can achieve via satisfying and violating the scLTL specification, respectively. Let 𝑉𝐶(𝑠𝑝𝑟𝑜𝑑)
and 𝑉𝐴(𝑠𝑝𝑟𝑜𝑑) be the expected reward that the controller and adversary can obtain due to
satisfying and violating specifications in Φ when starting from state 𝑠𝑝𝑟𝑜𝑑 ∈ 𝑆𝑝𝑟𝑜𝑑, respec-
tively. We then characterize the expected rewards 𝑉𝐶 and 𝑉𝐴 as follows.

Lemma 6.1. The expected rewards of the controller and adversary induced by policy 𝜇 and
𝜏 can be represented as

𝑉𝐶(𝑠𝑝𝑟𝑜𝑑) =
∑︁

𝑢𝐶∈𝑈𝐶

[︀
𝜇(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶)

∑︁
𝑢𝐴∈𝑈𝐴

𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴) (6.3)

·
∑︁
𝑠′𝑝𝑟𝑜𝑑

𝑃𝑝𝑟𝑜𝑑(𝑠
′
𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴)(𝑊 (𝑠′𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴) + 𝑉𝐶(𝑠

′
𝑝𝑟𝑜𝑑))

]︀
,

𝑉𝐴(𝑠𝑝𝑟𝑜𝑑) =
∑︁

𝑢𝐶∈𝑈𝐶

[︀
�̃�(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶)

∑︁
𝑢𝐴∈𝑈𝐴

𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴) (6.4)

·
∑︁
𝑠′𝑝𝑟𝑜𝑑

𝑃𝑝𝑟𝑜𝑑(𝑠
′
𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴)(−𝑊 (𝑠′𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴) + 𝑉𝐴(𝑠

′
𝑝𝑟𝑜𝑑))

]︀
.

Moreover, given a pair of policies 𝜇 and 𝜏 , the expected reward of the controller and adversary
are the unique solutions to the linear equations above.

Proof. Given a control strategy 𝜇 and adversary strategy 𝜏 , the product SG 𝒢𝑝𝑟𝑜𝑑 reduces
to a policy-induced Markov chain (MC), whose transition reward at each state 𝑠𝑝𝑟𝑜𝑑 can be
represented as

�̃� (𝑠𝑝𝑟𝑜𝑑) =
∑︁

𝑢𝐶∈𝑈𝐶

𝜇(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶)
∑︁

𝑢𝐴∈𝑈𝐴

𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴)

·
∑︁
𝑠′𝑝𝑟𝑜𝑑

𝑃𝑝𝑟𝑜𝑑(𝑠
′
𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴)𝑊 (𝑠′𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴). (6.5)

Then the expected rewards 𝑉𝐶(𝑠𝑝𝑟𝑜𝑑) and 𝑉𝐴(𝑠𝑝𝑟𝑜𝑑) are interpreted as the expected reward
collected by the path starting from 𝑠𝑝𝑟𝑜𝑑 to the set of absorbing states in MC. In the following,
we prove that Enq. (6.3) and (6.4) hold by showing the equivalence of maximizing expected
rewards and stochastic shortest path problem (SSPP) on policy-induced MC. An SSPP
aims to find a path such that expected cost incurred along the path is minimized. Viewing
transition reward �̃� as a transition cost −�̃� , we then have that maximizing the expected
reward 𝑉𝐶(𝑠𝑝𝑟𝑜𝑑) obtained by the controller is equivalent to an SSPP on the policy-induced
MC. Analogous equivalence holds for the adversary. According to the dynamic programming
algorithm for stochastic shortest path problem on MC [101], we can represent the expected
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reward for the controller as

𝑉𝐶(𝑠𝑝𝑟𝑜𝑑) = �̃� (𝑠𝑝𝑟𝑜𝑑) +
∑︁
𝑠′𝑝𝑟𝑜𝑑

𝑃𝑝𝑟𝑜𝑑(𝑠
′
𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴)𝑉𝐶(𝑠′𝑝𝑟𝑜𝑑). (6.6)

Substituting Eqn. (6.5) into Eqn. (6.6), we have that the expected rewards represented by
Eqn. (6.3) and (6.4) hold.

The uniqueness follows from the fact that the expected reward for both players can be
computed by solving a set of linear equations on the MC induced by control and adversary
policies 𝜇 and 𝜏 .

Functions 𝑉𝐶 and 𝑉𝐴 model the utility functions of the controller and adversary, respec-
tively. By Lemma 6.1, we have that the game formulated in this chapter is nonzero-sum
since �̃� ̸= 𝜇. We remark that when the adversary has perfect observation over control policy
𝜇, the game reduces to a zero-sum game. Based on Lemma 6.1, we can narrow down our
search space of control policy 𝜇 to the set of proper policies defined as follows.

Definition 6.3. (Proper Policies): A stationary control policy 𝜇 is proper if under 𝜇, re-
gardless of the policy chosen by the adversary, the set of states in product SG 𝒢𝑝𝑟𝑜𝑑 that
correspond to an accepting state in at least one automaton can eventually be reached with
positive probability.

If the specified accepting state cannot be reached with positive probability under some
control policy 𝜇, then 𝜇 is said to be improper. We formally state the result using the
following proposition.

Proposition 6.1. If a proper control policy 𝜇′ is associated with the highest expected reward
for the controller among all proper policies, then it provides the highest expected reward
among all stationary policies.

Proof. Let 𝜇 be the control policy that enables the controller receiving highest reward among
all stationary policies. If 𝜇 is a proper policy, then the result clearly holds. Next, we focus
on the scenario where 𝜇 is improper and show that by construction, we have a proper control
policy 𝜇′ such that the expected rewards for the controller under policies 𝜇 and 𝜇′ are equal.
Divide the set of states 𝑆𝑝𝑟𝑜𝑑 into two subsets 𝑆1 and 𝑆2. Let 𝑆1 be the set of states that
cannot reach the set of destination states (under control policy 𝜇), while 𝑆2 denotes the set of
states that reach the set of destination states with positive probability (under control policy
𝜇). By the assumption on the existence of a proper policy �̃�, we let 𝜇′(𝑠𝑝𝑟𝑜𝑑) = �̃�(𝑠𝑝𝑟𝑜𝑑) for
all 𝑠𝑝𝑟𝑜𝑑 ∈ 𝑆1, and let 𝜇′(𝑠𝑝𝑟𝑜𝑑) = 𝜇(𝑠𝑝𝑟𝑜𝑑) for all 𝑠𝑝𝑟𝑜𝑑 ∈ 𝑆2. Since 𝜇 is an improper policy
while �̃� is a proper policy, we have that the expected reward received by the controller by
committing to control policy 𝜇′ is no less than committing to 𝜇 when the initial state is in 𝑆1.
Suppose the initial state is in 𝑆2. In the following, we show that the controller committing
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to policy 𝜇′ receives expected reward no less than by committing to improper policy 𝜇. The
claim follows from the fact that the expected reward of the controller is computed as

𝑉𝐶(𝑠𝑝𝑟𝑜𝑑) =
∑︁

𝑢𝐶∈𝑈𝐶

[︀
𝜇(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶)

∑︁
𝑢𝐴∈𝑈𝐴

𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴)

·
∑︁
𝑠′𝑝𝑟𝑜𝑑

𝑃𝑝𝑟𝑜𝑑(𝑠
′
𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴)(𝑊 (𝑠′𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴) + 𝑉𝐶(𝑠

′
𝑝𝑟𝑜𝑑))

]︀
. (6.7)

Given that 𝜇′(𝑠𝑝𝑟𝑜𝑑) = 𝜇(𝑠𝑝𝑟𝑜𝑑) for all 𝑠𝑝𝑟𝑜𝑑 ∈ 𝑆2 and the facts that 𝑉 (𝑠𝑝𝑟𝑜𝑑) = 0 and
𝑊 (𝑠𝑝𝑟𝑜𝑑|𝑠′𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴) = 0 for all 𝑠𝑝𝑟𝑜𝑑 ∈ 𝑆1, we have that the expected reward obtained
by committing to policy 𝜇′ is no less than that of policy 𝜇 when the initial state is in 𝑆2.
By hypothesis on 𝜇, we have that the proper control policy 𝜇′ corresponds to the highest
expected reward when the initial state is in 𝑆2. Hence, we have a proper control policy
𝜇′ such that the controller receives expected reward no less than committing to improper
policy 𝜇.

6.3.2 A Mixed Integer Non-linear Programming Formulation

In this subsection, we formulate a mixed integer non-linear program (MINLP) to compute
a mixed strategy for the controller using the product SG 𝒢𝑝𝑟𝑜𝑑. By Proposition 6.1, we can
make the following two claims. First, we can restrict the search space of control policy to
the set of proper control policies. Second, solving Problem 6.1 is equivalent to computing a
control policy such that the expected reward 𝑉𝐶 over the initial states is maximized.

Let 𝜒 be the probability distribution over the set of initial states. Then our objective is
to maximize the expected reward of the controller over the set of initial states, i.e.,

max
𝜇,𝜏,𝑉𝐶 ,𝑉𝐴

𝜒⊤𝑉𝐶 .

Next, we construct the set of constraints. Since we consider stationary mixed control
strategy 𝜇 defined on product SG 𝒢𝑝𝑟𝑜𝑑, we have

𝜇(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶) ≥ 0, ∀𝑠𝑝𝑟𝑜𝑑 ∈ 𝑆𝑝𝑟𝑜𝑑, 𝑢𝐶 ∈ 𝑈𝐶 , (6.8)∑︁
𝑢𝐶∈𝑈𝐶

𝜇(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶) = 1, ∀𝑠𝑝𝑟𝑜𝑑 ∈ 𝑆𝑝𝑟𝑜𝑑. (6.9)

Constraints (6.8) and (6.9) give the probability simplex defined for control policy 𝜇 at each
state 𝑠𝑝𝑟𝑜𝑑. Given the stationary control policy 𝜇, the product SG is then reduced to an
Markov decision process (MDP) from the adversary’s perspective. Then by [26], we have
that it is sufficient to only consider pure adversary strategies. Thus, we have the following

64



constraints for adversary’s strategy

𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴) ∈ {0, 1}, ∀𝑠𝑝𝑟𝑜𝑑 ∈ 𝑆𝑝𝑟𝑜𝑑, 𝑢𝐴 ∈ 𝑈𝐴, (6.10)∑︁
𝑢𝐴∈𝑈𝐴

𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴) = 1, ∀𝑠𝑝𝑟𝑜𝑑 ∈ 𝑆𝑝𝑟𝑜𝑑, (6.11)

In the following, we define the constraints on controller’s and adversary’s expected rewards
using big M method [113]. We define state-action value functions for the controller as
𝐵𝐶(𝑠𝑝𝑟𝑜𝑑, 𝜇, 𝑢𝐴), where 𝐵𝐶(𝑠𝑝𝑟𝑜𝑑, 𝜇, 𝑢𝐴) models the controller’s expected reward when start-
ing from state 𝑠𝑝𝑟𝑜𝑑 by committing to strategy 𝜇 and adversary playing action 𝑢𝐴. Following
Lemma 6.1, we can represent 𝐵𝐶(𝑠𝑝𝑟𝑜𝑑, 𝜇, 𝑢𝐴) as

𝐵𝐶(𝑠𝑝𝑟𝑜𝑑, 𝜇, 𝑢𝐴) =
∑︁
𝑢𝐶

𝜇(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶)

·

⎡⎣∑︁
𝑠′𝑝𝑟𝑜𝑑

𝑃𝑝𝑟𝑜𝑑(𝑠
′
𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴)(𝑊 (𝑠′𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴) + 𝑉𝐶(𝑠

′
𝑝𝑟𝑜𝑑))

⎤⎦ . (6.12)

Then the controller’s expected reward 𝑉𝐶(𝑠𝑝𝑟𝑜𝑑) can be upper bounded for all 𝑠𝑝𝑟𝑜𝑑 and 𝑢𝐴
as

𝑉𝐶(𝑠𝑝𝑟𝑜𝑑) ≤ 𝐵𝐶(𝑠𝑝𝑟𝑜𝑑, 𝜇, 𝑢𝐴) + (1− 𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴))𝑍, (6.13)

where 𝑍 is a sufficiently large positive number. In particular, when 𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴) = 1, i.e., the
adversary’s best response is to play action 𝑢𝐴, the RHS of (6.13) equals to 𝐵𝐶(𝑠𝑝𝑟𝑜𝑑, 𝜇, 𝑢𝐴),
when 𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴) = 0, i.e., the adversary’s best response is not 𝑢𝐴, the constraint (6.13)
becomes 𝑉𝐶(𝑠𝑝𝑟𝑜𝑑) ≤ ∞, and it holds automatically.

Similarly, let 𝐵𝐴(𝑠𝑝𝑟𝑜𝑑, �̃�, 𝑢𝐴) be the state-action value function for the adversary, which
models the adversary’s expected reward when it perceives controller’s strategy �̃� and plays
action 𝑢𝐴, starting from state 𝑠𝑝𝑟𝑜𝑑. Then 𝐵𝐴(𝑠𝑝𝑟𝑜𝑑, �̃�, 𝑢𝐴) can be represented as

𝐵𝐴(𝑠𝑝𝑟𝑜𝑑, �̃�, 𝑢𝐴) =
∑︁
𝑢𝐶

�̃�(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶)

·

⎡⎣∑︁
𝑠′𝑝𝑟𝑜𝑑

𝑃𝑝𝑟𝑜𝑑(𝑠
′
𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴)(−𝑊 (𝑠′𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴) + 𝑉𝐴(𝑠

′
𝑝𝑟𝑜𝑑))

⎤⎦ , (6.14)

where �̃� is obtained by the anchoring bias model (6.1). The expected reward for the adver-
sary 𝑉𝐴(𝑠𝑝𝑟𝑜𝑑) can then be upper and lower bounded for all 𝑠𝑝𝑟𝑜𝑑 and 𝑢𝐴 as follows:

𝐵𝐴(𝑠𝑝𝑟𝑜𝑑, �̃�, 𝑢𝐴) ≤ 𝑉𝐴(𝑠𝑝𝑟𝑜𝑑) ≤ 𝐵𝐴(𝑠𝑝𝑟𝑜𝑑, �̃�, 𝑢𝐴) + (1− 𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴))𝑍, (6.15)

where 𝑍 is a sufficiently large positive number. When 𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴) = 1, i.e., the adver-
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sary’s best response is to play action 𝑢𝐴, constraint (6.15) is identical to Lemma 6.1, when
𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴) = 0, i.e., the adversary’s best response is not 𝑢𝐴, constraint (6.15) can always
be satisfied by tuning 𝑍.

We finally state the MINLP formulation as follows:

max
𝜇,𝜏,𝑉𝐶 ,𝑉𝐴

𝜒⊤𝑉𝐶 (6.16)

s.t. Eqn. (6.1) (6.8) (6.9) (6.10) (6.11) (6.13) and (6.15)

6.3.3 Exact Algorithm for Problem 6.1

In this subsection, we present a method to solve Problem 6.1 which is based on model
reference adaptive search (MRAS). The method is shown to be probabilistically complete,
i.e., with probability one the algorithm converges to the optimal solution. The idea behind
MRAS method is that it makes the parameterized distribution 𝑓(·, 𝛼) converges to a reference
distribution that is implicitly encoded in the algorithm.

MRAS method focuses on (potentially nonconvex) optimization problem that has a
unique global optimal solution. However, the MINLP formulated in this chapter possibly
has infinitely many optimal solutions, i.e., the control policies in SE are not unique. In the
following, we first validate the MRAS method under our problem setting by characterizing
the reference distribution. Then we give details of the exact solution approach.

Let 𝜇 be the set of feasible control policies. The controller’s expected reward associated
with control strategy 𝜇 ∈ 𝜇 is denoted as 𝑉 (𝜇). Let 𝜇* be the set of control policies in
SE, and 𝑉 * be the corresponding controller’s expected reward. We first make the following
assumption [114].

Assumption 6.1. For any 𝜖 < 𝑉 *, the set of control policies {𝜇 : 𝑉 (𝜇) ≥ 𝜖}∩𝜇 has strictly
positive Lebesgue measure.

Assumption 6.1 ensures that any neighborhood of the set optimal control policy 𝜇* has
a positive probability of being selected. The exact algorithm we propose to solve Problem
6.1 is presented in Algorithm 9.

Algorithm 9 works as follows. For each state 𝑠𝑝𝑟𝑜𝑑, a parameterized distribution, denoted
as 𝑓(𝜇𝑠𝑝𝑟𝑜𝑑 , 𝛼𝑠𝑝𝑟𝑜𝑑𝑘 ), defines the distribution over the admissible randomized control policies
𝜇𝑠𝑝𝑟𝑜𝑑 at state 𝑠𝑝𝑟𝑜𝑑. Here, the parameterized distribution at each state 𝑠𝑝𝑟𝑜𝑑 is set as the
Dirichlet distribution. Since we consider stationary control policies, then the probability
of selecting randomized control policy 𝜇 is defined by the joint distribution f(𝜇, 𝛼𝑘) =∏︀
𝑠𝑝𝑟𝑜𝑑

𝑓(𝜇𝑠𝑝𝑟𝑜𝑑 , 𝛼
𝑠𝑝𝑟𝑜𝑑
𝑘 ), where 𝛼𝑘 is the vector comprises 𝛼𝑠𝑝𝑟𝑜𝑑𝑘 for all 𝑠𝑝𝑟𝑜𝑑. Algorithm 9

first initializes the iteration counter 𝑘 and the distribution function f(·, 𝛼0). Also a strictly
increasing function 𝑌 : R ↦→ R+ is specified (e.g., exponential function). Algorithm 9
constructs a sequence of nondecreasing thresholds {𝛾𝑘 : 𝑘 = 0, 1, · · · }. In particular, the

66



Algorithm 9 Exact Algorithm for Problem 6.1.
1: Initialization: Specify 𝜌 ∈ (0, 1], a positive number 𝜀 ≥ 0, a strictly increasing function
𝑌 : R ↦→ R+, and an initial p.d.f. f(·, 𝛼0) > 0 over the set of randomized control policies,
i.e., f : 𝜇 ↦→ [0, 1]. Set the iteration counter 𝑘 ← 0.

2: repeat
3: Calculate the (1− 𝜌)-quantile

𝛾𝑘+1 = sup
𝑙
{𝑙 : P𝛼𝑘

(𝑉 (𝜇) ≥ 𝑙) ≥ 𝜌}.

4: if 𝑘 = 0 then set 𝛾𝑘+1 = 𝛾𝑘+1.
5: else if 𝑘 ≥ 1 then
6: if 𝛾𝑘+1 ≥ 𝛾𝑘 + 𝜖 then set 𝛾𝑘+1 = 𝛾𝑘+1.
7: else set 𝛾𝑘+1 = 𝛾𝑘.
8: end if
9: end if

10: Compute the parameter vector 𝛼𝑘+1 as

𝛼𝑘+1 = argmax
𝛼∈𝛼

E𝛼𝑘

[︂
[𝑌 (𝑉 (𝜇))]𝑘

f(𝜇, 𝛼𝑘)
𝐼{𝑉 (𝜇)≥𝛾𝑘+1} · ln f(𝜇, 𝛼)

]︂
(6.17)

11: until 𝑉 (𝜇𝑘) = 𝑉 (𝜇𝑘−1) = · · · = 𝑉 (𝜇𝑘−𝑑)

67



threshold 𝛾𝑘 at iteration 𝑘 is constructed by computing the (1− 𝜌) quantile 𝛾𝑘+1 as shown
in line 4. By [115], given a value 𝜌𝑘 and p.d.f. f(𝜇, 𝛼𝑘), the quantile evaluation at each
iteration 𝑘 can be accomplished by solving the following optimization problem.

min
𝑙

E𝛼𝑘
𝜑(𝑉 (𝜇), 𝑙)

s.t. 𝑙 ∈ [0, 𝑉 *]

where

𝜑(𝑉 (𝜇), 𝑣) =

{︃
(1− 𝜌𝑘)(𝑉 (𝜇)− 𝑙), if 𝑙 ≤ 𝑉 (𝜇)

𝜌𝑘(𝑙 − 𝑉 (𝜇)), if 𝑙 ≥ 𝑉 (𝜇)
.

The optimization problem is convex in 𝑙 and thus can be solved efficiently. If 𝛾𝑘+1 increases
at least 𝜀 (line 7 is visited) , 𝛾𝑘+1 is updated to be 𝛾𝑘+1. Otherwise the quantile value is set
as the one from previous iteration. Algorithm 9 finally updates the parameter as shown in
line 11. Given that 𝑓(·, 𝛼𝑠𝑝𝑟𝑜𝑑𝑘 ) is the p.d.f. of Dirichlet distribution, the parameter updating
rule (6.17) can be rewritten as

𝛼
𝑠𝑝𝑟𝑜𝑑
𝑘+1 = argmax

𝛼
E𝛼𝑘

[︂
[𝑌 (𝑉 (𝜇))]𝑘

f(𝜇, 𝛼𝑘)
𝐼{𝑉 (𝜇)≥𝛾𝑘+1} ln 𝑓(𝜇

𝑠𝑝𝑟𝑜𝑑 , 𝛼𝑠𝑝𝑟𝑜𝑑)

]︂
, ∀𝑠𝑝𝑟𝑜𝑑 ∈ 𝑆𝑝𝑟𝑜𝑑

We observe that the parameter update amounts on solving a convex program, and hence
can be solved efficiently.

In the following, we characterize the parameter update rule [114].

Lemma 6.2. The parameter 𝛼𝑘 computed as shown in Algorithm 9 minimizes the K-L diver-
gence between reference distribution 𝑔𝑘(𝜇) and f(·, 𝛼𝑘) at each iteration, where the reference
distribution 𝑔𝑘(𝜇) is defined inductively as

𝑔1(𝜇) =
𝐼{𝑉 (𝜇)≥𝛾𝑘+1}

E𝛼0

[︁
𝐼{𝑉 (𝜇)≥𝛾𝑘+1}

f(𝜇,𝛼0)

]︁
𝑔𝑘+1(𝜇) =

𝑌 (𝑉 (𝜇))𝐼{𝑉 (𝜇)≥𝛾𝑘+1}𝑔𝑘(𝜇)

E𝑔𝑘
[︀
𝑌 (𝑉 (𝜇))𝐼𝑉 (𝜇)≥𝛾𝑘+1

]︀ , 𝑘 = 1, 2, · · ·

Proof. See [114] for the proof.

By Lemma 6.2, we have that a sequence of reference distributions 𝑔𝑘(𝜇) are encoded in
Algorithm 9, and the reference distribution is in the form of:

𝑔𝑘(𝜇) =
𝑉 (𝜇)𝑔𝑘−1(𝜇)∫︀

𝜇 𝑉 (𝜇)𝑔𝑘−1(𝜇) d𝜇
. (6.18)
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We characterize the reference distribution as follows:

Lemma 6.3. The controller’s expected reward with respect to the reference distribution 𝑔(𝜇)
is monotone non-decreasing. Moreover, the expected reward converges to the optimal reward
𝑉 * as 𝑘 →∞.

Proof. By definition of reference distribution (6.18), we have

E𝑔𝑘 [𝑉 (𝜇)] =

∫︁
𝜇
𝑉 (𝜇)𝑔𝑘(𝜇) d𝜇

=

∫︁
𝜇
𝑉 (𝜇)

𝑉 (𝜇)𝑔𝑘−1(𝜇)∫︀
𝜇 𝑉 (𝜇)𝑔𝑘−1(𝜇) d𝜇

d𝜇

=
E𝑔𝑘−1

[𝑉 (𝜇)2]

E𝑔𝑘−1
[𝑉 (𝜇)]

≥ E𝑔𝑘−1
[𝑉 (𝜇)],

where the third equality holds by the definition of expectation, and the last inequality holds
by the fact that E[𝑣2] = E[𝑣]2 + 𝜎2, where 𝑣 is a random variable and 𝜎2 is the variance of
𝑣. Thus we have that the expectation of controller’s reward with respect to the reference
distribution is monotone non-decreasing.

Next we show the sequence converges to the optimal reward 𝑉 * by contradiction. By
definition, we have the expected reward is upper bounded by the optimal reward 𝑉 *. Sup-
pose the sequence converges to some value 𝑉 ′ < 𝑉 *. By definition (6.18), we rewrite the
reference distribution at 𝑘th iteration as

𝑔𝑘(𝜇) =

𝑘∏︁
𝑖=1

𝑉 (𝜇)𝑘

E𝑔𝑖 [𝑉 (𝜇)]
𝑔1(𝜇). (6.19)

Let �̄� = {𝜇|𝑉 (𝜇) > 𝑉 ′} be the set of control policies that can achieve reward no worse than
𝑉 ′. Given that E𝑔𝑖 [𝑉 (𝜇)] is monotone non-decreasing with respect to 𝑖 and converges to 𝑉 ′,
we have 𝑉 (𝜇)/E𝑔𝑖 [𝑉 (𝜇)] > 1 for all 1 ≤ 𝑖 ≤ 𝑘 and 𝜇 ∈ �̄�. Thus we have

lim
𝑘→∞

𝑔𝑘(𝜇)→∞, ∀𝜇 ∈ �̄�.

Then we obtain contradiction due to the following

1 = lim inf
𝑘→∞

∫︁
𝜇
𝑔𝑘(𝜇) d𝜇 ≥ lim inf

𝑘→∞

∫︁
�̄�
𝑔𝑘(𝜇) d𝜇 ≥

∫︁
�̄�
lim inf
𝑘→∞

𝑔𝑘(𝜇) d𝜇 =∞,

where the first equality holds by the definition of p.d.f., the first inequality holds since �̄� ⊆ 𝜇,
the second inequality holds by Fatou’s Lemma, and the last equality holds by Assumption

69



6.1. Therefore we have
lim
𝑘→∞

E𝑔𝑘 [𝑉 (𝜇)] = 𝑉 *.

Lemma 6.3 characterizes the controller’s expected reward with respect to the reference
distribution. In the following, we show that the support of the reference distribution con-
verges to the set of optimal control policies.

Lemma 6.4. The reference distribution converges to a distribution whose support is con-
tained in the set of optimal control policies 𝜇*.

Proof. We prove by contradiction. Suppose the sequence converges to some a distribution
whose support is 𝜇* ∪ 𝜇′, where 𝜇′ ⊆ 𝜇 is a subset of control policies containing some
non-optimal control policies. Therefore, there exists some control policy 𝜇′ ∈ 𝜇′ such that
lim𝑘→∞ 𝑔𝑘(𝜇

′) > 0. Moreover, since 𝜇′ is non-optimal, we have 𝑉 (𝜇′) < 𝑉 *. Then we have
lim𝑘→∞ E𝑔𝑘 [𝑉 (𝜇)] < 𝑉 *, which contradicts Lemma 6.3. Hence, we have that the probability
density at non-optimal policies converges to zero as 𝑘 → ∞. Since

∫︀
𝜇 𝑔𝑘(𝜇) d𝜇 = 1, we

further have that the support of the reference probability distribution is the set of optimal
control policies 𝜇* as 𝑘 →∞.

Lemma 6.4 implies that when the set of optimal control policies is discrete and finite,
the reference distribution converges to 𝑛-point degenerate distribution as 𝑘 → ∞, with a
Dirac delta function spike at each 𝜇* in SE; When the set of optimal control policies is
continuous and infinite, the reference distribution converges to a hypersurface such that all
optimal control policies lie on it.

Lemma 6.2, Lemma 6.3, and Lemma 6.4 imply that Algorithm 9 attempts to shrink
the distribution 𝑓(·, 𝛼𝑠𝑝𝑟𝑜𝑑) to the neighbor of optimal control policies by iteratively updat-
ing parameter as (6.17). Before presenting the optimal control policy, we first give some
preliminary results [114].

Lemma 6.5. Represent the distribution 𝑓(𝜇𝑠𝑝𝑟𝑜𝑑 , 𝛼𝑠𝑝𝑟𝑜𝑑) in the form of exponential family
as 𝑓(𝜇𝑠𝑝𝑟𝑜𝑑 , 𝛼𝑠𝑝𝑟𝑜𝑑) = ℎ(𝜇𝑠𝑝𝑟𝑜𝑑) exp {𝛽(𝛼𝑠𝑝𝑟𝑜𝑑)𝐿𝑠𝑝𝑟𝑜𝑑(𝜇𝑠𝑝𝑟𝑜𝑑)− 𝑎(𝛽)} for some functions ℎ(·),
𝛽(·), 𝐿𝑠𝑝𝑟𝑜𝑑(·), and 𝐴(·). Then we have

• the equality E𝛼𝑘+1
[𝐿𝑠𝑝𝑟𝑜𝑑(𝜇)] = E𝑔𝑘+1

[𝐿𝑠𝑝𝑟𝑜𝑑(𝜇)] holds for all 𝑘 = 0, 1, · · · and 𝑠𝑝𝑟𝑜𝑑 ∈
𝑆𝑝𝑟𝑜𝑑.

• the equality lim𝑘→∞ E𝛼𝑘+1
[𝐿𝑠𝑝𝑟𝑜𝑑(𝜇)] = 𝐿𝑠(𝜇𝑠𝑝𝑟𝑜𝑑

*
) holds.

In the following, we give the optimal control policy.

Lemma 6.6. When the marginal distribution 𝑓(·, 𝛼𝑠𝑝𝑟𝑜𝑑𝑘 ) is set as Dirichlet distribution, we
have that

exp

{︂
lim
𝑘→∞

E
𝛼
𝑠𝑝𝑟𝑜𝑑
𝑘

[ln(𝜇𝑠𝑝𝑟𝑜𝑑)]

}︂
= 𝜇𝑠𝑝𝑟𝑜𝑑

*
, ∀𝑠𝑝𝑟𝑜𝑑 ∈ 𝑆𝑝𝑟𝑜𝑑.

70



Proof. Rewrite the p.d.f. of Dirichlet distribution into the form of exponential family. By
Lemma 6.5, we have that the optimal control policy satisfies

lim
𝑘→∞

E
𝛼
𝑠𝑝𝑟𝑜𝑑
𝑘

[ln(𝜇𝑠𝑝𝑟𝑜𝑑)] = ln𝜇𝑠𝑝𝑟𝑜𝑑
*
, ∀𝑠𝑝𝑟𝑜𝑑 ∈ 𝑆𝑝𝑟𝑜𝑑

Taking the exponential on both sides, then we have the optimal control policy can be
obtained as

exp

{︂
lim
𝑘→∞

E
𝛼
𝑠𝑝𝑟𝑜𝑑
𝑘

[ln(𝜇𝑠𝑝𝑟𝑜𝑑)]

}︂
= 𝜇𝑠𝑝𝑟𝑜𝑑

*
, ∀𝑠𝑝𝑟𝑜𝑑 ∈ 𝑆𝑝𝑟𝑜𝑑.

6.3.4 Approximate Algorithm for Problem 6.1

Although Algorithm 9 is probabilistically complete, its convergence rate suffers from the
problem scale. In this subsection, we present a heuristic based approximate algorithm that
returns a possible sub-optimal solution.

Algorithm 10 Approximate solution for problem 6.1
1: Sample a set of control policies 𝜇1, · · · , 𝜇𝐻
2: Let ℋ ← {𝑉 (𝜇1), · · · , 𝑉 (𝜇𝐻)}, 𝒱 ← ∅,
3: for 𝑉 (𝜇ℎ) ∈ ℋ do
4: 𝑘 ← 0
5: repeat
6: Solve MILP (6.20) to obtain expected reward 𝑉 𝑘

𝐶 .
7: 𝑘 ← 𝑘 + 1
8: until 𝜒⊤𝑉 𝑘

𝐶 − 𝜒⊤𝑉 𝑘−1
𝐶 ≤ 𝜖 or MILP (6.20) is infeasible.

9: if termination condition 𝜒⊤𝑉 𝑘
𝐶 − 𝜒⊤𝑉 𝑘−1

𝐶 ≤ 𝜖 is satisfied then
10: 𝒱 ← 𝒱 ∪ {𝜒⊤𝑉 𝑘

𝐶}
11: else termination condition ‘MILP (6.20) is infeasible’ is satisfied
12: 𝒱 ← 𝒱 ∪ {𝜒⊤𝑉 𝑘−1

𝐶 }
13: end if
14: end for
15: if 𝒱 = ∅ then
16: Return to step 2
17: else
18: ℎ* ← argmax{𝑉 (𝜇ℎ)|ℎ = 1, · · · , 𝐻}
19: 𝜇← policy obtained from 𝑉 (𝜇ℎ*)
20: return 𝜇
21: end if
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The approximate algorithm is detailed in Algorithm 10. Algorithm 10 first initializes a
set of control policies 𝜇1, · · · , 𝜇𝐻 . The initialization can be achieved by randomly sampling
the control policies in 𝜇. Given each sampled control policy 𝜇ℎ, the product SG 𝒢 reduces
to an MDP. Then by solving the optimal control problem from the perspective of adversary
on the MDP [34, 28, 30, 26], we can obtain the best response 𝜏ℎ from the adversary. Given
control and adversary policies 𝜇ℎ and 𝜏ℎ, we can compute the controller’s expected reward
𝑉𝐶 associated with the control policy 𝜇ℎ, denoted as 𝑉 (𝜇ℎ).

For each initial controller’s expected reward 𝑉 (𝜇ℎ), Algorithm 10 then invokes a value
iteration based module (line 5 - line 8) to iteratively search for controller’s expected reward.
The value iteration module first initializes the iteration index 𝑘. Then it reduces the MINLP
to MILP, which is detailed in Eqn. (6.20), to solve for a higher expected reward.

max
𝜇,𝜏,𝑉𝐶 ,𝑉𝐴

𝜒⊤𝑉𝐶 (6.20)

s.t. 𝑉𝐶(𝑠𝑝𝑟𝑜𝑑) ≤ 𝐵𝑘
𝐶(𝑠𝑝𝑟𝑜𝑑, 𝜇, 𝑢𝐴) + (1− 𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴)𝑍, ∀𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴

𝐵𝑘
𝐴(𝑠𝑝𝑟𝑜𝑑, 𝜇, 𝑢𝐴) ≤ 𝑉𝐴(𝑠𝑝𝑟𝑜𝑑) ≤ 𝐵𝑘

𝐴(𝑠𝑝𝑟𝑜𝑑, 𝜇, 𝑢𝐴) + (1− 𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴))𝑍, ∀𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴
Eqn. (6.1) (6.8) (6.9) (6.10) (6.11)

where

𝐵𝑘
𝐶(𝑠𝑝𝑟𝑜𝑑, 𝜇, 𝑢𝐴) =

∑︁
𝑢𝐶

𝜇(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶)[︀ ∑︁
𝑠′𝑝𝑟𝑜𝑑

𝑃𝑝𝑟𝑜𝑑(𝑠
′
𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴)(𝑊 (𝑠′𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴) + 𝑉 𝑘

𝐶 (𝑠
′
𝑝𝑟𝑜𝑑))

]︀
, (6.21)

𝐵𝑘
𝐴(𝑠𝑝𝑟𝑜𝑑, �̃�, 𝑢𝐴) =

∑︁
𝑢𝐶

�̃�(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶)[︀ ∑︁
𝑠′𝑝𝑟𝑜𝑑

𝑃𝑝𝑟𝑜𝑑(𝑠
′
𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴)(−𝑊 (𝑠′𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴) + 𝑉 𝑘

𝐴(𝑠
′
𝑝𝑟𝑜𝑑))

]︀
, (6.22)

The nonlinear terms 𝐵𝐶(𝑠𝑝𝑟𝑜𝑑, 𝜇, 𝑢𝐴) and 𝐵𝐴(𝑠𝑝𝑟𝑜𝑑, �̃�, 𝑢𝐴) that appear in MINLP (6.16) are
replaced by linear terms𝐵𝑘

𝐶(𝑠𝑝𝑟𝑜𝑑, 𝜇, 𝑢𝐴) and𝐵𝑘
𝐴(𝑠𝑝𝑟𝑜𝑑, �̃�, 𝑢𝐴). Thus the MINLP is converted

to an MILP. The value iteration module terminates when the improvement between two
iterations is below some threshold 𝜖 or the MILP (6.20) becomes infeasible. Then the set 𝒱
is updated by adding the last feasible expected reward into it.

After 𝐻 iterations, if no feasible expected reward is obtained, Algorithm 10 restarts
from line 2. Otherwise, the control policy that gives the highest expected reward among 𝒱
is returned as the result.

The convergence of Algorithm 10 is presented in the following theorem.

Theorem 6.1. Algorithm 10 converges in finite time.

Before presenting the proof of Theorem 6.1, we first introduce two operators denoted as
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𝑇𝜇 : R|𝑆𝑝𝑟𝑜𝑑| → R|𝑆𝑝𝑟𝑜𝑑| and 𝑇 : R|𝑆𝑝𝑟𝑜𝑑| → R|𝑆𝑝𝑟𝑜𝑑| as follows:

𝑇𝜇𝑉𝐶(𝑠𝑝𝑟𝑜𝑑) = min
𝜏∈ℬℛ(�̃�)

∑︁
𝑢𝐶∈𝑈𝐶

𝜇(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶)
∑︁

𝑢𝐴∈𝑈𝐴

𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴)
∑︁
𝑠′𝑝𝑟𝑜𝑑

·
[︀
𝑃𝑝𝑟𝑜𝑑(𝑠

′
𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴)(𝑊 (𝑠′𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴) + 𝑉𝐶(𝑠

′
𝑝𝑟𝑜𝑑))

]︀
, (6.23)

𝑇𝑉𝐶(𝑠𝑝𝑟𝑜𝑑) = max
𝜇

min
𝜏∈ℬℛ(�̃�)

∑︁
𝑢𝐶∈𝑈𝐶

𝜇(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶)
∑︁

𝑢𝐴∈𝑈𝐴

𝜏(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴)
∑︁
𝑠′𝑝𝑟𝑜𝑑

·
[︀
𝑃𝑝𝑟𝑜𝑑(𝑠

′
𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴)(𝑊 (𝑠′𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴) + 𝑉𝐶(𝑠

′
𝑝𝑟𝑜𝑑))

]︀
, (6.24)

The following lemmas characterizes the operator 𝑇𝜇.

Lemma 6.7. For any vectors 𝑉 and 𝑉 ′ such that 𝑉 ≤ 𝑉 ′, we have 𝑇 𝑘𝜇𝑉 ≤ 𝑇 𝑘𝜇𝑉
′ for all

policies 𝜇 and 𝑘, where 𝑇 𝑘𝜇 (·) iteratively applying 𝑇𝜇 operator 𝑘 times.

Proof. By the definitions given in Eqn. (6.23) and (6.24), we can view the operator 𝑇 𝑘𝜇 as
the total expected reward collected from a 𝑘-stage problem with cost per stage �̃� 𝑘(𝑠𝑝𝑟𝑜𝑑).
Increasing 𝑉 is equivalent to increasing the terminal reward (e.g., the reward collected
when reaching the destination) in the 𝑘-stage problem. Since cost per stage is fixed, hence
increasing 𝑉 will increase the expected total reward in the 𝑘-stage problem, which implies
monotonicity of 𝑇 𝑘𝜇 .

Lemma 6.8. Denote the expected reward induced by proper control policy 𝜇 and adversary
policy 𝜏 ∈ ℬℛ(�̃�) as 𝑉 𝜇𝜏

𝐶 . Then 𝑉 𝜇𝜏
𝐶 satisfies lim𝑀→∞(𝑇𝑀𝜇 𝑉𝐶) = 𝑉 𝜇𝜏

𝐶 .

Proof. Since we focus on stationary policies, then by inducting Lemma 6.1, 𝑇𝑀𝜇 𝑉𝐶 can be
represented as

𝑇𝑀𝜇 𝑉𝐶 = 𝑃𝜇𝜏𝑝𝑟𝑜𝑑
𝑀
𝑉𝐶 +

𝑀−1∑︁
𝑚=0

(︁
𝑃𝜇𝜏𝑝𝑟𝑜𝑑

)︁𝑚
�̃� , (6.25)

where 𝑃𝜇𝜏𝑝𝑟𝑜𝑑 is the transition matrix of the Markov chain induced by control policy 𝜇 and
adversary policy 𝜏 . Since the control policy 𝜇 is proper, we can eventually reach the set
of destination states with probability 1. By definition (6.2), no reward can be collected
when starting from destination states. Therefore, we have lim𝑀→∞ 𝑃𝜇𝜏𝑀𝑉𝐶 = 0. Then, by
taking limit on both sides of Eqn. (6.25) as 𝑀 tends to infinity, we have lim𝑚→∞ 𝑇𝑀𝜇 𝑉𝐶 =

lim𝑀→∞
∑︀𝑀−1

𝑚=0

(︁
𝑃𝜇𝜏𝑝𝑟𝑜𝑑

)︁𝑚
�̃� . By the definition of 𝑉 𝜇𝜏

𝐶 , we have lim𝑀→∞(𝑇𝑀𝜇 𝑉𝐶) = 𝑉 𝜇𝜏
𝐶 ,

and hence Lemma 6.8 is proved.

Finally, we have the following proposition.

Proposition 6.2. The optimal expected total reward for the controller at each iteration 𝑘
satisfies 𝑉 𝑘

𝐶 = 𝑇𝑉 𝑘−1
𝐶 .
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Proof. Suppose the expected reward for the controller is 𝑉 𝑘
𝐶 at some iteration 𝑘 such that

𝑉 𝑘
𝐶 ̸= 𝑇𝑉 𝑘−1

𝐶 . If 𝑉 𝑘
𝐶 > 𝑇𝑉 𝑘−1

𝐶 , we have that 𝑉 𝑘
𝐶 is not a feasible solution to MILP (6.20).

If 𝑉 𝑘
𝐶 < 𝑇𝑉 𝑘−1

𝐶 , then starting from 𝑉 𝑘
𝐶 , we can always search along some direction in the

feasible region of (6.20) until we reach the boundary of the feasible region to find some
𝑉 𝑘
𝐶 ≥ 𝑉 𝑘

𝐶 . Hence, 𝑉 𝑘
𝐶 is not the optimal solution to (6.20). Therefore, we have 𝑉 𝑘

𝐶 = 𝑇𝑉 𝑘−1
𝐶

holds.

In the following, we present the proof of Theorem 6.1.

Proof. (Proof of Theorem 6.1.) We show that Algorithm 10 terminates within finite itera-
tions because both outer and inner loops terminate within finite iterations.

First, the outer loop executes exactly |ℋ| times and thus the outer loop terminates within
finite iterations.

Next, we show at each outer loop iteration 𝑡, the value iteration module converges within
finite time. It is obvious that the inner loop terminates when the initial guess on 𝑉𝐶 is not
feasible. In the following we focus on the feasible case. Let 𝑘 be the iteration index of value
iteration (line 3 to line 7). Let us denote the expected reward of the controller induced by
control policy 𝜇𝑘 and adversary policy 𝜏𝑘 ∈ ℬℛ(𝜇𝑘) at each iteration 𝑘 as 𝑉 𝑘

𝐶 . Let the
expected reward of each transition starting from state 𝑠𝑝𝑟𝑜𝑑 and the transition matrix under
control policy 𝜇𝑘 and adversary policy 𝜏𝑘 respectively be

�̃� 𝑘(𝑠𝑝𝑟𝑜𝑑) =
∑︁
𝑢𝐶

∑︁
𝑢𝐴

∑︁
𝑠′𝑝𝑟𝑜𝑑

𝜇𝑘(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶)𝜏
𝑘(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴)𝑊 (𝑠′𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴)

𝑃 𝑘(𝑠′𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑) =
∑︁
𝑢𝐶

𝜇𝑘(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶)
∑︁
𝑢𝐴

𝜏𝑘(𝑠𝑝𝑟𝑜𝑑, 𝑢𝐴)𝑃𝑝𝑟𝑜𝑑(𝑠
′
𝑝𝑟𝑜𝑑|𝑠𝑝𝑟𝑜𝑑, 𝑢𝐶 , 𝑢𝐴)

By Lemma 6.1 and Proposition 6.2, we observe that 𝑉 𝑘+1
𝐶 = 𝑇𝑉 𝑘

𝐶 is equivalent to find-
ing a control policy 𝜇𝑘+1 such that 𝑇𝜇𝑘+1𝑉 𝑘

𝐶 = 𝑇𝑉 𝑘
𝐶 . Therefore 𝑉 𝑘

𝐶 = 𝑇𝜇𝑘𝑉
𝑘
𝐶 = �̃� 𝑘 +

𝑃 𝑘𝑉 𝑘
𝐶 ≤ �̃� 𝑘+1 + 𝑃 𝑘+1𝑉 𝑘

𝐶 = 𝑇𝜇𝑘+1𝑉 𝑘
𝐶 , where the inequality holds by definition (6.23) and

(6.24), i.e., 𝑇𝜇𝑘𝑉 𝑘
𝐶 ≤ 𝑇𝑉 𝑘

𝐶 . View 𝑉 𝑘
𝐶 as 𝑇 0

𝜇𝑘+1𝑉
𝑘
𝐶 . Then composing 𝑇𝜇𝑘+1 𝑚 times and

taking the limit as 𝑚 → ∞, by Lemma 6.7, we can construct a sequence of inequali-
ties 𝑉 𝑘

𝐶 ≤ 𝑇𝜇𝑘+1𝑉 𝑘
𝐶 , 𝑇𝜇𝑘+1𝑉 𝑘

𝐶 ≤ 𝑇 2
𝜇𝑘+1𝑉

𝑘
𝐶 , · · · , 𝑇

𝑚−1
𝜇𝑘+1 𝑉

𝑘
𝐶 ≤ 𝑇𝑚

𝜇𝑘+1𝑉
𝑘
𝐶 . Therefore, we have

𝑉 𝑘
𝐶 ≤ lim𝑚→∞ 𝑇𝑚

𝜇𝑘+1𝑉
𝑘
𝐶 = 𝑉 𝑘+1

𝐶 , where the convergence of 𝑇𝑚𝜇 follows from Lemma 6.8.
Hence, the expected reward increases with respect to the number of iterations 𝑘. Since 𝑉𝐶
is upper bounded by

∑︀
𝜑∈Φ 𝑟(𝜑), we claim that the value iteration module converges within

finite time.

We finally remark that when the anchoring bias parameter 𝜆 = 0, Algorithm 10 becomes
an exact algorithm, i.e., the control policy returned by Algorithm 10 is optimal. We also
discuss the advantages and disadvantages of each algorithm. Algorithm 9 returns the optimal
control policy with probability one. However, the convergence rate is relatively slow, and
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Figure 6-1: Fig. 6-1a presents the grid world that the patrol unit and intruder interact
within. The initial locations of the patrol unit and intruder are 𝑠1,1 and 𝑠3,2, respectively.
The target grid is 𝑠2,3, and the obstacle region is 𝑠3,3. Fig. 6-1b shows the illustration
of the stochastic game. The row index gives the grid that the patrol unit is located in,
while the column index gives the grid that the intruder is located in. The cells colored in
black with row index 9 are the obstacles that the patrol unit needs to avoid, and the cells
colored in black with column index 9 are the obstacles that the intruder needs to avoid. The
cells located on the minor diagonal are the ones that models the event that the patrol unit
captures the intruder, i.e., the locations of the patrol unit and intruder coincide.

hence the scalability of Algorithm 9 needs to be improved. Algorithm 10 addresses the slow
convergence rate incurred by Algorithm 9. Moreover, it significantly reduces the memory and
computation cost comparing to discretizaiton-based approach [113] and some other global
optimization techniques such as spatial-and-bound [116]. However, Algorithm 10 does not
provide completeness guarantee and it may return a sub-optimal control policy.

6.4 Case Study

In this section, we present a numerical case study on patrolling security game involving
a defender and adversary. The defender has one patrol unit, and the adversary has one
intruder. The case study is implemented on a Macbook Pro with a 2.6GHz Intel Core i5
CPU and 8GB RAM.

We consider a PSG played in a 3× 3 grid world with uniform grid size as shown in Fig.
6-1a. We index each grid 𝑠 in the grid world using their row and column indices as 𝑠𝑟,𝑐,
where 𝑟 is the row index and 𝑐 is the column index. For instance, the grid located at bottom
left corner is denoted as 𝑠1,1, and the cell located at the upper right corner is denoted as
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(a)

(b)

Figure 6-2: The complete DFAs associated with specification 𝜑1 and 𝜑3. Fig.6-2a is the
DFA for specification 𝜑1 = ¬𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 U 𝑡𝑎𝑟𝑔𝑒𝑡. Fig. 6-2b is the DFA for specification
𝜑2 = 3𝑐𝑎𝑝𝑡𝑢𝑟𝑒_𝑖𝑛𝑡𝑟𝑢𝑑𝑒𝑟 ∨3𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑦_𝑎𝑣𝑜𝑖𝑑_𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒.
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Figure 6-3: Fig. 6-3a shows the expected reward that the patrol unit can obtain by com-
mitting to the control policy synthesized following Algorithm 9 at each iteration when the
initial locations of the patrol unit and intruder are 𝑠1,1 and 𝑠3,1, respectively. Fig. 6-3b
shows the expected reward for the patrol unit by committing to the control policy synthe-
sized following Algorithm 10 at each iteration when the initial locations of the patrol unit
and intruder are 𝑠1,1 and 𝑠3,1, respectively.

𝑠3,3. In the grid world, we label grid 𝑠2,3 as the target region, and label grid 𝑠3,3 as the
obstacle region.

We consider a single patrol unit. At each grid, the actions available to the patrol unit
are given as 𝑈𝐶 = {𝑁,𝑆,𝑊,𝐸, 𝑠𝑡𝑎𝑦}, where 𝑁 , 𝑆, 𝑊 , 𝐸 represent moving towards north,
south, west, and east, respectively. Action 𝑠𝑡𝑎𝑦 indicates the patrol unit intends to stay at
the current location.
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There exists an intelligent adversary that can intrude the grids in the grid world. Due to
the physical constraints, the adversary can not intrude arbitrary grid. In this case study, we
assume that when the intruder is at grid 𝑠𝑟,𝑐 at time 𝑡, it can only intrude the neighboring
grids of 𝑠𝑟,𝑐 at time 𝑡 + 1. For instance, if the intruder is located at 𝑠3,1 at time 𝑡, it
can only intruder one of the grids in {𝑠3,2, 𝑠2,1} at time 𝑡 + 1. To capture which state
is to be intruded at the next time step, the action set of the intruder is given as 𝑈𝐴 =
{𝑖𝑛𝑡𝑟𝑢𝑑𝑒_𝑁, 𝑖𝑛𝑡𝑟𝑢𝑑𝑒_𝑆, 𝑖𝑛𝑡𝑟𝑢𝑑𝑒_𝐸, 𝑖𝑛𝑡𝑟𝑢𝑑𝑒_𝑊}. The intruder does not have an action
𝑠𝑡𝑎𝑦 as the patrol unit does, and thus the intruder cannot intrude the same grid in two
consecutive time steps. We assume the adversary has deterministic dynamics, that is, when
the adversary issues command indicating the intrusion at grid 𝑠𝑟,𝑐, no other grids will be
intruded except 𝑠𝑟,𝑐.

In this case study, the defender is given the following specifications. First, the vehicle
is given a reach-avoid specification. Moreover, the patrol unit must capture the intruder
or force the intruder collide with the obstacle. The specifications given to the defender are
detailed as follows.

• The patrol unit must satisfy the reach-avoid specification, i.e., the patrol unit needs
to eventually reach the target region while avoiding the obstacles. The specification
is represented as 𝜑1 = ¬𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 U 𝑡𝑎𝑟𝑔𝑒𝑡. The vehicle collects reward 𝑟(𝜑1) = 20 by
satisfying specification 𝜑1.

• The vehicle needs to capture the intruder or force the intruder collide with the obstacle,
i.e., 𝜑2 = 3𝑐𝑎𝑝𝑡𝑢𝑟𝑒_𝑖𝑛𝑡𝑟𝑢𝑑𝑒𝑟 ∨ 3𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑦_𝑟𝑒𝑎𝑐ℎ_𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒. The vehicle collects
reward 𝑟(𝜑2) = 50 by satisfying specification 𝜑2.

The complete automaton expressing the specifications are presented in Fig. 6-2a and Fig.
6-2b, respectively.

The patrol unit controlled by the defender and the intruder can each occupy one grid
at each time, respectively. Thus to capture the joint locations of the patrol unit and the
intruder, a stochastic game with 81 states is used as shown in Fig. 6-1b, i.e., the state set
of SG is 𝑆𝑔 × 𝑆𝑔, where 𝑆𝑔 is the set of grids as shown in Fig. 6-1a. For example, the state
whose row and column indicies are 1 and 4 represents the scenario where the patrol unit is
at grid 1 and the intruder is located at grid 4 in the grid world. The labeling function of
the SG is given as follows. The cells colored in black with row index 9 and column index
9 in Fig. 6-1b represent the scenarios where the patrol unit and intruder collides with the
obstacle in Fig. 6-1a, respectively. The target region is the set of states corresponding to
row index 6 in Fig. 6-1b. The set of states lie on the diagonal of Fig. 6-1b are labelled to
𝑐𝑎𝑝𝑡𝑢𝑟𝑒_𝑖𝑛𝑡𝑟𝑢𝑑𝑒𝑟, i.e., the patrol unit and the intruder are located in the same grid in the
grid world. The transition probability is as follow: the game has 0.8 probability to transit
to the state intended by the patrol unit and 0.2/𝑛 to the neighbor states, where 𝑛 is the
number of neighbor states. For example, when the patrol unit is located at 𝑠1,1 which is not
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intruded by the intruder, we have

𝑃 ((𝑠1,2, 𝑠3,2)|(𝑠1,1, 𝑠3,1), 𝐸, 𝑖𝑛𝑡𝑟𝑢𝑑𝑒_𝐸) = 0.8,

𝑃 ((𝑠1,2, 𝑠3,2)|(𝑠1,1, 𝑠3,1), 𝐸, 𝑖𝑛𝑡𝑟𝑢𝑑𝑒_𝐸) = 0.1,

𝑃 ((𝑠1,2, 𝑠3,2)|(𝑠1,1, 𝑠3,1), 𝐸, 𝑖𝑛𝑡𝑟𝑢𝑑𝑒_𝐸) = 0.1,

In the following, we compare the proposed approach with two baselines. The first base-
line, denoted as baseline 1 in the following, is a greedy approach, using which the patrol unit
first attempts to capture the intruder or force the intruder running into the obstacle, and
then navigates to the target region. Baseline 1 greedily minimizes the distance between the
patrol unit and the intruder, and thus steers the patrol unit towards the current location
of the intruder. In baseline 2, the patrol unit attempts to satisfy specification 𝜑1 first, and
then it aims at satisfying specification 𝜑2. In both scenarios, the patrol unit commit to
deterministic control policies. The performances of the two baselines are reported in Fig.
6-4a. We observe that the expected reward of baseline 1 is zero, indicating no specification
is satisfied. The reason is that the intruder can never be captured by the patrol unit. More-
over, the intruder can always roam around the patrol unit to distract it from achieving the
target region. In baseline 2, the patrol unit can reach the target region and hence collect
the reward associated with specification 𝜑1. However, it still cannot capture the intruder or
force it colliding with the obstacle.

We next give the simulation results using the Algorithm 9. The parameters are set
as follows. We set the anchoring bias parameter 𝜆 = 0, i.e., the adversary has perfect
observation over the control policy, and hence the worst-case scenario is considered in this
case study. We let 𝜌 = 0.6, 𝑑 = 3, and 𝜀 = 5. Function 𝑌 (·) is set as the exponential
function. Leveraging the p.d.f. of Dirichilet distribution, the parameter update (6.17) can
be solved by numerically estimating the digamma function Γ′(𝜇)/Γ(𝜇) for each state. We
investigate the expected reward that the patrol unit can obtain when its initial location is
𝑠1,1 and the initial location of the intruder is 𝑠3,1. The relationship between the expected
reward collected by the defender and iteration index is presented in Fig. 6-3a. The following
observations are drawn from Fig. 6-3a. First, the expected reward of the defender is 63.9
given the synthesized policy. Second, the expected reward collected by the defender is
monotone non-decreasing with respect to iteration index, and Algorithm 9 converges within
24 iterations. The comparison of the performances of Algorithm 9 and the two baselines
are given in Fig. 6-4a. We have that Algorithm 9 achieves highest expected reward, while
baseline 1 obtains 0 expected reward and baseline 2 gives expected reward that is higher
than baseline 1 while smaller than the two proposed approaches.

We then report the performance of Algorithm 10. The expected reward that can be col-
lected by the patrol unit using the control policy synthesized by Algorithm 10 is presented
in Fig. 6-3b. We make the following observations. First, the heuristic solution approach
gives expected reward 63.9, which is the same as Algorithm 9. The reason that Algorithm
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Figure 6-4: Fig. 6-4a compares the expected reward collected by the patrol unit using
different approaches. Algorithm 9 achieves the highest expected reward. Algorithm 10 gives
a sub-optimal solution. Baseline 1 and 2 achieves less expected reward compared with the
proposed approaches. Fig. 6-4b gives the the expected reward collected by the patrol unit
using Algorithm 9 and Algorithm 10 under different 𝜆 used in anchoring bias model (6.1).
The value of 𝜆 varies from 0 to 1 with step size 0.1.

10 returns the optimal solution is that 𝜆 = 0 and the game becomes zero-sum. Second,
Algorithm 10 converges faster compared to Algorithm 9. In particular, Algorithm 10 con-
verges within 4 iterations. The comparison of the performances of Algorithm 10 and the
two baselines are given in Fig. 6-4a. We have that Algorithm 10 achieves expected reward
smaller than Algorithm 10 due to sub-optimality, while outperforms baseline 1 and baseline
2.

Next, we give the performances of Algorithm 9 and Algorithm 10 under different 𝜆
used in anchoring bias model (6.1). We vary the value of 𝜆 from 0 to 1, and compute the
expected reward that the patrol unit obtains using Algorithm 9 and Algorithm 10. The
expected rewards of the patrol unit under different 𝜆 using Algorithm 9 and Algorithm
10 are presented in Fig. 6-4b. We make the following observations. First, the patrol unit
obtains lowest expected reward when 𝜆 = 0, i.e., when the adversary has perfect observation
and plays its best response to the control policy. Second, the expected reward collected by
the patrol unit increases as 𝜆 increases. The reason is that the adversary now has limited
observation over the control policy, and hence the adversary’s policy 𝜏 /∈ ℬℛ(𝜇). In this
case, the patrol unit collects higher reward compared with the scenario where 𝜆 = 0. The
last observation is that the patrol unit obtains higher reward using Algorithm 9 than using
Algorithm 10 when 𝜆 ̸= 0. The reason is that Algorithm 10 may converge to a local optimal
solution of MINLP (6.16) while Algorithm 9 returns optimal solution with probability one.
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We finally give the computation time of both approaches. In this case study, there are
486 states in the product game. The construction of the product game takes 60 seconds.
Algorithm 9 takes 592 seconds to converge, and Algorithm 10 takes 49 seconds to converge.
This case study demonstrates the correctness and optimality of our approach. Improving the
scalability by addressing the state explosion and optimizing the implementation in software
is left to our future work.

6.5 Conclusion

In this chapter, we investigated minimum violation control synthesis on concurrent Stack-
elberg stochastic game. The players in the game are the controller and adversary. The
controller is given a set of specifications modeled in scLTL, with each specification assigned
a reward. The objective of the controller is to maximize the expected reward it can obtain
by satisfying the given specifications. A linear anchoring bias model is adopted to model the
limited observation capability of human adversaries. The minimum violation control syn-
thesis is formulated as an MINLP on the product SG. We proposed two algorithms including
an exact algorithm and an approximate algorithm. The exact algorithm is based on MRAS
method. We validated the MRAS method under our problem setting. With probability one,
the exact algorithm converges to an optimal control policy, regardless of the initial input
of the algorithm. The approximate solution approach is a heuristic based algorithm and
may converge to a sub-optimal control policy, depending on the initial input. A numerical
case study on patrolling security game is presented to evaluate the proposed approaches.
The formulation is limited to a fragment of LTL. Extensions to arbitrary LTL formulas are
subject to future work.
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Chapter 7

Optimal Secure Control under LTL
Constraints in Partially Observable
Environments

7.1 Introduction

Chapter 4 to 6 implicitly assume that the state of the stochastic game is fully observable
by both the controller and the adversary. In practice, however, system states may not
be observable. For example, as seen in [117], a robot might only have an estimate of
its location based on the output of a vision sensor. The inability to observe all states
necessitates the use of a framework that accounts for partial observability. For LTL formula
satisfaction in partially observable environments with a single agent, partially-observable
Markov decision processes (POMDPs) can be used to model and solve the problem [77, 1].
However, determining an ‘optimal policy’ for an agent in a partially observable environment
is NP-hard for the infinite horizon case, which was shown in [31]. This demonstrates the
need for techniques to determine approximate solutions.

In this chapter, we study the problem of determining strategies for an controller that
has to satisfy an LTL formula in the presence of an adversary in a partially observable
environment. The controller and the adversary follow a concurrent Stackelberg setting.
Their actions jointly influece the transitions between states. The goal for the controller will
be to synthesize a policy that will maximize the probability of satisfying an LTL formula for
any adversary policy. The policies of the players are represented as finite state controllers
(FSCs). We make the following specific contributions:

• We show that maximizing the satisfaction probability of the LTL formula under any
adversary policy is equivalent to maximizing the probability of reaching a recurrent
set of a Markov chain constructed by composing representations of the environment,
the LTL objective, and the respective agents’ controllers.

81



• We develop a heuristic algorithm to determine controller and adversary FSCs of fixed
sizes that will satisfy the LTL formula with nonzero probability, and show that it
is sound. The search for a controller’s policy that will maximize the probability of
satisfaction of the LTL formula for any adversary policy can then be reduced to a
search among these FSCs.

• We propose a procedure based on value-iteration that maximizes the probability of
satisfying the LTL formula under fixed controller and adversary FSCs. This satis-
faction probability is related to a Stackelberg equilibrium of a partially observable
stochastic game involving the controller and adversary. We also give guarantees on
the convergence of this procedure.

• We study the case when the size of the controller FSC can be changed to improve the
satisfaction probability.

• We present an example to illustrate our approach.

The remainder of this chapter is organized as follows. Section 7.2 presents the concept
of finite state controller and the problem formulation. We give a sound solution approach in
Section 7.3. A numerical case study is presented in Section 7.4. We conclude this chapter
in Section 7.5.

7.2 System Model and Problem Formulation

To capture the inability for the controller and adversary to perfectly observe the state, we
introduce a concept named partially observable stochastic game (POSG), which extends SG
introduced in Definition 3.3. In a POSG, each player receives an observation that is derived
from the state. A POSG is defined as follows.

Definition 7.1 (Partially Observable Stochastic Game). A partially observable stochastic
game is defined by the tuple 𝒢 := (𝑆, 𝑆0, 𝑈𝐶 , 𝑈𝐴, 𝑃,𝒪𝐶 ,𝒪𝐴, 𝑂𝐶 , 𝑂𝐴,Π,ℒ), where 𝑆, 𝑆0, 𝑈𝐶 ,
𝑈𝐴, 𝑃,Π,ℒ are as in Definition 3.3. 𝒪𝐶 and 𝒪𝐴 denote the (finite) sets of observations
available to the controller and adversary. 𝑂* : 𝑆 × 𝒪* → [0, 1] encodes P(𝑜*|𝑠), where
* ∈ {𝐶,𝐴}.

The initial state of the system belongs to 𝑆0 ⊆ 𝑆. A transition from a state 𝑠𝑡 to the next
state 𝑠𝑡+1 at step 𝑡 is determined jointly by the respective actions 𝑢𝐶 and 𝑢𝐴 of the controller
and adversary according to the transition probability function 𝑃 . The functions 𝑂* model
imperfect sensing. In order for 𝑂* to satisfy the conditions of a probability distribution, we
need 𝑂*(𝑜|𝑠) ≥ 0, ∀𝑜 ∈ 𝒪* and

∑︀
𝑜∈𝒪*

𝑂*(𝑜|𝑠) = 1, where * ∈ {𝐶,𝐴}.
The goal of the controller is to synthesize a policy 𝜇, which will be detailed later, to

maximize the probability of satisfying an LTL specification 𝜙. The objective of the adversary
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is to synthesize a policy 𝜏 so as to minimize the satisfaction probability of 𝜙, given the
controller’s policy.

At a state 𝑠𝑡, the adversary makes an observation, 𝑂𝑡𝐴 of the state according to 𝑂𝐴.
The adversary is also assumed to be aware of the policy 𝜇 committed to by the controller.
Therefore, the overall information available to the adversary is I𝑡𝐴 :=

⋃︀
𝑖=0:𝑡

𝑂𝑖𝐴 ∪ {𝜇}.

Different from the information available to the adversary, at state 𝑠𝑡, the controller makes
an observation 𝑂𝑡𝐶 of the state according to 𝑂𝐶 . Therefore, the overall information for the
controller is I𝑡𝐶 :=

⋃︀
𝑖=0:𝑡

𝑂𝑖𝐶 .

We now define the policies on POSG.

Definition 7.2 (Controller’s Policy on POSG). A controller’s policy defined on the POSG
is a map from the respective overall information to a probability distribution over the corre-
sponding action space, i.e. 𝜇𝑡 : I𝑡𝐶 × 𝑈𝐶 → [0, 1].

Similarly, the adversary’s policy 𝜏 𝑡 is defined as 𝜏 𝑡 : I𝑡𝐴 × 𝑈𝐴 → [0, 1]. Note that the
policies considered in this chapter are mixed strategies. In the sequel, we will use finite
state controllers (FSCs) as a representation of policies. An FSC consist of a finite number
of internal states. Transitions between the states of an FSC is governed by the current
observation of the agent. In our setting, we will have two FSCs, one for the controller and
another for the adversary. We will then limit the search for controller and adversary policies
to one over FSCs of fixed cardinality.

Definition 7.3 (Finite State Controller). A finite state controller for the controller, de-
noted 𝒞𝐶 , is a tuple 𝒞𝐶 = (𝐺𝐶 , 𝑔0,𝐶 , 𝜇), where 𝐺𝐶 is a finite set of (internal) states of the
controller, 𝑔0,𝐶 is the initial state of the FSC, and 𝜇 : 𝐺𝐶 ×𝒪𝐶 ×𝐺𝐶 ×𝑈𝐶 → [0, 1], written
𝜇(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑜𝐶), is a probability distribution of the next internal state and action, given a
current internal state and observation.

The size of an FSC 𝒞𝐶 is given as |𝐺𝐶 |. A finite state controller 𝒞𝐴 = (𝐺𝐴, 𝑔0,𝐴, 𝜏) for
the adversary can be defined in a similar manner. We also define the set of proper FSCs as
follows.

Definition 7.4 (Proper FSCs). An FSC is proper with respect to an LTL formula 𝜙 if there
is a positive probability of satisfying 𝜙 under this policy in an environment represented as a
partially observable stochastic game 𝒢.

An FSC is a finite-state probabilistic automaton that takes the current observation of
the agent as its input, and produces a distribution over the actions as its output. In this
chapter, we assume that the size of the adversary FSC is fixed, and known to the controller.
This can be interpreted as one way for the controller to have knowledge of the capabilities
of an adversary. The problem investigated in this chapter is stated below.

Problem 7.1. Given a POSG 𝒢 and an LTL formula 𝜙, determine a controller’s policy
specified by an FSC 𝒞𝐶 that maximizes the probability of satisfying LTL formula 𝜙 under
any adversary policy 𝜏 that is represented as an FSC 𝒞𝐴 of fixed size.
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7.3 Control Synthesis to Maximize Satisfaction Probability
with Partial Observability

In this section, we present the proposed solution approach to Problem 7.1. We first construct
a product POSG. Then we compute recurrent sets on the POSG, and relate the probability
of the LTL specification being satisfied by the product POSG to the probability of reaching
the recurrent sets. We next determine the candidate finite state controllers to represent the
policies. We finally develop a value iteration based algorithm to compute the controller’s
policy.

7.3.1 Product POSG and Recurrent Sets

In order to find runs on 𝒢 that would be accepted by a DRA ℛ built from an LTL formula
𝜙, we construct a product POSG defined as follows.

Definition 7.5 (Product POSG). Given 𝒢 and ℛ (built from LTL formula 𝜙), a prod-
uct POSG is 𝒢𝑝𝑟𝑜𝑑 = (𝑆𝑝𝑟𝑜𝑑, 𝑆0,𝑝𝑟𝑜𝑑, 𝑈𝐶 , 𝑈𝐴, 𝑃𝑝𝑟𝑜𝑑,𝒪𝐶 ,𝒪𝐴, 𝑂𝐶,𝑝𝑟𝑜𝑑, 𝑂𝐴,𝑝𝑟𝑜𝑑, 𝐹𝑝𝑟𝑜𝑑,Π,ℒ𝑝𝑟𝑜𝑑),
where

• 𝑆𝑝𝑟𝑜𝑑 = 𝑆 ×𝑄.

• 𝑆𝜙0 = {(𝑠0, 𝑞0) : 𝑠0 ∈ 𝑆0}.

• 𝑂*,𝑝𝑟𝑜𝑑(𝑜|(𝑠, 𝑞)) = 𝑂*(𝑜|𝑠) with * ∈ {𝐶,𝐴}

• 𝑃𝑝𝑟𝑜𝑑((𝑠
′, 𝑞′)|(𝑠, 𝑞), 𝑢𝐶 , 𝑢𝐴) = 𝑃 (𝑠′|𝑠, 𝑢𝐶 , 𝑢𝐴) iff 𝛿(𝑞,ℒ(𝑠′)) = 𝑞′, and 0 otherwise.

• 𝐹𝑝𝑟𝑜𝑑 = {(𝐿𝑝𝑟𝑜𝑑(𝑖),𝐾𝑝𝑟𝑜𝑑(𝑖))}𝑍𝑖=1, 𝐿𝑝𝑟𝑜𝑑(𝑖),𝐾𝑝𝑟𝑜𝑑(𝑖) ⊂ 𝑆𝑝𝑟𝑜𝑑, and (𝑠, 𝑞) ∈ 𝐿𝑝𝑟𝑜𝑑(𝑖) iff
𝑞 ∈ 𝐿(𝑖), (𝑠, 𝑞) ∈ 𝐾𝑝𝑟𝑜𝑑(𝑖) iff 𝑞 ∈ 𝐾(𝑖).

• ℒ𝑝𝑟𝑜𝑑((𝑠, 𝑞)) = ℒ(𝑠).

From Definition 7.5, it is clear that acceptance conditions in the product POSG depend
on the DRA while the transition probabilities of the product POSG are determined by
transition probabilities of the original POSG. Therefore, a run on the product POSG can
be used to generate a path on the POSG and a run on the DRA. Then, if the run on the
DRA is accepting, we say that the product POSG satisfies the LTL specification 𝜙.

The FSCs 𝒞𝐶 and 𝒞𝐴, when composed with 𝒢𝑝𝑟𝑜𝑑, will result in a finite-state, (fully
observable) policy-induced Markov chain. To maintain consistency with the literature, we
will refer to this as the global Markov chain (GMC) [77] defined as follows.

Definition 7.6 (Global Markov Chain (GMC)). The GMC resulting from a product-POSG
𝒢𝑝𝑟𝑜𝑑 controlled by FSCs 𝒞𝐶 and 𝒞𝐴 is ℳ :=ℳ𝜙,𝒞𝐶 ,𝒞𝐴 = (𝑆, 𝑠0, 𝑃 ,Π, ℒ̄), where

• 𝑆 = 𝑆𝑝𝑟𝑜𝑑 ×𝐺𝐶 ×𝐺𝐴.
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• 𝑆0 = {(𝑠0, 𝑞0, 𝑔0,𝐶 , 𝑔0,𝐴) : 𝑠0 ∈ 𝑆0}.

• 𝑃 is given by

𝑃 :=𝑃𝜙,𝒞𝐶 ,𝒞𝐴((𝑠′, 𝑞′), 𝑔′𝐶 , 𝑔
′
𝐴|(𝑠, 𝑞), 𝑔𝐶 , 𝑔𝐴) (7.1)

=
∑︁
𝑜∈𝒪𝐶

∑︁
𝑜′∈𝒪𝐴

∑︁
𝑢𝐶

∑︁
𝑢𝐴

𝑂𝐶(𝑜|𝑠)𝑂𝐴(𝑜′|𝑠)𝜇(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑜)𝜏(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑜′)

· 𝑃𝑝𝑟𝑜𝑑((𝑠′, 𝑞′)|(𝑠, 𝑞), 𝑢𝐶 , 𝑢𝐴)

• ℒ̄ = ℒ𝑝𝑟𝑜𝑑((𝑠, 𝑞)).

Similar to 𝒢𝑝𝑟𝑜𝑑, the Rabin acceptance condition for ℳ̄ is: 𝐹 = {(�̄�(𝑖), �̄�(𝑖))}𝑍𝑖=1, with
(𝑠, 𝑞, 𝑔𝐶 , 𝑔𝐴) ∈ �̄�(𝑖) iff (𝑠, 𝑞) ∈ 𝐿𝑝𝑟𝑜𝑑(𝑖) and (𝑠, 𝑞, 𝑔𝐶 , 𝑔𝐴) ∈ �̄�(𝑖) iff (𝑠, 𝑞) ∈ 𝐾𝑝𝑟𝑜𝑑(𝑖). A state
ofℳ is s := (𝑠, 𝑞, 𝑔𝐶 , 𝑔𝐴). A path onℳ is a sequence 𝜋 := s0s1 . . . such that 𝑃 (s𝑘+1|s𝑘) > 0,
where 𝑃 (·) is the transition probability inℳ. The path is accepting if it satisfies the Rabin
acceptance condition. This corresponds to an execution in 𝒢𝑝𝑟𝑜𝑑 controlled by 𝒞𝐶 and 𝒞𝐴.
To quantitatively reason aboutℳ, we define a probability space following the treatment in
[18]. The set of paths inℳ, denoted Paths(ℳ) forms the sample space. The set of events
ℱ is the smallest 𝜎−algebra generated by cylinder sets spanned by path fragments of finite
length inℳ. The cylinder set spanned by �̂� := s0s1 . . . s𝑛 is given by paths 𝜋 ∈ Paths(ℳ)
that start with �̂�. This is denoted 𝐶𝑦𝑙(s0s1 . . . s𝑛). Then, the (unique) probability measure
on ℱ for the events is given by Pℳ(𝐶𝑦𝑙(s0s1 . . . s𝑛)) := P(s0)𝑃 (s1|s0)𝑃 (s2|s1) . . . 𝑃 (s𝑛|s𝑛−1).
The probability of the LTL objective 𝜙 being satisfied in state s is Pℳ(𝑠 |= 𝜙) := Pℳ{𝜋 ∈
Paths(s)|𝜋 |= 𝜙}. In the sequel, we write P(ℳ |= 𝜙) := P(ℳ𝜙,𝒞𝐶 ,𝒞𝐴 |= 𝜙) to denote
Pℳ(𝑠0 |= 𝜙). We direct the reader to Section 10.1 in [18] for a characterization of the
probability spaces for different LTL objectives.

Let ℰ = ℰ𝜙,𝒞𝐶 ,𝒞𝐴 denote the recurrent states of ℳ under FSCs 𝒞𝐶 and 𝒞𝐴. Let 𝐸𝑆 :=
(𝑠, 𝑞) be the restriction of a recurrent state to a state of 𝒢𝑝𝑟𝑜𝑑.

Proposition 7.1. P(ℳ |= 𝜙) = P(𝒢𝑝𝑟𝑜𝑑 |= 𝜙|𝒞𝐶 , 𝒞𝐴) > 0 if and only if there exists 𝒞𝐶 such
that for any 𝒞𝐴, there exists a Rabin acceptance pair (𝐿𝑝𝑟𝑜𝑑(𝑖),𝐾𝑝𝑟𝑜𝑑(𝑖)) and an initial state
of ℳ, 𝑠0, where the following conditions hold:

𝐾𝑝𝑟𝑜𝑑(𝑖) ∩ ℰ𝑆 ̸= ∅ (7.2a)
(𝐾𝑝𝑟𝑜𝑑(𝑖)×𝐺𝐶 ×𝐺𝐴) ∩ℛ is accessible from 𝑠0 (7.2b)
(𝐿𝑝𝑟𝑜𝑑(𝑖)×𝐺𝐶 ×𝐺𝐴) ∩ℛ is not accessible from 𝑠0 (7.2c)

Proof. If for every (𝐿𝑝𝑟𝑜𝑑(𝑖),𝐾𝑝𝑟𝑜𝑑(𝑖)), at least one of the conditions in Eqn. (7.2) does not
hold, then at least one of the following statements is true: i): no state that has to be visited
infinitely often is recurrent; ii): there is no initial state from which a recurrent state that
has to be visited infinitely often is accessible; iii): some state that has to be visited only
finitely often in steady state is recurrent. This means 𝒢𝑝𝑟𝑜𝑑 ̸|= 𝜙 for all 𝒞𝐶 .
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Conversely, if all the conditions in Eqn. (7.2) hold for some (𝐿𝑝𝑟𝑜𝑑(𝑖),𝐾𝑝𝑟𝑜𝑑(𝑖)), then
𝒢𝑝𝑟𝑜𝑑 |= 𝜙 by construction.

To quantify the satisfaction probability for a controller’s policy under any adversary’s pol-
icy, assume that the recurrent states ofℳ are partitioned into recurrence classes {𝐸1, . . . , 𝐸𝑝}.
This partition is maximal, in the sense that two recurrent classes cannot be combined to
form a larger recurrent class, and all states within a given recurrent class communicate with
each other [1].

Definition 7.7 (𝜙−feasible Recurrent Set). A recurrent set 𝐸𝑘 is 𝜙−feasible under FSCs 𝒞𝐶
and 𝒞𝐴 if there exists (𝐿𝑝𝑟𝑜𝑑(𝑖),𝐾𝑝𝑟𝑜𝑑(𝑖)) such that 𝐾𝑝𝑟𝑜𝑑(𝑖)∩𝐸𝑆𝑘 ̸= ∅ and 𝐿𝑝𝑟𝑜𝑑(𝑖)∩𝐸𝑆𝑘 = ∅.

Let 𝜙 − 𝑅𝑒𝑐𝑆𝑒𝑡𝑠𝒞𝐶 ,𝒞𝐴 denote the set of 𝜙−feasible recurrent sets under the respective
FSCs. Let 𝜋 → ℰ be the event that a path of ℳ will reach a recurrent set. Algorithm 11
returns 𝜙−feasible recurrent sets of the GMC ℳ constructed by 𝒢𝑝𝑟𝑜𝑑 under fixed FSCs
𝒞𝐶 , 𝒞𝐴. Given the 𝜙−feasible recurrent sets of the GMC ℳ, we can relate the satisfaction
probability with the reachability probability as shown in the following theorem.

Theorem 7.1. The probability of satisfying an LTL formula 𝜙 in a POSG with policies
𝒞𝐶 and 𝒞𝐴 is equal to the probability of paths in the GMC (under the same FSCs) reaching
𝜙−feasible recurrent sets. That is,

P(𝒢𝑝𝑟𝑜𝑑 |= 𝜙|𝒞𝐶 , 𝒞𝐴) =
∑︁

𝐸∈𝜙−𝑅𝑒𝑐𝑆𝑒𝑡𝑠𝒞𝐶,𝒞𝐴

P(reach 𝐸) (7.3)

Proof. Since the recurrence classes are maximal, P(reach (𝐸1∪· · ·∪𝐸𝑝)) =
∑︀𝑝

𝑘=1 P(reach 𝐸𝑘).
From Definition 7.7, a 𝜙−feasible recurrent set will necessarily contain a Rabin acceptance
pair. Therefore, the probability of 𝒢𝑝𝑟𝑜𝑑 satisfying the LTL formula under 𝒞𝐶 and 𝒞𝐴 is
equivalent to the probability of paths on ℳ leading to 𝜙−feasible recurrent sets, which is
given by Eqn. (7.3).

Theorem 7.1 renders the following corollary.

Corollary 7.1. From Theorem 7.1, it follows that:

max
𝒞𝐶

min
𝒞𝐴

P(ℳ |= 𝜙) = max
𝒞𝐶

min
𝒞𝐴

P(𝒢𝑝𝑟𝑜𝑑 |= 𝜙|𝒞𝐶 , 𝒞𝐴) (7.4a)

= max
𝒞𝐶

min
𝒞𝐴

∑︁
𝐸∈𝜙−𝑅𝑒𝑐𝑆𝑒𝑡𝑠𝒞𝐶,𝒞𝐴

P(reach 𝐸) (7.4b)

We remark that Proposition 7.1, Theorem 7.1, and Corollary 7.1 address a broader class
of problems than in Problem 7.1 since they do not assume that the size of the adversary
FSC is fixed.
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Algorithm 11 Generate 𝜙−feasible Recurrent Sets for 𝒢𝑝𝑟𝑜𝑑 under FSCs 𝒞𝐶 , 𝒞𝐴
1: Input: ℳ :=ℳ𝜙,𝒞𝐶 ,𝒞𝐴 , {𝐿𝑝𝑟𝑜𝑑(𝑖),𝐾𝑝𝑟𝑜𝑑(𝑖)}𝑍𝑖=1

2: Output: {𝐸𝑘}, that is recurrent and 𝜙−feasible
3: Induce digraph 𝒟𝒢 ofℳ as (S,𝒟), s.t. ∀s1, s2 ∈ S : s1 → s2 ∈ 𝒟 ⇔ 𝑃 (s2|s1) > 0.
4: 𝒞 = 𝑆𝐶𝐶𝑠(𝒟𝒢) = {𝐶1, . . . , 𝐶𝑁} ◁ strongly connected components of digraph
5: 𝑅𝑒𝑐𝑆𝑒𝑡𝑠 := {𝐸1, . . . , 𝐸𝑝} such that 𝐸𝑖 ∈ 𝒞 and 𝐸𝑖 is a sink SCC
6: 𝜙−𝑅𝑒𝑐𝑆𝑒𝑡𝑠𝒞𝐶 ,𝒞𝐴 = ∅
7: for 𝑗 = 1 to 𝑝 do
8: for 𝑖 = 1 to 𝑀 do
9: if (𝐿𝑝𝑟𝑜𝑑(𝑖) ∩ 𝐸𝑆𝑗 = ∅) ∧ (𝐾𝑝𝑟𝑜𝑑(𝑖) ∩ 𝐸𝑆𝑗 ̸= ∅) then

10: 𝜙−𝑅𝑒𝑐𝑆𝑒𝑡𝑠𝒞𝐶 ,𝒞𝐴 = 𝜙−𝑅𝑒𝑐𝑆𝑒𝑡𝑠𝒞𝐶 ,𝒞𝐴 ∪ 𝐸𝑗
11: end if
12: end for
13: end for

7.3.2 Determining Candidate FSCs of Fixed Sizes

In this subsection, we present a heuristic procedure that uses only the most recent obser-
vations of the controller and adversary to generate a set of admissible FSC structures such
that the resulting GMC will have a 𝜙−feasible recurrent set. We show that the procedure
has a computational complexity that is polynomial in the number of states of the GMC and
additionally establish that this algorithm is sound.

Let ℐ𝐶 : 𝐺𝐶×𝒪𝐶×𝐺𝐶×𝑈𝐶 → {0, 1}, where ℐ𝐶(𝑔′, 𝑢𝐶 |𝑔, 𝑜) = 1⇔ 𝜇𝐶(𝑔
′, 𝑢𝐶 |𝑔, 𝑜𝐶) > 0.

ℐ𝐶(·) shows if an observation 𝑜𝐶 can enable the transition from an FSC state 𝑔 to 𝑔′ while
issuing action 𝑢𝐶 . We also assume that ∀(𝑔, 𝑜𝐶) ∈ 𝐺𝐶 ×𝒪𝐶 , ∃(𝑔′, 𝑢𝐶) ∈ 𝐺𝐶 ×𝑈𝐶 such that
ℐ𝐶(𝑔′, 𝑢𝐶 |𝑔, 𝑜𝐶) = 1 [1]. We define ℐ𝐴 : 𝐺𝐴 × 𝒪𝐴 × 𝐺𝐴 × 𝑈𝐴 → {0, 1} in an analogous
manner.

In Algorithm 12, for controller and adversary FSCs with fixed number of states, we
determine candidate 𝒞𝐶 and 𝒞𝐴 such that the resultingℳ will have a 𝜙−feasible recurrent
set. We start with initial candidate structures ℐ𝑜𝐶 and ℐ𝑜𝐴 and induce the digraph of the
resulting GMC (Line 1 ). In our case, ℐ𝑜* is such that ℐ𝑜*(𝑔′*, 𝑢*|𝑔*, 𝑜*) = 1 for all 𝑔′*, 𝑔*, 𝑢*, 𝑜*.
We first determine the set of communicating classes of the GMC, which is equivalent to
determining the strongly connected components (SCCs) of the induced digraph (Line 3 ).
A communicating class will be recurrent if it is a sink SCC of the corresponding digraph.
The states in 𝐵𝑎𝑑𝑖 are those in 𝐶 that are part of the Rabin accepting pair that has to
be visited only finitely many times (and therefore, to be visited with very low probability
in steady state) (Line 6 ). 𝐵𝑎𝑑𝑖 further contains states that can be transitioned to from
some state in 𝐶. This is because once the system transitions out of 𝐶, it will not be able to
return to it in order to satisfy the Rabin acceptance condition (Line 5 ) (and hence, 𝐶 will
not be recurrent). 𝐺𝑜𝑜𝑑𝑖 contains those states in 𝐶 that need to be visited infinitely often
according to the Rabin acceptance condition (Line 7 ).
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𝑂𝐶(𝑜𝐶 |𝑠)𝑂𝐴(𝑜𝐴|𝑠)𝜇(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑜𝐶)𝜏(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑜𝐴)𝑃𝑝𝑟𝑜𝑑((𝑠′, 𝑞′)|(𝑠, 𝑞), 𝑢𝐶 , 𝑢𝐴) > 0 (7.5)

𝑂𝐶(𝑜𝐶 |𝑠)𝑂𝐴(𝑜𝐴|𝑠)𝜇(𝑔′′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑜𝐶)𝜏(𝑔′′𝐴, 𝑢𝐴|𝑔𝐴, 𝑜𝐴)𝑃𝑝𝑟𝑜𝑑((𝑠′′, 𝑞′′)|(𝑠, 𝑞), 𝑢𝐶 , 𝑢𝐴) > 0 (7.6)

The agents have access to a state only via their observations. A controller action is
forbidden if there exists an adversary action that will allow a transition to a state in 𝐵𝑎𝑑𝑖
under observations 𝑜𝐶 and 𝑜𝐴. This is achieved by setting corresponding entries in ℐ𝐶 to
zero (Lines 12-17 ). An adversary action is not useful if for every controller action, the
probability of transitioning to a state in 𝐺𝑜𝑜𝑑𝑖 is nonzero under 𝑜𝐶 and 𝑜𝐴. This is achieved
by setting the corresponding entry in ℐ𝐴 to zero (Lines 18-23 ). The complexity of Algorithm
12 is given as follows.

Proposition 7.2. Define |𝒪| = |𝒪𝐶 | + |𝒪𝐴| and |𝑈 | = |𝑈𝐶 | + |𝑈𝐴|. Then, Algorithm 12
has an overall computational complexity of O(|𝑆|2|𝐺𝐶 |2|𝐺𝐴|2|𝒪||𝑈 |).

Proof. The overall complexity depends on: (i) Determining strongly connected components
(Line 3 ): This can be done in O(|S|+ |𝒟|) [118]. Since |S| = |𝑆||𝐺𝐶 ||𝐺𝐴| and |𝒟| ≤ |S|2,
this is O(|𝑆|2|𝐺𝐶 |2|𝐺𝐴|2) in the worst case, and (ii) Determining the structures in Lines
9-26 : This is O(|S|(|𝒪𝐶 | + |𝒪𝐴|)(|S|(|𝑈𝐶 | + |𝑈𝐴|)). The result follows by combining the
two terms.

We characterize the candidate FSCs returned by Algorithm 12 as follows.

Proposition 7.3. Algorithm 12 is sound.

Proof. This is by construction. The output of the algorithm is a set {ℐ𝑖𝐶 , ℐ𝑖𝐴}𝑊𝑖=1 such
that the resulting GMC for each case has a state that is recurrent and has to be visited
infinitely often. This state, by Definition 7.7, belongs to 𝜙−𝑅𝑒𝑐𝑆𝑒𝑡𝒞𝑖

𝐶 ,𝒞
𝑖
𝐴 . Moreover, if the

algorithm returns a nonempty solution, a solution to Problem 7.1 will exist since the FSCs
are proper.

Algorithm 12 is suboptimal since we only consider the most recent observations of the
controller and adversary. It is also not complete, since there might be a feasible solution that
cannot be determined by the algorithm. If no FSC structures of a particular size is returned
by Algorithm 12, a heuristic is to increase the number of states in the controller FSC by
one, and run the Algorithm again. Once we obtain proper FSC structures of fixed sizes, we
will show in later that the satisfaction probability can be improved by adding states to the
controller FSC in a principled manner (for adversary FSCs of fixed size). Algorithm 12 and
Proposition 7.3 will allow us to restrict our treatment to proper FSCs for the rest of the
chapter.
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Algorithm 12 Generate candidate FSCs 𝒞𝐶 , 𝒞𝐴
1: Input: 𝐺𝐶 , 𝐺𝐴, 𝒢𝑝𝑟𝑜𝑑, ℐ𝑜𝐶 , ℐ𝑜𝐴
2: Output: Set of admissible FSC structures I := (I𝐶 , I𝐴), such that GMC has a
𝜙−feasible recurrent set

3: Induce digraph 𝒟𝒢 ofℳ as (S,𝒟), s.t. ∀s1, s2 ∈ S : s1 → s2 ∈ 𝒟 ⇔ 𝑃 (s2|s1) > 0.
4: I𝐶 = I𝐴 = ∅
5: 𝒞 = 𝑆𝐶𝐶𝑠(𝒟𝒢) = {𝐶1, . . . , 𝐶𝑁}
6: for 𝐶 ∈ 𝒞 and (𝐿𝑝𝑟𝑜𝑑(𝑖),𝐾𝑝𝑟𝑜𝑑(𝑖)) ∈ 𝐹𝑝𝑟𝑜𝑑 do
7: 𝐵𝑎𝑑𝑖 = {s′ /∈ 𝐶 : ∃s ∈ 𝐶 s.t. s′ is accessible from s}
8: 𝐵𝑎𝑑𝑖 = 𝐵𝑎𝑑𝑖 ∪ (𝐶 ∩ (𝐿𝑝𝑟𝑜𝑑(𝑖)×𝐺𝐶 ×𝐺𝐴))
9: 𝐺𝑜𝑜𝑑𝑖 = 𝐶 ∩ (𝐾𝑝𝑟𝑜𝑑(𝑖)×𝐺𝐶 ×𝐺𝐴)

10: Set ℐ𝐶(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑜𝐶) = 1 for all 𝑔′𝐶 , 𝑔𝐶 , 𝑢𝐶 , 𝑜𝐶
11: Set ℐ𝐴(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑜𝐴) = 1 for all 𝑔′𝐴, 𝑔𝐴, 𝑢𝐴, 𝑜𝐴
12: while

∑︀
𝑔′𝐶 ,𝑢𝐶

ℐ𝐶(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑜𝐶) > 0∀𝑜𝐶 , 𝑔𝐶 or
∑︀

𝑔′𝐴,𝑢𝐴
ℐ𝐴(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑜𝐴) >

0∀𝑜𝐴, 𝑔𝐴 and 𝐵𝑎𝑑𝑖 ̸= ∅ do
13: Choose s′ = (𝑠′, 𝑞′, 𝑔′𝐶 , 𝑔

′
𝐴) ∈ 𝐵𝑎𝑑𝑖,

14: s′′ = (𝑠′′, 𝑞′′, 𝑔′′𝐶 , 𝑔
′′
𝐴) ∈ 𝐺𝑜𝑜𝑑𝑖

15: for s = (𝑠, 𝑞, 𝑔𝐶 , 𝑔𝐴) ∈ 𝐶 ∖𝐵𝑎𝑑𝑖 do
16: for 𝑢𝐶 ∈ 𝑈𝐶 do
17: 𝜇(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑜𝐶) =

ℐ𝐶(𝑔′𝐶 ,𝑢𝐶 |𝑔𝐶 ,𝑜𝐶)∑︀
𝑔′
𝐶

,𝑢𝐶
ℐ𝐶(𝑔′𝐶 ,𝑢𝐶 |𝑔𝐶 ,𝑜𝐶)

18: if ∃𝑢𝐴 ∈ 𝑈𝐴 Eqn. (7.5) holds then
19: ℐ𝐶(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑜𝐶)← 0
20: ∀𝑔′𝐶 , 𝑔𝐶 ∈ 𝐺𝐶
21: end if
22: end for
23: for 𝑢𝐴 ∈ 𝑈𝐴 do
24: 𝜏(𝑔′′𝐴, 𝑢𝐴|𝑔𝐴, 𝑜𝐴) =

ℐ𝐴(𝑔′′𝐴,𝑢𝐴|𝑔𝐴,𝑜𝐴)∑︀
𝑔′′
𝐴

,𝑢𝐴
ℐ𝐴(𝑔′′𝐴,𝑢𝐴|𝑔𝐴,𝑜𝐴)

25: if ∀𝑢𝐶 ∈ 𝑈𝐶 , Eqn. (7.6) holds then
26: ℐ𝐴(𝑔′′𝐴, 𝑢𝐴|𝑔𝐴, 𝑜𝐴)← 0
27: end if
28: end for
29: end for
30: 𝐵𝑎𝑑𝑖 = 𝐵𝑎𝑑𝑖 ∖ {s′}
31: end while
32: Construct digraph 𝒟𝒢𝑛𝑒𝑤 of GMC of 𝒢𝑝𝑟𝑜𝑑 under modified ℐ𝐶 and ℐ𝐴
33: 𝒞𝑛𝑒𝑤 = 𝑆𝐶𝐶𝑠(𝒟𝒢𝑛𝑒𝑤)
34: if ∃s ∈ 𝐺𝑜𝑜𝑑𝑖 s.t. s is recurrent in 𝒢𝑛𝑒𝑤 then
35: I = (I𝐶 ∪ ℐ𝐶 , I𝐴 ∪ ℐ𝐴)
36: end if
37: end for
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7.3.3 Value Iteration for POSGs

In this subsection, we present a value-iteration based procedure to maximize the probability
of satisfying the LTL formula 𝜙 for FSCs 𝒞𝐶 and 𝒞𝐴 of fixed sizes. We prove that the
procedure converges to a unique optimal value, corresponding to the Stackelberg equilibrium.

Notice that in Eqn. (7.1), the controller and adversary policies are specified as proba-
bility distributions over the next FSC internal state and the respective agent action, and
conditioned on the current FSC internal state and the agent observation. We rewrite these
in terms of a mapping �̂� : 𝐺𝐶 × 𝑆 ×𝐺𝐶 × 𝑈𝐶 → [0, 1] and 𝜏 : 𝐺𝐴 × 𝑆 ×𝐺𝐴 × 𝑈𝐴 → [0, 1]:

�̂�(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑠) :=
∑︁

𝑜𝐶∈𝒪𝐶

𝑂𝐶(𝑜𝐶 |𝑠)𝜇(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑜𝐶), (7.7)

𝜏(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑠) :=
∑︁

𝑜𝐴∈𝒪𝐴

𝑂𝐴(𝑜𝐴|𝑠)𝜇(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑜𝐴). (7.8)

This will allow us to express Equation (7.1) as:

𝑃 ((𝑠′, 𝑞′), 𝑔′𝐶 , 𝑔
′
𝐴|(𝑠, 𝑞), 𝑔𝐶 , 𝑔𝐴) =

∑︁
𝑢𝐶

∑︁
𝑢𝐴

�̂�𝐶(𝑔
′
𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑠)�̂�𝐴(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑠)

· 𝑃 ((𝑠′, 𝑞′), 𝑔′𝐶 , 𝑔′𝐴|(𝑠, 𝑞), 𝑔𝐶 , 𝑔𝐴) (7.9)

Define a value 𝑉 over the state space of the GMC representing the probability of satisfy-
ing the LTL formula 𝜙 when starting from a state of the GMC. Additionally, define and
characterize the following operators:

(𝑇�̂�𝜏𝑉 )(s) =
∑︁
s′

𝑃 (s′|s)𝑉 (s′);

(𝑇�̂�𝑉 )(s) = min
𝜏

∑︁
s′

𝑃 (s′|s)𝑉 (s′);

(𝑇𝑉 )(s) = max
�̂�

min
𝜏

∑︁
s′

𝑃 (s′|s)𝑉 (s′)

where 𝑃 (s′|s) is the transition probability in the GMC induced by policies �̂� and 𝜏 (Eqn.
(7.9)). We can characterize value 𝑉 as follows.

Proposition 7.4. Let

𝑉 ((𝑠, 𝑞), 𝑔𝐶 , 𝑔𝐴) = max
�̂�

min
𝜏

P(𝜙|((𝑠, 𝑞), 𝑔𝐶 , 𝑔𝐴)). (7.10)
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Then

𝑉 ((𝑠, 𝑞), 𝑔𝐶 , 𝑔𝐴) = max
�̂�

min
𝜏

∑︁
((𝑠′,𝑞′),𝑔′𝐶 ,𝑔

′
𝐴)

∑︁
𝑢𝐶

∑︁
𝑢𝐶

(︃
�̂�(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑠)

× 𝜏(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑠)𝑃𝑝𝑟𝑜𝑑((𝑠′, 𝑞′)|(𝑠, 𝑞), 𝑢𝐶 , 𝑢𝐴)𝑉 ((𝑠′, 𝑞′), 𝑔′𝐶 , 𝑔
′
𝐴))

)︃
(7.11)

Conversely, if the value vector 𝑉 satisfies Equation (7.11), then Eqn. (7.10) holds true.
Moreover, 𝑉 is unique.

Before proving Proposition 7.4, we will need some intermediate results.

Lemma 7.1. Let 𝑉 be the satisfaction probability obtained under any pair of policies �̂� and
𝜏 , where 𝜏 is the best response to �̂�. Let 𝑇 𝑘 be the operation that composes the 𝑇 operator
𝑘 times, and 𝑉 𝑘 be the corresponding value obtained (i.e., 𝑇 𝑘𝑉 := 𝑉 𝑘). Then, there exists
a value 𝑉 * such that lim𝑘→∞ 𝑇 𝑘𝑉 = 𝑉 *.

Proof. We show Lemma 7.1 by showing that the sequence 𝑉 𝑘 = 𝑇 𝑘𝑉 is bounded and
monotone.

We first show boundedness. By definition of the operator 𝑇 , 𝑉 𝑘+1 is obtained as a
convex combination of 𝑉 𝑘. Since 𝑉 is the satisfaction probability, it is in [0, 1]. Thus, 𝑉 0 is
bounded, and consequently, 𝑇 𝑘𝑉 is bounded for all 𝑘.

We next show monotonicity by induction. We have that 𝑉 0 is the value function as-
sociated with a control policy �̂�. Denote the best response of the adversary to �̂� as 𝜏 .
Let 𝑉 1 := 𝑇𝑉 0. From the definitions of 𝑇 and 𝑇�̂�, we have 𝑇𝑉 0 ≥ 𝑇�̂�𝑉

0. Furthermore,
𝑉 0 = 𝑇�̂�𝑉

0 since

𝑇�̂�𝑉
0(s) = min

𝜏 ′

∑︁
s′

∑︁
𝑢𝐶

∑︁
𝑢𝐴

(︁
𝑉 0(s′)�̂�(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑠)𝜏(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑠)𝑃𝑝𝑟𝑜𝑑((𝑠′, 𝑞′)|(𝑠, 𝑞), 𝑢𝐶 , 𝑢𝐴)

)︁
= 𝑉 0

by the definition that 𝜏 ′ is the best response of �̂�. Therefore, we have that 𝑉 1 = 𝑇𝑉 0 ≥
𝑇�̂�𝑉

0 = 𝑉 0. This gives us 𝑉 1 ≥ 𝑉 0, which serves as the base case for the induction.
Consider iteration 𝑘. Suppose 𝑇 𝑘−1𝑉 ≤ 𝑇 𝑘𝑉 . We then show 𝑇 𝑘𝑉 ≤ 𝑇 𝑘+1𝑉 . We have:

𝑇 𝑘+1𝑉 ≥ min
𝜏

∑︁
s′

𝑃 (s′|s)𝑉 𝑘(s′) ≥ min
𝜏

∑︁
s′

𝑃 (s′|s)𝑉 𝑘−1(s′) = 𝑉 𝑘.

The first inequality holds by the definition of 𝑇 , the second inequality holds by the induction
hypothesis that 𝑉 𝑘 ≥ 𝑉 𝑘−1, and the last equality holds by construction of a control pol-
icy. The existence of 𝑉 * such that lim𝑘→∞ 𝑇 𝑘𝑉 = 𝑉 * follows from monotone convergence
theorem [119].
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We now prove Proposition 7.4.

Proof of Proposition 7.4. We first prove the forward direction by contradiction, i.e., if Eqn.
(7.10) holds then Eqn. (7.11) holds. Suppose �̂� is a Stackelberg equilibrium policy with
satisfaction probability being 𝑉 , while Eqn. (7.11) does not hold. Since �̂� is the Stackelberg
equilibrium policy, 𝑉 = 𝑇�̂�𝑉 . This is because, given �̂�, the stochastic game is an MDP,
for which 𝑉 is the optimal value [101]. From the definitions of 𝑇 and 𝑇�̂�, we must have
𝑇�̂�𝑉 ≤ 𝑇𝑉 . Composing the operators 𝑘 times and letting 𝑘 →∞,

𝑉 = lim
𝑘→∞

𝑇 𝑘�̂�𝑉 ≤ lim
𝑘→∞

𝑇 𝑘𝑉 = 𝑉 *,

where the first equality holds by the assumption that 𝑉 is the satisfaction probability and
�̂� is the Stackelberg equilibrium policy, the last equality holds by Lemma 7.1. If 𝑉 = 𝑉 *,
Eqn. (7.11) is satisfied, which contradicts our assumption that Eqn. (7.10) holds while Eqn.
(7.11) does not hold. If 𝑉 ̸= 𝑉 *, then there must exist a state s such that 𝑉 (s) < 𝑉 *(s).
This means that there is a policy (different from �̂�) corresponding to 𝑉 * for which we achieve
a higher satisfaction probability starting at state s. This violates our assumption that �̂� is
the equilibrium policy. We must then have that Eqn. (7.11) holds given that Eqn. (7.10)
holds.

We next prove uniqueness of the 𝑉 . Let 𝑉 and 𝑉 be two solutions to Eqn. (7.11), and
let �̂� and 𝜇 denote the corresponding control policies. From the definitions of 𝑇 and 𝑇�̂�,
we have that 𝑉 = 𝑇𝑉 ≥ 𝑇�̂�𝑉 . Composing the operators on both sides 𝑘 times and letting
𝑘 →∞,

𝑉 = lim
𝑘→∞

𝑇 𝑘𝑉 ≥ lim
𝑘→∞

𝑇 𝑘�̂�𝑉 = 𝑉 ,

where the first equality holds by the assumption that �̂� is the equilribrium policy, and the
second equality holds by the fact that 𝑉 is the unique fixed point of operator 𝑇�̂� [101].
Following a similar argument as before, we have the following inequality:

𝑉 = lim
𝑘→∞

𝑇 𝑘𝑉 ≥ lim
𝑘→∞

𝑇 𝑘�̂�𝑉 = 𝑉.

We have that both 𝑉 ≥ 𝑉 and 𝑉 ≥ 𝑉 are true, which gives us 𝑉 = 𝑉 . This implies that
the value 𝑉 is unique.

We finally show that if Eqn. (7.11) holds then Eqn. (7.10) holds. We observe that the
value function at equilibrium satisfies (7.11), and the solution is unique. Therefore, any
solution to Eqn. (7.11) must be a Stackelberg equilibrium [120].

Proposition 7.4 indicates that value-iteration algorithms can be used to determine op-
timal policies �̂� and �̂�. Given a policy �̂� and observation function 𝑂𝐶 , we will be able to
compute 𝜇 by solving a system of linear equations.

A value-iteration based procedure to solve the POSG under an LTL specification is pro-
posed in Algorithm 13. The value 𝑉 (s) is greedily updated at every iteration by computing
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the policy according to Proposition 7.4. The algorithm terminates when the difference in
𝑉 (·) in consecutive iterations is below a pre-specified threshold.

Algorithm 13 Maximizing probability of satisfying LTL formula 𝜙 under fixed FSCs 𝒞𝐶 , 𝒞𝐴
1: Input: ℳ :=ℳ𝜙,𝒞𝐶 ,𝒞𝐴 , {𝐿𝑝𝑟𝑜𝑑(𝑖),𝐾𝑝𝑟𝑜𝑑(𝑖)}𝑀𝑖=1, 𝜖 (threshold)
2: Output: 𝑉 ∈ R|𝑆|×|𝑄|×|𝐺𝐶 |×|𝐺𝐴|

3: Determine 𝜙−𝑅𝑒𝑐𝑆𝑒𝑡𝑠𝒞𝐶 ,𝒞𝐴 using Algorithm 11
4: �̂�(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑠) :=

∑︀
𝑜𝐶

𝑂𝐶(𝑜𝐶 |𝑠)𝜇(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑜𝐶)

5: 𝜏(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑠) :=
∑︀
𝑜𝐴

𝑂𝐴(𝑜𝐴|𝑠)𝜇(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑜𝐴)

6: 𝑉 0(s)← 0
7: 𝑉 1(s)← 1 if s ∈ 𝜙−𝑅𝑒𝑐𝑆𝑒𝑡𝑠𝒞𝐶 ,𝒞𝐴 , and 𝑉 1(s)← 0, else
8: 𝑘 ← 0
9: while max

s
{𝑉 𝑘+1(s)− 𝑉 𝑘(s)} > 𝜖 do

10: 𝑘 ← 𝑘 + 1
11: for s /∈ 𝜙−𝑅𝑒𝑐𝑆𝑒𝑡𝑠𝒞𝐶 ,𝒞𝐴 do

12: 𝑉 𝑘+1(s) ← max
�̂�

min
𝜏

∑︀
s′

∑︀
𝑢𝐶

∑︀
𝑢𝐴

(︃
𝑉 𝑘(s′)�̂�𝐶(𝑔

′
𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑠)𝜏(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑠)

· 𝑃𝑝𝑟𝑜𝑑((𝑠′, 𝑞′)|(𝑠, 𝑞), 𝑢𝐶 , 𝑢𝐴)

)︃
13: end for
14: end while
15: return 𝑉 (= 𝑉 𝑘(s))

Proposition 7.5. For any 𝜖 > 0, there exist 𝐾,𝑉 such that ‖𝑉 𝑘(s) − 𝑉 ‖∞ < 𝜖 for all
𝑘 > 𝐾. Further, 𝑉 satisfies the value in Proposition 7.4 and is within the 𝜖-neighborhood of
the value function at Stackelberg equilibrium.

Proof. Notice that 𝑉 1(s) ≥ 𝑉 0(s). Since 𝑉 1(s) = 0 for (𝑠, 𝑞) /∈ 𝜙− 𝑅𝑒𝑐𝑆𝑒𝑡𝑠𝒞𝐶 ,𝒞𝐴 , 𝑉 2(s) ≥
𝑉 1(s). We induct on 𝑘. Let �̂�𝑘 be the optimal controller policy at step 𝑘. Then,

𝑉 𝑘+1(s)

≥min
𝜏

∑︁
s′

∑︁
𝑢𝐶

∑︁
𝑢𝐴

(︃
𝑉 𝑘(s′)�̂�(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑠)𝜏(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑠)𝑃𝑝𝑟𝑜𝑑((𝑠′, 𝑞′)|(𝑠, 𝑞), 𝑢𝐶 , 𝑢𝐴)

)︃

≥min
𝜏

∑︁
s′

∑︁
𝑢𝐶

∑︁
𝑢𝐴

(︃
𝑉 𝑘−1(s′)�̂�(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑠)𝜏(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑠)𝑃𝑝𝑟𝑜𝑑((𝑠′, 𝑞′)|(𝑠, 𝑞), 𝑢𝐶 , 𝑢𝐴)

)︃
=𝑉 𝑘(s)
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The first inequality holds because 𝑉 𝑘+1(s) is the value obtained by the maximizing policy,
and dominates the value achieved by any other policy. The second and last inequalities
follow from the induction hypothesis and definition of 𝑉 𝑘(s) respectively. Further, for each
state, 𝑉 𝑘(s) is bounded since it is a convex combination of terms that are ≤ 1. Let 𝑉 be
the set of limit points so that 𝐾 can be chosen such that ‖𝑉 𝑘(s)− 𝑉 ‖∞ < 𝜖 for 𝑘 > 𝐾.

Since 𝑉 𝑘(s) converges, it is a Cauchy sequence. Therefore, for every 𝜖 > 0, there exists 𝐾
sufficiently large, such that for all 𝑘 > 𝐾, |𝑉 𝑘(s)−𝑉 𝑘+1(s)| < 𝜖. From Line 8 of Algorithm
13, this shows that 𝑉 is within an 𝜖−neighborhood of a Stackelberg equilibrium for every
𝜖 > 0.

Whenever Algorithm 13 returns a non-empty solution, the FSCs are proper (Definition
7.4). In this case, there is a nonzero probability of visiting a state in a 𝜙−feasible recurrent
set of 𝒢𝑝𝑟𝑜𝑑 under FSCs 𝒞𝐶 and 𝒞𝐴.

7.3.4 Varying the Size of Controller’s FSC

In the previous discussions, we assume that the sizes of FSCs for the controller and adver-
sary are fixed. However, it might be possible that the satisfaction probability is nonzero,
while Algorithm 13 does not return a non-trivial solution since the sizes of 𝒞𝐶 is not suffi-
ciently large. To this end, we investigate if we can increase the size of the controller’s FSC
to increase the satisfaction probability. The core idea is that we need to guarantee that
adding states to 𝒞𝐶 does not decrease this satisfaction probability when compared to the
satisfaction probability for 𝒞𝐶 with fewer states. This lends itself to a policy iteration like
approach. Policy iteration [101] is a procedure that alternates between policy evaluation and
policy improvement until convergence to a Stackelberg equilibrium. The policy evaluation
step involves solving a Bellman equation, while the policy improvement step then ‘greedily’
chooses a policy that maximizes the satisfaction probability.

In the sequel, we will assume that the size of 𝒞𝐴 is fixed. Intuitively, this means that
the controller is aware of the capabilities of the adversary. However, the controller does not
know the transition probabilities in 𝒞𝐴, which means it needs to determine the transition
probabilities of its own FSC in order to be robust against the worst-case transition prob-
abilities between states in 𝒞𝐴. We will work with the ‘value’ of a state 𝑔𝐶 ∈ 𝐺𝐶 in 𝒞𝐶 .
Denote this by 𝑉𝑔𝐶 (s). From the controller’s perspective, the transition probabilities in 𝒞𝐶
are influenced by its belief of the state of 𝒢𝑝𝑟𝑜𝑑 under 𝒞𝐶 and 𝒞𝐴. The belief is a (prior)
probability distribution over the states of the POSG. Then, the value of 𝑔𝐶 ∈ 𝐺𝐶 under
belief 𝑏 = {𝑏1, . . . , 𝑏|𝑆|} can be written as 𝑉𝑔𝐶 (𝑏) =

∑︀
𝑖 𝑏𝑖𝑉𝑔𝐶 (𝑠𝑖). The value function for a

belief 𝑏 is then given by

𝑉 (𝑏) := max
𝑔𝐶

𝑉𝑔𝐶 (𝑏) (7.12)

Fig. 7-1 shows 𝑉 (𝑏) for a two-state POSG with |𝐺𝐶 | = 3.
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Figure 7-1: Value function of a two-state POSG with three states in 𝒞𝐶 . The value of each
FSC state is linear in the belief (black lines). The value function is the point-wise maximum
of the values of the FSC states (red curve).

Figure 7-2: Robust linear program for state 2 of 𝒞𝐶 . Improved vector 𝑉 ′2
𝑔𝐶

+ 𝜖 is tangent to
the one-step look-ahead value function.
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When working with controller and adversary FSCs of fixed sizes, the value iteration in
Algorithm 13 terminates when a (local) equilibrium is reached. This means there is no choice
of transition probabilities in 𝒞𝐶 that will improve the satisfaction probability for some belief
state(s). This probability can be improved by adding states to 𝒞𝐶 (since |𝐺𝐴| is fixed). The
value of a belief 𝑏 (Eqn. (7.12)) is the point-wise maximum of the value at each state of 𝒞𝐶 ,
which themselves are linear functions of the belief state. Therefore, at equilibrium, 𝑉 (𝑏)
will satisfy:

𝑉 (𝑏) = max
𝑢𝐶

min
𝑢𝐴

∑︁
𝑜∈𝒪𝐶

P(𝑜|𝑏)𝑉 (𝑏𝑢𝐶𝑢𝐴𝑜 ) (7.13)

where

P(𝑜|𝑏) :=
∑︁
𝑠

𝑂𝐶(𝑜|𝑠)𝑏(𝑠), (7.14)

𝑏𝑢𝐶𝑢𝐴𝑜 (𝑠′) :=
∑︁
𝑠

𝑃 (𝑠′|𝑠, 𝑢𝐶 , 𝑢𝐴)
𝑂𝐶(𝑜|𝑠)𝑏(𝑠)∑︀
𝑜∈𝒪𝐶𝑂𝐶(𝑜|𝑠)𝑏(𝑠)

(7.15)

This set of equations is not easy to solve since the belief takes values in [0, 1]. However,
Eqn. (7.13) results in a point-wise improvement of the value function, until an optimum is
reached. We will need the following definitions.

Definition 7.8 (Tangent FSC State). An FSC state 𝑔𝐶 is tangent to the one-step look-ahead
value function 𝑉 (𝑏) in Equation (7.13) if 𝑉 (𝑏) = 𝑉𝑔𝐶 (𝑏) at state 𝑏.

Definition 7.9 (Improved FSC State). A state 𝑔𝐶 ∈ 𝐺𝐶 is improved if transition probabil-
ities associated with that state are changed in a way that increases 𝑉𝑔𝐶 .

For the setting where there are two agents with competing objectives, the problem of
determining a policy 𝜇 that achieves an improvement in 𝑉𝑔𝐶 under any adversary policy 𝜏
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can be posed as a robust linear program [121], presented as follows:

max
𝜖,𝜇,𝜏

𝜖 (7.16a)

s.t. 𝑉𝑔𝐶 (s) + 𝜖 ≤
∑︁

s′,𝑜,𝑜′,𝑔′𝐶 ,𝑔
′
𝐴,𝑢𝐶 ,𝑢𝐴

(︃
𝑉𝑔′𝐶 (s

′)𝑂𝐶(𝑜|𝑠)𝜇(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑜)𝑂𝐴(𝑜′|𝑠)

× 𝜏(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑜′)𝑃𝑝𝑟𝑜𝑑((𝑠′, 𝑞′)|(𝑠, 𝑞), 𝑢𝐶 , 𝑢𝐴)

)︃
∀𝑠, ∀𝜏(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑜′)

(7.16b)∑︁
𝑔′,𝑢𝐶

𝜇(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑜𝐶) = 1, ∀𝑜𝐶 (7.16c)

∑︁
𝑔′,𝑢𝐴

𝜏(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑜𝐴) = 1, ∀𝑜𝐴 (7.16d)

𝜇(𝑔′𝐶 , 𝑢𝐶 |𝑔𝐶 , 𝑜𝐶) ∈ [0, 1], ∀𝑜𝐶 , 𝑔′𝐶 , 𝑢𝐶 (7.16e)
𝜏(𝑔′𝐴, 𝑢𝐴|𝑔𝐴, 𝑜𝐴) ∈ {0, 1}, ∀𝑜𝐴, 𝑔′𝐴, 𝑢𝐴 (7.16f)

When 𝜖 > 0, an improvement in the value of the FSC state (by 𝜖) can be achieved. This
is because there exists a convex combination of value vectors of the one-step look-ahead
value function that dominates the present value of the FSC state [122]. The procedure is
carried out for each 𝑔𝐶 ∈ 𝐺𝐶 , until no further improvement in the transition probabilities
in 𝒞𝐶 is possible. At this stage, the robust linear program yields 𝜖 = 0 for every 𝑔𝐶 ∈ 𝐺𝐶 .
The following result generalizes Theorem 2 in [122] to a partially observable environment
that includes an adversarial agent.

Figure 7-3: At a local equilibrium, all states are tangent to the one-step look-ahead value
function.
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Proposition 7.6. The policy iteration procedure has reached a local equilibrium if and only
if all the states 𝑔𝐶 ∈ 𝐺𝐶 are tangent to 𝑉 (𝑏).

Proof. The robust LP aims to maximize the improvement that can be achieved in the value
of each state in 𝒞𝐶 . From the preceding discussion, and from Definition 7.8, a translation of
the value vector of a state 𝑔𝐶 by 𝜖 > 0 will make it tangent to the one-step look-ahead value
function. By a similar argument, 𝜖 = 0 for each 𝑔𝐶 ∈ 𝐺𝐶 indicates that improvement in the
value of an FSC state will not be possible if it is already tangent to the one-step look-ahead
value function. This is shown in Fig. 7-2 and 7-3.

When 𝜖 = 0 for each 𝑔𝐶 , the satisfaction probability can be improved by adding states to
𝒞𝐶 in a ‘principled way’. Let 𝑀𝑎𝑥𝑁𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑠 denote the maximum number of states that
can be added to 𝒞𝐶 , and let {𝑏𝑘} := 𝐵 denote the set of belief states satisfying 𝑉 (𝑏𝑘) = 𝑉𝑔𝐶 (𝑏)
for each 𝑔𝐶 from Eqn. (7.16a).

Algorithm 14 Adding states to FSC 𝒞𝐶
1: Input: Set of belief states {𝑏𝑘} := 𝐵 ; 𝑀𝑎𝑥𝑁𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑠
2: Output: Set of improved states in FSC 𝒞𝐶
3: 𝑁𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑁𝑢𝑚𝑏𝑒𝑟 ← 0
4: while 𝐵 ̸= ∅ do
5: Choose 𝑏 ∈ 𝐵
6: 𝐵 := 𝐵 ∖ 𝑏
7: 𝐴ℎ𝑒𝑎𝑑 := ∅
8: for (𝑢𝐶 , 𝑢𝐴, 𝑜𝐶) ∈ 𝑈𝐶 × 𝑈𝐴 ×𝒪𝐶 do
9: if P(𝑜|𝑏) > 0 in Eqn. (7.14) then

10: Determine 𝑏𝑢𝐶𝑢𝐴𝑜 (𝑠′) from Eqn. (7.15)
11: 𝐴ℎ𝑒𝑎𝑑 = 𝐴ℎ𝑒𝑎𝑑 ∪ {𝑏𝑢𝐶𝑢𝐴𝑜 }
12: end if
13: end for
14: for 𝑏𝐴 ∈ 𝐴ℎ𝑒𝑎𝑑 do
15: Determine 𝑉 (𝑏𝑎) from Eqn. (7.13), (7.14), (7.15)
16: Note maximizers 𝑢*𝐶 , 𝑔*𝐶 (Eqn. (7.13), (7.12))
17: if 𝑉 (𝑏𝐴) > 𝑉 (𝑏) and 𝑁𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑁𝑢𝑚𝑏𝑒𝑟 < 𝑀𝑎𝑥𝑁𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑠 then
18: Add state, 𝑔𝑛𝑒𝑤 to 𝒞𝐶 with 𝜇(𝑔*𝐶 , 𝑢

*
𝐶 |𝑔𝑛𝑒𝑤, 𝑜) = 1 ∀𝑜 ∈ 𝒪𝐶

19: 𝑁𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑁𝑢𝑚𝑏𝑒𝑟 ← 𝑁𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑁𝑢𝑚𝑏𝑒𝑟 + 1
20: end if
21: end for
22: end while

Algorithm 14 presents a procedure to add states to the controller FSC to improve the
satisfaction probability. Lines 6 − 11 determine the one-step look-ahead beliefs. A new
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state is added to 𝒞𝐶 if the controller ‘believes’ that the probability of satisfying the LTL
formula from these states is higher than that from the current belief state (Lines 13− 18).
Lines 13 and 14 respectively form the policy evaluation and policy improvement steps of the
policy iteration. Edges from new states in the FSC are directed towards the action and FSC
state that maximize the value function 𝑉 (𝑏) in a deterministic manner (Line 16). Values
of probabilities and transitions to and from the added state will be adjusted as other FSC
states are improved.

Proposition 7.7. Algorithm 14 terminates in finite time.

Proof. This follows from the facts the sets 𝐵, 𝒪𝐶 , 𝑈𝐶 , and 𝑈𝐴 have finite cardinality, and
the one-step look-ahead values in Eqn. (7.13) are upper bounded.

The procedure yields a new 𝒞𝐶 , from which candidate FSC structures can be found
using Algorithm 12. The controller policy to maximize the probability of satisfying the LTL
formula under any 𝒞𝐴 of fixed size can be determined by Algorithm 13 or the robust linear
program in Eqn. (7.16a).

7.4 Case Study

This section presents an example and experiments that illustrate our approach.

Figure 7-4: Clockwise, from top-left : Global Markov chain (GMC) for initial controller and
adversary FSC structures- green states (𝑚1&𝑚2) must be visited infinitely often, and state
in red (𝑚3) must be visited finitely often in steady-state; GMC state 𝑚𝑖 ∈ 𝑆×𝑄×𝐺𝐶×𝐺𝐴;
State-space for 𝑀 = 3, 𝑁 = 2 showing unsafe (𝑠4) and target (𝑠5) states.

99



(a) (b)

Figure 7-5: The agent aims to satisfy the LTL formula 𝜙 = 23tar∧2¬obs in the presence
of an adversary, in a partially observable environment. The environment is the grid-world
in Fig.7-5a. The states in red indicate the presence of an obstacle, the state in green is the
target state, and the agent starts in state 𝑠0. The agents’ actions are determined by their
observations of the state. Assume that the controller FSC has at least as many states as
the adversary FSC, i.e. |𝐺𝐶 | ≥ |𝐺𝐴|. Fig. 7-5b shows the fraction of runs (out of 100)
when the agent reaches the target within 80 steps and 40 steps. This number is higher when
|𝐺𝐶 | is larger, for a fixed value of |𝐺𝐴| (−o−,− *−, and −3− curves). For the same |𝐺𝐶 |,
the fraction of successful runs is higher when |𝐺𝐴| is lower (−o− and − * − curves). The
fraction of successful runs is also higher when the agent is allowed more steps to reach the
target (−o− and −3− curves).

Consider a state space representing an𝑀×𝑁 grid, 𝑆 := {𝑠𝑖 : 𝑖 = 𝑥+𝑀𝑦, 𝑥 ∈ {0, . . . ,𝑀−
1}, 𝑦 ∈ {0, . . . , 𝑁 − 1}}. The controller’s actions are 𝑈𝐶 = {𝑅,𝐿,𝑈,𝐷} denoting right, left,
up, and down, and the actions of the adversary are 𝑈𝐴 = {𝐴,𝑁𝐴}, denoting attack, and
not attack respectively. The observations of both agents are 𝒪𝐶 = 𝒪𝐴 = {𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑤𝑟𝑜𝑛𝑔},
such that: 𝑂𝐶(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠𝑖) = 0.8 = 1 − 𝑂𝐶(𝑤𝑟𝑜𝑛𝑔|𝑠𝑖), and 𝑂𝐴(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠𝑖) = 0.6 = 1 −
𝑂𝐴(𝑤𝑟𝑜𝑛𝑔|𝑠𝑖). 𝒪𝐶 and 𝒪𝐴 are probabilities that the agents sense that their observation
of the state is indeed the correct state or not. That is, P(𝑜𝑖 = 𝑠𝑖) or P(𝑜𝑖 ̸= 𝑠𝑖). Let
Π = {obs, tar}, denoting obstacle and target respectively. Then, if 𝜙 = 23tar∧2¬obs, the
corresponding DRA will have two states 𝑞0, 𝑞1, with 𝐹 = ({∅}, {𝑞1}). Transition probabilities
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for (𝑢𝐶 , 𝑢𝐴) = (𝑅,𝑁𝐴) and (𝑅,𝐴) are defined as:

𝑃 (𝑠𝑗 |𝑠𝑖, 𝑅,𝑁𝐴) =

⎧⎪⎨⎪⎩
0.8 𝑗 = 𝑖+ 1, (𝑖+ 1) ̸≡ 0 mod𝑀
0.2
|𝑁𝑠𝑖 |

𝑠𝑗 ∈ {𝑠𝑖} ∪𝑁𝑠𝑖 ∖ {𝑠𝑖+1}), (𝑖+ 1) ̸≡ 0 mod𝑀

1 𝑗 = 𝑖 and (𝑖+ 1) ≡ 0 mod𝑀

, (7.17a)

𝑃 (𝑠𝑗 |𝑠𝑖, 𝑅,𝐴) =

⎧⎪⎨⎪⎩
0.6 𝑗 = 𝑖+ 1, (𝑖+ 1) ̸≡ 0 mod𝑀
0.4
|𝑁𝑠𝑖 |

𝑠𝑗 ∈ {𝑠𝑖} ∪𝑁𝑠𝑖 ∖ {𝑠𝑖+1}, (𝑖+ 1) ̸≡ 0 mod𝑀

1 𝑗 = 𝑖 and 𝑖+ 1 ≡ 0 mod𝑀

, (7.17b)

where 𝑁𝑠𝑖 denotes the neighbors of 𝑠𝑖.
Notice that in the above equations, the probability of the agent moving to the ‘correct’

next state for a particular controller action is larger for the adversary action 𝑁𝐴 than for
the adversary action 𝐴. Further, in this case, if the controller is in a square along the right
edge of the grid, then the action 𝑅 does not result in a change of state. The probabilities
for other action pairs can be defined similarly.

For this example, let 𝑀 = 3 and 𝑁 = 2. Then, |𝑆| = 6. Let 𝑠4 be an unsafe state, and 𝑠5
be the goal state. This is indicated in Fig. 7-4. Let |𝐺𝐶 | = 2, |𝐺𝐴| = 1 for the FSCs. Assume
that for some initial structures ℐ0𝐶 , ℐ0𝐴 the GMC is given by Fig. 7-4. The figure also indicates
the states in terms of its individual components. Assume that the LTL formula 𝜙 is such
that the states in green denote those that have to be visited infinitely often in steady state,
while those in red must be avoided. Therefore (𝐿𝑝𝑟𝑜𝑑,𝐾𝑝𝑟𝑜𝑑) = {({∅}, {𝑚1}), ({𝑚3}, {𝑚2})}.
The boxes 𝐶1, 𝐶2, 𝐶3 indicate the communicating classes of the graph.

From Algorithm 12, for 𝐶1, 𝐵𝑎𝑑 = {𝑚8}, 𝐺𝑜𝑜𝑑 = {𝑚1}. For 𝑚1 → 𝑚8, Eqn. (7.5) is
true for all 𝑢𝐴 and 𝑢𝐶 = {𝐷,𝐿}. Thus, ℐ𝐶(𝑔′, 𝑢𝐶 |𝑔, 𝑜) ← 0 for 𝑜 = {𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑤𝑟𝑜𝑛𝑔}. For
𝑚9 → 𝑚1, since Eqn. (7.6) does not hold for 𝑅,𝐷 ∈ 𝑈𝐶 , ℐ𝐴(·) is unchanged. Then, 𝑚1

is recurrent in 𝒢𝑛𝑒𝑤. For 𝐶2, 𝐵𝑎𝑑 = {𝑚3,𝑚7}, 𝐺𝑜𝑜𝑑 = {𝑚2}. Like for 𝐶1, ℐ𝐴(·) remains
unchanged, since Eqn. (7.6) does not hold for 𝐷 ∈ 𝑈𝐶 . For 𝑚5 → 𝑚7, ℐ𝐶(𝑔′, 𝑢𝐶 |𝑔, 𝑜) ←
0∀𝑢𝐶 ∈ 𝑈𝐶 ∖𝐷. A similar conclusion is drawn for 𝑚4 → 𝑚3. Then, 𝑚2 will be recurrent in
𝒢𝑛𝑒𝑤. For 𝐶3, since 𝐵𝑎𝑑 = 𝐺𝑜𝑜𝑑 = ∅, no structure is added to ℐ. Notice that these FSCs
satisfy Proposition 7.1.

This example also shows the limitations of Algorithm 12. From the 𝑀 ×𝑁 grid, there is
a policy that takes the controller from any 𝑠 ∈ 𝑆∖{𝑠4} to 𝑠5 with probability 1. However, for
FSCs of small size, the initial state of the controller might result in the Algorithm reporting
that no solution was found, even if there exists a feasible solution.

We now suppose that 𝑀 = 5 and 𝑁 = 4. A representation of the environment is shown
in Fig. 7-5a. The LTL formula to be satisfied is 𝜙 = 23tar ∧ 2¬obs. The observation
function of the defender is modified so that for a state 𝑠 where ℒ(𝑠) = obs or ℒ(𝑠) = tar,
𝑂𝐶(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠) = 1. That is, the defender recognizes an obstacle or the target correctly
with probability one. Our experiments compute the probability of reaching the target under
limited sensing capabilities of the agents with FSCs having different number of states. In
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each case, we assume that |𝐺𝐶 | ≥ |𝐺𝐴|. The number of states in the GMC varies from
60 to 480. Table 7.1 shows the average satisfaction probability and standard deviation of

|GC| |GA| = 1: V(s0) [Std. Dev.] |GA| = 2: V(s0) [Std. Dev.]
1 0.53 [0.04] 0.45 [0.05]
2 0.55 [0.05] 0.45 [0.06]
3 0.56 [0.09] 0.47 [0.08]
4 0.57 [0.10] 0.48 [0.12]

Table 7.1: Satisfaction probability and standard deviation (over 100 trials) of reaching the
target state 𝑠19 from 𝑠0 for LTL formula 𝜙 = 23tar ∧ 2¬obs starting from 𝑠0 for varying
number of defender FSC states |𝐺𝐶 |, when number of states in adversary FSC, |𝐺𝐴| = 1
and |𝐺𝐴| = 2.

reaching the target state 𝑠19 starting from 𝑠0 (expressed in terms of the value of the state
from Eqn. (7.10)) when the adversary FSC has one and two states. Higher values of the
standard deviation could be due to the fact that in some cases, Algorithm 12 may terminate
before 𝑉 (s0) is updated enough number of times.

|GC| Benign Baseline Adv. Baseline Adv.-Aware (ours)
1 0.69 0.35 0.53

2 0.70 0.35 0.55

3 0.73 0.38 0.56

4 0.75 0.39 0.57

Table 7.2: Comparison of probabilities of satisfying LTL formula 𝜙 = 23tar ∧ 2¬obs
starting from 𝑠0 in the presence and absence of an adversary. The first column lists the
number of defender FSC states. Subsequent columns enumerate satisfaction probabilities in
the following scenarios: i) absence of adversary (Benign Baseline [1]); ii) using a defender
policy that was synthesized without an adversary, but realized in the presence of an adversary
(Adversarial Baseline); iii) using a defender policy designed assuming the presence of an
adversary (Adversary-Aware Design- our approach). Although the benign baseline gives
the highest satisfaction probability, the same baseline when used in the presence of an
adversary results in a much lower satisfaction probability. In comparison, our Adversary-
Aware Design approach results in a higher satisfaction probability than the ‘Adversarial
Baseline’ where we use a defender policy designed to account for adversarial behavior. We
assume that the adversary FSC has one state, so that the GMC with and without the
adversary FSC will have the same number of states.

Table 7.2 compares the probabilities of satisfying the LTL objective 𝜙 = 23tar∧2¬obs
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starting from 𝑠0 in the presence and absence of an adversary. We compare our approach with
a baseline, which is a defender policy synthesized in the absence of an adversary. The GMC
for the case without an adversary is constructed using the approach of [1]. This baseline
defender policy in then realized in the presence of an adversary, and we compare it with our
method of synthesizing a defender policy assuming the presence of an adversary. Although
the highest satisfaction probability is got while using the baseline policy, when this baseline
is used in the presence of an adversary, we obtain a much lower satisfaction probability. In
comparison, our adversary-aware defender policy results in a higher satisfaction probabil-
ity than when using the baseline in the presence of the adversary. We note that for this
comparison, the adversary FSC has one state, i.e., |𝐺𝐴| = 1, so that the GMCs with and
without the adversary FSC have the same number of states.

Fig. 7-5b shows the fraction of sample paths when the agent reaches the target for the
first time. After this, since the agent is in a recurrent set, it will continue to visit states in
this set with probability one. The following observations can be drawn from Fig. 7-5b. First,
for a fixed |𝐺𝐴|, the fraction of runs when the agent successfully reaches the target increases
as |𝐺𝐶 | increases. Second, for a fixed |𝐺𝐶 |, the probability of satisfying 𝜙 is higher for a
smaller |𝐺𝐴|. Third, the fraction of successful runs improves with allowing the agent more
steps to reach the target. One reason for the first two observations is that the number of
states in an FSC models the ‘memory’ available to the agent. The defender can play better
when it has more FSC states, or when the adversary has fewer FSC states. While our results
agree with intuition, a caveat is that these numbers depend on the agents’ observations, 𝒪𝐶
and 𝒪𝐴. Here, the observations of the agents is an indication of whether the state is the
actual state the defender is in. This could be a reason for fewer successful runs when the
agent is allowed a maximum of 40 steps versus the case when it is allowed 80 steps.

7.5 Conclusion

This chapter investigated the problem of synthesizing a policy which is represented by a finite
state controller to maximize the probability of satisfying an LTL formula in an adversarial
environment with partial observability. We proposed to use partially observable stochastic
game (POSG) to represent the interaction between the controller and adversary. The finite
state controllers were composed with the POSG to yield a fully observable policy-induced
Markov chain, named global Markov chain (GMC). We showed that the probability of
satisfaction of the LTL formula was equal to the probability of reaching recurrent classes
of this MC. We subsequently presented a procedure to determine defender and adversary
controllers of fixed sizes that result in nonzero satisfaction probability of the LTL formula,
and proved its soundness. Maximizing the satisfaction probability was related to reaching a
Stackelberg equilibrium of a stochastic game involving the agents through a value-iteration
based procedure. Finally, we showed a means to add states to the defender FSC in a
principled way in order to improve the satisfaction probability for adversary FSCs of fixed
sizes.
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Chapter 8

Control Synthesis under
Time-Critical Constraints in the
Presence of Timing and Actuator
Attacks

8.1 Introduction

Chapter 4 to 7 focus on linear temporal logic, which specifies the order of the event that
should occur. In some applications, we need to assign time-critical specifications to CPS,
which normally involve deadlines and time intervals, making LTL specifications less effective.
One way to express time-critical properties is to use Metric Interval Temporal Logic (MITL)
[123]. MITL uses intervals of length larger than zero to augment timing constraints to
modalities of LTL.

Although MITL enables us to specify the timed behavior of CPS, incorporating timing
constraints also introduces an additional attack surface to the malicious adversary. An
intelligent adversary can exploit the vulnerabilities and alter the timed behavior of the
system, thereby causing violation of the MITL specification. Hence, we need to study an
adversary that have abilities to launch attacks on the clocks of the system (timing attack)
or tamper with inputs to the system (actuator attack). A timing attack will prevent the
system from reaching desired states within the specified time interval. An actuator attack
will allow the adversary to steer the system away from a target set of states.

In this chapter, we investigate how to synthesize a control policy for CPS in the presence
of a malicious adversary that is capable of launching timing and actuator attacks such that
the probability of satisfying a given MITL specification is maximized. This problem has two
major challenges: (i) stochastic games are not sufficient to model the interaction between
the controller and adversary, and (ii) the controller could incorrectly perceive the time index
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that it observes if it is the target of a timing attack, leading to an incomplete information
for the controller. To this end, we make the following contributions in this chapter:

• We define a new entity called a durational stochastic game (DSG) that captures both
time-sensitive objectives and the presence of an adversary.

• We construct the controller policy using finite state controllers (FSCs). This will
allow it to satisfy the MITL objective in cases of timing attacks. The states of the
FSC correspond to the difference between values of the estimated and observed time
indices.

• We prove that satisfying the MITL formula is equivalent to reaching a subset of states
of a global DSG constructed by composing representations of the MITL objective, CPS
under attack, and FSC. We give a computational procedure to determine this set.

• We develop a value-iteration based algorithm that maximizes the probability of satis-
fying the MITL formula for FSCs of fixed sizes under any adversary policy.

• We evaluate our approach on a representation of a signalized traffic network. The
adversary is assumed to have the ability to mount actuator and timing attacks on
the traffic signals. Our numerical results indicate a significant improvement in the
probability of satisfying the given MITL specification compared to two baselines.

The remainder of this chapter is organized as follows. Section 8.2 introduces the system
model, adversary model, and presents the problem formulation on maximizing the probabil-
ity of satisfying a given MITL specification in the presence of timing and actuator attacks.
Section 8.3 presents our proposed solution approach. Section 8.4 evaluates our proposed
approach on a signalized traffic network and a two-tank system, and Section 8.5 concludes
this chapter.

8.2 System Model and Problem Statement

This section introduces the adversary and controller models. We then present an entity called
a durational stochastic game (DSG) that models the interaction between the controller and
adversary. The DSG also models the possible amount of time taken for a transition between
two states to be completed. We end the section by formally stating the problem that this
chapter seeks to solve.

We consider a CPS whose dynamics is given as

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢𝐶(𝑘), 𝑢𝐴(𝑘), 𝑤(𝑘)), (8.1)

where 𝑘 is the time index, 𝑥(𝑘) is the state of the system, 𝑢𝐶(𝑘) and 𝑢𝐴(𝑘) are the controller’s
and adversary’s inputs, and 𝑤(𝑘) is a stochastic disturbance. The time index starts at 𝑘 = 0,
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and is known to both players. The initial state 𝑥(0) and statistical information of 𝑤(𝑘) is also
known to both players. The controller aims to synthesize a sequence of inputs to maximize
the probability of the MITL objective 𝜙 being satisfied. The adversary aims to reduce this
probability.

8.2.1 Adversary and Controller Models

The adversary can launch an actuator attack or a timing attack, or a combination of the two
to achieve its objective.

During an actuator attack, the adversary manipulates control signals received by the
actuator. The sequence of inputs supplied by the adversary in this case is called the actuator
attack policy, denoted 𝜏 . This attack can be effected when the controller communicates with
the actuator via an unreliable communication channel. In Eqn. (8.1), the adversary can
tamper with the control input 𝑢𝐶(𝑘) by injecting a signal 𝑢𝐴(𝑘). Then, the transition of
the system to the next state will be jointly determined by 𝑢𝐶(𝑘) and 𝑢𝐴(𝑘).

To launch a timing attack, an adversary can target the time synchronization protocol
of the controller [124, 125]. This will affect the controller’s perception of the (correct)
time index. The sequence of inputs supplied by the adversary in this case is called the
timing attack policy, denoted 𝜉. The adversary manipulates time stamps 𝑘 associated with
measurements made by the controller as 𝑘 + 𝜅, where 𝜅 ≥ −𝑘 is an integer. The policies 𝜏
and 𝜉 will be defined later in this section.

At each time 𝑘, the adversary can observe the state 𝑥(𝑘) and the correct time index
𝑘. The observation made by the adversary at time 𝑘 is defined as 𝑂𝑏𝑠𝑘𝐴 := {𝑥(𝑘), 𝑘}. The
adversary also knows the policy (sequence of inputs) 𝜇 committed to by the controller. Thus,
the overall information ℐ𝐴 available to the adversary is ℐ𝐴 :=

⋃︀
𝑚=0:𝑘

𝑂𝑏𝑠𝑚𝐴 ∪ {𝜇}.

Different from the information available to the adversary, the controller observes the
system state 𝑥 and a time 𝑘′, i.e., 𝑂𝑏𝑠𝑘′𝐶 := {𝑥(𝑘′), 𝑘′}, where 𝑥(𝑘′) = 𝑥(𝑘) is the state
measurement at time 𝑘 with possibly incorrect time stamp 𝑘′ due to a timing attack by the
adversary. The overall information available to the controller is ℐ𝐶 :=

⋃︀
𝑚=0:𝑘

𝑂𝑏𝑠𝑚𝐶 . Later in

this chapter, we will use finite state controller (FSC) as a formal representation of 𝜇.

8.2.2 Durational Stochastic Game

We present an abstraction of the CPS (8.1), that we term a durational stochastic game
(DSG). A DSG models the interaction between the controller and adversary, and captures
the time taken for a state transition. Let ∆ be a discrete set of possible amounts of time
taken for a transition between two states in the DSG, given specific agent actions. We then
define DSG as follows.

Definition 8.1 (Durational Stochastic Game). A (labeled) durational stochastic game (DSG)
is a tuple 𝒢 = (𝑆𝒢 , 𝑠𝒢,0, 𝑈𝐶 , 𝑈𝐴, 𝐼𝑛𝑓𝒢,𝐶 , 𝐼𝑛𝑓𝒢,𝐴, 𝑃𝒢 , 𝑇𝒢 ,Π, 𝐿, 𝐶), where
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• 𝑆𝒢 is a finite set of states,

• 𝑠𝒢,0 is the initial state.

• 𝑈𝐶 and 𝑈𝐴 are finite sets of actions for the controller and adversary, respectively.

• 𝐼𝑛𝑓𝒢,𝐶 and 𝐼𝑛𝑓𝒢,𝐴 are the information sets of the controller and adversary, respec-
tively.

• 𝑃𝒢 : 𝑆𝒢 × 𝑈𝐶 × 𝑈𝐴 × 𝑆𝒢 → [0, 1] encodes 𝑃𝒢(𝑠
′
𝒢 |𝑠𝒢 , 𝑢𝐶 , 𝑢𝐴), the transition probability

from state 𝑠𝒢 to 𝑠′𝒢 when the controller and adversary take actions 𝑢𝐶 and 𝑢𝐴.

• 𝑇𝒢 : 𝑆𝒢×𝑈𝐶×𝑈𝐴×𝑆𝒢×∆→ [0, 1] is a probability mass function. 𝑇𝒢(𝛿|𝑠𝒢 , 𝑢𝐶 , 𝑢𝐴, 𝑠′𝒢)
denotes the probability that a transition from 𝑠𝒢 to 𝑠′𝒢 under actions 𝑢𝐶 and 𝑢𝐴 takes
𝛿 ∈ ∆ time units.

• Π is a set of atomic propositions.

• 𝐿 : 𝑆𝒢 → 2Π is a labeling function that maps each state to atomic propositions in Π
that are true in that state, and 𝐶 is the set of clocks.

In this chapter, we assume the transition probability 𝑃𝒢 and probability mass function 𝑇𝒢
are known to both the controller and adversary. In Definition 8.1, the transition probability
between states is jointly determined by actions taken by the controller and adversary, which
models an actuator attack. The asymmetry of information sets of the two agents models
a timing attack. This can be justified as follows: let the actions available to the agents at
a state 𝑠 ∈ 𝑆𝒢 be 𝑈𝐶(𝑠) and 𝑈𝐴(𝑠), and let the respective information sets be 𝐼𝑛𝑓𝒢,𝐶(𝑠)
and 𝐼𝑛𝑓𝒢,𝐴(𝑠). In order to capture the information pattern described in Section 8.2.1, we
have 𝐼𝑛𝑓𝒢,𝐶(𝑠) = {(𝑠0,v0), · · · , (𝑠, v̄)}, i.e., the controller knows the path from the initial
state 𝑠0 to current state 𝑠 along with the time stamp of each state being reached. Here v
denotes the clock valuation (see Chapter 3 for its definition). We reiterate that the time
stamps observed by the controller could have been manipulated by the adversary, and hence
may be incorrect. The adversary knows the path from the initial state 𝑠0 to current state
𝑠 along with the correct time stamps of each state being reached, and the controller policy,
i.e., 𝐼𝑛𝑓𝒢,𝐴(𝑠) = {(𝑠0,v0), · · · , (𝑠,v)} ∪ {𝜇}.

For the remainder of this chapter, we use the DSG 𝒢 as an abstraction of the CPS (8.1).
The mapping from the CPS model (8.1) to a DSG is presented in Algorithm 15. Algorithm
15 partitions the state space and the admissible control and adversary action sets (lines 5-6).
We use Monte-Carlo simulation [126] to compute the transition probability distributions 𝑃𝒢
and and 𝑇𝒢 (lines 8-17).

8.2.3 Problem Statement

Similar to Chapter 4 to 7, we consider the Stackelberg setting between the controller and
adversary, with the controller acts as the leader and the adversary being the follower. In
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Algorithm 15 Constructing a DSG abstraction for CPS.
1: Input: CPS model 𝑓(𝑥(𝑘), 𝑢𝐶(𝑘), 𝑢𝐴(𝑘), 𝑤(𝑘))
2: Output: DSG 𝒢
3: Initialize time-horizon 𝐾
4: Partition the state space as 𝒳 = ∪𝑛𝑖=1𝑋𝑖

5: Partition control and adversary input as sets of polytopes 𝑈𝐶 = {𝑢𝐶1 , · · · , 𝑢𝐶Ξ
}, 𝑈𝐴 =

{𝑢𝐴1 , · · · , 𝑢𝐴Γ
}

6: 𝑆 = {𝑋1, . . . , 𝑋𝑛} and ℒ is determined accordingly
7: for 𝑙 = 1, . . . , 𝑛 do
8: for all 𝑢𝐶 ∈ 𝑈𝐶 and 𝑢𝐴 ∈ 𝑈𝐴 do
9: for 𝑘 = 1, . . . ,𝐾 do

10: 𝑥← sampled state in 𝑋𝑖

11: �̂�𝐶 , �̂�𝐴 ← sampled inputs from 𝑢𝐶 , 𝑢𝐴
12: 𝑗 ← region containing 𝑓(𝑥, �̂�𝐶 , �̂�𝐴, 𝜗)
13: Use particle filter to approximate transition probabilities 𝑃𝒢 and duration

function 𝑇𝒢 between sub-regions 𝑋𝑖 and 𝑋𝑗 for all 𝑖 and 𝑗.
14: end for
15: end for
16: end for

this chapter, we use finite state controllers to represent the policy of the controller. For
the time-being, however, it will suffice to think of the controller’s policy as a probability
distribution over the controller actions, given the state of DSG. Let 𝑉 be a finite set of clock
valuations (see Chapter 3 for its definition). The adversary policies corresponding to the
two types of attacks is formally stated below.

Definition 8.2 (Adversary policies). The actuator attack policy is a map 𝜏 : 𝑆𝒢×𝑉 ↦→ 𝑈𝐴.
That is, 𝜏 specifies an action 𝑢𝐴 ∈ 𝑈𝐴(𝑠) for each state (𝑠,v) ∈ 𝑆.

The timing attack policy is a map 𝜉 : 𝑉 × 𝑉 ↦→ [0, 1]. That is, 𝜉 encodes 𝜉(v′|v), the
probability that the adversary will manipulate the correct clock valuation v to a valuation v′.

We are now ready to state the problem.

Problem 8.1. Given an MITL objective 𝜙, and a DSG 𝒢 in which the controller’s objective
is to maximize the probability of satisfying 𝜙 and the adversary’s objective is to minimize
this probability, compute a control policy that is in Stackelberg equilibrium, i.e.,

max
𝜇

min
𝜏,𝜉

P(𝜙). (8.2)
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8.3 Control Synthesis under MITL Constraints in the Pres-
ence of Timing and Actuator Attacks

This section presents the our proposed solution approach. We first compute a product
durational stochastic game (PDSG), given a DSG that abstracts the CPS, and a TBA
corresponding to the MITL formula 𝜙. We represent the controller’s policy as a finite state
controller (FSC), and compute a global DSG (GDSG) by composing the PDSG and FSC. We
solve Problem 8.1 by proving that maximizing the probability of satisfying 𝜙 is equivalent to
maximizing the probability of reaching a subset of states of the GDSG, termed generalized
accepting end components (GAMECs). Then, we present a value-iteration based algorithm
to synthesize an FSC that will lead to an SE of the game between controller and adversary.

8.3.1 Product Durational Stochastic Game Construction

We construct an entity named product durational stochastic game (PDSG) as follows.

Definition 8.3 (Product Durational Stochastic Game). A PDSG 𝒫 constructed from a DSG
𝒢, a TBA 𝒜, and clock valuation set 𝑉 is a tuple 𝒫 = (𝑆, 𝑠0, 𝑈𝐶 , 𝑈𝐴, 𝐼𝑛𝑓𝐶 , 𝐼𝑛𝑓𝐴, 𝑃,𝐴𝑐𝑐),
where

• The set 𝑆 = 𝑆𝒢 ×𝑄× 𝑉 is a finite set of states.

• 𝑠0 = (𝑠𝒢,0, 𝑞0,v0) is the initial state.

• 𝑈𝐶 and 𝑈𝐴 are finite sets of actions for the controller and adversary, respectively.

• 𝐼𝑛𝑓𝐶 and 𝐼𝑛𝑓𝐴 are the information sets of the controller and adversary, respectively.

• 𝑃 : 𝑆 × 𝑈𝐶 × 𝑈𝐴 × 𝑆 ↦→ [0, 1] encodes 𝑃 ((𝑠′, 𝑞′,v′)|(𝑠, 𝑞,v), 𝑢𝐶 , 𝑢𝐴), the probability
of a transition from state (𝑠, 𝑞,v) to (𝑠′, 𝑞′,v′) when the controller and adversary take
actions 𝑢𝐶 and 𝑢𝐴 respectively. The probability

𝑃
(︀
(𝑠′, 𝑞′,v′)|(𝑠, 𝑞,v), 𝑢𝐶 , 𝑢𝐴

)︀
:= 𝑇𝒢(𝛿|𝑠, 𝑢𝐶 , 𝑢𝐴, 𝑠′)𝑃𝒢(𝑠

′|𝑠, 𝑢𝐶 , 𝑢𝐴) (8.3)

if and only if (𝑞,v)
𝐿(𝑠′),𝛿−−−−→ (𝑞′,v′).

• 𝐴𝑐𝑐 = 𝑆𝒢 × 𝐹 × 𝑉 is a finite set of accepting states.

At a state (𝑠, 𝑞,v) ∈ 𝑆, let 𝐼𝑛𝑓𝐶(𝑠, 𝑞,v) := {(𝑠0, 𝑞0,v0), · · · , (𝑠, 𝑞, v̄)} (the controller
knows the path from the initial state of PDSG to the current state, along with the ma-
nipulated time stamps) and 𝐼𝑛𝑓𝐴(𝑠, 𝑞,v) := {(𝑠0, 𝑞0,v0), · · · , (𝑠, 𝑞,v)}∪{𝜇} (the adversary
knows the controller’s policy 𝜇 and the path from the initial state to the current state, along
with the correct time stamps).

The following result establishes the consistency of the PDSG 𝒫.
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Proposition 8.1. The function 𝑃 (·) is well-defined. That is, 𝑃 ((𝑠′, 𝑞′,v′)|(𝑠, 𝑞,v), 𝑢𝐶 , 𝑢𝐴)
∈ [0, 1] and ∑︁

(𝑠′,𝑞′,v′)

𝑃
(︀
(𝑠′, 𝑞′,v′)|(𝑠, 𝑞,v), 𝑢𝐶 , 𝑢𝐴

)︀
= 1. (8.4)

Proof. For any transition in 𝒫, 𝑃 ((𝑠′, 𝑞′,v′)|(𝑠, 𝑞,v), 𝑢𝐶 , 𝑢𝐴) ∈ [0, 1]. This is due to the fact
that 𝑇𝒢(𝛿|𝑠, 𝑢𝐶 , 𝑢𝐴, 𝑠′) ∈ [0, 1] and 𝑃𝒢(𝑠

′|𝑠, 𝑢𝐶 , 𝑢𝐴) ∈ [0, 1]. Moreover, we have that: (i)
𝑃 ((𝑠′, 𝑞′,v′)|(𝑠, 𝑞,v), 𝑢𝐶 , 𝑢𝐴) = 0 iff 𝑇𝒢(𝛿|𝑠, 𝑢𝐶 , 𝑢𝐴, 𝑠′) = 0, or 𝑃𝒢(𝑠

′|𝑠, 𝑢𝐶 , 𝑢𝐴) = 0, or both,
and (ii) 𝑃 ((𝑠′, 𝑞′,v′)|(𝑠, 𝑞,v), 𝑢𝐶 , 𝑢𝐴) = 1 iff 𝑇𝒢(𝛿|𝑠, 𝑢𝐶 , 𝑢𝐴, 𝑠′) = 1 and 𝑃𝒢(𝑠

′|𝑠, 𝑢𝐶 , 𝑢𝐴) = 1.

Let 𝐼𝛿(𝑞,v),(𝑞′,v′)
:= 1((𝑞,v)

𝐿(𝑠′),𝛿−−−−→ (𝑞′,v′)) be an indicator function that takes value 1 if its
argument is true, and 0 otherwise. Then, Eqn. (8.4) can be rewritten as:∑︁

(𝑠′,𝑞′,v′)

𝑇𝒢(𝛿|𝑠, 𝑢𝐶 , 𝑢𝐴, 𝑠′)𝑃𝒢(𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴) (8.5)

=
∑︁
𝑠′∈𝑆𝒢

∑︁
𝛿∈Δ

𝑇𝒢(𝛿|𝑠, 𝑢𝐶 , 𝑢𝐴, 𝑠′)𝐼𝛿(𝑞,v),(𝑞′,v′)𝑃𝒢(𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴) (8.6)

=1, (8.7)

where Eqn. (8.5) holds by substituting from Equation (8.3), Eqn. (8.6) follows from
Definition 8.3 and 𝑃𝒢(𝑠

′|𝑠, 𝑢𝐶 , 𝑢𝐴) > 0, and Equation (8.7) results by observing that∑︀
𝛿∈Δ 𝑇𝒢(𝛿|𝑠, 𝑢𝐶 , 𝑢𝐴, 𝑠′) = 1 and

∑︀
𝑠′∈𝑆𝒢

𝑃𝒢(𝑠
′|𝑠, 𝑢𝐶 , 𝑢𝐴) = 1.

From Eqn. (8.3), we observe that a transition exists in 𝒫 if and only if the label associated
with the target state matches the atomic proposition corresponding to the transition in the
TBA, and the clock constraint is satisfied. Further, for any run 𝛽 := (𝑠0, 𝑞0,v0), (𝑠1, 𝑞1,v1), . . .
on 𝒫, we can obtain a run 𝜌 on 𝒜 and a path on 𝒢. That is, there is a one-one mapping from
runs on the PDSG to those on the TBA and DSG. We define the following two projections
over the runs on 𝒫. Given a run 𝛽, we let Untime(𝛽) = (𝑠0, 𝑞0), (𝑠1, 𝑞1), · · · , be the untimed
sequence of states, and let Time(𝛽) = (𝑞0,v0), (𝑞1,v1), · · · , be the configuration sequence
corresponding to 𝛽.

8.3.2 Controller Policy Representation: Finite State Controllers

We now formally define the controller’s policy 𝜇. Since the adversary can manipulate
the clock valuation v observed by the controller, the controller has only partial infor-
mation over the DSG. This is evident from the following: let there exist a run 𝛽 =
(𝑠0, 𝑞0,0)(𝑠1, 𝑞1,1)(𝑠2, 𝑞2,2) on PDSG 𝒫 without any clock being reset that is manipu-
lated by the adversary as 𝛽′ = (𝑠0, 𝑞0,0)(𝑠1, 𝑞1,1)(𝑠2, 𝑞2,0.5). The run 𝛽′ is not reasonable
since the time sequence Time(𝛽′) = (𝑞0,0), (𝑞1,1), (𝑞2,0.5) is not monotone. The presence
of such a run will allow the controller to conclude that a timing attack has been effected
by the adversary. Moreover, after a timing attack has been detected, the controller will be
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aware that the observed clock valuation is incorrect, and thus cannot be relied upon for
control synthesis. The controller will then need to keep track of an estimate of the clock
valuation in order to detect a timing attack, and use this estimate for control synthesis. The
controller’s policy is represented as a finite state controller (FSC) defined as follows.

Definition 8.4 (Finite State Controller [127]). A finite state controller (FSC) is a finite
state automaton ℱ = (𝑌, 𝑦0, 𝜇), where 𝑌 = Λ × {0, 1} is a finite set of internal states, Λ
is a set of estimates of clock valuations, the set {0, 1} indicates if a timing attack has been
detected (1) or not (0). 𝑦0 is the initial internal state. 𝜇 is the controller policy, given by:

𝜇 =

{︃
𝜇0 : 𝑌 × 𝑆 × 𝑌 × 𝑈𝐶 ↦→ [0, 1], if ℋ0 holds;
𝜇1 : 𝑌 × 𝑆𝒢 ×𝑄× 𝑌 × 𝑈𝐶 ↦→ [0, 1], if ℋ1 holds,

(8.8)

where 𝜇0 and 𝜇1 respectively denote the control policies that will be executed when hypothesis
ℋ0 or ℋ1 holds.

In Definition 8.4, the hypothesis ℋ0 models the scenario where no timing attack has been
detected by the controller, and ℋ1 models the case when a timing attack has been detected.
Eqn. (8.8) specifies the probability of reaching the next internal state 𝑦′ and taking the
corresponding action 𝑢𝐶 , given the current internal state 𝑦, observed clock valuation v (if
no timing attack has been detected), and state 𝑠 of 𝒢. The FSC allows the controller to
synthesize policies with finite memory rather than memoryless policies. In this chapter, we
assume the size of the FSC is given and fixed and limit our focus to computing 𝜇. The two
players can track an estimate of the clock valuation according to the probability distribution
𝑇𝒢 . Moreover, we do not explicitly specify a timing attack detection scheme, and assume
it is known. Timing attack detection schemes that are compatible with our framework
include [124] and [125]. In the nominal case, the controller adopts the policy 𝜇0. Once a
timing attack has been detected by the controller, the controller ignores the observed clock
valuation v, and switches to policy 𝜇1. The design of a timing attack detection strategy is
beyond the scope of this chapter, and we leave it as future work.

8.3.3 Value Iteration Algorithm for Control Synthesis

To incorporate the evolution of the estimate of the clock valuation maintained by the con-
troller, we compose this with the PDSG. We call this entity the global DSG (GDSG). We
prove that maximizing the probability of satisfying the MITL objective 𝜙 is equivalent to
maximizing the probability of reaching a specific subset of states in the GDSG called gener-
alized accepting maximal end components (GAMECs). The control policy is then computed
using a value iteration based procedure. Given an FSC ℱ and the PDSG 𝒫, we can construct
GDSG in the following way.

Definition 8.5 (Global DSG (GDSG)). A GDSG is a tuple 𝒵 = (𝑆𝒵 , 𝑠𝒵,0, 𝑈𝐶 , 𝑈𝐴, 𝐼𝑛𝑓𝒵,𝐶 ,
𝐼𝑛𝑓𝒵,𝐴, 𝑃𝒵 , 𝐴𝑐𝑐𝒵), where
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• 𝑆𝒵 = 𝑆 × 𝑌 is a finite set of states.

• 𝑠𝒵,0 = (𝑠0, 𝑞0,v0, 𝑦0) is the initial state.

• 𝑈𝐶 and 𝑈𝐴 are finite sets of actions for the controller and adversary, respectively.

• 𝐼𝑛𝑓𝒵,𝐶 and 𝐼𝑛𝑓𝒵,𝐴 are the information sets of the controller and adversary respec-
tively.

• 𝑃𝒵 : 𝑆𝒵 × 𝑈𝐶 × 𝑈𝐴 × 𝑆𝒵 ↦→ [0, 1] is a transition function with the probability of a
transition from state (𝑠, 𝑞,v, 𝑦) to (𝑠′, 𝑞′,v′, 𝑦) when the controller and adversary re-
spectively take actions 𝑢𝐶 and 𝑢𝐴 being denoted as 𝑃𝒵 ((𝑠′, 𝑞′,v′, 𝑦′)|(𝑠, 𝑞,v, 𝑦), 𝑢𝐶 , 𝑢𝐴).
The transition probability

𝑃𝒵
(︀
(𝑠′, 𝑞′,v′, 𝑦′)|(𝑠, 𝑞,v, 𝑦), 𝑢𝐶 , 𝑢𝐴

)︀
=

{︃∑︀
v′′ 𝜉(v′′|v)𝜇0(𝑦′, 𝑢𝐶 |𝑠, 𝑞,v′′, 𝑦)𝑃 ((𝑠′, 𝑞′,v′)|(𝑠, 𝑞,v), 𝑢𝐶 , 𝑢𝐴) , if ℋ0 holds;

𝜇1(𝑦
′, 𝑢𝐶 |𝑠, 𝑞, 𝑦)𝑇𝒢(𝛿|𝑠, 𝑢𝐶 , 𝑢𝐴, 𝑠′)𝑃𝒢(𝑠

′|𝑠, 𝑢𝐶 , 𝑢𝐴), if ℋ1 holds;
(8.9)

• 𝐴𝑐𝑐𝒵 = 𝐴𝑐𝑐× 𝑌 is the set of accepting states.

At a state (𝑠, 𝑞,v, 𝑦), the information set of the controller is

𝐼𝑛𝑓𝒵,𝐶(𝑠, 𝑞,v, 𝑦) = {(𝑠0, 𝑞0,v0, 𝑦0), · · · , (𝑠, 𝑞, v̄, 𝑦)}.

That is, the controller knows the path from the initial state of GDSG to the current state,
along with the time stamps, which might have been manipulated by the adversary. The
information set of the adversary is 𝐼𝑛𝑓𝒵,𝐴(𝑠, 𝑞,v, 𝑦) = {(𝑠0, 𝑞0,v0, 𝑦0), · · · , (𝑠, 𝑞,v, 𝑦)}∪{𝜇}.
That is, the adversary knows the path from the initial state to the current state, along with
the correct time stamps, and the controller’s policy. In the sequel, we focus on the GDSG 𝒵
in Definition 8.5, and denote a state (𝑠, 𝑞,v, 𝑦) in 𝒵 as s. Given a run 𝛽 = {(𝑠𝑖, 𝑞𝑖,v𝑖, 𝑦𝑖)}𝑖≥1

on 𝒵, we define Untime(𝛽) = {(𝑠𝑖, 𝑞𝑖)}𝑖≥1 and Time(𝛽) = {(𝑞𝑖,v𝑖)}𝑖≥1, respectively. To
compute the control policy that satisfies 𝜙, we need to determine accepting runs on 𝒵. To
this end, we introduce the concepts of generalized maximal end component (GMEC) and
generalized accepting maximal end component (GAMEC) similar to Chapter 4. We note
that the accepting condition for a GMEC in this chapter differs from that in Chapter 4,
since we are working with timed automata.

Definition 8.6 (Sub-DSG). A sub-DSG of a DSG 𝒢 = (𝑆,𝑈𝐶 , 𝑈𝐴, 𝑃, 𝑠0,Π,ℒ) is a tuple
(𝑁,𝐷) where ∅ ≠ 𝑁 ⊆ 𝑆 is a set of states, and 𝐷 : 𝑁 → 2𝑈𝐶 is a function such that
𝐷(𝑠) ⊆ 𝑈𝐶(𝑠) for all 𝑠 ∈ 𝑁 and {𝑠′|𝑃 (𝑠′|𝑠, 𝑢𝐶 , 𝑢𝐴) > 0,∀𝑢𝐴 ∈ 𝑈𝐴(𝑠), 𝑠 ∈ 𝑁} ⊆ 𝑁 .

Definition 8.7. A Generalized End Component (GEC) is a sub-DSG (𝑁,𝐷) such that the
underlying directed graph 𝐺(𝑁,𝐷) of (𝑁,𝐷) is strongly connected. A GMEC is a GEC (𝑁,𝐷)
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such that there exists no other GEC (𝑁 ′, 𝐷′) ̸= (𝑁,𝐷), where 𝑁 ⊆ 𝑁 ′ and 𝐷(𝑠) ⊆ 𝐷′(𝑠)
for all 𝑠 ∈ 𝑁 . A GAMEC is a GMEC if 𝐴𝑐𝑐 ∩𝑁 ̸= ∅.

Algorithm 16 presents a procedure to compute the set of GAMECs, 𝒞 of the GDSG 𝒵.
Let ℰ denote the set of states in a GAMEC. The correctness of Algorithm 16 is established
in the following

Proposition 8.2. Algorithm 16 returns all GAMECs of 𝒵.

Proof. We prove the correctness of Algorithm 16 by first showing that no state or control
action that belongs to a GEC will be removed. Consider a GEC (𝑁,𝐷).

If there exists a state s and control action 𝑢𝐶 ∈ 𝑈𝐶(s) such that 𝑃 (s′|s, 𝑢𝐶 , 𝑢𝐴) > 0 for
all 𝑢𝐴 and s′ ∈ 𝑁 , then according to lines 10 - 17 of Algorithm 16, state s and control action
𝑢𝐶 will not be removed since 𝐷(s) ̸= ∅. Therefore, Algorithm 16 never removes states or
actions from a GEC.

On the other hand, if there is a state s ∈ 𝑁 such that 𝐷(s) = ∅, then s will be removed
(lines 10 - 17 of Algorithm 16). Moreover, any state that can be steered to s under some
adversary action 𝑢𝐴 will also be removed (lines 18 - 26). Thus, any state or action that does
not belong to GEC will be removed by Algorithm 16, and the remaining states in (𝑁,𝐷)
after executions from lines 10 - 26 will form the GEC.

Combining the arguments above, we have that Algorithm 16 computes a set of GECs
{(𝑁𝑖, 𝐷𝑖)}𝑖≥1 such that any GEC is contained by some (𝑁𝑖, 𝐷𝑖). Then by Definition 8.7
and line 35 of Algorithm 16, we have that the result returned by Algorithm 16 is the set of
GAMECs.

The equivalence between the satisfying the MITL objective 𝜙 and reaching states in the
GAMEC is stated below:

Theorem 8.1. Given an initial state s0 ∈ 𝑆𝒵 , the minimum probability of satisfying 𝜙 is
equal to the minimum probability of reaching the states ℰ of GAMEC. That is,

min
𝜏,𝜉

P(𝜙|s0) = min
𝜏,𝜉

P(reach ℰ|s0), (8.10)

where P(𝜙|s0) and P(reach ℰ|s0) are the probabilities of satisfying 𝜙 and reaching ℰ when
starting from s0.

To prove Theorem 8.1, we need an intermediate result [128].

Lemma 8.1. Let 𝐿 be a timed regular language. Then, a word {𝜌𝑖}𝑖≥1 ∈ Untime(𝐿) if and
only if there exists a sequence {𝑡𝑖}𝑖≥1 such that 𝑡𝑖 ∈ Q and the timed word {𝜌𝑖, 𝑡𝑖}𝑖≥1 ∈ 𝐿.

Lemma 8.1 indicates that we can analyze a timed word by focusing on its untimed
projection and the corresponding time sequence. We use this to prove Theorem 8.1.
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Algorithm 16 Computing the set of GAMECs 𝒞.
1: Input: GDSG 𝒵
2: Output: Set of GAMECs 𝒞
3: Initialization: Let 𝐷(s)← 𝑈𝐶(s) for all s ∈ 𝑆. Let 𝒞 ← ∅ and 𝒞𝑡𝑒𝑚𝑝 ← {𝑆}
4: repeat
5: 𝒞 ← 𝒞𝑡𝑒𝑚𝑝, 𝒞𝑡𝑒𝑚𝑝 ← ∅
6: for 𝑁 ∈ 𝒞 do
7: 𝑅← ∅
8: Let 𝑆𝐶𝐶1, · · · , 𝑆𝐶𝐶𝑛 be the set of strongly connected components of underlying

digraph 𝐺(𝑁,𝐷)

9: for 𝑖 = 1, · · · , 𝑛 do
10: for each state s ∈ 𝑆𝐶𝐶𝑖 do
11: 𝐷(s)← {𝑢𝐶 ∈ 𝑈𝐶(s)|s′ ∈ 𝑁,𝑃 (s′|s, 𝑢𝐶 , 𝑢𝐴) > 0, ∀𝑢𝐴 ∈ 𝑈𝐴(s)}
12: if 𝐷(𝑠) = ∅ then
13: 𝑅← 𝑅 ∪ {s}
14: end if
15: end for
16: end for
17: while 𝑅 ̸= ∅ do
18: dequeue s ∈ 𝑅 from 𝑅 and 𝑁
19: if ∃s′ ∈ 𝑁 and 𝑢𝐶 ∈ 𝑈𝐶(s′) such that 𝑃 (s|s′, 𝑢𝐶 , 𝑢𝐴) > 0 for some 𝑢𝐴 ∈ 𝑈𝐴(s′)

then
20: 𝐷(s′)← 𝐷(s′) ∖ {𝑢𝐶}
21: if 𝐷(s′) = ∅ then
22: 𝑅← 𝑅 ∪ {s′}
23: end if
24: end if
25: end while
26: for 𝑖 = 1, · · · , 𝑛 do
27: if 𝑁 ∩ 𝑆𝐶𝐶𝑖 ̸= ∅ then
28: 𝒞 ← 𝒞𝑡𝑒𝑚𝑝 ∪ {𝑁 ∩ 𝑆𝐶𝐶𝑖}
29: end if
30: end for
31: end for
32: until 𝒞 = 𝒞𝑡𝑒𝑚𝑝
33: for 𝑁 ∈ 𝒞 do
34: if 𝐴𝑐𝑐𝒵 ∩𝑁 = ∅ then
35: 𝒞 = 𝒞 ∖𝑁
36: end if
37: end for
38: return 𝒞
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Proof of Theorem 8.1. We establish that satisfying 𝜙 is equivalent to reaching the set of
states ℰ . Then, we need to show that any accepting run will reach ℰ , and any run that reaches
ℰ is accepting. Let ℒ denote the timed language accepted by 𝒵. Let Untime(ℒ) be the
language obtained from ℒ by discarding the clock valuation and internal state components.

First, we prove that any accepting run 𝛽 of GDSG 𝒵 reaches ℰ . We use a contradiction
argument. Suppose there exists an accepting run 𝛽 that does not reach ℰ . Since 𝛽 satisfies 𝜙,
we must have that 𝛽 contains some accepting state in 𝐴𝑐𝑐𝒵 infinitely many times (Definition
3.9). This implies that there exists a GEC that contains some state s ∈ 𝐴𝑐𝑐𝒵 and s /∈ ℰ ,
which violates Proposition 8.2.

Next, we show that any run 𝛽 that reaches ℰ is accepting. We use Lemma 8.1. Since
GAMECs are strongly connected and each GAMEC contains at least one accepting state,
reaching ℰ is equivalent to reaching some accepting state infinitely often, which agrees with
the acceptance condition of Untime(ℒ). Hence, we have Untime(𝛽) ∈ Untime(ℒ). Now, from
Eqn. (8.3), we have that a transition in 𝒫, and therefore in 𝒵, exists if and only if no clock

constraint is violated, i.e., (𝑞,v)
𝐿(𝑠′),𝛿−−−−→ (𝑞′,v′). Otherwise, the transition probability is 0,

and hence the run 𝛽 does not exist, which establishes the claim. Given that Untime(𝛽) ∈
Untime(𝐿) holds, and Time(𝛽) never violates the clock constraints defined by TBA 𝒜 for
any run that reaches ℰ , we have that the set of runs that reach ℰ is in language ℒ by Lemma
8.1.

Combining the two arguments above, we observe that satisfying 𝜙 is equivalent to reach-
ing the set ℰ . This gives min

𝜏,𝜉
P(𝜙|s0) = min

𝜏,𝜉
P(reach ℰ|s0), completing the proof.

Let the vector Q(s) ∈ R|𝑆𝒵 | represent the probability of satisfying 𝜙 when starting from
a state s = (𝑠, 𝑞,v, 𝑦) in 𝒵.

Proposition 8.3. Let Q := max
𝜇

min
𝜏,𝜉

P(𝜙) be the probability of satisfying 𝜙. Then,

Q((𝑠, 𝑞,v, 𝑦)) = max
𝜇

min
𝜏,𝜉

∑︁
𝑢𝐶∈𝑈𝐶

∑︁
𝑢𝐴∈𝑈𝐴

∑︁
(𝑠′,𝑞′,v′,𝑦)∈𝑆𝒵

𝜏((𝑠, 𝑞,v, 𝑦), 𝑢𝐴)Q((𝑠′, 𝑞′,v′, 𝑦′))

· 𝑃𝒵
(︀
(𝑠′, 𝑞′,v′, 𝑦′)|(𝑠, 𝑞,v, 𝑦), 𝑢𝐶 , 𝑢𝐴

)︀
, ∀(𝑠, 𝑞,v, 𝑦). (8.11)

Moreover, the value vector is unique.

We define the following operators to prove Proposition 8.3.

(𝑀𝜇Q)(s) = min
𝜏,𝜉

∑︁
s′

𝑃 (s′|s, 𝜇, (𝜏, 𝜉))Q(s′),

(𝑀Q)(s) = max
𝜇

min
𝜏,𝜉

∑︁
s′

𝑃 (s′|s, 𝜇, (𝜏, 𝜉))Q(s′),

where 𝑃 (s′|s, 𝜇, (𝜏, 𝜉)) is the probability of transiting from state s to s′, given policies 𝜇 and
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𝜏 . The operators 𝑀𝜇 and 𝑀 are characterized in the following lemma. The proof of the
lemma and Proposition 8.3 can be found in the Appendix.

Lemma 8.2. The sequence of value vectors obtained by composing operators 𝑀𝜇 and 𝑀 is
convergent.

Proof. Given a control policy 𝜇, the GDSG 𝒵 is reduced to an MDP, ℳ. Then, the
composition of 𝑀𝜇 corresponds to a value iteration on ℳ. The convergence of 𝑀𝜇 can
be shown following the approach in [101].

Next, we show that the sequence obtained by composing 𝑀 is bounded and monotone.
We observe that𝑀Q(s) is a convex combinations of all the neighboring states of s. Moreover,
Q(s) ∈ [0, 1] for all s, and is therefore bounded. We show that the sequence of value vectors
is monotonically non-decreasing by induction. Define 𝑀−1Q := 0, and 𝑀0Q(s) = 0 for
s /∈ ℰ , and 𝑀0Q(s) = 1 for s ∈ ℰ . Then, 𝑀−1Q ≤ 𝑀0Q. Suppose the sequence of value
vectors is monotonically non-decreasing up to iteration 𝑘. We have

𝑀𝑘+1Q(s)

≥min
𝜏,𝜉

{︂ ∑︁
𝑢𝐶∈𝑈𝐶

∑︁
𝑢𝐴∈𝑈𝐴

∑︁
(𝑠′,𝑞′,v′,𝑦)∈𝑆𝒵

𝜏((𝑠, 𝑞,v, 𝑦), 𝑢𝐴)Q((𝑠′, 𝑞′,v′, 𝑦′))

· 𝑃𝒵
(︀
(𝑠′, 𝑞′,v′, 𝑦′)|(𝑠, 𝑞,v, 𝑦), 𝑢𝐶 , 𝑢𝐴

)︀}︂
(8.12)

≥min
𝜏,𝜉

{︂ ∑︁
𝑢𝐶∈𝑈𝐶

∑︁
𝑢𝐴∈𝑈𝐴

∑︁
(𝑠′,𝑞′,v′,𝑦)∈𝑆𝒵

𝜏((𝑠, 𝑞,v, 𝑦), 𝑢𝐴)Q((𝑠′, 𝑞′,v′, 𝑦′))

· 𝑃 𝑘−1
𝒵

(︀
(𝑠′, 𝑞′,v′, 𝑦′)|(𝑠, 𝑞,v, 𝑦), 𝑢𝐶 , 𝑢𝐴

)︀}︂
(8.13)

=𝑀𝑘Q(s), (8.14)

where 𝑃 𝑘−1
𝒵 ((𝑠′, 𝑞′,v′, 𝑦′)|(𝑠, 𝑞,v, 𝑦), 𝑢𝐶 , 𝑢𝐴) is obtained by substituting 𝜇𝑘−1(𝑔′, 𝑢𝐶 |𝑔,v)

into (8.9), inequality (8.12) holds since 𝑀𝑘+1Q corresponds to a maximizing policy 𝜇𝑘+1,
(8.13) holds by induction, and (8.14) follows from the construction of 𝜇𝑘. Therefore,
Q𝑘+1 ≥ Q𝑘, implying the sequence of value vectors is monotonically non-decreasing. From
the boundedness and monotonocity of 𝑀Q, the sequence is a Cauchy sequence that con-
verges to a value Q*.

These results enable determining an optimal control policy using a value-iteration based
algorithm. Algorithm 17 computes the value vector at each iteration. The value vector is
updated following Proposition 8.3. Given the optimal value vector Q* and the Stackelberg
setting, we can extract the optimal controller’s policy as the maximizer of Q* by solving a
linear program. The convergence of Algorithm 17 is discussed in the following theorem.
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Algorithm 17 Computing an optimal control policy.
1: Input: GDSG 𝒵
2: Output: value vector Q
3: Initialization: Q0 ← 0, Q1(s)← 1 for s ∈ 𝐴𝑐𝑐𝒵 , Q1(s)← 0 otherwise, 𝑘 ← 0
4: while max {|Q𝑘+1(s)−Q𝑘(s)| : s ∈ 𝑆} > 𝜖 do
5: 𝑘 ← 𝑘 + 1
6: for s /∈ 𝐴𝑐𝑐𝒵 do

7: Q𝑘+1(s) ← max𝜇min𝜏,𝜉

{︂∑︀
𝑢𝐶∈𝑈𝐶

∑︀
𝑢𝐴∈𝑈𝐴

∑︀
(𝑠′,𝑞′,v′,𝑦)∈𝑆𝒵

𝜏((𝑠, 𝑞,v, 𝑦), 𝑢𝐴)Q((𝑠′, 𝑞′,v′, 𝑦′))𝑃𝒵 ((𝑠′, 𝑞′,v′, 𝑦′)|(𝑠, 𝑞,v, 𝑦), 𝑢𝐶 , 𝑢𝐴)
}︂

8: end for
9: end while

10: return Q𝑘

Theorem 8.2. Algorithm 17 converges in a finite number of iterations. Moreover, the value
vector returned by Algorithm 17 is in an 𝜖-neighborhood of Q*.

Proof of Theorem 8.2. We prove convergence by by showing that the sequence of value vec-
tors computed in Algorithm 17 is bounded and monotonically non-decreasing. Line 4 of
Algorithm 17 serves as our induction base, i.e., Q1 ≥ Q0. Line 8 of Algorithm 17 is equiv-
alent to computing Q𝑘+1 as Q𝑘+1 = 𝑀Q𝑘. From Lemma 8.2, Q𝑘+1 ≥ Q𝑘. Convergence
follows from the Monotone Convergence theorem [119]. That the control policy is within an
𝜖-neighborhood of SE follows from Line 5 of Algorithm 17.

8.4 Case Study

This section evaluates the proposed solution approach on a signalized traffic network and
a two-tank system. The simulations were carried out using MATLAB on a Macbook Pro
with a 2.6GHz Intel Core i5 CPU and 8GB RAM. The Appendix contains an example on
two-tank system.

8.4.1 Signalized Traffic Network Model

We consider signalized traffic network under the remote control of a transportation man-
agement center (TMC). A signalized traffic network consists of a set of links {1, 2, . . . , 𝐿}
and intersections {1, 2, . . . , 𝑁} [129]. Each intersection can take a ‘red’ signal which will not
allow vehicles to pass through the intersection, or a ‘green’ signal which will allow vehicles
to pass. The number of vehicles in link 𝑙 at a time 𝑘 is 𝑥𝑙(𝑘) and �̄�𝑙 denotes the capacity of
link 𝑙.
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Figure 8-1: Representation of a signalized traffic network. The network consists of 4 inter-
sections and 16 links. Intersections are represented by squares, and links by arrows. Dotted
arrows denote outgoing links that are not explicitly modeled.

The number of vehicles entering the traffic network at a time 𝑘 is assumed to follow
a Poisson distribution. Vehicles can travel through a link if and only if the subsequent
intersection in the direction of travel is green. The link is then said to be actuated. We
assume that the flow rate 𝑐𝑙 of each link 𝑙 is given and fixed. The TMC is given an MITL
objective that needs to be satisfied on the network. When the TMC issues a green signal at
an intersection 𝑛, the turn ratio 𝛾𝑙𝑙′ ∈ [0, 1] denotes the fraction of vehicles that will move
to link 𝑙′ from link 𝑙 through intersection 𝑛. The maximum number of vehicles that can be
routed to 𝑙′ from 𝑙 is determined by the supply ratio 𝛼𝑙𝑙′ of link 𝑙′, which is determined by
the remaining capacity �̄�𝑙′ − 𝑥𝑙′(𝑘) of link 𝑙′. Given the above parameters, the dynamics of
the link queues can be determined [129].

We assume there is an adversary who can initiate actuator and timing attacks. An
actuator attack will tamper with the traffic signal issued by the TMC. For instance, if the
TMC actuates a link 𝑙 at time 𝑘 and the adversary attacks link 𝑙, then this link will not be
actuated at time 𝑘. A timing attack will manipulate the timing information perceived by
the TMC. Hence, any time stamped measurement {𝑥𝑙, 𝑘} received by the TMC indicating
the number of vehicles at link 𝑙 at time 𝑘 might be manipulated to {𝑥𝑙, 𝑘′}, where 𝑘′ is the
time stamp that has been changed by the adversary.

The signalized traffic network model can be mapped to a DSG in the following way.
States of the DSG are obtained by partitioning the number of vehicles on each link (e.g.,
box partition) [129]. The control action set at each intersection models which links can be
actuated. The action set is then realized by taking the Cartesian product of the action sets
at each intersection. The realized traffic signal at an intersection is jointly determined by the
actions of the TMC and adversary. The transition and duration probability distributions
between states are obtained from Algorithm 15.

A representation of the signalized traffic network is shown in Fig. 8-1. The network
consists of 4 intersections (squares) and 16 links (arrows). We denote the intersections
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with incoming links 1, 2, 3, and 4 as intersections 1, 2, 3, and 4, respectively. The links
represented by dotted arrows are not explicitly modeled [129]. For each intersection in Fig.
8-1, the links that can be actuated by the TMC are given as follows:

• Intersection 1: {{1}, {5, 6}};

• Intersection 2: {{2}, {7}};

• Intersection 3: {{3}, {8}};

• Intersection 4: {{4}, {9, 10}}.

We assume that the TMC can actuate exactly one subset of links at each intersection so
that no safety constraint will be violated. The link capacities are set to �̄�1 = · · · = �̄�5 = 30
and �̄�6 = · · · = �̄�10 = 40. Flow rates associated to each link are set to 𝑐1 = · · · = 𝑐4 = 10,
𝑐5 = · · · = 𝑐10 = 5 [129]. The supply ratios 𝛼𝑙𝑙′ = 1 for all 𝑙, 𝑙′, and the turn ratios are set to
𝛾12 = 0.3, 𝛾23 = 𝛾34 = 𝛾52 = 𝛾62 = 𝛾73 = 𝛾84 = 0.5. Vehicles entering a link in (𝑙1, . . . , 𝑙10)
follow a Poisson distribution with mean (5, 0, 0, 0, 5, 5, 0, 0, 5, 5). We consider a time horizon
of length 5. The controller’s strategy to detect a timing attack is to compare the deviation
between its estimated and observed clock valuations with a pre-specified threshold e = 2.
In particular, when ‖𝜆− v‖ ≤ 2, hypothesis ℋ0 holds and no timing attack is detected by
the controller. When ‖𝜆 − v‖ > 2, hypothesis ℋ1 holds and an alarm indicating a timing
attack is triggered. In this case, the FSC equipped by the controller has 5 internal states.

Intersection
Time 1 2 3 4

1 G R G R
2 R G R G
3 G G R G
4 G G G G
5 G R G G

Table 8.1: A sample sequence of the traffic light realized at each intersection for the MITL
specification 𝜙3 = 3[0,5] ((𝑥2 ≤ 10) ∧ (𝑥3 ≤ 10) ∧ (𝑥4 ≤ 10)). The letter ‘R’ represents a
‘red’ signal, and ‘G’ represents ‘green’ signal.

The TMC is given one of the following MITL objectives.

1. The number of vehicles at link 2 is eventually below 10 before deadline 𝑑 = 5: 𝜙1 =
3[0,5](𝑥2 ≤ 10).

2. The number of vehicles at link 2 and 3 are eventually below 10 before deadline 𝑑 = 5:
𝜙2 = 3[0,5] ((𝑥2 ≤ 10) ∧ (𝑥3 ≤ 10)).
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Figure 8-2: Number of vehicles on Links 2, 3, and 4 at each time corresponding to the MITL
formula 𝜙3 = 3[0,5] ((𝑥2 ≤ 10) ∧ (𝑥3 ≤ 10) ∧ (𝑥4 ≤ 10)). In the presence of an adversary, the
controller adopts an FSC-based policy with one realization shown in Table 8.1. The dotted
horizontal line is the threshold for the maximum number of vehicles allowed (= 10). The
three curves indicate that the number of vehicles in the links satisfies the MITL objective
since they are each lower than 10 before 5 time units.
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3. The number of vehicles at link 2, 3 and 4 are eventually below 10 before deadline
𝑑 = 5:
𝜙3 = 3[0,5] ((𝑥2 ≤ 10) ∧ (𝑥3 ≤ 10) ∧ (𝑥4 ≤ 10)).

Our experiments yield the probability of satisfying each specification as: P(𝜙1) = 0.723,
P(𝜙2) = 0.371, and P(𝜙3) = 0.333. These values agree with intuition since 𝜙3 being satis-
fied implies 𝜙2 holds true, which in turn implies that 𝜙1 is true.

We compare our approach for the objective 𝜙3 with two baselines. In the first baseline,
the TMC issues periodic green signals for links 1, 2, 3, and 4 at intersections 1, 2, 3, and 4,
respectively. In the second baseline, the TMC always issues green signals for links 1, 2, 3, 4
at intersections 1, 2, 3, 4.

For the two baseline scenarios, the TMC commits to deterministic strategies. The ad-
versary’s actuator attack strategies are as follows. In the first case, the adversary launches
actuator attacks when the TMC issues a green signal, and does not attack when the TMC
issues a red signal. As a result, the realized traffic signal will be red for all time at every
intersection. In the second case, the adversary launches an actuator attack at every time
instant. This results in the realized traffic signal being red for all time at each intersection.
As a consequence, the number of vehicles in links 2, 3 and 4 will reach their capacities and
the links will be congested for the rest of the time horizon. Therefore, the probabilities of
satisfying the MITL specification using the baselines are zero.

Table 8.1 shows a realization of the traffic signals when the controller adopts an FSC-
based policy proposed in Section 8.3. Fig. 8-2 shows the number of vehicles in each link
for this realization. The graph indicates that the controller’s policy is successful in ensuring
that the MITL objective is satisfied. Moreover, if the adversary’s timing strategy is such
that when the difference in the manipulated and actual clock valuations is less than 2 (the
pre-specified threshold), it remains stealthy, even though this is not an explicitly specified
goal.

The construction of the DSG using Algorithm 15 takes 24.22 seconds. The computation
of the global DSG takes 367.9 seconds. Given the global DSG, Algorithm 17 takes 644.8
seconds to compute the controller’s FSC.

8.4.2 Two-Tank System

We demonstrate our solution approach with simulations carried out on the control of a two-
tank system [130]. The system is described by 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑤(𝑘), where
𝑥(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘)]

𝑇 , 𝑢(𝑘), and 𝑤(𝑘) are state variables representing water levels, control
input representing the inflow rate, and stochastic disturbance at time 𝑘, respectively. The
controller transmits a control signal 𝑢𝐶(𝑘) to the actuator through a wireless communication
channel. We set the initial levels in the two tanks to 𝑥(0) = [0.11, 0.35]𝑇 .

The system is subject to an attack initiated by an intelligent adversary. The control
signal 𝑢(𝑘) received by the actuator is compromised as 𝑢(𝑘) = 𝑢𝐶(𝑘) + 𝑢𝐴(𝑘) due to the
actuator attack, where 𝑢𝐶(𝑘) and 𝑢𝐴(𝑘) correspond to signals sent by the controller and
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Figure 8-3: Evaluation on a two-tank system for an MITL specification that requires water
levels in the tanks to be at least 0.3, and to be within 0.1 of each other, before time 𝑘 = 5.
An FSC-based controller policy is compared with a baseline policy that does not account for
the presence of an adversary. Fig. 8-3a shows the water level in the second tank, using the
two policies. The solid line represents the FSC-based policy, while the dashed and dash-dot
lines represent the baseline in the presence and absence of the adversary, respectively. The
absolute value of the difference between water levels in the two tanks using the two policies
is presented in Fig. 8-3b. The solid line with circle markers represents the FSC-based policy,
while the dashed line and dash-dot line represent the baseline policy under adversarial and
benign environments, respectively. We observe that the baseline policy satisfies the MITL
objective in the absence of the adversary, but fails to do so when an adversary is present. The
FSC-based policy, in contrast, satisfies the MITL objective in the presence of the adversary.

adversary [49]. Due to the timing attack, the time-stamped measurement {𝑥, 𝑘} indicating
the water level at time 𝑘 is manipulated as {𝑥, 𝑘′}, where 𝑘′ is the time stamp that has been
modified by the adversary.

The state space (water levels in tanks) is partitioned into 49 rectangular regions, i.e., the
water level in each tank is divided into 7 discrete intervals with discretization resolution 0.1,
each representing a state of the DSG. The control and adversary signals are in the ranges
[0, 5 × 10−4] and [0, 2 × 10−4], respectively [130]. Control and adversary action sets are
obtained by discretization of these sets of inputs. The disturbance 𝑤(𝑘) is zero mean i.i.d.
Gaussian with covariance 1.5×10−5. The transition and duration probabilities are obtained
by Algorithm 15. This procedure took about 18 seconds.
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The system needs to satisfy an MITL specification given by

𝜙 = 3[0,5]

⎛⎝⋁︁
𝑧

⋀︁
𝑖∈{1,2}

(𝑧 ≤ 𝑥𝑖 ≤ 𝑧 + 0.1)

⎞⎠ ,

where 𝑧 ∈ {0.3, 0.4, 0.5, 0.6}. That is, before time 𝑘 = 5, the water levels in the two tanks
should lie in the same discretization interval and are each required to be no less than 0.3.
If the MITL specification is satisfied, the difference between water levels in the two tanks
should be at most 0.1.

We compare our FSC-based policy with a baseline. The baseline does not account for
the presence of the adversary. The results of our experiments are presented in Fig. 3.
The baseline is evaluated for scenarios where the adversary is present and the adversary is
absent. When there is no adversary, we observe that the baseline policy satisfies the MITL
objective (the water levels in the tanks are 0.35 and 0.30, and the difference in the levels is
0.05). However, when this policy is used in the presence of the adversary, we observe that
the water level in the second tank falls below 0.3, and the difference in the levels exceeds
0.1, thereby violating the specification. This necessitates the use of an alternative control
strategy for systems under attacks. Using our approach, we observe that the water levels
in the two tanks are 0.33 and 0.30, and the difference in the levels is 0.03. Moreover, these
water levels are attained before the required deadline of 𝑘 = 5, which satisfies the MITL
objective.

8.5 Conclusion

In this chapter, we investigated the problem of synthesizing controllers for time critical CPSs
under attack. We proposed durational stochastic games to capture the interaction between
the controller and adversary, and also account for time taken for transitions between states.
The CPS had to satisfy a time-dependent objective specified as an MITL formula. We used
a timed automaton representation of the MITL formula, the DSG, and a representation of
the controller policy as a finite state controller to synthesize controller policies that would
satisfy the MITL objective under actuator and timing attacks carried out by the adversary.
We evaluated our solution method on a representation of a signalized traffic network and a
two-tank system.
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Chapter 9

Abstraction-Free Control Synthesis
under Temporal Logic Constraints

9.1 Introduction

Chapter 4 to 8 rely on the construction of a finite abstract model such as stochastic game
and durational stochastic game to capture the interaction between the CPS and adversary.
Control synthesis based on finite abstract models are categorized as abstraction-based ap-
proaches. These approaches are computationally demanding and suffer from the curse of
dimensionality. To avoid the computation required for constructing the finite abstractions,
researchers have investigated control synthesis on the continuous state space when the system
is operated under benign environment. Techniques include formulating the LTL constraint
as a mixed integer linear program [38], a sequence of stochastic reachability problems [39],
and a mixed continuous-discrete HJB equation [40]. Solving for the controller thus requires
numerical methods which can be computationally expensive.

In this chapter, we consider control synthesis for CPS under LTL constraints without
computing a finite abstraction, assuming the CPS are operated in the absence of an adver-
sary. We aim to compute a feedback controller such that a control affine system satisfies
a given LTL specification from the fragment of LTL without next operator. We present a
control barrier function (CBF) based framework to compute the controller. There are two
main advantages of our approach compared to the state of the art. First, we avoid both
finite-state abstraction of the CPS and approximate solution of the HJB equation, and thus
reduce the computational complexity. Second, we introduce time-varying guard functions
that render our approach feasible for a broad class of LTL properties. This chapter makes
the following specific contributions:

• We present a CBF-based approach to synthesize a controller for CPS under LTL con-
straints. The proposed approach is provably correct and avoids explicit construction
of finite abstractions for CPS.
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• We construct a sequence of formulas that correspond to an accepting trace of the
CPS, and develop a methodology to construct CBFs for each formula. When designing
the CBF, we introduce the concept of guard function, which implicitly encodes the
time that each formula needs to be satisfied and enhances the feasibility of the CBF
constraints.

• We compute the set of controllers that satisfy each constructed formula using two
types of time varying CBFs. We show that by satisfying the CBF constraints for all
formulas, the LTL specification is satisfied.

• A numerical case study on robotic motion planning is presented as evaluation. The
proposed approach successfully synthesizes a controller for a specification that is in-
feasible under the state of art.

The remainder of this chapter is organized as follows. Section 9.2 introduces background
on control barrier functions. Section 9.3 presents the system model and problem formulation
on abstraction-free control synthesis. Section 9.4 presents our proposed solution approach.
Section 9.5 evaluates our proposed approach on multi-agent system, and Section 9.6 con-
cludes this chapter.

9.2 Preliminary Background

A function 𝑓 : R𝑛 × [0,∞) ↦→ R is Lipschitz continuous on 𝒳 ⊂ R𝑛 if there exists some
constant 𝐾 > 0 such that ‖𝑓(𝑥1)−𝑓(𝑥2)‖ ≤ 𝐾‖𝑥1−𝑥2‖ for all 𝑥1, 𝑥2 ∈ 𝒳 , where ‖ ·‖ is the
Euclidean norm. A function 𝑓 is locally Lipschitz continuous if there exist constants 𝜏 > 0
and 𝐾 > 0 such that ‖𝑓(𝑥1)− 𝑓(𝑥2)‖ ≤ 𝐾‖𝑥1 − 𝑥2‖ for all ‖𝑥1 − 𝑥2‖ ≤ 𝜏 .

A continuous function 𝛼 : [0, 𝑎) ↦→ [0,∞) belongs to class 𝒦 if it is strictly increasing
and 𝛼(0) = 0. A continuous function 𝛼 : [−𝑏, 𝑎) ↦→ (−∞,∞) is said to belong to extended
class 𝒦 if it is strictly increasing and 𝛼(0) = 0 for some 𝑎, 𝑏 > 0. The following lemma gives
smooth approximations of min and max operators.

Lemma 9.1 (Approximation of min and max Operators [131]). Consider a set of functions
ℎ𝑖(𝑥, 𝑡). Then for 𝜆 > 0

min
𝑖
ℎ𝑖(𝑥, 𝑡) ≥ − ln

(︃
𝑘∑︁
𝑖=1

exp (−ℎ𝑖(𝑥, 𝑡))

)︃
,

max
𝑖
ℎ𝑖(𝑥, 𝑡) ≥

∑︀
𝑖 ℎ𝑖(𝑥, 𝑡) exp(𝜆ℎ𝑖(𝑥, 𝑡))∑︀

𝑖 exp(𝜆ℎ𝑖(𝑥, 𝑡))
.

Consider a continuous-time control-affine system

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 (9.1)
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where 𝑥 ∈ 𝒳 ⊆ R𝑛 is the system state and 𝑢 ∈ 𝒰 ⊆ R𝑚 is input provided by the controller.
Vector-valued and matrix-valued functions 𝑓(𝑥) and 𝑔(𝑥) are of appropriate dimensions and
are Lipschitz continuous.

Let a safety set 𝒞 be defined as

𝒞 = {𝑥 ∈ 𝒳 : ℎ(𝑥) ≥ 0}, (9.2)

where ℎ : 𝒳 ↦→ R is a continuously differentiable function. We say system (9.1) is safe with
respect to 𝒞 if 𝑥 ∈ 𝒞 for all time 𝑡 ≥ 0.

Control barrier function (CBF)-based approaches have been used to guarantee safety of
system (9.1) with respect to safe set 𝒞. We give the definition of zeroing CBF as follows.

Definition 9.1 (Zeroing CBF (ZCBF) [44]). Consider a dynamical system (9.1) and a
continuously differentiable function ℎ : 𝒳 ↦→ R. If there exists a locally Lipschitz extended
class 𝒦 function 𝛼 such that for all 𝑥 ∈ 𝒳 the following inequality holds

sup
𝑢∈𝒰

{︂
𝜕ℎ(𝑥)

𝜕𝑥
𝑓(𝑥) +

𝜕ℎ(𝑥)

𝜕𝑥
𝑔(𝑥)𝑢+ 𝛼(ℎ(𝑥))

}︂
≥ 0,

then function ℎ is a ZCBF.

A sufficient condition for the safety guarantee can be derived using ZCBF as follows.

Lemma 9.2 ([44]). Given a dynamical system (9.1) and a safety set (9.2) defined by some
continuously differentiable function ℎ : 𝒳 ↦→ R, if ℎ is a ZCBF defined on 𝒳 , then 𝒞 is
forward invariant.

Using Lemma 9.2, one can solve for the controller guaranteeing the safety of system (9.1)
at each time using a quadratic program [44]:

min
𝑢

𝑢⊤𝑅(𝑥)𝑢+𝑄(𝑥)⊤𝑢 (9.3a)

s.t.
𝜕ℎ(𝑥)

𝜕𝑥
𝑓(𝑥) +

𝜕ℎ(𝑥)

𝜕𝑥
𝑔(𝑥)𝑢+ 𝛼(ℎ(𝑥)) ≥ 0 (9.3b)

𝑢 ∈ 𝒰 (9.3c)

where 𝑅(𝑥) ∈ R𝑚 is positive definite. Finite time convergence CBF (FCBF) has been
proposed to characterize the convergence time of system (9.1) to 𝒞. We introduce FCBF as
follows.

Definition 9.2 (Finite Time Convergence CBF (FCBF)). Consider a dynamical system
(9.1) and a continuously differentiable function ℎ : 𝒳 ↦→ R. If there exist constants 𝜌 ∈ [0, 1)
and 𝛾 > 0 such that for all 𝑥 ∈ 𝒳 the following inequality holds

sup
𝑢∈𝒰

{︂
𝜕ℎ(𝑥)

𝜕𝑥
𝑓(𝑥) +

𝜕ℎ(𝑥)

𝜕𝑥
𝑔(𝑥)𝑢+ 𝛾 · sgn(ℎ(𝑥, 𝑡))|ℎ(𝑥)|𝜌

}︂
≥ 0, (9.4)
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then function ℎ is a FCBF.

The set of control inputs satisfying Eqn. (9.4) provides the following guarantee.

Lemma 9.3 ([132]). Consider a dynamical system (9.1) and a set 𝒞 = {𝑥 : ℎ(𝑥) ≥ 0}. If ℎ
is an FCBF defined on 𝒳 , then the control signals satisfying Eqn. (9.4) guarantees that there
exists some finite 𝑇 ∈

[︁
0, |ℎ(𝑥(0))|

1−𝜌

𝛾(1−𝜌)

]︁
such that 𝑥(𝑇 ) ∈ 𝒞 for any initial state 𝑥(0) ∈ 𝒳 .

Moreover, the system state 𝑥 ∈ 𝒞 for all time 𝑡′ ≥ 𝑇 .

9.3 System Model and Problem Formulation

In this section, we present the system model and problem formulation. Consider system
(9.1) with 𝑓 and 𝑔 being locally Lipschitz continuous. Given the current system state 𝑥, a
feedback controller is a function 𝜇 : 𝒳 × [0,∞) ↦→ 𝒰 .

The system is given a specification 𝜙 modeled using LTL without next operator, denoted
as LTL∖○. The class of LTL∖○ formulas are inductive defined as

𝜙 = 𝑇𝑟𝑢𝑒 | 𝜋 | ¬𝜙 | 𝜙1 ∧ 𝜙2 | 𝜙1U𝜙2.

We note that this differs with the definition in Chapter 3 in the sense that the until operator
U is not considered. Thus, LTL∖○ formulas can also be equivalently expressed using DRAs.

Let Π be a finite set of atomic propositions. We define a labeling function 𝐿 : 𝒳 ↦→ 2Π

that maps any state 𝑥 ∈ 𝒳 to a subset of atomic propositions that hold true at 𝑥. We also
define J𝜋K = {𝑥|𝜋 ∈ 𝐿(𝑥)} to be the set of states that satisfies the atomic proposition 𝜋 ∈ Π.
In this chapter, we assume that J𝜋K is a closed set for all 𝜋 ∈ Π, and J𝜋K can be represented
as J𝜋K = {𝑥|𝑍𝜋(𝑥) ≥ 0}, where 𝑍𝜋 : R𝑛 ↦→ R is a bounded and continuously differentiable
function. We slightly overload the notation J·K, and define the states that satisfy a subset
of atomic propositions 𝑃 ∈ 2Π as

J𝑃 K =

{︃
𝒳 ∖ ∪𝜋∈ΠJ𝜋K if 𝑃 = ∅
∩𝜋∈𝑃 J𝜋K ∖ ∪𝜋∈Π∖𝑃 J𝜋K otherwise

(9.5)

That is, J𝑃 K is the subset of system states 𝒳 that satisfy all and only propositions in 𝑃
[133].

We define the trajectory of system (9.1) as x : [0,∞) ↦→ 𝒳 that maps from any time
𝑡 ≥ 0 to the system state 𝑥(𝑡). We then define the trace of a trajectory x as follows.

Definition 9.3 (Trace of Trajectory [133]). An infinite sequence 𝑇𝑟𝑎𝑐𝑒(x) = 𝑃0, 𝑃1, . . .,
where 𝑃𝑖 ∈ 2Π for all 𝑖 = 0, 1, . . . is a trace of a trajectory x if there exists an associated
time sequence 𝑡0, 𝑡1, . . . of time instants such that

1. 𝑡0 = 0
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2. 𝑡𝜏 →∞ as 𝜏 →∞

3. 𝑡𝑖 < 𝑡𝑖+1

4. 𝑥(𝑡𝑖) ∈ J𝑃𝑖K

5. if 𝑃𝑖 ̸= 𝑃𝑖+1, then there exists some 𝑡′𝑖 ∈ [𝑡𝑖, 𝑡𝑖+1] such that 𝑥(𝑡) ∈ J𝑃𝑖K for all 𝑡 ∈ (𝑡𝑖, 𝑡
′
𝑖),

𝑥(𝑡) ∈ J𝑃𝑖+1K for all 𝑡 ∈ (𝑡′𝑖, 𝑡𝑖+1), and either 𝑥(𝑡′𝑖) ∈ J𝑃𝑖K or 𝑥(𝑡′𝑖) ∈ J𝑃𝑖+1K.

The trace of the system trajectory gives the sequence of atomic propositions satisfied by
the system, and thus bridges the system behavior with temporal logic specification. Given
a controller 𝜇, we denote the trajectory under controller 𝜇 as x𝜇. The trace of trajectory x𝜇

is denoted by 𝑇𝑟𝑎𝑐𝑒(x𝜇). Suppose a specification 𝜙 belonging to LTL∖○ is given to system
(9.1). If 𝑇𝑟𝑎𝑐𝑒(x𝜇) |= 𝜙, we say system (9.1) satisfies 𝜙 under controller 𝜇, or controller 𝜇
satisfies 𝜙. We state the problem of interest as follows.

Problem 9.1. Compute a feedback controller 𝜇 : 𝒳 × [0,∞) ↦→ 𝒰 under which system (9.1)
satisfies the given LTL specification 𝜙 belonging to 𝐿𝑇𝐿∖○. That is, compute a controller 𝜇
such that 𝑇𝑟𝑎𝑐𝑒 (x𝜇) |= 𝜙.

9.4 Abstraction-Free Control Synthesis using Control Barrier
Functions

This section presents a framework to solve Problem 9.1. We first introduce two types of
CBFs by extending Definition 9.1 and 9.2. Given an LTL specification 𝜙, we then present
how to design CBFs using the automaton of the LTL specification. We construct a sequence
of LTL formulas that correspond to an accepting run on the DRA of the LTL specification.
Then we define a time varying CBF for each formula. We show that satisfying each formula
is equivalent to guaranteeing the positivity of the corresponding CBF. Then we compute
the controllers that ensure the CBF associated with each formula to be positive, and hence
satisfies the LTL specification.

9.4.1 Time Varying ZCBF and FCBF

In the following, we introduce time varying zeroing CBF (ZCBF) [134] and finite time
convergence CBF (FCBF) by extending Definition 9.1 and 9.2.

Definition 9.4 (Time Varying Zeroing CBF (ZCBF) [134]). Consider a dynamical system
(9.1) and a continuously differentiable function ℎ : 𝒳 × [0,∞) ↦→ R. If there exists a locally
Lipschitz extended class 𝒦 function 𝛼 such that for all 𝑥(𝑡) ∈ 𝒳 the following inequality
holds

sup
𝑢∈𝒰

{︂
𝜕ℎ(𝑥, 𝑡)

𝜕𝑥
𝑓(𝑥) +

𝜕ℎ(𝑥, 𝑡)

𝜕𝑥
𝑔(𝑥)𝑢+

𝜕ℎ(𝑥, 𝑡)

𝜕𝑡
+ 𝛼(ℎ(𝑥, 𝑡))

}︂
≥ 0, (9.6)

then function ℎ is a ZCBF.
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Given a ZCBF ℎ, the set of controllers satisfying Eqn. (9.6) is represented as 𝒰𝑍(𝑥, 𝑡) =
{𝜇|𝜕ℎ(𝑥,𝑡)𝜕𝑥 𝑓(𝑥)+ 𝜕ℎ(𝑥,𝑡)

𝜕𝑥 𝑔(𝑥)𝜇(𝑥, 𝑡)+ 𝜕ℎ(𝑥,𝑡)
𝜕𝑡 +𝛼(ℎ(𝑥, 𝑡)) ≥ 0}. The following proposition [134]

characterizes 𝒰𝑍(𝑥, 𝑡).

Proposition 9.1. Let 𝒞(𝑡) = {𝑥|ℎ(𝑥, 𝑡) ≥ 0}, where ℎ : 𝒳 × [0,∞) ↦→ R. Consider a
feedback controller 𝜇(𝑥, 𝑡) ∈ 𝒰𝑍(𝑥, 𝑡). If ℎ is a ZCBF, then for all 𝑥 ∈ 𝒞(𝑡) and 𝑡 ≥ 0, 𝜇(𝑥, 𝑡)
guarantees the set 𝒞(𝑡) to be forward invariant.

Motivated by FCBF in Definition 9.2, we define time varying FCBF as follows.

Definition 9.5 (Time Varying Finite Time Convergence CBF (FCBF)). Consider a dy-
namical system (9.1) and a continuously differentiable function ℎ : 𝒳 × [0,∞) ↦→ R. If there
exist constants 𝜌 ∈ [0, 1) and 𝛾 > 0 such that for all 𝑥(𝑡) ∈ 𝒳 the following inequality holds

sup
𝑢∈𝒰

{︂
𝜕ℎ(𝑥, 𝑡)

𝜕𝑥
𝑓(𝑥) +

𝜕ℎ(𝑥, 𝑡)

𝜕𝑥
𝑔(𝑥)𝑢+

𝜕ℎ(𝑥, 𝑡)

𝜕𝑡
+ 𝛾 · sgn(ℎ(𝑥, 𝑡))|ℎ(𝑥, 𝑡)|𝜌

}︂
≥ 0, (9.7)

then function ℎ is a FCBF.

Given an FCBF ℎ, the set of controllers that satisfy (9.7) is represented as 𝒰𝐹 (𝑥, 𝑡) =
{𝜇|𝜕ℎ(𝑥,𝑡)𝜕𝑥 𝑓(𝑥) + 𝜕ℎ(𝑥,𝑡)

𝜕𝑥 𝑔(𝑥)𝜇(𝑥, 𝑡) + 𝜕ℎ(𝑥,𝑡)
𝜕𝑡 + 𝛾 · sgn(ℎ(𝑥, 𝑡))|ℎ(𝑥, 𝑡)|𝜌 ≥ 0}. The following

proposition extends the result in [132] on time invariant FCBF and characterizes 𝒰𝐹 (𝑥, 𝑡).

Proposition 9.2. Let 𝒞(𝑡) = {𝑥|ℎ(𝑥, 𝑡) ≥ 0}, where ℎ : 𝒳 × [0,∞) ↦→ R. Consider a
feedback controller 𝜇(𝑥, 𝑡) ∈ 𝒰𝐹 (𝑥, 𝑡). If ℎ is an FCBF, then for any initial state 𝑥0 ∈ 𝒳 ,
controller 𝜇(𝑥, 𝑡) guarantees that the system will be steered to the set 𝒞(𝑡) within finite time
0 < 𝑇 < ∞ such that 𝑥(𝑇 ) ∈ 𝒞(𝑇 ). The convergence time 𝑇 = |ℎ(𝑥0,0)|(1−𝜌)

𝛾(1−𝜌) . Moreover, the
system remains in 𝒞(𝑡′) for all 𝑡′ ≥ 𝑇 .

Proof. The proof follows [132]. Construct a Lyapunov function 𝑉 (𝑥, 𝑡) = max{−ℎ(𝑥, 𝑡), 0}.
We can verify that 𝑉 (𝑥, 𝑡) = 0 for all 𝑥(𝑡) ∈ 𝒞(𝑡), 𝑉 (𝑥, 𝑡) > 0 for all 𝑥(𝑡) ∈ 𝒳 ∖ 𝒞(𝑡), and
d
d𝑡𝑉 (𝑥, 𝑡) ≤ 𝛾𝑉 (𝑥, 𝑡)𝜌. By Theorem 4.1 in [135], finite time stability holds for system (9.1).
Thus if 𝑥0 ∈ 𝒞(𝑡), controllers in 𝒰𝐹 (𝑥, 𝑡) render 𝒞(𝑡) forward invariant. If 𝑥0 /∈ 𝒞(𝑡), then
the system converges to 𝒞(𝑡) within finite time 𝑇 = |ℎ(𝑥0,0)|(1−𝜌)

𝛾(1−𝜌) .

9.4.2 Design of Control Barrier Functions

In this subsection, we first construct a sequence of LTL formulas so that satisfying all
formulas is equivalent to satisfying the given LTL formula 𝜙. Then we show how to design
time varying CBFs for each formula.

Given an LTL specification 𝜙, we compute the DRA associated with 𝜙, and pick an
accepting run 𝜂 = 𝑞0 . . . 𝑞𝐽 , (𝑞𝐽+1 . . . 𝑞𝐽+𝑁 )

𝜔 of the DRA. Although a similar idea is used
in [45, 46], in which a sequence of reachability problems is selected, as we will show later,
our proposed CBF design enhances the feasibility of control synthesis. The complexity of
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constructing the DRA is doubly exponential in the size of the formula in the worst-case as in
the existing works on both abstraction-free and abstraction-based LTL synthesis [26, 39, 133].
However, we note that several important classes of LTL formulas have DRAs of polynomial
size [136], and that our approach mitigates the exponential complexity of computing a finite
state abstraction.

Rewriting 𝜂 into prefix-suffix form, we have that the sequence of states 𝑞0 . . . 𝑞𝐽 forms
the prefix 𝜂𝑝𝑟𝑒𝑓 , and the sequence of states 𝑞𝐽+1 . . . 𝑞𝐽+𝑁 forms the suffix 𝜂𝑠𝑢𝑓𝑓 . We denote
the transition from state 𝑞𝑗 to 𝑞𝑗+1 as 𝜂𝑗 , and denote the input word of transition 𝜂𝑗 as 𝜑𝑗 .
The input word 𝜑𝑗 is in the form of conjunction or disjunction of atomic propositions [18],
i.e., 𝜑𝑗 = 𝜋1 ◁▷ . . . ◁▷ 𝜋𝑘 where 𝜋𝑖 ∈ Π is an atomic proposition for all 𝑖 = 1, . . . , 𝑘 and
◁▷∈ {∧,∨}.

Given the accepting run 𝜂, we construct a sequence of formulas {𝜓𝑗 |𝑗 = 0, 1, . . . , 𝐽+𝑁},
where 𝜓𝑗 corresponds to transition 𝜂𝑗 as follows. We denote the input word corresponding
to the self-transition at state 𝑞𝑗 as Φ𝑗 , i.e., 𝛿(𝑞𝑗 ,Φ𝑗) = 𝑞𝑗 . We also note that 𝜑𝑗 is the
input word corresponding to a transition from 𝑞𝑗 to 𝑞𝑗+1. We then construct a formula 𝜓𝑗
corresponding to transition 𝜂𝑗 as

𝜓𝑗 = Φ𝑗 U 2 (𝜑𝑗 ∧ Φ𝑗+1) . (9.8)

Formula 𝜓𝑗 indicates that no transition starting from state 𝑞 should occur except self-
transition and 𝜂𝑗 . Since both prefix and suffix of 𝜂 are over finite horizon, only a finite
number of formulas {𝜓𝑗 |𝑗 = 0, 1, . . . , 𝐽 +𝑁} are generated.

We then assign a sequence of time instants 𝑡1 < . . . < 𝑡𝐽 as the deadlines of each tran-
sition 𝜂0, 𝜂1, . . . , 𝜂𝐽 of 𝜂𝑝𝑟𝑒𝑓 . The deadlines of the transitions of the suffix can be generated
as 𝑛∆+ 𝑡𝐽+1, where 𝑛 is a nonnegative integer and ∆ ≥ 0. We additionally let 𝑡0 = 0 < 𝑡1.
We define the active time of each formula 𝜓𝑗 as [𝑡𝑗 , 𝑡𝑗+1], during which formula 𝜓𝑗 must be
satisfied. There are two advantages of defining the active time of each formula 𝜓𝑗 . First,
although each formula 𝜓𝑗 needs to be interpreted over infinite runs, the active time enables
us to interpret each 𝜓𝑗 over finite runs. That is, formula 𝜓𝑗 needs to be satisfied during
[𝑡𝑗 , 𝑡𝑗+1]. For time 𝑡 > 𝑡𝑗+1, formula 𝜓𝑗 can be violated. Second, the active time allows our
approach to satisfy multiple, sequential constraints (e.g., reaching disjoint regions A and B)
that cannot be satisfied simultaneously.

Given a time interval [𝑡, 𝑡′] and controller 𝜇, we let x𝜇([𝑡, 𝑡′]) be the system trajec-
tory during time interval [𝑡, 𝑡′] under controller 𝜇. The trace of x𝜇([𝑡, 𝑡′]) is denoted as
𝑇𝑟𝑎𝑐𝑒 (x𝜇([𝑡, 𝑡′])). Denote the system state under controller 𝜇 at time 𝑡 as x𝜇(𝑡). We then
show the effectiveness of sub-formula (9.8) by analyzing the relationship between satisfying
each formula 𝜓𝑗 and run 𝜂.

Lemma 9.4. Let 𝜂 be an accepting run and 𝜓𝑗 be a formula in the form of Eqn. (9.8)
whose active time is [𝑡𝑗 , 𝑡𝑗+1]. If 𝑇𝑟𝑎𝑐𝑒 (x𝜇([0, 𝑡𝑗 ])) steers the DRA from 𝑞0 to 𝑞𝑗, and
𝑇𝑟𝑎𝑐𝑒 (x𝜇([𝑡𝑗 , 𝑡𝑗+1])) |= 𝜓𝑗, then the DRA transitions from state 𝑞𝑗 to 𝑞𝑗+1 during time
interval [𝑡𝑗 , 𝑡𝑗+1]. Moreover, the DRA remains in state 𝑞𝑗+1 until at least time 𝑡𝑗+1.
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Proof. We first prove that if 𝑇𝑟𝑎𝑐𝑒 (x𝜇([0, 𝑡𝑗 ])) steers the DRA from 𝑞0 to 𝑞𝑗 , and during
[𝑡𝑗 , 𝑡𝑗+1] the relation 𝑇𝑟𝑎𝑐𝑒 (x𝜇([𝑡𝑗 , 𝑡𝑗+1])) |= 𝜓𝑗 holds, then the DRA transitions from state
𝑞𝑗 to 𝑞𝑗+1 during time interval [𝑡𝑗 , 𝑡𝑗+1]. We prove by contradiction. Suppose the current
state of the DRA is 𝑞𝑗 and 𝑇𝑟𝑎𝑐𝑒 (x𝜇([𝑡𝑗 , 𝑡𝑗+1])) |= 𝜓𝑗 , while the DRA transitions from state
𝑞𝑗 to some state 𝑞′ ̸= 𝑞𝑗+1. By the semantics of until operator U, there must exist some
time 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1] such that 𝐿(x𝜇(𝑡′)) |= 𝜑𝑗 ∧ Φ𝑗+1 for all 𝑡′ ∈ [𝑡, 𝑡𝑗+1] in order to make
𝑇𝑟𝑎𝑐𝑒 (x𝜇([𝑡𝑗 , 𝑡𝑗+1])) |= 𝜓𝑗 hold. Then by the semantics of and operator ∧, 𝐿(x𝜇(𝑡)) |=
𝜑𝑗 ∧ Φ𝑗+1 implies that 𝐿(x𝜇(𝑡)) |= 𝜑𝑗 . Since 𝜑𝑗 is the input associated with the transition
from 𝑞𝑗 to 𝑞𝑗+1, then 𝑞′ = 𝑞𝑗+1. Otherwise, the DRA contains nondeterminism which
conflicts Definition 3.5.

We then prove that the DRA remains in 𝑞𝑗+1 until at least time 𝑡𝑗+1. Suppose the
DRA transitions from 𝑞𝑗+1 to some state 𝑞 before 𝑡𝑗+1. This is equivalent to the fact that
there exist some state 𝑞 ∈ 𝒩 (𝑞𝑗+1) and time 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1] such that 𝐿(x𝜇(𝑡)) |= 𝜑𝑞𝑗+1,
where 𝜑𝑞𝑗+1 is the input word associated with transition from state 𝑞𝑗+1 to some neighbor
state 𝑞. However, this contradicts Φ𝑗+1, and thus the DRA cannot transition to some state
𝑞 ∈ 𝒩 (𝑞𝑗+1). By the definition of neighbor states 𝒩 (𝑞𝑗+1), the DRA can only take the
self-transition at 𝑞𝑗+1.

Inducting the results on Lemma 9.4 yields Corollary 9.1.

Corollary 9.1. If 𝑇𝑟𝑎𝑐𝑒 (x𝜇([𝑡𝑗 , 𝑡𝑗+1])) |= 𝜓𝑗 for all 𝑗 = 0, 1, . . ., then 𝑇𝑟𝑎𝑐𝑒 (x𝜇) |= 𝜙.

Lemma 9.4 and Corollary 9.1 imply that, in order to ensure that the specification is
satisfied, it suffices to ensure that the trajectory under controller 𝜇 satisfies each 𝜓𝑗 within
its active time [𝑡𝑗 , 𝑡𝑗+1]. In what follows, we construct a set of CBFs that will be used to
ensure satisfaction of each 𝜓𝑗 .

In the following, we design CBFs for Φ𝑗 and 𝜑𝑗 ∧ Φ𝑗+1. We first define a CBF ℎ𝜋
for each atomic proposition 𝜋 that is involved in 𝜓𝑗 . We consider CBFs in the form of
ℎ𝜋(𝑥, 𝑡) = 𝑀𝜋(𝑡) + 𝑍𝜋(𝑥) for all 𝜋, where 𝑀𝜋(𝑡) and 𝑍𝜋(𝑥) are called guard function and
state function, respectively. The state function 𝑍𝜋(𝑥) is a function of state 𝑥 that captures if
the state 𝑥 is in J𝜋K, i.e., J𝜋K = {𝑥|𝑍𝜋(𝑥) ≥ 0}. The guard function 𝑀𝜋(𝑡) =

𝐸𝜋

1+𝑒−𝑏𝜋(𝑡+𝑐𝜋)−𝜖𝜋
is a logistic function, where 𝐸𝜋 > 0, 𝑏𝜋 > 0, and 𝜖𝜋 ≥ 0. The guard function 𝑀𝜋(𝑡) is
introduced so that each atomic proposition 𝜋, and hence 𝜓𝑗 , only need to be satisfied during
their active time.

We then show how to choose 𝐸𝜋, 𝑏𝜋, 𝑐𝜋, and 𝜖𝜋 for each 𝜋. First, if atomic proposition
𝜋 is satisfied at time 𝑡 = 0, then ℎ𝜋(𝑥0, 0) ≥ 0. If 𝜋 is not satisfied at time 𝑡 = 0, then
ℎ𝜋(𝑥0, 0) < 0. These two requirements are captured by Eqn. (9.9a) and (9.9b). Second,
given the deadline 𝑡𝑗 of atomic proposition 𝜋, we have 𝑀𝜋(𝑡𝑗) ≤ 0, as shown in Eqn. (9.9c).
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To summarize, we have the following inequalities:

𝐸𝜋
1 + 𝑒−𝑏𝜋𝑐𝜋

− 𝜖𝜋 + 𝑍𝜋(𝑥0) ≥ 0, if 𝜋 ∈ 𝐿(𝑥0) (9.9a)

𝐸𝜋
1 + 𝑒−𝑏𝜋𝑐𝜋

− 𝜖𝜋 + 𝑍𝜋(𝑥0) < 0, if 𝜋 /∈ 𝐿(𝑥0) (9.9b)

𝐸𝜋

1 + 𝑒−𝑏𝜋(𝑡𝑗+𝑐𝜋)
− 𝜖𝜋 ≤ 0, (9.9c)

𝐸𝜋 > 0, 𝑏𝜋 > 0, 𝜖𝜋 ≥ 0 (9.9d)

Inequalities (9.9) are solved as follows. We first pick some 𝑏𝜋 > 0 and 𝑐𝜋 such that
𝑐𝜋 ≤ 𝑡𝑗+1 if 𝜋 is involved in Φ𝑗 or 𝜑𝑗 , and 𝑐𝜋 ≤ 𝑡𝑗+2 if 𝜋 is involved in Φ𝑗+1. Fixing the
values of 𝑏𝜋 and 𝑐𝜋, then 𝐸𝜋 and 𝜖𝜋 can be obtained by solving the linear inequalities (9.9).
We characterize the CBFs obtained by solving (9.9) using the following lemma.

Lemma 9.5. Let 𝑡𝑗 be the deadline of atomic proposition 𝜋, and ℎ𝜋 be the CBF obtained
by solving (9.9). For any 𝑡 ≤ 𝑡𝑗, if ℎ𝜋(𝑥, 𝑡) ≥ 0, then 𝑥(𝑡) ∈ J𝜋K.

Proof. Inequality (9.9c) indicates that 𝑀𝜋(𝑡𝑗) ≤ 0, where 𝑡𝑗 is the deadline of 𝜋. By Eqn.
(9.9d), the guard function 𝑀𝜋(𝑡) is monotone increasing. Therefore, for all 𝑡 ≤ 𝑡𝑗 , 𝑀𝜋(𝑡) ≤ 0
holds. By the definition of ℎ𝜋(𝑥, 𝑡), we have that 𝑍𝜋(𝑥) = ℎ𝜋(𝑥, 𝑡)−𝑀𝜋(𝑡). Given 𝑀𝜋(𝑡) ≤ 0
for all 𝑡 ≤ 𝑡𝑗 and ℎ𝜋(𝑥, 𝑡) ≥ 0, we have 𝑍𝜋(𝑥) ≥ 0, and thus the system state 𝑥(𝑡) is in the
region {𝑥(𝑡)|𝑍𝜋(𝑥(𝑡)) ≥ 0} = J𝜋K.

Given a CBF ℎ𝜋 for each atomic proposition 𝜋 that is involved in 𝜓𝑗 , we compute the
CBFs for Φ𝑗 and 𝜑𝑗 ∧ Φ𝑗+1. We note that Φ𝑗 and 𝜑𝑗 ∧ Φ𝑗+1 are both in the forms of
conjunctions/disjunctions of atomic propositions [18]. We utilize the following definition to
construct the CBF for Φ𝑗 and 𝜑𝑗 ∧ Φ𝑗+1.

Definition 9.6. Consider a set of atomic proposition {𝜋𝑖|𝑖 = 1, . . . , 𝑘}. Let ℎ𝜋𝑖 : R𝑛 ×
[0,∞) ↦→ R be the CBF of each 𝜋𝑖 defined as ℎ𝜋𝑖(𝑥, 𝑡) = 𝑀𝜋𝑖(𝑡) + 𝑍𝜋𝑖(𝑥) for each atomic
proposition 𝜋𝑖, where 𝑀𝜋𝑖(𝑡) is computed by (9.9) and 𝑍𝜋𝑖(𝑡) is defined as {𝑥|𝑍𝜋𝑖(𝑥) ≥ 0} =
J𝜋𝑖K. Consider a formula 𝜑′ = 𝜋1 ◁▷ . . . ◁▷ 𝜋𝑘−1, where ◁▷∈ {∧,∨}. Let ℎ𝜑′ be the CBF of
𝜑′. Then the CBF of formula 𝜑 = 𝜑′ ∧ 𝜋𝑘 is

ℎ𝜑(𝑥, 𝑡) = − ln
[︀
exp (−ℎ𝜑′(𝑥, 𝑡)) + exp (−ℎ𝜋𝑘(𝑥, 𝑡))

]︀
. (9.10)

The CBF ℎ𝜑 of formula 𝜑 = 𝜑′ ∨ 𝜋𝑘 for some 𝜆 > 0 is

ℎ𝜑(𝑥, 𝑡) =
ℎ𝜑′(𝑥, 𝑡)𝑒

𝜆ℎ𝜑′ (𝑥,𝑡) + ℎ𝜋𝑘(𝑥, 𝑡)𝑒
𝜆ℎ𝜋𝑘 (𝑥,𝑡)

𝑒𝜆ℎ𝜑′ (𝑥,𝑡) + 𝑒𝜆ℎ𝜋𝑘 (𝑥,𝑡)
. (9.11)

Definition 9.6 recursively defines the CBF for a formula 𝜑 in the form of 𝜑 = 𝜋1 ◁▷
. . . ◁▷ 𝜋𝑘, where ◁▷∈ {∧,∨}. By Lemma 9.1, we have that CBFs (9.10) and (9.11) bound
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min{ℎ𝜑′(𝑥, 𝑡), ℎ𝜋𝑘(𝑥, 𝑡)} and max{ℎ𝜑′(𝑥, 𝑡), ℎ𝜋𝑘(𝑥, 𝑡)} from below, respectively. When Φ𝑗
and 𝜑𝑗 ∧ Φ𝑗+1 are in the forms of 𝜋1 ◁▷ . . . ◁▷ 𝜋𝑘, where ◁▷∈ {∧,∨}, their CBFs can be
obtained by recursively applying Definition 9.6.

Algorithm 18 Algorithm for computing the CBFs for each formula 𝜓𝑗 .
1: Input: LTL specification 𝜙
2: Output: CBFs for each formula 𝜓𝑗
3: Compute the DRA associated with LTL specification 𝜙, and the set of accepting runs

on the DRA.
4: Pick an accepting run 𝜂 on the DRA, and identify each formula 𝜓𝑗 associated with each

transition 𝜂𝑗 in 𝜂 as (9.8).
5: Specify a sequence of time 0 < 𝑡1 < . . . for accepting run 𝜂.
6: Pick a set of feasible coefficients for relations (9.9) for each atomic proposition 𝜋 involved

in 𝜓𝑗 .
7: Recursively compute CBFs for Φ𝑗 and 𝜑𝑗 ∧ Φ𝑗+1 using Definition 9.6.
8: return CBFs for Φ𝑗 and 𝜑𝑗 ∧ Φ𝑗+1

The procedure we used to design the CBFs for each 𝜓𝑗 is presented in Algorithm 18. We
characterize the construction of CBFs for Φ𝑗 and 𝜑𝑗 ∧Φ𝑗+1 using the following proposition.

Lemma 9.6. Let ℎ𝜑 be the CBF obtained by Algorithm 18, where 𝜑 ∈ {Φ𝑗 , 𝜑𝑗 ∧Φ𝑗+1}. For
any time 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1], if ℎ𝜑(𝑥, 𝑡) ≥ 0, then 𝐿(𝑥(𝑡)) |= 𝜑.

Proof. We prove by induction. Consider 𝜑 = 𝜋1 ∧ 𝜋2. Then ℎ𝜑 is computed as (9.10).
By Lemma 9.1, ℎ𝜑(𝑥, 𝑡) ≥ 0 implies that ℎ𝜋1(𝑥, 𝑡) ≥ 0 and ℎ𝜋2(𝑥, 𝑡) ≥ 0. By Lemma 9.5,
𝑥(𝑡) ∈ J𝜋1K ∩ J𝜋2K, and thus 𝜑 is satisfied. Consider 𝜑 = 𝜋1 ∨ 𝜋2. Then ℎ𝜑 is computed as
(9.11). By Lemma 9.1, ℎ𝜑(𝑥, 𝑡) ≥ 0 implies that ℎ𝜋1(𝑥, 𝑡) ≥ 0 or ℎ𝜋2(𝑥, 𝑡) ≥ 0. By Lemma
9.5, 𝑥(𝑡) ∈ J𝜋1K ∪ J𝜋2K, and thus 𝜑 is satisfied. These two cases serve as our induction base.

Suppose the lemma holds after applying Eqn. (9.10) and (9.11) 𝑘 − 1 times, and de-
note the corresponding CBF as ℎ𝑘−1

𝜑 . If the 𝑘-th operation is a conjunction with atomic
proposition 𝜋, then ℎ𝑘𝜑(𝑥, 𝑡) is obtained by (9.10). By Lemma 9.1, ℎ𝑘𝜑(𝑥, 𝑡) ≥ 0 implies that
ℎ𝜋(𝑥, 𝑡) ≥ 0 and ℎ𝑘−1

𝜑 (𝑥, 𝑡) ≥ 0. By Lemma 9.5, ℎ𝜋(𝑥, 𝑡) ≥ 0 implies 𝑥(𝑡) ∈ J𝜋K. By our in-
ductive hypothesis, ℎ𝑘−1

𝜑 (𝑥, 𝑡) ≥ 0 implies 𝐿(𝑥(𝑡)) |= 𝜑 after applying Eqn. (9.10) and (9.11)
𝑘− 1 times. Combining the arguments above, we have 𝐿(𝑥(𝑡)) |= 𝜑 when the 𝑘-th operator
is a conjunction. If the 𝑘-th operation is a disjunction with atomic proposition 𝜋, then
ℎ𝑘𝜑(𝑥, 𝑡) is obtained by Eqn. (9.11). By Lemma 9.1, ℎ𝑘𝜑(𝑥, 𝑡) ≥ 0 implies that ℎ𝜋(𝑥, 𝑡) ≥ 0

or ℎ𝑘−1
𝜑 (𝑥, 𝑡) ≥ 0. Similar to the conjunction case, we can conclude 𝐿(𝑥(𝑡)) |= 𝜑 when the

𝑘-th operator is a disjunction. Since 𝜑 is in the form of conjunction and disjunction of finite
number of atomic propositions, the lemma holds by induction.
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9.4.3 CBF-based Controller Synthesis

In this subsection, we present how to compute the controllers that satisfy each formula 𝜓𝑗
in the form of Eqn. (9.8). We then show that by satisfying all formulas 𝜓𝑗 for all 𝑗, the LTL
specification 𝜙 is satisfied.

Lemma 9.7. Consider a formula 𝜓𝑗 in the form of (9.8) whose active time is [𝑡𝑗 , 𝑡𝑗+1]. Let
ℎΦ𝑗 and ℎΩ𝑗 be the CBFs of Φ𝑗 and 𝜑𝑗 ∧ Φ𝑗+1 obtained using Algorithm 18, respectively.
Then for all 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1] any feedback controller in

𝒰𝜓𝑗
(𝑥, 𝑡) =

⎧⎪⎨⎪⎩
𝒰2(𝑥, 𝑡), if 𝐿(𝑥(𝑡)) |= 𝜑𝑗 ∧ Φ𝑗+1,

𝒰1(𝑥, 𝑡) ∩ 𝒰2(𝑥, 𝑡), if 𝐿(𝑥(𝑡)) |= Φ𝑗 ,

∅, otherwise

satisfies 𝑇𝑟𝑎𝑐𝑒 (x𝜇([𝑡𝑗 , 𝑡𝑗+1])) |= 𝜓𝑗, where

𝒰1(𝑥, 𝑡) =
{︁
𝜇|
𝜕ℎΦ𝑗Ω𝑗 (𝑥, 𝑡)

𝜕𝑥
𝑓(𝑥) +

𝜕ℎΦ𝑗Ω𝑗 (𝑥, 𝑡)

𝜕𝑥
𝑔(𝑥)𝜇(𝑥, 𝑡)

+
𝜕ℎΦ𝑗Ω𝑗 (𝑥, 𝑡)

𝜕𝑡
+ 𝛼(ℎΦ𝑗Ω𝑗 (𝑥, 𝑡)) ≥ 0

}︁
,

𝒰2(𝑥, 𝑡) =
{︁
𝜇|
𝜕ℎΩ𝑗 (𝑥, 𝑡)

𝜕𝑥
𝑓(𝑥) +

𝜕ℎΩ𝑗 (𝑥, 𝑡)

𝜕𝑥
𝑔(𝑥)𝜇(𝑥, 𝑡)

+
𝜕ℎΩ𝑗 (𝑥, 𝑡)

𝜕𝑡
+ 𝛾 · sgn(ℎΩ𝑗 (𝑥, 𝑡))|ℎΩ𝑗 (𝑥, 𝑡)|𝜌 ≥ 0

}︁
ℎΦ𝑗Ω𝑗 (𝑥, 𝑡) =

ℎΦ𝑗 (𝑥, 𝑡)𝑒
𝜆ℎΦ𝑗

(𝑥,𝑡)
+ ℎΩ𝑗 (𝑥, 𝑡)𝑒

𝜆ℎΩ𝑗
(𝑥,𝑡)

𝑒
𝜆ℎΦ𝑗

(𝑥,𝑡)
+ 𝑒

𝜆ℎΩ𝑗
(𝑥,𝑡)

.

Proof. By the semantics of until operator U and Definition 9.3, it suffices to show that
there exists a time sequence 𝑡𝑗 , 𝑇, 𝑡𝑗+1 such that (i) 𝑡𝑗 < 𝑡𝑗+1, (ii) 𝑇 ∈ [𝑡𝑗 , 𝑡𝑗+1], and (iii)
𝐿(𝑥(𝑡)) |= Φ𝑗 for all 𝑡 ∈ [𝑡𝑗 , 𝑇 ) and 𝐿(𝑥(𝑡)) |= 𝜑𝑗 ∧ Φ𝑗+1 for all 𝑡 ∈ [𝑇, 𝑡𝑗+1]. We show that
each of these conditions is satisfied.

First, condition 𝑡𝑗 < 𝑡𝑗+1 holds by the construction of deadlines. To guarantee 𝑇 ∈
[𝑡𝑗 , 𝑡𝑗+1], we can tune parameters 𝜌 and 𝛾 as given in Proposition 9.2 so that 𝑇 ≤ 𝑡𝑗+1. In
the following, we show that there exists some time 𝑇 ∈ [𝑡𝑗 , 𝑡𝑗+1] such that 𝐿(𝑥(𝑡)) |= Φ𝑗 for
all 𝑡 ∈ [𝑡𝑗 , 𝑇 ) and 𝐿(𝑥(𝑡)) |= 𝜑𝑗 ∧ Φ𝑗+1 for all 𝑡 ∈ [𝑇, 𝑡𝑗+1].

We start with the case where 𝐿(𝑥(𝑡)) |= 𝜑𝑗 ∧ Φ𝑗 . In this case, 𝑇 = 𝑡 and we need
to guarantee 𝐿(𝑥(𝑡′)) |= 𝜑𝑗 ∧ Φ𝑗+1 for all 𝑡′ ∈ [𝑡, 𝑡𝑗+1] so that formula 𝜓𝑗 is satisfied. By
Proposition 9.2, the set of controllers 𝒰2(𝑥, 𝑡) ensures that the system remains in the set
{𝑥|ℎΩ𝑗 (𝑥, 𝑡

′) ≥ 0} for all 𝑡′ ≥ 𝑡. By Lemma 9.6, we have that 𝐿(𝑥(𝑡′)) |= 𝜑𝑗 ∧ Φ𝑗 for all
𝑥(𝑡′) ∈ {𝑥(𝑡)|ℎΩ𝑗 (𝑥, 𝑡

′) ≥ 0} for all 𝑡′ ∈ [𝑡, 𝑡𝑗+1]. Therefore, 𝑇𝑟𝑎𝑐𝑒 (x𝜇([𝑡, 𝑡𝑗+1])) |= 𝜓𝑗 for all
𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1] in this case.

We then consider the case where 𝐿(𝑥(𝑡)) |= Φ𝑗 . By Proposition 9.1, the set of controllers
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𝒰1(𝑥, 𝑡) guarantees that the system remains in the set {𝑥(𝑡′)|ℎΦ𝑗Ω𝑗 (𝑥, 𝑡
′) ≥ 0} for all 𝑡′ ∈

[𝑡, 𝑡𝑡+1]. By Lemma 9.6, we have that 𝐿(𝑥(𝑡′)) |= Φ𝑗 , or 𝐿(𝑥(𝑡′)) |= 𝜑𝑗∧Φ𝑗+1, or both, for all
𝑥(𝑡′) ∈ {𝑥(𝑡′)|ℎΦ𝑗Ω𝑗 (𝑥, 𝑡

′) ≥ 0} where 𝑡′ ∈ [𝑡, 𝑡𝑗+1]. By Proposition 9.2, the set of controllers
𝒰2(𝑥, 𝑡) ensures that the system will be steered to the set {𝑥|ℎΩ𝑗 (𝑥, 𝑡) ≥ 0} at some time
𝑇 ≥ 𝑡 if 𝑥(𝑡) /∈ {𝑥|ℎΩ𝑗 (𝑥, 𝑡) ≥ 0}. Moreover, the system remains in 𝑥(𝑡′) ∈ {𝑥|ℎΩ𝑗 (𝑥, 𝑡

′) ≥ 0}
for all 𝑡′ ∈ [𝑇, 𝑡𝑗+1]. By Lemma 9.6, we have that 𝑇𝑟𝑎𝑐𝑒 (x𝜇([𝑡, 𝑡𝑗+1])) |= 2(𝜑𝑗∧Φ𝑗+1) for all
𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1]. Thus, the controllers in 𝒰1(𝑥, 𝑡)∩𝒰2(𝑥, 𝑡) guarantee 𝑇𝑟𝑎𝑐𝑒 (x𝜇([𝑡, 𝑡𝑗+1])) |= 𝜓𝑗
for all 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1].

Combining the arguments above, we have that the controllers in 𝒰𝜓𝑗
(𝑥, 𝑡) satisfy that

𝑇𝑟𝑎𝑐𝑒 (x𝜇([𝑡𝑗 , 𝑡𝑗+1])) |= 𝜓𝑗 .

We note that the computation of controllers can be simplified when the formula 𝜓𝑗
is in some simple forms. Consider a formula 𝜓𝑗 as per (9.8). When Φ𝑗 = 𝑇𝑟𝑢𝑒, then
𝜓𝑗 = 2(𝜑𝑗 ∧ Φ𝑗+1). The controllers satisfying 𝜓𝑗 in this case are given by the following
corollary.

Corollary 9.2. Suppose 𝜓𝑗 = 2𝜑. Let ℎ𝜑 be the CBF of 𝜑 that is obtained using Algorithm
18. Then any feedback controller in

𝒰𝜓𝑗
(𝑥, 𝑡) =

{︃{︀
𝜇|𝜕ℎ𝜑(𝑥,𝑡)𝜕𝑥 𝑓(𝑥) +

𝜕ℎ𝜑(𝑥,𝑡)
𝜕𝑥 𝑔(𝑥)𝜇(𝑥, 𝑡) +

𝜕ℎ𝜑(𝑥,𝑡)
𝜕𝑡 + 𝛼(ℎ𝜑(𝑥, 𝑡)) ≥ 0

}︀
, if 𝐿(𝑥0) |= 𝜑

∅, otherwise

satisfies 𝜓𝑗.

Proof. The proof follows by replacing Φ𝑗 in Lemma 9.7 with unconditionally true.

We finally show that by satisfying each formula 𝜓𝑗 , specification 𝜙 is satisfied.

Theorem 9.1. Applying the controllers in 𝒰𝜓𝑗
(𝑥, 𝑡) for all 𝑡 ≥ 0 as given in Lemma 9.7

renders 𝑇𝑟𝑎𝑐𝑒 (x𝜇) |= 𝜙.

Proof. Applying 𝜇 for each time interval [𝑡𝑗 , 𝑡𝑗+1], we have that 𝑇𝑟𝑎𝑐𝑒 (x𝜇([𝑡𝑗 , 𝑡𝑗+1])) |= 𝜓𝑗
due to Lemma 9.7. Then according to Lemma 9.4 and Corollary 9.1, we have that satisfying
the sequence of formulas 𝜓𝑗 for all 𝑗 is equivalent to executing the run 𝜂 on the DRA. Since
𝜂 is an accepting run, we can conclude that 𝑇𝑟𝑎𝑐𝑒 (x𝜇) |= 𝜙.

Using the treatment in [137, 44], we can compute the control input 𝑢(𝑡) at each time 𝑡
by solving the quadratic program (QP):

min
𝑢

𝑢⊤𝑅𝑢

s.t. 𝑢(𝑡) ∈ 𝒰𝜓𝑗
(𝑥, 𝑡), ∀𝜓𝑗

where 𝑅 ∈ R𝑚×𝑚 is a positive semi-definite matrix that quantifies the cost of control, and
𝒰𝜓𝑗

(𝑥, 𝑡) is given by Lemma 9.7. The constraint set of this QP requires that the CBF
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Figure 9-1: Fig. 9-1a shows the DRA associated with 𝜙 = 3𝐴 ∧ 3𝐵 ∧ 2(¬𝑂 ∧ 𝐶). It
has one Rabin pair (∅, {𝑞3}). Fig. 9-1b presents the trajectories of both robot using the
proposed approach in this chapter. The trajectory of the first robot is plotted in solid line,
while the trajectory of the second robot is plotted in dotted line. The first robot eventually
reaches region 𝐴, and the second robot eventually reaches region 𝐵. Both robots successfully
avoid the obstacle region 𝑂 and remain close enough to each other. CBFs ℎ𝜓1 and ℎ𝜓2 are
presented in Fig. 9-1c. ℎ𝜓1 is plotted in dotted line and ℎ𝜓2 is plotted in solid line. Both
CBFs become positive at some time 𝑡 ≥ 0, at which the formulas corresponding to the CBFs
are satisfied.

constraints as given in Lemma 9.7 must be satisfied for each formula 𝜓𝑗 . We note that the
deadlines of formulas 𝜓𝑗 ’s corresponding to transitions in 𝜂𝑠𝑢𝑓𝑓 are generated periodically
as 𝑛∆ + 𝑡𝐽+1. We can impose the constraint 𝑢(𝑡) ∈ 𝒰𝜓𝑖

(𝑥, 𝑡) for 𝑖 ∈ {𝑗, . . . , 𝑗 + 𝐽 + 𝑁},
resulting in a finite number of constraints in the QP. The controllers for future time can
then be generated by implementing the controllers periodically.

9.5 Case Study

In this section, we present a numerical case study on a two robot homogeneous multi-agent
system. Consider a multi-agent system consisting of two robots whose dynamics are given as
�̇� = 𝑢, where 𝑥 ∈ R4 is the system state, and 𝑢 ∈ R4 is the input. The state variables 𝑥1 and
𝑥2 give the coordinate of the first robot, and state variables 𝑥3 and 𝑥4 give the coordinate
of the second robot. The initial positions for both robots are [−0.4, 0.1].

Each of the robots has its respective goal region, denoted as region 𝐴 and region 𝐵.
Both robots are required to eventually reach their goal regions. In the meantime, both
robots need to avoid the obstacle region, denoted as 𝑂. Furthermore, the robots keep
exchanging information with each other, and hence must remain close enough. The tasks
can be represented by an LTL formula 𝜙 = 3𝐴 ∧ 3𝐵 ∧ 2(¬𝑂 ∧ 𝐶), where 𝐶 represents
the connectivity specification. In this case study, region 𝐴 is modeled as {𝑥|𝑍𝐴(𝑥) ≥ 0}
where 𝑍𝐴(𝑥) = 0.2 − ‖[𝑥1, 𝑥2] − [0.6, 0.3]‖2. Region 𝐵 is modeled as {𝑥|𝑍𝐵(𝑥) ≥ 0} where
𝑍𝐵(𝑥) = 0.2 − ‖[𝑥3, 𝑥4] − [0.4,−0.5]‖2. The obstacle region is modeled as {𝑥|𝑍𝑂(𝑥) ≥ 0}
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where 𝑍𝑂(𝑥) = 0.18 − ‖𝑥 − [0.22,−0.05, 0.22,−0.05]‖2. The connectivity between the two
robots is given as 𝐶 = {𝑥|𝑍𝐶(𝑥) ≥ 0} where 𝑍𝐶(𝑥) =

√
𝑥3 + 0.39− ‖[𝑥1, 𝑥2]− [𝑥3, 𝑥4]‖2.

We compare the proposed approach with the approach proposed in [46]. Since there is
single CBF for each region of interest, the relaxation proposed in [46] coincides with the
traditional CBF-based approach. We observe that no feasible trajectory is synthesized since
there is no feasible solution to the QP. The infeasibility of the QP is caused by the fact that
the connectivity constraint requires the robots to stay close to each other, while steering the
robots into region 𝐴 and 𝐵 makes them violate the connectivity constraint. This infeasibility
agrees with the example presented in [45].

In the following, we demonstrate our proposed approach. Given the LTL specification
𝜙, the DRA representing 𝜙 is shown in Fig. 9-1a. The accepting runs of the DRA include
𝑞0𝑞1(𝑞3)

𝜔, 𝑞0(𝑞3)𝜔, and 𝑞0𝑞2(𝑞3)
𝜔. We pick the run 𝜂 = 𝑞0𝑞1(𝑞3)

𝜔 in this case study. Tran-
sition from 𝑞0 to 𝑞1 of the accepting run 𝜂 corresponds to formula 𝜓0 = (¬𝑂 ∧ 𝐶)U2(𝐵 ∧
¬𝑂 ∧𝐶). Transition from 𝑞1 to 𝑞2 corresponds to formula 𝜓1 = (¬𝑂 ∧𝐶)U2(𝐴 ∧ ¬𝑂 ∧𝐶).
Self transition at 𝑞3 corresponds to formula 𝜓3 = 2(¬𝑂 ∧ 𝐶). Next, we assign the active
time for each formulas during which the formula needs to be satisfied. In this case study,
we let 𝜓1 be satisfied during [0, 2], and let 𝜓2 be satisfied during [2, 4]. Using Eqn. (9.9),
we then construct the CBFs for atomic propositions 𝐵 and 𝐴 as ℎ𝐵(𝑥, 𝑡) = 1

1+𝑒−(𝑡−1.5) −
0.63+0.2−‖[𝑥1, 𝑥2]− [0.4,−0.5]‖2, ℎ𝐴(𝑥, 𝑡) = 1

1+𝑒−(𝑡−0.5) −0.9+0.2−‖[𝑥1, 𝑥2]− [0.6, 0.3]‖2,
respectively. Then the CBF for each formula can be constructed by Definition 9.6. For
instance, ℎ𝜓3(𝑥, 𝑡) = − ln(exp(−𝑍𝑂(𝑥)) + exp(−𝑍𝐶(𝑥))).

In the following, we formulate the QP to solve for the controllers so that the LTL
specification 𝜙 is satisfied. According to Lemma 9.7, we have the following constraints for
each formula 𝜓𝑗 :

𝜕ℎΦ𝑗Ω𝑗 (𝑥, 𝑡)

𝜕𝑥
𝑓(𝑥) +

𝜕ℎΦ𝑗Ω𝑗 (𝑥, 𝑡)

𝜕𝑥
𝑔(𝑥)𝜇(𝑥, 𝑡) +

𝜕ℎΦ𝑗Ω𝑗 (𝑥, 𝑡)

𝜕𝑡
+ 𝛼(ℎΦ𝑗Ω𝑗 (𝑥, 𝑡)) ≥ 0 (9.12)

𝜕ℎΩ𝑗 (𝑥, 𝑡)

𝜕𝑥
𝑓(𝑥) +

𝜕ℎΩ𝑗 (𝑥, 𝑡)

𝜕𝑥
𝑔(𝑥)𝜇(𝑥, 𝑡) +

𝜕ℎΩ𝑗 (𝑥, 𝑡)

𝜕𝑡
+ 𝛾 · sgn(ℎΩ𝑗 (𝑥, 𝑡))|ℎΩ𝑗 (𝑥, 𝑡)|𝜌 ≥ 0

(9.13)

where Φ𝑗 and Ω𝑗 are defined as given in Lemma 9.7, and

ℎΦ𝑗Ω𝑗 (𝑥, 𝑡) =
ℎΦ𝑗 (𝑥, 𝑡)𝑒

𝜆ℎΦ𝑗
(𝑥,𝑡)

+ ℎΩ𝑗 (𝑥, 𝑡)𝑒
𝜆ℎΩ𝑗

(𝑥,𝑡)

𝑒
𝜆ℎΦ𝑗

(𝑥,𝑡)
+ 𝑒

𝜆ℎΩ𝑗
(𝑥,𝑡)

.

Formulating (9.12) and (9.13) for all 𝜓𝑗 ’s form the constraint set of the QP.
By solving the QP, we obtain the controllers for both robots. The trajectories of the

robots are presented in Fig. 9-1b. We make the following observations. First, both robots
eventually reach their target regions, while avoiding the obstacle region. Furthermore, the
second robot reaches region 𝐵 before the first robot reaches region 𝐴. This can be observed
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from Fig. 9-1c. CBF ℎ𝜓1 turns positive before ℎ𝜓2 . Second, after the robots reaching their
goal regions, they can still leave the goal region rather than remaining in the goal region.
This is because our design of CBF adopts the guarding function 𝑀𝜓(𝑡) which increases over
time and hence enhances the feasibility of the QP. The relaxation introduced by the guarding
function enables the satisfaction of the connectivity constraint. As we could observe in Fig.
9-1c, CBFs ℎ𝜓1 and ℎ𝜓2 remain positive after the robots reaching their goal regions.

9.6 Conclusion

In this chapter, we studied the problem of control synthesis for CPS under LTL constraints
modeled by LTL without next operator. We focused on synthesizing the controller to satisfy
the LTL constraint without explicitly computing the abstraction of the CPS. A CBF-based
approach is used in this chapter. We first constructed a sequence of LTL formulae corre-
sponding to an accepting run on the DRA, and presented a design rule to design time-varying
CBFs for the sequence of formulae. We introduced a function named guard function when
designing CBFs, which enhances feasibility of CBF constraints. We showed that the pos-
itivity of the CBF implies the satisfaction of the LTL formula. Then we showed how to
satisfy the set of formulae by guaranteeing the positivities of their CBFs. We formulated a
QP to compute a controller that satisfies the LTL specification. A numerical case study is
presented to illustrate the proposed approach.

We note that the approach proposed in this chapter is only applicable to CPS in the
absence of the adversary. When there exists a malicious adversary, we need to generalize
the definitions of ZCBF and FCBF to incorporate the impact from the adversary, which is
subject to our future work.
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Chapter 10

Conclusions and Future Work

In this thesis, we studied automatic and secure correct-by-construction control synthesis
for cyber-physical systems operated in adversarial environments. We modeled the complex
tasks assigned to the systems using temporal logic specifications. The adversary tampers
with the system dynamics to manipulate the system state evolution and/or observation. We
presented a sequence of problem settings along with their solution approaches.

We first presented the problem of maximizing the satisfaction probability when the
system is given a linear temporal logic specification, as detailed in Chapter 4. We formulated
the interaction between the controller and adversary as a stochastic game, and proposed a
value iteration algorithm with convergence guarantee to compute the control policy.

Chapter 5 studied the problem of control synthesis to minimize the invariant constraint
violation rate. We solved the problem by deriving the optimality condition leveraging op-
timal cost per stage problem, and developed a policy iteration algorithm to compute the
controller’s policy.

We studied the minimum violation control synthesis under a set of co-safe linear tempo-
ral logic specifications in Chapter 6. We also considered the limited observation capability
of the adversary. We formulated the problem as a mixed integer nonlinear program. Two
algorithms were proposed to solve the nonlinear program. The first algorithm converges to
the optimal controller’s policy with probability one, without any guarantee on the conver-
gence rate. To this end, we proposed the second algorithm that approximately computes a
feasible controller’s policy.

In Chapter 7, we studied the control synthesis to maximize the satisfaction probability of
a linear temporal logic specification under partially observable environments. The policies
are represented using finite state controllers. We presented a value iteration algorithm
to calculate the finite state controller with fixed size for the system. We also developed an
algorithm to adaptively adjust the size of the finite state controller to improve the satisfaction
probability.

Chapter 8 studied the problem of control synthesis under time-critical specifications
modeled by metric interval temporal logic formulas. The adversary considered in this chapter
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can not only tamper with the control input to manipulate the system dynamics, but also
manipulate the time perception of the system to modify the timed system behavior. We
presented a value iteration algorithm to compute a finite state controller for the system so
that the satisfaction probability can be maximized.

Chapter 9 studied abstraction-free control synthesis for a continuous time control affine
system. The linear temporal logic specification was decomposed into a sequence of sub-
formulas and we used a set of control barrier function based constraints to compute the
control input that guarantees the satisfaction of each sub-formula.

We note that the algorithms proposed in this dissertation are sound but not complete.
Our future work is to develop algorithms with completeness guarantees. Additionally, we
need to develop control barrier functions that are applicable to systems operated in adver-
sarial environments, and apply them for abstraction-free control synthesis for systems under
attacks. Finally, we will leverage the potential strength from learning algorithms to guar-
antee the satisfaction of temporal logic specifications for systems with unknown dynamics.
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