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Abstract
COVID-19 is a highly contagious infectious disease that has spread throughout the world. On
January 19th, 2020, the first case in the United States was reported by a patient in Washington
State. Since then, COVID-19 has killed over 850,000 people in the United States alone, and
despite having readily available vaccines and being over two years into the pandemic, COVID-
19 cases remain high [7]. In continuing to fight the global pandemic, it is important to study
the development of COVID-19 and methods to mitigate its spread.

In order to contribute to research, we developed an epidemiological compartmental model
of the pandemic using a system of differential equations from which we determined a formula
for the Basic Reproduction Number. Using the model, we conducted a case study within
Massachusetts to determine the effects vaccinations and other preventive measures have on
mitigating the spread of COVID-19 by using the Basic Reproduction Number as an indicator.

The epidemiological model requires a set of parameters that describe the behavior of COVID-
19: γ, λ, µ, α, v(t), c(t), and β. Each parameters is defined in section 2. Using online research,
we were able to find resources describing the values for γ, λ, and α. The parameters v(t),
c(t) and µ were provided by the Massachusetts Government Response Reporting Website [17]
[18] [19] [20] [21] [22]. By conducting a statistical analysis in which we compared the model’s
expected cases to real reported cases, we were able to solve for β.

Once all parameters were determined, we solved for the Basic Reproduction Number and
described the reasoning for changes in its behavior. This includes a comparison of the Basic
Reproduction Number’s time series alongside changes in travel restrictions, government man-
dated lockdowns, mask mandates, and the vaccination rate. The comparison sheds light on
which mitigation techniques were the most effective at preventing the spread of COVID-19.
Also, this information indicates whether or not COVID-19 will evolve into an endemic state,
or diminish until we have a disease-free state.

Furthermore, we developed several linear regression models to assess the effectiveness of
COVID-19 mitigation techniques. The multiple linear regression describes the extent that
techniques such as mask mandates, social event restrictions, business closings, seasonal changes,
and vaccinations have on influencing the Basic Reproduction Number that we previously solved
for. Also, a logistic regression was developed to determine which restrictions are most likely to
result in an endemic or disease-free state. These regressions describe the significance of various
restrictions in preventing the spread of COVID-19.

We hope that this information will be helpful for future research into COVID-19 and for
determining a more accurate Basic Reproduction Number. Further research will allow us to
understand the behavior and spread of COVID-19, allowing for a more comprehensive solution
to the pandemic.

In addition to differential equation based methods of studying COVID-19’s reproduction
number and modeling its spread, we studied COVID-19 through a data-driven lens as well.
During the course of our study, we collected and cleaned Massachusetts COVID-19 data to
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forecast future cases. Data was acquired from the Massachusetts government website. The
model selected for this task was the Autoregressive Integrated Moving Average model (ARIMA).
By generating a model through both manually selected and automatically selected parameters,
we were able to produce forecasts of COVID cases a week in advance; however, the forecasts
were not as accurate as we had hoped.

Finally, the last portion of the project was a clustering analysis as a method to determine
which states or groups of states managed to keep the COVID cases low, relative to their
population. To do this, all the daily vaccination and COVID case data was collected from the
Center of Disease Control, and then was cleaned for analysis purposes. We then separated the
data into three key time periods: Pre-Delta, Delta, and Omicron in order to separate distinct
periods where we’d expect different results. By aggregating the COVID cases per month for
each state, as well as the total vaccinations of the state in that month, we were able to create
three scatter plots of vaccinations per population and cases per population: one for each time
period. These scatter plots were then clustered after performing the min-max scaling technique,
and clustered using K-Means. From the clusters generated, we are able to identify states that
had high COVID positivity rate, despite having a high number of vaccinations. Another finding
from this clustering analysis is the clear drop off of vaccination efficacy as a preventative measure
for COVID spread as new variants emerged.
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1 Mathematical Sciences Group
The Coronavirus Disease 2019 is a deadly respiratory virus that has infected over 350 million
people. In December of 2019, a cluster of patients in Wuhan, China, contracted an unknown
illness and began exhibiting symptoms of pneumonia: shortness of breath and fever. In early
2020, Chinese public health officials announced the genetic sequence of the unknown respiratory
virus and noted it has a similar sequence to Severe Acute Respiratory Syndrome (SARS). As
a result, it was named SARS-CoV-2, and is the virus that causes the Coronavirus Disease
(COVID-19) [3].

COVID-19 quickly spread across the world and in January 2020 the first case was reported
in the United States in Washington State. After an alarming rate of spread, the World Health
Organization declared a pandemic on March 11, 2020 [3].

Artists at the Center for Disease Control and Prevention (CDC), the national public health
agency of the United States, designed the now iconic red and white image of the virus which
can be seen in figure 1.1:

Figure 1.1: Artistic rendering of Sars-CoV-2 by the CDC[8]

The effects of COVID-19 on someone who has contracted the virus can vary widely from
person to person. Symptoms may appear 2-14 days after exposure and can range from that of
a common cold to life threatening respiratory issues. The CDC originally recommended that
people who have been in contact with someone who has the virus or is symptomatic isolate
themselves for 14 days. The recommended actions by the CDC to prevent the spread of COVID-
19 has changed over time as new research has emerged, but currently the recommendations are
for people to stay at least six feet apart at all times, limit large gatherings, avoid indoor
gatherings, and wear a medical mask to prevent COVID-19 particulate from transferring from
person to person on water vapor in the air [9].

In the United States, the coronavirus has spread in a series of massive surges due to people’s
behavior and different variants of the virus. A variant is a strain of the coronavirus that has
undergone a mutation that distinguishes it from other versions of the coronavirus. These
variants can exhibit different levels of severity, rate of spread, and resistance to treatment. The
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first surge of cases was in the winter months of 2020-21 when there were a large number of
people traveling for the holidays, causing the largest rate of new cases thus far in the pandemic.
In December and January of the same holiday season, three new variants were detected: Alpha,
Beta, and Gamma. The CDC currently designates these as Variants of Concern because they
all are all more contagious than the original variant and lead to more severe cases [4].

The first major surge of the coronavirus was eventually tempered by the introduction of
vaccines. On december 11, 2020. The Food and Drug Administration issued an Emergency Use
Authorization for the Pfizer-BioNTech COVID-19 Vaccine. Quickly after, another emergency
authorization was granted for the Moderna COVID-19 vaccine. The vaccinations were released
in stages to people to maximize their effectiveness. In the beginning of the pandemic, high-risk
groups and essential workers such as medical staff were given the first round of vaccinations.
Now, they are available to everyone over the age of five who is willing to get one [5].

In July 2021, the second major surge of cases occurred when the Delta variant emerged.
The Delta variant is estimated to be twice as contagious than previous variants, and more likely
to cause severe illness for people who remain unvaccinated. This surge saw less cases then that
of the holiday season of 2020-2021 due to the presence of widely available vaccines [6].

This second surge concluded alongside the introduction of booster shots. Vaccines efficacy
wanes over time, and Pfizer and Moderna recommended booster shots as a follow-up to vaccines
in order to preserve their effectiveness. The CDC recommends that five months after becoming
fully vaccinated, one should receive their booster shot [3].

The Delta variant remained the dominant variant in the United States until December of
2021 when a new variant, Omicron, surpassed it. Research into Omicron’s mutations are yet
to be fully understood, but early research by the CDC suggests that it is more contagious than
any previously detected variant. Soon after it became dominant, the United States experienced
a large surge in cases in January 2022. New cases peaked at over four times the level of the
previous surge [6].

Due to the continuation of high infection rates despite the access to vaccinations, and knowl-
edge of COVID-19 that we have gained since the beginning of the pandemic, it is important to
add to our understanding of the virus to see where improvements can be made to mitigation
efforts. COVID-19’s affect on American Society is constantly changing, so it is important to
understand with hindsight how COVID-19 changed the way we lived so in the future we can
make more informed decisions regarding policy making and recommended behavior. For ex-
ample, we hope to further develop our understanding of the impact vaccinations have had on
COVID-19 within Massachusetts. Using data collected by the Massachusetts Government on
PCR tests, we have developed a method to assess the current state of the pandemic and make
recommendations for public health policy changes going forward.

The goal of this project is to create an epidemiological model that can accurately describe the
spread of COVID-19 throughout Massachusetts. Namely, from the basic reproduction number
which describes the virus’ transmission potential, we can draw conclusions about COVID-19’s
long term implications.
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Our MQP team was divided into two groups: The Mathematical Sciences Majors and the
Data Science Majors. Therefore, our MQP report is divided into two parts. The mathemat-
ical sciences portion of this report is organized into seven sections. Section 2 introduces our
epidemiological model used to describe the spread of COVID-19 among subpopulations of Mas-
sachusetts. Section 3 describes an analysis of the model where we proved the total population
size remains constant over time, found the steady state solutions to the model’s equations,
and solved for the equation to the Basic Reproduction Number. In section 4, we calculate the
transmission rate of the virus purely from Data. In section 5, we calculate the transmission
rate of the virus using only our epidemiological model. Section 6 is a discussion of the resulting
analysis from comparing the two transmission rates we solved for in sections 4 and 5. Sec-
tion 7 describes several linear regression that provide insight into which COVID-19 mitigation
techniques are most effective at preventing the spread of COVID-19 based on our previously
calculated Basic Reproduction Number. In section 8, we recap what we have accomplished
during this project and discus’s the significance of our results.

2 Mathematical Model
The transmission diagram for this project is as follows:

V

S

I

R

Figure 2.1: Transmission diagram for COVID-19. The compartments represent sub-populations
of Massachusetts. The arrows represent which directions people can move between compart-
ments

In Figure (2.1),

• S - People susceptible to the disease.

• I - People who are infected with the disease.

• V - People who are immune due to vaccination.

• R - People who are immune due to having recovered from the disease.

In the model of the pandemic, we use a SIVR compartmental model. This model was
adapted from a SIR model created by Jana Kopfová, et. al. [27]. We built on their model by
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including a vaccinated population as well as accounting for waning efficacy of immunized people.
This model tracks the number of people who fall into each compartment at any given time.
The compartments are S, I, V, R. This model assumes homogeneous mixing of populations and
a constant death rate in all compartments. Based on the above transmission diagram, the
differential equations that describe it are as follows:

dS

dt
= −βIS

N
− v(t)S − µS + λR + αV + µN

dI

dt
=

βIS

N
− (γ + µ)I

dV

dt
= v(t)S − αV − µV

dR

dt
= γI − λR− µR .

The parameters in the model are described below:

• v(t) - Vaccination rate, the number of people who become fully vaccinated per day.

• γ - Recovery rate, the time it takes for someone to recover from the virus.

• α - Waning vaccination rate, the time it takes for vaccine efficacy to wear off.

• λ - Waning natural immunity rate, the time it takes for someone’s natural immunity from
the virus to wear off.

• µ - The birth/death rate, the rate at which people enter and exit the model per day.

• β - The transmission rate, the probability given that when two people interact, the virus
will be transmitted

3 Analysis of the Model
In order to assure the model is sound, some basic proofs were completed to demonstrate that the
overall population remains constant, the steady states for the system of differential equations
exist, and the basic reproduction number are derived.

Lemma 3.1. The total population size N = S + I + V +R is a constant independent of time.

Proof. From the model equations, we have

Ṅ = Ṡ + İ + V̇ + Ṙ

= µ(N − S − I − V −R)

= 0.

Therefore, N(t) = N(0) = N0. The proof of the lemma is complete.
A steady state is a constant solution of the above model equations.
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Lemma 3.2. There are two steady state solutions to the model equations. The first steady-state
is the disease-free state (DFS), where I = 0, and the second steady state is the endemic state,
where the number of infected, I, is positive.

Proof. To solve for the steady-states, we set the right side of the model equations to zero
and find solutions to the resulting nonlinear system of algebraic equations.

−βIS

N
− v(t)S − µS + λR + αV + µN = 0

βIS

N
− (γ + µ)I = 0

v(t)S − αV − µV = 0

γI − λR− µR = 0 .

Using the mathematical software Maple, we find the that DFS is

(S∗
1 , I

∗
1 , V

∗
1 , R

∗
1) =

(
N(µ+ α)

α + µ+ v(t)
, 0,

Nv(t)

α + µ+ v(t)
, 0

)
.

The endemic state is

(S∗
2 , I

∗
2 , V

∗
2 , R

∗
2) =

(
N(γ + µ)

β
,− NW̄ (α + µ)

β(α + µ)(µ+ γ + λ)
,
Nv(t)(γ + µ)

β(α + µ)
,− NγW̄

β(α + µ)(µ+ γ + λ)

)
,

where
W̄ = −αβ + αγ + αµ− βµ+ γµ+ γv(t) + µ2 + µv(t) .

Therefore, I∗2 and R∗
2 are positive if and only if W̄ < 0. This is the same as

R0 =
β(α + µ)

(α + µ+ v(t))(γ + µ)
> 1 . (3.1)

The proof of the lemma is complete.

Remark 3.1. The number R0 defined in the above proof is also called the basic reproduction
number. Hence, the endemic state exists if and only if the basic reproduction number is larger
than one. The proof of the lemma is complete.

In epidemiology, the basic reproduction number is the expected number of cases directly
generated by one case in a population where all individuals are susceptible to infection. It is
often denoted by the symbole R0.

Lemma 3.3. For our vaccination model, the basic reproduction number, R0, is given by (3.1).
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Proof. We use the next generation method to find the basic reproduction number.

İ =
βSI

N
− (γ + µ)I

Let F =
βSI

N
, V = (γ + µ)I

∂F

∂I
=

βS

N
,

∂V

∂I
= γ + µ

FV −1 =
βS

N

1

γ + µ
.

Evaluate the above expression FV −1 at the DFS, yields

R0 =
β

N

N(µ+ α)

α + µ+ v(t)

1

γ + µ

=
β(µ+ α)

(α + µ+ v(t))(γ + µ)
.

The proof of the lemma is complete.

4 Calculating Daily βd(t) from Data
This section is an explanation of how to find the transmission rate, β, for each day using only
the data and some known parameter values. Subscript d in the state variables mean it is derived
from the data.

4.1 Parameters

The following are parameters used in the model. They are taken from current scientific litera-
ture, adapted to our current situation.

Known Parameters:

v(t) = Vector of newly vaccinated people for every day.
c(t) = Vector of newly infected people for every day.
λ = Waning natural immunity rate.
µ = Birth/death rate.
γ = Recovery rate.
α = Waning vaccinated immunity rate.
N = Total population .
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The vaccination rate, v(t), and newly infected people, c(t), are obtained from the data available
online [21] [22]. The parameters λ, µ, γ and α are estimated from available research literature
[17] [18] [19] [20].

The only remaining unknown parameter is β(t). It is defined as the probability two people
come in contact times the probability of infection resulting from the contact. R0(t) may be
computed once β(t) is found using (3.1).

4.2 Methodology

Suppose there are n days in the data set. Let c(t) and v(t) be the vectors of the number of
newly infected and vaccinated individuals respectively. Four equations were created to find
Sd(t), Id(t), Vd(t) and Rd(t) solely from the data. The data set of newly infected persons from
the Massachusetts Government Response Reporting Website begins on the first of June 2020
thus for 1 ≤ t ≤ n, t denotes the tth day after June 1st 2020 [21].

Id(t) = Id(t− 1) + c(t)− c(t− 1

γ
)− µId(t− 1)

Vd(t) = Vd(t− 1) + v(t)− v(t− 1

α
)− µVd(t− 1)

Rd(t) = Rd(t− 1) + c(t− 1

γ
)− c(t− 1

λ
− 1

γ
)− µRd(t− 1)

Sd(t) = N − Id(t)− Vd(t)−Rd(t) .

The infected, vaccinated and recovered population vectors are a function of four terms in
order: The population the previous day, people entering the population (newly infected per-
sons, newly vaccinated persons and newly recovered persons), people leaving the population for
another compartment (recovering from infection, waning vaccinated immunity, waning natural
immunity), and deaths. The parameters γ, α, and λ are rates and thus the reciprocals must be
used to incorporate them. For example, α is the waning vaccinated immunity rate and therefore
α = 1/ (the number of days it takes for vaccinated immunity to wear off). Since N is constant,
the susceptible population is trivially the other populations subtracted from N.

The initial condition is Id(1) = 326 because that is how many people are infected on the
first day of the data set from the Massachusetts Government Response Reporting Website. The
initial condition of the susceptible compartment is Sd(1) = N − Id(1), and the assumption was
made that the initial conditions for the vaccinated and recovered classes are Vd(1) = Rd(1) = 0.
Using MATLAB, Id(t), Vd(t), Rd(t), Sd(t) may be found iteratively using the above formulas.
Let W(t) = (Sd(t), I(t), V (t), R(t)), t = 1, ..., n.

From the compartmental model, the function for movement from susceptible to the newly
infected people can be represented as

c(t) =
βd(t) Id(t)Sd(t)

N
.
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Rearranging,

βd(t) =
c(t)N

Id(t)Sd(t)
. (4.1)

Using the previously obtained vectors for the susceptible and infected populations from
MATLAB and the input function c(t), a vector for βd = (βd(1), βd(2), ..., βd(n)) was found
from (4.1). The chart begins June 1st 2020 and ends 432 days later as shown in Figure 4.1.

Figure 4.1: Plot of the beta vector, βd, derived from data.

From the now acquired βd, R0(t) may be found using the equation derived in Lemma 3.3.

R0(t) =
βd(t)(µ+ α)

(γ + µ)(µ+ v(t) + λ)
(4.2)

The plot for R0(t) is found in Figure 4.2.
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Figure 4.2: Plot of the basic reproduction number, R0(t), derived from data

5 Calculation of Daily βe(t) using the ODE Model
Using MATLAB, we created a program that finds a different daily β vector, βe(t) (subscript e
means estimated), that matches Ie(t) to Id(t), which are the infected populations predicted by
MATLAB’s ODE solver and from the data, respectively. From the data, we are given that

Id(1) = 326

so we assume that
Ie(1) = 326

After the first day, the program will find a β value for each sequential day using the following
logic:

We assume that for each day t, βe(t) lies in the interval [0, 1], since it can be described as
an aggregate probability. We partition [0, 1] into 1000 equally spaced intervals

[bj, bj+1], bj = (j − 1)× 0.001, j = 1, ..., 1001

such that b1 = 0, b2 = 0.001, and so on up to b1001 = 1. We defined B = [b1, ..., b1001], the vector
of all possible values we are checking for β. (We did this so we don’t need to use MATLAB’s
proprietary Optimization Toolbox.)
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Using We(t = 1), which we set to be the same as Wd(t = 1), we use the MATLAB function
ODE45 to solve the model equations in Section 2 to find We(t+ 1) using every value in B for
every day t in our data. The value of bj in B that minimizes the error function defined by (5.1)
will be set to βe(t).

f(b) =

(
log

(
Ie(t+ 1, b)

Id(t+ 1)

))2

. (5.1)

The value of b among all components of B that minimizes f(b) will provide the most accurate
predictions of the infected population over time (Ie). We store each day’s βe(t) in a vector βe. By
graphing βe against time, as shown in Figure 5.1, and adding lines for significant events affecting
the transmission rate of COVID-19 in Massachusetts, we are able to draw conclusions about
the effectiveness of specific lock down measures and/or restrictions. The analyses performed on
the data are explained in greater detail in the Results section.

Figure 5.1: Plot of the daily βe vector derived from the ODE Model

6 Results
Once the vectors for βd and βe were obtained, using (4.1) the vectors for R0d(t) and R0e(t)
may be found from (3.1). The first vector, R0d(t), shown in Figure 4.2, describes the true
development of the virus within Massachusetts based on the vaccination and newly infected
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data. The second vector, R0e(t), shown in Figure 5.1, describes the epidemiological compart-
mental model’s projection of the virus predicated on the parameters input into the differential
equations.

Upon comparing the two vectors, displayed in Figure 6.1, it was found that R0d(t) had a
mean value of 0.9925 compared to R0e(t)’s mean value of 1.0172.

Figure 6.1: Comparison of the two basic reproduction number vectors

The root mean squared error (RMSE) between the vectors was calculated to be 0.1128 over
the entire data set. The RMSE is under twelve percent of the desired vector’s average value.
We consider this method to produce a highly accurate model of COVID-19’s dissemination
throughout Massachusetts.

With an accurate model to emulate the real world data, the graph of the R0(t)’s were
partitioned at significant events to see if the events had any discernible effect on the spread
of COVID-19. We first partitioned the graph by severity of restrictions mandated by the
Massachusetts Government in Figure 6.2.

18



Figure 6.2: Plot of the two basic reproduction number vectors partitioned by phases of Mas-
sachusetts’s COVID-19 reopening plan. Note: Phases are repeated because Massachusetts
reverted to previous phases as COVID-19 cases increased.

This partition saw days being grouped based on which of the four phases in Massachusetts
reopening were currently occurring. The restrictions implemented during each phase are as
follows:

• Phase 1: Manufacturing facilities, construction sites, and places of worship were allowed
to re-open. Hospitals were able begin to provide high priority preventative care, pediatric
care and treatment for high risk patients.

• Phase 2: Retail, childcare facilities, restaurants (with outdoor table service only), hotels,
and driving and flight schools were allowed to reopen. Youth and adult amateur sports
were also allowed to resume.

• Phase 3 Part 1: Movie theaters, outdoor performance venues, museums, cultural and
historical sites, fitness centers and health clubs and professional sports teams (without
spectators) became eligible to reopen.

• Phase 3 Part 2: Indoor performance venues, indoor and outdoor exhibition and convention
halls were allowed to reopen. Additionally, indoor dining is permitted.
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• Phase 4: Indoor and outdoor stadiums, arenas, and ballparks were permitted to open
at 12 percent capacity. Amusement parks, theme parks, and outdoor water parks also
became eligible to reopen.

There was no noticeable discrepancy in the value of the R0(t)s between the groups of this first
partition as shown by the following root mean square error (RMSE) values for each partition,
which never surpass an RMSE of 0.0344.

• Phase 2: 0.0655

• Phase 3 Part 1 (first occurrence): 0.0161

• Phase 3 Part 2 (first occurrence): 0.0216

• Phase 3 Part 1 (second occurrence): 0.03

• Phase 3 Part 2 (second occurrence): 0.0344

• Phase 4: 0.0056

The graph was then partitioned upon the presence of vaccines and the Delta variant becom-
ing dominant in Massachusetts, shown in Figure 6.3.

Figure 6.3: Plot of the two basic reproduction number vectors partitioned by important vaccine
and COVID-19 variant dates. Note: Vaccinations start before v(t) because v(t) only counts
Massachusetts residents that are fully vaccinated
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This partition yielded a very recognizable difference in the value of R0(t) between the created
intervals. The average value of R0(t) prior to vaccine introduction was calculated to be 1.1136
while subsequently, the value dropped by over 50% to 0.4569. Unfortunately, despite having
a high percentage of the population vaccinated in Massachusetts, it is apparent that upon the
Delta Variant becoming the dominant variant, R0(t) increased to exceed even its greatest value
during the Alpha Variant prior to vaccine introduction.

Going forward, the model’s time line will be expanded as more data comes out. Currently,
based on the partitions of R0(t), it appears that governmental restrictions have had very little
affect on COVID-19’s Basic Reproduction Number. In contrast, R0(t)s behavior subsequent
to the introduction of the COVID-19 vaccine and upon the Delta Variant becoming prevalent
suggest that the most impactful factors on COVID-19’s development were vaccines and new
virus variants.

7 Linear Regression Analysis
To further investigate the significance of COVID-19 mitigation techniques, we developed several
linear regression models. The models determine the influence of each technique on the Basic
Reproduction Number that we previously solved for. The tested independent variables are
business closings, social gathering restrictions, the vaccination rate, mask mandates, seasonal
changes, Massachusetts reopening phases, and the number of daily travelers through Logan
International Airport.

7.1 Preventive Measures Multiple Linear Regression

To analyze the influence of lockdown restrictions and other statewide preventive measures on the
number of COVID-19 cases per day statewide, we used a multiple linear regression to determine
which restrictions had the greatest and least effects on daily cases. The basic reproductive
number, computed daily, (R0(t)) was the response variable, calculated using data from the
CDC [23], [24].To calculate R0(t), we used (3.1) and the same set of constant parameters used
throughout the project. For the regression model, we initially considered the following:

y = b0 + b1X1 + b2X2 + b3X3 (7.1)

X1 = Business Closings/Staffing Limits (Binary variable)
X2 = Gathering/Social Event Restrictions (Binary variable)
X3 = Newly Vaccinated Population per Day (Quantitative variable)

We tested this model over the period from Jun. 1, 2020 to Aug. 31, 2021. The intervals
in which X1 and X2 were set to 1 were determined from the "Reopening Massachusetts" web
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page on ma.gov [25], which describes the phased plan for the state to reopen businesses, social
events, etc. The regression showed that all predictors except for X1, with a p-value of 0.3375, are
statistically significant in the model. X3 returned a p-value of order 10−10 and had a coefficient
of -1.3565*10−5, showing that vaccination rate had a highly significant impact on reducing R0,
considering the values of X3 reach into the tens of thousands at times. The detailed results
from this regression model are below.

Figure 7.1: y = 1.5055− 0.0674X1 − 0.2957X2 − 1.3565× 10−5X3

Due to the insignificance of X1, we removed it from the model to improve the fit. This new
model can be represented by the following equation:

y = b0 + b1X1 + b2X2 (7.2)

X1 = Gathering/Social Event Restrictions (Binary variable)
X2 = Newly Vaccinated Population per Day (Quantitative variable)

With this model, all variables were statistically significant, with p-values of order 10−9 or
smaller. In addition, both models return an intercept approximately equal to 1.5, indicating that
without preventive measures being taken, the R0 value would have a base value of approximately
1.5: an endemic state. This simpler model returned the equation y = 1.4950 − 0.3517X1 −
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1.4247 × 10−5X2, with all variables returning extremely small p-values. The R2 value for this
adjusted model was 0.113, which prompted further changes.

To attempt to improve the R2 value, we added to and modified some of our predictor
variables. A large number of outliers also existed in the R0 data from the lack of weekend
testing in Massachusetts, so we treated the data with a 7-day average to reduce noise and thus
improve the model fit. In addition, we decided to test these predictors against the daily number
of COVID-related deaths in the state, and the 7-day average of this set. The final change made
to the previous models is that X5 (Newly Vaccinated Population per Day) was replaced with the
vaccination rate, defined as the newly vaccinated population divided by the current susceptible
population for each day.

The final set of predictor and response variables in the model are as follows:

yi = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 (7.3)

X1 = Public Mask Mandate (Binary)
X2 = Gathering/Social Event Restrictions (Binary)
X3 = Business Closings/Staffing Limits (Binary)
X4 = IsWinter? (Binary)
X5 = Vaccination Rate (Proportion)
y1 = R0 (Quantitative)
y2 = 7-Day Average of y1 (Quantitative)
y3 = Daily COVID Deaths (Quantitative)
y4 = 7-Day Average of y3 (Quantitative)

In addition to modifying the model, we collected a much larger set of data points to operate
on, spanning from February 1, 2020 until February 23, 2022. The date ranges in which X1, X2,
and X3 are set to 1 was obtained from Massachusetts’ "State of Emergency" web page [26],
where all lockdown phases and COVID-related governor’s orders are archived and dated. X4

is set to 1 between the days of December 21 and March 20, which are the winter solstice and
spring equinox, respectively, and set to 0 during the rest of the year. The results of these
regression models are:

y2 = 1.5380− 0.4580X1 + 0.3326X2 − 0.3242X3 − 0.3459X4 − 10.4250X5

y4 = 10.386− 52.413X1 + 19.275X2 + 54.669X3 + 34.042X4 − 189.511X5

The only issue with these models is the significance of the vaccination rate (X5). The best-
performing model using these variables is against y2, since the p-value associated with X5 is
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approximately 0.08. However in this model, the predictors are only able to account for 24% of
the response variance. In the model against y4, the p-value for X5 is not within any reasonable
tolerance, with a value of 0.477. As a response, we removed X5 from the model for y4, since it is
adding excessive error. The resulting model returned only significant p-values, indicating high
accuracy, yet we were still only able to account for 42% of the variance in the 7-day average
of daily deaths. In addition, this model did not contain any data about vaccinations, so no
conclusions about the effects of vaccines on death rate can be made using this particular model.
The results of this final regression are below:

Figure 7.2: y4 = 10.103− 52.432X1 + 20.82X2 + 53.407X3 + 34.121X4

In this model, all coefficients’ t-statistics as well as the F-statistic have extremely small
p-values, indicating high accuracy. While the R2 value is still lower than is desirable, little
other reliable daily data was available to add to the model as predictors.

7.2 Logistic regression

To further evaluate the effectiveness of various COVID-19 mitigation techniques, we created
a logistic regression to determine which techniques prevented an endemic state. Although an
endemic state means there is a low level of the virus present, it implies the virus is still growing
and will therefore require annual vaccinations, and it has a risk of leading to a pandemic. A
logistic regression models the probability of a categorical response variable given an input.
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The basic reproduction number, R0, was used as the binary response variable with a thresh-
old of one, so when R0 ≥ 1, the response variable was set to class 1, otherwise it was set to class
0. This regression would indicate which mitigation techniques were significant in preventing
the spread of COVID-19 and an endemic state.

For the model, we initially considered evaluating travel restrictions, mask mandates, Mas-
sachusetts reopening phases, and vaccinations; however, our preliminary findings showed that
the reopening phases had no significant impact on R0. After subset selection the model is as
follows:

y = b0 + b1X1 + b2X2 + b3X3 (7.4)

y = R0 (Binary variable)
X1 = Number of people traveling through Logan International Airport (Quantitative variable)
X2 = Mask mandate (Binary variable)
X3 = Vaccinations per day (Quantitative variable) .

The results of our regression, demonstrated in the equation below, showed that the number
of travelers in Logan International Airport (X1) has a statistically significant impact on the
response variable. The p-value of X1 was 0.000122. Also, the vaccination rate was highly
significant as expected, with a p-value of 6.24e-15.

y = 1.053 + 1.774× 10−4X1 − 1.183X2 − 2.571× 10−4X3 (7.5)

Using Leave One Out Cross Validation (LOOCV), the logistic regression model was tested
for accuracy. LOOCV validates the model by determining the models coefficients using all but
one data point (one day of data). The model then tests if it categorizes the data point that was
left out correctly as either leading to an endemic state or disease-free state. This is repeated for
all 350 days used to compute the model. The validation set yielded a 23% error rate when R0 <
1 and a 3% error rate when R0 >= 1. The resulted in a 11% error rate overall for the validation
set. The error rates refer to what percent of the time the model incorrectly categorizes a data
point. The LOOCV method was used because our data set is relatively small (less than 1000
data points). This allows for us to use as much training data as possible when fitting the model.
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Figure 7.3: Logistic regression’s performance on the validation set. The correct prediction is
310/350 = 88.6%.

8 Math Group Conclusion
The goal of this project was to solve for the Basic Reproduction Number (R0) of COVID-19 in
order to make conclusions about the direction of the pandemic, and evaluate the methodology
that has been used to mitigate its spread. We developed both an equation for R0, as well as an
epidemiological compartmental model, which were both initially missing a single parameter: β.
Using available data on reported COVID-19 cases and vaccinations, we developed a theoretical
β value that was derived solely from the data. We then forced our model to find a β value that
would evolve its infected population to match the data.

This method yielded a β value for every single day for which we have data. Using our
equation for R0, we then solved for a solution to R0 for every single day. We evaluated the
accuracy of our R0 found using the model against the R0 derived solely from the data. The root
mean square error between the two R0 values is 0.0695, thus it can conclude that our model
has a high degree of accuracy.

To further evaluate the state of the pandemic, we created linear regression models to evaluate
which COVID-19 mitigation techniques had the greatest impact on minimizing R0 and denying
an endemic state, In addition, we used the same regression models with daily deaths as the
response to determine the effects of these techniques on the death toll in Massachusetts. A
multiple linear regression using R0 as the response variable concluded that vaccinations are
overwhelmingly influential in reducing R0, while government-imposed restrictions tended to
have little to no power to reduce the spread of COVID-19. The models using deaths as a
response showed almost identical trends, although we had to exclude vaccination rates in one
model. An additional predictor variable was added to the model to determine if winter also had
an effect on R0 and on deaths, and winter was shown to sharply increase both R0 and average
daily death count.

Also, a logistic regression was created with a binary R0 as the response variable, indicating
either an endemic (R0 ≥ 1) or disease-free state (R0 < 1). Similar to the multiple linear re-
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gression, the conclusion demonstrated that vaccinations are the strongest mitigation technique,
accounting for a majority of the response variable’s variance. This model also displayed that the
number of passengers travelling through Logan International Airport (used to quantify travel
activity) was positively correlated with the response. All other tested mitigation techniques
were deemed insignificant at preventing an endemic state.

9 Data Science Group
In each term, we pursued different project goals. In our first term, we focused on data collection,
data visualization, and statistical analysis on positive COVID-19 cases and vaccination statuses
in Massachusetts. We analyzed and showed how positive cases and administered vaccination
changed over time, and we provided useful information for the math group to fit their model.
Additionally, we researched to find the unknown parameters in the SIVR COVID model: birth
and death rate µ, recovery rate γ, waning immunity for vaccinated individuals α, and recovered
waning immunity λ.

During B term, we attempted to create a model that can reasonably forecast Massachusetts
COVID cases ahead of time. After studying possible models, we decided on using the ARIMA
time-series model as a method of forecasting future COVID cases in Massachusetts.

Finally, during C term, we investigated each state’s COVID spread during given times. We
wanted to do so in order to identify states that had low COVID infections, and more importantly
find out why these states had lower COVID spreads. To do so, we clustered COVID rates over
each month and analyzed each of the generated groups. After clustering was performed, we
applied statistical analysis to find why there might be different clusters.

10 Data set
For A and B terms, we used the Covid-19 cases data set from Massachusetts government website.
The dataset provides the following:

1. Daily COVID-19 cases by report date, as well as by testing date.

2. Pfizer and Moderna vaccination data

However, in B term we decided to start our time series data from April 1, 2020 since there
were too few and unreliable cases before April due to low access to testing. To make data more
smooth and generate a better forecast, we chose to use the 7-day moving average data. There
are 542 data points in our data set. A snippet of the dataset we used can be seen in Figure 10.1.
(https://www.mass.gov/info-details/massachusetts-covid-19-vaccination-data-and-updates)
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Figure 10.1: Data points in CasesByDate(Test Date)

11 Time Series Model
The first model we considered studying was the time-series model, specifically an Auto Re-
gressive (Inegrating) Moving Average (ARIMA) model. The ARIMA model is one that makes
next-step predictions based on previous data from the series. This model tends to be reasonably
accurate for short-term predictions and is good for modeling complex systems without needing
to know all the underlying variables. This is because the only input for ARIMA models are
previous datapoints from the time series.

ARIMA models have hyperparameters p, d, and q, where p is the number of autocorrelated
terms, q is the number of moving average terms, and d is the order of differencing applied to the
data. Hyperparameters are parameters that are external to the model and cannot be estimated
from the data itself; they are parameters that need to be set before the model learning process
begins.

Let yt, t = 1, 2, 3, ... be a time series. Then an ARIMA(p,d,q) model is of the form:

yt = c+

p∑
i=1

ϕi · yt−i +

q∑
i=1

θi · ϵt−i

Here yt is the predicted value of the time series at time t, and yt−i refers to the actual value
of the time series at time t − i. ϕi refers to the auto-correlation coefficient, θi refers to the
moving average coefficient, and ϵt−i refers to the prediction error on day t− i. The constant c
is the expected average of the time series. This ARIMA model was the model of choice for the
B-term study. The parameters that the ARIMA model will produce are θi and ϕi.
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12 ARIMA(p,d,q) Model

12.1 Introduction to ARIMA model

To review, ARIMA (autoregressive integrated moving average) models have parameters p, d,
and q, and they follow the equation:

yt = c+

p∑
i=1

ϕi · yt−i +

q∑
i=1

θi · ϵt−i

The
∑p

i=1 ϕi · yt−i portion of the model is the autoregressive portion, where the model uses
lagged data yt−i and multiplies it by some coefficient ϕi to forecast y at time t. The

∑q
i=1 θi ·ϵt−i

portion of the model is the moving average part. This is where the model multiples ϵt−i by a
coefficient θi.

Hyperparameters p and q determine the order of the autoregressive and moving average
parts of the model, respectively. Hyperparameter d determines the amount of differencing
applied to the series. Each of these hyperparameters are chosen based on a variety of factors;
auto and partial autocorrelation can help determine a viable p and q, while differencing order
d can be applied to make the time series stationary. We shall discuss them below.

12.2 Stationarity

In order to get a reliable ARIMA model, the time series data must first be made stationary.
A time series has stationarity if a shift in time doesn’t cause a change in the shape of the
distribution. Basic properties of the distribution like the mean, variance, and covariance are
constant over time.[1]

The unit root tests are statistical tests often employed to detect non-stationarity in time
series. One such unit root test that we used is called the Augmented Dickey Fuller (ADF) test.
ADF Test is a common statistical test used to test whether a given Time series is stationary
or not[2]. Its null hypothesis declares that the time series has a unit root and is therefore
non-stationary. The alternative hypothesis is that there is no unit root and the time series is
stationary.

Upon trying the ADF test on our daily-new COVID cases series, we fail to reject the null
hypothesis, as shown in Figure 12.1. Thus, we apply differencing once and re-test. Upon testing
after applying difference, we are able to reject the null hypothesis and proceed with a stationary
time series, as seen in Figure 12.2 .
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Figure 12.1: Time series before differencing
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Figure 12.2: Time series after differencing

12.3 Choosing parameters p and q

There are several methods for choosing hyperparameters p and q. A common way to choose
the order of the p is to generate a Partial Auto-Correlation Function (PACF) plot, while using
the Auto-Correlation Function (ACF) plot to determine the order of q.

To choose the order p from the PACF plot, you can set p equal to the number of lags where
the partial auto-correlation is outside the significance level. To choose the order q from the ACF
plot, you can set q equal to the number of lags where the auto-correlation sharply decreases.

Another way to choose p and q is to use the Extended Auto-Correlation Function (EACF)
table. From the generated EACF table, we can choose a p and q where the table marks a circle,
indicating a p and q combination candidate.
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Finally, a strong method to find an optimal p and q is to simulate many different ARIMA
models with different p and q, and select the one that returns the best Akaike’s Information
Criterion (AIC). The AIC is an error metric that combines the training error with the model
complexity. Lower AIC is better, as it’s best to have lowest possible training error while
maintaining lower model complexity. This can be done by using Auto.ARIMA(), which is a
function in R that returns the best ARIMA model and p and q based on the dataset.

13 Forecasting
Our goal of forecasting is to produce accurate predictions of COVID cases as far as a week in
advance. Being able to do so would be highly valuable as it could prepare medical staff and
COVID prevention measures if COVID cases are predicted to rise.

13.1 Modeling Positive Cases: Training and Testing Sets)

In order to test our ARIMA model’s accuracy on testing data, we decided to partition our
dataset into training and testing set. We also decided to do k-fold cross-validation, and create
4 different training and test splits:

1. For the first training and test split, we trained the ARIMA model to the first 80 percent
of the data, and tested the model against the remaining 20 percent of the data.

2. For the second training and test split, we trained the model to the first 70 percent and
tested against the remaining 30 percent.

3. For the third training and test split, we trained the model to the first 60 percent and
tested against the remaining 40 percent.

4. For the fourth and final training and test split, we trained the model to the first 50 percent
and tested against the remaining 50 percent.

13.2 Modeling Positive Cases: Choosing Model Parameters

First, we tried picking p and q based on the EACF plots (Figure 13.1 to Figure 13.4) for each
training set. To pick p and q, we examined all possible combinations based on the EACF table,
and then put them into the ARIMA model. We then compare their AICc value: the lower the
better.AICc is AIC for small data set to avoid overfitting. Finally, we pick p and q of (2, 1, 2)
for all training set.

Additionally, we wanted to compare our ARIMA models with the ARIMA models chosen
by the auto.arima() function. Auto.arima() selected the hyperparameters to be (9, 1, 6), (2, 1,
0), (2, 1, 0), and (3, 2, 1) for training sets 1 through 4 respectively.
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Figure 13.1: EACF for training set 1

Figure 13.2: EACF for training set 2
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Figure 13.3: EACF for training set 3

Figure 13.4: EACF for training set 4
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13.3 Results of Forecasting

To evaluate the performance of our models, we used the error metric root mean squared error
(RMSE). The RMSE of a model is found by squaring all residuals, or differences between the
forecasted result and the actual data, and then taking the average of these squared residuals.
Finally, the root of this is taken.

We compared the forecast results (Figure 13.5 to Figure 13.8) from our model(orange line)
and auto.arima(gray line). Only training dataset 1 shows that our model provides better
forecast result than the auto.arima() model with much lower RMSE. However, the forecast in
other training sets did not provide a good result. Our model showed almost linear forecast as
same as auto.arima().

Figure 13.5: Training dataset 1 forecast
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Figure 13.6: Training dataset 2 forecast

Figure 13.7: Training dataset 3 forecast
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Figure 13.8: Training dataset 4 forecast.

14 ARIMA Modeling Conclusion and Discussions
Based on our forecast results and overall experience with ARIMA modeling, we are not con-
vinced that this is a robust or helpful way to forecast COVID cases; especially for data further
into the future than just a couple steps. These ARIMA models did not perform well outside of
the training dataset, and during forecasts, the model tends to struggle to predict any peaks or
sudden changes to the series. Based on the forecasts we generated, our root-mean square error
was very large with respect to the scale of the data. Furthermore, ARIMA models best suited
for very short-term forecasts. For our purposes of forecasting COVID cases, making only one
to two week-out predictions is not so useful to our study.

We also tried average weekly data by calculating the mean of every weeks, which reduced
our data set to 78 data points. Since data set is too small, it can not pass adf test after applying
first difference. We have to transformed data by using ln(), which help P-value of adf test to
be reduced to close to 0.05 but still larger than 0.05.

15 Introduction to Clustering
For C-Term, the data science team clustered all 50 states’ COVID-19 rates with several fea-
tures like vaccination rates. After creating these clusters, we want to conduct exploratory and
statistical analysis on why certain clusters have higher or lower COVID rates than others. We
wanted to answer the following questions:
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1. Do certain policies like mask mandates, lockdowns, and others lead to significantly dif-
ferent COVID rates?

2. What shared state variables contribute to COVID rates? Some examples of variables
we expect to lead to differing COVID rates are vaccination rates, population density,
interstate travel, and more.

Since we wanted to try to keep all states’ COVID rates as low as possible, the results will
help us find out why or how certain states keep their COVID rates lower than others. If we
can find noticeable trends within the high performing and low performing clusters, then we can
produce a best-practice guideline on preventing COVID infections or even produce a statistical
model that can predict a state’s COVID spread based on its features.

16 Data Collection and Preprocessing

16.1 Data collection

To cluster and compare difference between each states of the United States, we collected
COVID-19 data, like vaccination rate, positive cases, and population data for all states. To
ensure all data are correct and reliable, we will only use government data as resources.

The data we collected for COVID-19 cases daily per state is publicly provided by the CDC.
Figure 16.1 shows a part of the cases data. The shape of this data is 45841 rows and 15 columns.
It contains all positive cases and death in four ways (daily cases, total cases, confidence cases
and probably cases) from Jan 22 2020 to Jan 28 2022 for U.S. including 50 states and 10
non-state U.S. territories.

The data we collected for vaccinations daily per state is publicly provided by the CDC. As
shown in Figure 16.2, the vaccination dataset is very large and detailed, containing 28312 rows
and 83 columns from Dec 13 2020 to Jan 28 2020 for U.S.. In these 83 columns, there are total
delivered doses for all different vaccinations, different age groups, people who only took the first
dose and people who took additional doses.

The data we collected for population per state is from the 2020 US Census, and is publicly
provided in Figure 16.3. The shape of this data is 54 rows and 76 columns. The relevant
information included in this is just the population per state; other included information that
was not relevant to us were demographics data.

38



Figure 16.1: United States COVID-19 Cases and Deaths by State over Time.

Figure 16.2: COVID-19 Vaccinations in the United States,Jurisdiction
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Figure 16.3: States population.

16.2 Cleaning and Preprocessing

In our project, we focused strictly on the months in which the COVID-19 vaccination was
widely and publicly available. As such, we decided to cut off data prior to March of 2021. This
was done simply using Excel, sorting by latest to newest, and deleting entries prior to March
2021.

For all datasets, the data providers stored data for US territories outside the 50 states, such
as Puerto Rico and DC. Since we are focusing on just state data, we needed to remove all
entries unrelated to the states. Furthermore, the case and vaccination data was collected daily,
which we believed would be too noisy to cluster effectively. As such, we needed to aggregate
and total all the new cases for each state, per month.

Before removing non-territories and aggregating data, it is necessary to drop useless columns
to reduce the size of the data. In the cases dataset, for quantity numbers we only need daily
new cases, since we only focus on aggregated new cases but not death or total cases. Similar to
the vaccination dataset, we only care the number of people fully vaccinated in each states, so
we dropped all other columns. For population dataset, we only keep total states population.

These data sets contain too many rows and therefore it is time-consuming to delete all non-
state territories in Excel. So we used Tableau Prep Builder to remove these areas by selecting
names of all non-state territories and then choosing exclude as shown in Figure 16.4.

To aggregate data based on month, the Python library "Pandas" was extremely helpful;
particularly the dataframe and the method "groupby". Method groupby allows the programmer
to perform actions on the data based on grouping data by a criteria; in our case, we want
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Figure 16.4: A faster way to remove non-state territories is by using the standalone software
Tableau, available at tableau.com

monthly sums of vaccination by day as well as monthly sums of COVID cases, grouped by
state. Before being able to run this, we also had to change the datatypes of the columns such
that the program would recognize the dates as a datetime datatype, and the vaccination data
as integer.

The final step in our cleaning process was adding the census population data. Before doing
so, we had to manually change all the state full names into the state abbreviations, and then
sort by alphabetical order to make sure the rows match with the current dataset that we had.
We then pasted the data into our final dataset, making sure to line up the states correctly.

As shown in Figure 16.5, we put columns we will use into a new dataset with two calculated
columns—-one is cases per population and another is cases per 100k.
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Figure 16.5: Final dataset

17 Clustering

17.1 Clustering and the K-Means Algorithm

Clustering in machine learning is the task of grouping together objects based on a similarity
criterion [15]. One of the most basic examples of clustering is grouping together points on an
x-y scatter plot, as seen in Figure 17.1.

One of the most simple and popular algorithms to cluster points based on similarity is the
K-Means algorithm [14]. In this algorithm, K points are randomly selected to be the starting
centroid of a cluster. Then, the following loop is performed until the centroid no longer changes,
or the algorithm meets some termination condition:

1. Compute the sum of squared distances between the data points and the centroids.

2. Assign all data points to their nearest centroid.

3. Reassign a new centroid for each cluster by taking the average position of each point in
the cluster.
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Figure 17.1: The goal of a clustering algorithm in this case would be to group together points
based on their relative closeness to another point.

An issue that K-Means has is its reliance on good initial centroid assignment; the clusters can
completely change based on the first centroids that are randomly chosen. Just because the
objective function converges does not mean it has created globally optimal clusters.

Clustering is of value to us in this project as it allows us to group similar states in terms
of COVID-19 prevention performance. By performing clustering, it becomes clear which states
kept their COVID cases low relative to their population, and then we will figure out why these
states are grouped.

17.2 Clustering Features

The final required step before clustering is choosing and preparing features to cluster. In our
study, we used cases and vaccination as the two features for K-means. In order to get better
results, we added another calculated column that calculating the vaccination per 100k as shown
in Figure 17.2. Then we will use both vaccination per 100k and cases per 100k for K-means.

Before performing K-means clustering, we need to scale our data. In Figure 17.2, numbers
in Case Per 100k are all under 1000 while numbers in New Vax per 100k are higher than 10k
even higher than 20k. therefore, it is important to scale them first [16].
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Figure 17.2: Adding calculated vaccination data (New Vax per 100k) into the dataset

In python, there are four scalers in sklearn library that people usually used. For our dataset,
we tried two of them. The first one is MinMaxScaler, it shifts all features individually into a
range from 0 to 1. For our two dimensional data, cases per 100k and vaccination per 100k will
be contained into a 0 to 1 range. The second one is StandardScaler, which scales all features to
the same magnitude by ensuring that for each feature the mean is zero and the variance is 1.
However, this scaler does not ensure a range for features; in other word, there is no minimum or
maximum values. The results of using these two scaler are almost same. For StandardScaler, it
contains negative values in both x-axis and y-axis. Since K-means only considers the distance
between points, so both MinMaxScaler and StandardScaler are good for us. We will just choose
MinMaxScaler for this project since it is scaled between 0 and 1 which is easier to read compared
with using StandardScaler.
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18 Results of Clustering
As shown in Figure 18.1, we performed a K-means with 4 clusters on the total dataset. In
Figures 18.2 through 18.4, we showed how K-means worked on monthly data. However, monthly
results were still hard to interpret and draw useful conclusion. Therefore, we instead tried
splitting the total data into different period of variants. In Figures 18.5 through 18.7 we
clustered states based on the time periods PreDelta, Delta, and Omicron. For each of the plots,
the numbers in the legend simply represent the name of the cluster.

Figure 18.1: K-means with K=4 for all data Figure 18.2: K-means with K=4 for March

We cut data into three parts: PreDelta period (2021.3 - 2021.6), Delta period (2021.7 -
2021.10)and Omicron period (2021.11 - 2022.1). This provided much more reasonable results.
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Figure 18.3: K-means with K = 4 for June Figure 18.4: K-means with K=4 for Aug

Figure 18.5: K-means with K=4 for
PreDelta period.

Figure 18.6: K-means with K=4 for
Delta period.
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Figure 18.7: K-means with K=4 for Omicron period.

As seen in Figure 18.5, the period of PreDelta, the states that have relatively higher vacci-
nation have much lower positive cases. In Figure 18.6, during the period of Delta, there seems
to be a much lower negative correlation between vaccinations and cases per population. Many
low vaccination states still had a low case rate while many had a high case rate. However,
highly vaccinated states had lower-than-average case rates. For Omicron period shown in Fig-
ure 18.7, the situation changed a lot. It seems like there is no relationship between vaccination
and positives cases. This suggests that vaccination may not be as useful for Omicron. Also,
many people did not take booster, which reduces the protection of vaccination.

There are some interesting examples of states shifting positions in each plot based on which
time period. For example, the most heavily vaccinated state during the PreDelta period was
Vermont (June 2021), with a correspondingly low COVID rate for the time period. However,
during the Delta variant, Vermont had the 3rd highest vaccination rate (September 2021) yet
had only slightly below-average case rate. Finally, during the Omicron period, Vermont once
again had the highest vaccination rate, yet had an above average case per population rate.
This seems to suggest that as variants changed over time, even highly vaccinated populations
became increasingly susceptible to infection.

Using Rhode Island as another example, in PreDelta period, the vaccination increased from
0.3 to 0.9, and the cases decreased from 0.65 to 0.03, which means it moved from purple area
to the blue area in Figure 18.5. And during the Delta period, RI started at orange area, the
right bottom in Figure 18.6, Showing that high vaccination did help. However, in the era of
Omicron, even though the vaccination still increased, the cases increased hugely from 0.11 to
1, leading the RI to be the top right point in Figure 18.7. This a good example of effect of
vaccination fading.
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19 Clustering Conclusions
Clustering turned out to be a much more difficult pursuit than we had anticipated, with its
interpretations also being more difficult than other types of analysis. Nonetheless, we were able
to generate interesting results that seemed to indicate that as variants changed, the efficacy
of the vaccine dramatically changed as well. For example, while there was a clear relationship
between high vaccinations leading to lower case rates for the PreDelta period, as time went on
even highly vaccinated states generated high COVID positivity rate.

Some future directions to take such a study would be to investigate commonalities between
the states within the same cluster. These commonalities to investigate could be COVID pre-
vention policy such as mask mandating and lockdowns.
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