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Abstract

The world has been severely affected by COVID-19, an infectious disease caused by

the SARS-Cov-2 coronavirus. COVID-19 incubates in a patient for 7 days before symp-

toms manifest. During this incubation period, affected individuals, unknowingly,

transmit the virus through respiratory droplets released when the individual coughs

or sneezes, which has resulted in a record number of daily cases around the world.

The identification of the presence of COVID-19 is challenging as its symptoms are

similar to influenza symptoms such as cough, cold, runny nose and chills. COVID-19

affects human speech sub-systems involved in respiration, phonation, and articula-

tion. This master thesis proposes a deep anomaly detection framework for passive,

speech-based detection of COVID-related anomalies in voice samples of COVID-19

affected individuals. The low percentage of positive cases and extreme imbalance in

available COVID audio datasets present a challenge to machine learning classifiers

but creates an opportunity to utilize anomaly detection techniques. This thesis inves-

tigates COVID detection from audio using various types of deep anomaly detectors

and autoencoders. Contrastive loss methods are also explored to force our models

to learn the discrepancies between COVID and non-COVID cough data representa-

tions. In rigorous evaluation, the variational autoencoder with the elliptic envelope

as the anomaly detector analyzing Mel Filterbanks audio representations performed

best with an AUC of 65.7, outperforming the state of the art.
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1 | Introduction

1.1 Motivation

As of today, confirmed COVID-19 cases across the world have exceeded 61 million.

This alarming number of cases has led to increased testing, diagnosis, and screening

of individuals on a large scale. As assessed by the department of mental health and

substance abuse at WHO, individuals are at high risk of falling into depression, inflict-

ing self-harm, experiencing loneliness, and are at elevated risk of stress and anxiety

due to quarantine and lockdown. Physicians need to spend long working hours with

such individuals on treatments and cures. The World Health Organization(WHO)[1]

has declared that effective solutions need to be developed at a rapid pace to curb the

virus and further control its spread. They have also come up with a list of symptoms

that can be used to identify the presence of the COVID-19 virus in the human body.

Breathing difficulties, cough, muscle pain, chills, loss of taste, sore throat, and high

body temperature are among the symptoms that commonly appear when the virus

takes over an individual’s immune system. However, the uniqueness of the virus

makes it difficult to ascertain the list of symptoms as the effects of the virus on indi-

viduals vary a great deal. The symptoms appear only after an incubation period of 6

to 7 days. During this time, the virus-affected individual stays asymptomatic.
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Figure 1.1: COVID-19 proliferating effect

1.1.1 How COVID-19 spreads?

As shown in Fig. 1.1, COVID-19 transmits from person to person who is in close

contact within 6 meters through respiratory droplets when the infected person talks,

sings, breathes, or coughs. Other less common ways of spread are airborne transmis-

sion, transmission via contaminated surfaces, and through people in enclosed spaces

with poor ventilation. Since infected people are initially asymptomatic and the virus

spreads from person to person, it is lethal and needs immediate effective ways to

control the spread and treat its symptoms. These uncertainties and adverse effects

create the need for effective ways to identify individuals who are afflicted with the

coronavirus and stay asymptomatic during the virus’ incubation period. Artificial

Intelligence has shown some positive signs in detecting such asymptomatic individ-

uals and helping isolate them from healthy individuals thus helping curb the spread

of the virus. [2]. In the next section we will introduce in general how AI is used in

Healthcare, and discuss data types(Audio, Time series data) used in passive health

monitoring systems. Finally we will discuss how AI specifically helps in COVID-19

detection.
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1.1.2 AI in Healthcare

Artificial Intelligence predict outcomes well in advance if it is shown enough data.

Collecting data has been a challenge in Healthcare systems due to a plethora of chal-

lenges like privacy issues, dearth in technology to passively collect data etc. These

challenges gave rise to devices called Wearables, [3] a segment of commercially avail-

able products used in passive data collection. They are made in the form of smart-

watches [4], smart shirts, etc. that sit on a human body and track certain primitive

yet prominent metrics like Heart Beat, muscle movements, fall tracking, etc. These

devices are usually not widely adopted mainly due to the extra cost associated with

them. This, on the other hand, motivates researchers to innovate solutions with re-

sources that are currently available with almost every individual, a smartphone. The

penetration level of smartphones and the sensors embedded in them, along with ef-

ficient wireless communication technologies have made continuous passive health

monitoring easier than before with negligible additional costs [5]. More specifically,

smartphones have been used to predict the onset of FLU symptoms [6] a day before

the person turns symptomatic. Authors of this work effectively show that continu-

ously feeding data from proximity sensors, WiFi access points, masked SMS, and call

records, for obvious privacy reasons, can help predict if the user of the smartphone

will show signs of FLU infection. In another similar work [7], authors use smartphone

mobility features to detect depression in individuals using a Deep Anomaly detection

technique. They essentially formulate a deep learning system to tackle the imbalance

in the dataset while still achieving an AUC score of 0.92. In the section we discuss

more on work that uses audio in passive health monitoring systems.

1.1.3 Audio in Healthcare

Furthermore, audio as a modality has been widely used for continuous health moni-

toring in a variety of tasks. In one such work [8] authors use voice samples to screen

depression in patients affected by Parkinson’s disease. In another interesting problem,

3



researchers use human voice to identify if the user is intoxicated from alcohol [9]. In a

similar study [10], human voice is used to detect individual’s sleepiness, a fatal state

to be in for individuals working in critical systems. The technique used in the paper

achieves an accuracy of 75% in detecting sleepiness. With such large scale adoption

of human audio for detecting series of diseases, researchers from MIT Lincoln Lab-

oratory proposed [11] showed in their paper the effects of COVID on human vocal

system. This motivated the audio community to utilize learning methods to analyze

human audio to find discrepancies in voice signals, ultimately leading to detection of

COVID-19.

1.1.4 COVID-19 detection from Audio and AI

There is rapid growth in research towards the identification of COVID-19 using hu-

man voice. This paper[11] showed how COVID-19 affects human voice. The voice is

generally modelled in three phases: Respiration, Phonation and Articulation. These

are the essential vocal subsystems involved in speech production. Fig 1.2, taken from

the paper, shows the progression of respiration(Top row) and fundamental frequency(Bottom

row). Readings of Individual subjects on the right and their mean values on the left.

It is evident that respiration and fundamental frequency show a downward pattern

with the onset of COVID. Adding to that, many research papers published recently

provide elegant solutions which are successful in identifying the presence of COVID-

19 in an individual through human sounds like Cough and Breathing.[12, 13, 14, 15].

In chapter 2 we discuss in more detail on the performance of these proposed meth-

ods.

1.2 Thesis Goal

Inspired by the recent breakthroughs in Deep learning, feature extraction from highly

unstructured and high dimensional data like text, image and audio has been easy.

With the extracted features, many tasks such a time-series forecasting, anomaly de-

4



Figure 1.2: Affect of COVID on speech subsystems.
On top: Respiration intensities. On Bottom: Fundamental Frequency
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tection, natural language understanding, classification tasks with complex decision

boundaries have shown superior performance.

Our work explores different types of Deep Autoencoder architectures to extract mean-

ingful features from a high dimensional spaio-temporal space that MFCCs and Mel

Filters encode, and use the extracted features train traditional anomaly detectors to

find COVID-19 cases(anomalies). More specifically, we address two main research

questions:

• Are there significant statistical differences found in the voice of a COVID-19 af-

fected individual to a healthy individual?

• How likely can this statistical difference be used to classify between these indi-

viduals with the application of modern deep learning techniques?

Answers to these questions were broken down into these practical steps:

• Convert the raw audio signals into Mel coefficients, namely MFCCs and Mel

Filterbanks

• Use a Convolutional Autoencoder or one of its variant to compress the audio

representation into a one dimensional array, the Bottleneck, which is then suit-

able to use in Traditional Anomaly detectors.

• Use appropriate metrics to measure the model’s performance

This work has been built on top of certain underlying assumptions. Below is a com-

prehensive list:

1. We rely on research from [11] that scientifically shows the differences in voice

reproduction in the vocal cords of a COVID-19 affected individual

2. Data recorded by MIT and IISC are good representatives of the population, and

capture maximum voice variations, human demographics and different stages

of COVID-19 affected individuals.

6



COVID-19 Questionnaire

Do you have cough?
Have you been sneezing recently?
Have you been tested for COVID-19 by a medical professional?
Do you smoke?
Do you have any lung ailments?
Do you have any neurological problems?
Do you have any neuro-muscular problems?

Table 1.1: Symptom Survey. All questions were Yes/No/Skip responses

1.3 COVID-19 Audio Dataset

These parts about the specific dataset and exploratory data analyses should be part of

your methodology section.

With the onset of COVID-19, the need for rapid analysis and testing of COVID-affected

patients has been at the forefront of health research. Massachussetts Institute of Tech-

nology has created a web interface[16] for the general public to upload their voice

samples and answer a questionnaire as shown in Table 1.1. This helps self-label the

recorded audio sample into COVID-19 and non-COVID-19 categories. The Indian In-

stitute of Science(IISC) also maintains a repository of COVID-19 and non-COVID-19

voices called Coswara. In this work, we explore in detail MIT and Coswara datasets.

We thoroughly analyze these two datasets answering questions discussed in section

1.2. These datasets capture human audio in multiple acoustic forms like breathing,

cough, alphabets, vowel pronunciation. For the COVID detection task we mainly

focus on using cough audio data. Prior studies show that [17, 18, 19] respiratory ail-

ments with cough as one of its symptoms have distinct underlying features, and can

be extracted using appropriate signal processing techniques like Mel Spectrograms

and low level descriptors.

7



1.4 Proposed Solution

As seen in the previous section, MIT and IISC COVID-19 datasets are highly imbal-

anced. Data imbalance is a major factor to consider while developing a reliable and

robust deep learning system. Factoring this concern, treating this as a binary classi-

fication problem would lead to a highly skewed model, considering penalizing cost

functions and employing dropouts. As a result, we approach solving this problem

through Anomaly detection methods, treating the minority class samples as Anoma-

lies. Anomaly detection is a field in data mining that detects data points in any dataset

that display unusual behavior i.e. data points that deviate from normal behavior. In

our case, we treat COVID negative observations as normal behavior. Further in this

study, we show the statistical difference visually between the majority and minority

classes of the audio samples, which backs our approach to solve the problem using

Anomaly detection.

1.4.1 Proposed System Architecture

In the previous sections, we established the need for continuous health monitoring

and how it can easily be done because of the high penetration levels of smartphones.

In this section, we brief the entire system architecture used in this research for continu-

ous health monitoring. Fig 1.3 gives a high-level view of all the components involved

in this research, right from the source of data to the final decision made. In an ideal

real-world scenario, audio signals from the smartphone’s mic are picked up and fed to

an audio preprocessor which converts the raw audio signals into Mel spectrogram fea-

tures and generates low-level descriptors like fundamental frequency, shimmer, jitter,

zero-crossing rate, and pitch. All the processed audio features are then fed to the Deep

Anomaly detector which consists of an Autoencoder for dimensionality reduction and

an Anomaly detector like EllicticEnvelope, OneClass-SVM, etc. Based on the output

from this component, we decide if it is necessary to notify the user or continue mon-

itoring passively. We explain each component in the Audio preprocessor and Deep

8



Anomaly detector in greater detail in the chapter 4

Audio 
Preprocessor

Anomaly?

RAW
Waveform

Processed Audio 
Features

YES - COVID POSITIVE

NO - COVID NEGATIVE

NOTIFY USER

Continuous 
Passive
Sensing

Deep Anomaly Detector

Figure 1.3: Passive COVID-19 detection network

1.4.2 Contributions

The main contributions of this research are as follows:

1. Analyze voice samples in COVID-19 datasets sourced from smartphones, IISC[20]

and MIT[16]

2. Investigate the effect of COVID-19 on human voice across various signal encod-

ing strategies. Listed below are the ones explored in this study

(a) Mel Frequency Cepstral Coefficients, Mel Filter Banks [21, 22]

Motivation: Previous research[17, 18] shows cough audio has more energy

in lower frequencies. Mel scale, with its frequency band provides higher

resolotuin in lower frequencies and vice versa. This makes Mel coefficients

a suitable choice for cough audio representation

9



(b) Acoustic low level descriptors such as Pitch, Fundamental frequency( fo),

Zero crossing rate, Shimmer and Jitter[23]

Motivation: Low level descriptors mentioned above capture statistical, struc-

tural, temporal and frequency based attributes helping models understand

the overall structure of the underlying audio.

3. Explore Autoencoders and similar variants for feature extraction and Dimen-

sionality reduction. More specifically, explore

(a) Convolutional Autoencoders(AE)

Motivation: As discussed above, for the inherent capability it possesses to

extract high dimensional spatio-temporal features.

(b) Convolutional Variational Autoencoders (VAE)

Motivation: Along with the above discussed advantages of a Convolu-

tional AE, VAEs have the ability to encode the latent representation.

4. Employ traditional Anomaly detectors for the final classification step. Below are

the ones explored in this study.

(a) One class SVM

(b) Isolation Forest

(c) Elliptic Envelope

1.5 Challenges in Detecting COVID using Audio

Considering the risk factors when solving a critical system use case where False nega-

tive predictions have serious impacts, this study faces some inherent challenges. Some

of them are discussed below

1. Overlapping symptoms

Main symptoms in COVID are cough, cold, sneezing, fatigue, loss of taste and

smell, headache, respiratory issues like shortness of breath and congestion dur-

10



ing breathing. Some of these symptoms overlap heavily with other general prob-

lems like non COVID fever, fatigue due to other health reasons, respiratory is-

sues due to Asthma or Bronchitis. In addition to this, it is possible for people

having underlying respiratory disorders to get infected with COVID. With the

scenarios discussed above, it is necessary to build systems that detect COVID not

just based on presence of overlapping symptoms rather based on more deeper

voice variations.

2. Imbalanced datasets

As of now, 150 million people out a 7 billion have been affected with COVID i.e

2% of the entire population has been affected with COVID-19. As a result both

MIT and IISC Coswara datasets have a high class imbalance ratio. This prob-

lem has been researched thoroughly[24]. Models built on top of such datasets

are not only biased towards the majority class, but suffer from poor predictive

performance, often resulting in all predictions falling under the majority class.

To counter this issue, we consider solving this as an Anomaly detection prob-

lem instead of a plain binary classification, treating minority class samples as

Anomalies.

3. Difficulty with generating synthetic audio data to mitigate data imbalance

Since the datasets we are dealing with are related to Human health, and resulting

actions from model predictions are highly sensitive. Sampling techniques like

SMOTE[25] that generate samples from data distribution of a class synthetically,

although fall in the same distribution, does not guarantee patterns of a COVID-

19 audio sample.

4. Variable quality of audio recorded by different equipment and situations

Both MIT and Coswara datasets ask subjects to upload audio through a website.

Since each individual uploads data independently, factors like device used for

recording, quality of recording, ambience, data loss play an important factor

11



in receiving reliable audio for analysis. However, utmost care is taken by both

dataset providers to weed out unreliable data. But it is unsafe to assume this

will be the case when models are used in real-time as we use audio directly from

an individual’s smartphone where we do not have control over audio quality,

ambience etc.

5. Privacy concerns

Another issue to consider when proposing to use this model in real-time is to

acquire the consent of the user before recording audio, either from personal de-

vices or recording studios.
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2 | Related Work

As described in the motivation section, the widespread adoption of smartphones re-

sulted in a cheap, reliable and accessible route to continuously monitor human health

and act in case of emergencies. Smartphones and other consumer technology devices

have long been used by researchers to sense and monitor various illnesses, mental

health issues. An individual’s constant interaction with their personal devices like

smartphones makes it even more favourable to collect enormous amounts of data suf-

ficient for medical professionals to draw conclusions and act on it. Another main

advantage of a smartphone is that it eliminates the need to carry a separate camera,

mic, GPS or speakers, as smartphones come with all these built-in making it easier

for researchers to build apps that once installed in a smartphone pulls data from in-

built sensors to suit the needs of any study. In 2012, a NASA post [26] revealed that a

consumer smartphone had 100 times the compute power of an average NASA satel-

lite.

2.1 Smartphones for Mental Health Screening

Smartphones are playing a major role in modernization of mental healthcare. A study

conducted to examine the feasibility, acceptability, and utility of behavioral sensing in

individuals with schizophrenia [27]. Researchers used data from accelerometers, Blue-

tooth, WiFi, microphone, and GPS to collect behavioral and contextual data to assist

schizophrenia patients in tracking their condition and improve their cognitive abil-

ity. 95% of the times subjects were comfortable receiving assistance from the smart-

13



Paper Task Data Accuracy

Ben-Zeev et al.
Feasibility, acceptability of
behavioral sensing of users

with Schizophrenia

Data from Accelerometers,
Bluetooth, WiFi,

microphone, and GPS

95% of users
accepted passive

sensing

Saeb et al.
Estimate a semantic

location of a patient with
anxiety and depression

Data from GPS signals,
light, movement and sound AUC - 0.88

Gerych et al. Depression Detection Mobility features like location,
speed, total distance travelled AUC - 0.92

Table 2.1: Summary of work in mental health screening using smartphones

phone app. Another study uses [28] sensor data like GPS signals, light, movement

and sound from smartphones to estimate a semantic location of a patient with anxi-

ety and depression issues to find correlations between triggers of anxiety to location.

Data from 208 participants was assessed for over 6 weeks. The research predicts the

semantic location of a subject with an AUC of 0.88 given the 4 features. However,

they conclude that nature of places visited explains only a small part of variation in

anxiety and depression symptoms. Another study [29] uses StudentLife dataset [30],

a smartphone sensor dataset to identify depression in individuals. The dataset is from

a single classroom of 48 students across a 10 week term at Dartmouth College using

Android phones. Priliminary findings from the dataset owners reveals a significant

correlation in smartphone sensor data, mental health and educational outcomes of a

student body. The study utilizes these correlations by training a Deep Autoencoder to

first reduce the dimensions, and then use a one class SVM to detect depressed individ-

uals as anomalous or outliers and not depressed individuals as inliers, with an AUC

of 0.92. This work significantly outforms traditional machine learning approaches. In

summary, table 2.1 gives an overview of some of the smartphone based mental health

screening work we refer to during our thesis.

2.2 Smartphones for influenza sensing

With the sudden onset of COVID-19 virus, the need to passively sense influenza symp-

toms even before it takes over the human immune system is more important now that

it ever has been. influenza patterns can be analyzed from multiple data sources avail-
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Paper Task Data Accuracy

Gianni et al. Detect Influenza in
an Individual

Mobility features like
daily displacement,
movement radius,

unique places visited,
number of people met

F1 - 0.73

Murthy et al.
Data from proximity sensors,

WiFi access points and
SMS and call records

AUC - 0.76

Table 2.2: Summary of work in FLU sensing using smartphones

able on the internet. WHO FluNet [31], weekly influenza report from CDC [32], and

Google Flu Trends [33]. More specifically, prediction of influenza before its manifes-

tation has been one of the most important research fields. Gianni et al. [34] used

sensors from a subject’s smartphone to extract mobility features such as total daily

displacement, subject’s movement radius, unique places visited per day, number of

people met per day to predict the onset of an Influenza before its manifestation on the

human body. The research used machine learning models, more specifically Gradient

Boosted Trees to predict the occurance of symptoms a day in advance, using histor-

ical feature data listed above. They achieved an F1 score of 0.73. In a similar study,

the authors from MIT orchestrated a dataset [35] comprising of data collected from 70

subjects over an entire academic year. The data consisted of a constant feed from prox-

imity sensors, WiFi access points and SMS and call records of a subject’s smartphone,

along with a questionnaire that subjects self reported related to their diets, exercise

routines, eating habits and finally if they had any influenza symptoms, which acted

as the dependent feature. The research attempted to predict influenza symptoms a

day in advance using LSTM Autoencoders was made in 2021 [6]. The work uses all

the sensor data mentioned above along with the questionnaire to create behavior spe-

cific clusters and built LSTM Autoencoders for subjects in each cluster to eliminate

ambiguity in human behavior, with an AUC of 0.76. In summary, table 2.2 gives an

overview of some of the smartphone based influenza sensing work we refer to during

our thesis.
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2.3 Human Audio in Healthcare

Human sounds have long been used by researchers to diagnose human health and

behavior. Respiratory system auscultation has been used to diagnose irregularities

in lungs [36]. Audio recordings from Smartphones, External Mic systems are used

to collect, study, and measure the changes in articulation and enunciation of Human

sounds. Diagnosing these sounds and drawing meaningful conclusions and decisions

from these sounds often require expertise with clinical backgrounds. However, re-

cent developments have shown that analytics around audio has gained significant

popularity and can effectively be used as a potential alternative for diagnosing and

detecting abnormalities in Human sounds. Recently, smartphones have been a main-

stream source for audio-related diagnosing for two major reasons (1)Data is readily

available without the requirement of external hardware. (2) A large population uses

smartphones making data less scarce. This also guarantees data sourced is real.

In this study,[37] smartphone audio is used to understand users’ ambiance by aggre-

gating information from audio to make up city ambiance. In another study named

Emotionsense [38], the phones’ microphone is used as a sensor for detecting users’

emotion in-the-wild, through Gaussian mixture models. In [39] authors analyze sounds

emitted while the user is sleeping, to identify sleep apnea episodes. Similar works

have also used sound to detect asthma and wheezing [40]. Using Convolutional Neu-

ral Networks, many deep learning methods have been built to recognize and classify

sounds of coughs and different respiratory diseases[41] within ambient audio, espe-

cially to recognize three potential illnesses (bronchitis, bronchiolitis, and pertussis)

based on their unique audio characteristics. Another recent study uses a google audio

set that extracts audio from 1.8 million youtube videos and combines it with a free

sound audio database[42] to perform tuberculosis cough detection. They convert raw

audio into MFCCs and Mel filter banks and feed it to CNNs, achieving an AUC of

94% [43]. Speech during situations like car accidents, domestic violence, or situations

close to death has been used for stress detection tasks using low-level feature descrip-
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Paper Task Data Performance

Chon et al.
Place tagging to

corresponding categories
(store, restaurant)

Data from
proximity sensors,

WiFi access points, GPS, and
smartphone Audio

Accuracy - 69%

Rachuri et al. Emotion Recognition
Data from GPS,

Bluetooth, Accelerometer,
audio from Microphone

AUC - 0.76

Nandakumar et al. Detection of
Sleep Apnea

Frequency modulated
sound signals R2 - 0.995

Oletic et al. Asthma Monitoring Respiratory sounds Accuracy - 80%

Bales et al. Respiratory illness
detection from Cough Raw Cough sounds F1- 0.85

Miranda et al. Tuberculosis Detection
from Cough Raw Cough sounds AUC - 0.94

Partila et al. Stress detection from speech Speech from emergency
phone calls 87.9%

Table 2.3: Summary of work in health monitoring using Audio

tors extracted from OPENSMILE [44]. This work reports an accuracy of 87.9% with

Support Vector Machines and 87.5 with traditional CNNs in classifying stress from

neutral speech. Table 2.3 summarizes the literature we referred in our thesis.
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3 | Background

3.1 Audio Pre-processing and Representations

3.1.1 Mel Frequency Cepstral Coefficients(MFCC) and Mel Filter Banks

Humans do a good job at identifying small changes in lower frequencies than the

changes in higher frequencies. MFCCs and Filter banks specialize in mimicking the

human way of percieving an audio signal. They take into account human perception

for sensitivity at appropriate frequencies by converting the conventional frequency to

Mel Scale, and are thus suitable for speech analysis tasks quite well. Generally 12-

13 Mel Frequency coefficients are taken into consideration as features when training

models. The process of converting raw audio into MFCC or Mel Filter bank is the

same. Below, we briefly explain the steps involved:

1. Break the raw audio signal into short-time frames by applying a windowing

function at fixed time intervals. The frequencies of a signal change over-time,

additionally, it is observed that signals in short frame(typically 20ms) are sta-

tionary, hence working on short frames instead of the entire signal helps capture

the changes in frequency of a signal efficiently.

2. Apply Discrete Fourier Transform on each of frame. This step helps calculate the

frequency spectrum of the short-time frame

3. Apply a set of 40 triangular filters on the frequency spectrum to extract fre-

quency bands. The positions of these filters are equally spaced along the Mel Fre-
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Figure 3.1: MFCCs and Mel Filter Banks

quency. Mel-scale mimics the way humans perceive sound by paying less em-

phasis at higher frequencies and more emphasis at lower frequencies. Frequencies( f )

can be converted into Mel(m) using eq 1

m = 2595 ∗ log10(1 +
f

700
) (1)

4. At this point we have calculated the Mel Filter bank representation. However, fil-

ter bank coefficients are highly correlated, which might be problematic for some

machine learning algorithms.

5. Apply Discrete Cosine Transform(DCT) to decorrelate the cofficients, resulting

in Mel Frequency Cepstral Coefficients.

Fig 3.1 shows the visual difference between MFCCs and Filter Banks

3.1.2 Low Level Descriptors

Pitch & Fundamental Frequency: Pitch of a human voice is defined as the rate of vi-

bration of the vocal folds. As rate of vibrations change the sound of human voice

changes. On the other hand, fundamental frequency( fo) refers to the approximate fre-

quency of the periodic structure of human voice. When airflow in the vocal folds is

suitably tensed, an oscillation originates giving rise to fo.

Zero-Crossing rate: The number of times in a given time interval the amplitude of

19



Figure 3.2: Low Level Descriptors

human voice passes through the value of zero is termed as Zero-crossing rate.

Fig 3.2 shows the visual representation of Zero-Crossing rate, Pitch and Fundamental

Frequency.

Shimmer and Jitter: The cycle-to-cycle fluctuations in pitch is referred to as Jitter. It

can be extracted by measuring the fundamental frequency( fo) of each cycle of vibra-

tion and deducting it from the previous fo values. Shimmer, on the other hand, can be

extracted by measuring the variability in the signal’s peak to peak amplitude.

Pitch, Fundamental Frequency, Shimmer and Jitter have been used widely in detecting

Depression, Intoxication and similar pathological changes in voice.[45]. Initial results

have shown that these acoustic low level descriptors of a human voice is affected when

the person is infected with COVID-19 [46]

3.1.3 Raw Audio Signals

Raw audio waveforms have been used in speech recognition systems to account for

the information loss in MFCC, GFCC and Mel filters. End to end trainable Deep learn-

ing methods have proved to be an efficient way to perform speech recognition using

Raw audio signals[47]

20



B
O
T
T
L
E
N
E
C
K

ENCODER LATENT SPACE DECODER

INPUT
SPECTROGRAM

RECONSTRUCTED
SPECTROGRAM

Figure 3.3: Convolutional Autoencoder

3.2 Autoencoders

Autoencoder is an unsupervised artificial neural network mainly used for dimension-

ality reduction in non-linear high dimensional datasets. Mainly, it consists of two

components - An Encoder and a Decoder. The Encoder compresses an input rep-

resentation into a lower dimensional space, called as Bottleneck. The decoder then

reconstructs the input representation back using the Bottleneck. Learning to perform

reconstruction is what Autoencoders specialize in[48]. They learn to ignore the noise

in input data, forming the so called Bottleneck. Fig. 3.3 shows the structure of an Au-

toencoder. Stochastic Gradient Descent[49] and Back Propagation[50] is used in train-

ing the Autoencoder to minimize the loss function, called the reconstruction loss. The

type of Neural Networks used for encoder and the decoder varies based on the end

goal. Feed forward Neural Network architectures are used for one dimensional data

where each row corresponds to one input sample. On the other hand, to extract spatial

features from a image data, Convolutional Neural Networks are employed. Our work

explores around exploiting the potential capabilities of using Convolutional Neural

Networks for encoder and decoder components as described in Fig3.3.
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Figure 3.4: Visualization of anomalies in simple 2-d datasets

3.3 Traditional Anomaly detectors

Anomaly detection is the identification of observations that tend to display abnormal

characteristics compared to majority of observations in a dataset. Typically, anoma-

lous observations look almost similar to normal observations but they display unre-

alistic behavior at random intervals. Malicious activities, security breakdowns, hard-

ware failures are some reasons why data can contain anomalies. Critical systems such

as hardware installed in Hospitals, powerplants, aircrafts etc. need to be identified

and warned well before failure to avoid catastrophic outcomes.
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Figure 3.5: Demonstration of decision boundaries in One class SVM

In simpler datasets, a mere visualization of the data gives enough proof to identify

anomalies as shown in fig 3.4 However, in higher dimensional datasets with hun-

dreds of variables visualization is not a practical solution. Research in the field of

Machine learning and Statistics have given birth to many amazing Anomaly detectors

[51]. Specifically, in this study we will explore two anomaly detectors.

3.3.1 One Class Support Vector Machines

Support vector machine is a well known machine learning algorithm for classification

and regression problems. In case of a binary classification, Support vector machines

find a line or hyperplane based on the input data observations to differentiate between

two classes. However, highly imbalanced datasets produce extremely biased models.

To combat this issue, One Class Support Vector Machines [52] were introduced. OC-

SVMs take only one class of data for training. The basic analogy is to separate the input

data observations from a reference origin point and draw a hyperplane that maximizes

the distance between input data points and the origin. This essentially creates regions
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in the input space where the probability density of the input data exists. Any data

observation not falling within this probability density is marked an anomaly. Fig 3.5,

sourced from scikit-learn [53], shows decision boundaries that One class SVM learns

based on the dimensionality of underlying data points. It performs anomaly detection

reasonably well on high dimensional data. One of the main reasons for this are Kernel

functions used to train these models. Kernel functions are a set of mathematical meth-

ods that transform data and its dimensions so that linear decision boundaries can be

drawn to non-linear data. The most basic kernel function are linear kernels, which

is just a dot product of feature vectors. However, with the assumption that our the

latent space representation is not linearly separable, we explore two kernel functions

that are robust against non-linearity:

1. Polynomial Kernel

These kernels are used to project similarity present in input data in terms of poly-

nomials of original variables, allowing to learn non-linear complexities. They are

defined as shown in eq 2

K(x, y) = (xTy + c)d (2)

x and y are any two vectors from input space. c ≥ 0 is a bias coefficient. d is the

degree of polynomial space

2. Radial Basis Function

RBF kernels project input space in higher dimensions based on the distance of a

data point from the origin. This function is defined as shown in eq 3

K(x, y) = e−γ‖x−y‖2
(3)

‖x− y‖2 is the squared Euclidean distance between two input vectors. γ is the

kernel coefficient.
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Figure 3.6: Demonstration of decision boundaries in Elliptic Envelope

3.3.2 Elliptic Envelope

Datasets in real-world are not always normally distributed. But in cases where we

know a dataset is normally distributed, it becomes easy to detect abnormalities. How-

ever, primitive techniques like visualization as shown in Fig 3.4 might still not be

a practical solution due to higher dimensionality in data. But techniques like El-

liptic Envelope when the underlying data is normally distributed because the algo-

rithm is built on an assumption that input data is uni-modal, specifically with a zero

mean and unit variance. It works by modelling the input data as a high dimensional

Gaussian and draws an elliptical boundary around the modelled data. Any data ob-

servation falling outside of elliptical boundary is marked as an anomaly. Fig 3.6„

sourced from scikit-learn [53], in general demonstrates the decision boundaries cre-

ated by EllipticEnvelope with the underlying assumption that input data is normally

distributed.
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4 | Methodology

4.1 Overview

The predefined goal of this thesis is to formulate a continuous health monitoring sys-

tem to detect COVID-19 infections within the time frame of it entering the Human

body to showing initial symptoms i.e. the incubation period of 4 to 7 days. We lever-

age the MIT, IISC Coswara datasets, and Convolutional Autoencoders with Anomaly

detectors to achieve this goal. Further, we thoroughly explore MIT and Coswara

datasets, and later jump into our experimental architectures.

Column name Range or Categories
Individual’s Age 10 years to 89 years

Gender Male, Female, Other
Height Value in centimeters

Country
Israel, United States,

India, Canada
United Kingdom

Smoking Habits
I currently smoke,
I used to smoke,

I have never smoked
COVID-19 Diagnosis(target) Yes, No

Table 4.1: MIT dataset demographics

26



4.2 Exploratory Data Analysis

4.2.1 MIT dataset

Massachusetts Institute of Technology sourced an audio dataset[16] containing voice

samples of patients affected with COVID-19 and of individuals who had no history

of COVID-19. Table 4.1 gives an overview of the demographics of the participants

representing the data. Out of the 1877 participants, 28 individuals had been affected

with COVID-19 at the time of recording voice samples, making it a highly imbalanced

dataset for any binary classification task. Each participant has recorded their voice in

5 different variations, namely,

1. Cough samples

2. Pronunciation of all English alphabets

3. Prolonged pronunciation of Vowels - A, E, O

Each subject in the dataset was instructed to record specific variations of their voice.

Fig 4.1 displays the number of audio samples that are COVID-19 positive and COVID-

19 negative. Fig 4.2 gives an insight of how each demographic feature is distributed

in the dataset. More than half of our subjects of the dataset are within the age of 20-

40 years. Around 300 audio samples are from subjects above the age of 60, which

CDC categorizes this age group as high risk individuals, especially the ones with pre-

existing health conditions. On the other hand, there is a 2:1 ratio in the number of voice

samples when it comes to Gender. A study on 3,111,714 globally reported COVID-19

cases shows that there is no concrete evidence on which gender is more suspectible to

COVID-19. But, amongst the COVID-19 affected individuals, male patients have al-

most three times the odds of requiring intensive treatment unit (ITU) or admission to a

medical facility to contain the damage on lungs and respiratory tract. [54]. Tobacco in-

take through smoking has highly been associated with higher risks of COVID-19. MIT

data contains information about smokers, however as seen in Fig 4.2 more than half
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Figure 4.1: MIT COVID-19 diagnosis for each voice variation
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Figure 4.2: MIT dataset demographics
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Figure 4.3: MIT COVID-19 diagnosis across all age groups
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Figure 4.4: MIT COVID-19 diagnosis across gender and smoking habits
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Column name Range or Categories
Individual’s Age 18 years to 80 years

Gender Male, Female,
Other

Proficient in English Yes, No
Country India
Asthma Yes, No
Cough Yes, No
Smoker Yes, No

COVID-19 status(target) Healthy, COVID-19,
Other respiratory illness

Table 4.2: IISC Coswara dataset demographics

of the subjects are non smokers and only 13% of the subjects were actively smoking at

the time of data recording.

Further, the dataset is divided based on the subject’s COVID-19 diagnosis. Fig 4.3 and

Fig 4.4 portray the total number of COVID-19 positive to COVID-19 negative samples

across different age groups, gender and smoking Habits. Clearly, we can notice that

there is a high imbalance between positive and negative cases.

4.2.2 IISC Coswara dataset

Indian Institute of Science, Bengaluru[55] put together a similar audio dataset[20] hav-

ing 1459 participants, out of which 122 individuals had contracted COVID-19 at the

time of recording. Table 4.2 shows the demographics of the dataset. Each participant

recorded multiple voice variations. Below is a list of recorded variations:

1. Breathing - Deep and Shallow

2. Count - Fast and Normal

3. Cough - Heavy and Shallow

4. Vowel - A, E, O

Fig 4.7 displays counts across each voice variation. Unlike in the MIT dataset, the

variations here are more uniformly distributed with each variation having around
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Figure 4.5: Coswara dataset demographics
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Figure 4.6: Coswara COVID-19 diagnosis across age groups and gender
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Figure 4.7: Coswara COVID-19 diagnosis for each voice variation

95 to 105 audio samples for COVID-19 positive case, and around 1350 to 1365 audio

samples for the COVID-19 negative case.

Fig 4.5 gives a look and feel of the age groups and gender of the subjects who partici-

pated in this study. More specifically, fig 4.6 goes a step further to break the categories

of age groups and gender down into COVID-19 positive and negative samples. Simi-

lar to the MIT dataset, coswara also highly suffers from class imbalance. In summary,

both datasets have subjects in the age group of 20 to 45, which can be due to the nature

of data collection through installing applications on smartphones or by visiting web-

sites to record audio. Further, we can notice that female infection numbers is twice

compared to males in MIT dataset, however, this effect is not seen in Coswara, hence

it is not possible to conclusively state that females are at high risk compared to males.

Table 4.3 gives an overall class split in both MIT and Coswara datasets.
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Dataset COVID +ve
Samples

COVID -ve
Samples Class ratio

MIT 28 1849 66:1
Coswara 108 1395 13:1

Table 4.3: Dataset Statistics

4.3 Proposed Machine Learning Architecture

The main components of the proposed architecture are described in Fig. 1.3. In this

section, we detail each component and walk through the specifics of implementation.

Briefly, the flow of control is as described - Data feed(audio signals) from a Smart-

phone’s microphone is recorded continuously with the owner’s consent. Collected

audio data is passed onto the audio preprocessor stage for background noise removal,

extraction of MFCC/Filterbanks, and Low-level descriptors such as Zero crossing rate,

Fundamental Frequency, Pitch, Shimmer, and Jitter. These extracted audio features are

passed on to the anomaly detection block which outputs a decision - Anomalous or

Normal. If Anomalous, notify the user of the irregularity found in voice and sug-

gest an RT-PCR test, if not, continue to passively monitor voice in a loop. In the next

section, we go over each component in this architecture and explain it in detail.

1. Audio Preprocessor

Audio preprocessor receives raw audio and converts it into features that are

used to model the problem. Fig 4.9 and chapter 3 illustrates this mechanism

step by step. So the audio processor converts raw audio into Mel Frequency

Cepstral Coeffiencients, Mel Filter Banks and Low level descriptors. We use a

Spectrogram to visualize the Mel-scaled features.

(a) Spectrograms

Spectrograms are used to represent the strength, loudness of an audio signal

visually across various frequencies present in the waveform over time. Fig.

4.8 shows the visual of a typical spectrogram. In our work, we use spec-

trgrams to represent Mel coefficients, more specifically, MFCCs and Mel
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Figure 4.8: Spectrogram Representation

Filterbanks. Fig. 3.1 shows the visual difference between the two variations

of spectrograms used.

(b) Low-Level Descriptors

Pitch, Fundamental Frequency, Zero-crossing rate, Shimmer, and Jitter are

the set of low-level descriptors used in this work. Fig 3.2 is a 1-d represen-

tation of all the descriptors. Pitch and Fundamental Frequency

2. Deep Anomaly Detector

The Deep Anomaly detector comprises of a Convolutional Autoencoder for di-

mensionality reduction and a traditional Anomaly detector to flag anomalous

data observations as shown in Fig 4.10. Below we discuss the role of each com-

ponent in the architecture in more detail.

(a) Convolutional Encoder

Convolutional Neural Networks are long proven for their spatial feature

extraction capabilities [56]. In this study we use a Convolutional Neural
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Network to be the encoder component of the Autoencoder. As described

in fig 4.10 an input spectrogram of shape (40,690) is convolved over with

multiple layers of convolution, batch normalization and max-pooling. The

intuition behind this approach is that kernels in each convolution layer spe-

cialize in extracting specific features from the spectrogram. The output of

the final convolution layer is flattened and passed on to the Convolutional

Decoder for further processing.

(b) Bottleneck/ Latent space representation

The flattened output of the final layer of the Convolutional Encoder forms

35



the Bottleneck, also referred to as Latent space representation. They are an

array of values which are one-dimensional in nature. During the model

training stage, the encoder ensures to tune values in bottleneck to be the

most prominent set of features needed to represent the input in the low-

est dimension possible. Encoder throws away redundant information and

noise from the input and retains a compressed representation of the input.

In our work, Bottleneck is a one-dimensional array of floating-point values

representing activations from the final layer of the encoder.

(c) Convolutional Decoder

The main role of this component is to reconstruct [57] the input spectro-

gram back from the Bottleneck features as shown in fig 4.10. Again, we

use a CNN to carry out this task. This component adds dimensions to

the Bottleneck values in every layer, initially filling random values but ul-

timately learning the lost redundant spatial representation as the training

progresses. This process is called Deconvolution or Upsampling [57]. The

reconstructed images can be visualized to get first hand insights of how well

the Autoencoder is trained. Further, the network performance can be mea-

sured statistically using Mean Squared Error and other evaluation metrics

which we discuss in detail in chapter 5

(d) Anomaly detector

The one-dimensional output from Convolutional Encoder is used as input

to the anomaly detector. In this study, we use One-Class Support Vector Ma-

chines and Elliptic Envelope to identify irregularities present in the input

spectrogram. In chapter we discuss in more detail on how each component

has been implemented along with all the hyperparameters used.
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5 | Machine Learning to Detect COVID

from Audio

5.1 Technology Stack

In programming our machine learning models, we use Python as the main language.

More specifically, below are the libraries used along with their versions. Table 5.1

enumerates all the libraries used during the study.

Library Version Purpose

Pytorch[58] 1.5.0 Training Deep learning
models

Scikit-Learn[53] 0.23.1 Leveraging Anomaly detector
Implementations

Pandas[59] 1.0.5 Handling CSV data

Numpy[60] 1.19.1 Handling multidimensional
arrays

Librosa[61] 0.8.0 Reading and Processing
audio files

Plotly[62] 4.14.3 Plotting and Viz

Table 5.1: Libraries used in the thesis

The Linux platform utilized in this research was Red Hat Enterprise Linux Server

release 7.3 (Maipo). The Deep Learning models were run on NVIDIA V100 Tensor

Core GPU along with 32GB on the system memory.

In this section, we discuss the technical details of the implementation of the machine

learning modules described in chapter 4, especially the Deep Anomaly detector. We
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also discuss the experiments conducted and present hypothesis behind each experi-

ment. Finally, in the result section we compare how each experiment performed and

provide evidence to support our conclusions. Table 5.2 lists all the data representa-

tions used in this study.

Feature Dimensions Extracted features Description

One Dimensional

Zero Crossing Rate
Rate at which amplitude of
a signal passes through zero

Pitch Rate of vibrations of vocal folds

Fundamental Frequency(f0)
Approximate frequency of the

periodic structure of human voice
Jitter Cycle to Cycle fluctuations in Pitch

Shimmer
Variability in the signal’s
peak-to-peak amplitude

Two Dimensional
MFCC

Mel scaled features followed by a
discrete cosine transform to remove high
correlation represented on a spectrogram

Mel Filter Banks
Mel scaled features represented

on a spectrogram

Table 5.2: Processed features and data representations

Author Problem Type Deep Network
for feature extraction Anomaly Detectors Resulting Experiments

Convolutional Autoencoder
OC SVM,

Local Outlier Factor,
Elliptic Evelope

Convolutional
Anomaly Detector - 5.2

Variational Autoencoder
OC SVM,

Local Outlier Factor,
Elliptic Evelope

Variational
Anomaly Detector - 5.3

Self Anomaly detection
Contrastive Learning

OC SVM,
Local Outlier Factor,

Elliptic Evelope

Contrastive
Anomaly Detector - 5.4

Brown et al. Classification Vggish - -

Table 5.3: Experiments resulting from the combination of feature extractors and
anomaly detectors

On the other hand, table 5.3 lists all the experiments conducted in our thesis work. We

also implement Brown et al. [63] experimental methods on our dataset and compare

the results against our methods. Below, we will list each experiment conducted with

specific implementation details, and in the next chapter we will go over the results

observed from each of these experiments.
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5.2 Anomaly detection with Convolutional Autoencoders

Input spectrograms of COVID negative class are used for training the network. The

intuition behind this approach is to teach the autoencoder network to learn to recon-

struct from latent space representations of COVID negative class only. Therefore the

latent space of a COVID positive class will not be in the same distribution of a COVID

negative class, which helps us find input samples that do not statistically behave like

the majority of the population. We use a 5 layer Convolutional Neural Network(CNN)

for the encoder component of the Autoencoder. Each layer contains 64, 128, 256, 128,

32 kernels or activation maps respectively. The convolution operation is carried out

with a kernel size of 3 and a stride window of (1,2). We have placed a max-pooling

layer after every 2 layers of convolution, with a kernel size of 4 and a stride win-

dow of 1. To handle bias-variance trade-off, we have a dropout after the first pool

layer. All layers have reLu activation function. Activations from each convolution

layer are passed through a layer of Batch normalization [64]. Deep Networks usu-

ally contain many layers, activations of layer n− 1 is passed as input to layer n and

so on. In this process, the data distribution of activations suffer from Internal Co-

variate shift, meaning data distribution of the activations change from layer to layer

making it hard for the neural networks to generalize well in a shorter period of time.

Adding a Batch normalization layer after every convolution layer mitigates this issue

resulting in better generalization and faster training times. Input specrogram of size

(40,690) reduces to 1532 values called as Bottleneck. The Convolutional decoder uses

the Bottleneck values to reconstruct the input spectrogram. First layer of the decoder

matches the configuration of the last layer of encoder, second layer of the decoder

matches second layer from last of the encoder and so on. This ensures that each layer

in the decoder learns the representation that was thrown away by its corresponding

encoder layer. This operation continues until an image of size of input spectrogram is

obtained. Mean squared error between the reconstructed image and the input image

is calculated. Back propagation calculates gradient updates for parameters of each

39



layer to minimize the loss function. The network is trained for 300 epochs, learning

rate of 0.0001. We exponentially decay the learning rate as shown in eq 1 to adapt to

the gradient curve and smoothen the training.

lrn = lrn−1 ∗ e−γ ∗ t (1)

Here γ is the decay factor i.e. amount by which the value of learning rate has to be

decayed. t is the timestep(increments after every gradient update).

We use Stochastic Gradient Descent[49] and Back Propagation[50] for minimizing the

loss of the Autoencoder. Eq 2 describes the components of the loss function. We use

Mean square error to measure the error in reconstruction and an L1 penalty term to

further make the Autoencoder sparse, resulting in turning unnecessary weight pa-

rameters to zero. This, along with dropout helps the the network to generalize well

on real-world data. [
1
n

n

∑
i=1

[x̂i − xi]
2

]
︸ ︷︷ ︸

MSE Reconstruction Loss

+ λ.

[
∑

j
|wj|

]
︸ ︷︷ ︸

L1 penalty

(2)

xi and x̂i represent the spectrogram and the reconstructed spectrogram for audio input

i respectively. | wj | is the absolute value of weights for layer j. λ is a regularization

hyper parameter used to control extent of generalization. Each hidden layer, in both

the encoder and decoder is followed by reLu, a non-linear activation function as de-

scribed in Eq 3 to consistently introduce non-linearity in the entire network.

ŷh
i = max

[
0, ((wj ∗ xj

i) + bj)
]

(3)

ˆyj
i is the reLu activation output for hidden layer j and input sample i. wj and bj are the

layer weights and bias for layer j. xj
i is the input i for layer j

Once the network is trained, we use the encoder component of the network alone

to generate latent space representations of the input spectrogram. We use the la-

40



Convolutional
Anomaly Detector

Variational Anomaly
Detector

Constrastive Anomaly
Detector

Encoder CNN layers

5 layers
(64, 128, 256,

128, 32 kernels
respectively)

Decoder CNN layers

5 layers
(32, 128, 256,

128, 64 kernels
respectively)

Optimizer Adam
Learning rate 0.0001

Learning rate decay Exponential decay
Epochs 300

Dropout 0.2 dropout after first layer

Loss function
Mean squared

Error + L1
Penalty

Mean squared
Error + KL
divergence

Contrastive Loss
function

Table 5.4: Summary of model hyperparameters

tent space directly to train a traditional anomaly detector. One Class Support vector

machines(OC-SVM), Local Outlier Factor and Elliptic Envelope are used as anomaly

detectors. We use implementations available Scikit-Learn library for all anomaly de-

tectors. We experiment with rb f and poly kernels for One Class SVMs, and retain

default parameters in the other two detectors. All models are subject to 5-fold cross

validation. In the results section we show the performance from each experiment.

Table 5.4 list out all the final parameters used across all models in the study.

5.3 Anomaly detection with Variational Autoencoders

We trained a variational autoencoder to extract normally distributed bottleneck fea-

tures. Here again, only COVID negative spectrograms are used during training, with

the intuition that COVID positive samples will eventually form a distribution with

mean and variance deviating from being normal. We use the same network archi-

tecture used in Convolutional Autoencoders for training the encoders and decoders.

However, instead of generating one 1-dimensional array of bottleneck features, we

generate two 1-dimensional vectors for mean and variance. We then sample one 1-

dimensional vector from the two vectors, which ultimately forms the normally dis-
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tributed bottleneck features. Along with the reconstruction loss, we use a divergence

function that measures the deviation of bottleneck from a randomly sampled vector

of same size with zero mean and unit variance. In particular, we calculate the Kull-

back–Leibler divergence to ensure normality in the Bottleneck features. The complete

loss function of a variational Autoencoder is defined in Eq 4

[
1
n

n

∑
i=1

[x̂i − xi]
2

]
︸ ︷︷ ︸

MSE Reconstruction Loss

+ [KL (qθ(z | xi) ‖ p(z))]︸ ︷︷ ︸
KL Divergence

(4)

First term is the mean squared error between input sample xi and the reconstructed

sample x̂i. Second term is the KL divergence with qθ(z | xi) being the encoder’s repre-

sentation of the latent space which is compared to p(z), a randomly sampled Gaussian

data with zero mean and unit variance

5.4 Anomaly detection using Contrastive Learning

Objectives of Loss functions like Mean squared loss or Cross entropy loss is to learn to

predict a value for a given input. In this study we explore a loss function called Con-

trastive Loss whose objective is to predict relative distances between two data points,

in our case between input spectrogram and reconstructed spectrogram. Interestingly,

it takes class label into consideration to model the loss function. Specifically, it takes

input data, reconstructed data and the class label. The reason behind using the class

label is to force the encoder to model similar Bottleneck features for same class and

distant representations for different classes. In our case, contrastive loss essentially

helps the encoder model two statistically different Bottleneck representations for the

two classes in the dataset i.e. COVID and non-COVID. This helps Anomaly detectors

perform better since it creates a nice gap in distribution of Bottleneck features of both

classes. Constrative loss is defined in eq 5

L(xi, x̂i, y) = y∗ ‖ xi − x̂i ‖ +(1− y) ∗max(0, m− ‖ xi − x̂i ‖) (5)
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where ‖ xi − x̂i ‖ is the Euclidean distance between input spectrogram and recon-

structed spectrogram. m is the some margin value that enforces larger values in loss,

in case of negative samples. This is the parameter that generate discrepancy in the

loss value based on class. y is the binary class label. Bottomline, network trains on

two different loss functions for two classes.
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6 | Results and Evaluation

In this section we compare all the experiments described in chapter 5 and provide

supporting graphs and metrics.

6.1 Evaluation Metrics

An operation or an algorithm can be used only if it optimally performs the desig-

nated task. So measuring the performance of operation becomes crucial to carry out

tasks successfully. For example, performance of a sorting algorithm can be evaluated

by measuring its run-time and space consumed. This metric can be used to compare

multiple sorting algorithms. Likewise, in machine learning, performance of predic-

tive models are measured using standard techniques discussed below. Each of the

below listed technique checks if model is predicting as expected. Although the end

goal of these techniques are same, they offer unique insights to evaluate model per-

formance.

1. Confusion Matrix

In case of binary classification, where the expected outcomes of machine learning

Figure 6.1: Confusion Matrix
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algorithm will be 0 or 1. However, in most classification algorithms, the output

will be a logistic function, which is a continuous between zero to one. These con-

tinuous values are then categorized as zero or one based on a threshold value.

Confusion matrix is a 2 by 2 matrix as described in fig 6.1. True Negatives(TN)

are instances where the predicted label and true label matches, while the class

label is zero. On the other hand, True positives(TP) are same as True Negatives

while the class label is one. False Positive(FP) are instances where predicted la-

bel is one but the true label is zero, and False Negatives(FN) are instances where

predicted label is zero and the true label is one. Confusion matrix is used to

derive important evaluation metrics discussed below.

2. Precision

Precision is the ratio of correct predictions of positive class to all positive predic-

tions. It is defined by eq 1. For example, the metric measures how many of the

people labelled diabetic are actually diabetic in real world?

Precision =
TP

TP + FP
(1)

3. Recall

Recall is the ratio of correct predictions of positive class to all positive class labels.

It is defined by eq 2. For example, the metric measures - Of all the people who

are diabetic, how many how correctly classified as diabetic? This metric is highly

used in mission critical applications such as medical systems where missing a

positive observation can be fatal

Recall =
TP

TP + FN
(2)

4. F1 score

The harmonic mean of Precision and Recall is F1 score. It is defined by eq 3. This
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metric helps evaluate models which are highly skewed due to class imbalance in

training data.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

5. Fβ score

Fβ is a variant of F1 score. It differs by using a β parameter to control the impor-

tance given to Precision and Recall while calculating the F value. β values above

one give more weight to recall and less weight to precision. β values lesser than

one more weight to precision and less weight to recall.

Fβ = (1 + β2)
Precision ∗ Recall

(β2 ∗ Precision) + Recall
(4)

6. AUC score

It is the are covered under a ROC curve. ROC is abbreviated as Receiver Operat-

ing Characteristic curve. This curve measures the performance of a classification

models at all possible thresholds. More specifically, it is a plot of True positive

rate vs False positive rate.

6.2 Experiment-wise results

We replicate Brown et al [63] methodologies i.e. data preprocessing and model com-

ponents and measure their performance on our data. The best performing model has

Mel Filterbanks representation on cough and breath data with 5-fold cross validated

Support Vector Machines with an rb f kernel. We observe an AUC of 62.5. We use this

as a baseline to compare against our Deep Anomaly detectors. On these lines, Vari-

ational Anomaly detector with Elliptic Envelope using Mel Filterbank representation

on cough data performs the best across all the experiments with an AUC of 65.7. Be-

low we discuss the our explorations with each deep anomaly detector while listing all

the combinations of data representations and variations(cough, breath etc) used.
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6.2.1 Anomaly detection with Convolutional Autoencoders

A Convolutional Autoencoder is trained to reconstruct a spectrogram. Once the model

is trained, we use it to generate Bottleneck features and feed it to three different

Anomaly detectors, namely One Class SVM, Local Outlier Factor and Elliptic Enve-

lope that takes in the Bottleneck features as input. This entire process is repeated for

two different type of data representations - MFCC and Mel Filter Banks over four dif-

ferent data varaitions - Cough, Breath, Cough Breath, Alphabets. Table 6.1 shows

results obtained. Fig 6.2 shows loss trajectory of autoencoder. Although the loss has

reduced drastically, we can see that model performance is poor overall, irrespective of

data representation and anomaly detector. Based on the results we notice that cough

breath together in Mel Filterbank representation work well with an AUC of 57.5, as

suggested in Brown et al [63]. We observe that bottleneck representations formed

by the network are inconclusive to decide if an audio sample is to be considered an

anomaly. Further, detailed analysis on this is carried out in chapter 7

6.2.2 Anomaly detection with Variational Autoencoder

As we saw in the experiments with Convolutional Autoencoders, the results were

poor even though the reconstruction loss was very less. One possibility might be the

fact that Bottleneck features for both the class did not have a clear differentiation,

although the autoencorder was trained only on negative class. To exploit this assump-

tion we use a Variational Autoencoder and train it on negative class observations. In-

tuition behind this approach is that the autoencoder will force the Bottleneck features

of negative class to be normally distributed but will not have the same constraint when

generating Bottleneck features for positive class, thereby creating a clear differentia-

tion. Table 6.2 compares performance of VAEs across two data representations and

two anomaly detectors. We can see a best AUC score of 65.7 for cough and breath data

using Mel Filterbank representation and Elliptic Envelope, which is a significant rise

from 57.5 in the previous best Convolutional Autoencoder experiment. Fig 6.3 and fig
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6.4 shows the trajectory of Reconstruction Loss and KL Divergence. This experiment

confirms that forcing the network to generate bottleneck features forming a specific

distribution, in particular a normal distribution helps identify anomalies better than

before. In the next experiment we will see the effects of forcing data from both class to

form different, but specific distributions and see if it aids in better anomaly detection.

In chapter 7 we support our claims by visualizing spectrogram reconstructions and

bottleneck features.

6.2.3 Anomaly Detection using Contrastive Learning

As opposed to training a network to form Gaussian Bottleneck features for negative

class spectrograms, in Constrastive Learning the goal learn two statistically different

bottleneck representations by making use of data from both the classes and supply the

class labels to network’s loss function. This is better compared to Variational Autoen-

coder where we do not learn any specific representation for positive class data since

the model only gets trained on negative classes. Table 6.3 shows the results of opti-

mizing Convolutional Autoencoder with Contrastive Loss. Based on the outcomes of

previous two experiments with data representations, we stick to only performing our

experiments on Mel filterbanks as it consistantly outperforms MFCC representations.

Best AUC of 63.4 comes from using both cough and breath data, and training it with

Convolutional Autoencoder and One class SVM, however, Variational Autoencoder

with ELliptic Envelope still outperforms this result. Comparing results from table 6.1

we can see significant rise in all the metrics only by replacing Mean squared loss with

Contrastive loss. Fig 6.2 shows the training loss trajectory. This clearly shows using

Constrative learning instead of MSE helps network learn to create distinct bottleneck

representations on a class level. We do not experiment with Variational Autoencoders

since replacing MSE loss with Contrastive loss would train the network for 2 differ-

ent goals. Contrastive loss tries to build two different Bottleneck feature distributions

where as a Variational Autoencoder tries to model a Gaussian Bottleneck for both

classes. Further, detailed analysis on this is carried out in chapter 7

48



Anomaly Detectors

MFCC Mel Filter
BanksConvolutional

Auto-
Encoder OC SVM Local Outlier

Factor
Elliptic

Envelope OC SVM Local Outlier
Factor

Elliptic
Envelope

Cough
AUC 51 52.5 50.5 52.5 55 52

F1 score 17.5 32.5 21.9 37 38 35.2
F2 score 21.9 34.6 22.5 37.5 39.3 36.8

Breath
AUC 50.5 52.2 51.2 52.3 54.2 51

F1 score 18.2 31.1 22 37 37.5 34.9
F2 score 21.2 34.3 22.9 37.5 38.8 35.9

Cough & Breath
AUC 53.4 54.4 53.1 55.8 57.5 53.1

F1 score 19.2 34.1 24.2 39.8 41.4 36.7
F2 score 23.3 36.5 25.1 41.1 42.9 38

Alphabets
AUC 50.5 51.1 50.8 51.1 53.2 51.9

F1 score 16.8 32 21.2 36.7 37.1 34.8
F2 score 21 34.2 22 37 37.9 35.9

Table 6.1: Convolutional Autoencoders with different Anomaly detectors

Anomaly Detectors

MFCC Mel Filter
BanksVariational

Auto-
Encoder OC SVM Local Outlier

Factor
Elliptic

Envelope OC SVM Local Outlier
Factor

Elliptic
Envelope

Cough
AUC 56 55 58 56.5 55 63.09

F1 score 42.3 39.9 47.6 46.8 40.6 53.2
F2 score 43.9 40.3 48.1 47.3 41.5 55.9

Breath
AUC 56.6 55.9 58.3 56.9 55.8 63.8

F1 score 42.6 41 48.1 48 41 53.9
F2 score 44.1 41.6 50.9 49.2 42.2 55.1

Cough & Breath
AUC 58.1 57.7 60.9 58.4 58 65.7

F1 score 44.9 43 49.2 48.9 41.4 55.6
F2 score 45.6 44.3 51 49.8 42.6 57

Alphabets
AUC 55.2 54.1 56.3 55.8 55.2 62.2

F1 score 41.1 38.7 46.3 42.4 39.9 52.1
F2 score 42.3 39.8 47.9 43.1 41 54.9

Table 6.2: Variational Autoencoders with different Anomaly detectors
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Figure 6.2: Convolutional Autoencoder reconstruction loss

6.3 Results Summary

Table 6.4 contains over all the experiments on best performing data variation which is

cough and breath data. We observe that Variational Anomaly detection using Ellipti-

cEnvelope performs best across all experiments conducted with an AUC of 65.7. We

also observe that replacing MSE loss with Contrastive learning methods improves the

bottleneck encoding capabilities of Convolutional Autoencoders, the AUC rises to 63.4

from 57.5. On the other hand, Mel filters turn out to be the best data representation

for the task of COVID detection. As initially described, along with the Autoencoder

experiments we also replicated the experiment from Brown et al. [63] on MIT and

Coswara datasets to compare performance of our proposed deep anomaly detectors

against their method. We follow the data processing and modelling approach as de-

scribed in the paper and train the models on MIT and Coswara datasets combined and

recieve an AUC of 61.2 which is outperformed by our Variational Anomaly detection

experiment. However, using their dataset, they claim an AUC of 82.
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Anomaly Detectors
Convolutional
Autoencoder +

Contrastive Loss

OC
SVM

Local
Outlier
Factor

Elliptic
Envelope

Cough
AUC 61 60.03 58

F1 score 50.54 49.8 46.2
F2 score 52.56 51.12 48.4

Breath
AUC 61 60.1 57.5

F1 score 51 50.2 45.9
F2 score 52.9 52.1 47.4

Cough & Breath
AUC 63.4 63.6 59.8

F1 score 53.3 52.9 47.8
F2 score 55.1 54.5 49.3

Alphabets
AUC 59 58.8 56.3

F1 score 50.2 49.1 45.9
F2 score 51.9 51.8 48

Table 6.3: Convolutional Autoencoders with Contrastive Learning

Anomaly Detectors Binary
Classification

MFCC Mel Filter
Banks -Deep Feature

Extractor Metrics
OC SVM Local Outlier

Factor
Elliptic

Envelope OC SVM Local Outlier
Factor

Elliptic
Envelope -

AUC 53.4 54.4 53.1 55.8 57.5 53.1 -
F1 score 19.2 34.1 24.2 39.8 41.4 36.7 -Convolutional

Autoencoders F2 score 23.3 36.5 25.1 41.1 42.9 38 -
AUC 58.1 57.7 60.9 58.4 58 65.7 -

F1 score 44.9 43 49.2 48.9 41.4 55.6 -Variational
Autoencoders F2 score 45.6 44.3 51 49.8 42.6 57 -

AUC - - - 63.4 63.6 59.8 -
F1 score - - - 53.3 52.9 47.8 -

Convolutional
Autoencoders +
Contrastive Loss F2 score - - - 55.1 54.5 49.3 -

AUC - - - - - - 61.2
F1 score - - - - - - 51.5Brown et al.
F2 score - - - - - - 50.4

Table 6.4: Summary of all experiments conducted
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Figure 6.3: Variational Autoencoder reconstruction loss

Figure 6.4: KL Divergence of Variational Autoencoder
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Figure 6.5: Contrastive Loss
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7 | Discussion

Based on the performance of all the experiments we ran, and the results we displayed

on the previous section, the Variational Autoencoders with Elliptic Envelope is our

best performing model with an AUC of 65.7.

In this section we go over some observations we made from our experiments. Specif-

ically, we list out experiments that worked as per our intuition, experiments that we

feel is not the right fit for the task and conclude the chapter with limitations noted

during the course of this study.

Bottleneck features from Variational Autoencoders are good representations of audio

data to detect anomalies. Further fig 7.4 confirms our claim. It is a 2-d t-SNE plot

of the bottleneck features from Variational Autoencoders. We can see that COVID

positive samples being clustered in the lower left corner of the chart. Intuitively, this

means although the decoder parameters have generalized reconstructing from both

classes, there is a statistical difference in bottleneck features. The decoder also does

a good job at reconstructing spectrograms from both classes 7.3. On the other hand,

we observe that using Contrastive learning methods instead of MSE loss for training

Convolutional Autoencoders helps creating distinct class wise representations of the

bottleneck features. It does two things as expected. First, it does a good job in recon-

structing images from both class, fig 7.5. Second, it creates two statistically different

underlying bottleneck features which can be observed in fig 7.6.

Further, we notice that Convolutional Autoencoders fail to create bottleneck represen-

tations that aid anomaly detectors. We can observe that in its corresponding t-SNE
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plot 7.2. The observations of both classes are completely spread across the 2-d plane

making it harder to draw a decision boundary. However, we can see from fig 7.1 that

the network does a good job a reconstruction.

From the experiments run during the study, we made some collective observations

that might potentially be the limitations faced by the techniques employed.

1. Every experiment reconstructs the input spectrogram very well. Alternatively,

this means there is very little difference in the input images across both classes.

This can be a point of ambiguity in model training.

2. Out of the 150 million cases reported, our results are based on patterns found in

only 150 cases, out of which only 120 cases were used for training. Having access

to more COVID positive audio samples will help improve model performance
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Figure 7.1: Convolutional Autoencoder Reconstructions(Left: Input | Right: Recon-
structed)
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Figure 7.2: t-SNE viz of Bottleneck features from Convolutional Autoencoders
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Figure 7.3: Variational Autoencoder Reconstructions(Left: Input | Right: Recon-
structed)
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Figure 7.4: t-SNE viz of Bottleneck features from Variational Autoencoders
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Figure 7.5: Contrastive Learning Reconstructions(Left: Input | Right: Reconstructed)
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Figure 7.6: t-SNE viz of Bottleneck features from Constrative Learning

58



8 | Conclusions and Future Work

8.1 Conclusion

Passive assessment of subjects from smartphone-sensed audio can be useful in mit-

igating the spread of the disease. In this thesis, we explored passive identification

of COVID-related audio symptoms such as coughing and breathing patterns from

smartphone-captured audio using two publicly available datasets [35] [20]. Various

representations of cough and breath samples were explored including MFCCs and

Mel Filterbanks. We explored various anomaly detectors and autoencoders to detect

COVID-positive subjects including convolutional Autoencoders, variational autoen-

coders, and contrastive learning methods whose bottleneck features were fed to tra-

ditional anomaly detectors. The variational autoencoder with the elliptic envelope as

the anomaly detector analyzing Mel Filterbanks audio representations performed best

with an AUC of 65.7. We found that training the autoencoder forcefully to learn dif-

ferent representations for COVID positive and negative samples worked very well as

voice samples for both cases exhibited similar patterns (discussed in chapter 7).

8.2 Future Work

1. Gather more COVID audio data especially positive cases, which would yield a

more balanced dataset, making it possible to explore state-of-the art audio clas-

sification models [65, 66].
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2. Add more non-COVID cough samples [67] to make cough detection more robust

against incorrectly classifying non COVID coughs as covid coughs

3. Compare our best performing approaches with more state-of-the-art approaches

in audio COVID detection.
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