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Abstract
Let some finite group G be given. Then a covering of G is a collection of elements

C ⊆ G such that for every g ∈ G , there exists a representation of g as αβ−1 , where

α, β ∈ C . A packing, of G is – on the other hand – a collection of elements D ⊆ G

such that none of the differences αβ−1 coincide (where α, β ∈ D). Then the primary

question associated with these objects involves minimizing the size of a covering,

maximizing the size of a packing, and determining when these two definitions meet at

a planar difference set. We seek to establish the background of this area of study,

provide a comprehensive overview of the current work done regarding these objects,

fill in gaps in the current literature, and give a brief introduction to the topics

required to approach related problems.
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Summary/Introductions
Let G be a finite group. In this thesis we consider the following substructures in G .

Definition 0.1. Let X ⊆ G . A subset P ⊆ G is a packing of X ⊆ G if, for each

x ∈ X there exists at most one pair (g1, g2) ∈ P × P such that

g1g
−1
2 = x .

Definition 0.2. Let X ⊆ G . A subset Q ⊆ G is a covering of X ⊆ G if, for each

x ∈ X there exists at least one pair (g1, g2) ∈ Q×Q such that

g1g
−1
2 = x .

When G is finite, we will typically take X = G \ {1G} . The additional generality

in our definition is motivated by work of various authors on finite intervals of (Z,+),

which is the only infinite group we will seriously consider. There, it is useful to consider

coverings and packing of finite intervals. One further definition is useful.

Definition 0.3. Suppose that G is a cyclic group of order
(
k
2

)
+1 and that X = G\{1G} .

Then a subset D with the property that for each each x ∈ X there exists precisely

one pair (g1, g2) ∈ P × P such that

g1g
−1
2 = x ,

is called a planar difference set.

Packings and coverings are defined relative to any subset X of any abelian group G .

The main questions concern upper bounds on the size of a packing and lower bounds

on the size of a covering. In the case that X = G \ {1G} , the optimal bounds will

be proportional to |G|1/2 . The results of Chapters 1 and 2 establish upper and lower

bounds for packings and coverings of intervals in the integers to prove this statement.

In Chapter 3, we consider the existence of planar difference sets. Our main result is

a complete proof of a remarkable theorem of Singer relating planar difference sets to

finite projective planes.

Finally, in Chapter 4 we report on results of Banakh and Gavrylkiv on bounds for

coverings in finite cyclic groups. We also comment briefly on other classes of finite

groups. In contrast to covering the problem of lower bounding the density of a packing

in a non-abelian group appears to be substantially harder than bounding coverings.
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1. Packings in the Integers

A packing in the (Z,+) is a collection of positive integers

{a1, a2 . . .}

such that all differences between distinct elements ai − aj (where i 6= j ) are distinct.

Definition 1.1. A Sidon set in Z is a set

{s1, s2, . . .}

of integers with the property that sums si + sj 6= sk + s` unless {i, j} = {k, `} .

Proposition 1.2. A subset P ⊆ Z is a packing in Z if and only if it is a Sidon set.

Proof. Suppose that P is a packing in Z , and that

(1) pi + pj = pk + p` .

Rearranging, we find that

pi − pk = pj − p`
From the packing property, pi = pj and pk = p` . So the assumption in Equation (1)

leads to 2pi = 2pk and pi, pj, pk, p` are all equal. Hence the set P + P consists of

distinct sums, and a packing is necessarily a Sidon set.

In the other direction, suppose that S is Sidon, and that

si − sj = sk − s` .

Then rearranging,

si + s` = sj + sk ,

and by the Sidon set property, {i, `} = {j, k} . If si = sj then the condition is vacuous.

If si = sk then sj = s` and the packing condition is satisfied. �

Sidon Sets were first introduced by Simon Sidon, motivated by problems arising in

his work on Fourier series. These sets have since been studied extensively by combina-

torialists from the Hungarian tradition.

Example 1.3. Consider the set

B = {2n | n ∈ N}.

This set is a packing. To see this, notice that for any i ∈ N , 2i + 2i−1 < 2i+1 .

Suppose now that

2i − 2j = 2k − 2` ,
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where 2k is the largest power of 2 occuring. Then

2i + 2` − 2k < 2i + 2` < 2k .

But we have claimed equality, hence a contradiction. So this a packing in the

integers.

Example 1.4. It is possible to construct a packing greedily. Beginning with 1, we

repeatedly add the smallest integer to our set which does not result in two equal

differences. This sequence begins as follows:

1, 2, 4, 8, 13, 21, 31, 45, 66, . . . .

It was introduced by Mian and Chowla. Stöhr has shown that the kth term in

the sequences is at most k3 , but the precise asymptotics are not understood. For

further details, see the survey of Bryant, [8].

The examples above demonstrate that infinite packings exist in the integers. It is

natural to ask what is the densest possible packing in Z? This turns out to be a rather

subtle question. We will consider a slightly restricted problem:

Question 1.5. What is the densest subset of the interval [1, . . . , n] which is a packing

in Z?

Clearly, such a set must be finite, and call the maximum number of terms in such a

set Pack(n) for a given n . Determining upper and lower bounds on Pack(n) for any

given n ∈ N is the main problem associated with packings in the integers. We give

these bounds in this Chapter.

Perhaps one of the most natural first ideas to this end would be to establish a counting

bound, based on counting the number of possible differences of two elements.

Theorem 1.6. Suppose that P = {a1, . . . , at} is a packing of Z with

0 < a1 < a2 < . . . < at ≤ n .

Then t ≤
√

2n.

Proof. Since P is a packing, the differences of pairs of elements are all distinct. Now

let

A− A = {ai − aj|i, j = 1, 2, . . . , t, i 6= j}
be the set of differences of pairs of distinct members of A . Then |A−A| = t(t−1) and

precisely half of the elements in A−A are positive. Since these differences are distinct,

we must have
(
t
2

)
≤ n .

Then simple algebraic manipulation gives:
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t(t+ 1)

2
≤ n

t(t+ 1) ≤ 2n.

Since t ≥ 0;

t2 ≤ 2n

t ≤
√

2n,

which is what we sought to demonstrate. �

We will be interested in various measures of density for Sidon sets. We have shown

that
Pack(n)√

n
≤
√

2 ,

for all n ∈ N . Our next goal is to establish a lower bound on lim supPack(n). This

will require some arithmetic with prime numbers. Using results on the density of prime

numbers we can strengthen a lower bound on lim supPack(n) to a uniform lower bound.

To produce a lower bound, we need to explicitly construct an infinite family of Sidon

sets in the intervals [1, . . . , n] . The next construction is due to Erdős and Turán, [4].

Theorem 1.7. Let p be a prime number. Then

Pack(2p2) ≥ p− 1 .

Proof. For each k ∈ [1, . . . , p− 1], let %(k) = k2 mod p (interpreted as an integer) and

let

ak = 2pk + %(k) for k = 1, 2, . . . , p− 1.

Now, since k < p , and since %(k) < p ,

ak = 2pk + %(k)

≤ 2p(p− 1) + (p− 1)

< 2p2.

So P = {a1, . . . , ap−1} ⊆ [1, . . . , 2p2] . We will show that this set is a packing. Suppose

that

ai − aj = ak − a` .
Applying the definition of the ai and rearranging, we get

(2) 2p(i+ `− j − k) = %(j) + %(k)− %(i)− %(`) .
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But 1 ≤ %(x) ≤ p− 1 for all x ∈ {1, . . . , p− 1} so that the right hand side is bounded

in magnitude as follows

−2p < %(j) + %(k)− %(i)− %(`) < 2p .

But the expression on the left hand side of Equation (2) is divisible by 2p . We conclude

that both sides of this equation evaluate to 0.

So i − j = k − ` and i2 − j2 = k2 − `2 . Factoring the quadratic equation gives

i + j = k + ` . We conclude that i = k and j = ` and so differences of elements of P

are distinct. We have constructed an explicit packing of [0, . . . , 2p2] of size p − 1 and

the result follows. �

For any ε > 0 there exist infinitely many primes for which

Pack(2p2)√
2p2

=
p− 1√

2p2
≥ 1√

2
− ε .

So the lim sup of the sequence n−1/2Pack(n) is at least 2−1/2 . Using results on the

density of the primes in the natural numbers, we can extend Theorem 1.7 to all natural

numbers. Equivalently, we can show that the lower bound on the lim sup is in fact a

lower bound on all sufficiently large terms in the sequence.

To illustrate how the distribution of primes influences our result we will demonstrate

it with three different results (one condition dependent on the Riemann hypothesis).

The Prime Number Theorem was established independently by Hadamard and by de

la Vallée Pousin in the 1890s. It shows that number of primes in the interval [1, . . . , n]

is proportional to n
log(n)

. Hence on average there exists a prime in an interval of the

form [n, n+ log(n)]. Our proof will require bounds on the shortest interval around
√
n

which contains a prime. We will use the following.

(1) Bertrand’s Postulate was established by Chebyshev in the 1850s. It asserts that

there exists a prime in the interval [n, 2n] .

(2) Baker, Harman and Pintz show that there exists a prime in the interval

[n, n+ n21/40] .

(3) Assuming the Riemann hypothesis, Cramer showed that there exists a prime

in the interval [n, n + n1/2 log(n)]. Cramer also conjectured that there exists a

prime in [n, n+ log2 n] for all sufficiently large n .

We apply these results to extend Theorem 1.7.

Corollary 1.8. Assuming Bertrand’s Postulate, Pack(n) ≥ 1
2
√
2

√
n for all integers n.

For any stronger hypothesis on the distribution of primes, Pack(n) ≥ 1√
2

√
n.

Proof. First observe that a packing in [0, . . . , n] is a packing in [0, . . . , n + k] for any

integer k . We will use results on the distribution of primes to show that there exists a
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packing as in Theorem 1.7 which occupies a large portion of [0, . . . , n] for any n . To

do this we minimise n− 2p2 subject to the restriction that this quantity is positive.

(1) Assuming only Bertrand’s postulate, we have a prime p in the interval [
√
n

2
√
2
,
√
n√
2
] .

So n
4
≤ 2p2 ≤ n . We fill at least one quarter of the interval [0, . . . , n] with a

packing of near optimal density. In this case, we get Pack(n) ≥ p ≥
√
n/8.

(2) Next, assume the result of Baker, Harman and Pintz. Now we can find a

prime in the interval
√
n√
2
− n21/80

√
2
,
√
n√
2

. Now we find that there is a prime

p ≥
√
n√
2
− O(n21/80). So there exists a constant C such that n− 2p2 < Cn21/40

for all sufficiently large n . Now, the packing constructed fills a proportion of the

interval which tends to 1 as n → ∞ . In particular, for any ε > 0 the density

of this packing exceeds 1√
2
− ε for all sufficiently large n .

(3) The stronger conjectures involving the Riemann hypothesis allow more rapid

convergence (and hence smaller N for any particular fixed ε in the language of

the previous bound. �

At this point, we have established upper and lower bounds on the density of a packing

in the interval [0, n] for any integer n . These are contained in the next result.

Theorem 1.9. For any integer n ∈ N the following bounds hold for the maximal density

of a packing of the integers contained in the interval [0, n].

2−1/2 ≤ Pack(n)√
n
≤ 21/2

Theorem 1.7 does not construct an infinite packing of the integers, rather an entirely

new sequence is constructed from scratch each time a new prime satisfies the inequality

2p2 ≤ n . It is possible to ask about the density of an infinite packing in the following

sense: if P is a packing in Z consisting of positive integers, what is the density of

P ∩ [0, n]?

Perhaps surprisingly, such infinite packings must be less dense than the finite pack-

ings. Erdos showed that an infinite packing satisfies

lim
n→∞

n−1/2|P ∩ {1, . . . , n}| = 0 .

In fact, a slightly stronger result is possible:

lim
n→∞

log1/2(n)n−1/2|P ∩ {1, . . . , n}| < 1

though it is not known whether this limit is non-zero. The densest known infinite

packing was obtained by Rusza. It has density n
√
2−1 ∼ n0.41 . For details, see [9].
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2. Coverings in the Integers

We now approach what is – in some sense – a dual problem to the construction of

packings. The problem of coverings is to construct sparse subsets of the integers which

represent every integer as a difference of two elements in at least one way.

More precisely, for some number interval I = {0, 1, . . . , n} , a covering of I is a

collection Q ⊆ I such that for each x ∈ I \ {0} , there exist (not necessarily unique)

a, b ∈ Q such that

x = a− b.
Note that, if it existed, a subset of the integers with the property that x = a− b had

a unique solution for every x would be a perfect solution both to Sidon’s problem and

the construction of coverings.

For a number interval {0, 1, . . . n} , we denote the smallest possible covering of said

interval Cov(n).

We start with some simple realizations.

Theorem 2.1. For any n ∈ N, let k be the smallest integer such that
(
k
2

)
≥ n. Then

Cov(n) ≥ k ≥
√

2n

Proof. This is a simple counting bound. Simply notice that in order to cover all n

elements in the interval, we must take at least n differences, each of which must be

taken with 2 distinct elements, where the first is greater than the second. Then in order

to take n such differences, we must have at least k elements in our covering.

Since n ≤ k(k−1)
2
≤ k2

2
we find k ≥

√
2n . �

Example 2.2. Consider the number interval I = {0, 1, 2, . . . , 6} . The set {0, 1, 4, 6}
is a covering of I . This can be easily verified by noticing that

1 = 1− 0 2 = 6− 4 3 = 4− 1

4 = 4− 0 5 = 6− 1 6 = 6− 0.

Also notice that our covering has size 4, and(
4

2

)
= 6.

Therefore, by Theorem 2.1, this covering is optimal, and Cov(6) = 4.

Now, notice that we have only used the differences which are positive. When we

consider the negative sums as well, we receive the following result:

Theorem 2.3. If the set Q is a covering of the interval I = {0, 1, 2, . . . n}, then it is

also a covering of the interval I ′ = {−n, . . . , n}.
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Proof. If Q is a covering of I , then for each element x ∈ I , there exists a pair a, b ∈ Q
(where a > b) such that

x = a− b
Then, when we consider the difference

y := b− a,

we will see that y is the unique integer such that

y + x = b− a+ a− b = 0.

Then, as a consequence of this, we see that obviously y = −x , and so we cover the

entirety of I ′ . �

Example 2.4. Consider again the number interval I from Example 2.2. We have

already seen that the set {0, 1, 4, 6} is a covering of I . Now see that

−1 = 0− 1 −2 = 4− 6 −3 = 1− 4

−4 = 0− 4 −5 = 1− 6 −6 = 0− 6.

And thus our same covering of I = {0, 1, 2, . . . 6} gives us a covering also of

{−6,−5,−4, . . . , 4, 5, 6} .

Example 2.5. We will now consider an example which will prove important later.

This example is attributed to Erdős by Rédei and Rényi in [6].

Let some n ∈ N be given. then the set{
1, 2, . . . , n, 2n, 3n, . . . , n2

}
is a covering for the interval {0, 1, 2, . . . n2 − 1} . This covering contains 2n elements,

which should be compared with the bound of Theorem 2.1, which gives a bound of√
2n .

2.1. The Results of Rédei and Rényi. Important early results on coverings of in-

tervals in Z were obtained by Rédei and Rényi, [6]. Since their results were published

in Russian and do not appear to have been translated into English, we describe their

results in complete detail.

Their main result is that the sequence of densities of packings in finite intervals

converges to a limit. To achieve this result, the following definition is required.
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Definition 2.6. A sequence cn of real numbers is almost monotonically decreasing if

for all n ∈ N and for all real ε > 0, the inequality

(3) ci ≤ cn + ε

holds for all but a finite number of indices i . Equivalently, for every such (n, ε) pair,

there exists some N ∈ N depending only on n and ε such that (3) holds whenever

i ≥ N .

Then the next Lemma is attributed to Szele.

Lemma 2.7 (Szele’s Lemma). If cn is almost monotonically decreasing which is

bounded below, then limn→∞ cn exists, and

lim
n→∞

cn = inf
n∈N

cn.

Proof. Define l = infn∈N cn . Then for any ε1 > 0, there exists some N1 ∈ N such that

cn ≤ l + ε1 when n > N1 by the definition of the infimum. Therefore, when n > N1

(4) cn ≤ l + ε1.

Then, by Definition 2.6, for any ε2 > 0, there exists some N2 ∈ N such that

(5) cm ≤ cn + ε2

whenever n ≥ N2 . Now let some ε > 0 be given. Due to the arbitrarily of the epsilons

in equations (4) and (5), we may decompose ε = ε1 + ε2 , and take N = max {N1, N2} ,
and have that for all n ≥ N ,

|cm − l| ≤ ε,

and thus the limit converges to the infimum. �

Now we move to the main result proven by Rédei and Rényi, which is their main

contribution to the study of coverings.

Lemma 2.8. For any n ∈ N, there exist values m ∈ N and q a prime power such that

Cov(n) ≤ Cov(m)(q + 1).

Proof. Let m be a natural number, and q a prime-power, the values of which we will

determine precisely later. Singer’s construction tells us that there is a set D of size

q + 1 over the interval [1, 2, . . . , q2 + q + 1] such that for any α on the interval, either

the equation α = di− dj , or α = m+ di− dj is solvable with elements of D . Then, let

B be a covering of the interval [1, . . . ,m] such that |B| = Cov(m).

Then, the set of integers

P :=
{
di + (q2 + q + 1)bj | i = 1, . . . q + 1, j = 1, . . . ,Cov(m)

}
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are all distinct and lie in the interval [1, . . . ,m(q2 + q+ 1)]. Then the set of differences

P − P has elements that are of the form

(di − dj) + (q2 + q + 1)(bk − bl).

By the observation by Erdős (at Example 2.5), we see that this set P covers the entire

interval up to m(q2 + q + 1).

Now it is a trivial realization that

Cov
(
m(q2 + q + 1)

)
≤ (q + 1)Cov(m).

Let ε > 0 be fixed, and now let q be a prime-power such that

(6)

√
n

m
≤ q ≤ (1 + θ)

√
n

m
(0 ≤ θ ≤ ϑ),

which is guaranteed to exist by the prime number theorem when n is large enough.

Now, observe that n ≤ m(q2 + q + 1), so

Cov(n) ≤ Cov(m)(q + 1).

�

Theorem 2.9. The sequence
Cov(n)√

n
(n ∈ N)

is almost monotonically decreasing.

Proof. Observe first that if Q is a covering of [1, . . . , n + k] then Q is a fortiori a

covering of [1, . . . , n] . We will choose values of m and q such that n < m(q2 + q + 1)

in order to apply Lemma 2.9.

Let ε > 0 be given. We will choose m ∈ [1, . . . , bn1/3c] momentarily. Let q be a

prime power satisfying (1− δ)
√
n/m ≤ q ≤

√
n/m . By the results of Baker, Harman

and Pintz quoted in Chapter 1, for any fixed constant c , there exists a prime in the

interval [t, (1 + c)t] . So δ may be chosen arbitrarily small. In fact, we choose the pair

(δ,m) to satisfy the conditions

δ
Cov(m)√

m
≤ ε

2
,

Cov(m)√
n
≤ ε

2

noting that this is always possible for sufficiently large n depending only on ε . This

completes the parametrisation.

Substituting for the upper bound of (6) and dividing by
√
n , we get that

Cov(n)√
n
≤ (1 + δ)

Cov(m)√
m

+
Cov(m)√

n
.
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By the choice of m and δ , we get

Cov(n)√
n

<
Cov(m)√

m
+ ε.

So for any choice of m and ε there exists a constant C such that Cov(n)√
n

< Cov(m)√
m

+ ε

holds for all n ≥ C , and the sequence is almost monotonically decreasing, as claimed.

�

Corollary 2.10. The sequence Cov(n)√
n

converges, and

lim
n→∞

Cov(n)√
n

= inf
n∈N

Cov(n)√
n

.

Proof. Follows directly from Theorem 2.9, along with Szele’s lemma, Lemma 2.7. �

2.2. Numerical Bounds on the covering ratio. By Corollary 2.10, Rédei and Rényi

established that the covering ratiov Cov(n)√
n

converges to a definite limit as n→∞ . An

explicit upper bound for this limit can be computed by finding values of n for which
Cov(n)√

n
is small.

• In Example 2.2, we have shown that Cov(6) = 4. Therefore, Corollary 2.10 tells

us that

lim
n→∞

Cov(n)√
n
≤ Cov(6)√

6
=

4√
6
∼ 1.632993 .

• It was shown by Golay that Cov(6166) ≤ 1282 . From this we obtain the bound

lim
n→∞

Cov(n)√
n
≤ Cov(6166)√

6166
=

128√
6166

∼ 1.630077 .

To our knowledge this remains the best known upper bound.

Then, in order to get their lower bound, Rédei and Rényi begin with a covering

Q = {b1, b2, . . . bk} of the interval [0, 1, 2, . . . n] . Now consider the function

|f(x)| =
k∑
r=1

k∑
s=1

ei(br−bs)x ≥ 0.

Then in the exponent of e , each of ±1,±2, . . . ,±n appears at least once in the sum,

and 0 occurs at least k times. Then, the number of terms in the sum will be k2−k−2n .

Now, we set up for some algebra. Since |f(x)| ≥ 0, we know that

(7)

(
k + 2

n∑
r=1

cos rx

)
+
(
k2 − k − 2n

)
≥ 0.

Now we introduce the “Dirichlet kernel”, Dn(x):

(8) Dn(x) = 1 + 2
n∑
r=1

cos rx =
sin 2n+1

2
x

sin x
2

.
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Then, by rearranging term in equation (7) and substituting in with (8), we get that

2n+ 1−Dn(x) ≤ k2.

Now Rédei and Rényi find a minimum at x = 3π
2n+1

, and thus we evaluate:

Dn(x) = − 1

sin x
2

< −x
2

= − 2

3π
(2n+ 1)

(2n+ 1)

(
1 +

2

3π

)
< k2.

Then, if the covering Q is optimal for the given interval bounded by n , we get√(
1 +

2

3π

)(
2 +

1

n

)
<

Cov(n)√
n

Numerically, this bound evaluates to approximately 1.557. Via a more careful analy-

sis, Leech improved upon the lower bound, by computing explicitly max0<φ<π
2 sin(φ)
φ+π

. As

a result, he obtains a slightly larger lower bound of approximately 1.56. To summarise,

the tightest known bounds on the covering ratio of an interval are as follows.

Theorem 2.11. For any natural number n, we get the lower and upper bounds:

1.56 ∼

√
2 + max

0<φ<π

2 sin(φ)

φ+ π
≤ lim

n→∞

Cov(n)√
n
≤ Cov(6166)√

6166
∼ 1.63
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3. Singer Difference Sets

A special case of a famous theorem of Singer gives a construction for perfect packings

and coverings in certain cyclic groups. While this result is often cited in the literature,

it is not easy to find a full and detailed proof: we provide this proof in this Chapter.

Definition 3.1. A planar difference set in a finite group G is a subset D with the

property that di − dj = g has a unique solution for every g ∈ G . If |G| = v and

|D| = k , we say that D is a (v, k, 1)-difference set. It is both a perfect covering and a

perfect packing of G .

Clearly the existence of a planar difference set in a group G of order v requires

that v − 1 = k(k − 1) where k = |D| . In fact, Singer’s theorem shows that such sets

exist whenever k − 1 is a prime power. The prime power conjecture, a famous open

problem in combinatorics, asserts that planar difference sets exist only in this case. The

following example gives the smallest non-trivial Singer difference set with k = 2 + 1

and v = 3 · 2 + 1, associated with the prime 2.

Example 3.2. Let C7 be the cyclic group of order 7, written additively. The

smallest example of a Singer difference set is D7 = {0, 1, 3} ⊆ Z7 , because

1− 0 = 1

3− 1 = 2

3− 0 = 3

0− 3 = 4

1− 3 = 5

0− 1 = 6

Notice that D7 is a perfect covering and a perfect packing of C7 \ {0} .

To establish Singer’s theorem we require ideas and results from field theory, group

theory, finite geometry and linear algebra. We will develop each of these areas in turn,

but it may aid the reader to have a road map of the proof to refer to.

(1) Associated to a difference set is a combinatorial object called a 2-design. Corre-

sponding to Singer’s difference sets are a class of designs called finite projective

planes. We begin by giving a direct construction of these planes and establishing

properties necessary for the proof.

(2) A 2-design yields a difference set if and only if the automorphism group has a

subgroup acting regularly on points and on blocks.
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(3) To establish Singer’s theorem, we prove that the so-called Singer cycles in the

automorphism group of a Desarguesian projective plane satisfy all the require-

ments of a difference set.

Before constructing some projective planes we review properties of finite fields.

3.1. Finite Fields. We establish some basic properties of finite fields in this section.

This material is well known, and can be found (for example) in Isaacs’ book, [5].

Recall that a field E is an extension of F if and only if F ⊆ E . The field axioms yield

immediately that E is a vector-space over F . The dimension of E as an F -vector-

space is the degree of E over F , and is denoted |E/F | . We will often use standard

linear algebra terminology in our discussion.

The characteristic of a field F is the least positive integer n such that n · 1 = 0, or

0 if there is no such n . If the characteristic is positive, then it is prime, since if n = ab

then

a+ a+ · · ·+ a︸ ︷︷ ︸
b

= 0,

which implies that a(1 + 1 + · · · + 1) = 0, so b < n satisfies the definition of the

characteristic. But the characteristic is the length of the minimal sum of 1’s which

vanishes, to n cannot be composite.

If the characteristic n is positive then the multiples of 1 form a subfield isomorphic

to Zn . If n = 0 then Z is a subring of F , and completing this to a field shows that

Q ⊆ F . In fact, these are the prime fields, the unique fields having no proper subfields.

It will be convenient to consider a field F of positive characteristic as a vector space

over its prime field. Since we are interested in finite fields, the degree of this extension

will be finite. It is clear that the size of a finite field is a prime power, since it is a

vector space of finite degree over a prime field.

We recall the construction of extension fields.

Lemma 3.3. Suppose that g(x) is an irreducible polynomial of degree n over Fp . Then

E = Fp[x]/ (g(x)) is an extension field of degree n of Fp .

Proof. In a finite ring, every element is either a zero-divisor or a unit. To see this,

consider the function mx(y) = xy which multiplies each element of E by x . If this

map is surjective then there exists y′ such that xy′ = 1 and x is a unit in E . Otherwise,

by the Pigeonhole Principle, there exist distinct elements y and y′ such that xy = xy′ .

But then x(y − y′) = 0 and x is a zero-divisor.

Recall that the elements of E are in bijection with polynomials of degree ≤ n − 1

in F[x] . A non-trivial zero divisor corresponds to a factorisation a(x)b(x) = c(x)g(x)

where c(x) has degree ≤ n . By irreducibility of g(x), it must divide a(x) or b(x),

so at least one of these terms is zero. Hence E lacks proper zero-divisors. By above

argument all non-zero elements are invertible, and E is a field. �
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Example 3.4. We construct a finite field of order 27. It suffices to find an irre-

ducible polynomial of degree 3 over F3 . Since a polynomial of degree 3 is irreducible

if and only if it has no root in the field, this is easily done. For example, x3 +x2 + 2

is irreducible.

Then the elements of the factor ring

F3[x]/〈x3 + x2 + 2〉 =
{
ax2 + bx+ c+ 〈x3 + x2 + 2〉|a, b, c ∈ F3

}
are in bijection with polynomials of degree ≤ 2 over F3 . Multiplication is accom-

plished in the quotient by equating x3 with 2x2 + 1. For example,(
x2 + 1

) (
2x2 + x+ 1

)
= 2x4 + x3 + x+ 1 .

Upon long division by x3+x2+2, it can be verified by the reader that the remainder

term is x2 . So in the quotient field,(
x2 + 1

) (
2x2 + x+ 1

)
= x2 .

It is well known that the multiplicative group of a finite field is cyclic. The

element y = x2 + 1 satisfies the identities

y2 = x , y13 = 2

and so is a generator for the multiplicative group. In fact, y3 = 2x2 + x + 1 and

y4 = x so that the displayed equation above is equivalent to yy3 = y4 . Of course

the additive structure of the field is obscure from this perspective.

We conclude this section by proving that the finite field of order q is unique up to

isomorphism.

Lemma 3.5. Let L be a field of prime characteristic p and let q = pn for some n.

Then L contains a subfield of order q if and only if the polynomial xq − x splits in

L[x]. In this case, E = {α ∈ L|αq = α} is the unique subfield of L with order q .

Proof. Since L is of characteristic p and q = pn , we see that

∀α, β ∈ E, (α− β)q = αq − βq.

Then {α ∈ L|αq = α} is an additive subgroup of L , which, in accordance with the

theorem statement, we will call E . Since α/β = αq/βq for β 6= 0, and thus E must be

a subfield..

Now let f(x) := xq−x , and see that E is the roots of f in L . Thus |E| ≤ deg(f) = q .

Thus |E| = q only if f splits over L .

Now we must finish by showing that K ⊆ L (where |K| = q ) implies that f splits

over L , and K = E .
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Now suppose that α ∈ K . Then, suppose α 6= 0 (since the zero case is trivial). Then

αq−1 = 1, since α is in the multiplicative group of K , which has been established to

have order q − 1. Therefore, α ∈ E . �

Theorem 3.6. Let q = pn for some prime p. Then there exists a field of order q , and

every such field is isomorphic to a splitting field for f(x) = xq − q over F = Z/pZ. In

particular, all fields of order q are isomorphic.

Proof. Let L be a splitting field for f over F , and there is a subfield of L of order q .

Now it suffices to show uniqueness.

Let E0 be a field of order q . Then let F0 be the prime subfield of E0 . Notice that

F0
∼= F since E0 has characteristic p . Then f splits over E0 , and E0 contains a

splitting field L0 for f over F0 . Then, since splitting fields are unique, we get that

L0
∼= L . Therefore, E0 = L0

∼= L . �

Thus we have shown the existence and uniqueness of what are commonly called the

Galois fields, and will use either GF(q) or Fq to denote the unique Galois field of order

q (where q is a prime power).

3.2. Projective Planes. Next we introduce combinatorial and geometric structures

which capture the relations between straight lines in 3-dimensional space. We give the

construction in some generality, so begin with the definition of an incidence structure.

Definition 3.7. An incidence structure on a finite set of ‘points’ V is a set of ‘blocks’

B ⊆ P(V ), where P is the power set of V . We denote an incidence structure by

(V,B).

Projective planes are a well-studied class of incidence structures. In this context,

the elements of V are normally called (projective) points and the elements of B are

(projective) lines.

Definition 3.8. A projective plane Π = (V,B) is an incidence structure satisfying the

following axioms.

(1) every pair of points (in V ) are belong to a unique line (blocks in B );

(2) every pair of lines intersects in a unique point;

(3) there exist four points, no three belonging to any line

Example 3.9. Perhaps one of the most famous examples of projective geometries is

PG(2, 2), often called the Fano plane. Let V = {p0, p1, . . . p6} then let B = {b1, b2, . . . , b7} ,
where

b1 = {p0, p1, p3} , b2 = {p1, p2, p4} , b3 = {p2, p3, p5} ,
b4 = {p3, p4, p6} , b5 = {p0, p4, p5} , b6 = {p1, p5, p6} ,
b7 = {p0, p2, p6} .

.
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To verify that the axioms of a projective plane are satisfied, one must check that any

pair of points (e.g. p2, p5 ) are contained in a unique block (in this case b3 and that

every pair of blocks (e.g. b1, b6 ) intersect in a unique point (in this case p1 ).

p0

p1

p5

p2

p3 p4 p6

Fig. 1. The Fano Plane

Example 3.10. Suppose that V is a 2-dimensional vectorspace over a field k (finite

or infinite). We adjoin to V an ‘extended line at infinity’: as a set this consists of

points {xa | a ∈ k} ∪ {x∞} . We then define an incidence structure which has as

points the vectors of V together with the points at infinity.

Observe that (affine) lines of V intersect in a unique point unless they are parallel,

and that parallel lines have the same slope (as in high school geometry determined

uniquely by any two points on the line, and taking a value in k ∪ {∞}). We define

a block to be a line of V extended by the point at infinity labelled by the slope of

that line. The points at infinity also form a line.

The axioms of a projective plane may be verified with a little effort. This con-

struction is really motivated by the observation of medieval artists that parallel lines

converge to a ‘vanishing point’ on the horizon.

Example 3.11 (The Moulton Plane). Let the incidence structure M = (P,B) with

P = R2 and B = (R ∪ {∞}) × R , where ∞ is a point at infinity. Now define block

membership such that, for p = (x, y) ∈ P , lm,b ∈ B , p ∈ l if and only if:

• x = b when m =∞ ,

• y = 1
2
mx+ b when m ≤ 0, x ≤ 0,

• and y = mx+ b if m ≥ 0 or x ≥ 0.

This example, so named for Robert Moulton who discovered it in [7]. In fact, it cannot

be constructed from a vector space over a field, and we will later see that the Theorem

of Desargues does not hold in this plane.
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The next result gives the best known construction for projective planes, which is

also the most useful in applications. It is essentially equivalent to Example 3.10 but

has the advantage of making the automorphism group apparent. The following result

holds more generally for division algebras over a field, but we will not need that level

of generality in this thesis.

Theorem 3.12. Let k be a field, and V a three-dimensional vector space over k . Let V

be the set of 1-dimensional subspaces of V and B the set of 2-dimensional subspaces.

Then (V,B) is a projective plane.

Proof. We verify the axioms of the projective plane.

Lemma 3.13. Any two distinct elements of P lie on a unique element of L.

Since a projective point is a one-dimensional subspace and a projective line is a two-

dimensional subspace, the assertion is equivalent to the statement that two linearly

independent vectors space a unique two dimensional space.

Lemma 3.14. Any two elements of L meet at a unique element of P .

A projective line is a two dimensional subspace in three dimensional space: it is

defined by a single linear equation. The intersection of two distinct projective lines is

then described by the set of solutions of a pair of independent linear equations in three

unknowns, which is a one dimensional subspace.

Lemma 3.15. There exist four points, no three collinear.

Consider the projective points spanned by (1, 0, 0), (0, 1, 0), (0, 0, 1) and by (1, 1, 1).

An easy exercise shows that any three are linearly independent and so are not contained

in a projective line. �

Example 3.16. It is convenient to write [x : y : z] for the one-dimensional subspace

spanned by the vector (x, y, z). Then [x : y : z] = [λx : λy : λz] for any non-zero

vector λ and without loss of generality we may assume that the leading term is 1. The

projective points [1 : x : y] for x, y ∈ k form a 2-dimensional vector space (the axioms

may be verified directly). The points of the form [0 : 1 : x] and [0 : 0 : 1] form the

|k|+ 1 points at infinite of Example 3.10.

In the remainder of this section, we provide some counting results in the special case

that the projective plane is defined over a field of prime order.

Proposition 3.17. If Π is a projective plane defined over a field of order q then the

following hold.

(1) |P| = |L| = q2 + q + 1

(2) Each ` ∈ L contains q + 1 projective points.
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(3) Each p ∈ P is contained in q + 1 projective lines.

Proof. Let V = F3
q be a vector space. Now consider the collections

P = {Sp(v) | v ∈ V }
L = {Sp(v1,v2) | v ∈ V } .

The elements of P are projective points and the elements of L are projective lines. We

begin by computing the number of projective points and lines.

Lemma 3.18. |P| = |L| = q2 + q + 1

There are q3 − 1 nonzero vectors in V , and any given vector will span the same

one-dimensional subspace as q − 1 other vectors. Then there are q3−1
q−1 = q2 + q + 1

distinct subspaces, and so |P| = q2 + q + 1.

Similarly, there are q3 − 1 nonzero vectors from which we can construct a two-

dimensional vector subspace of V . There are (q3−1)(q3−q)
2

ways of choosing two linearly

independent vectors to span a subspace. Now we see that (q2−1)(q2−q)
2

bases will con-

struct the same vector space. So we get

|L| = (q3 − 1)(q3 − q)
(q2 − 1)(q2 − q)

=
q(q2 − 1)(q3 − 1)

q(q2 − 1)(q − 1)

=
q3 − 1

q − 1

= q2 + q + 1

= |P|. �

Lemma 3.19. Every projective line has q + 1 points on it.

Proof. Let some line ` ∈ L be given. Then, by the theorems just proven, ` must

intersect q2 + q other lines. Therefore, the number of points n on the line ` must

divide q2 + q . Thus, either n = q or n = q + 1. Notice that if n = q , then each point

p must lie on q + 2 lines, and if n = q + 1, then each point must lie on q + 1 lines.

We now make a quick aside to think about projective points. Let some point p ∈ P
be given. Then, since every pair of points intersects on a unique line, p must be joined

to q2 − q other points by lines, and we find ourselves in a similar situation to before.

Realize again that the number of lines must divide the number of points, so there are

either q or q + 1 lines that meet at every point. However, we just demonstrated that

a projective point either meets at q + 1 or q + 2 lines.

It is now clear that in order to reconcile these two constraints, n = q + 1. �



22

3.3. Incidence Matrices, their automorphisms and Block’s Lemma. In this

Section, we only consider Balanced Incomplete Block Designs, which are defined as

follows.

Definition 3.20. Let V be a set with v elements and B a collection of k -subsets of

V . The pair (V,B) is a t-design if

(1) each b ∈ B has size k

(2) each t-set of V is contained in λ blocks of B .

We say that (V,B) is a t-(v, k, λ) design.

Designs were initially investigated for applications in statistics, but have found use

in multiple other areas including signal processing.

Proposition 3.21. A finite projective plane of order q is a 2-(q2 + q + 1, q + 1, 1)

design.

Proof. Let V be the collection of projective points in the plane Π, and for each pro-

jective line ` , define B` to be the set of points incident with ` . Set B = {B` | ` ∈ Π} .
By Lemma 3.18, |V | = |B| = q2 + q + 1. By Lemma 3.19, all blocks in B have size

q + 1. Finally, every pair of elements from V is contained in a unique set B` by the

axioms for a projective plane. �

Proposition 3.22. If M is the incidence matrix of a symmetric design with parameters

(v, k, λ) such that k > λ then M is invertible.

Proof. By the definition of a symmetric design, M is a square matrix which satisfies

MM> = (k − λ)I + λJ where J is the all-ones matrix. Observe that the eigenvalues

of J are v with multiplicity 1 and 0 with multiplicity v− 1. Since (k−λ)I is a scalar

matrix, we observe that an eigenvalue of (k−λ)I+λJ is just (k−λ)+µ where µ is an

eigenvalue of λJ . We conclude that the eigenvalues of (k − λ)I + λJ are (v − 1)λ+ k

with multiplicity 1 and (k − λ) with multiplicity v − 1. In particular, the eigenvalues

of MM> are all non-zero, so this matrix has full rank. But the rank of MM> cannot

exceed the rank of M and the proof follows. �

Definition 3.23. When thinking about these incidence structures (V,B), since every

b in B is a subset of V , the natural thing to do is to create the incidence matrix whose

column vectors represent blocks, and whose rows represent elements of V . Explicitly,

we define

M = [xp,b]p∈V
b∈B

xp,b =

{
1 p ∈ b
0 otherwise

.

Theorem 3.24 (Fisher’s Inequality, cf. [3]). In any design the number of blocks in a

design is at least the number of points.
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Proof. Let M be the incidence matrix of a 2-design (V,B). The (i, j) entry of MM>

counts the number of blocks containing vi and vj , which is r if i = j and λ otherwise,

by Definition 3.20. Hence MM> = (r−λ)I +λJ . This matrix has full rank, v . Hence

M has rank v , which forces b ≥ v . �

Definition 3.25. An automorphism of (V,B) is a permutation σ of V such that

bσ ∈ B for all b ∈ B . The set of all automorphisms of D is denoted Aut(D).

Note. An automorphism σ : V → V naturally acts pointwise on the blocks of the

design (V,B). In other words, for any given b ∈ B , bσ = {σ(v) | v ∈ b} .

Recall the Fano plane of Example 3.9, which can be represented as incidence structure

as follows:

V = Z/7Z = {0, 1, 2, 3, 4, 5, 6}
with the blocks

b1 = {0, 1, 3} , b2 = {1, 2, 4} , b3 = {2, 3, 5} ,
b4 = {3, 4, 6} , b5 = {0, 4, 5} , b6 = {1, 5, 6} ,
b7 = {0, 2, 6} .

.

0
1

5

2

3 4 6

Fig. 2. The Fano Plane, labeled as suggested by the above incidence
structure.

We define a permutation on the set V by vσ = v + 1 (mod 7) for all v ∈ V . It is

easily verified that bσi = bi+1 (mod 7) for all bi ∈ B . Hence σ is an automorphism of the

Fano plane.

In the context of incidence matrices of designs, an automorphism is a pair of permu-

tation matrices (P,Q) such that PM = MQ . Notice that either one of P and Q is

completely determined by the other. Using some concepts from representation theory,

we can prove a useful result. (The reader unfamiliar with representation theory may

skip the next proof.)

Proposition 3.26 (Block, cf. [3]). On a symmetric design, the number of orbits on

points equals the number of orbits on blocks, for any subgroup of Aut(D).
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Proof. Suppose that (P,Q) is an automorphism of a design with incidence matrix M .

By Proposition 3.22, the incidence matrix of a symmetric design is invertible. Then

PMQ> = M ,

which implies that

P = MQM−1 .

In particular, P and Q are conjugate matrices, and so have the same trace. Since the

trace of a permutation matrix is just the number of fixed points of the corresponding

permutation, we see that projection onto P and Q determine conjugate representations

of the automorphism group. By the Cauchy-Frobenius Lemma, the number of orbits

on points and blocks are equal. �

If G is a group of permutations acting regularly on the points of D then G also

acts regularly on the blocks of D . This has rather interesting consequences for D , as

illustrated in the next section.

3.4. Difference Sets. Generalising planar difference sets, we have the next definition

and examples.

Definition 3.27. A subset X of finite group G is a difference set if, for each nontrivial

element g ∈ G there exist a fixed number λ of ordered pairs x, y ∈ X such that

xy−1 = g .

Example 3.28. In the cyclic group of integers mod 7 Z7 , the set D = {0, 1, 3} is a

difference set. Notice that, in this difference set, every element g of Z7 has exactly

λ = 1 representation as a difference of two elements:

0 = 0− 0 1 = 1− 0

2 = 3− 1 3 = 3− 0

4 = 0− 3 5 = 1− 3

6 = 0− 1

Example 3.29. For a slightly less trivial example, consider the additive group G of

the vector space V = F4
2 . then the set

D = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 1)}

is a difference set for G . For a brief exercise, find the value of the parameter λ .

Now, we connect back to designs. Namely, we will show that every difference set of a

group suggests a 2-design, and (perhaps more importantly for us) every 2-design with

a regular group of automorphisms admits a difference set.

Theorem 3.30. Let X ⊆ G be a difference set in G. Then {Xg | g ∈ G} is the set

of blocks of a symmetric 2-design with point set G.



25

Conversely, if (V,B) is a symmetric 2-(v, k, λ) design admitting a regular group of

automorphisms isomorphic to G on points, then there exists a difference set of size of

k in G.

Proof. Let X ⊂ G be a λ difference set. Then every group element g ∈ G can be

represented as a difference xy−1 = g in exactly λ ways. Now consider two distinct

blocks B1 = Xg1 and B2 = Xg2 . We consider the intersection B1∩B2 . If g ∈ B1∩B2 ,

then ∃xi, xj ∈ X such that xig1 = xjg2 , and thus xix
−1
j = g2g

−1
1 .

This reveals that every element in this intersection must be equal to g2g
−1
1 , which,

since X is a λ difference set, will occur exactly λ times. Therefore, for any pair of

distinct blocks, their intersection has fixed size λ .

On the other hand, Suppose that we have a symmetric design (V,B) given as a sym-

metric 2-v, k, λ) design with automorphism group G . Then label the points according

to the regular group action (i.e. choose a point p ∈ V and label it with the identity

e ∈ G , and label vg with G). Now, we have the design as a collection of group elements.

Then, by Block’s lemma (Proposition 3.26), the group action is transitive on blocks.

Then, since the action is transitive, and since |Orb(x)| = [G : Stab(x)] for all x ∈ G ,

the stabilizer of a point must be {e} . Therefore, the action is regular, and a difference

set can be constructed with every point contained in exactly λ blocks. �

3.5. Aside: Desarguesian planes. This subsection is not strictly necessary to our

exposition but describes some connections between algebraic and geometric conditions

on a projective plane, and explains the adjective Desarguesian.

The following theorem due to Desargues appears at first to be purely geometric, [1]:

Theorem 3.31 (Desargues). Let l1, l2, l3 be distinct lines which meet in a point P . Let

Q,Q′ be points on l1 , R,R′ be points on l2 , and S, S ′ be points on l3 which are all

distinct from P .

We assume

QR || Q′R′ and QS || Q′S ′.
Then

RS || R′S ′.

Simply put; if two pairs of sides of a triangle align (from a certain perspective), then

the third side must also align.
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R R′

Q

Q′

S

S ′

P

l1

l2

l3

Fig. 3. A simple diagram illustrating Theorem 3.31.

Historically, this result is due to Desargues, who established it for the real and com-

plex projective planes. His proof does not follow from the axioms of a project plane

alone, however. He requires the structure of a field to co-ordinatise the points and

lines in his plane. In fact, it turns out that Desargues theorem holds for a projective

plane (whether finite or infinite) if and only if the plane is obtained from a three

dimensional vector space over a division algebra (which need not be a field). Hence a

seemingly geometric theorem requires an algebraic structure.

3.6. Automorphisms of Projective planes. We now prove the existence of a

large group of automorphisms of a Desarguesian projective plane. (In contrast, non-

Desarguesian planes need not have any symmetries at all.)

Definition 3.32. An automorphism of a field is a function σ : E → E which satisfies

(x+ y)σ = xσ + yσ, (xy)σ = xσyσ .

If E is a field of characteristic p , then
(
p
c

)
≡ 0 (mod p) for all 1 ≤ c ≤ p− 1, so that

(x+ y)p = xp + yp

hence raising elements to the pth power is a field automorphism. This is called the

Frobenius automorphism of the field.

The automorphisms of a field E form a group, and the fixed points of an auto-

morphism form a subfield. Note that the prime fields have no automorphisms (the

Frobenius automorphism fixes all elements pointwise), so that the prime field is always

fixed. An extension is Galois if the number of automorphisms is equal to the degree of

the extension.
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Definition 3.33. Let K be a field, and let Kn be a vector space. Then a semilinear

transformation of Kn is a map f : Kn → Kn for which there exists a field automor-

phism τ : K → K such that

f(c1v1 + c2v2) = τ(c1)f(v1) + τ(c2)f(v2) (c1, c2 ∈ K, v1,v2 ∈ Kn).

If f bijective, we call f a semilinear automorphism.

Now call the family of all semilinear automorphisms ΓLn(K). Then, Z(K) E ΓLn(K),

and we call the quotient ΓLn(K)/Z(K) := PΓLn(K).

We have not had occasion to use Projective Geometries of rank greater than 2 in

this thesis, though they are defined similarly to projective planes: one takes the 1-

dimensional subspaces of a n-dimensional vector space over the field F to obtain the

projective space PG(n− 1,F). Amazingly, in dimensions greater than 2, all projective

spaces are Desarguesian, and so come from vector spaces over a field. Unfortunately,

there are many constructions for non-Desarguesian projective planes, so we can state

the following theorem only in the Desarguesian case.

Theorem 3.34 (Fundamental Theorem of Projective Geometry). Let q be a prime

power, and let n ∈ N with n ≥ 2. Then

PΓLn+1(Fq) ∼= Aut(PG(n, q))

(Here, PG(2, q) is Desarguesian by definition.)

Proof. A proof of this result is rather lengthy, and can be found in [1]. �

It will be sufficient for our purposes to know that all of PGL2(q) acts by automor-

phisms on the Desarguesian projective plane of order q .

3.7. Singer’s Theorem. We now have almost all the results required to prove Singer’s

Theorem. It remains only to embed the field Fq3 into the matrix algebra M3(q). This

is the associative algebra analogue of Cayley’s thoerem for finite groups.

Theorem 3.35. Suppose that A is a d-dimensional associative algebra over K . Then

A there exists an injective homomorphism from A to Md(K), the algebra of k × k

matrices.

Proof. Let B = {a1, a2, . . . , ad} be a basis for A as a vector space. Right multiplication

in A is k -linear by definition. So Ra : ai 7→ aia is a linear transformation for any

a ∈ A . Now, representing Ra as a d × d matrix with respect to the basis B gives an

injective homomorphism from A into Md(k) as required. �

Next, we require the fact that the multiplicative group of a finite field is cyclic.

Theorem 3.36. The multiplicative group of a finite field is cyclic
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For a proof of this, see [1]

Proposition 3.37. The group GL3(q) contains a cyclic subgroup of order q3−1, called

a Singer cycle.

Proof. By Theorem 3.36, the multiplicative group of the field K of order q3 is cyclic

of order q3 − 1. By the field axiom, multiplication by a non-zero element is bijective

in the field, so in the embedding of K into the algebra of 3 × 3 matrices over q , all

non-zero elements are invertible. Hence by Theorem 3.35, there exists a subgroup of

order q3 − 1 in the group GL3(q). �

To conclude our proof of Singer’s theorem, we just need to understand the induced

action of a Singer cycle on the points and lines of the corresponding projective plane.

Theorem 3.38 (Singer). Let Π(q) be the Desarguesian projective plane of order q .

Then Aut(Π(q)) ∼= PΓL3(q) contains a cyclic subgroup of order q2 + q + 1 acting

regularly on the points of Π(q).

Equivalently, for any prime power q the cyclic group of order q2 + q + 1 contains a

planar difference set.

Proof. Let S be a generator of a Singer cycle, as in Proposition 3.37, and write s for the

corresponding generator of the multiplicative group of Fq3 . Consider the permutation

action of S on the q3 points of the underlying vector space. For non-negative integer

t , a fixed point of St corresponds to a solution of the equation

stx = x

in the field. By the field axioms, either x = 0 or st = 1. Hence the only fixed point of

S is the zero vector, and all other vectors are permuted transitively.

Since multiplication by an element of the base field fixes all lines through the origin,

the Singer cycle contains scalar matrices, and the image in PGL3(q) has size q2 + q+1.

Since the action on vectors of V is transitive, the action on one-dimensional subspaces

is transitive, and hence regular.

Now apply Lemma 3.26, to see that the action on projective lines must be transitive.

The requirements of Theorem 3.30 are satisfied, and so the cyclic group of order q2+q+1

contains a difference set.

The elements of the difference set correspond to the points on a projective line.

Any 2-dimensional subspace of V can be used for this purpose. In the literature, the

elements of field trace 0 are often used, since they have a definition intrinsic to the field

(so it is not necessary to choose a basis or write out explicit matrices). This completes

the proof. �

As an illustration of Singer’s construction, let σ be any invertible linear transfor-

mation σ : F3
2 → F3

2 . Obviously, σ induces a permutation on the pointset of the
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Fano plane. Observe that v1, v2, v3 ∈ F3
2 satisfy the condition v1 + v2 + v3 = 0 if and

only if they are collinear, because over F2 this is equivalent to v1 + v2 = v3 . Then

σ(v1 + v2 + v3) = σ(0), so σ(v1) + σ(v2) + σ(v3) = 0, so σ(v1)σ(v2), σ(v3) must be

collinear. Hence M preserves the set of blocks, and so is an automorphism of the Fano

plane. We have shown that GL3(2)(= PGL3(2)) acts on the Fano plane.

〈1, 1, 1〉

〈0, 1, 1〉

〈1, 0, 1〉

〈0, 0, 1〉

〈1, 0, 0〉 〈0, 1, 0〉 〈1, 1, 0〉

Fig. 4. The Fano Plane, labeled with blocks determined by 2-dimensional
subspaces of F3

2 . Notice that, for each line l ,
∑

p∈l p = 0, verifying that
these are, indeed, 2-dimensional subspaces.

Example 3.39. Let q = 3, and our goal is thus to construct the difference set for

C13 . The polynomial p(x) = x3 + 2x + 1 is irreducible over F3 . Now consider F33

as a 3-dimensional vector space over F3 . If ω is a primitive element of F33 . Then

ω0 = 1 ω9 = 2ω2 + 2ω + 2 ω18 = ω + 1

ω1 = ω ω10 = ω2 + 2ω + 1 ω19 = ω2 + ω

ω2 = ω2 ω11 = ω + 2 ω20 = 2ω2 + 2

ω3 = ω2 + 2 ω12 = ω2 + 2ω ω21 = 2ω + 2ω + 1

ω4 = ω2 + 2ω − 1 ω13 = 2 ω22 = ω2 + ω + 1

ω5 = 2ω + 2 ω14 = 2ω ω23 = 2ω2 + ω + 2

ω6 = 2ω2 + 2ω ω15 = 2ω2 ω24 = 2ω + 1

ω7 = ω2 + 1 ω16 = 2ω2 + 1 ω25 = 2ω + ω

ω8 = ω2 + ω + 2 ω17 = 2ω2 + ω + 1 ω26 = 1

Now we need a 2-dimensional subspace of F33 . Arbitrarily, we will take the one

spanned by {1, ω} . This subspace will be

S = {aω + b|a, b ∈ F3}

Then S will contain the elements
0ω + 0 = 0 0ω + 1 = ω0 0ω + 2 = ω13

1ω + 0 = ω 1ω + 1 = ω18 1ω + 2 = ω11

2ω + 0 = ω14 2ω + 1 = ω24 2ω + 2 = ω5
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So taking the nonzero elements, we get

S =
{

0, ω0, ω, ω5, ω11, ω13, ω14, ω18, ω24
}

Then, considering S in the context of C32+3+1 , we see that, when removing

redundancy (and the zero vector),

S =
{
ω0, ω, ω5, ω11

}
Thus, our Singer difference set for C13 is {0, 1, 5, 11} .
Observe that

1− 0 = 1, 0− 11 = 2, 1− 11 = 3, 5− 1 = 4, 5− 0 = 5, 11− 5 = 6 ,

and the remaining non-zero elements are obtained by negating these equations.

We conclude with explicit bounds on the liminf and limsup of packings and coverings

in a cyclic group.

Theorem 3.40. As n → ∞ the limit superior of the normalised density of a packing

in the cyclic group Cn tends to 1;

lim supP (Cn)/
√
n = 1 .

Dually, as n → ∞ the limit inferior of the normalised density of a covering in the

cyclic group Cn tends to 1;

lim inf C(Cn)/
√
n = 1 .

Unfortunately, the packing and covering properties in Cn are unrelated to those in

Cn+1 so that the arguments of Redei and Renyi for intervals in Z do not translate to

cyclic groups. Nevertheless, their methods were adapted by Banakh and Gavrylkiv to

give upper bounds on the density of a covering of a cyclic group. This is the topic of

the next chapter.
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4. Coverings in Cyclic Groups

In this Chapter we describe recent work of Banakh and Gavrylkiv which gives the

best known upper bounds on the covering numbers of cyclic groups.

Example 4.1. Let q be a prime power. Then, according to the Theorem 3.38 of

Singer, G = Cq2+q+1 has a has a covering of G \ {0} which is of the optimal size

q + 1. Therefore, Cov[Cq2+q+1] = q + 1.

Since

lim
q→∞

Cov(Cq2+q+1)√
q2 + q + 1

= 1 ,

for prime powers q . We refer to this ratio as the covering ratio of a group. Banakh and

Gavrylkiv give an estimate which holds for any cyclic group.

4.1. Coverings of intervals and cyclic groups. We relate coverings of intervals to

those of cyclic groups. For some computations in Proposition 4.2 and Theorem 4.5 it

will be convenient to represent cyclic groups as groups of complex numbers. In the

remainder of this chapter, we fix the cyclic group of order n to be

Cn = {ωn ∈ C | ωnn = 1} .

Proposition 4.2. For a natural number k and ε ∈ {0, 1} the following bounds hold:

Cov(C2k+ε) ≤ Cov(k) and
Cov(C2k+ε)√

2k + ε
≤ Cov(k)√

2k
.

Proof. Define a homomorphism γ : Z→ Cn by

γ(t) = ωtn

Let D ⊂ Z of cardinality |D| = Cov(k) such that D covers the interval [1, k] . Since

x− y = −(y − x) then D also covers the interval [−k,−1], and trivially x− x covers

0.

Since D is a cover of the integers in the interval [−k, k] , γ(D) is a cover of the cyclic

group C2k+ε for ε ∈ {0, 1} .
For the second claim, we simply normalise appropriately.
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Cov[Cn]√
n

=
Cov(Cn)√

n
≤ Cov(k)√

k

√
k√
n

≤ Cov(k)√
k

√
n/2

n

≤ Cov(n)√
2n

�

By the results of Chapter 2, the upper bound

Cov(n)√
n
≤ 128√

6166
∼ 1.63

holds. Proposition 4.2 allows us to improve this bound by a factor of
√

2, so we find

that
Cov(C2k+ε)√

2k + ε
≤ 128√

2 · 6166
∼ 1.15 .

4.2. A recursive construction. In Banakh’s recursive construction, we require the

maximal gap between two elements of a difference basis of a cyclic group, as illustrated

below.

Definition 4.3. For an integer n , let

µ(n) = max
D

max
x,y∈D

|x− y|

where D ranges over all covers of Cn of minimal size, and distances are measured in

the integers between preimages of x, y in the interval [0, n− 1].

Example 4.4. The Singer difference set in the cyclic group of order 73 = 82 + 8 + 1 is

as follows:

D = {0, 1, 12, 20, 26, 30, 33, 35, 57}
The maximal gap between two elements in the sequence is 57−35 = 22. So µ(73) ≥ 22.

While Banakh gives a more complicated result, the bound resulting from the Pigeon-

hole Principle suffices for us.

Theorem 4.5. For any natural number n ≥ 3,

µ[Cn] ≥
⌊

n

Cov[Cn]

⌋
.

Proof. Fix a difference basis D ⊂ Cm of size |D| = Cov[Cm] . Since cyclic shifts of a

difference basis are still difference bases, we may assume that D contains 0, 1.

Define k =
⌊

n
Cov[Cn]

⌋
, and let Ic = [c, c + 1, . . . , c + k] be the image of an interval

of length k in Cn . On average the interval Ic contains at most 1 element of D . But
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for −k + 1 ≤ c ≤ 0, the interval Ic contains both 0 and 1. From the definition of the

expected value, there exists at least one interval Ic disjoint from D . �

Theorem 4.6. For any non-negative integers n,m, we get the upper bound

Cov[nm+ µ[Cm]− 1] ≤ Cov[n] · Cov[Cm]

Proof. Let a difference basis D of optimal size be given for the interval [−n, n] . Then,

there exists a set A ⊂ [0,m] of size |A| = Cov(Cm) such that A − A + mZ = Z , and

|A ∩ [0, µ[Cm])| is empty.

Find two numbers λ, l ∈ D where λ− l = n . Then define the set

B := {a+md | a ∈ A, d ∈ D} ∪ {a+m(λ+ 1) | a ∈ A ∩ [0, µ[Cm])}

It is clear that the cardinality of this set is

|B| ≤ |D| · |A|+ |A ∩ [0, µ[Cm])| ≤ Cov(n) · Cov(Cm).

Then the interval J = {(−mn− µ(Cm)) , . . . ,−2,−1, 0, 1, 2, . . . (mn+ µ(Cm))} is

contained in the set of differences of elements of B . In order to see this, notice that

the set of differences B − B is symmetric, and so it suffices to demonstrate this fact

for the positive elements of B − B . Let some x ∈ J be given. Then we can write x

as x = my + z , where 0 ≤ y ≤ n and 0 ≤ z < m . Then, by the definition of A ,

there exist values a, b ∈ A such that z = a − b + mj for some integer j . Then, since

|mj| = |a− b− z| ≤ |a− b|+ |z| < 2m , |j| ≤ 1m and therefore |y + j| ≤ n+ 1.

Then, it follows that

x−my + z = m(y + j) + a− b.

The case where |y + j| ≤ n follows directly, so assume that |y + j| = n+ 1, Then

x = m(y + j) + 1− n = m(n+ 1) + a− b.

Then, since x < mn+ µ[Cm] , we can conclude that

a ≤ m+ a− b = x−mn < µ[Cm],

and hence a+m(λ+ 1) ∈ B . Then

x = m(n+ 1) + a− b
= m(λ− l + 1) + a− b
= a+m(λ+ 1)− (b+ml) ∈ B −B.

Then, since the choice of x was arbitrary, J ⊂ B −B , and the result is proven. �
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Corollary 4.7. Let n be a natural number, q a prime-power, and k = n(q2+q+1)+q+1.

For any natural number l ≤ 2k + 1 we get the upper bound

Cov(Cl) ≤ Cov(k)

≤ Cov(nm+ µ[Cm]− 1)

≤ Cov(n) · Cov(Cm) = Cov(n) · (q + 1)

Proof. From the theorem of Singer, a cyclic group Cq2+q+1 (where q is a prime power)

has difference size Cov(Cq2+q+1) = q + 1. Then, by Theorem 4.5, µ[Cq2+q+1] ≥ q + 2. .

Then, following directly from Theorem 4.6,

Cov[Cl] ≤ Cov[k]

≤ Cov[nm+ µ[Cq2+q+1]− 1]

≤ Cov[n] · Cov[Cq2+q+1] = Cov[n] · (q + 1) �

4.2.1. Numerical Bounds. We now look at some of the numerical bounds given in [2].

First, we will establish some bounds for larger cyclic groups: namely, when n ≥ 11.

A direct application of corollary 4.7 with n = 6166 yields the following result:

Lemma 4.8. Let q be a prime power, and let a natural number n ≤ 12332q2+12334q+12335

be given. Then

Cov[Cl] ≤ 128(q + 1).

Proof. Consider the cyclic group Cq2+q+1 . Then Singer guarantees us a covering of

Cq2+q+1 of size q + 1. Then, Theorem 4.5 tells us that µ[Cq2+q+1] ≥ q + 2. Then,

Theorem 4.6 gives us the upper bound

Cov(Cn) ≤ Cov(6166m+ µ[Cm] + 1)

≤ Cov(6166) · Cov(Cm) = 128(q + 1) �

And furthermore, for all n ≥ 926 we achieve the upper bound

By taking n ≥ 926 and factoring the quadratic in q in this corollary, we can see the

following result.

Theorem 4.9. Let r+ denote the positive root of the quadratic 12332q2+12334q+12335,

and let q be the largest prime-power less than r+ . Then for all n ≥ 926, we achieve

the upper bound

Cov(Cn) ≤ 128
(
1 + q · r+

)
=

64√
3084

√
n+O

(
n21/80

)
.
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Proof. First, notice that r+ is well-defined only when n ≥ 926, and

n = 12332 · (r+)2 + 12334 · r+ + 12335 ≤ 12332q2 + 12334q + 12335

Then – according to Banakh and Gavrylkiv in [2] – Baker, Harman, and Pintz demon-

strated that q ≤ r+ +O
(

(r+)
21/40

)
, so

Cov(CN) ≤ 128(q + 1) = 128
(
r+
)

+O
(
x21/40

)
=

128√
12332

√
n+O

(
n21/80

)
=

64√
3083

√
n+O

(
n21/80

)
�

By taking substantially larger n (on the order of 1015 , we can improve the assumption

of the distribution of primes, and achieve

Cov(Cn) <
2√
3

√
n.

with the exact same method.

Unfortunately, these results require n to be quite large. Thus, we simply state a

result for substantially smaller n . This result is due in large to computational work

done in [2] again by Banakh and Gavrylkiv.

Theorem 4.10. If n ≥ 9, then Cov(Cn) ≤ 12√
73

√
n. Furthermore, if n 6= 292,

Cov(Cn) ≤ 24√
293

√
n.
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5. Conclusion

We have surveyed the literature on Packings and Coverings of Abelian groups, with

particular emphasis on intervals of Z and finite cyclic groups. We established the

following bounds on the density of a packing and a covering in these cases (for n

sufficiently large).

Number intervals Cyclic groups

Packings 0.707 ≤ Pack(n)√
n
≤ 1.414 .5 ≤ Pack(Cn)√

n
≤ 1

Coverings 1.56 ≤ Cov(n)√
n
≤ 1.63 1 ≤ Cov(Cn)√

n
≤ 1.40

While these results are not optimal, they are not far from it.

We conclude this thesis with some observations about packings and coverings in more

general finite groups. It would appear that the covering problem is rather easier than

the packing problem, since the following easy result is available.

Proposition 5.1. Suppose that G is a finite group of order nm with a subgroup H of

order m. Then G has a covering of size n+m.

Proof. Let T be a transversal of H in G . Then every element of G can be written in

the form tihj for some ti ∈ T and some hj ∈ H . Hence H ∪ T is a covering of G . �

Obviously the optimal case for this proposition occurs when |H| ∼ |G|1/2 in which

case, |T ∪ H| is also proportional to |G|1/2 , and so is within a constant factor of

optimality. Without the classification of finite simple groups, it is known that a group

G must have a subgroup of order ∼ |G|1/3 , from which a covering of size |G|2/3 is

obtained. Using the classification of finite simple groups, it can be shown that any

finite group G has a subgroup of order ∼ |G|1/2 . From this fact, Kozma and Lev

obtain the much tighter bound of a covering of size 4/
√

3|G|1/2 ∼ 2.309|G|1/2 for any

finite group.

Still tighter results have been obtained for more restricted classes of groups. In

particular, Banakh and Gavrylkiv have proved that a finite abelian p-group has covering

number bounded above by
√

2|G|1/2 ∼ 1.41|G|1/2 .

In contrast, results on packings in finite groups appear to be substantially more

difficult. Particularly in non-abelian groups, it quickly becomes difficult to control

products of elements drawn from distinct subgroups, so preventing collisions becomes

troublesome. Babai and Sos have used the probabilistic method to show than any finite

group contains a packing of size c|G|1/3 for some universal constant c . For various

classes of well-behaved groups (e.g. elementary abelian groups and direct products of

certain cyclic groups) they obtain near optimal bounds on the size of a packing.
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[6] A. R. L. Rédei. On the representation of the numbers 1, 2, . . . , n by means of differences. Mat. Sb.

(N.S.), 24(66):385–389, 1949.

[7] F. R. Moulton. A simple non-desarguesian plane geometry. Transactions of the American

Mathematical Society, 3(2):192–195, 1902.

[8] K. O’Bryant. A complete annotated bibliography of work related to sidon sequences. The Electronic

Journal of Combinatorics, 2004.

[9] I. Z. Ruzsa. An infinite sidon sequence. Journal of Number Theory, 68(1):63–71, 1998.


	1. Packings in the Integers
	2. Coverings in the Integers
	2.1. The Results of Rédei and Rényi
	2.2. Numerical Bounds on the covering ratio

	3. Singer Difference Sets
	3.1. Finite Fields
	3.2. Projective Planes
	3.3. Incidence Matrices, their automorphisms and Block's Lemma
	3.4. Difference Sets
	3.5. Aside: Desarguesian planes
	3.6. Automorphisms of Projective planes
	3.7. Singer's Theorem

	4. Coverings in Cyclic Groups
	4.1. Coverings of intervals and cyclic groups
	4.2. A recursive construction

	5. Conclusion
	References

