
Samariteen AIM Hotline

An Interactive Qualifying Project
submitted to the faculty of

Worcester Polytechnic Institute
in partial fulfillment of the requirements for the

degree of Bachelor of Science

by
Elliot Pennington

Date:
12 October 2009

Report Submitted to:
Gary F. Pollice

Worcester Polytechnic Institute

This report represents work of WPI undergraduate students submitted to the
faculty as evidence of a degree requirement. WPI routinely publishes these

reports on its web site without editorial or peer review. For more information
about the projects program at WPI, see

http://www.wpi.edu/Academics/Projects.

1

Abstract

The Samaritans of Boston are an organization which provides anonymous
telephone council for suicidal individuals. The Samaritans organization have
been seeking a way to expand their hot-line services from only a telephone
hot-line to a service that would feature a computer instant messaging hot-line
in addition to the telephone service.

The Samariteen IQP project aimed to build the tool that would provide
hot-line functionality for instant messaging over the Internet. The project
was generally a success, though not all of the desired features were imple-
mented, the basic hot-line technology is functional.

Contents

1 Executive Summary 2

2 Introduction 5

3 Methodology 6
3.1 Requirements Analysis . 6
3.2 Order Of Operations . 7
3.3 Unexpected Problems . 8

4 Results 10

5 Conclusions 11

1

1 Executive Summary

The first step of building a software product is always to analyze the existing

requirements very carefully. For this project, not all of the requirements were

initially clear.

Originally, The Samaritans were unsure whether they wanted a system to

handle text messaging from cell phones, or if they wanted a system to handle

instant messaging from computers over the Internet. My team consulted an

IQP that had been completed the previous year investigating which of those

two options would be the most effective. That project showed that a product

built around instant messaging would be more popular than would a product

for cell phone text messaging.1

With the main idea of the project established, we needed to collect the

particulars. We had a meeting with some representatives from the Samari-

tans organization who were able to help us understand exactly what it was

that they wanted the tool to be able to do.

The basic structure of the product required a way for multiple Samari-

tan representatives to have multiple independent conversations with clients

behind the same screen name. All of the conversations needed to be able

to be recorded into a history database. In addition, none of the real incom-

ing client screen names could be visible to the Samaritan representatives; it

needed to be completely anonymous.

1Nguyen, Tuong-Vi (2007). Samaritans’ Teen Line. Unpublished Interactive Qualify-
ing Project. Worcester Polytechnic Institute.

2

With the requirements mostly clear, we started to prioritize. The major

backbone of the project is the basic technology for an AIM hot-line. The

additional features, such as history and anonymity, could be built in later,

so long as the backbone provided a flexible infrastructure for expansion.

We realized that we actually needed two separate applications for this

product. One is a server application that connects to the AIM network

and accepts incoming instant messages from the Internet. One is a client

application that the Samaritan representatives can run on their computers

to connect to the server application. We chose to build the applications with

the Python programming language. There existed some very simple AIM

libraries for Python that provided functionality for connecting to AIM and

sending and receiving instant messages.

Since the client application would be useless unless it could connect to

the server application, I took on the task of building the server first. It

needed a fairly large amount of concurrent functionality. I implemented the

concurrency with built in Python threads (rather than OS level threads),

which are not the best for performance, but they do provide the necessary

functionality.

The server application needed to perform a number of tasks simultane-

ously. It needed to wait for incoming AIM messages, and decide what to

do with them. It needed to listen for connecting Samaritan representatives.

It needed to route messages from connected Samaritan representatives to

the correct clients. It needed to have a flexible enough infrastructure so

3

as to allow expansion for screen name encryption and history. The server

also needed to be able to support centralized settings for specific users. Not

all users (Samaritan representatives) will have the same permissions on the

system.

The client application also needed a lot of concurrent functionality, though

it was initially clear that this was the case. We needed to be able to allow

the users to log into the server such that they would be registered to receive

messages from clients. The client application needed to be able to carry on

an arbitrary number of conversations each in their own window, and also be

able to listen for new conversations. It turned out that a lot of threading

was needed even for just a single conversation window, largely because of the

way that the graphics work.

We did encounter a major setback during the construction of the basic

technology. One of the reasons that we chose to use Python was due to it’s

multiplatform portability. Python works on Windows, Linux, Solaris, and

Mac OS. Unfortunately, we got stuck on one of the few unavoidable porta-

bility issues. All of the initial testing of the client application graphics was

done on an Apple computer running Mac OS. When we moved the software

to Windows for testing, the interface wouldn’t work. It took extensive de-

bugging to diagnose the issue. We in denial for a long time; we did not want

it to be a portability bug. It would have been easier if it was a problem in

our code that we could have fixed. We wound up having to create a new

solution in the form of a tabbed window for multiple conversations.

4

We did succeed in our quest to build the basic hot-line technology. Multi-

ple users can log into the servers and have multiple independent conversations

with clients. Unfortunately, due to our setbacks with the client application,

we did not finish all of the additional requested features.

2 Introduction

Saving lives was the fundamental purpose of the Samariteen project. The

Samaritans organization has provided anonymous telephone counseling ser-

vices since 1974. Their telephone hot-line runs twenty four hours a day, seven

days a week. They also run a special hot-line for teenage callers called the

Samariteen help line. This is a special line staffed by teenagers. The Samar-

itans were seeking a means by which to popularize their Samariteen line. A

previous IQP did research that indicated that a change in technology would

yield better results. That IQP presented results to show that a hot-line to

support computer instant messaging over the Internet would probably see

the greatest increase in usage among teenagers. 2

The Samariteen IQP project handled, along with the members of the

Samariteen MQP, the construction of the software tool to support an instant

messaging hot-line service. This report will detail how and we built the tool

the way we did, along with the problems we encountered during the process,

and how we solved them.

2Nguyen, Tuong-Vi (2007). Samaritans’ Teen Line. Unpublished Interactive Qualify-
ing Project. Worcester Polytechnic Institute.

5

3 Methodology

The methodology of software engineering projects has been a hotly debated

topic for a long time. We attempted to be somewhat agile in our approach

to the project, in that we developed our product in such a way as to accept

and welcome changes in the requirements during the development process.

Sometimes, people will build a product with methodologies that are very

inflexible, and when requirements change, large quantities of the code have

to be rewritten to accommodate the alterations necessary to fulfill the new

requirements. We wanted to avoid having that sort of problem. We were

somewhat successful.

3.1 Requirements Analysis

Requirements analysis is a very necessary stage of any software project. If

a team gets the requirements wrong, the customer will not be pleased. We

met with some people from the Samaritans of Boston and they explained

to us what they wanted. For certain aspects of the requirements, they were

somewhat unsure of what they wanted. It took quite a while for them to

decide on how accessible they wanted the chat transcripts to be, for example.

We eventually did flush out exactly what our tool needed to do. We broke

the features down into specific tasks. This is not always a trivial process. It

takes a fair amount of experience to be able to look at a requirement from a

user and break that into specific technical tasks that need to be operational

6

for that feature to work.

For example, they had wanted transcripts saved for each chat. This

required a database to be set up with the fields to store all the information,

connected to the central server application. It also required a graphical front

end for users so that they could actually view the history that had been

stored. It required a message passing system between the client and server

so that the server can parse commands separately from outgoing messages.

It required a query builder to parse the commands from the client application

into queries for the database, and a means to return the results to the user

application. So, one feature requirement can easily mean a large number of

tasks.

Our team set up a database of the requirements for our project so that

we could keep track of everything. We used the WPI Sourceforge tool to

help us organize everything. Once we had all this figured out, it was time to

start delving into the specifics.

3.2 Order Of Operations

When a computer receives messages over the Internet, it doesn’t automati-

cally know what to do with them or how to display the data. It has to run

a bunch of checks on the received message to figure out what it is and where

it goes. The order in which these checks are performed were particularly rel-

evant for our project, because if something was checked in the wrong place,

the whole thing might not work.

7

When our AIM server receives an instant message, it just receives a big

string of characters. From that string, we need to parse out specific informa-

tion, most notably: the screen name that sent the message, and the message

itself. Our system then needs to encrypt the incoming screen name imme-

diately, and check in some software table to see if any connected Samaritan

representative is having a conversation with the client associated with the

encrypted screen name of the incoming message. If so, that message needs

to be routed directly to that Samaritan representative across the network.

If not, it must be a new message, and a separate algorithm must be run to

determine to whom of the connected Samaritan representatives to send the

new message. A default message must be sent if no Samaritan representa-

tives are connected to the server. All of these cases must be checked for each

message received by the system.

A similar process occurs in the client application. The client application

receives messages from the server, but it needs to check to see if the message

is for a new conversation, in which case a new window needs to be spawned,

or if it is for an existing conversation, in which case the message needs to be

appended to the appropriate window.

3.3 Unexpected Problems

Unexpected problems are something that anyone writing software learns to

expect. The trick is to anticipate things to break, and write code in a way

that allows for easy modification, so that the problem can be fixed quickly.

8

We did encounter one major unexpected problem during our project. It set

us back for a long time, not so much because we were unable to fix it, but

because it took a long time to determine the root cause of the issue.

The client application naturally uses a graphical toolkit to display the

conversations and to allow the users to enter text to send to their clients.

Originally, we had each conversation running in a separate window. All of the

original AIM clients from AOL used this strategy as well. This functionality,

with a new window appearing for each conversation, was built primarily on

my personal computer, which incidentally is an Apple computer running the

Macintosh Operating System. The graphical toolkit we used to display the

windows is a cross-platform package called Tk. Tk is a mature product and

has been thoroughly tested on all of the major systems: Linux, Windows,

Mac, Solaris. So we knew that any Tk code that worked on my Macintosh

would also work on any Windows computer.

And this turned out to be true. Tk is portable. Unfortunately, the

way processes are controlled in the Windows operating system makes it im-

possible to listen for events on multiple graphical windows simultaneously.

The amount of debugging required to figure this out sapped a catastrophic

amount of time from our project. In addition to this problem, there were

assorted synchronization problems that had to be fixed before the portabil-

ity issue could even be considered as a possible bug. Dealing with thread

synchronization with infinite loops is famously difficult, and sometimes im-

possible. Debugging software does not handle thread scheduling well, which

9

adds further difficulty to the process.

Eventually, once the synchronization issues were solved, and the program

still did not work on Windows, we were left with few places to turn for

a solution. A few more steps through the debugger led us to realize that

the true problem came from differences in the way the operating systems

implement their process control, or, at the very least, in the way the two

different versions of Tk (Windows vs. Mac) are programmed to work with

the operating system process control.

Luckily, we knew our threading system still worked, so we were able to

come up with a fix. We simply implemented tabbed windows. This way, each

new conversation would open in a new tab in the same window as opposed

to a completely different window. Tk does not support tabbed windows, but

it was possible to hack up an implementation with radio buttons. With this

change, we put our same old threading and messaging mechanism underneath

the graphical layer for a functional tabbed interface. Because of our flexible

design, we were able to make a significant change to the program without

needing to change much code.

4 Results

By the end of the project period we had developed a fairly robust instant mes-

saging hot-line system. The server program could receive instant messages

using the AIM protocol, distribute them to a new logged in Samaritan repre-

10

sentative the appropriate Samaritan representative (in the case of an existing

conversation). The server application has database connectivity functional-

ity built in, along with infrastructure for clean implementation of database

query commands. However, no real database functionality has been tested

with our system. The server accepts login requests from Samaritan represen-

tatives running our client application, and serves them messages. The server

can also send out messages received from the client application.

The client program can receive messages from the server and either dis-

play them as part of an existing conversation or display them in a tab for a

new conversation. The client program also accepts typed messages from the

user and sends them to the appropriate screen name through the server.

5 Conclusions

By following good software engineering practices, we were able to develop

a functional tool with the basic required technology. Strong requirements

analysis prevented us from wasting time implementing features incorrectly,

or even implementing incorrect features. We correctly implemented the tech-

nology with careful attention to the specific operations that needed to occur,

and by building flexible software with interchangeable components. Our ro-

bust framework allowed us to solve the portability issue, though we were

detained by that quagmire for a long time.

Additional features do need to be implemented before the system can be

11

put into use by the Samaritans of Boston. A proper database needs to be

installed, and an engine and an interface need to be built for both searching

the database and for changing system settings and user permissions. Once

those items are complete, the system will be functional as required.

12

