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Abstract

Thinking and learning are inherently tied to our perceptual processes and physical experiences in
the world, yet this connection is typically underutilized in education and educational tools. As
educational technologies are developed to support student learning, their design should be
informed by theory and evidence to optimize the instructional support that students receive. The
purpose of this work is to advance cognitive theories of learning and provide recommendations
for researchers, teachers, and content developers to leverage students’ perceptual processes and
body-based resources in online instructional materials for math education. Specifically, this
dissertation includes three studies that demonstrate how subtle perceptual and embodied features
may be feasibly implemented in online instructional materials and how those features impact
students’ reasoning, performance, and learning in arithmetic and algebra. First, this dissertation
describes the effects of spatial proximity between operands in order-of-operation problems on
student performance. Second, this dissertation explores the relation between spatial proximity in
notation, students’ inhibitory control, and problem-solving performance. Finally, this dissertation
describes how worked examples with different degrees of student interaction impact learning in
online settings. Together, this body of work provides insights as to how cognitive theories may
be leveraged in online learning environments by designing perceptual scaffolds and embodied

features in instructional materials for math education.
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Chapter 1. Introduction

Students’ mathematics skills, education, and achievement are related to multiple
outcomes throughout their lifespan. For instance, childhood performance in mathematics as early
as kindergarten is a predictor of later achievement (Claessens & Engel, 2013). Further,
mathematics education and achievement are related to neuroplasticity and brain development
during adolescence (Zacharopoulos et al., 2021), and employment during adulthood (Parsons &
Bynner, 2005). Importantly, algebra is commonly considered a gateway to higher-level
mathematics for students in high school and beyond (Matthews & Farmer, 2008). In particular,
students who progress beyond Algebra 1 are more likely to outperform their peers on national
assessments (Kena et al., 2015). However, many students struggle to grasp basic algebraic
concepts, barring most students from pursuing further mathematics (Kena et al., 2015). This
struggle may be partially attributed to the challenge that students face in learning procedural
rules as well as the conceptual knowledge to appropriately apply those rules in practice.
Therefore, it is critical to provide effective instructional support for students to acquire
procedural skills and conceptual knowledge necessary for success in algebra.

I posit that by harnessing the knowledge that cognition is shaped by our physical
experiences, learning technologies and tools can design more effective instructional support (e.g.,
through perceptual scaffolding and worked examples) to help students progress beyond early
algebra. My theoretical framework is largely informed by theories of perceptual learning (e.g.,
Closser et al., under review; Goldstone 1998; Goldstone et al., 2017) and embodied cognition
and learning (e.g., Nathan, 2014, 2021). Together, these theoretical perspectives argue that
thinking and learning are reflected in, and at least partially impacted by, a cyclical relationship

between: a) our perceptual processes which interpret incoming information from the



environment, and b) our physical actions which provide outgoing displays of cognition and
garner feedback from our environments. In terms of math education, understanding how
students’ perceptual processes and body-based resources (e.g., actions, movement, speech,
gestures) influence reasoning and learning may present new opportunities in instructional
practice and content design in educational technologies to support student thinking and learning
in math.

This dissertation aims to demonstrate: a) how perceptual scaffolds and embodied features
may be feasibly implemented in online activities across two learning environments, and b) how
these subtle features impact students’ performance and learning in algebra. Importantly, this
research is not testing the efficacy of any learning technologies. Instead, multiple learning
technologies have been used as research platforms to tease apart how multiple cognitive
mechanisms may work together to influence learning. Through this line of research, I aim to
inform cognitive theories of learning as well as improve online and technology-augmented
learning environments by providing recommendations for researchers, teachers, and content
developers that leverage our body-based resources for learning. To reflect this work, I present
three projects that demonstrate how perceptual and embodied scaffolds may be implemented in
online learning systems and investigate how these subtle features in online instructional materials
may shape students’ reasoning, learning, and performance in math. This research was conducted
across two online learning platforms (i.e., ASSISTments and Graspable Math) as well as through
two additional research platforms (i.e., Qualtrics and Psychopy). First, I include a published
manuscript detailing the effects of spatial proximity between operands in order-of-operation
problems on student performance (Harrison et al., 2020). Second, I include an in-preparation

manuscript that extends this work by exploring the relation between spatial proximity in



notation, students’ inhibitory control, and problem-solving performance. Finally, I present
preliminary results from my proposed study: comparing how worked examples impact student
learning in online settings when they are designed from principles of cognitive load theory and
embodied cognition. Specifically, these studies address:
1) How do perceptual cues (i.e., spacing) in arithmetic problems impact students’
performance?
2) How do perceptual cues (i.e., spacing) in arithmetic problems interact with students’
inhibition skills to impact performance?
3) How do features of worked examples that leverage student interaction impact learning in
algebra?
I close the dissertation with a “Discussion” in which I describe key takeaways and
insights, address limitations, and share future avenues for advancing cognitive theories of
learning, informing instructional practice, and providing recommendations for educational

technology design. A synopsis of each project is presented below.

Study 1: The Effect of Spacing in Math Expressions on Student Performance

In Chapter 2, I present the manuscript, “Spacing Out: Manipulating Spatial Features in
Mathematical Expressions Affects Performance” (Harrison et al., 2020), which was published in
the Journal of Numerical Cognition. This experiment provides confirmatory evidence of the
effect of spacing between symbols within mathematical expressions on student performance.
Specifically, we investigated how the presentation of expressions impacted students’ adherence
to the order of operations (e.g., performing calculations within parentheses first; completing
multiplication and division calculations before addition and subtraction). A total of 2,152

students in fifth through twelfth grade were randomly assigned to one of four conditions within
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an online problem set, with symbols in the algebraic expressions spaced 1) neutrally, with no
spaces in the expression (e.g., 4*5+3), 2) congruent with the order of operations through
grouping terms (e.g., 4*5 + 3), 3) incongruent with the order of operations (e.g., 4 * 5+3), or
4) mixed, a combination of the previous conditions. We found that students who viewed
problems with incongruent spacing made more errors and had to solve more problems to
complete the assignment than those who viewed congruent or neutrally spaced problems.
Additionally, students who viewed problems with mixed spacing had to solve more problems to
complete the assignment than students who viewed congruent problems. We concluded that
viewing expressions with spacing that is incongruent with the order of operations presents
challenges for students. Overall, these results replicated prior research on perceptual learning
(e.g., Landy & Goldstone, 2010) in an online homework environment and support the claim that
spacing between symbols influences student performance on order-of-operations problems. From
these findings, we contend that online platforms could leverage spacing to help students learn

and attend to the order of operations then fade perceptual support over time.

Study 2: The Relation Between Spacing, Inhibition Skills, and Math Performance

The previous study (Harrison et al., 2020) demonstrates how robust the impact of
perceptual cues on students’ problem-solving performance can be, extending across grade levels
and prior knowledge. However, other cognitive skills may interact with perceptual cues to impact
students’ problem-solving performance. Prior work has shown the relation between executive
function and mathematics performance and specifically, between inhibition skills (i.e., the ability
to suppress prepotent responses) and problem solving (Cassotti et al., 2016; Cragg & Gilmore,
2014). In Chapter 3, I present an online experiment in which college students completed a

modified version of the Stroop task followed by order-of-operations problems presented with
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neutral, congruent, and incongruent spacing. I predicted that students with stronger inhibition
skills may be better able to suppress the urge to calculate invalid solutions primed by
incongruent spacing. Results showed that, controlling for students’ baseline accuracy on neutral
problems, there were no significant differences in students’ accuracy when solving congruent vs.
incongruent order-of-operations problems. However, students had significantly longer response
times on congruent as opposed to incongruent problems. There were no main effects of
inhibitory control on problem-solving performance. These results advance perceptual learning
theory by exploring the impact of spatial proximity on students’ performance when accounting
for baseline performance and add to the growing debate of whether and how inhibitory control

may be associated with mathematics skills and performance.

Study 3: The Impact of Action and Self-Explanation in Worked Examples on Learning

While the previous studies investigated the influence of perceptual cues on students’
performance during an assignment, this project examines how theories of embodied cognition
may inform the design of worked examples for online platforms to support students as they are
learning new concepts and procedural rules prior to problem-solving practice. In Chapter 4, |
present my research investigating how effectively students learn from worked examples that vary
in degree of interaction (i.e., with vs. without self-explanations) and embodiment (i.e., viewing
or mirroring worked examples on-screen). While worked examples have largely been designed
from cognitive load theory to offload strains on students’ cognitive capacities and free up
working memory to support learning (Chandler & Sweller, 1991), limited work has explored
how to leverage other theories in the design of online worked examples. Drawing from theories
of embodied learning and design (e.g., Abrahamson et al., 2020; Nathan, 2014), I leveraged the

affordances of a dynamic algebra notation tool (Graspable Math) to test how student actions and
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self-explanations impact learning from different worked example formats.

I predicted that algebra students may learn more when they dynamically mirror worked
examples on-screen, rather than simply view worked examples. To test this hypothesis, |
designed and implemented an online RCT to compare the effects of viewing versus mirroring
worked examples on learning. A total of 64 ninth-grade Algebra I students completed an online,
three-day study in which they were randomly assigned to: a) view, b) view-and-explain, c)
mirror, or d) mirror-and-explain worked examples and complete paired practice problems.
Chapter 4 presents the preliminary results from this study. Namely, all students improved from
pretest to posttest with no significant differences in students’ learning gains between those who
viewed vs. mirrored worked examples. However, students who received self-explanation
prompts with their worked examples did learn more. These preliminary results support prior
research on the worked example effect as well as the value of self-explanation prompts for
student learning. With a full sample, the findings from this study should advance cognitive
theories and provide recommendations for how worked examples can and should be effectively

designed for online learning environments.
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Chapter 2. Spacing Out! Manipulating Spatial Features in
Mathematical Expressions Affects Performance

This chapter presents the pre-print version of the following manuscript:
Harrison, A., Smith, H., Hulse, T., & Ottmar, E. (2020). Spacing out!: Manipulating spatial
features in mathematical expressions affects performance. Journal of Numerical

Cognition, 6(2), 186-203. https://doi.org/10.5964/inc.v6i2.243
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Abstract

The current study explores the effects of physical spacing within mathematical
expressions on student performance. A total of 2,152 students in 5th-12th grade were randomly
assigned to one of four conditions within an online problem set, with terms in algebraic
expressions spaced 1) neutrally, with no spaces in the expression, 2) congruent with the order of
precedence through grouping terms, 3) incongruent with the order of precedence, or 4) mixed, a
combination of the previous conditions. Results show that students who viewed incongruent
problems made more errors and had to solve more problems to complete the assignment than
those who viewed congruent or neutrally spaced problems. Additionally, students who viewed
problems with mixed spacing had to solve more problems to complete the assignment than
students who viewed congruent problems. These findings suggest that viewing expressions with
spacing that is incongruent with the order of precedence presents challenges for students.
Overall, these results replicate prior research in perceptual learning in a natural homework
environment and support the claim that physical spacing between terms does influence student
performance on order of precedence problems.

Keywords: perceptual learning, spatial proximity, mathematical cognition, mathematical

operations
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Spacing Out! Manipulating Spatial Features in Mathematical Expressions Affects

Performance

Formal mathematics is a commonly used example of how humans make sense of abstract
symbolic reasoning (Anderson, 2007; Goldstone et al., 2017). However, learning mathematics is
difficult for many students, in part because of the requirement to learn and execute abstract rules
as they apply to mathematical notation. Being able to interpret symbolic notation and compute
simple calculations efficiently and accurately is critical for solving more complex mathematics
problems, notably algebra. For example, the order of precedence stipulates how to simplify an
expression or equation, including the order in which computations can be carried out. Such
abstract rules require students to learn seemingly arbitrary conceptual processes and
appropriately apply those rules when reasoning about mathematics.

Beyond being abstract and requiring conceptual knowledge, reasoning about mathematics
is also inherently perceptual (Marghetis et al., 2016) with ample evidence suggesting that
mathematical processing and understanding is influenced by the visual presentation of
mathematical notation (McNeil & Alibali, 2004, 2005). Perceptual learning has been suggested
to be a mechanism that adapts perception and directs attention to relevant information in the
environment (Gibson, 1969), supporting high level cognition. For instance, spatial proximity, a
Gestalt law that posits that individuals perceive objects in close proximity to be a group, has
been shown to bias mathematical reasoning. This phenomena in mathematics supports the notion
that people rely on perceptual cues to process symbolic notations and are heavily influenced by
spatial properties of notation (Goldstone et al., 2017; Wagemans et al., 2012). Regardless of

conceptual knowledge, the tendency to use perceptual cues and groupings in mathematics
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notation is somewhat automatic and has implications for the ways in which individuals interpret,
compute, and produce mathematics notation.

Although subtle visual manipulations are irrelevant to the mathematical meaning of
notation, visual manipulations of notation can lead to attentional biases and create perceptual
groupings among terms and operands. For instance, terms and operands spaced in close
proximity within a mathematical notation tend to be seen as a group, such as viewing “4 x 6+3”
and wrongly grouping “6+3” together based on the spatial proximity of those terms (Jiang,
Cooper, & Alibali, 2014; Kirshner, 1989; Landy & Goldstone, 2007b, 2010). Additionally, while
novice learners often solve order of precedence problems based on memorized rules, experts
have been shown to rely on perceptual cues when solving complex equations (Braithwaite et al.,
2016; Rumelhart et al., 1986), providing evidence that there may be a shift at some point in
experience or procedural fluency from attending to abstract rules of formal mathematics to
attending to perceptual cues in formal mathematical notation.

A large body of research has demonstrated that the physical spacing between terms and
operands within equations and expressions contributes to students’ perceptions of how they are
able, within the rules of mathematics, to interpret meaning and perform computations (e.g., Jiang
et al., 2014; Landy & Goldstone, 2007a, 2007b, 2010; Rivera & Garrigan, 2016). Consequently,
spacing in mathematical expressions has been found to impact performance on equation-solving.
For instance, Landy and Goldstone (2007b, 2010) manipulated whether the spacing of terms in
expressions was congruent (multiplications spaced closer than additions) or incongruent
(additions spaced closer than multiplications) with the order of precedence. They found that
participants made more errors and were more likely to perform addition before multiplication in

the incongruent spacing condition. For example, in the case of 7+1 * 4, people often first
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combine the 7+1 to make 8 and then multiply by 4 to get 32, instead of properly multiplying 1 by
4 and then adding 7. These results suggest that mathematical reasoning is at least somewhat
perceptually driven through low-level visual and attentional factors. Landy and Goldstone
(2007b, 2010) posit that this effect occurs because spacing cues bias individuals to perform
specific operations, even if those cues are mathematically invalid.

Similarly, Jiang and colleagues (2013) found that when participants viewed operand
spacing in expressions which created perceptual groupings incongruent with the order of
precedence, participants tended to make target errors reflective of incorrectly grouping a set of
terms. Rivera & Garrigan (2016) extended this work by replicating the effect of incongruent
spacing on order of precedence errors found by Landy and Goldstone (2010), providing further
support for the effects of perceptual grouping on mental arithmetic, even in the case of
evaluating simple expressions. This work provides evidence that when perceptual grouping is
incongruent with operator precedence, the likelihood of order of precedence errors in mental
arithmetic increases. More broadly, this research shows that individuals use perceptual spacing to
interpret and reason about mathematics and may have a difficult time ignoring perceptual cues
even if they are incongruent with mathematical rules.

Gomez, Benavides-Varela, Picciano, Semenza, and Dartnell (2014) extended this work
with a sample of 5"-8" grade Chilean and Italian students and found that the spacing effects
seem to emerge in younger students as well. Braithwaite et al. (2016) also explored the effect of
physical spacing outside of a laboratory setting among even younger primary-school children
(equivalent to U.S. grade levels 2-6) in the Netherlands and found higher error rates for
individuals who viewed problems which had spacing incongruent with the order of precedence.

They also found that this effect of spacing increased with grade level, further suggesting that
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there is an increased reliance on perceptual grouping with age and experience with arithmetic.
However, aside from the work of Gomez et al. (2014) and Braithwaite et al. (2016), less is
known about whether or how perceptual grouping, influenced by physical spacing within
mathematical expressions, impacts student behavior in typical school settings and varies across
grade levels.

Overall, this body of literature shows that the perceptual grouping of mathematical terms
in an expression or equation influences both novices and experts during problem solving.
Specifically, when terms are spatially organized in groups that mirror the order of precedence,
students are more likely to have higher performance (Landy & Goldstone, 2007a) and more
accurate interpretations (Jiang et al., 2014; Landy & Goldstone, 2010). Conversely, when terms
are grouped in ways that are incongruent with the order of precedence, students are more likely
to take more time to solve (Goémez, Bossi, & Dartnell, 2014) and make more errors (Jiang et al.,
2013; Landy & Goldstone, 2007, 2010; Rivera & Garrigan, 2016). Such research provides
evidence of the influence of perceptual learning on mathematical problem solving, which could
play a key role in student learning. To further this area of research, the current study aims to
replicate and extend prior research by exploring the effects of spacing on student performance on
order of operations problems with upper elementary through high school algebra learners in a
natural homework setting.

The present study asked 5-12th grade students to simplify order of precedence
expressions in ASSISTments, an online tutoring system (Heffernan & Heffernan, 2014).
Students were randomized into one of four experimental conditions, which manipulated the
physical spacing between numbers and terms within mathematical expressions to be either

neutral, congruent or incongruent with the order of precedence, or a mixed combination of
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spacing across problems. We then examined whether there were differences in content mastery
speeds (the total number of problems that students had attempted by the time that they correctly
answered three problems in a row) based on spacing conditions.

This study extends prior research on perceptual learning in four key ways. First, the
majority of studies examining the effects of physical spacing between mathematical terms have
been conducted with undergraduate students in controlled laboratory settings rather than with
school-aged children in authentic classroom and learning contexts. Second, the study is
conducted through an online homework assignment assigned to students by their teachers using
the ASSISTments platform (Heffernan & Heffernan, 2014), rather than administered by a
researcher in a laboratory setting. Third, this study examines the effect of a mixed condition,
where students are exposed to each of the experimental spacing conditions. Lastly, while many
studies on perceptual learning have used error rates as the learning outcome, the current study
uses mastery speeds, a measure of the number of problems attempted to master the material
presented in the assignment as the dependent measures. From this extension of related research,
this project aims to contribute a richer understanding of how perceptual grouping, from physical

spacing in mathematical expressions, affects students’ behavior in authentic learning contexts.

The Present Study

To extend prior research on perceptual learning as it pertains to mathematics
performance, we present a randomized controlled trial with upper elementary, middle, and high
school students in ASSISTments, an online tutoring system. This study is designed to explore the
impact of physical spacing between terms on students’ mastery speeds when solving a series of

order of operations problems. Specifically, We posed the following questions:
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1. Does spacing impact assignment mastery speed? We hypothesize that students who view
congruent or neutrally spaced problems will have quicker mastery speeds (attempting
fewer problems before correctly answering three problems in a row) compared to
students who view incongruent spacing or mixed spacing problems.

2. If there are differences in assignment mastery speed based on condition, does student
prior performance moderate the relationship between condition and mastery speed? We
explore possible interactions between condition and prior performance to see if different
levels of prior performance heighten or mitigate the effect of any spacing condition(s) on
mastery speeds.

3. Ifthere are differences in assignment mastery speed based on condition, does grade level
moderate the relationship between condition and mastery speed? We explore possible
interactions between condition and grade to see if the effect of any spacing condition(s)

on mastery speed varies by grade level.

Methods

Study Context

Data for this study was collected from 2015-2019 in ASSISTments, an online tutoring
system that features free content for K-12 students with a primary focus on mathematics
(Heffernan & Heffernan, 2014). In addition to providing a technology tool for teachers to assign
content and homework to students, ASSISTments also provides researchers with an experimental
platform where independent researchers can create their own randomized controlled trials to be

used by teachers and students. The de-identified data used in this analysis is available on Open
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Science Framework (10.17605/0SF.IO/BAEUJ). Additionally, the original data report from
ASSISTments is available at tiny.cc/spacingdata for further reference.

This randomized controlled trial was created by the authors and deployed as an available
Skill Builder problem set covering order of operations content (targeting 7th grade) within
ASSISTments. “Skill Builders” are optional problem sets that teachers can assign to provide
students with fluency practice on topics commonly featured on standardized mathematics tests.
Skill Builders map onto content areas from the Common Core State Standards and present
problems from a given content area in a randomized order. These problem sets are designed to
challenge a student in a mathematics topic until that student achieves content mastery.

Under default settings, students must consecutively answer three problems in a row
correctly to achieve mastery status for the Skill Builder assignment. If a student answers a
problem incorrectly, the problem count restarts and they continue to receive problems until they
correctly answer three problems in a row. Therefore, in this context, a slower mastery speed
(solving more problems in order to get three problems correct in a row) is an indicator of higher
error and lower mathematics performance on a Skill Builder assignment. Mastery speed has been
used as an outcome measure of student performance in previous ASSISTments studies (e.g.,

Botelho et al., 2015).

Participants

The final sample included in the analyses were 2,152 students (48.0% male, 35.2%
female, 16.9% unknown) who completed more than three problems in the Skill Builder problem
set and completed the assignment by achieving mastery. Participants were 5th-12th grade
students assigned to complete the given problem set by their classroom teacher. The 2,152

students included in the final sample from this study came from 199 classes taught by 115
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teachers from 83 schools in 64 districts from 16 states. The students were distributed across
several grade levels, with a majority of students in middle school classrooms (.6% fifth, 11.7%
sixth, 30.4% seventh, 9.8% eighth, 18.5% ninth, 1% tenth, .1% eleventh, and 1.1% of reported
cases in twelfth grade; with the remaining 26.9% of cases missing grade level information).
Many more students initially opened the problem set but were dropped from this study for
the following reasons. A total of 6,238 students opened the problem set, however, 4,053 students
were excluded due to assignment completion within three problems or stopping the assignment
within the first three problems, thus never seeing an experimental condition. Additionally, a
small subset of participants was also excluded due to having an unknown mastery status for the
problem set (n = 33).
Figure 1
Problem with Neutral Spacing as Shown in First Three Assignment Problems

Assignment: Order of Operations no exponents 7.NS.A.3. EX

Problem ID: PRA3RVW Comment on this problem
6*3+4%4
Type your answer below (mathematical expression): @

I 100%

Submit Answer Show hint |

Experimental Conditions and Procedure

When students opened the problem set, they were first exposed to three neutrally spaced
expressions to solve (Figure 1). After completing the three neutrally-spaced problems, students
were randomly assigned to one of four spacing conditions: 1) neutral (n = 574), with no spaces

in the expression, 2) congruent (n = 555), with spacing which follows the order of precedence, 3)
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incongruent (n = 493; see Figure 2), with spacing which does not follow the order of precedence,
or 4) mixed (n = 530), a combination of the previous conditions. Once assigned to a condition,
students were presented with additional problems to solve. The problems in each condition were
identical in structure but varied in the physical spacing of terms within each expression. The first
several problems for each condition are shown in Table 1.

Table 1

The First Eight Problems Assigned by Condition

Tutorial: All Participants

1. 6*3+4%4
2. 14-5*2
3. 3%3+3+3*3

Neutral Congruent Incongruent Mixed
4. 5+2%4 5+2%4 5+2 * 4 5+2%4
5. T*2+8%5 7*2 + 8*5 7*2+8*5 7*2+8*5
6. 4*3+2 4*3 +2 4% 3+2 4*3+2

7. A¥Q45)F12-2%¥3  4%(Q2+5)+12-2%3 4% (245)+12-2%3 4% +5)+ 12 - 2%3
8. 5+3%2 5+3%2 543 %2 543 %2

Most students continued to solve problems until they achieved mastery (answering three
consecutive problems correctly on the first try). However, if a student answered a problem
incorrectly, they could not move on to the next problem until typing in the correct answer. To
support students as they moved through the assignment, one hint restating the order of operations
was available to click on at the beginning of each problem (Figure 3). If students elected to see
the hint, they were then immediately able to click “Show Answer” which would display the

correct answer to type as the solution. Importantly, if students opted to view the hint, the problem
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was marked as incorrect and did not count towards the three mastery problems required to

complete the assignment. Additionally, students could opt to stop the assignment at any time

without completion. However, for students that did achieve mastery status, ASSISTments

automatically closed the assignment and marked the status as completed.

Figure 2

Example Assignment Screen for a Participant in the Incongruent Spacing Condition

63+4%4

14-52

34343434343
P52 4

Assignment: Order of Operations no exponents 7.NS.A.3. EX

Problem ID: PRA3RV8 Comment on this problem

5+2 * 4

our answer below (mathematical expression):

- — 100% ®
Submit Answer Show hint

The study remained open as an active Skill Builder for the order of operations standard

without exponents (Common Core Standard 7.NS.A.3. EX) that teachers could easily assign to

their students at any time for three years. At the end of the three years, the data from the study

was aggregated using the ASSISTments Assessment of Learning Infrastructure (ALI) report that

was automatically generated by the ASSISTments team for external researchers and provides

aggregated data files at various levels of granularity such as student-level and problem-level

(Ostrow et al., 2016). All variables of interest in this study were extracted from this report and

are described in more detail below.

Figure 3
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Hint Available to Participants on Each Problem in the Assignment

Remember the Order of Operations

1. Parenthesis

2. Exponents (powers, roots, etc)

3. Multiplication & Division (from left to right)
4, Addition & Subtraction (from left to right)

This can be remembered as PEMDAS

Comment on this hint

Measures

Prior to data analysis, the following measures for analyses were defined and extracted
from the ASSISTments report as necessary for analysis.
Prior Mathematics Performance

As an estimated measure of prior mathematics performance, ASSISTments calculates a
prior proportion correct value (from 0-1). This value represents the proportion of all previous
ASSISTments problems completed from other assignments that each student answered correctly
prior to the current experiment. However, the type of content may have varied and some
participants may have had extensive experience with ASSISTments over years whereas others
might have been first- or second-time users. Although participants varied in previous exposure
and practice with ASSISTments, this value serves as a proxy for prior mathematics performance
and has been used in studies that were deployed using the ASSISTments platform (e.g.,
Walkington et al., 2019). The distribution of prior performance scores was bimodal only due to a
small subset (3.5%) of students who had demonstrated perfect prior performance in

ASSISTments. This value was used as a continuous covariate for prior performance in analyses.
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Grade Level
The ASSISTments ALI report also provided an ordinal value representing the reported
grade level of each participant by the classroom teacher. With values ranging from 5-12, grade

level was treated as a continuous variable in all analyses.

Approach to Analysis

After preprocessing the data, descriptive statistics were calculated in SPSS to determine
means and variability for each variable and relations between each construct. Next, we
conducted a one-way analysis of variance (ANOVA) with condition (neutral, congruent,
incongruent, and mixed) as the independent variable and mastery speed as the dependent
measure. We also conducted post hoc tests with Bonferroni correction to examine where there
were significant differences in average mastery speed between conditions.

In addition to the ANOVA, we examined the impact of condition, above and beyond prior
performance and grade level. To determine whether or not multilevel analysis would be
appropriate, we calculated the intraclass correlation coefficient (ICC) from an unconditional
2-level hierarchical linear model (HLM; Model 1). An unconditional HLM model predicting
mastery speed suggested that approximately 10% of the variance in mastery speed was
attributable to differences at the class level. As this value exceeds the 7% variance threshold to
suggest that using HLM would be appropriate (Lee, 2010; Niehaus et al., 2014), we chose to use
HLM for all analyses to account for the nesting of students in classes.

Next, four two-level HLMs were conducted to explore our research questions. Model 2
estimates how the covariates, grade level and prior performance, impact participants’ assignment
mastery speed while accounting for any nested effects between the student and class levels.
Model 3 includes the three condition variables (neutral, congruent, and mixed, with incongruent
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as the reference group) and estimates how the physical spacing between terms impacts
participants’ assignment mastery speed (compared to the incongruent condition) while
accounting for any nested effects between the student and class levels.

Model 3 in HLM has the following form:

MASTERYSPEED;; = Yoo + y1o(CLASSGRADE ;) + y2a(NEUTRAL;;) +

2o CONGRUENT,;) + vao(MIXED;;) + ysa( PRIORPERC;) + p0; + 1y

where i is students 1 through n, and is class 1 through n.

Interaction terms were created and added to the hierarchical linear model to examine
interactions between prior performance and condition as well as grade level and condition as
predictors of mastery speed, controlling for prior performance and grade level as covariates.
Model 4 presents results for the second research question, exploring whether an interaction
between prior performance and spacing condition predicted mastery speed. Lastly, Model 5
presents results for the third research question, which explores whether an interaction between

grade level and spacing condition predicted mastery speed.

Results

Descriptive Statistics

Overall, all students completed the assignment by eventually achieving mastery status
(answering three problems correctly in a row) at some point in the assignment (M=6.38
problems, SD=3.24 problems). While working on the problem set, 33.6% of participants used the
available hint at least once. See Table 2, below, for details on students’ prior performance and

average mastery speed by grade level. Prior performance scores indicated that, on average,
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students had correctly answered 70% of previously attempted problems in ASSISTments prior to
the beginning of this study (M = .70, SD = .14).
Table 2

Descriptive Statistics on Student Performance by Grade Level

Population n Average Prior Average Mastery Speed (SD)
Performance (SD)

Overall 2,152 70 (.14) 6.38 (3.24)
5th Grade 13 .86 (.15) 7.23 (5.00)
6th Grade 251 1 (.13) 6.34 (2.96)
7th Grade 654 .67 (.14) 6.39 (3.13)
8th Grade 210 76 (.15) 6.25 (3.72)
9th Grade 399 71 (.13) 5.90 (2.44)
10th Grade 21 J7 (1) 6.57 (3.16)
11th Grade 2 .72 (.09) 5.50 (.71)
12th Grade 24 .73 (.08) 6.79 (3.90)

Note: Grade level was not reported for n=578 participants.

Next, we conducted a preliminary one-way ANOVA to examine differences in average
mastery speeds by condition. Results indicate that there were statistically significant overall
differences between groups in mastery speed (F (3,2148) = 10.33, p <0.01). Post hoc tests using
Bonferroni correction to account for multiple comparisons revealed that, on average, students in
the congruent condition (M = 5.94 problems, SD = 2.29 problems) mastered the assignment in
significantly fewer problems than in the incongruent condition (M = 6.95 problems, SD = 3.58

problems, Cohen’s d = 0.34) and the mixed condition (M = 6.59 problems, SD = 3.93 problems,
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Cohen’s d = 0.20); see Figure 4. Students in the neutral condition (M = 6.14 problems, SD =2.91
problems) also completed the problem set in significantly fewer problems than students in the
incongruent condition (Cohen’s d = 0.25). There were no differences in mastery speed between
the mixed and incongruent condition (p > 0.10). These results prompted further exploration into
examining the impact of spacing condition on assignment mastery speeds, accounting for grade
level, prior performance, and the nesting of students in classrooms.

Figure 4

Mean Number of Trials Required for Mastery as a Function of Spacing Condition with Error

Bars Reporting One Standard Error of the Mean on Each Side

Assignment Mastery Speed
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* denotes statistically significant (p<.01) between group differences

Hierarchical Linear Models Examining the Impact of Spacing Condition on Mastery Speed
Table 3 (below) displays the results of the four two-level hierarchical linear models for
these analyses. The unconditional model (Model 1) predicting mastery speed had an ICC of

0.097, indicating that 9.7% of the variance in assignment mastery speed is due to class level
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differences. The percentage of variance explained for each model is derived from the variance
components of the model directly preceding it, explaining the variance accounted for above and
beyond the previous model.

Model 2 shows the influence of students’ grade level and prior performance in
ASSISTments on assignment mastery speed. Prior performance was a significant predictor of
mastery speed, where students with higher prior performance on ASSISTments problem sets had
lower mastery speeds (B =-2.31, p <0.05). Grade level did not significantly predict mastery
speed (p > 0.05). The addition of these two variables explained 7% of the child level variance
and 58% of the class level variance in mastery speed.

Model 3: Research Question 1: Does Spacing Influence Assignment Mastery Speed?

A 2-level HLM model (Model 3) was conducted to examine the impact of condition on
mastery speed, controlling for grade and prior performance. The incongruent spacing condition
was treated as the reference group for the hierarchical linear models since the ANOVA indicated
that there were significant differences between the incongruent spacing condition and two other
groups. Results were consistent with the ANOVA; there was a significant effect of two
conditions on assignment mastery speeds. The analysis revealed that students in the congruent
condition (f =-0.92, p <0.01) and the neutral condition (B =-0.78, p < 0.01) mastered the
assignment in significantly fewer problems than in the incongruent condition. Specifically,
students in the congruent condition completed the assignment, on average, in .92 problems faster
than students in the incongruent condition. Similarly, students in the neutral condition completed
the assignment, on average, in .78 problems quicker than students in the incongruent condition.
While both congruent and neutral spacing conditions significantly predict assignment mastery

speed, the effect is larger for the congruent spacing condition than the neutral spacing condition.

33



Although there was a trend, there were no significant differences between the mixed condition

and the incongruent condition ( =-0.46, p < 0.07). Higher prior performance was related to

faster mastery speeds (p =-2.32, p <0.01). Grade level was not significant in predicting mastery

speed.

Table 3

Hierarchical Linear Models Show the Effect of Condition, Prior Performance, and Grade on

Mastery Speed (Note: " p <. 10, *p < .05, **p <.01)

Parameter Model 1 Model 2 Model 3 Model 4 Model 5
Intercept 6.42 ((11)**  6.23 (0.11)**  6.79 (0.22)** 7.67 (1.04)** 8.04 (1.09)**
Level-1 (Student)

Grade Level -0.01 (0.09) -0.02 (0.09)  -0.02 (0.09) -0.22(0.20)
Prior Performance -2.31 (0.69)** -2.32 (0.70)** -3.70 (1.61)* -2.33 (0.70)**
Neutral -0.78 (0.24)** -2.21 (1.77)  -3.62 (1.72)*
Congruent -0.92 (0.26)** -2.68 (1.35)* -2.43(2.15)
Mixed -0.46 (0.24) " -0.82(1.70)  -2.33(1.54)
Neutral x Prior Performance 2.02 (2.37)

Congruent x Prior Performance 2.51 (1.77)

Mixed x Prior Performance 0.52 (2.27)

Neutral x Grade 0.37 (0.21)"
Congruent x Grade 0.20 (0.25)
Mixed x Grade 0.25 (0.18)
Level-2 (Teacher)

Variance Components

Student Level 9.52 8.90 8.80 8.79 8.78

Teacher Level 1.02 0.43 0.42 0.43 0.43

Total Variance 10.54

Level 1 0.903

ICC Level 2 0.097

% explained at student level 0.07 0.01 0.00 0.00

% explained at classroom level 0.58 0.02 -0.02 0.00

Model 4: Research Question 2: Does Prior Performance Moderate the Effect of Condition on

Assignment Mastery Speed?
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Next, we tested whether there was an interaction effect between students’ prior
performance and condition to understand if the effect of spacing condition was moderated by
prior performance. Model 4 presents all Level-1 variables in addition to the prior performance
interaction terms within Level-1. The interactions between prior performance and each spacing
condition (neutral, congruent, mixed) were not significant predictors of assignment mastery
speed (B =2.02,p=0.39; B =2.51, p=0.16; B =0.52, p = 0.82), which means only the main
effects of prior performance and spacing condition should be interpreted. This result suggests
that students’ prior performance in ASSISTments does not moderate the relationship between
spacing condition and assignment mastery speed.

Model 5: Research Question 3: Does Grade Moderate the Effect of Condition on Assignment
Mastery Speed?

Lastly, we tested whether there were interaction effects of grade level x condition on
assignment mastery speed. Model 5 presents all Level-1 variables in addition to the grade level
interaction terms within Level-1. The interaction between grade level and the neutral spacing
condition was not significant but was trending towards significance (f = 0.37, p = 0.08). The
other interactions between grade level and each spacing condition (congruent, mixed) were not
significant predictors of assignment mastery speed (B = 0.20, p = 0.43; B = 0.25, p = 0.18). This
finding suggests that students’ grade level does not moderate the relationship between spacing

condition and assignment mastery speed.

Discussion

The goal of this study was to explore whether manipulating the physical spacing between
mathematical symbols would impact students’ assignment mastery speed on order of operations
problems. In addition to replicating the difficulty that algebra learners experience with
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incongruent spacing in order of operations problems, we were particularly interested in
examining whether spacing effects exist in both younger and older students in authentic
homework environments such as an online tutoring system. Two main findings emerged from
this study: 1) students in the incongruent condition had slower mastery speeds (solving more
problems to achieve mastery) than students in the congruent or neutral conditions, and 2) there
were no significant interactions between grade level and condition, or prior performance and
condition, on mastery speeds. Together, these results suggest that viewing incongruent spacing
within mathematical expressions led to more errors and lower performance for most students,
regardless of age or prior performance, compared to those who viewed problems with congruent

or neutral spacing between terms.

Physical Spacing in Math Expressions Affects Student Performance

We predicted that viewing congruent or neutral spacing within problems would lead to
faster mastery speeds compared to viewing problems with incongruent or mixed spacing. The
results mostly supported this hypothesis; students who viewed problems with congruent or
neutral spacing tended to master the assignment in significantly fewer problems than students
who viewed problems with spacing that was incongruent with the order of precedence. However,
there were no significant differences in mastery speed between the neutral and mixed condition.

One explanation for why congruent spacing may lead to greater performance over
incongruent spacing is that visually modifying the physical spacing of terms may bias people to
naturally group proximal terms into grouped objects (Wertheimer, 1950). Building on this visual
spacing bias, one could argue that perceptually grouping terms to be congruent with the order of
precedence could be more advantageous for students by providing perceptual cues that direct

attention towards higher precedence operations in expressions, as if providing visual scaffolding
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for the order of precedence within expressions. If this is the case, then it could be hypothesized
that students who saw the congruent grouping should also be more likely to have faster mastery
speeds than students in the neutral spacing condition. However, there were no clear advantages
of using congruent as opposed to neutral spacing. This finding was aligned with those of Landy
and Goldstone (2010) who also found that operation error rates did not differ between congruent
and neutral spacing conditions.

The finding that viewing congruent and neutral spacing led to higher performance than
incongruent spacing is consistent with prior studies (e.g., Gomez et al., 2014; Jiang et al., 2013,
2014; Landy & Goldstone, 2010; Rivera & Garrigan, 2016). An interpretation of these results is
that while the visual structure of mathematical notation creates perceptual groupings that cue
interpretation and computation biases, this effect is stronger when those groupings are
incongruent with mathematical rules, knowledge, and the order of precedence. It is possible that
the difference in mastery speed by condition is due to a reliance on multiple perceptual cues that
individuals use when solving order of operations problems. Further, these cues may work in a
hierarchical structure where physical spacing acts as a first-order perceptual cue and operands act
as second-order cues to interpret and act on mathematical notation. As a result, when presented
with incongruent spacing, students may (incorrectly) attend to and rely more on perceptual
groups when simplifying an expression than when presented with congruent or neutral spacing.

Other work has suggested that spacing is used as an action-guiding cue; incongruent
spacing elicits errors while congruent and neutral spacing in mathematical notation helps
facilitate improved performance. Consequently, viewing congruent spacing in expressions may
not be significantly more helpful than viewing neutral spacing because the perceptual cues from

physical spacing would be redundant to cues from operands. This notion is supported by findings
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that individuals attend to multiplication operands quicker than addition operands and treat
narrow spacing between terms similarly to multiplication operands (Landy et al., 2008). For
instance, in the expression “4+2*3”, the multiplication operand acts as a cue to group the “2” and
“3” when the physical spacing is neutral. If the expression was presented with physical spacing
congruent with the order of precedence, “4 + 2*3”, the physical spacing would only reinforce the
grouping between the “2”” and “3” but is not necessary. Conversely, physical spacing would be
more of a perceptual cue if the expression was presented as “4+2 * 3. Based on the results from
this study and examples from the body of literature on this work demonstrating the influence of
visual properties on performance with mathematics notation, perhaps the physical spacing within
mathematical notation is a higher-order perceptual cue than operands which is why viewing

incongruent spacing may be much more challenging for students.

Prior Math Performance, Grade Level, and Spacing Conditions

There is a common view that students’ computational errors are an indication of their
conceptual misunderstandings about mathematics. Consistent with this idea, students’ prior
performance in ASSISTments significantly predicted their mastery speed, suggesting that, on
average, students with higher prior performance made fewer errors when solving order of
operations problems. However, even when controlling for prior performance, incongruent
spacing still affected student performance on the problem set. Additionally, while previous
findings have largely focused on college-aged participants in laboratory settings (e.g., Gomez et
al., 2014; Jiang et al., 2013; Landy & Goldstone, 2007a, 2007b, 2010), the current findings
reveal that the effects of physical spacing also occur in younger students who are in the process
of learning the rules of operation precedence and applying that knowledge in authentic

homework settings. Regardless of age or prior performance in the tutoring system, viewing
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expressions with spacing that is incongruent with the order of precedence seems to be more
difficult for students ranging from the 5th to 12th grade.

Taken together, these findings reinforce previous evidence that subtle changes in physical
spacing can impact students’ performance on computing order of operations problems regardless
of the student’s age or knowledge level. It seems that perceptual grouping, through spacing, may
be acting as an irrelevant but substantial lure that is hard for students to ignore. More broadly, the
differences in performance across conditions supports the notion that people use space as a
perceptual cue when interpreting and acting on mathematical symbols. As such, these results
provide further evidence that visual and perceptual processes can drive reasoning about
mathematics computations (Landy & Goldstone, 2007a, 2007b) and highlight the conflicts
between relevant (rule-ordered) and irrelevant (spacing) features in the presentation of

mathematics.

Implications for Teaching and Learning

The current study suggests that minor and relatively meaningless changes to the visual
presentation of mathematical notation have implications for how students interpret and use
symbolic notation to perform computations. Although perceptual cues influence mathematical
reasoning, few instructional approaches or interventions make use of the power of perception.
Future learning interventions for algebra learners could include purposeful manipulations to the
presentation of mathematical expressions and equations which could affect students’ abilities to
learn and apply arbitrary mathematical rules such as the order of precedence. More broadly, the
prevalence of a spacing effect on mathematics performance across upper elementary through
high school age groups poses interesting questions and may have theoretical implications about

when perceptual cues begin to drive cognitive processes in learning and development. Future
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work could investigate how early spacing effects emerge in young learners and how spatial

manipulations may drive students’ cognitive processes and actions at younger ages.

Limitations

There are several limitations to the dataset as well as the methods used in these analyses.
For instance, the Skill Builder structure (where students must correctly answer three problems in
a row) is not a common approach used in classroom instruction and does not easily lend itself to
a pretest/posttest design. The Skill Builder structure also allows students to stop working after
they achieve mastery status in an assignment by correctly answering three problems in a row. As
a result, participants only answered an average of six problems in the assignment. Additionally,
since the final dataset excluded students who answered the first three problems correctly, this
sample does not take into account the behavior of the highest-performing mathematics students
on this particular problem set.

Another limitation of the study is that there was limited demographic data available on
the students. Since ASSISTments problem sets were assigned by teachers around the country
who use the platform for homework, we are unable to collect specific data about children,
teachers, or the classroom context. While this is certainly a limitation, the fact that ASSISTments
Skill Builders are used and assigned widely by teachers allowed for more ecological validity and
a much larger sample size than would have been collected if this study was conducted by
researchers with recruited teachers in local classrooms. Additionally, effects of spacing were

found even while controlling for prior performance and grade level.

Future Directions
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While the current project focused solely on assignment mastery, subtle spacing
manipulations have been found to influence student problem-solving behavior at the action level
(Jiang et al., 2013). Based on work such as that of Jiang and colleagues (2013, 2014), examining
other aspects of behavior while students are problem-solving may be fruitful lines of research.
Jiang and colleagues (2013) manipulated perceptual grouping in a similar study using the minus
sign (“-”) as the operand of interest then analyzed rates of “target errors” that would be the result
of relying on perceptual grouping rather than arithmetic precedence (i.e. subtracting 14 from “20
-4+ 10”). Jiang et al. (2013) found that physical spacing manipulations did, in fact, lead to
higher rates of target errors. Investigating the kinds of mistakes that are made on incorrect
problems could provide new insights about the role of spacing in expressions and how perceptual
groupings drive student actions while problem-solving.

One difference in our study from prior work is that we included a mixed spacing
condition. While findings suggest that the mixed spacing condition was more difficult for
students compared to students in the congruent spacing condition, interestingly, there were no
differences in mastery speed between the mixed condition and the neutral condition, or the mixed
and incongruent spacing conditions. Given these mixed findings, future experimental work
should further examine the effects of mixed spacing and test plausible mechanisms for the
impact of perceptual spacing.

It is also important to note that, across conditions, students were provided with an
optional hint on each problem to remind them of the rules of precedence. Roughly a third of
participants viewed the hint at least once while working on the assignment. That said, little to no
work has studied how conceptual knowledge reminders about the order of precedence may

mitigate the effect of physical spacing on mathematics performance. To develop a richer
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understanding of how perceptual grouping may affect student behavior, our team is currently
exploring patterns of student behavior within problems, such as response times, help-seeking
behavior, and error types, to see how effects of spacing manipulations extend to a broader
population of students. More thorough error analyses at the action level, within problems, could
provide insight about whether students who are presented with incongruent spacing tend to make
predictable errors based on how the symbols were visually grouped. We also plan to explore
students’ actions after viewing the available hint to examine whether order of precedence errors

continue to occur after a visual reminder of the order of precedence.

Conclusion

This work demonstrates that irrelevant, but salient visual information in notation, such as
spacing, can influence students’ reasoning of mathematics. Specifically, perceptual cues, even
those that are mathematically misleading such as incongruent spacing, are difficult to ignore.
This study extends prior work in the following ways. First, to our knowledge, this is one of the
first randomized controlled trials conducted on physical spacing in the context of an online
learning platform with school aged children, showing that perceptual grouping occurs in
authentic learning environments in addition to laboratory settings. Second, these results reveal
that incongruent spacing between terms does impact 5th to 12th grade students’ performance on
mathematics assignments, resulting in slower mastery speeds, even when a reminder about the
order of precedence is available as a hint on each problem. Conversely, terms in mathematical
expressions that are neutrally spaced or grouped together to be congruent with the order of
precedence increase assignment mastery speeds. These findings further support the notion that
subtle perceptual cues, such as physical spacing, do not bear any practical implications in

mathematics yet have effects on mathematical cognition and performance for students in upper
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elementary through high school. Learners and experts alike utilize perceptual strategies when

reasoning about mathematics.
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Chapter 3. Resisting the Urge to Calculate: The Relation
Between Inhibition Skills and Perceptual Cues in
Arithmetic Performance

Chapter 3 presents an in-preparation manuscript that is being prepared in collaboration
with Jenny Yun-Chen Chan and Erin Ottmar. This project was prompted by the hypothesis that
students’ inhibitory control may play a large role in how students perceive and react to
perceptual cues embedded in math instructional materials. Whereas prior work has demonstrated
general effects of perceptual cues on students’ performance in math (e.g., Harrison et al., 2020),
less is known about how different groups of students may be impacted differentially by viewing
problems with perceptual cues like spatial proximity. A large body of research has demonstrated
the power of inhibitory control on creative problem solving (e.g., Cassotti et al., 2016) and the
same premise applies to findings in math and perceptual learning research. For instance, if
primed, students are likely to attempt applying inappropriate procedural rules to a problem rather
than first attempting any sense-making (Lawson et al., 2021). Similarly, in a project I have
collaborated on (Chan et al., 2021), we found that students were more likely to solve problems
on their first attempt when the problem was presented with numbers rather than symbols without
varying in difficulty. Findings like these suggest that students may rely on applying procedural
rules by rote rather than pausing to consider conceptual properties and rules that may influence
their approach to problem solving. These findings could possibly be explained by a relation
between students’ behavior and inhibitory control as their ability to resist applying procedural

rules blindly, motivating the study presented in this chapter.
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Abstract

Subtle visual manipulations to the presentation of mathematical notation influence the way that
students perceive and solve problems. While there is a robust impact of perceptual cues on
students’ problem-solving, other cognitive skills such as facets of executive functioning may
interact with perceptual cues to impact students’ arithmetic problem-solving performance.
Currently, we present an online randomized controlled trial in which college students completed
a version of the Stroop task followed by arithmetic problems presented with neutral, congruent,
and incongruent spacing. We found that students were comparably accurate across problem types
but spent longer responding to problems with congruent spacing. Further, inhibitory control was
not a significant predictor of performance. These results advance perceptual learning theory and
provide considerations for designing instructional materials by demonstrating how students are
impacted by perceptual support in online settings.

Keywords: perceptual learning, inhibitory control, arithmetic
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Resisting the Urge to Calculate: The Relation Between Inhibitory Control and Perceptual

Cues in Arithmetic Performance

Students’ mathematical skills and achievement are related to outcomes later in life such
as their academic degree attainment and employment status (Adkins & Noyes, 2018; Parsons &
Bynner, 2005). However, many students struggle to progress beyond basic algebra (Kena et al.,
2015). This struggle may be partially due to the twofold challenge that students face: acquiring
conceptual knowledge of mathematics principles and pairing that knowledge with a set of
procedural rules to solve problems. Although problem-solving accuracy and efficiency are
primary goals in mathematics education (Common Core State Standards, 2010), many students
struggle to acquire structure sense — the ability to detect patterns and derive meaningful
interpretations from mathematical notation in order to efficiently act on it (Hoch & Dreyfus,
2004; Livneh & Linchevski, 2007; Jupri et al., 2021). Therefore, instructional support for algebra
should direct students’ attention to important structural pieces of notation so that students
perceive structural patterns that will help them manipulate equations efficiently.

One strategy to help students learn to notice and attend to important structures and
patterns within mathematical notation is to leverage perceptual scaffolds. Perceptual scaffolds
are subtle visual features of instructional materials that intentionally cue students’ attention
towards pieces of information to aid with accurate and efficient problem-solving (e.g., strategic
coloring, spacing, sizing, and positioning of symbols; Closser et al., under review; Goldstone et
al., 2010, 2017). In particular, students simplify expressions with greater accuracy when viewing
problems with less space between higher-order operands, demonstrating that perceptual features
impact mathematical reasoning when solving problems (Harrison et al., 2020). Alongside

exposure to perceptual support during problem-solving practice, extensive evidence has shown
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that individual differences in executive function skills (i.e., brain functions that control working
memory, flexibility, and inhibition) are related to, and predictors of, creative problem solving
(Cassotti et al., 2016) and performance in mathematics (Cragg & Gilmore, 2014). We propose to
extend this research by investigating the role that inhibitory control plays in learning from
instructional materials that contain perceptual cues.

In this study, we investigate how subtle variations in perceptual features impact students’
problem-solving performance and how that effect may vary for students with different levels of
inhibitory control. College students participated in an online experiment where they completed a
version of the Stroop task (to measure inhibitory control) followed by blocks of
order-of-operation problems that presented symbols with spacings congruent, neutral, and
incongruent to the order of operations, respectively. Through this study, we aim to conceptually
replicate and extend prior work on the effects of perceptual cues in online mathematics materials
by: 1) testing for an effect of spacing on students’ problem-solving accuracy and response time,
and 2) investigating whether and how that effect may be moderated by individual differences in

students’ inhibitory control.

Perceptual Learning: Theory and Mechanisms

While seemingly abstract, math—and the ways we learn and reason about it—are
influenced by our perceptual processes (Goldstone et al., 2010; Kellman et al., 2010; Marghetis
et al., 2016). According to theories of perceptual learning, students change how they perceive
incoming information over time, directing their attention towards more relevant information in
their environment to support high-level cognition (Gibson, 1969; Goldstone, 1998). Visual
features of instructional materials can influence this process to impact students’ mathematical
reasoning and learning.
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Although perceptual features do not alter the mathematical meaning of notation, subtle
visual manipulations to instructional materials do impact the way that students both process
incoming information and act on it (Jiang et al., 2014). Rivera and Garrigan (2016) found that
perceptual grouping effects impact the way that undergraduate students process expressions;
even verbalizing arithmetic expressions after briefly viewing them does not negate the effect of
perceptual grouping cues. By changing how students process mathematical notation, perceptual
features also impact how students act on notation to perform transformations (Goldstone et al.,
2010). For example, uniquely coloring important pieces of notation can be used as a perceptual
grouping mechanism to connect different representations, improve students’ ability to generate
problem-solving strategies, and support learning (Alibali et al., 2018; Chan et al., 2019).

Other common perceptual cues in mathematics education research seem to leverage
Gestalt principles of grouping by creating a common visual region so that individuals perceive a
group rather than individual objects (Landy & Goldstone, 2007; Wagemans, 2012). For instance,
middle-school students are more likely to combine pairs of numbers that match the
problem-solving goal when the numbers are adjacent (e.g., transform 5 + 33 + 7 into 5 + 40) vs.
non-adjacent to each other (e.g., transform 33 + 5 + 7 into 5 + 40; Lee et al., 2022). A more
explicit example is the use of superfluous parentheses: parentheses which create a perceptual
group of terms without altering the mathematical meaning of notation (e.g., 7+(5*%6)—2). Viewing
superfluous parentheses has increased students’ problem-solving performance and their
understanding of notational structure (Hoch & Dreyfus, 2004; Papadopoulos & Gunnarsson,
2020). These examples demonstrate how perceptual cues can influence the ways that students
interpret incoming information and impact students’ mathematics performance in multiple ways.

Further, research has shown that even experts tend to rely on perceptual cues when solving
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complex equations, suggesting that reliance on perceptual cues may increase with proficiency as
well as with increased cognitive demands to solve complex problems (Braithwaite et al., 2016;

Rumelhart et al., 1986).

Spacing as a Perceptual Grouping Mechanism

Here, we focus on physical spacing around operands as a perceptual grouping
mechanism. A large body of research has demonstrated that students are impacted by the
physical distance between terms and operands in mathematics expressions; specifically, when
terms and operands are closer together they are viewed as a group (e.g., 6+8) whereas when they
are spaced farther apart they are viewed as individual objects (e.g., 6 + 8). In order-of-operations
problems with multiple operators, physical spacing can be leveraged to draw students’ attention
towards the perceived groups of objects and influence their problem-solving performance.
Specifically, students demonstrate higher problem-solving performance when they view
problems with spacing that is congruent with the order of operations (e.g., 3 + 4x2) and lower
performance when viewing problems that are presented with spacing that is incongruent with the
order of operations (e.g., 3+4 x 2; Braithwaite et al., 2016; Gomez et al., 2014; Harrison et al.,
2020; Landy & Goldstone, 2010). This phenomenon persists across lab settings with
undergraduates (e.g., Landy & Goldstone, 2010) as well as in authentic learning environments
with K-12 students (e.g., Braithwaite et al., 2016; Gomez et al., 2014). Previously, our team also
extended this line of research by showing that regardless of grade and prior knowledge,
secondary students who viewed expressions with neutral (e.g., 3+4x2) or congruent spacing were
more accurate on solving arithmetic problems in an online homework assignment than their

peers who viewed expressions with incongruent spacing (Harrison et al., 2020). These findings
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demonstrate that spacing can be a powerful form of perceptual scaffolding that is invariably
difficult to ignore.

In the current study, we first aim to conceptually replicate previous findings on perceptual
learning by testing if and how spacing impacts college students as they solve order-of-operations
problems. Second, we plan to compare differences in students’ problem-solving accuracy as well
as response times to consider how perceptual cues impact both performance and efficiency.
Landy and Goldstone (2010) did compare students’ response times on problems that differed in
the physical spacing of the symbols but they did not find significant differences between these
problems. Their results motivate our third goal: to move beyond detecting general effects of
spacing by investigating how individual differences in inhibitory control impacts the effect of

spacing on students’ problem-solving performance.

Inhibition and Mathematics

Inhibition is defined as the skill to suppress habitual responses or ignore distracting
information. It is an important skill that enables students to ignore irrelevant facts or suppress a
habitual procedure (Gilmore et al., 2015; Lee & Lee, 2019). Cragg and Gilmore (2014) posit that
inhibition may play an important role early in mathematics education as children learn to
suppress less sophisticated problem-solving strategies (e.g., counting all the numbers) in order to
adapt more sophisticated strategies (e.g., counting from the larger addend). Students may also
use inhibition as they learn about related but different number facts and concepts (e.g., inhibiting
2 +3=5when asked 2 x 3 =_ ). Further, Lee and Lee (2019) suggest that students may call on
their inhibitory control to: (a) ignore distractions in the classroom, textbook, or problems, (b)

__9

suppress misconceptions (e.g., means total) while prioritizing correct but not well-learned

Ce__9

information (e.g., means both sides have the same value), and (c) inhibit well-learned
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procedures (e.g., whole-number addition) while drawing on appropriate knowledge (e.g., fraction
operations).

Despite the conceptual connections between inhibition and mathematical performance,
the findings on this association are inconsistent (see Bull & Lee, 2014) and have led to calls for
understanding how multiple cognitive mechanisms interact to impact students’ mathematics
skills (Wilkey et al., 2019). Part of the issue may be that inhibition skill is often measured with
laboratory tasks (e.g., stop signal task, day-night task, head toes knees and shoulders task, Stroop
task) that may not accurately represent or reflect how inhibitory control is involved in
mathematics problem-solving (Lee & Lee, 2019). Further, depending on the types of stimuli used
in tasks (e.g., numerical vs. non-numerical), the relation between inhibitory control and
mathematics performance also varies (Bull & Scerif, 2001; Wilkey, et al., 2019), suggesting that
this relation may depend on the types of tasks as well as the stimuli within the task used to
measure inhibitory control.

Findings on various versions of the Stroop task provide mixed insights into the
association between aspects of students’ inhibitory control and their mathematics performance.
For instance, Bull and Scerif (2001) found that inhibition skill, as measured by the
number-quantity Stroop task (i.e., participants were instructed to say the name or the number of
numerals such as “222”), was correlated with six- to eight-year-olds’ mathematics performance;
however, this association was not significant when children’s inhibition skill was measured by
the color-word Stroop task (i.e., participants were instructed to say the color of the words instead
of reading the word). Further, Kroesbergen and colleagues (2009; JPEA) found that five- to
seven-year-olds’ inhibition skill, as measured by the animal-size Stroop task (i.e., select the

animal that is larger in real life when the animal images vary in size on-screen), predicts their

55



early mathematical competence above and beyond language, updating, and planning skills.
However, Bellon and colleagues (2016) found that eight- and nine-year olds’ performance on
number-quantity Stroop task and the color-word Stroop task did not correlate with or predict
their mathematical performance on arithmetic fact retrieval. These findings demonstrate that
while inhibitory control may be related to mathematical performance, this relation may depend
on the types of inhibition tasks, the stimuli used in these tasks, and their alignment with the
mathematical skill of interest.

In the current study, we examine the relation between students’ performance on
order-of-operation problems and their inhibitory control as measured by the animal-size Stroop
task. We chose the animal-size Stroop task because it is (a) a non-numerical measure and (b)
related to perception of spatial relations. Specifically, if we find a significant association between
students’ performance on the animal-size Stroop task and the order of operation problems, the
finding may reflect a genuine association as we cannot attribute this association to the numerical
stimuli. Further, the animal-size Stroop task involves perceiving the spatial relations between

stimuli, aligning with the perception of spacing in the order of operation problems.

Current Study

To extend prior research on perceptual grouping mechanisms and further investigate the
potential relations between inhibition and mathematics performance, we conducted an online
within-subjects experiment. College students at a private university completed a version of the
animal-size Stroop task, as a measure of their inhibitory control, followed by a series of
order-of-operations problems presented with neutral, congruent, and incongruent spacing. Our

research questions are as follows:
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1. How does students’ performance (i.e., accuracy, response time) on order-of-operation
problems vary between problems with congruent (e.g., 5*4 + 3) and incongruent (e.g., 5
* 4+3) spacing, controlling for performance on neutrally spaced (e.g., 5*4+3) problems?
Based on prior research, we hypothesize that students would be more accurate and
quicker on the problems with congruent spacing as opposed to incongruent spacing.

2. How do students’ problem-solving performance (i.e., accuracy, response time) vary by
their inhibitory control? Based on prior research, we hypothesize that students with
higher inhibitory control would be more accurate and quicker on all of the
order-of-operation problems.

3. Is there an interaction between students’inhibitory control and performance on
order-of-operation problems presented with congruent vs. incongruent spacing? We plan

to explore this relation and do not have an a priori directional hypothesis.

Methods

The plan for this study was pre-registered on Open Science Framework prior to data

collection (https://osf.io/bh6kx) and received approval from our university’s Institutional Review

Board.

Participants

An a priori power analysis conducted in G*Power determined that a sample size of 186
students would provide sufficient power (.90) and confidence (p <.05) to detect a small to
medium effect size of /= .12, comparable to the size of perceptual effect reported in prior
research (Harrison et al., 2020). To meet the sample size, we recruited a total of 233 students

taking undergraduate courses at a private university in the northeastern U.S. through the online
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participant pool for psychology students. Students were compensated for their time with partial
course credit. Of the 233 students who started the experiment, 196 completed the Stroop task,
baseline items, and at least multiple problems in both experimental conditions. Of those students,
six students were excluded due to a data logging error and 16 were excluded for outlier
performance, leaving 174 students included in the analytic sample. A post hoc power analysis in
G*Power determined that this analytic sample size would still allow us to detect a small to
medium effect size of /= .12 with sufficient power (.88) and confidence (p <.05).

Of the 174 students, we received information on age from 172 students (17-27 years old;
M =19.48 years, SD = 1.50 years) and year in school from 171 students. Of the 171 students, 57
(33%) students reported being in their first year at the university, 42 (25%) in their second year,
34 (20%) in their third year, 32 (19%) in their fourth year, and two (1%) students in their fifth
year. Additionally, one student reported being in high school and three students reported “other”.
We also received self-reported gender information from 170 students: 95 (56%) females, 67

(39%) males, seven (4%) non-binary, and one agender participant.

Study Design and Procedure

Participating students clicked a URL link to complete the online study in a web browser
on their personal devices. As students opened the study, they first completed a version of the
Stroop task designed to assess inhibition skill levels. Following the Stroop task, students
completed three blocks of 16 order-of-operations problems. First, students completed problems
presented with neutral spacing (control; e.g., 4 x 3 — 10). Next, students completed problems
presented with congruent spacing (experimental; e.g., 4x3 — 10) or incongruent spacing
(experimental; e.g., 4 x 3—10). We used a within-subjects design that randomly counterbalanced
the order of experimental conditions between students; specifically, students either completed the
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congruent problems followed by incongruent problems or vice versa. Finally, students were
asked to report their age, gender, and race at the end of the session.

All tasks were programmed using Psychophy, an open-source software for behavioral
experiments, and administered through Pavlovia, an online platform for behavioral data

collection.

Materials

Order-of-Operations Problems

We systematically created three blocks of 16 order-of-operations problems. Each problem
included two operands: multiplication and either addition or subtraction. On half of the problems
within each block, the multiplication operand was positioned on the left side of the expression,
and addition (e.g., 3x5+7; four problems) or subtraction (e.g., 6x2—8; four problems) was
positioned on the right side of the expression. On the other half of the problems, multiplication
was positioned on the right side of the expression, and addition (e.g., 3+5%7; four problems) or
subtraction (e.g., 6—2x8; four problems) on the left side of the expression. The numbers in each
problem include one small (1, 2, or 3), medium (4, 5, or 6) and large (7, 8, or 9) value that were
systematically varied in their position from left to right (e.g., 2x4+7). The correct answer on all
problems were integers ranging from —53 to 50.

Across the three blocks, the problems followed the same rules and matched on the
structure and magnitude. However, none of the problems were identical so students would not be
able to recall an answer from a previous problem within the study. Across the three blocks, the
spacing between the numbers and the operators varied between neutral (e.g., 4 x 3 — 10),
congruent (e.g., 4x3 - 10), or incongruent (4 x 3—10) to the order of operations. The neutral
spacing block served as a measure of students’ prior knowledge, allowing us to examine the
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influence of students’ inhibitory control, independent of their prior knowledge, on their
performance on the congruent and incongruent blocks.
Stroop Task

Students completed a version of the Stroop task created based on Szucs et al. (2013) to
assess their levels of inhibitory control. The Stroop task was administered with four practice
trials followed by 64 test trials.

First, students completed four practice trials without receiving any feedback. Students
received the following instructions: “In this task, you will see some animal pictures on two sides
of the screen. Use your mouse to select the animal that is bigger in real life.”. On each practice
trial, students first saw a fixation “+” in the middle of the screen for 750 milliseconds followed
by two animal images on the screen. Students saw a small animal (i.e., butterfly) on one side of
the screen and a big animal (i.e., rhinoceros) on the other side. Since students were instructed to
select the animal that is larger in real life, the rhino was the correct answer in all four of the
practice trials (e.g., both Figure 1a and 1b). On each trial, the image size of the two animals
varied systematically so that one of the images was five times bigger than the other. On half of
the trials, the image sizes were congruent with the animal sizes; on the other half of the trials, the
image sizes were incongruent with the animal sizes. Specifically, on the congruent trials, the
rhinoceros was presented as a bigger image on screen (Figure 1a); on the incongruent trials, the
rhinoceros was presented as a smaller image on screen (Figure 1b). The location (left or right) in
which the correct answer appeared was counterbalanced across trials.

After four practice trials, students received a reminder to “select the animal that is bigger
in real life” as quickly and accurately as possible, then proceeded to complete 64 test trials. On

each test trial, students first saw the fixation cross in the middle of the screen for 500
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milliseconds followed by an image of a small animal (i.e., mouse, frog, bird, or rabbit) on one
side of the screen and an image of a big animal (i.e., elephant, horse, cow, or lion) on the other
side. Similar to the practice trials, the image sizes were congruent with the animal sizes on half
of the test trials and incongruent on the other half of the test trials. All students saw the same 64
trials: the location of the correct answer was counterbalanced across trials, and the order in which
the students received each trial was randomized. Based on prior literature, the congruent trials
should be easier for students because the animal that is larger in real life is also larger on-screen,;
the incongruent trials require students to exercise inhibitory control to ignore the image sizes
on-screen and respond based on animal sizes in real life (Szucs et al., 2013).

Figure 1

Sample Stroop Task Practice Trials

b

Note: students must select the animal that is larger in real life. In trial a, the image size is
congruent with the animal size in real life. In trial b, the image size is incongruent with the
animal size in real life.
Measures

Performance by Problem Type: Congruent and Incongruent Problems. Students’

performance on order-of-operation problems in the congruent and incongruent spacing blocks
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was used as the dependent measures in our primary analyses. Performance on the congruent
problems was measured by a) accuracy and b) median response time on correctly answered
congruent problems (Landy & Goldstone, 2010). Accuracy represented the percentage of
problems answered correctly out of the 16 congruently-spaced problems that students completed.
Response time was measured in seconds from the moment that each congruent problem appeared
on-screen until the student entered an answer and clicked “next” on the screen. Similarly, we
measured students’ accuracy on incongruent problems and median response time on their correct
responses, and used these two measures as indicators of their performance on incongruent
problems.

Baseline Performance. Students’ a) accuracy and b) median response time on correctly
answered neutrally-spaced problems were used as a proxy measure of their baseline performance
on order-of-operations problems. Baseline accuracy represented the percentage of problems
answered correctly out of the 16 neutrally-spaced problems that students completed. Baseline
response time was measured in seconds from the moment that each problem appeared on-screen
until the student selected an answer and clicked “next” on the screen. The average accuracy on
the neutrally-spaced problems was included as a covariate in the analyses comparing students’
accuracy on congruent vs. incongruent problems. Similarly, the median response time on
correctly responded neutral problems was included as a covariate in the analyses on response
time.

Inhibitory Control. Students’ performance on the Stroop task was used as a measure of
their inhibitory control. Per Gilmore and colleagues’ computation for the inhibition score (2015),
we identified the median response time for correctly answered congruent and incongruent trials,

then took the difference in the median response time on the two types of trials (i.€., RT;congruent —
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RT ongruent )- This difference score was used as an indicator of students’ inhibition skill;
specifically, a larger difference indicated a lower level of inhibitory control.
Approach to Analysis

Students who completed the Stroop task as well as all order-of-operations problems were
included in analyses. Prior to primary analyses, we conducted descriptive and correlation
analyses to examine the distribution of, and relations between, each measure as well as to inform
the primary analyses. A total of 15 students demonstrated outlier performance (i.e., three
standard deviations above or below the mean) on one or more outcome variables (i.e., accuracy
on congruent- and incongruent-spaced problems, response time on congruent- and
incongruent-spaced problems), and were excluded from the analytic sample. Additionally, one
student was excluded from the analytic sample due to outlier performance on the Stroop task.

To answer our research questions, we conducted two repeated measures ANCOVASs using
JASP software (JASP Team, 2020). The ANCOVAs treated condition (i.e., incongruent spacing,
congruent spacing) as a within-subjects independent variable, inhibitory control as a continuous
between-subjects independent variable, and performance on neutral-spaced problems as a
covariate (i.e., accuracy or average response time, respectively). Specifically, we conducted an
ANCOVA comparing students’ average accuracy between congruent and incongruent problems
and an ANCOVA comparing students’ median response time between congruent and incongruent
problems. First, we tested the main effect of condition in both ANCOVAs to answer whether
students’ performance on problems varies between viewing problems with congruent and
incongruent spacing. Second, we tested the main effect of inhibition in both ANCOVAs to
demonstrate whether students’ performance on order-of-operations problems varies between

students with higher or lower inhibitory control. Third, we examined whether an interaction
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existed between students’ inhibitory control and performance in each ANCOVA to observe
whether students’ inhibitory control seems to moderate the effect of spacing in
order-of-operations problems on students’ performance.

We also used JASP software to conduct these analyses using Bayesian statistics in order
to provide both frequentist and Bayesian interpretations of the results. Whereas a frequentist
analysis of variance tests an alternative hypothesis, a Bayesian analysis of variance also directly
tests the null hypothesis. Here, we used the default, non-informative prior specifications in JASP
as recommended (Faulkenberry et al., 2020; van de Schoot & Depaoli, 2014). The default
specification uses a JZS (multivariate Cauchy) prior on the effect scales with a default scale of
0.5. We interpreted the Bayes Factor (BF10) based on common thresholds (Schonbrodt &
Wagenmakers, 2018). Specifically, a BFio value smaller than 1, 1/3, or 1/10 respectively provides
anecdotal, moderate, or strong evidence for the null hypothesis. Similarly, a BF1o value greater
than 1, 3, or 10 respectively provides anecdotal, moderate, or strong evidence for the alternative
hypothesis.

After conducting our pre-registered analyses, we conducted exploratory analyses in order
to better explain the reported results. First, we used a median split to divide participants into
higher (i.e., perfect) and lower baseline accuracy groups then conducted 2 (Problem Type:
Congruent or Incongruent) x 2 (Baseline Accuracy: Higher or Lower) repeated measures
ANOVAs to explore how students with different degrees of prior knowledge may be
differentially impacted by the perceptual cues on a) accuracy and b) response time on
order-of-operations problems. Next, we used a median split to group students with higher and
lower levels of inhibitory control. We conducted 2 (Problem Type: Congruent or Incongruent) x

2 (Inhibitory Control: Higher or Lower) repeated measures ANOVAs to explore how students
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with different degrees of inhibitory control may be differentially impacted by the perceptual cues
on a) accuracy and b) response time on order-of-operations problems within our high-performing

sample.

Results
Preliminary Analysis

Tables 1 and 2 respectively present the descriptive statistics of, and correlations, between
each of our focal variables. As seen in Table 1, undergraduate students displayed high
performance across baseline (neutral-spaced problems), congruent, and incongruent
order-of-operations problems, confirming that they were able to solve these order of operations
problems quickly and accurately. As expected, students demonstrated very high accuracy on the
overall Animal Stroop task (M = .99, SD = .01) as well as on the congruent (M = .998, SD =
.009) and incongruent tasks respectively (M = .91, SD = .02); therefore, we used a previously
established computation of performance by taking the difference of students’ median response
times on each item type as our measure of inhibitory control (Gilmore et al., 2015). As seen in
Table 1, this measure of inhibitory control was positive, suggesting that students, on average,
were slower at making a correct response when the animal size was incongruent vs. congruent to

the image size.

Table 1

Descriptive statistics of each variable (N = 174)

Mean SD Min—Max Skewness Kurtosis

Inhibitory Control (s) 0.18 0.10 -0.15-.47 -0.08 0.22
Baseline Accuracy 0.94 0.09 0.5-1.0 -2.44 7.50
Congruent Problems: Accuracy 094 0.08 0.62-1.0 -1.74 3.43
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Incongruent Problems: Accuracy 094 0.07 0.69-1 -1.4 2.13

Baseline Response Time (s) 523 135 2.54-1147 1.07 2.54
Congruent Problems: Response Time (s) 5.63 159 2.59-9.97 0.52 -0.11
Incongruent Problems: Response Time (s) 540 1.48 2.42-10.8 0.57 0.33

Note. Abbreviation: (s) = seconds, SD = standard deviation, Min = minimum, Max =
maximum.
"p<.05. “p<.01.7"p<.001.

Two findings were worth noting in the correlation analyses (Table 2). First, as expected
students’ accuracy on the three types of problems were positively correlated, suggesting the
potential need to control for students’ baseline performance when testing the unique effects of
spacing and inhibitory control. Second, students with higher baseline accuracy also tended to
make correct responses faster, suggesting that accuracy and response time may capture related

but distinct aspects of performance, supporting our plan to examine both in this paper.

>
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Effects of Physical Spacing on Congruent and Incongruent Problem Solving

Pre-registered Analysis: Effect of Perceptual Cues Controlling for Baseline Accuracy

To answer our first research question regarding the eftects of problem type (i.e.,
congruent vs. incongruent spacing) on problem-solving performance, we conducted two sets of
repeated measures ANCOVAs on students’ accuracy and response time, respectively (Figure 2).
Figure 2
Left: Accuracy by Problem Type. Right: Response Time By Problem Type in Seconds.
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A repeated measures ANCOVA controlling for students’ baseline accuracy showed that
the effect of problem type on problem-solving accuracy was not significant, (1, 172] = 1.862,
p=0.174, 1* = 0.003), suggesting that students were comparably accurate on congruent and
incongruent problems (Figure 2: Left). Students’ baseline accuracy was a significant covariate,
indicating that higher baseline accuracy was associated with higher accuracy on congruent and

incongruent problems (F[1, 172] =26.577, p <.001). A Bayesian ANCOVA confirmed the
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results with moderate evidence that problem type had no effect on problem-solving accuracy
(BF,,=0.118) and strong evidence that baseline accuracy had an effect (BF,,= 15685.816).

A repeated measures ANCOVA on students’ median response time revealed a marginal
difference between the two problem types (F[1,172] = 3.308, p = 0.071, n* = 0.002). Students
took longer to solve congruent problems (M = 5.63 seconds, SD = 1.59) than incongruent
problems (M = 5.40 seconds, SD = 1.48; Figure 2: Right). The Bayesian ANCOVA provided
strong evidence in favor of the effect of problem type (BF,, = 13.090). There was also a
significant effect of baseline response time (F[1, 172] = 156.615, p <.001), with strong evidence
supporting this finding (BF,, = 4.309*10??). Further, there was a Problem Type x Baseline
Response Time interaction (F[1,172] = 7.348, p = 0.007, n* = 0.004), with strong evidence
supporting this finding (BF,, = 5.442%10%).

Exploratory Analysis: Effect of Perceptual Cues by Baseline Performance

The pre-registered analyses demonstrate that this sample is high-performing without
much variance in students’ accuracy on the order-of-operations problems. Further, the
pre-registered analyses both showed that students’ baseline accuracy was a significant predictor
of accuracy and response. To delve further into how baseline accuracy might impact students’
reactions to perceptual cues in order-of-operations problems, we conducted a median split on
baseline accuracy (Mdn = 1.00) to compare students with lower accuracy (»=82) and higher
accuracy (n = 92). This approach allowed us to explore how students with different levels of
expertise on order-of-operations problems are impacted by perceptual cues on both accuracy and
response time.

Figure 4

Left: Accuracy by Baseline Accuracy. Right: Response Time by Baseline Accuracy.
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First, a 2 (Problem Type) x 2 (Baseline Accuracy: higher- vs. lower-performing) repeated
measures ANOVA on students’ problem-solving accuracy revealed that: a) students were
comparably accurate on congruent vs. incongruent problems (F[1,172] = 0.138, p =0.710,n* =
2.532*10*), and b) students with higher vs. lower baseline accuracy were more accurate on both
types of problems (F[1,172] = 14.226, p < 0.001, n* = 0.052). Further, the Problem Type X
Baseline Accuracy interaction was marginally significant (F[1,172] =3.714, p = 0.056, n* =
0.007; Figure 4: Left). Post hoc comparisons with Bonferroni corrections showed that students
with lower baseline accuracy were significantly less accurate on congruent problems (M = .92,
SD = .09) than students with higher baseline accuracy on both congruent (M = .96, SD = .05) and
incongruent problems M = .95, SD = .07; ps < .01). Additionally, higher-accuracy students were
significantly more accurate on congruent problems than lower-accuracy students were on
incongruent problems (M = .93, SD = .07; p = .027). A repeated measures Bayesian ANOVA
revealed moderate evidence in support of the null effect of problem type (BF,,= 0.118), strong
evidence in support of the effect of baseline accuracy (BF,,= 97.568), and the model including

the Problem Type x Baseline Accuracy interaction (BF = 11.239).
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Next, a 2 (Problem Type) x 2 (Baseline Accuracy) repeated measures ANOVA on
students’ response times revealed that: a) students were significantly slower to answer congruent
problems than incongruent problems (F[1,172] = 10.308, p = 0.002, n* = 0.005), and b) there was
a significant effect of baseline accuracy on response time (£]1,172] = 8.787, p = 0.003; Figure 4:
Right). There was no significant Problem Type x Baseline Accuracy interaction (F[1,172] =
0.634, p = 0.427). Post hoc comparisons with Bonferroni corrections confirmed that students’
spent longer on congruent (M = 5.63, SD = 1.59) than incongruent problems (M = 5.40, SD =
1.48; p = .002). Further, students with higher baseline accuracy demonstrated quicker response
times on both problem types than students with lower baseline accuracy (p = .003). Further,
students who with lower baseline accuracy had significantly longer response times on congruent
(M =6.00, SD = 1.64) than incongruent problems (M =5.72, SD = 1.52; p = .039) and
significantly longer response times than students with higher baseline accuracy on both
congruent (M = 5.30, SD = 1.47; p = .015) and incongruent trials (M = 5.13, SD =1.40; p =
.001). A repeated measures Bayesian ANOVA revealed strong evidence in support of the effect
of problem type (BF,,= 12.668) and strong evidence in support of the effect of baseline accuracy

(BF,,= 10.139).

Effects of Inhibitory Control on Order of Operations Problems

Pre-registered Analysis: Effects of Inhibitory Control with the Baseline Covariate

To answer our second research question, we added students’ inhibitory control
performance as a continuous variable to the ANCOVA models. Aligned with the previous
results, there was no effect of problem type (F[1,171] = 1.412, p = 0.236), but the effect of
baseline accuracy was significant (F[1,171] = 25.988, p <.001) with strong evidence (BF,, =
19227.199). The effect of inhibitory control on students’ problem-solving accuracy was not
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significant (F[1, 171]=0.165, p = 0.685), with moderate evidence supporting this null finding
(BF,y=0.214). There was no interaction between problem type and inhibitory control (F[1, 171]
=0.313, p=0.576).!

We repeated the analyses with response time, and still found the significant effect of
problem type such that students had slower responses on congruent than incongruent problems
(F[1,171] = 4.386, p = 0.038, n? = 0.002) with strong evidence supporting this finding (BF,, =
13.221). The effect of baseline response time was also significant (F[1,171] =151.376, p <.001)
with strong evidence in support of this finding (BF,, = 4.282*10%). The main effect of inhibitory
control on students’ problem-solving response time was not significant (F[1, 171]=0.113, p =
0.738), with little evidence supporting this result (BF,,= 0.825). Further, there was an interaction
between problem type and baseline response time (F[1, 171] = 6.324, p = 0.013, n> = 0.003).
Exploratory Analysis: Effects of Perceptual Cues by Inhibitory Control

From the pre-registered analyses, we see that this sample is high-performing without
much variance in students’ inhibitory control. Further, since inhibitory control was treated as a
continuous variable, it was included in our pre-registered analyses as a covariate rather than a
between-subjects factor. Therefore, to explore whether students with different levels of inhibitory
control in our high-performing sample may be impacted differently by perceptual cues, we
conducted a median split (Mdn = .17) to compare students with higher inhibitory control (n=87)
to students with lower inhibitory control (»=87). This approach allowed us to explore how
students with different degrees of inhibitory control are impacted by perceptual cues in
order-of-operations problems on both accuracy and response time within our high-performing

sample.

! By treating inhibitory control as a continuous covariate within ANOVA models, we were unable to test for
interaction effects in these models using a Bayesian ANOVA that would be comparable to those presented.
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A 2 (Problem Type) x 2 (Inhibitory Control: Higher or Lower) repeated measures
ANOVA comparing occurring students’ accuracy on order-of-operations problems revealed no
significant effect of problem type (F[1,172] = 0.068, p = .795), inhibitory control (F[1,172] =
0.021, p = .886) or Problem Type x Inhibitory Control interaction (F[1,172] = 1.428, p = .234),
suggesting that students were comparably accurate on all problems. A Bayesian repeated
measures ANOVA revealed moderate evidence in support of the null effects of problem type
(BF,y=0.122) and inhibitory control (BF,,= 0.170).

Next, a 2 (Problem Type) % 2 (Inhibitory Control) repeated measures ANOVA comparing
students’ response times on order-of-operations problems revealed a significant effect of problem
type (F[1,172] = 10.146, p = .002, n* = 0.005), confirming that students had slower response
times on congruent than incongruent problems. It also revealed a marginally significant effect of
Inhibitory Control (F[1,172] = 3.365, p = .068, n* = 0.017) with no Problem Type x Inhibitory
Control interaction (F]1,172] = 2.303, p = .131), suggesting that students with lower inhibitory
control had slower response times than students with higher inhibitory control (Figure 5). A
Bayesian repeated measures ANOVA revealed strong evidence in support of the effects of
problem type (BF,,= 13.377) and anecdotal evidence in support of the effect of inhibitory
control (BF,,= 1.135). Post hoc comparisons with Bonferroni corrections revealed that students
with lower inhibitory control had significantly slower response times (M = 5.88, SD = 1.48) on
congruent problems than incongruent problems (M = 5.55, SD = 1.38; p = .006). Further students
with lower inhibitory control had significantly slower response times on congruent problems
than students with higher inhibitory control on incongruent problems (M = 5.26, SD =1.57; p =
.044).

Figure 5
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Response Times on Congruent and Incongruent Problems by Inhibitory Control

Response Time by Stroop Performance
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Discussion

In the current study, we tested the impact of perceptual cues and inhibitory control on
college students’ performance solving order-of-operations problems. The results indicated three
main findings. First, students demonstrated comparable accuracy on congruent and incongruent
order-of-operations problems. Second, students demonstrated longer response times on
congruent problems than incongruent problems. Exploratory analyses suggest that this effect
may be driven by students with lower baseline performance who had the slowest response times
on congruent problems. Third, on average, students’ inhibitory control did not impact their
performance on order-of-operations problems. However, exploratory results revealed that
students with lower inhibitory control demonstrated significantly longer response times on
congruent problems than higher-inhibitory control students on incongruent problems. In the

following sections, we discuss our interpretations of each result to provide implications for

researchers and educators.
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Effect of Physical Spacing on Performance

Through this study, we aimed to conceptually replicate prior findings on the effects of
physical spacing on college students’ performance simplifying arithmetic expressions. Prior
work has demonstrated that college students show higher accuracy simplifying arithmetic
expressions with congruent and neutral spacing than expressions with incongruent spacing and
comparable response times on both problem types (e.g., Landy & Goldstone, 2010). Here, we
found two different results: students were comparably accurate across problem types but they
were slower to answer congruent problems as opposed to incongruent problems. We reason that
these findings may be due to one or more of the following factors: a) the high-performing
sample, b) the study design, and c) a hierarchy of attentional cues.

First, the study sample may be driving the null effect of problem type on students’
accuracy. Although research has shown that both children and adults are susceptible to
perceptual cues and rely on perceptual-motor skills (e.g., Braithwaite et al., 2016; Gomez et al.,
2014; Landy & Goldstone, 2010), it is possible that the content used in the study stimuli (i.e.,
arithmetic expressions with three numbers and two operands) were too simple for our sample of
college students. Students were very high-performing across the board so perhaps there was not
enough variance in the sample to see any effects of physical spacing in problems on students’
accuracy. Notably, we did check the accuracy rates on each problem and found that students were
comparably accurate on problems across problem type, suggesting that the difficulty of problems
was evenly spread across problem types and that this result is not a reflection of the study
stimuli.

Second, a similar explanation may also explain why students had slower response times

on congruent than incongruent problems. Since research has shown that reliance on perceptual
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cues increases with experience and expertise (Braithwaite et al., 2016; Rumelhart, 1986), we
posit that students in our high-performing sample were likely to rely on perceptual cues; further,
the study design (i.e., interleaving congruent and incongruent problems) may have primed
students inadvertently to exercise inhibitory control while problem solving. If students were
attending to perceptual cues throughout the experimental problem block, and realized that some
problems contained incongruent spacing, they may have engaged in a one- or two-step process to
inhibit their impulse to calculate before correctly simplifying the expression. For example, if
students were attending to the perceptual cues in an incongruent problem, they would just need
to suppress their initial instinct to then solve the problem. If they next viewed a congruent
problem next, they may have been primed to suppress their initial impulse to calculate followed
by a realization that their initial impulse was correct, potentially taking longer to solve the
problem. This rationale is well-aligned with the negative priming paradigm which posits that if
an individual views a stimulus that is to be ignored, followed by a stimulus that is not to be
ignored, their accuracy and response time may suffer on the latter task (Neil, 1977; Frings et al.,
2015). Importantly, many prior studies that have found an effect of physical spacing on students’
performance in arithmetic has applied a between-subjects design or blocked experimental
problems by spacing type (e.g., Braithwaite et al., 2016; Harrison et al., 2020). Interestingly, in
their “Experiment 17, Landy and Goldstone (2010) also interleaved problems at random and did
not find an effect of spacing on college students’ accuracy so this finding conceptually replicates
their research and suggests that interleaving problems with different perceptual cues may impacts
students’ performance differently than blocking problems.

Third, we posit that the effect of physical spacing on students’ response times may be

potentially explained by an implicit hierarchy of how we attend to perceptual cues. Specifically,
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we consider that students may have demonstrated quicker response times on incongruent
problems because the physical spacing in incongruent problems is more salient than the physical
spacing in congruent problems, making them easier to perceive and process. Individuals
naturally attend to multiplication operands quicker than addition operands (Landy et al., 2008)
so0, as discussed in Harrison et al. (2020), congruent spacing between numbers and operands may
provide perceptual cues that are redundant to the notation already provided, rendering them less
noticeable. If that is the case, students may have been quicker to process incongruent problems
than congruent problems, leading to the difference in response times.
Inhibitory Control, Physical Spacing, and Mathematics Performance

In the current study, we found minimal evidence to suggest a relation between students’
inhibitory control and performance on order-of-operations problems. In the pre-registered
analyses, we found no effect of inhibitory control on students’ accuracy or response time when
also controlling for their baseline performance. In the exploratory analyses, we found that
students with lower inhibitory control demonstrated significantly longer response times on
congruent problems than higher-inhibitory control students on incongruent problems. Aligned
with the explanations presented above, we interpret this finding to mean that students with lower
inhibitory control (i.e., lower relative to this high-inhibitory control sample) may struggle with
the two-step process to a) initially suppress the urge to calculate congruent problems and then b)
process the problem to correctly perform calculations, resulting in longer response times. These
findings contribute to the body of mixed results on the relation between inhibitory control and
mathematics performance (Bull & Lee, 2014) by providing findings from a college-aged sample
using the Animal Stroop task and novelly investigating the relation between inhibitory control

and physical spacing in mathematics problems.
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Limitations and Future Directions

We acknowledge that this study contained multiple limitations. First, our sample
displayed high performance on both the inhibitory control task and the order-of-operations
problems. The math content used in the study stimuli would be more appropriate for younger
students in pre-algebra or early algebra courses. Similarly, we would expect to see more variance
in performance on the Animal Stroop task with a younger sample as well since inhibitory control
develops with cognitive development.

Second, the study design may have impacted results. In particular, students’ response
time was measured from the time that each problem was displayed on-screen until students
entered their answers to the order-of-operations problems on their keyboard and clicked the
“Next” button on-screen to advance. This two-step process may have added variance to response
times rather than selecting a multiple-choice answer or pressing “return” after typing responses.
As discussed above, interleaving the experimental problems rather than blocking them may have
also influenced students’ performance on the task by switching between viewing congruent and
incongruent problems at random. Additionally, presenting the Stroop task prior to the arithmetic
problems may have inadvertently primed students to suppress initial impulses while
problem-solving. Future research may consider presenting experimental problems in blocks and
presenting the inhibitory control task at the end of the study to alleviate the risk of priming
students.

Looking ahead, we plan to conduct this study with grade school students in pre-algebra
and Algebra I courses to see whether these effects replicate across sample populations or if
younger students may be impacted differently by both perceptual cues and inhibitory control.

Additionally, future research may consider using other measures of inhibitory control to see
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whether these findings may be task-specific. Further, future research may consider conceptually
replicating this work with other perceptual cues (e.g., color, spatial arrangement) to see how the

effects of perceptual cues generalizes.

Conclusions

This study tested the effect of physical spacing as a perceptual grouping mechanism in
order-of-operations problems and whether students’ inhibitory control impacted performance.
We found that all college students were high-performing on both the inhibitory control measure
as well as the order-of-operations problems. Students were comparably accurate on congruent
and incongruent problems although they were quicker to answer incongruent problems. There
was no main effect of inhibitory control on performance. By testing the association between
students’ performance on the animal-size Stroop task and the order of operations problems, these
findings advance our understanding of the relation between inhibitory control and mathematical
performance. Together, these results bridge theory on perceptual learning and cognitive
developmental work by exploring how different students are impacted by perceptual cues in

online mathematics activities.
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Chapter 4. Viewing vs. Mirroring: The Effects of Action
and Self-Explanation in Worked Examples on Algebra
Learning

Whereas the previous two studies demonstrate how students are impacted by perceptual
cues during problem-solving activities in math, the current chapter explores how perceptual and
embodied supports may be integrated earlier in instructional activities to support students as they
learn new concepts and procedural rules. To that end, this study investigates how students learn
from studying different types of worked examples designed with an online dynamic notation
tool.

This study was planned and conducted in collaboration with Hannah Smith, Jenny
Yun-Chen Chan, and Erin Ottmar over the past couple of years. I developed and refined this
project plan through multiple iterations of presentations and small student research grant
applications between 2020-2021; ultimately, I was successfully awarded a Psi Chi Graduate
Research Grant to provide participant compensation. In light of the challenges faced during the
COVID-19 pandemic, recruitment proved to be incredibly difficult. With that in mind, this
chapter presents preliminary results from this study and discusses future directions and

implications of this research.
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Abstract

Worked examples are effective instructional support for algebra learning, including when they
are paired with self-explanation prompts (Booth, et al., 2013; Renkl, 2014). Their effectiveness is
predominantly explained by cognitive load theory; specifically, worked examples offload strains
on students’ cognitive capacities and free up working memory to support learning. Alternatively,
I propose that incorporating principles of embodied cognition into worked examples may
positively impact learning even if the worked examples do not reduce students’ cognitive load.
Building on these theories, this study investigates how to most effectively present worked
examples in online learning environments. I leveraged the affordances of a dynamic algebra
notation tool to test how student actions and self-explanations impact learning in different
worked example formats. I predicted that algebra students may learn more when they
dynamically mirror worked examples on-screen, rather than simply view worked examples. A
total of 64 ninth-grade Algebra I students completed a three-day online study that included an
intervention in which students were randomly assigned to: a) view, b) view-and-explain, c)
mirror, or d) mirror-and-explain worked examples and complete paired practice problems.
Results from this sample suggest that, on average, all students experienced learning gains after
participating in the intervention. Further, students who received self-explanation prompts with
worked examples experienced larger gains than their peers. These findings provide preliminary
evidence in support of prior research on the worked example effect and suggest that researchers,
teachers, and content developers may consider using alternative worked example formats in
online learning environments for algebra.

Keywords: worked examples, algebra, educational technologies, cognitive load theory,

embodied cognition
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Viewing vs. Mirroring: The Effects of Action and Self-Explanation in Worked Examples on
Algebra Learning

Mathematics skills and achievement are related to significant outcomes later in life such
as academic achievement and employment (Adkins & Noyes, 2018; Lee, 2013; Parsons &
Bynner, 2005; VanDerHeyden & Burns, 2009); however, many students struggle to progress
beyond Algebra I (Kena et al., 2015). To support student reasoning and learning in algebra,
cognitive theories can be leveraged to design effective, evidence-based instructional support for
students. Worked examples, which provide students with a step-by-step solution to a given
problem, are an effective instructional support that have been widely used across subjects (e.g.,
chemistry: McLaren et al., 2016; computer science: Zhi et al., 2019; physics: Chi et al., 1989),
including algebra (Booth et al., 2013; Booth et al., 2015; Carroll, 1994; Foster et al., 2018).
Studying worked examples in algebra leads to more efficient student learning and higher learning
rates than solely working through problems without guided support (e.g., Barbieri & Booth,
2020; Booth et al., 2013; Carroll, 1994). This phenomenon is known as the worked example
effect (Sweller, 2006).

Although extensive research has shown that studying worked examples positively
impacts learning in algebra (Barbieri & Booth, 2020; Booth et al., 2013; Booth et al., 2015
Carroll, 1994; Foster et al., 2018), the features of worked examples that make them effective are
still largely unknown. While some researchers have examined worked examples through
cognitive load theory (e.g., Chandler & Sweller, 1991; Sweller, 1988, 1989), researchers have
examined worked example through other theoretical perspectives as well (Renkl, 2014), such as
analogical reasoning (e.g., Nokes-Malach et al., 2013), social cognition (e.g., van Gog &
Rummel, 2010), and observational learning (Bandura, 1986; Zimmerman & Kitsantas, 2002).
Here, I contribute to the larger literature on example-based learning by examining the impacts of
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worked examples in learning of algebraic equation solving through the cognitive load theory as
well as perceptual learning theory and self-regulated learning. This work may advance our
understanding of when and why worked examples support learning, and how the design of
worked examples could be informed and improved upon by using multiple theoretical
perspectives.

Additionally, studying worked examples online decreases instructional time and increases
student learning (Salden et al., 2010), and some studies have examined the effectiveness of
integrating worked examples in Cognitive Tutor (Reed et al., 2013) or embedding videos in an
online learning environment (Hoogerheide et al., 2019; van Gog et al., 2011). Although worked
examples of mathematical problems have been studied in online environments, they are still
typically displayed as static texts and images or as videos of a person modeling and rewriting
derivations. With the advancement of educational technologies, online worked examples can be
presented in more dynamic ways demonstrating the problem-solving processes through fluid
transformations of equations. Further, dynamic technologies can also provide opportunities for
students to interact with worked examples and experience the problem-solving process.

As K-12 education continues to shift towards using online resources, it is essential to
consider how we can leverage different cognitive theories to design worked examples that
support students as they complete assignments online. Prior research has shown the effectiveness
of providing worked examples with self-explanation prompts on improving student learning in
algebra (Renkl, 2002, 2014) and demonstrated that different presentations of worked examples
impact student learning outcomes (Schalk et al., 2020). However, limited work has applied
theories of embodied cognition to the design of worked examples in algebra or considered how

self-explanations may impact learning when used with worked examples that involve student
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action in an interactive online setting. Here, I conduct and analyze a randomized controlled trial
to test how principles of cognitive load theory and embodied cognition extend to worked
examples with and without self-explanation prompts in order to identify effective ways to present

algebraic worked examples in dynamic online learning environments.

Theoretical Background

Cognitive Load Theory

Worked examples have been extensively studied through the lens of cognitive load theory
and the relationships between the types of cognitive load: intrinsic load (i.e., cognitive demands
based on the complexity of the information being processed and the learner’s prior knowledge),
extraneous load (i.e., unnecessary working memory resources required for learning based on
instructional approaches), and germane load (i.e., working memory resources essential to
learning; Chandler & Sweller, 1991; Sweller, 1988, 1989, 1994; Sweller et al., 2019). From this
perspective, when students study worked examples that lower intrinsic and extraneous load, they
have more cognitive resources to draw upon in order to engage in sense-making activities that
support germane load, like self-explanations, which lead to long-term learning (Leppink et al.,
2013). Research on the worked example effect has shown that studying worked examples
reduces students’ extraneous cognitive load, leading to improvement in algebra learning more
than solely practicing problems (Booth et al., 2013; Carroll, 1994; Foster et al., 2018). Based on
this theory, worked examples are considered to be an effective tool for learning because students
can view a step-by-step example rather than holding the pieces of information in their working
memory. By offloading some of the cognitive demands of problem solving onto worked
examples, students have more cognitive resources to draw connections, notice the procedural

rules being applied, and construct schemas to support learning and transfer (Renkl, 2014).
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That said, the presentation of worked examples has been shown to impact the effect of
worked examples on learning. For example, the presentation of worked examples may impact
whether students experience higher gains in procedural or conceptual knowledge (Schalk et al.,
2020). Additionally, different visual features may either increase or decrease learners’ extraneous
and germane cognitive loads that in turn, impact learning. Specifically, Chandler and Sweller
(1991) demonstrated that worked examples with information in multiple places splits learners’
attention, demanding more cognitive capacity and consequently being less effective for learning
than worked examples which integrate sources of information such as text and pictorial
instruction. Further, Sweller and colleagues (2019) suggested that it is better to watch animations
rather than static presentations to teach cognitive tasks which involve human movement. Asking
learners to observe movement does not place additional extraneous cognitive load on the learner.
Therefore, cognitive load theory posits that students viewing worked examples that minimize
extraneous cognitive load by integrating instruction and movement in one place and excluding
unnecessary information is likely to be most beneficial for learning.

Embodied Cognition and Design

From another perspective, embodied cognition theorists may argue that students
interacting with worked examples in an activity that leverages perception and action may be
better for learning; although, limited research has considered how worked examples may be
designed based on theories of embodied cognition. Theories of embodied cognition posit that
thinking does not occur entirely internally, independent of the external environment; rather,
students’ physical experiences and interactions with their environments influence their cognitive
processes, including mathematical thinking, reasoning, and learning (Barsalou, 2008; Foglia &

Wilson, 2013; Lave, 1988; Nathan, 2014, 2021; Wilson, 2002). Substantial research has shown
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the benefits of students grounding their knowledge of mathematics concepts in embodied
learning activities (see Abrahamson et al., 2020 for a review). For instance, students learn more
and retain more knowledge from a mathematics lesson when they are instructed or encouraged to
use purposeful gestures during the lesson (Broaders et al., 2007; Cook et al., 2008). Additionally,
research has suggested that even having students observe movements can be beneficial for
learning, known as the human movement effect (Sweller et al., 2019).

Substantial research has shown evidence of embodied cognition, and the benefits of
students grounding their knowledge of mathematics concepts in physical experiences (e.g.,
Abrahamson et al., 2020). However, limited work has applied theories of embodied cognition to
the design and implementation of instructional support in algebra, including worked examples of
equation solving, despite a call from cognitive load theorists to integrate evolutionarily based
skills (e.g., facial recognition, speaking, gesture) in instruction to lessen cognitive demands (Paas
& Sweller, 2012). Notably, Ginns and colleagues (2016, 2020) demonstrated this potential
synergy between cognitive load theory and embodied cognition by utilizing gestures in worked
examples on angle theorems. They found that students who traced worked examples on-screen
scored higher on a transfer test than their peers who solely viewed worked examples, replicating
previous work in favor of tracing worked examples (Hu et al., 2015). Further, Yeo and Tzeng
(2020) replicated these findings when students traced worked examples about angle relationships
with parallel lines but not when students traced worked examples about laws of exponents,
suggesting that the effectiveness of using embodied techniques in worked examples may be
dependent on the visuospatial nature of the mathematical content. Since individuals tend to treat
mathematical symbols as objects (e.g., Dorfler, 2003; Landy & Goldstone, 2010), I predict that

principles of embodied cognition may apply to instructional support in algebra. By using
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dynamic technologies, students can interact with mathematical symbols as objects through
mathematically grounded gesture-actions. Specifically, worked examples may be effective for
learning when students drag and combine symbols to manipulate expressions on-screen to
reproduce worked examples rather than simply viewing traditional worked examples on-screen.
Dynamic learning technologies allow users to manipulate linear equations, graphs, and
expressions and see the outcomes of their actions in real-time on their computer screens. These
technologies also enable teachers to present worked examples that move beyond traditional,
static images by providing dynamic visual features that would not be possible to present in
textbooks. The current study utilizes Graspable Math (GM; Weitnauer et al., 2016), an interactive
algebra notation tool, to explore the benefits of worked examples presented with the opportunity
to use dynamic gesture-actions. GM was developed from theories of perceptual learning and
embodied cognition to allow users to physically manipulate mathematical notation through
gesture-actions that emulate mathematical properties in a physical-to-virtual embodied
experience with mathematical terms. As an example, to distribute 3 into (2+x), users can touch
and drag the 3 into the parentheses, automatically triggering a visualization where 3 is distributed
to 2 and x, transforming the expression into 6+3x. Through dynamic gestures, users can also
combine terms, apply operations to both sides of an equation, and rearrange terms through
commutative, associative, and distributive properties (Figure 1). For a review of GM and the
ways that its interactivity supports intuitive, embodied, and trained perceptual-action processes,
see Goldstone and colleagues (2017) and Abrahamson and colleagues (2020).
Figure 1

Example of a Dynamic Transformation Using Graspable Math
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Gx+3 =11

ax =1
+ 3 b

aQx =1+3

Gx = 1% 3

Note. Users can dynamically transform equations (e.g., 4x+3=11; 1a) by dragging and dropping

d

terms (e.g., “3”; 1b, 1¢) to create equivalent forms (e.g., 4x=11-3; 1d).

Prior work has demonstrated the efficacy of GM and its positive effect on student
learning (Chan et al., 2021; Hulse et al., 2019; Ottmar et al., 2015). However, no prior research
has considered using the tool as a means for students to interact with worked examples during
algebra practice and potentially benefit from the automatic calculations, fluid visualizations, and
feedback provided by the system. Currently, I extend the human movement effect (Sweller et al.,
2019) to explore whether prompting interactions with worked examples in GM through grounded
gesture-actions will increase students’ learning beyond just watching the dynamic
problem-solving process of worked examples in the GM system. I suggest that these movements
will not increase students’ extraneous cognitive load but may increase germane cognitive load

and provide additional cues to help them process the content in the worked examples as well as
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generalize content by focusing on the step-by-step subgoals of worked examples during the
mirroring process, in line with prior work on sub-goal learning (Margulieux et al., 2016). I posit
that students may ground their knowledge of simplifying equations in the act of manipulating
symbols on-screen as part of studying worked examples and may develop perceptual and
procedural fluency by participating in this additional guided practice.

Worked Examples with Self-Explanations

Since worked examples provide effective instructional support for students, research over
the last several decades has investigated how to best design and implement worked examples in
instruction to improve learning (for a recent commentary, see Mayer, 2020). Stemming from the
self-regulated learning perspective, two recommendations have emerged: incorporating paired
practice problems with a worked example (Foster et al., 2018; Sweller & Cooper, 1985; Sweller,
2006; van Gog et al., 2020) and prompting students to explain the steps completed in a worked
example (e.g., Aleven & Koedinger, 2002; Renkl, 2002; 2014).

First, it has been shown that worked examples are effective instructional support when
students have an opportunity to practice applying their knowledge. As practice, students typically
complete problems that are similar in structure to the worked examples, and they reach the
solution on their own, without scaffolded support. Students studying worked examples followed
by problem solving has been referred to as a Worked Examples then Problem Solving schedule.
This schedule is considered to be effective because studying a worked example lowers students’
extraneous load while increasing germane load to allow for schema acquisition and knowledge
that can then be applied to the following practice problem. Worked examples followed by
problem solving has been shown to improve student learning and transfer beyond problem

solving alone (Carroll, 1994; Cooper & Sweller, 1987; Retnowati et al., 2010; Rourke & Sweller,
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2009; van Harsel, et al., 2020; Ward & Sweller, 1990). Recent research has also revealed that
providing practice problems followed by worked examples may be just as effective for learning
as studying worked examples followed by problem solving (van Harsel et al., 2019, 2020).
Further, when students have the autonomy to regulate their own learning, they tend to alternate
between practice problems and worked examples so they can understand the limit of their
knowledge, then effectively learn from the examples (Foster et al., 2018). In sum, prior research
has led to extensive evidence in favor of using paired worked examples and practice problems in
instructional activities and for that reason, I include paired practice problems with the worked
examples in our current research.

Second, studying worked examples with self-explanation prompts increases learning
above and beyond studying worked examples alone (e.g., Aleven & Koedinger, 2002; Berthold
et al., 2009; Nokes-Malach et al., 2013; Renkl, 2002; 2014). As students explain worked
examples, they may engage in deductive processes, generalization, and making the implicit
knowledge explicit (Chi & VanLehn,1991), and the process of self-explanation helps students
monitor their understanding and regulate their learning (VanLehn et al., 1992; see Renkl & Eitel,
2019, for a review). Research has shown that eliciting self-explanations is moderately eftective
for learning, particularly in domains with general principles that guide problem solving
(Rittle-Johnson & Loehr, 2017), and even recommended self-explanation for instructional
practice (e.g., Chi et al., 1989; Chi et al., 1994; see Dunlosky et al., 2013 for a brief review).
Self-explanation prompts in worked examples leverage this effect by challenging students to
reflect on, make meaning of, and articulate the content they study in a worked example.
Prompting self-explanations typically increases students’ cognitive load by presenting an

additional challenge to reflect on instructional content (e.g., Hilbert & Renkl, 2009) so in order
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for self-explanations to be effective for learning when paired with worked examples, they should
be implemented to minimize extraneous load (Renkl & Eitel, 2019). In particular,
principle-based self-explanations prompt students to connect conceptual knowledge to
procedural rules and practices in order to help with future problem-solving, potentially through
analogical reasoning and noticing similarities between problem structures (Renkl, 2014; Renkl &
Eitel, 2019).

However, limited work has examined how the presentation of worked examples with
self-explanations may impact learning in interactive online settings. On the one hand,
self-explanations may place additional cognitive demands on students which could detract from
the effectiveness of a worked example. Similarly, Renkl (2014) posited that self-explanation
prompts are not beneficial beyond studying worked examples when students are faced with
complex learning tasks that induce a lot of cognitive load, such as problems with high element
interactivity (the number of elements that must be held in working memory for a given problem,;
Chandler & Sweller, 1996). On the other hand, self-explanations have been shown to add value
to worked examples for both correct and incorrect worked examples, suggesting that the
self-explanation effect is somewhat robust (e.g., Aleven & Koedinger, 2002; Barbieri & Booth,
2016, 2020; Hilbert et al., 2008). More research is needed to determine whether and how the
presentation of worked examples impacts the effect of self-explanations on learning.

I posit that the impact of self-explanation prompts in worked examples may be contingent
on the presentation of the worked example itself and the theories which inform the design of the
worked example. Specifically, worked examples designed from cognitive load theory
intentionally minimize extraneous information and integrate visual features to reduce students’

cognitive load while viewing the worked example, freeing up cognitive capacity to make
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connections and provide self-explanations that lead to learning beyond simply studying worked
examples. From this viewpoint, if worked examples are designed from another theory such as
embodied cognition, that require actively mirroring worked examples and consequently may
involve a higher level of element interactivity per example, students may experience cognitive
overload when asked to also provide self-explanations (Renkl, 2014). Conversely, such worked
examples may benefit from having self-explanation prompts so that students reflect on the
purpose of, and mathematical principles behind, each step rather than simply following the steps
in the worked examples instructions. Since self-explanation prompts have been effective for
learning from viewing worked examples (Aleven & Koedinger, 2002; Barbieri & Booth, 2016,
2020; Hilbert et al., 2008), I posit that this effect may extend to worked examples that involve
student action and seek to replicate previous research on the added impact of self-explanations in
worked examples.
Testing and Integrating Cognitive Theories to Design Worked Examples

While cognitive load theory supports the use of worked examples that minimize
extraneous load, perception and action may also play an important role in learning through
worked examples. Notably, prior work has shown that incorporating student actions, such as
tracing, while studying worked examples on geometry leads to decreased extraneous load and
higher performance on recall and transfer tests than peers who simply viewed worked examples
(Ginns et al., 2016, 2020; Tang et al., 2019; Yeo & Tzeng, 2020). Currently, I seek to extend this
line of inquiry to explore how interactive worked examples presented in a dynamic online
environment influence student learning and cognitive load in the context of algebra.

Based on the bodies of literature surrounding worked examples, embodied cognition, and

self-explanations in instructional materials, I predict that worked examples may be more
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effective for learning when students are active participants and ground their knowledge in
embodied experiences, such as using movement for problem-solving. Specifically, the benefit of
mirroring steps of a worked example through dynamically transforming expressions on-screen
may outweigh the risks of presenting potentially extraneous information and demanding
additional actions. For example, Reed and colleagues (2013) found that students who studied
worked examples with interactive graphics outperformed their peers who studied static-table and
static-graphic worked examples. Based on their findings, Reed and colleagues (2013) suggested
that students who studied interactive worked examples might have benefitted more if those
examples also included self-explanation prompts to challenge students to make connections
between their actions and the mathematical concepts. Therefore, I predict that interactive worked
examples, such as mirroring steps to solve an equation on-screen, would be more effective for
learning when paired with self-explanations. Additionally, while interactive worked examples
may be equally or more effective for learning than simply viewing worked examples, I anticipate
that measuring students’ levels of cognitive load will provide further insights into the relation

between the different presentations of worked examples and student learning.

The Current Study

Since extensive evidence demonstrates the efficacy of studying worked examples over
practicing problem-solving alone for skill acquisition (e.g., Barbieri & Booth, 2020; Booth et al.,
2013; Carroll, 1994; Renkl, 2014, 2017), the current study aims to extend this research by
investigating how student action and self-explanations impact learning through worked examples
in a dynamic online learning environment. I designed and deployed a randomized controlled trial
for Algebra I students. Using a 2 (Presentation: viewing vs. mirroring) x 2 (Self-Explanation:
self-explanation prompts vs. no self-explanation prompts) between-subjects design, I examined
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the effects of mirroring the steps within worked examples, explaining those steps, and their
interaction on student learning. Specifically, students completed an online algebra activity in
which they were assigned to either: a) view, b) view-and-explain, c) mirror, or d)
mirror-and-explain worked examples and complete paired practice problems. Immediately after
completing the intervention, students also completed a measure of cognitive load (adapted from
Leppink et al., 2013) that identifies self-reported levels of intrinsic, extraneous and germane
cognitive load. In addition to observing differences in learning by condition, this measure allows
us to tease apart the effect of each worked example condition on each facet of students’ cognitive
load. I pose the following questions:
1. Do students learn more from viewing or mirroring guided worked examples in an online
learning environment, regardless of self-explanation prompts?
2. Do students learn more from studying worked examples with or without self-explanation
prompts, regardless of whether they view or mirror worked examples?
3. Is there an interaction between worked example presentation and self-explanation
prompts? (i.e., is mirroring most effective when paired with self-explanation prompts?)
4. Do students report different levels of cognitive load after studying different types of
worked examples?

First, I hypothesize that algebra students may learn more by mirroring worked examples
as they manipulate terms on-screen to reproduce steps of worked examples with GM rather than
simply viewing worked examples on-screen. Specifically, mirroring the worked examples may
help students take the time and actions to make connections that are not apparent just by viewing
worked examples. Instead, as students experience the problem-solving process themselves, they

may gain an understanding of how their actions lead to mathematical results. Second, I
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hypothesize that I will replicate prior findings that students learn more from studying worked
examples with versus without self-explanation prompts. Consequently, I also hypothesize that
self-explanations provide an added benefit beyond mirroring worked examples such that
mirroring worked examples may be most effective for learning when students are prompted for
self-explanations. Last, analyzing students’ self-reported levels of cognitive load may reveal how
studying the four different worked example types are related to levels of intrinsic, extraneous,
and germane load to tease apart the mechanisms through which worked examples influence

learning. I hypothesize that students in the mirror conditions may report higher levels of germane

load.

Methods

Participants

Full data collection occurred from September 2021-February 2022. I recruited seventh- to
ninth-grade Algebra I students through an existing pool of teachers who already use GM as well
as through social media outlets, local teaching communities, and reaching out to local school
districts. To thank participating classes, teachers received a $50 gift card for classroom supplies.

Three teachers assigned the study to their students; however, students from one of the
teachers were excluded due to only completing one of the three days of the study at random
rather than completing each of the three days in succession. As a result, 64 students from two
teachers were included in our current analytic sample. These students were included in the
analytic sample because they completed at least four of the eight problems on the pretest on Day
One, participated in the intervention for over 10 minutes on Day Two (i.e., suggesting that they

completed the brief tutorial and studied at least one worked example), and finished at least four
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of the eight problems on the posttest on Day Three. I decided to include students who completed
at least half of the pretest and posttest because the assessments contained four near-transfer and
four far-transfer items; this allowed us to retain a decent sample size while being able to
approximate students’ performance on the assessments.

All 64 students were in ninth grade, Algebra I courses ranging from 13-15 years old (M =
14.19 years, SD = .47). Our sample included: 34 (53%) female, 27 (42%) male, and two (3%)
non-binary students, with one student electing to not report gender. Further, students provided
whether they had any prior experience with GM: 30 (47%) of students responded “No”, 25
(39%) responded “Yes”, and 9 (14%) students were unsure whether they had any prior

experience using GM.

Study Procedure

This study procedure received approval by our institutional review board prior to data
collection. The study was conducted online in students’ web browsers through Qualtrics and
Graspable Math Activities, an extension of GM that allows teachers to create and assign
activities for students (https://activities.graspablemath.com). Teachers assigned the study as an
in-class activity for students to complete in three 20- to 30-minute sessions in three consecutive
class periods. Students were instructed to work individually on their own devices at their own
pace to complete the study. Students were allowed to use writing utensils and scrap paper but no
calculators as they completed the study. While teachers assigned the activity to their students and
provided a link to the study, all other directions for students were within the online assignments
to minimize the variability in the fidelity of implementation by teachers.

On Day One, students were directed to Qualtrics to complete an eight-item pretest on
equation-solving to measure their algebra knowledge. On Day Two, students opened a Qualtrics
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survey that randomized each student into one of four conditions and automatically redirected the
student to Graspable Math Activities within their assigned condition. In Graspable Math
Activities, all students completed a brief (approximately five-minute) training tutorial. Once
students completed the tutorial, they completed four pairs of worked examples and practice
problems. The worked example formats and instructions varied across conditions. The worked
examples and paired practice problems were presented in the same order across the four
conditions, alternating between a worked example followed by a paired practice problem.
Immediately after completing the four pairs of worked examples and practice problems, students
completed a ten-item survey to measure their cognitive load. On Day Three, students completed
an eight-item posttest followed by a brief demographics survey administered in Qualtrics. The

materials and measures for each day are described below.

Day One: Pretest

Algebra Knowledge Assessments

An eight-item pretest measured students’ algebra knowledge at baseline. The pretest
contained six open-source problems (adapted from Engage NY and Project Utah curricula) and
two items with similar equation structures that were designed by our project team (Appendix A).
Four of the items match the equation structures used in the worked examples (items 1, 4, 7, 8)
and the other four items are transfer problems (items 2, 3, 5, 6). For each problem, students were
instructed to, “Solve the following equation. Enter the value of x below as a whole number or
fraction.”

These assessments were used in a previous study with a similar population (Smith et al.,
2022); the reliability coefficient of these eight items was KR-20 = 0.86 at pretest and KR-20 =
0.89 at posttest, showing high internal consistency across items. Student performance was not at
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floor or ceiling for any of the items in the previous study, suggesting that the assessments would
be appropriate measures of algebra knowledge for this study. With the current sample, the
reliability coefficient was KR-20 = .74 at pretest and KR-20 = .77 at posttest. The lower
reliability coefficients in the current study may be explained by the smaller sample size since the
samples were from comparable populations; however, the reliability on posttest items still

indicates a positive correlation among the test items.

Day Two: Intervention

Tutorials

On Day Two, students were randomly assigned to one of the four conditions as they
opened the assignment link. Based on their assigned condition, students completed one of two
tutorial trainings prior to starting the intervention. Specifically, students in the mirror and
mirror-and-explain conditions viewed six looping videos (one at a time) demonstrating the
gesture-actions in GM for (1) arithmetic operations (e.g., 2-3-4-5), (2) commuting a term (e.g.,
moving 2 from the left to right side of the expression (e.g., transforming 2+4 into 4+2), (3)
commuting a variable with a coefficient (e.g., 3x), (4) distributing a number into parentheses
(e.g., transforming 2(3+2x) into 6+4x), (5) performing inverse operations such as moving a
number from one side of the equals sign to the other, and 6) performing inverse operations with
multiplication and division on both sides of an equation. For example, to perform multiplication
in 2-3-4-5, the video demonstrated tapping the multiplication dot between 2 and 3 to transform
the expression into 64 - 5. The video then showed students that they can also drag 5 on top of 4
to multiply the numbers and transform the expression into 6 -20. Next to each demonstration
video, students were provided with a structurally similar expression (e.g., 9+8—7+6) to practice

each action using GM, similar to what they were instructed to do in the intervention (Figure 2a).
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At the end of the tutorial, students saw an interactive equation 2(x+3)=20, and used the learned
gesture-actions to solve for x.

Students in the view and view-and-explain conditions completed a similar tutorial, but
they did not use GM to perform actions on the practice expression. Instead, each practice
expression was replaced with a demonstration video, so students in the viewing conditions saw
the same transformations that students in the mirroring conditions saw but did not have the
opportunity to interact with the expressions (Figure 2b). Specifically, students saw two videos
demonstrating each action. At the end of the tutorial, they viewed a video of the equation-solving
process for 2(x+3)=20 and were asked to enter the solution.

Figure 2

Tutorial example in the (a) mirroring conditions and (b) viewing conditions.

a b

Arithmetic Operations Arithmetic Operations

Below, you will see a video clip on the left, and an interaction expression on the right. Below, you will see two video clips

Watch the clip to learn how to perform operations, then try it out with the expression on the right. Watch the clips to learn how to perform operations.

i i i 1
Perform operations by tapping or dragging Try it out! Operations are performed by tapping or

dragging

6% 9+38-7+6 2345 I%8-7+¢

Worked Examples and Paired Practice Problems

After the tutorial training, all students completed four pairs of worked examples and
practice problems. The worked examples and practice problems were used in a previous study on
worked examples (Smith et al., 2022), and were the same across the four conditions. The four
conditions varied in (1) whether students viewed or mirrored the worked examples, and (2)

whether students provided self-explanation of the worked examples. For each worked example
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and practice problem pair, students first studied the worked example as directed by the
instructions displayed for their condition. Even while keeping the domain content the same,
different implementations of worked examples in instructional activities can lead to differences
in time on task among students (Zhou et al., 2015). In this case, the time spent on studying
worked examples may vary systematically by condition (i.e., students in mirror-and-explain
condition may naturally spend more time on each worked example compared to students in view
condition due to the different demands within each condition) so I used a timer in the GM system
to ensure that all students in all conditions spent a minimum of two minutes on each worked
example to minimize differences in time-on-example between conditions, similar to prior work
on example-based learning (Ginns et al., 2016).

After studying the worked example, students solved the paired practice problem on the
next screen. Each practice problem displayed a similar equation structure as the worked example
prior but without a worked example in view to reference. The equations and derivations used for
the worked examples were developed by Rittle-Johnson and Star (2007), and used in their
previous work on worked examples (Appendix B). I created the four paired practice problems to
match the structure of each worked example. For each practice problem, students solved for the
variable in the equation and entered their answer as a number.

Additionally, in the explain conditions (i.e., view-and-explain, mirror-and-explain), I
presented lowly-structured, principle-based self-explanation prompts (Renkl & Eitel, 2019) that
encouraged students to connect the observed procedures in the worked examples with the
underlying mathematical principles that are behind each derivation step. These open-ended
prompts provided students opportunities to make implicit knowledge explicit while keeping the

experimental session within 30 minutes, feasible for in-class data collection. Although the typical
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practice is to provide students with correct explanations prior to self-explanations prompts (e.g.,
Rittle-Johnson & Loehr, 2017; Renkl & Eitel, 2019), I decided to only provide the
self-explanation prompts in order to maintain the feasibility of the study. Because students in the
mirror-and-explain condition were already studying the worked examples, reproducing them
using GM, and explaining their steps, I wanted to avoid overwhelming them with studying
correct explanations, and potentially lengthening Session 2 beyond 30 minutes. Prompting
students to explain the steps within each worked example is also aligned with prior work that
demonstrates the benefits of having students self-explain subgoals within problems (Margulieux
etal., 2016).

Conditions

This study used a 2 (Presentation: view or mirror) X 2 (Self-explanation: prompt or no
prompt) between-subjects design to examine the effect of four experimental conditions on
student learning. Students were randomly assigned to one of the four conditions in which they
would: 1) view worked examples, 2) view-and-explain worked examples, 3) mirror worked
examples, or 4) mirror-and-explain worked examples as they completed the assignment (Figure
2).

View Condition. For each worked example, students in the view condition saw two
presentations of a worked example on-screen. First, the worked example image on the left side of
the screen displayed the major derivations of each problem in a static image, modeled from
derivations used in prior research (Rittle-Johnson & Star, 2007). Second, the worked example on
the right side of the screen displayed a looping video of the problem being transformed in GM. I
included the looping video so that students in the view and mirror conditions both saw the

dynamic problem-solving process; the only difference is that students in the mirror conditions
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generated the problem-solving process themselves through gesture-actions. In the view
condition, students were prompted to “Study the worked example. Once you feel comfortable
with the steps taken to solve for the variable, select the solution below as your answer.” (Figure
3a). I included the multiple choice question asking students to select the solution of the equation
in order to ensure that the students in the view condition studied the worked examples.

View-and-Explain Condition. Students in the view-and-explain condition were prompted
to study the same worked examples presented in the view condition. Additionally, they were
prompted to provide a typed explanation for each step of the worked example. Specifically,
students were prompted to “Study the worked example. Use the box below to explain each step in
the worked example. Once you have explained the steps, select the solution to the equation.”
Beneath the worked example, students also saw a free-response box and the following
instructions: “Explain the steps to the worked example here.” (Figure 3b). Like the view
condition, I included the multiple choice question to ensure that the students studied the worked
examples.

Mirror Condition. For each worked example problem, students in the mirror condition
saw a static image of a worked example displayed at the top of the screen, and an interactive
problem equation presented in the middle of the screen. They were instructed to manipulate the
equation using GM in order to match their solution steps with the worked example image.
Specifically, students saw the following prompt: “Use the worked example as a guide to
complete the problem below using the Graspable Math workspace. You may reset the problem as
needed.” (Figure 3c).

Mirror-and-Explain Condition. In addition to mirroring worked examples, students in

the mirror-and-explain condition were also prompted to provide a self-explanation of each step
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taken. Specifically, students saw the following prompt: “Use the worked example as a guide to
complete the problem below using the Graspable Math workspace. You may reset the problem as
needed. After, use the box below to explain each step in the worked example.” Beneath the
worked example and workspace, students saw a text box instructing, “Explain the steps to the

worked example here.” (Figure 3d).
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Cognitive Load Measure

To measure students’ cognitive load immediately after completing the intervention, I
made minor modifications to an instrument created and validated by Leppink and colleagues
(2013) in a series of studies. Notably, whereas most prior instruments have not attempted to
distinguish between different types of cognitive load (Sweller et al., 2019), this 10-item
instrument captures levels of intrinsic load (items 1, 2, 3; a > .80 across studies), extraneous load
(items 4, 5, 6; o > .75 across studies), and germane load (items 7, 8, 9, 10; a > .80 across
studies). This measure of cognitive load has since been used by Leppink and colleagues (2014)
as well as more recently by Tang and colleagues (2019) in a study on the effects of physical
tracing during worked example practice on learning. Here, I slightly modified the language used
in each item to match the scope of the current study while keeping the 11-point Likert scale
consistent with previous work (Appendix C). Students’ cognitive load score was calculated as
the average of the 10 items. Students’ intrinsic, extraneous, and germane load were respectively

calculated as the average across the items pertaining to that construct.

Day Three: Posttest

An eight-item posttest with items that mirror the pretest in equation structure assessed
students’ knowledge after the intervention (Appendix A). Like the pretest, students were
instructed to solve for the variable in each equation. Additionally, students completed a brief

demographics survey to specify their gender, age, grade level, and prior experience with GM.
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Approach to Analysis

Students’ pretest, posttest, and demographic data were pulled from Qualtrics and
students’ behavior and problem-solving data were pulled from GM log files. These data were
combined and aggregated at the student-level (i.e., one row per student) for analyses. First, I
conducted descriptive statistics to cull cases listwise as needed. Next, for primary analyses, |
tested our first three hypotheses using JASP software (JASP Team, 2020; Wagenmakers et al.,
2018) to conduct a 2 (Time: Pretest and Posttest) X 2 (Presentation: View vs Mirror) X 2
(Self-Explanation: Prompt or No Prompt) repeated measures ANOVA. I conducted the ANOVA
using both frequentist and Bayesian methods. In addition to reporting the frequentist statistics,
the Bayesian results provide multiple affordances over frequentist analyses such as testing the
null hypothesis directly and providing another interpretation of the results (van de Schoot &
Depaoli, 2014). For the Bayesian ANOVA, I used the default, non-informative prior
specifications in JASP as recommended because I did not have sufficient information to use an
informed prior. The default specification uses a JZS (multivariate Cauchy) prior on the effect
scales with a default scale of 0.5.

I interpreted the Bayes Factor (BF10) based on common thresholds (Schonbrodt &
Wagenmakers, 2018). Specifically, a value smaller than 1, 1/3, and 1/10 provides anecdotal,
moderate, and strong evidence for the null hypothesis, respectively. Similarly, a value greater
than 1, 3, and 10 provides anecdotal, moderate, and strong evidence for the alternative
hypothesis, respectively. This analysis plan allowed us to detect evidence in favor of the
experimental or null hypothesis for each of our research questions as follows:

1. The Time X Presentation effect detected whether students learn more from viewing or

mirroring worked examples to answer our first research question.
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2. The Time X Self-Explanation effect detected whether students learn more from worked
examples with or without self-explanation prompts to answer our second research
question.

3. Last, the Time X Presentation X Self-Explanation effect indicated whether there was an
interaction between worked example presentations and self-explanation prompts on
learning in order to answer our third research question.

Finally, to explore the impact of each worked example condition on students’ cognitive
load levels, I conducted a series of 2 (Presentation) X 2 (Self-Explanation) ANOVAs comparing
students’ self-reported cognitive load levels by condition. First, students’ average cognitive load
score was the outcome variable, followed by students’ average scores for intrinsic load (items 1,
2, 3), extraneous load (items 4, 5, 6) and germane load (7, 8, 9, 10). These analyses were

interpreted based on the same guidelines reported above.

Results

Preliminary Analyses

Table 1

Descriptive Statistics of Each Variable (N=64)

Mean SD Min—-Max  Skewness  Kurtosis
Pretest Score .39 25 0-.75 -.16 -1.29
Posttest Score .60 .30 0-1 -5 -.88
Cognitive Load Score 3.40 1.75 0-8.6 .19 -.01
Intrinsic Load 2.47 2.54 0-10 1.2 .96
Extraneous Load 2.66 1.82 0-8 45 -.18
Germane Load 5.05 2.90 0-10 .04 -1.02
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Table 1 presents descriptive statistics, including the range and distribution, of focal
variables for the full sample. All variables reflect close to normal distributions. Importantly, no
students scored at ceiling on the pretest. While 10 (16%) students scored at floor on the pretest
and two (3%) students scored at floor on the posttest, students’ scores suggest that these items
were difficult but appropriate for participants in the sample, leaving room for improvement from
pretest to posttest. These students were included in analyses due to the small sample size and
preliminary nature of these results. Additionally, a one-way ANOVA did not detect any
significant differences in pretest score by condition (F[3,60]= 0.932, p = .431, > = .045).

Table 2

Average (SD) of Focal Variables by Condition

View View and Explain Mirror Mirror and Explain

(n=16) (n=14) (n=16) (n=18)

Pretest Score 42 (.25) 45 (.25) 31 (.23) 38 (.27)

Posttest Score 52 (.31) .70 (.23) .52 (.34) .66 (.27)
Cognitive Load 3.41(1.69) 2.65(1.63) 3.46 (1.52) 3.83(2.04)
Intrinsic Load 2.41 (2.03)  1.13(1.43) 2.17(1.99) 3.70(3.43)
Extraneous Load 2.68 (1.47)  2.36(1.39) 2.72(1.73)  2.80(2.48)
Germane Load 5.07 (2.44) 4.53 (3.94) 5.56 (2.61) 4.97 (2.86)

Note: SD = standard deviation; mins = minutes

Below, Table 3 presents the correlations between each focal variable. As expected,
students’ pretest and posttest scores were positively correlated with one another. Also as
expected, students’ overall cognitive load was positively correlated with each construct within
the scale (i.e., intrinsic, extraneous, and germane load). However, the subscales were
low-to-moderately correlated with one another, motivating the need to analyze the subscales
individually in addition to students’ aggregate cognitive load score.
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Table 3

Correlations between each variable

Pretest  Posttest Cognitive  Intrinsic Extraneous Germane
Score Score Load Score Load Load Load
Pretest Score —
Posttest Score 667 ***
Cognitive Load -.226 -.142 —
Score
Intrinsic Load -.191 -.138 746%**

Extraneous Load -.021 2.711%10%  .639%** 384**

Germane Load -.175 -.031 WARY Salokd .279%* .140 -

Note: Values represent Pearson’s r for the correlation coefficient.
'p<.05."p<.01.""p<.001.

Primary Analysis

A 2 (Time: Pretest vs Posttest) X 2 (Presentation: View vs Mirror) X 2
(Self-Explanation: Prompt or No Prompt) repeated measures ANOVA revealed a main effect of
time (F[1,60]= 56.93, p <.001, n,> = .487) showing that, in general, students improved from
pretest (M = .39, SD = .25) to posttest (M = .60, SD = .30). The Bayesian ANOVA provided
strong evidence in support of the main effect of time (BF,, = 1.907*107). There was no main
effect of mirroring vs. viewing worked examples (F[1,60]= 0.82, p = .37, n,> = .013), with
anecdotal evidence in support of this null effect (BF,, =.377). There was a marginal effect of
self-explanation prompts (F]1,60]= 2.80, p = .10, n* = .045) but the Bayesian ANOVA provided
anecdotal evidence in support of the null hypothesis (i.e., suggesting no effect of self-explanation

prompts; BF,, = .872). There was also a marginal Time X Self-explanation prompt interaction
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(F[1,60]=3.74, p = .06, n,” = .059), with strong evidence in support of this interaction (BF,, =
1.876*107). Post hoc comparisons with Bonferroni corrections revealed that all students
performed comparably at pretest and significantly improved from pretest to posttest (p <.001);
however, this effect was larger for students in the self-explanation prompt conditions.
Specifically, students who received self-explanation prompts demonstrated larger growth
(pretest: M = .41, SD = .26; posttest: M = .68, SD =.25; p <.001) who did not receive
self-explanation prompts (pretest: M = .36, SD = .24; posttest: M = .52, SD =.32; p = .001; Figure
4).

Figure 4

Time X Self-Explanation Prompt Effect on Student Learning Through Worked Examples

Learning Gains by Self-Explanation Prompts

G 06
= 05 A
504 I No Prompts

m Self-Explanation Prompts

Pretest Posttest
Time
Note: Error bars represent the standard deviation.

Effects of Worked Example Condition on Cognitive Load

To answer our fourth research question investigating whether students reported different
levels of cognitive load by condition, I ran a series of 2 (Presentation) X 2 (Self-Explanation)
ANOVAs and repeated them as Bayesian ANOVAs. First, an ANOVA revealed no main effect of
presentation (F[1,58]= 1.887, p = .175, n,” = .032) or self-explanation prompts on students’

overall cognitive load (F[1,58]= 1.181, p = .672, n,” = .003), with anecdotal-to-moderate
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evidence in support of these null findings (BF,, = .522 and BF,, = .262). Next, an ANOVA
revealed no main effect of presentation (F[1,57]= 0.244, p = .623, n,> = .004) or self-explanation
prompts on students’ extraneous cognitive load (F[1,57]= 0.062, p = .804, n,> = .001), with
moderate evidence in support of these null findings (BF,, =.286 and BF,, = .264). Similarly,
there was no main effect of presentation (F[1,57]= 0.369, p = .546, n,> = .006) or
self-explanation prompts on students’ germane load (F[1,57]= 0.555, p = .459, n,* = .010), with
moderate evidence in support of these null findings (BF,, =.294 and BF,, = .319).

However, an ANOVA did detect a marginally significant effect of presentation (F[1,58]=
3.508, p =.066, n,” = .057) on students’ intrinsic load, with anecdotal-to-no evidence supporting
this result (BF;, = 0.949). There was no main effect of self-explanation prompts on students’
intrinsic load (F1,58]= 0.042, p = .839, n,” <.001), with moderate evidence supporting this null
result (BF,, = 0.301). Further, there was a Presentation X Self-Explanation interaction (F[1,58]=
5.086, p =.028, n,” = .081), with the Bayesian ANOVA detecting anecdotal evidence to support
this model (BF,, = 0.662). Post hoc comparisons with Bonferroni corrections showed that
students in the mirror-and-explain condition reported significantly higher levels of intrinsic load
(M =3.70, SD = 3.43) than students in the view-and-explain condition (M =1.13,SD=1.43;p =
.037). No other pairwise comparisons were significant (ps > .05; Figure 5).
Figure 5

Students’ Self-Reported Intrinsic Cognitive Load by Condition

117



Intrinsic Load by Condition
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Discussion

This study investigates how different features of worked examples impact student
learning from a brief intervention. From the preliminary results reported, four notable
preliminary findings have emerged. First, all students, on average, improved from pretest to
posttest, demonstrating learning gains across the conditions. Second, there was no evidence to
suggest that viewing or mirroring worked examples was more effective for learning. Third,
preliminary evidence suggests that students learned more from studying worked examples with
self-explanation prompts than without self-explanation prompts. And fourth, students in the
mirror-and-explain condition reported higher levels of intrinsic load than students in the

view-and-explain condition. I expand on each of these findings and discuss interpretations in the

following sections.

The Worked Example Effect

The preliminary evidence revealed that, on average, students across each of the four
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conditions improved approximately 20% from pretest to posttest after participating in the
intervention with worked examples. This finding is aligned with prior research on the worked
example effect showing that worked example practice increases learning beyond solving practice
problems alone (Booth et al., 2013; Carroll, 1994; Foster et al., 2018). Since the worked example
effect is well-supported to date, I did not include a control condition without worked examples.
Instead, these preliminary findings suggest that the worked example effect may be very robust.
Specifically, perhaps the format of worked examples does not matter as much as the act of
engaging in worked example practice itself. Finding ubiquitous learning gains is also aligned
with our previous work (Smith et al., 2022) in which we found that students experienced learning
gains across conditions after studying one of six different presentations of worked examples.
Finding preliminary evidence of learning gains across all participants is a valuable
contribution to the literature. Since limited research has tested the effects of interactive worked
example formats in online settings for algebra, these preliminary results add to the literature by
indicating that a variety of worked example formats may be effective for supporting learning in
online settings. In particular, the ubiquitous learning gains suggest that worked examples are an
effective instructional support, and that the variation in the design and presentation of worked
examples may not significantly impact learning in online contexts; providing implications for
researchers, educators, and content developers who design worked examples for online contexts.
In addition to motivating full data collection for the current study, these preliminary findings
invite future research to explore how pervasive the effects of different worked example formats

are in online settings.
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Viewing vs. Mirroring Worked Examples

In testing whether mirroring worked examples may be more effective than simply
viewing them, this project is timely: cognitive load theory has been the predominant explanation
for the effectiveness of worked examples for thirty years (e.g., Sweller, 1988, Chandler &
Sweller, 1991) while more recently, theories of embodied cognition have been gaining traction
across multiple areas of psychological science (e.g., Abrahamson et al., 2020; Nathan, 2021).
The preliminary findings suggest that students demonstrated comparable learning gains
regardless of whether they viewed or mirrored worked examples, suggesting that each format
may have its advantages for learning. Further, preliminary results found differences in students’
self-reported levels of intrinsic load between those who viewed-and-explained worked examples
and those who mirrored-and-explained worked examples. These findings suggest that even if
differences in worked example presentation do not impact students’ overall learning, different
worked example presentations may still affect students’ cognitive processes at a more granular
level.

Looking ahead, findings from a larger sample on viewing vs. mirroring worked examples
will contribute to our understanding of cognition by suggesting how principles of cognitive load
theory and embodied cognition influence learning. For instance, if viewing worked examples
leads to higher learning gains, these findings will provide further support for using cognitive load
theory to explain underlying processes of learning. However, if students who mirror worked
examples experience higher learning gains, these findings will suggest that theories of embodied
cognition may also be involved in the process of learning. If the latter, these findings will prompt

further research to tease apart the influence of cognitive load and the influence of embodied
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experiences on learning to respectively advance our understanding of these two cognitive
theories and how aspects of each theory may be applied together to support learning.
Additionally, this study provides just one example of how student interaction and
embodiment may be incorporated in online worked examples. Multiple educational platforms
and technologies leverage students’ perceptual processes and actions to develop mathematical
reasoning (e.g., The Hidden Village: Nathan & Walkington, 2017; the Mathematical Imagery
Trainer: Abrahamson & Trninic, 2015; Geogebra). These platforms and technologies could
consider designing different formats of embodied worked examples specific to the affordances of
their own design. For instance, The Hidden Village may leverage their AR technology to study
how students develop mathematical reasoning from worked examples that involve no movement,
partial-movement, or full-body movement with provide perceptual feedback from the system. As
educational technologies continue to develop, so do the possibilities for incorporating principles

of embodied design into instructional support like worked examples.

The Impact of Self-Explanation Prompts

This study, and the preliminary evidence, supports prior research on the use of
self-explanations for learning in worked examples. I predicted that students who received
self-explanation prompts in their worked examples would improve more from pretest to posttest
than their counterparts and the preliminary evidence indicates emerging findings in that
direction. These preliminary results conceptually replicate prior work showing that worked
examples with self-explanation prompts are more effective for learning than worked examples
alone, providing more evidence to support theory on the role of self-explanations in learning
from worked examples (Aleven & Koedinger, 2002; Berthold et al., 2009; Chi et al., 1989;
Nokes-Malach et al., 2013; Renkl, 2002; 2014).
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Further, prior to this study, no prior research had investigated how self-explanations
interacted with different worked example formats, particularly those that involve dynamically
interacting with worked examples on-screen. The preliminary findings from this study suggest
that self-explanations are a robust and powerful aid in learning from worked examples,
regardless of the worked example format. Looking ahead, findings from a larger sample will
provide practical implications for designing worked examples for online settings by identifying

when worked examples with self-explanations are effective.

The Impact of Worked Examples on Cognitive Load

Beyond comparing learning across conditions, I analyzed students’ self-reported levels of
cognitive load to delineate how studying different worked example formats may impact student
learning at a more granular level. I predicted that the mirroring presentations of worked
examples would not increase students’ extraneous cognitive load but may increase germane
cognitive load by providing additional cues in the worked examples. With the current sample, I
found no differences in students’ overall self-reported cognitive load by condition. Looking into
the three types of cognitive load, I found no differences in students’ self-reported levels of
extraneous or germane load. However, contrary to my predictions I found that students in the
mirror-and-explain condition reported significantly higher levels of intrinsic load than students in
the view-and-explain condition.

At first glance, this finding might suggest that the task demands of mirroring and
explaining worked examples increases cognitive load more than just viewing and explaining
worked examples. However, the intrinsic load items on the survey adapted from Leppink and
colleagues (2013) address the complexity of the subject matter itself (i.e., algebraic equations)

rather than the complexity of the worked examples (extraneous load) or the overall activity
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(germane load). This finding indicates that students differed in their perceived complexity of the
subject matter rather than the cognitive strain experienced by studying the worked examples or
participating in the overall instructional activity. Given that I did not expect to find differences in
students’ intrinsic load by condition, this result raises speculation. On the one hand, students’
pretest scores were not significantly correlated with intrinsic load. It is possible that other
variables not included in this study may explain this finding or perhaps the demands of mirroring
and explaining worked examples increases the perceived complexity of simplifying equations.
On the other hand, this sample was small enough that no significant differences were detected in
pretest performance across conditions although anecdotally, students in the mirror-and-explain
condition did average approximately 7% lower on pretest than students in the view-and-explain
condition. This practical difference in pretest performance suggests that the difference in
reported intrinsic load may be attributed to differences in students’ prior knowledge by condition
rather than a reflection of the worked example designs.

I anticipate that data analysis with a full sample may reveal differences in cognitive load
across conditions; thereby, teasing apart some of the mechanisms through which worked
examples influence learning. For example, I anticipate that students with no prior experience
using GM may report higher levels of extraneous and germane load as they manage cognitive
demands associated with using, and learning from, a new technology tool. Results from the full
sample will shed light on how worked examples with different features may impact students’

cognitive processes to inform the design of worked examples for online environments.

Limitations and Future Directions

The study and reported results have multiple limitations that invite future directions.

Namely, the preliminary results reported are from a small sample, rendering the results largely
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inconclusive. In response to the small sample size, I opted to conduct data analysis without
accounting for individual differences that may have impacted treatment effects such as students’
prior knowledge, prior experience with GM, or time spent on the worked examples to control for
potential differences from condition to condition (e.g., Zhou et al., 2015).

Looking ahead, I plan to conduct a full round of data collection and conduct data analysis
that will more accurately estimate treatment effects by controlling for extraneous factors. For
example, in the current analyses, I did not control for students’ time spent on worked examples
due to the small sample size. With the full sample, I will include students’ average time spent on
the four worked example problems as a covariate in the statistical models to control for any
remaining differences between conditions. Including average time spent on worked examples as
a covariate will ensure that the estimated condition effects are independent of time spent on
worked examples. Similarly, I will include students’ performance at pretest as a covariate in the
final analyses to account for any potential effects of students’ prior knowledge of simplifying
equations and estimate the condition effects independent of prior knowledge. Additionally, since
prior experience using GM may prime students to perceive mathematical symbols as tangible
objects, it might subsequently impact how students behave and perform in this study. Therefore,
I will also include prior experience with GM as a binary covariate in our analyses with the full
sample to estimate the condition effects independent of students’ prior experience using GM.

Another prominent limitation is the ability to isolate the effect of students’ actions (i.e.,
interacting with GM to mirror worked examples) on learning and cognitive load. For example,
students in the viewing condition may have copied worked examples on paper while completing
the intervention. If that happened, those students may have benefited from “mirroring” the

worked examples on paper similar to the students who mirrored the worked examples on-screen.
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Conversely, we did not enforce standards for the self-explanations so some students may have
provided brief explanations with little-to-no rationale. Future work should seek to isolate the
effects of viewing vs mirroring and self-explanation prompts to draw causal influence about how
students’ interactions with worked examples impacts learning.

Further, this study invites multiple avenues of future research that coincide with learning
analytics and the growing synergy between learning analytics and embodied design
(Abrahamson et al., 2021). First, it may be worthwhile to analyze students’ log data from GM
during the intervention to test whether students’ behavior during the intervention varies
depending on the worked examples they study. Similarly, I did not analyze students’
self-explanations in this manuscript. Looking ahead, I plan to leverage natural language
processing techniques to explore patterns of speech detected in students’ self-explanations over
time and across conditions. For instance, under the assumption that mirroring worked examples
in GM allows students to treat math symbols as objects—moving and manipulating them
on-screen—I would predict that students in the mirror-and-explain condition would use more
dynamic language to describe the worked examples than their counterparts in the
view-and-explain condition. Additionally, rather than an online experiment, we may see more
mechanisms of students’ learning processes by conducting this study in a one-on-one interview
format to record students’ speech and gestures. I would predict that if students were asked to
verbally explain the steps taken in the worked examples to a researcher, we would see different
patterns of speech as well as gestures between students in the mirror-and-explain and
view-and-explain conditions. Together, these avenues of future work demonstrate the complexity
of example-based learning and the benefits of applying an interdisciplinary approach to the study

of example-based learning.
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Implications and Conclusions

This study contributes preliminary evidence to advance theories of cognition and
learning; simultaneously, it provides recommendations to researchers, teachers, and content
developers for how worked examples can and should be implemented in online learning
environments to support student learning in algebra. First, this study demonstrates one way that
researchers, teachers, and content developers may draw upon theories of cognitive load as well
as embodied cognition to design worked examples for online contexts that leverage affordances
unique to educational technologies. Second, the preliminary results demonstrate that the worked
example effect may be robust and not contingent on a specific format, suggesting that there is
flexibility in how worked examples may be effectively designed for online contexts. Preliminary
evidence also suggests that self-explanation prompts contributed to learning beyond studying
worked examples alone, suggesting that, in online settings across different formats, teachers and
content developers can consider pairing worked examples with self-explanation prompts.
However, these conclusions are inconclusive without further evidence from a larger sample to
increase power.

Looking ahead, finding any reliable differences in learning gains between two or more
conditions with a larger sample will inform cognitive and learning theory as well as offer
recommendations to design worked examples for online settings. As more online learning
platforms become available for algebra practice (e.g., Graspable Math, Weitnauer et al., 2016;
ASSISTments, Heffernan & Heffernan, 2014; Cognitive Tutor; Ritter et al., 2007), novel
research and cognitive theory should continue to help shape the design of instructional support in
these learning environments. To that end, this study provides an avenue to investigate how

worked examples may be designed to balance cognitive demand and support in online learning
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environments. Beyond the interpretations provided for the preliminary results reported here, I
anticipate that findings from a larger sample will provide theoretical contributions as well as

implications for future research, technology design, and educational practice.

127



References

Abrahamson, D., Nathan, M. J., Williams-Pierce, C., Walkington, C., Ottmar, E. R., Soto, H., &
Alibali, M. W. (2020). The future of embodied design for mathematics teaching and

learning. Frontiers in Education, 5, 1-29. https://doi.org/10.3389/feduc.2020.00147

Abrahamson, D., and Trninic, D. (2015). Bringing forth mathematical concepts: signifying
sensorimotor enactment in fields of promoted action. ZDM Math. Educ. 47, 295-306.
doi: 10.1007/s11858-014-0620-0

Abrahamson, D., Worsley, M., Pardos, Z. A., & Ou, L. (2021). Learning analytics of embodied
design: Enhancing synergy. International Journal of Child-Computer Interaction,
100409.

Adkins, M., & Noyes, A. (2018). Do advanced mathematics skills predict success in biology and
chemistry degrees? International Journal of Science and Mathematics Education, 16(3),
487-502.

Aleven, V. A., & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by
doing and explaining with a computer-based cognitive tutor. Cognitive Science, 26(2),
147-179.

Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ: Prentice
Hall.

Barsalou, L. W. (2008). Grounded cognition. Annu. Rev. Psychol., 59, 617-645.

Barbieri, C., & Booth, J. L. (2016). Support for struggling students in algebra: Contributions of

incorrect worked examples. Learning and Individual Differences, 48, 36-44.

128



Barbieri, C. A., & Booth, J. L. (2020). Mistakes on display: Incorrect examples refine equation
solving and algebraic feature knowledge. Applied Cognitive Psychology, 34, 862—878.
https://doi.org/10.1002/acp.3663

Berthold, K., Eysink, T. H. S., & Renkl, A. (2009). Assisting self-explanation prompts are more
effective than open prompts when learning with multiple representations. Instructional
Science, 37, 345-363.

Booth, J. L., Lange, K. E., Koedinger, K. R., & Newton, K. J. (2013). Using example problems
to improve student learning in algebra: Differentiating between correct and incorrect
examples. Learning and Instruction, 25, 24-34.

Booth, J. L., Oyer, M. H., Paré-Blagoev, E. J., Elliot, A. J., Barbieri, C., Augustine, A., &
Koedinger, K. R. (2015). Learning algebra by example in real-world classrooms. Journal
of Research on Educational Effectiveness, 8(4), 530-551.

Broaders, S. C., Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2007). Making children
gesture brings out implicit knowledge and leads to learning. Journal of Experimental
Psychology: General, 136(4), 539.

Carroll, W. M. (1994). Using worked examples as an instructional support in the algebra
classroom. Journal of Educational Psychology, 86(3), 360.

Chan, J. Y.-C,, Lee, J.-E., Mason, C. A., Sawrey, K., & Ottmar, E. (2021). From Here to There!
A dynamic algebraic notation system improves understanding of equivalence in
middle-school students. Journal of Educational Psychology. Advance online publication.
https://doi.org/10.1037/edu0000596

Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition

and Instruction, 8(4), 293-332.

129



Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer program.
Applied Cognitive Psychology, 10(2), 151-170.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations:
How students study and use examples in learning to solve problems. Cognitive Science,
13, 145-182.

Chi, M. T., De Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations
improves understanding. Cognitive Science, 18(3), 439-477.

Chi, M. T., & VanLehn, K. A. (1991). The content of physics self-explanations. The Journal of
the Learning Sciences, 1(1), 69-105.

Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2008). Gesturing makes learning last.
Cognition, 106(2), 1047-1058.

Cooper, G., & Sweller, J. (1987). The effects of schema acquisition and rule automation on
mathematical problem-solving transfer. Journal of Educational Psychology, 79, 347-362.

Dorfler, W. (2003). Mathematics and mathematics education: Content and people, relation and
difference. Educational Studies in Mathematics, 54(2), 147-170.

Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013).
Improving students’ learning with effective learning techniques: Promising directions
from cognitive and educational psychology. Psychological Science in the Public
Interest, 14(1), 4-58.

Faulkenberry, T. J., Ly, A., & Wagenmakers, E. J. (2020). Bayesian inference in numerical
cognition: A tutorial using JASP. Journal of Numerical Cognition, 6(2), 231-259.

Foglia, L., & Wilson, R. A. (2013). Embodied cognition. Wiley Interdisciplinary Reviews:

Cognitive Science, 4(3), 319-325.

130



Foster, N. L., Rawson, K. A., & Dunlosky, J. (2018). Self-regulated learning of principle-based
concepts: Do students prefer worked examples, faded examples, or problem solving?.
Learning and Instruction, 55, 124-138.

Ginns, P., Hu, F. T., Byrne, E., & Bobis, J. (2016). Learning by tracing worked examples.
Applied Cognitive Psychology, 30(2), 160-169.

Ginns, P., Hu, F. T., & Bobis, J. (2020). Tracing enhances problem-solving transfer, but without
effects on intrinsic or extraneous cognitive load. Applied Cognitive Psychology, 34(6),
1522-1529.

Goldstone, R., Marghetis, T., Weitnauer, E., Ottmar, E., & Landy, D. (2017). Adapting
perception, action, and technology for mathematical reasoning. Current Directions in
Psychological Science, 26(5), 434-441. DOI: https://doi.org/10.1177/0963721417704888

Hilbert, T. S., & Renkl, A. (2009). Learning how to use a computer-based concept-mapping tool:
Self-explaining examples helps. Computers in Human Behavior, 25(2), 267-274.

Hilbert, T. S., Renkl, A., Kessler, S., & Reiss, K. (2008). Learning to prove in geometry:
Learning from heuristic examples and how it can be supported. Learning and Instruction,
18(1), 54-65.

Hoogerheide, V., Renkl, A., Fiorella, L., Paas, F., & Van Gog, T. (2019). Enhancing
example-based learning: Teaching on video increases arousal and improves
problem-solving performance. Journal of Educational Psychology, 111(1), 45.

Hu, F. T., Ginns, P., & Bobis, J. (2015). Getting the point: Tracing worked examples enhances

learning. Learning and Instruction, 35, 85-93.

https://doi.org/10.1016/j.learninstruc.2014.10.002

131



Hulse, T., Daigle, M., Manzo, D., Braith, L., Harrison, A., & Ottmar, E. (2019). From here to
there! Elementary: a game-based approach to developing number sense and early
algebraic understanding. Educational Technology Research and Development, 67(2),
423-441.

JASP Team (2020). JASP (Version 0.14.1)[Computer software].

Kena, G., Musu-Gillette, L., Robinson, J., Wang, X., Rathbun, A., Zhang, J., ... & Velez, E. D. V.
(2015). The Condition of Education 2015. NCES 2015-144. National Center for
Education Statistics.

Landy, D., & Goldstone, R. L. (2010). Proximity and precedence in arithmetic. The Quarterly
Journal of Experimental Psychology, 63(10), 1953-1968.

Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life.
Cambridge University Press.

Lee, J. (2013). College for all: Gaps between desirable and actual P—12 math achievement
trajectories for college readiness. Educational Researcher, 42(2), 78—88.

Leppink, J., Paas, F., Van Gog, T., Van Der Vleuten, C. P. M., & Van Merriénboer, J. J. G.
(2014). Effects of pairs of problems and examples on task performance and different
types of cognitive load. Learning and Instruction, 30, 32—42.

Leppink, J., Paas, F., Van der Vleuten, C. P., Van Gog, T., & Van Merriénboer, J. J. (2013).
Development of an instrument for measuring different types of cognitive load. Behavior
research methods, 45(4), 1058-1072.

Margulieux, L. E., Morrison, B. B., Guzdial, M., & Catrambone, R. (2016). Training learners to
self-explain: Designing instructions and examples to improve problem solving. In Looi,

C. K., Polman, J. L., Cress, U., and Reimann, P. (Eds.). Transforming Learning,

132



Empowering Learners: The International Conference of the Learning Sciences (ICLS)
2016, Volume 1. Singapore: International Society of the Learning Sciences.
https://www.isls.org/icls/2016/docs/ICLS2016 Volume 1 30June2016.pdf

Mayer, R. E. (2020). Advances in designing instruction based on examples. Applied Cognitive
Psychology, 34(4), 912-915.

McLaren, B. M., van Gog, T., Ganoe, C., Karabinos, M., & Yaron, D. (2016). The efficiency of
worked examples compared to erroneous examples, tutored problem solving, and
problem solving in computer-based learning environments. Computers in Human
Behavior, 55, 87-99.

Nathan, M. J. (2014). Grounded mathematical reasoning. In L. Shapiro (Ed.). The Routledge
handbook of embodied cognition (pp. 171-183). Albingdon, UK: Routledge.

Nathan, M. J. (2021). Foundations of embodied learning: A paradigm for education. Routledge.

Nathan, M. J., and Walkington, C. (2017). Grounded and embodied mathematical cognition:
promoting mathematical insight and proof using action and language. Cogn. Res.
Principles Implicat. 2:9.

Nokes-Malach, T. J., VanLehn, K., Belenky, D. M., Lichtenstein, M., & Cox, G. (2013).
Coordinating principles and examples through analogy and self-explanation. European
Journal of Psychology of Education, 28(4), 1237-1263.

Ottmar, E. R., Landy, D., Weitnauer, E., & Goldstone, R. (2015). “Graspable mathematics: using
perceptual learning technology to discover algebraic notation,” in Integrating
Touch-enabled and Mobile Devices into Contemporary Mathematics Education.

Paas, F., & Sweller, J. (2012). An evolutionary upgrade of cognitive load theory: Using the

human motor system and collaboration to support the learning of complex cognitive

133



tasks. Educational Psychology Review, 24, 27-45.

https://doi.org/10.1007/s10648-011-9179-2

Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London: National Research and
Development Centre for Adult Literacy and Numeracy.

Reed, S. K., Corbett, A., Hoffman, B., Wagner, A., & McLaren, B. (2013). Effect of worked
examples and Cognitive Tutor training on constructing equations. Instructional Science,
41(1), 1-24.

Renkl, A. (2002). Worked-out examples: Instructional explanations support learning by
self-explanations. Learning and Instruction, 12(5), 529-556.

Renkl, A. (2014). Toward an instructionally oriented theory of example-based learning.
Cognitive Science, 38(1), 1-37.

Renkl, A. (2017). Instruction based on examples. In R. E. Mayer & P. A. Alexander (Eds.),
Handbook of research on learning and instruction (2nd edn., pp. 325-348). New York,
NY: Routledge.

Renkl, A., & Eitel, A. (2019). Self-explaining: Learning about principles and their application.
Cambridge handbook of cognition and education, 528-549.

Retnowati, E., Ayres, P., & Sweller, J. (2010). Worked example effects in individual and group
work settings. Educational Psychology, 30(3), 349-367.

Rittle-Johnson, B., & Loehr, A. M. (2017). Eliciting explanations: Constraints on when
self-explanation aids learning. Psychonomic Bulletin & Review, 24(5), 1501-1510.

Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual
and procedural knowledge? An experimental study on learning to solve equations.

Journal of Educational Psychology, 99(3), 561.

134



Rourke, A., & Sweller, J. (2009). The worked-example effect using ill-defined problems:
Learning to recognise designers' styles. Learning and Instruction, 19(2), 185-199.

Salden, R. J., Koedinger, K. R., Renkl, A., Aleven, V., & McLaren, B. M. (2010). Accounting
for beneficial effects of worked examples in tutored problem solving. Educational
Psychology Review, 22(4), 379-392.

Schalk, L., Roelle, J., Saalbach, H., Berthold, K., Stern, E., & Renkl, A. (2020). Providing
worked examples for learning multiple principles. Applied Cognitive Psychology, 34(4),
813-824.

Schonbrodt, F. D., & Wagenmakers, E. J. (2018). Bayes factor design analysis: Planning for
compelling evidence. Psychonomic Bulletin & Review, 25(1), 128-142.

Smith, H., Closser, A. H., Ottmar, E. R., & Chan, J. Y. C. (2022). The impact of algebra worked
example presentations on student learning. Applied Cognitive Psychology, 1-15.
https://doi.org/10.1002/acp.3925

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive
Science, 12,257-285.

Sweller, J. (1989). Cognitive technology: Some procedures for facilitating learning and problem
solving in mathematics and science. Journal of Educational Psychology, 81, 457-466.

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning
and Instruction, 4(4), 295-312.

Sweller, J. (2006). The worked example effect and human cognition. Learning and Instruction.

Sweller, J. & Cooper, G.A. (1985). The use of worked examples as a substitute for problem

solving in learning algebra. Cognition and Instruction, 2.

135



Sweller, J., van Merriénboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional
design: 20 years later. Educational Psychology Review, 31(2), 261-292.

Tang, M., Ginns, P., & Jacobson, M. J. (2019). Tracing enhances recall and transfer of
knowledge of the water cycle. Educational Psychology Review, 31(2), 439-455.

VanDerHeyden, A. M., & Burns, M. K. (2009). Performance indicators in math: Implications for
brief experimental analysis of academic performance. Journal of Behavioral Education,

18(1), 71-91. https://doi.org/10.1007/s10864-009-9081-x

VanLehn, K., Jones, R. M., & Chi, M. T. (1992). A model of the self-explanation effect. The
journal of the Learning Sciences, 2(1), 1-59

van Gog, T., Hoogerheide, V., & van Harsel, M. (2020). The role of mental effort in fostering
self-regulated learning with problem-solving tasks. Educational Psychology Review,
1-18.

van Gog, T., Kester, L., & Paas, F. (2011). Effects of worked examples, example-problem, and
problem-example pairs on novices’ learning. Contemporary Educational Psychology, 36,
212-218.

van Gog, T., & Rummel, N. (2010). Example-based learning: Integrating cognitive and
social-cognitive research perspectives. Educational Psychology Review, 22(2), 155-174.

van Harsel, M., Hoogerheide, V., Verkoeijen, P., & van Gog, T. (2019). Effects of different
sequences of examples and problems on motivation and learning. Contemporary
Educational Psychology, 58, 260-275.

van Harsel, M., Hoogerheide, V., Verkoeijen, P., & van Gog, T. (2020). Examples, practice
problems, or both? Effects on motivation and learning in shorter and longer sequences.

Applied Cognitive Psychology, 34, 793—812. https://doi.org/10.1002/acp.3649

136



van de Schoot, R., & Depaoli, S. (2014). Bayesian analyses: Where to start and what to report.
The European Health Psychologist, 16(2), 75-84.

Wagenmakers, E. J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., ... & Morey, R. D.
(2018). Bayesian inference for psychology. Part II: Example applications with JASP.
Psychonomic Bulletin & Review, 25(1), 58-76.

Ward, M., & Sweller, J. (1990). Structuring effective worked examples. Cognition and
Instruction, 7, 1-39.

Weitnauer, E., Landy, D., & Ottmar, E. (2016, December). Graspable math: Towards dynamic
algebra notations that support learners better than paper. In 2016 Future Technologies
Conference (FTC) (pp. 406-414). IEEE.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4),
625-636.

Yeo, L. M., & Tzeng, Y. T. (2020). Cognitive effect of tracing gesture in the learning from
mathematics worked examples. International Journal of Science and Mathematics
Education, 18(4), 733-751.

Zhi, R., Price, T. W., Marwan, S., Milliken, A., Barnes, T., & Chi, M. (2019, February).
Exploring the impact of worked examples in a novice programming environment. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp.
98-104).

Zimmerman, B. J., & Kitsantas, A. (2002). Acquiring writing revision and self-regulatory skill

through observation and emulation. Journal of Educational Psychology, 94, 660—668.

137



Zhou, G., Price, T. W., Lynch, C. F., Barnes, T., & Chi, M. (2015). The Impact of Granularity on
Worked Examples and Problem Solving. In Proceedings of the 37th Annual Meeting of

the Cognitive Science Society, CogSci 2015, Pasadena, California, USA, pp. 2817-2822.

138



Appendix A. Pretest and Posttest Items.

Pretest Items Source Posttest Items Source
8(2x +9)=156 Engage NY 11(x+ 10)=132 Engage NY
—-(x—5+2-x=3 Project Utah —(4x—10)+4—-4x=6 Author
5 —4(2p — 5) + 3b=15 Project Utah 30 — 4(p — 5) + 15 =20 Author
10=3(x—2)—2(5x—1) Project Utah 20 =3(2x—2) — 2(5x—1) Author
32x—14)+x=15-(-9x—5) Engage NY 6(4x—28)+2x=30—(—18x— Author
10)
—4x —2(8x+1)=—(—2x—10) Engage NY —6x—4(3x+2)=—(—1x—2) Author
5(p—12)=3(y—-12)+ 20 Author 20-4)=(y—-4)+6 Author
3(h+2)+4(h+2)=35 Author 2(h+ 1)+ 4h+1)=12 Author

Note. Engage NY and Project Utah are open-source curricula. Problems created by the author
were adapted from open source content to match equation structures between the pretest and

posttest items. Items 2, 3, 5, and 6 are transfer items.
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Appendix B. Algebraic equations used in worked examples across all conditions and the paired

problem completed by students after each worked example.

Worked Examples Paired Practice Problem

2(x-3) =8 3(y-4)=18
2x-6 =28

2x=14

x=7

2(t-1) + 3(t-1) = 10 3(t-1) + 3(-1) = 30
26-2+3t-3=10

5¢-5=10

5¢=15

t=5

5(+1)=30+1)+8 S(m+4)=2(m+4)+15
S5y+5=3y+3+38

Sy+5=3y+11

2y+5=11

2y=6

y=3

9=5(m+2)+4(m+2) 9=3(+5)+6(y+5)
9=5m+10+4m+ 8

9=9m + 18

-9=9m

-l=m

Note. The worked example derivations are those used by Rittle-Johnson and Star (2007).

140



Appendix C. Cognitive load instrument adapted from Leppink and colleagues (2013) for the
measurement of intrinsic load (items 1, 2, 3), extraneous load (items 4, 5, 6), and germane load

(items 7, 8, 9, 10).

Instructions: All of the following questions refer to the activity that just finished. Please respond
to each of the questions on the following scale (0 meaning not at all the case and 10 meaning

completely the case).

[1] The topic covered in the activity was very complex.

[2] The activity covered equations that I perceived as very complex.

[3] The activity covered concepts that I perceived as very complex.

[4] The worked examples during the activity were very unclear.

[5] The worked examples were, in terms of learning, very ineffective.

[6] The worked examples were full of unclear language.

[7] The activity really enhanced my understanding of the topic(s) covered.

[8] The activity really enhanced my knowledge and understanding of solving equations.
[9] The activity really enhanced my understanding of the equation-solving strategies
covered.

[10] The activity really enhanced my understanding of equation-solving.
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Chapter 5. Discussion

This chapter summarizes key takeaways from the research studies presented in this
dissertation as well as interpretations drawn from the cumulative findings. I address prominent
limitations and close with a summary of related ongoing and future work to continue this

research program.

Summary and Interpretations of Findings

The studies presented describe: 1) how perceptual cues impact students’ performance on
simplifying arithmetic problems in an online tutoring system (Chapter 2), 2) the relation between
students’ prior knowledge, inhibitory control, and perceptual cues (Chapter 3), and 3) how
embodied features may be integrated into online worked examples and impact students’ learning
with a dynamic notation tool (Chapter 4). First, the results presented in Chapter 2 conceptually
replicate prior research on perceptual learning in an authentic learning environment by
demonstrating that physical spacing in arithmetic expressions impacts students’ performance in
an online learning environment. Second, the study presented in Chapter 3 extends this work by
bridging cognitive and developmental theories. The results showed that spacing in arithmetic
problems also impacts college students, and may be moderated by students’ prior knowledge,
although this effect does not seem to be impacted by students’ inhibitory control. Third, while
the results in Chapter 4 were inconclusive, preliminary evidence contributes to the literature on
the worked example effect by theorizing how multiple cognitive theories (i.e., cognitive load and
embodiment) may work together to influence example-based learning. Together, these studies

demonstrate that perceptual and embodied cues may be integrated in different ways in online
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learning platforms and that by doing so, they may impact students’ performance and learning in
different ways (Table 1).

Table 1

Summary of Studies by Platform, Perceptual or Embodied Cue, and Effect

Platform Study Content Perceptual or Effect
Population Embodied Cue
Study 1  ASSISTments 5-12th grade Order of Spatial Performance:
students operations proximity Accuracy
Study 2 Psychopy College Order of Spatial Performance:
students operations proximity Response time
Study 3  Graspable 9th grade Simplifying  Mirroring Learning:
Math students equations worked Inconclusive
Activities examples

Although these research projects involve short experimental studies with subtle
manipulations, these findings support the literature on perceptual and embodied learning.
Namely, even the smallest details of students’ environments can potentially make a difference by
leveraging perceptual supports and students’ body-based resources to make learning algebra and
pre-algebraic concepts easier. What’s more, perceptual scaffolds and embodied features can be
easily implemented in instructional practices and math content on online platforms. By exploring
how we can integrate these supports into online instructional material, we can provide feasible,
cost-effective recommendations for researchers, teachers, and content developers that may

generalize across different online learning platforms.
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Current Limitations Invite Future Directions

Beyond facing recruitment difficulties due to the COVID-19 pandemic, this dissertation
research is limited in its scope and consequently, implications for theory and practice. Notably,
although conducting online experiments provided clean experimental designs, the presented
results neglect the possibility of uncovering more complex outcomes that may have been
achieved with a more qualitative approach, such as observing students’ speech and gestures in
addition to their performance on arithmetic and algebra tasks. Largely, my research to date has
focused on general effects of performance and learning found across samples of participants
without considering behavioral processes that could influence the impact of perceptual or
embodied features of instructional materials on performance or learning. Similarly, these
experiments are brief, taking place over the course of roughly one hour. None of this research
considers the impact of instructional support with perceptual and embodied support over longer
periods of time.

Looking ahead, I aim to advance cognitive theory and methodological practice in the
learning sciences and to provide recommendations for technology design and instructional
support in online learning environments. I intend to continue developing and scaling my research
program to investigate how we can leverage perceptual support and embodied experiences in
mathematics education. First, I intend to continue exploring how individual differences, such as
inhibitory control, may influence the relationship between perceptual and embodied features of
instructional materials and learning in algebra. Second, I intend to explore how instructional
support should be implemented in online platforms to effectively help students long term. Third,

I plan to develop a second line of exploratory research dedicated to questioning when and how
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methodologies across the learning sciences should be used in different contexts. Each of these

future directions are discussed in more detail in the following sections.

Embracing Complexity with Worked Examples and Instructional Materials

Scheiter (2020) recently commented that the study of example-based learning has
advanced in the past twenty years most noticeably by “embracing complexity”. Scheiter (2020)
reasoned that beyond studying when and why worked examples are beneficial, we also need to
consider how individual differences may impact the relation between worked examples and
learning. I agree with this call to action and will go further to say that it also seems applicable for
worked examples and instructional materials that try to integrate perceptual and embodied
features to support learning.

I believe that the study presented in Chapter 4 begins to embrace complexity by
investigating not just how students’ performance and learning are impacted by exposure to
instructional materials but also the underlying mechanisms like cognitive load. In addition to this
work, [ have also conducted two small studies observing how algebra students (Closser et al.,
2022a) and college students (Closser et al., 2022b) perceive the helpfulness of different worked
example formats and why. These studies build off the work presented in Smith, Closser, Ottmar,
and Chan (2022) which found that algebra students experienced learning gains after exposure to
any one of six perceptually different worked examples in instructional practice. By observing
students’ reactions to the worked examples, I consider these follow-up studies to be foundational
steps in embracing complexity in worked examples by analyzing which features students attend
to and how that information may inform future design choices in worked examples for algebra.

More broadly, the effectiveness of instructional materials in math are also impacted by

students’ individual differences. Perhaps most commonly, prior work has demonstrated that
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students’ prior knowledge impacts the effectiveness of interventions with worked examples (e.g.,
Kalyuga et al., 2001). But beyond prior knowledge, what other individual differences might
impact how students learn from worked examples with perceptual support? Recently, Tempelaar
and colleagues (2020) demonstrated that example-based learning research may be doing the field
a disservice by searching for overall effects rather than accounting for different learning
dispositions and behavioral profiles among students. Similarly, Schwaighofer and colleagues
(2016) found that components of executive function moderated the worked example effect
whereas prior knowledge did not. Together, these studies suggest that there may be other
underlying mechanisms behind example-based learning that could have implications for the
design and implementation of instructional support. Additionally, to the best of my knowledge,
few studies have investigated the role of prior knowledge and individual differences in learning
from worked examples that leverage perceptual features. I believe that the study presented in
Chapter 3 provides a foundation for uncovering the role that individual differences, such as
inhibitory control, play in how students learn from various instructional materials. Looking
ahead, I plan to integrate theoretical perspectives to better understand factors, such as individual
differences, that possibly influence the effectiveness of worked examples and other instructional

materials.

Implementing Long-Term Instructional Support in Online Platforms

Beyond considering how individual differences may impact the way students learn from
instructional materials with perceptual support, I also plan to explore how instructional support
should be implemented long-term in online platforms to increase the ecological validity of my
work and provide more substantiated recommendations for online platforms. The research

presented in this dissertation solely includes brief studies involving one to three sessions,
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preventing me from being able to draw any conclusions about how students may learn from these
instructional supports over time. For instance, evidence suggests that using a concreteness fading
approach for instructional support best improves student learning over time (e.g., see Fyfe et al.,
2014 for a review; Fyfe & Nathan, 2019; Ottmar & Landy, 2017), including fading of worked
examples (Miller-Cotto & Auxter, 2019).

To advance this area of research, I intend to examine the effects of concreteness fading
with perceptual and embodied scaffolds in online learning environments. I wonder, how should
perceptual scaffolds be implemented in online learning systems to optimize learning over the
course of a semester? Specifically, do students learn more if they start practicing early algebra
concepts in problem sets that utilize scaffolds (e.g., through the use of congruent spacing, color,
dynamic worked examples) to direct their attention toward the structures of math notation and
then slowly remove those supports over time (e.g., by decreasing spacing, removing color,
removing dynamic features)? I intend to compare the impact of the concreteness fading approach
on student learning gains to their peers who receive no perceptual support or consistent
perceptual support over time. To do so, [ will use a range of data and mixed methods to study
student learning gains over several weeks as well as their behaviors within a problem set.
Ultimately, this research will contribute to our understanding of how perceptual features impact

student learning and provide recommendations for online learning platforms.

Advancing Methodological Practices in the Learning Sciences

In addition to my primary line of research, I also aim to advance the field’s understanding
of how methodologies from subdisciplines of the learning sciences may be appropriately used
across projects and contexts to provide new insights on learning. In this dissertation research, I
primarily applied frequentist analysis methods (including analysis of variance and hierarchical
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linear models) as well as Bayesian analysis methods to offer multiple interpretations of the
results. That said, my research has sparked discussions on the various methodologies used in
learning science research and has prompted exploratory work on the applications of qualitative,
quantitative, and computational methods in educational research. Looking ahead, I plan to pursue
a second line of research focusing on the application of quantitative and computational methods
of data analysis in the learning sciences.

My colleagues and I have already made strides in exploring how different methods from
educational data mining and learning analytics can be applied to rich datasets from different
contexts in the learning sciences beyond large-scale log files. For instance, we used clustering
analyses to identify profiles of student behavior during measurement tasks (Harrison, Smith,
Botelho, Ottmar, & Arroyo, 2020) then expanded this work to show how machine learning can
be applied to relatively small, multimodal datasets from in-person studies and afford more
regularization in models (Closser et al., 2021). This work demonstrates the synergy between
learning analytics and embodied design (Abrahamson et al., 2021), showing that
cross-disciplinary applications of quantitative and computational methods may be beneficial for
advancing the field’s understanding of how students learn through multimodal tasks. Our
findings are directly applicable to possible extensions of the research presented in this
dissertation: for instance, machine learning techniques may be applied, as informed by cognitive
theories, to further analyze log data (e.g., students’ behaviors and performance on the paired
practice problems) from the study presented in Chapter 4. As more educational research is
conducted in online platforms, it is critical to consider how we can appropriately analyze a

variety of data from different sources.
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Similarly, I have asked whether we can advance our field by refining the quantitative
methods used to draw causal inferences about learning. My colleagues and I have run simulated
experiments to determine which and when different modeling approaches are appropriate for
analyzing data from online experiments with student-level randomization to account for the
naturally nested structure of students in classrooms (Closser et al., in preparation). On the one
hand, using student-level randomization in experiments should alleviate any group level
differences. On the other hand, my prior work (Chapter 2; Harrison, Smith, Hulse, & Ottmar,
2020) suggests that student-level randomization may not completely offset class- or school-level
differences in samples. This discrepancy, along with recent work debating the value of multilevel
modeling (e.g., McNeish et al., 2017) suggested that it may be worthwhile, as a field, to
reconsider when and how to appropriately analyze data from online experiments in educational
research in order to accurately estimate treatment effects. Through this budding line of research,
I am motivated to leverage the strengths, and minimize the limitations, of methodologies used in

the learning sciences to advance research and provide new insights into learning.

Conclusion

The three projects presented in this dissertation provide a foundational approach to
investigating how perceptual scaffolds and embodied features within instructional materials
impact students’ performance and learning in online settings. I have been excited by this line of
research and am eager to continue pursuing it because I believe that investigating how perceptual
and embodied learning occur in online settings foots the bill for research in Pasteur’s quadrant by
balancing principles of basic and applied research (Stokes, 2011). On the one hand, this research
contributes to our theoretical understanding of how cognitive processes occur and are influenced

by perception and embodied experiences. Further, it presents opportunities to consider how
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different theoretical perspectives may overlap and have implications for cognitive and learning
processes in math. On the other hand, each of these projects provide practical implications for
instructors and content developers for online platforms by demonstrating a) how perceptual and
embodied scaffolds may be feasibly implemented in online learning environments and b) how
students’ behavior, performance, and learning outcomes may be impacted by these features.
Ideally, this line of research will advance theory while also leading to the creation of guidelines
for small, positive changes in the ways that math instructional materials are presented to students

in online settings to support math learning.
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