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Abstract

Many people are affected by disorders of the auditory system that can make it harder to

connect to other people and the rest of the world. Thus, researchers of the auditory system have

attempted to replicate it in different ways in order to better understand it. However, these models

tend to be limited by their levels of abstraction, which makes it difficult to chain them together

for joint study. The model described in this paper sought to find a middle ground in the levels of

abstraction, and to keep it as physiologically relevant as possible. To do this, the model contained

parts to model the basilar membrane, inner hair cells, and the auditory nerve. Code was written

to simulate the various functions of the encoding of a signal performed by the inner ear. The

encoded signal was then decoded in order to assess the validity of the model. A constant 2 Hertz

(Hz) signal and a short voice recording were both run through the model that produced accurate

and audible results.
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1. Introduction

Hearing is essential to our relationships, development, and perception of the world

around us. Our ability to hear connects us, with one another in a way that none of our other

senses provide, allowing us to communicate through the art of language. A properly functioning

auditory system allows for our perception and understanding of complex speech patterns. This

allows for the transmission of ideas that encourage problem solving and emotional expression.

These aspects of communication are essential to our development as children and our process of

learning and understanding the world around us. Hearing also allows us to respond to dangerous

stimuli in our environment, or listen to a heartwarming piece of music. Our ability to hear is

essential to our physical, mental, and emotional wellbeing. When the ability to hear is inhibited,

a person’s quality of life diminishes. Hearing impairments are estimated to affect 2.5 billion

people by 2050 and 700 million of them will have disabling hearing loss or deafness [1].

Therefore, it is essential for auditory researchers to better understand the auditory system and the

causes of hearing loss to find better treatments and hearing aids.

An extremely effective way for researchers to better understand the auditory system is

with computational models of the auditory system. These models allow researchers to study the

way our auditory system processes and interprets sound in the brain. They also can simulate

damaged auditory systems and the impact of hearing aids and cochlear implants, leading to

accurate predictions for improving hearing loss and impairments. Hearing impairments present

themselves in many different ways. People can experience varying difficulties with hearing and

auditory perception through: hearing loss, deafness, tinnitus, auditory processing disorder, and
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Meniere’s disease. Therefore, models of the auditory system can be extremely useful in modeling

dysfunctions of its different components that cause different impairments and symptoms.

Currently there are a wide range of models that capture different sections of the auditory

system, notably: the Meddis hair cell model [2] and the Heinz model of the auditory nerve [3].

These models both focus on distinct parts of the broader auditory system, and one important

stumbling block for attempts to unify them into a single model has been the fact that these

models exist at different levels of abstraction [4]. For instance, the Meddis model exists on the

implementational level - i.e., describing the biochemistry leading to nervous system activity -

while the Heinz model of the auditory nerve, and models of the central nervous auditory system

exist at the algorithmic level - i.e., describing neural activity in aggregate. Attempts to create a

single model of the auditory system, for example the MATLAB Auditory Periphery (MAP)

model [5], have approached this mismatch in abstraction largely by eliminating implementational

details, resulting in an overall more abstract model.

As a result, current algorithmic and computational models of the auditory system do not

accurately represent the physiological stimulation and propagation of signals defined at the

implementational level, which prevents these models from transmitting a sound relevant to the

human case. Differing levels of abstraction prevent different models from being relevant to one

another or useful to combine. A strictly algorithmic, computational model is less useful for

researchers developing medical devices as these models do not reflect the exact auditory signal

transmission process. Therefore, each biological component in the auditory system is not

accurately represented, and the model is unable to address the pathologies of auditory disease.

One solution to the problem of creating a unified model of the auditory system that

provides sufficient low-level detail is to incorporate recent advancements in neural modeling
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from the field of neuromorphic computing. Modern neuromorphic models are capable of

representing fairly abstract signal processing functions like those conducted by the human

auditory system, while still emulating more realistically the exact stimulation processes that

naturally occur in humans. A comprehensive example of such neuromorphic models can be

found in the mathematical principles of the Neural Engineering Framework (NEF). The NEF is

able to link the algorithmic level of sound signal processing, based on the encoding and decoding

of a population of neurons, to the implementational level of the stimulation of single neurons

from the transduction of mechanical pressure waves to electrical signals [6]. The neuromorphic

model also allows the cohesion of different sections of the auditory system that transmit signals

between each other.

There is a need for a more physiologically relevant model of the auditory system that is

able to bridge the algorithmic and implementational levels of abstraction. Such a model would

allow for multiple sections of the auditory periphery to be simulated with real-time signal

processing in one model. Following the principles of the Neural Engineering Framework, our

model will be physiologically relevant to the signal processing conducted by the basilar

membrane, inner hair cells, and auditory nerve, while simultaneously relating those functions to

low-level neural activity (e.g., action potentials). Furthermore, by implementing the model in a

software interface using MATLAB, the model itself will be accessible to a researchers with a

wide range of technical backgrounds, in addition to being useful for understanding the

physiological signal processing of sound, pathologies of specific hearing impairments, and

effects of cochlear implants on specific areas in the auditory system.
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2. Background

2.1 Sound as a Signal:

Sound is the natural phenomena caused by the vibration of matter. In the context of

hearing, sound is propagated through the vibration of air and its changing pressure. The vibration

travels away from its origin along an axis where molecules condense and refract about a central

resting point to propagate the signal. This signal can be quantified by a sinusoidal waveform that

represents the change in pressure for a certain period of time. A sinusoid is represented by three

main characteristics:

1. Frequency: the number of times the waveform repeats itself in one second (represented in

Hertz).

2. Amplitude: the magnitude of the pressure change (represented in Pascals or other

pressure units).

Figure 1: Sound as a Signal. Moore [7]
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3. Phase: The distance that the peak of one sine wave is separated from another sine wave.

The perception of the unique pitch of a sound is related to its vibrational frequency. The

higher the frequency, the higher the pitch. Sound can be characterized by its magnitude by our

perception of loudness. The intensity of a sound is measured in decibels. The intensity of a sound

is related to its power, or the energy it transmits over a certain area in a specific amount of time.

Sounds can be composed of many pressure sinusoids that make up a complex signal.

These complex signals can be broken down into its component parts through a Fourier transform.

The Fourier transform is a mathematical process that deconstructs a complex signal into a series

of simple sinusoids, specified by their frequency, amplitude, and phase. The complex waveform

can therefore be thought of as the addition of many simple waveforms.

2.2 Anatomy of the Auditory System:

The body’s auditory system interprets sound by processing vibrational signals,

transmitted by differing pressure waveforms in the air. The body’s ability to process sound as

raw waveforms and transmit them into useful electrical signals in the nervous system allows for

the understanding of our environment and interpersonal communication. The ear is the first and

most familiar component of the auditory system. It transduces raw sound pressure waveforms

into the electrical patterns that the nervous system can propagate and interpret. The ear has three

main structures: the external ear, the middle ear, and the inner ear. These portions of the ear can

be visualized in Figure 2 below.
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Figure 2: Structure of the ear and nervous auditory system [7]

The external ear is composed of the pinna (visible portion of the ear) and the auditory

canal [7]. The structure of the pinna amplifies and modifies raw sound waves and directs them

down the auditory canal. The auditory canal directs the sound waves to the tympanic membrane

(eardrum), located in the middle ear, causing it to vibrate.

The vibration of the tympanic membrane propagates to the ossicles in the middle ear. The

ossicles (the malleus, incus, and stapes) are the smallest bones in the body and further amplify

the vibrational signal [8]. The stapes contacts the cochlea’s outermost membrane called the oval

window. The stapes vibrates onto the oval window, causing a pressure differential between the

oval window and the cochlea’s second membrane, the round window. The pressure differential

effectively transmits sound into the cochlea. The middle ear’s propagation of vibrations to the

cochlea resembles an impedance matching device or transformer, at frequencies between 500 and

5000 Hz [7].

The inner ear originates with the cochlea, a spiral shaped structure composed of the

vestibular (Reissner’s) membrane and the basilar membrane. The origin of the cochlea at the oval

membrane is referred to as the base and the end of the spiral is known as the apex. This structure
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can be depicted as unwound from its spiral shape to better visualize the vibrations of the basilar

membrane. The vibration of the oval membrane extends along the basilar membrane, causing it

to move. The pressure differential across the basilar membrane causes motion in response to

sinusoidal stimulation that travels from the base of the basilar membrane to its apex. The basilar

membrane’s mechanical properties vary along the length of its narrow and rigid base to the wide

and flexible apex. The mechanical differences result in certain vibrational frequencies causing

different levels of displacement of the basilar membrane along its length, acting like a Fourier

analyzer [7]. The frequency that causes the maximum displacement of a point on the basilar

membrane is known as its characteristic frequency [7]. Therefore, each position on the basilar

membrane acts like its own bandpass filter with its center frequency being its characteristic

frequency.

The basilar membrane is connected to the organ of Corti by inner hair cells (IHC). The

IHC are oriented along the length of the basilar membrane and are activated when its

corresponding location on the basilar membrane is stimulated by its characteristic frequency. The

stereocilia of the IHC are protrusions of the cellular membrane that are displaced by the motion

of the basilar membrane caused by its characteristic frequency. The deflection of the stereocilia

open mechanically gated ion channels that allow K+ to enter the cell. The influx of K+ causes the

cell to depolarize, opening voltage-gated calcium channels, initiating the release of the

neurotransmitter glutamate at the opposite end of the hair cell. Across this end of the hair cell are

auditory nerve fibers that are depolarized and fire an action potential from the release of

glutamate. The hair cell effectively transmits the mechanical signal of the basilar membrane into

an electrical signal that relays a chemical signal in the form of a neurotransmitter. This signal
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transduction converts mechanical signals into chemical and electrical signals that the nervous

system propagates further along the auditory system.

The auditory nerve is composed of roughly 30,000 nerve fibers, approximately 20 for

every hair cell. This results in population coding, where multiple neurons represent the stimuli of

one hair cell. Their combined action potentials are carried to the cochlear nucleus in the brain

stem and then to the auditory cortex in the brain where perception occurs.

2.3 Neural Communication in the Auditory System:

Neurons communicate through the transmission of electrical signals that occur as action

potentials. Action potentials occur when a stimulus causes the neuron’s cell membrane potential

to rise above its action potential threshold [9]. Action potentials that are propagated by action

potentials from depolarization that cause a spike in the activity of the neuron along its cell

membrane.

The neurons in the auditory nerve transmit signals from the cochlea to the central nervous

system. These signals travel through the auditory nerve to the brainstem. The auditory nerve

consists of many neural fibers that relay the information from one haircell, interpreting the signal

from a frequency specific location on the basilar membrane.

Tuning curves are utilized to compare an auditory nerve fiber’s threshold at different

frequencies. The minima on a frequency-threshold curve (FTC) corresponds to the characteristic

frequency that displaces the basilar membrane that causes activation of the corresponding hair

cell. Therefore, these fibers are frequency dependent based on its activation from the frequency

selectivity of the basilar membrane. This phenomena causes the orientation of the cochlea and

auditory nerve to mirror each other by tonotopic organization [7]. Fibers activated by high
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frequencies are found on the outside of the auditory nerve, and fibers activated by lower

frequencies are located in the middle of the auditory nerve.

Auditory nerve fibers experience background spikes without sound stimulation. The

frequency of auditory nerve background spikes are dictated by the orientation of the synapse

between the auditory neurons and inner hair cells and the neuron’s stimulation threshold. High

frequencies of background spikes are caused by large synapses, and low spike frequency is

caused by small synapses. Low thresholds cause high spike frequencies, and high thresholds

cause low spike frequencies. These firing rates are classified into three categories:

1. High rates: 18-250 spikes / second (61% of fibers)

2. Medium rates: 0.5-18 spikes / second (23% of fibers)

3. Low rates: < 0.5 spikes / second (16% of fibers)

The causes and tendencies of neural stimulation in high levels of the auditory system are

very complex and have not been studied extensively.

2.4 Physiological Relevant Modeling:

2.4.1 Overview:

The physiological transformation process from the pressure wave that enters the pinna to

the electrical signal in the IHCs and AN is a difficult task for modelers to accurately represent

[10]. The transmission and transformation of the auditory signal from one physiological auditory

structure to another must be considered when constructing a physiological relevant model.

Computational models are utilized to understand and visualize the signal transformations

between successive structures in the auditory system [10]. Physiological relevant computational

models can be constructed by utilizing measurements of vibrational tendencies of the eardrum,
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stapes, and basilar membrane; and their correlation to electrical activity in hair cells. The

measurement of electrical activity in IHCs can then be correlated to the action potentials within

the auditory nerve. The trends of these physiological measurements can be compared to the

inputs and outputs at certain stages of the auditory model to gauge the success of the model [10].

For one frequency characteristic position on the basilar membrane, the following quantifiable

data can be related to each other: displacement (meters) of the stapes, displacement (meters) of

the basilar membrane, voltage of inner hair cell, probability of vesicular glutamate release, and

voltage of the resulting action potentials in the auditory nerve fiber [10].

Auditory models must account for the frequency selectivity of the basilar membrane so

that only some hair cells and auditory fibers are affected by an incoming frequency, in a

physiologically relevant way.

2.4.2 Nonlinearity of the Auditory System:

In linear systems, there is a proportional relationship between the input signal and output

signal that can be correlated by constant value. This would result in a larger input signal

producing a correspondingly larger output signal. However, the signal propagation of the

auditory system is mostly nonlinear. The peripheral auditory system experiences the nonlinear

relationship between the basilar membrane’s displacement and the neurotransmitter release in the

haircell [21]. Another nonlinear process of two-tone suppression occurs when a neuron’s

response to a particular tone is dampened by the presence of another tone, even when the second

tone does not actively stimulate the neuron itself [7].

2.4.3 The Outer Ear:

The raw sound wave received by the body is first filtered by the head and outer ear. This

filtering process can be modeled by the head-related transfer function (HRTF) [10]. An
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individual’s anthropometric uniqueness and size of their head, pinna, and ear canal can alter the

way their head and outer ear process sound. In the modeling scope, HRTFs can be related to

general head-related impulse response (HRIR) data. HRIR is measured by a microphone located

near the eardrum or along the ear canal. This sinusoidal HRIR response at the eardrum can be

compared to the raw sinusoidal vibration wave to determine the HRTF. This relationship is

linear, and therefore Fourier transforms are able to relate HTRFs and HRIRs [10].

2.4.4 The Middle Ear:

The middle ear absorbs acoustic energy from differing air pressures and transmits it to

pressure differentials over biological fluids and membranes in a linear signal processing method

by vibration propagation [10]. The transfer function between the input and output of the middle

ear is represented by a ratio measured in decibels as a function of frequency [10]. The vibrational

displacement of the stapes directly relates to the force it exerts on the oval membrane,

corresponding to the pressure differential between the oval and round membranes [10].

Therefore, the frequency transfer function of the middle ear can be characterized by a stapes

displacement or velocity versus frequency function. While experiencing pure tone signals, the

stapes velocity and displacement are related in the equation shown below:

𝑣 = 2Π𝑓𝑑

Traditionally, the middle ear is modeled through analog electrical circuits [7].

2.4.5 Basilar Membrane:

The stimulus of the basilar membrane can be quantified by its displacement and velocity

in respect to its resting position [10]. Positions along the basilar membrane react with a

maximum displacement and velocity at their characteristic frequencies. In this way, the

mechanical properties of the basilar membrane act as a bandpass filter to be responsive to its
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characteristic frequency. The varying mechanical properties along the basilar membrane create a

series of overlapping frequency filters [10]. The filters that the basilar membrane replicates are

nonlinear and asymmetric.

The asymmetric nature of these filters are evident in that the magnitude of BM

displacement is less for frequencies above that location's characteristic frequency than

frequencies below its characteristic frequency. The basilar membrane exhibits nonlinear gain

responses, higher rates at low levels compared to high sound levels. Two-tone suppression is also

experienced by the BM and contributes to its nonlinearity. Two tones primary to each other can

also combine and cause distortion in audio perception by changing the location where the

characteristic frequency occurs on the BM [10]. The asymmetric and nonlinear nature of the

basilar membrane requires accurate physiological representation to be useful in consecutive

models of the auditory nerve used in parallel.

2.5 Basilar Membrane Models:

The basilar membrane can be modeled in terms of its displacement and velocity across its

length depending on the varying frequency of signals. In the scope of a model for the auditory

system, the basilar membrane can be accurately modeled using digital filter signal processing

[10].

2.5.1 Goldstein’s Multiple BandPass NonLinear Model:

Goldstein’s Multiple BandPass NonLinear (MBPNL) model is used to represent the

“complex linear phenomena such as compression, suppression, distortion, and simple tone

interference” [11]. The MBPNL model accomplishes this using a series of narrowly tuned
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bandpass filters followed by a more broadly tuned bandpass filter shown in Figure 3 below [10].

Figure 3: Goldstein’s Multiple BandPass NonLinear Model [11]

The structure of this model is successful in reproducing the cycling, nonlinear

interactions between a location on the basilar membrane’s characteristic frequency and a more

intense tone using simple-tone interaction [10]. A series of interacting MBPNL filters is able to

reproduce the signal processing capabilities of the sections of the cochlear and account for the

propagation of combining tones [10]..

2.5.2 The Gammatone Filter:

Gammatone filters were first utilized for modeling the impulse response of auditory nerve

fibers [10]. The gammatone filter is composed of two main parts: a carrier tone that is equal to

the characteristic frequency of that location on the BM, and a gamma-distribution function that

calculates the impulse response [10]. A series of parallel gammatone filters have been used to

approximate the frequency responses of the BM and other frequency dependent physiological

systems [10]. However, gammatone filters are linear and therefore do not have the capacity to

accurately simulate the nonlinearity of the BM on its own. The implementation of nonlinearly
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spaced gammatone filters using the Mel’s scale can account for its nonlinear characteristic

frequencies (described in further detail in the Methods section). .

2.6 Hair Cell Modeling:

As previously discussed, the inner hair cells (IHC) transduce the mechanical movement

of the basilar membrane into electrochemical signals that affect the auditory nerve. This occurs

via current due to the movement of K+ ions across the membranes of the IHC. The transduction

of the mechanical to electrical signal is nonlinear in two aspects: one related to the saturation of

the current, and the other to the membrane’s conductance.

Previously, biophysical models of IHC did not include time- and voltage-dependent

potassium currents. Also, it was rare to see the models compared to in vivo or in vitro

characteristics. A model created by Lopez-Poveda and Eustaquio-Martín aimed to reproduce in

vitro characteristics while considering the time- and voltage-dependent parameters of the IHC

membranes’ conductance [12]. Their model simplifies the process by assuming the IHC potential

is determined by one inward flow of K+ current due to cilial deflections and two outward K+

currents that regulate the cells’ potential, disregarding the role of other ions. A figure of their

model can be seen in Figure 4.

In this diagram, gA is the K+ conductance of the membrane, gK,f and gK,s are the outward

K+ currents, u(t) is the displacement of the stereocilia as a function of time, and VM is the

membrane potential, or the difference between V and VOC, the intra- and extracellular potentials.

For the purposes of our project, the IHC model needs to respond to a simulated stereocilia

disturbance and then stimulate the corresponding neuron in the auditory nerve. This model will
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likely be closely tied to the basilar membrane model that is developed, and have to respond to a

frequency according to its place on the basilar membrane.

Figure 4: A circuit diagram of the Lopez-Poveda-Eustaquio-Martín model [12].
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2.7 Auditory Nerve Modeling:

The auditory nerve (AN) and its behavior in response to stimuli is important for

understanding how the auditory system processes sound. The encoding process is important to

this project and is why it is focused on through the NEF. Creating an auditory nerve model is

complex and is why models usually fall into one of Marr’s levels of analysis as discussed

previously. The most granular models aim to focus on biological and biophysical processes.

Then a step up algorithmically, they take a simplified approach to represent the AN responses

without getting into the biophysical details. Lastly and most abstract, computational models aim

to be accurate but often leave out the most granular details and are used to be quick and efficient.

These are the types of AN models and there are vast differences between each one of them.

The most granular models that are made to be faithful to biological and biophysical

details often get into how each individual neuron in the system responds to a sound. These

models are seeking to simulate the physiological process and provide an understanding of the

neural mechanisms responsible for encoding and transferring the signals. One example of this

type of model is the Hodgkin-Huxley model [13].

His model is based on the ideas that electrical behavior of neurons can be explained by

the flow of ions across the neuronal membrane. The focus is on three key ion channels: sodium

(NA+), potassium (K+), and leaky channels.

The model incorporates voltage dependent conductances for sodium and potassium ions.

These conductances describe how the flow of ions through channels in the neuron's membrane

depends on the membrane's voltage. When a stimulus depolarizes the neuron’s membrane

potential, the sodium channels open first, allowing an influx of sodium ions into the cell. This

influx results in depolarization and the initiation of an action potential. As the membrane
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potential increases, the sodium channels begin to become inactive, preventing further sodium

influx. As this is happening potassium channels open, and potassium ions flow out of the cell,

leading to repolarization. The model does account for the propagation of the action potential

along the neuron’s axon, taking into consideration the movement of ions at the refractory period

during which the neuron cannot fire another action potential. Finally after the action potential,

the membrane potential returns to its resting state as potassium ions continue to flow out of the

cell through open channels.

The model is extremely granular considering other models available and by including all

the biological and biophysical details the model can be used by researchers who are needing a

model like this. This is only one type of model and the other levels of abstraction serve as a

guide for the other types of models.

As seen in the above model the granularity can become complex quickly and take away

from the efficiency or are not relevant to researchers, but they still want to stay grounded and use

a more simplified model. This is where the algorithmic models can be useful since they are in the

middle of the levels of abstraction. The Heinz model is the middle between the most abstract and

least abstract, there is an attempt to balance being biologically accurate and being

computationally efficient [3].

The model starts farther out by simulating the cochlear processing and the inner hair cells

representations. Then the model uses different nerve fiber spontaneous rates to capture the

dynamics of spike generation in response to the stimuli. There is an emphasis on the importance

of precise spike timing and rate coding in the auditory nerve responses. It provides a

representation of how different fiber types encode temporal features of sound. As stated in the
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paper the model can be extended to incorporate forward masking making it valuable for complex

sounds.

Lastly, in terms of abstraction, it is worth noting that the Meddis model of the hair cell

includes the AN, where its goal is to capture the important aspect of the AN but simplify the

biophysical details.

This model focuses on the important perceptual features that are going on in the AN. It

also begins farther out in the ear and doesn’t only focus only on the AN since it isn’t as granular.

The model begins by mimicking the cochlear frequency analysis, and then calculates the basilar

membrane's response to the sound input. This simulates the response of the inner hair cells and

this is where the AN becomes important. Instead of modeling the detailed process of the

biophysical processes of spike generation, this model employs a more simple approach. It uses a

rectifier and low pass filter to generate “spike trains” that represent the firing of auditory nerve

fibers. The effect of the adaptation and refractory periods are taken into account and by the end

the model produces information about the intensity and timing of the spikes, which can be

related to perceptual features like volume and pitch.

In this model by leaving out the biophysical details the model is much more simple and

useful for researchers who are looking for a model where it doesn’t gloss over the details of the

AN but still incorporates the key points that cannot be missed.

Each of these models include different levels of abstraction and are important depending

on the type of research that is being done. The models have pros and cons depending on what is

required, where in some cases the granularity is needed, but in other cases that is not important

and not relevant. In this project the goal will include a model of the AN and therefore having

scope on what other models have done will provide context for this project.
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2.8 Conditions of the Auditory System:

There are many conditions which can affect the auditory system. These conditions can

affect any part, including the outer ear, inner ear, auditory nerve, or even parts of the brain. For

this project, an emphasis is put on speech recognition problems such as noise and age related

hearing loss, and tinnitus. A neuromorphic model would help in this context as researchers could

gain a better understanding of the role in the peripheral auditory system in these conditions.

2.8.1 Age Related Hearing Loss

Age related hearing loss, formally known as presbycusis, is a condition that impairs the

ability to understand high-frequency components of speech[14]. It is the most common form of

hearing loss, affecting approximately two-thirds of Americans above the age of 70. This

condition begins to show symptoms at around age 60, and continues to progress as the patient

grows older. This condition affects speech recognition, impacting the ability for patients to

communicate. This condition occurs due to multiple factors, including ageing of different parts

of the cochlea, expression of genetics, ototoxicity, noise exposure, and hormonal imbalances[14].

Using a neuromorphic model would greatly benefit research on this condition, specifically in

cases where aging of the cochlea is being studied, as the cochlea is a part of the model.

2.8.2 Noise-Induced Hearing Loss

Noise-induced hearing loss is the second most common cause of hearing loss after

presbycusis. It is estimated to affect approximately 5% of the world population[15]. This

condition occurs due to either prolonged exposure to noise levels of between 75-115dB or

immediately after a single close range exposure at 120 to 160dB[15]. These sound exposures
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cause larger than normal distortions in the basilar membrane, resulting in cochlear fluid

movement which shears the inner hair cells. Patients' personal and work lives are affected by

this, as their speech recognition is impaired and their ability to communicate is heavily impacted.

A neuromorphic model would help researchers by understanding how the cochlea is impacted by

this condition.

2.8.3 Tinnitus

Tinnitus is a condition which causes perception of a sound in patients with no external

source. It is often described as ringing, but it can also present as roaring, rushing, or buzzing.

Cases of tinnitus vary from patient to patient, as it may or may not be present at all times, with

the same intensity at all times, and the sound may be different. Most cases of tinnitus are

subjective, as only the patient can hear it. Approximately 10 to 25% of adults are affected by

tinnitus.[16] The causes of tinnitus are not fully understood, but researchers have linked it to

noise exposure, hearing loss, medications, ear infections, and head or neck injuries. There are

treatments for tinnitus such as sound therapy, though this method requires exposure to the sound

the patient is hearing, and it can be difficult to determine the exact frequencies of that sound. A

neuromorphic model would help researchers understand potential factors of tinnitus that could

occur in the peripheral auditory system.

2.9 Different Models

In the field of auditory modeling, several influential models and theories have expanded

our understanding of how humans perceive sound. To provide context for the project, we will

discuss the Ray Meddis MAP model and Heinz Auditory Nerve (AN) model. The MAP model is
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the closest to what we are developing and is the biggest competitor hence why we want to

compare its qualities to this project.

Ray Meddis developed a model of auditory processing known as the "MATLAB

Auditory Periphery," model (MAP)[2]. The motivation behind this model is to provide a tool to

researchers who want to explore the relationship between physiology of the auditory system and

the perception of sound both in normal and impaired hearing, meant to be an all encompassing

model that ties all of Meddis models together. The creation of such a model is extremely time

consuming and therefore an “off the shelf” model would provide a much more accessible option

for researchers to use. The model itself provides the ability to do things like pitch matching,

simulating hearing disorders, and can be used in various students such as studying how speech

recognition works in quiet and noisy environments. This is the most comprehensive model that

tries to fill a similar need as this project but due to a few differences in our mission statement our

model strives to achieve a different goal.

2.10 Marr’s Levels of Abstraction

Marr’s Tri-Level Hypothesis defines these levels of abstraction as the computational

level, the algorithmic level, and the implementational level. The computational level represents

how the system reaches its goal and the purpose of the process [6]. The algorithmic level uses

and manipulates representations to process data to achieve the model’s goal. The

implementational level is the physical and biological reality of how the system works and

propagates signals. For example, the release of neurotransmitters causes an action potential in a

neuron. The Meddis model of the inner hair cells (IHCs) and the Hodgkin-Huxley model of
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neural communication exist on the implementational level. The Heinz model of the auditory

nerve, and models of the central nervous auditory system exist at the algorithmic level.

2.11 Benefits and Knowledge gaps

Existing auditory models have significantly contributed to our understanding of auditory

processing, but they often operate at different levels of abstraction as seen in the numerous

examples discussed. While these models provide valuable insights, there is a notable gap when it

comes to a comprehensive neurophysiological sound model. The challenge arises from the

different levels of abstraction in these models, making it difficult to create a unified model that

accurately simulates the entire auditory process and gracefully bridging the gap from one level of

abstraction to another. This is what the Neural Engineering Framework accomplishes extremely

well and is why it is a major focus for this project. This is also why the MAP model was

discussed in the previous section since without the NEF it creates a model of the ear that

attempts to bridge these gaps in the levels of abstraction. The problem however is that since

older models aren’t directly compatible they will not always be faithful to how the different

sections actually work together. This is useful for researchers who have a dedicated use case but

this model does not provide a neuromorphic accurate representation of the correct parts.

To achieve a more neurophysiologically accurate sound model, it is essential to correctly

model the processes occurring at the level of auditory nerve fibers, this is where the NEF will

come into play. Current models often simplify or overlook the complexities in the auditory nerve

and its encoding and decoding. Bridging this gap would not only enhance our understanding of

auditory perception but also open doors to more neurobiologically inspired sound models. Such a

model would bridge the varying levels of abstraction to provide a more faithful representation of
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how the human auditory system processes sound. This would enable more precise and effective

simulations of auditory experiences for researchers to make direct use of and that is the goal of

this project and is why that is a priority.

2.12 Neuromorphic Computing

To create a model that takes these limitations into account, it is necessary to utilize

neuromorphic computing. Neuromorphic computing is a computational approach inspired by the

brain. It functions in such a way that mimics the function of neurons and synapses. The first

instance of neuromorphic computing was in an analog model of the retina in 1988. This model

was composed of a silicon chip with a resistive array network, and its functionality modeled the

processing that occurs in the receptors and outer plexiform layer. [2] Although the model was not

precise enough to be used in experiments to determine the true importance of the retina, it

created discourse about using a different style of computation, resulting in the birth of

neuromorphic computing.

Neuromorphic computers differ from traditional Von Neumann computers, which utilize

CPUs for processing and separate memory units for storing data and instructions. Instead, this

method of computing takes inspiration from the construction of neurons and synapses to store

and process this information. This is accomplished by receiving spikes as input, which can then

be used to decode numerical information, as opposed to the binary values encoding information

for Von Neumann computers. The result of this is fundamental differences in operation. These

differences pose a number of benefits for creating a model of the auditory system including

parallel operation, collocated processing and memory, inherent scalability, event-driven

computation, and stochasticity[17].
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In a software-based neuromorphic model, processing of information would be

event-based and use spike based input. The code that makes up the model would be organized

and made to function in a way that replicates the functionality of the biological parts of the

peripheral auditory system. Due to the inherent cost and complexity of neuromorphic computers,

our model will be utilizing a Von Neumann computer. In order to replicate the function of the

auditory system, we will be utilizing a neural framework in MATLAB.

2.13 Neural Engineering Framework

2.13.1 Overview

The book Neural Engineering by Chris Eliasmith and Charles Anderson discusses how to

computationally represent a neural system in order to more easily research and understand

them[6]. They intended their book to be applicable to different kinds of systems, and thus explain

the basis for their model and methodology on how to implement it with the systems. In order to

guide the neural engineering framework (NEF) model, there are 4 principles that must be

considered. First, is that the system must be represented by both non-linear encoding and linear

decoding. This principle assumes that the encoding device of a neural signal is independent of

the one that decodes it. Although neurons may not always use a linear decoder, any change in the

decoding of a neuron directly affects the decoding and encoding of neurons in the nearby

population. The second principle states that neural transformations are based on variables in the

neuron population, and an alternately weighted linear decoding. Nonlinear transformations are

also very common in neural processes and can even be predicted using the neural network itself.

The third principle states that neurons should be characterized with control state variables, so

they can be analyzed with control theory. This allows for neural analysis in dynamic
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neurobiological systems. Finally, the last principle states that noise must be taken into account

when analyzing neural systems. This helps narrow down the uses of a particular system and

predict its efficacy.

2.13.2 Neuron Representation

When creating a model of any kind, from physics to biology, it is important to consider

how its characteristics will be represented in a meaningful way. A simple but physiologically

relevant way to represent neurons can be with a digital computer. The neuron’s function of

encoding a neural signal can be compared to an analog-to-digital converter (ADC). In this

example, there are two steps: Converting a scalar to a series of values (0 or 1), and decoding that

series in order to produce a meaningful output.

In order to translate this to neurobiological systems, it is assumed the decoding process is

linear. Also, rather than converting a scalar into a temperature code, neural systems convert

scalars into firing rates. The relationship between these values is called the neuron’s “tuning

curve”, which is determined by processing input signals producing a current, and then generating

a voltage from the soma of the targeted neuron; these are represented by , the current in the𝐽(𝑥)

neuron, and respectively. Although currents do not directly cause a neuron to fire, this is𝐺[𝐽(𝑥)]

an assumption made though the text to simplify the model. Therefore, the encoding and decoding

processes for the firing rate and signals of biological systems are

(Eq. 1)𝑎
𝑖
(𝑥) = 𝐺

𝑖
[ α

𝑖
𝑥 + 𝐽𝑏𝑖𝑎𝑠 ]

and

(Eq. 2)𝑥 =
𝑖

∑ 𝑎
𝑖
(𝑥)ϕ

𝑖

where
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. (Eq. 3)ϕ = Γ−1 Υ

In the weighting function, Eq. 5,

(Eq. 4)Γ
𝑖𝑗

=< 𝑎
𝑖
(𝑥)𝑎

𝑗
(𝑥)>

𝑥

and

. (Eq. 5)Υ
𝑗

=< 𝑎
𝑗
(𝑥)𝑥 >

𝑥

In (Eq. 1), represents the gain, as well as a parameter that converts the units of theα

input scalar, , and scales the scalar to the tuning curve of a neuron within . The weighting𝑥 𝐺[•]

function, The decoding function, , is determined by the properties of the neuron itself.𝐺[•]

2.13.3 Temporal Representation

The leaky integrate-and-fire (LIF) neuron is a model used to emulate voltage spikes

produced by real neurons. It is a simplified version of the Hodgkin-Huxley model, so it is

applicable to neurons all over the human body. In this model, the voltage within the neuron is

constantly increasing, until it reaches the threshold, Vth, where it spikes for only an instant. It

then ceases activity for a time, 𝝉ref, and then continues to build voltage until it reaches the

threshold again. It can also be compared to a simple RC circuit coupled with a short-circuit

switch. When the voltage across the circuit reaches Vth, the short-circuit switch flips, generating a

spike in voltage for a brief moment, before dropping to 0 V, and opening after 𝝉ref. The process

can be seen below, in Figure 5. This model is physiologically applicable for a few reasons. First,

the spike represented in the LIF neuron is similar to one that is produced by a real neuron.
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Second, the resting period after a spike is also found in neurons. Finally, this model can

be easily represented in a physical circuit. Although there are aspects of this model that are not

physiologically relevant, the benefits of the model greatly outweigh them.

Using the LIF model, the firing rate of a neuron can be found in terms of the input

current, JM :

(Eq. 6)𝑎(𝐽
𝑀

) = 1

τ𝑟𝑒𝑓−τ𝑅𝐶𝑙𝑛(1−
𝐽

𝑡ℎ

𝐽
𝑀

(𝑥) )

2.13.4 Decoding Spikes

In the world of representing the timing of neural signals, there is discussion about

whether the signal should be processed by a rate code or timing code. However, Eliasmith and

Anderson argue that it does not matter much, as they are both time-dependent codes, and

developed a method that accounts for both types of codes.
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For a signal function based on time, x(t), an encoder will transform it into a series of

spikes, 𝛿(𝘵-𝘵n). For peripheral nerves, using a decoder like (Eq. 2) will return a signal, x̂(𝘵), that is

similar to the original signal function. The auditory nerve, however, is part of the central nervous

system. This means the signal will go through an additional encoding into spikes, and then an

additional decoding which produces a complex function of x(t). This additional decoding helps

characterize the previous encoding steps. Also, because neurons are not single units that operate

independently, the decoding process for one neuron is directly related to the encoding process of

a neighboring one.

These paired cells can be represented by a push-pull amplifier. This essentially means for

a given pair of neurons, the signal can be split in half between the two, and combined later to

produce a signal. For each spike train, spikes that are close together represent an increase in

amplitude which can be positive or negative based on the neuron. This is possible because of

opponency, where two neighboring neurons have opposite tuning curves. This signal ends up

being more linear, more symmetrical, and more efficient. When these opposing signals are

converted into spikes, or impulses, the approximation of the original signal can be represented

as:

(Eq. 7)𝑥(𝑡) =
𝑖=1

𝑁

∑ ℎ(𝑡 − 𝑡
𝑛
) =

𝑖=1

𝑁

∑ 𝑎
𝑖
(𝑥(𝑡))ϕ

𝑖
(𝑡)

where the function h(t) is a linear decoder, made up of the firing rate and the encoding weight.

The final expression comes from the NEF [6].
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3. Methods

3.1 Design Criteria

The creation of a complete and physiologically relevant model of the auditory system

needs a precise approach that follows specific design criteria. These criteria are important in

ensuring that the model not only mirrors the anatomical structure of the auditory system but also

simulates its behavioral functions. Our set of criteria, accuracy in anatomical structure and

behavioral resemblance, usability as a research tool, real-time signal processing capability,

extensibility for future modifications, and efficiency in computational performance—forms the

foundation of our methodology.

Biological plausibility and accuracy are our primary objective since we want to create a

model that represents the physiological processes of the auditory system. This criteria is essential

for simulating the auditory signal processing done by the basilar membrane, inner hair cells, and

auditory nerve. By prioritizing biological accuracy, we ensure that the model can accurately

simulate normal auditory functions and various pathologies, therefore serving as a valuable tool

for researching hearing impairments and the effects of interventions such as cochlear implants.

Usability as a research tool is an important criteria due to being a major motivator for

doing this project. Researchers being able to see what is going on and understand and use what is

presented is important to the design of the model. Making a model that is overly complex does

not benefit researchers, this is why a simple and correctly thought out model is crucial.

Computational efficiency remains a significant concern. A model that is computationally

demanding may limit its accessibility and usability, particularly for researchers and clinicians

who may not have access to high-performance computing resources. Therefore, efficiency is
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crucial for facilitating broader adoption and application of the model, albeit secondary to the

criterion of biological accuracy.

The ability to easily modify and understand the model is crucial for its longevity and

relevance, especially given the rapid pace of advancements in auditory science and

computational modeling techniques. Extensibility ensures that future research can build upon the

model without starting from scratch, allowing for the incorporation of new findings and

methodologies.

3.2 Model Inputs and Outputs

The neuromorphic model of the human auditory system utilizes a one dimensional vector

as an input signal. The input signal represents a sound wave signal that varies in magnitude over

the time domain. The input signal can be a raw audio waveform file read using MATLAB’s

function audioread, or an arbitrary time varying input signal or sinusoid. The input signal is

passed through the basilar membrane filters, inner hair cell filters, and auditory nerve

populations. The signal is reconstructed after being filtered by the basilar membrane and inner

hair cell portion of the model. These signals can be played as audio outputs of the model using

MATLAB’s soundsc function. The time varying function of these processed audio waveforms

are also outputted with a visual graph.

The auditory nerve fibers in one population encode the input voltage signal received from

their corresponding inner hair cell. These encoded signals are then decoded for each population

of neurons and reconstructed into a final decoded signal. The final decoded signal can be

compared to the initial input signal and the processed output signals of the basilar membrane and
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inner hair cells. These different signals can then be compared graphically and by listening to

their audio outputs.

3.3 Model Structure

As mentioned previously, our model aims to represent three major portions of the

auditory system: the basilar membrane, the inner hair cells, and the auditory nerve. This will

make our model physiologically relevant for researchers. A bank of gammatone filters has been

chosen to model the basilar membrane, due to the frequency specificity of the gammatone filters.

A leaky integrate-and-fire neuron structure has been chosen and adapted from the Neural

Engineering Framework to represent both the inner hair cells and the auditory nerve neuron

populations. For each spot on the basilar membrane modeled, there is a corresponding array of

cells that will take the output of each individual filter. Subsequently, for each inner hair cell

modeled, there is a population of neurons that receive the output from each inner hair cell.

Figure 6. Complete block diagram of the auditory processing model.
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To represent the response of the basilar membrane to frequency-specific signals, we

designed a bank of Gammatone Filters. This choice was made to keep it physiologically relevant

by aligning it with the logarithmic, nonlinear spacing of frequency specificity on the basilar

membrane. Our adaptation incorporated Goldstein’s Multiple Bandpass nonlinear model to

refine the scale and establish frequency bins corresponding to distinct locations on the basilar

membrane[18].

For modeling the inner hair cells, reference was taken from the Meddis Model,

previously recognized as a dominant framework in auditory research. This selection prioritized

physiological relevance, as well as giving the option for scalability in research. Integrating

concepts from the Neural Engineering Framework, we tailored the model to our needs, focusing

on LIF neurons. To model these inner hair cells, we created a function that created MATLAB

structures that contained variables like the membrane voltage and background current of the

IHC, a scaling parameter that ensures physiological relevance, the encoding weight, the sampling

rate, RC time constant, and voltage leak resistance. This function took in the sampling rate, an

encoding weight (phi = 1) and randomly generated background current and scaling parameter

values as parameters. The structure for auditory nerves is similar but includes more values: spike

state, refractory period, current threshold, and voltage thresholds. These nerve structures were

contained in a 3D matrix of cells based on the number of filters, number of inner hair cells per

filter, and number of neurons per cell.
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3.3 Basilar Membrane Model

The basilar membrane is modeled using a series of gammatone filter banks. Each

gammatone filter represents a frequency sensitive location on the basilar membrane with a

unique characteristic frequency. The parameters for the gammatone filters are set between the

frequency ranges of 200 to 8,000 Hertz. This range was selected to be used for the audible

frequencies of human speech and sound and it is the physiological sensitivity range of the basilar

membrane from its base to its apex. This sensitivity range can be changed in the model, to allow

researchers the ability to vary the sensitivity of the model from 0 to 20,000 Hertz which is the

complete frequency range of the basilar membrane.

The boundaries of this frequency domain are converted from Hertz to Mels. The Mels

scale provides an accurate representation of the nonlinear frequency sensitivity of the basilar

membrane along its length.[19] The frequency domain in Mels is linearly spaced between the

boundaries for each of the gammatone filters to be created. The equation utilized to convert hertz

to Mels and then back into frequency is shown below:

; [20].𝑀𝑒𝑙 = 1
𝑙𝑜𝑔(2) · 𝑙𝑜𝑔(1 + 𝐻𝑧

1000 ) · 1000

The resulting evenly spaced vector is converted back to Hertz to represent the nonlinear

frequency sensitivity of the basilar membrane. The nonlinear spaced vector in Hertz is then

indexed to retrieve the center frequency values for each gammatone filter created. The bandwidth

for each gammatone filter also follows the same nonlinearity and is the corresponding index

multiplied by a constant of 0.25.

The amount of gammatone filters created and utilized by the model is initiated in the

NumFilters variable. A filter is created for the amount specified by NumFilters using a for loop

that runs for the amount of filters being created. This for loop uses the indexed center frequency

Neuromorphic MQP Team
36



and bandwidth values and the sampling rate in the function makefiltgt.m to create a unique

gammatone filter. The function makefiltgt.m uses real time signal processing to analyze one time

point at a time that is dependent on its previous output. Each gammatone filter is stored in the

array of cells F.

Once the gammatone filters are created and stored in F, each filter is applied to the input

signal. This ensures the physiologic relevancy of real time signal processing. One individual time

point at a time is processed by the function. This function applies real time signal processing

through the indexed gammatone filter and stores the updated value for each time point in

SignalIn in the vector y_realtime. The y_realtime output for every filter is stored in a

corresponding indexed cell in the array of cells FilterValues. This process is repeated with a

cascading set of identical basilar membrane gammatone filters where the FilterValues output is

filtered through its corresponding center frequency gammatone filter bank. The new output is

stored in the cell FilterValues2. The output of each of the filters are then plotted against the

original signal. These processed signals are also summed together and compared to the original

signal.

3.4 Inner Hair Cells

In order to encode the incoming signal, we created a matrix to contain the time for each

neuron and cell (TT), and one to store the stimulus of each neuron (XX). Then, the voltage from

each inner hair cell is calculated based on the input signal to the IHC. This signal varies from

each inner hair cell population depending on what section of the basilar membrane it is in. This

calculation is based on various factors that are determined at the creation of each IHC.
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Upon initialization there are a few inputs that are randomly varied to create an illusion of

randomness for the cell creating. This is to help model the human ear; each cell is not going to be

exactly the same in the way it conducts current.

Below is the structure responsible for the IHC.

Figure 7: Structure of the modeled IHC.

As seen there are 5 hyperparameters that can be controlled upon initialization, these are

the hyperparameters that are used to simulate randomness in the IHCs and each plays a role in

how the electric current is calculated by each of them. The processing is displayed below and

there are a few steps when it comes to going from input signal to outputting the voltage that the

neurons are going to use.
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Figure 8: Function used to update IHC.

The updateIHC function has been modeled after the NEF where a lot of the chemical

complexities of the human ear are lost in low level implementations but the computation is not

just simple signal processing. This was the goal of the NEF to bridge the gap between

implementation and algorithmic, and that is why this code was based on that same logic. Similar

to the LIF neurons the updateIHC runs tick by tick instead of computation in chunks.

In the first calculation of J the hyperparameters from initialization become important

because they are responsible for how strong the current is going to be. As seen by the use of

Matlab's dot notation and object oriented programming, each IHC has different alpha, phi, and

J_bias values that are included in this basic computation.

Upon finishing the current calculation the membrane voltage of the IHC needs to be

calculated using Euler integration. The basic idea behind Euler integration is to approximate the

next value of the variable by adding the current value to the product of the rate of change of that

variable and the time step. This approach is called "forward Euler," and while it is simple to

implement, it may introduce numerical errors if the floating point numbers are extremely small,
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or if the sampling rate is relatively low. Then after the voltage has been calculated the IHC.v is

updated and the function is finished.

This file is very similar to the code from the LIF neuron but without the added

complexity of the spiking and refractory periods. This is a much more basic version of a neuron

and that is exactly how it has been designed to be. In the human ear, inner hair cells are along the

basilar membrane to pick up on vibrations and create voltage that is passed to more complex

cells like the ones in the auditory nerve. This is exactly what our model reflects with the IHCs

being a more basic version of the LIF neurons, since the neurons have more nuance and

complexity to them.

3.5 Auditory Nerve Model

The auditory nerves in the model were based off of the LIF neurons outlined in the

Neural Engineering Framework because they are physiologically relevant and easy to model.

There is a function, makeLIFN, that was used to generate the neurons. Randomly generated

encoding weights, scaling coefficients, and background currents are used as inputs. This function

is similar to makeIHC in that it creates a structure to contain the neuron’s properties and values;

the difference lies in the properties included. The auditory nerves contain all of the same

properties as the IHCs, but also have values for the state (sub- or super-threshold), current

threshold, refractory period, refractory clock, and voltage threshold.

3.5.1 Encoding

Nested for loops are used to encode the stimulus value of each neuron based on the

voltages of each IHC using the updateLIFn function. This function takes in the physical stimulus

Neuromorphic MQP Team
40



from the inner hair cell, the neuron that is being updated, and the sampling rate. If the neuron is

in a super-threshold state, it checks if the refractory period has been reset. If yes, it causes the

neuron to “spike”. Otherwise, the voltage is set to 0. It then updates the simulation clock or resets

it. When it is reset, the neuron returns to a sub-threshold state. If the neuron is in a sub-threshold

state, it updates the current using the equation

𝐽(𝑥(𝑡)) = αϕ𝑥(𝑡) + 𝐽𝑏𝑖𝑎𝑠

and calculates the change in voltage based on equation 4.4

𝑑𝑉
𝑑𝑡 =− 1

τ𝑅𝐶 (𝑉 − 𝐽
𝑀

𝑅)

from the Neural Engineering Framework.[6] If the updated voltage is over the voltage threshold,

the state is changed. Figure 6 shows how the voltage of the neuron is modeled by this function.

The spikes and their timestamps are then encoded in a 1:Fs array in a 3D matrix of size

numFilters x numCells x numNeurons, D. These arrays are also called spike trains.

In order to decode the signal from the stimulus recording, each of the populations of

neurons needs an activation function. This was done by our function characterizeLIFn. This

function was given to us by Prof. Lammert but was edited to fit our needs. This function takes in

an auditory nerve structure, the minimum and maximum values to be accepted, resolution of the

values selected, and the sampling rate. It then returns a (numFilt x numCells) cell, A, containing

a matrix with the spiking rates/activation functions for each neuron in the population, and a (res x

1) vector of values to be encoded, X, for the specified neuron. Then, for the number of samples,

which is determined by the sampling rate, the neuron is updated using updatelifn, and the spike

rate for that neuron is calculated. These outputs are then used to help determine the decoders for

each neuron in the function determinedecoders.
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DetermineDecoders takes in the activation functions and values to be encoded

determined by characterizelifn, and returns a NumNeurons x 1 array of each neuron’s decoder.

This function models (Eq. 3), which determines the decoding coefficients for each neuron using

the covariance between the neuron’s activation functions. (Eq. 4) was calculated by summingΥ

the product of the physical values and the spiking rates for each population of neurons. Then, Γ

(Eq. 5) was calculated by summing the spikerates in each population of neurons, creating a

NumNeurons x NumNeurons matrix. There were a few ways this could be calculated with

different MATLAB syntaxes, but we chose to use element-wise operations because it was the

easiest to use based on the way the neurons were structured.

3.5.2 Decoding

Before the encoded signal could be with the decoders that had just been calculated, a

matrix was created to contain all of the activation functions for each neuron. Then, a function

called Decodespiketrain finds these activation functions. It takes in a neuron structure, the

neuron’s spike train, and the frequency of the input signal. There are two possible routes for

decoding. One is a time-based, linear decoding that is more physiologically relevant and models

each neuron’s postsynaptic current (PSC), and the other is a slightly more optimal, non-linear

decoder. Eliasmith and Anderson point out that there is not much of a difference in the

optimization of the decoders: the optimal decoding only provides a 5% improvement in

information transmission, and the linear decoder has a 6% decrease in information transmission

[6]. Therefore, the more physiologically relevant method was chosen. Decodespiketrain creates a

vector of the neuron’s PSC based on the signal that passed through it using the equation

, (Eq. 8)ℎ(𝑡) = 𝑒
(−𝑡/τ

𝑅𝐶
)
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where is the time constant hardcoded into the neuron. Then, this vector is convolved with theτ
𝑅𝐶

neuron’s spike train. This yields a vector that represents the connection between a neuron’s

spiking rate and postsynaptic current, or how the neuron reacts to stimuli. This can also be

referred to as a neuron’s activation function. This vector is twice as long as Fs, so the first half of

the vector is used as the activation function for the neuron. These activation functions are stored

in a Fs x NumNeurons array per hair cell in a NumFilters x NumCells cell.

Finally, an estimate of the input signal is calculated with the function DecodeSpikeRate.

This function takes in the activation functions created by DecodeSpikeTrain and the decoders

found with DetermineDecoders. There were a number of ways this could be done, like iteration

over each neuron, over the samples, or inner product. However, the best option was iterating over

each neuron using (Eq. 7) above for each population of auditory neurons. This results in a Fs x 1

estimate for each population of neurons. Later, all of these individual vectors were added

together into a single signal to give the complete estimate.

3.6 Parameter Optimization

After the team was able to achieve a basic model the parameter optimization problem

began. Attention was directed to optimize the models parameters to achieve an ideal balance

between accuracy, computational efficiency, and pseudorandomness. This process was important

in ensuring that the model could correctly stimulate and process inputs but also be modeled after

real neurons and inner hair cells.

Our approach to optimization changed over time, finally landing on a strategy that

identifies the best set of parameters for each individual population of LIF neurons. The three

primary parameters that were focused on were the scaling factor (ALPHA), the base phase
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(PHI0), and the bias current (J_BIAS). These parameters were selected due to their significant

impact on the model's ability to accurately simulate the signal.

The parameter search was encapsulated into a single file called

Script_determineparams.m. This function takes the input voltage signal and the sampling

frequency (Fs) as inputs, utilizing them to adjust the model's internal settings. The goal of this

function is to find a set of 3 values for a neuron population that will properly encode and decode

the input voltage signal. The optimization was conducted through an iterative process,

systematically varying the values of ALPHA, PHI0, and J_BIAS across a predefined range. For

each set of values a scaled down set of 5 LIF neurons were created and used to create an output

from the input signal, the model's output was evaluated against a performance metric and the

highest performing set of parameters would be saved and used by that single population of

neurons in the main script.

The performance of each parameter set was assessed based on one main criteria: the

correlation value from the input signal against the output signal. Matlab’s corr function was

responsible for this heavy lifting and would return an integer metric in the range from -1 to 1 that

when approaching 1 means that the two signals are more correlated. The reason for using this

metric is because correlation is good at measuring the strength and direction of a linear

relationship between two variables. Other metrics like Mean Squared Error for example (MSE)

are better for predictive modeling and are oftentimes used in Machine Learning. Its pros are not

as valued in this project and therefore using corr is the best option for this type of problem.

With the new optimized parameters for each population of neurons the model's

performance made significant improvements and this jump led to much smoother graphs and less

spasmic decided signal behavior. By fine tuning the parameters we are now able to balance
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physiological relevance and computational pragmatism. This iterative approach of finding

suitable random ranges for these parameters shows the importance of these values and why

proper planning needs to be taken when creating these models.
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4. Results

4.1 Simulation 1: 2 Hertz Tone

All iterations of Simulation 1 were run for an input sound wave of 2 Hertz over a

duration of 0.9 seconds with a sampling rate of 44100 samples per second. This input sound

wave is plotted in Figure 9 below.

Figure 9: Simulation 1 Input Signal.

Simulation 1A displays the model with the largest amount of elements to validate output

correlation and model run time. These performance parameters are linked to the amount of

basilar membrane locations, inner hair cells, and neurons in each population that are evaluated

between the different simulations within Simulation 1. Every graphical output is plotted for this

simulation to highlight all of the data that the model is able to process and present. The results of

Simulations 1B-H only present the graphs for the summed basilar membrane filter outputs,

summed IHC filter outputs, and the lowpass decoded output. A limited range of graphs were
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presented to prevent repetitiveness of the qualitative data that is accurately represented by the

outputs of Simulation 1A.

Simulation 1B analyzes the effects of reducing the amount of basilar membrane locations

on the output parameters. Simulation 1C analyzes reducing the amount of IHCs on the output

parameters. Simulation 1D analyzes reducing the amount of neurons in each population on the

output parameters. Simulation 1E analyzes reducing the amount of basilar membrane locations

and inner hair cells. Simulation 1F analyzes the model with reduced basilar membrane locations

and neurons in each population. Simulation 1G analyzes the model with reduced inner hair cells

and less neurons in each population. Finally, Simulation 1H analyzes the lowest scaled model,

with reduced amounts of basilar membrane locations, inner hair cells, and neurons.

The exact amount of each model component for each simulation can be seen in Table 1

below. Each iteration of Simulation 1 accurately compares the effects of changing the quantity of

the three element types in the model to understand the importance of their effect on the output.

4.1.1 Simulation 1A: Large Scale Simulation

Simulation 1A was run for the input signal defined in Figure 9 above in Section 4.1. The

model was specified with 10 basilar membrane locations, 3 inner hair cells for each location, and

5 neurons in each neural population. The model produced the graphs and output values shown in

the table and figures below.
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Figure 10: Basilar Membrane Outputs. The graph on the left panel displays the input wave

signal in blue, and the summed outputs of each basilar membrane channel in red. The graph on

the right panel displays the output of each filter channel after filtering the input signal. The

channels outputs at the bottom of the graph represent locations closer to the base of the basilar

membrane (lower center frequency) and channels closer to the apex are higher on the graph

(higher center frequency).
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Figure 11: Inner Hair Cell Outputs. The graph on the left panel displays the input waveform in

red, and the summed outputs of each inner hair cell in blue. The complete output spectrum of

each inner hair cell is shown in the right panel.

Figure 12: IHC Outputs for Corresponding BM Location. The graph displays the inner hair cell

outputs that correspond to the first two basilar membrane locations for Simulation 1A. Both

Location 1 and Location 2 have three inner hair cells receiving the same input signal from that

location’s output.
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Figure 13: Neural Spike Train. The panel on the left shows the neural spike train for the first 10

neural populations to highlight the different sensitivities that each population has for their

responsibility of encoding particular components of their input signal. The panel on the right

displays a condensed spike train for just one neuron overlaid on the input signal.

Figure 14: Activation Functions. The left panel displays the activation functions for the first 10

neural populations, with each function corresponding to one of the five neurons in each

population. The right panel highlights the graph of the activations for one neural population.
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Figure 15: Model Outputs. The graph displayed on the left panel compares the original input

signal to the raw signal decoded by the auditory nerve to the final low pass filtered signal output

to reduce high frequency noise. The graph displayed on the right panel compares the signal at

the 3 major checkpoints throughout the model: Basilar Membrane Output, Inner Hair Cell

Output, and Final Low Pass Filtered Decoded Signal.

4.1.2 Simulation 1A-H Outputs

The graphs shown below compile all of the outputs of Simulation 1 to be used as a

qualitative comparison between the effects of each model element’s effect on the accuracy. This

is done by comparing the output of each of the three model components: basilar membrane, inner

hair cell, and auditory nerve.
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Figure 16: Outputs for Simulations 1-H. The figure displays eight panels, one for each

simulation for the 2 Hz signal, each with three subplots displaying the Basilar Membrane

Output, Inner Hair Cell Output, and Low Pass Filtered Decoded Output.
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4.2 Simulation 2: Speech Signal Processing

The robustness and precision of the model was further tested with speech recordings saved in

.wav files. Simulation 2 validated the purpose of the model to be utilized by researchers to better

understand physiologically relevant auditory signal processing and the auditory system as a

whole. The simulation was run over a 0.91 second duration with a sampling frequency of 48000.

The wave file was read by MATLAB’s audioread function and plotted shown in Figure 17

below.

Figure 17: Simulation 2 Input Signal.

Similarly to Simulation 1A, Simulation 2A displays the model with the largest number

of elements to validate output correlation and model run time for a speech audio input. These

performance parameters are linked to the number of basilar membrane locations, inner hair cells,

and neurons in each population that are evaluated between the different simulations within

Simulation 2. Every graphical output is plotted for this simulation to highlight all of the data that

the model is able to process and present. The results of Simulations 2B-H only present the graphs

for the summed basilar membrane filter outputs, summed IHC filter outputs, and the lowpass
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decoded output. A limited range of graphs were presented to prevent repetitiveness of the

qualitative data that is accurately represented by the outputs of Simulation 1A and 2A.

Simulation 2B analyzes the effects of reducing the amount of basilar membrane locations

on the output parameters. Simulation 2C analyzes reducing the amount of IHCs on the output

parameters. Simulation 2D analyzes reducing the amount of neurons in each population on the

output parameters. Simulation 2E analyzes reducing the amount of basilar membrane locations

and inner hair cells. Simulation 2F analyzes the model with reduced basilar membrane locations

and neurons in each population. Simulation 2G analyzes the model with reduced inner hair cells

and less neurons in each population. Finally, Simulation 2H analyzes the lowest scaled model,

with reduced amounts of basilar membrane locations, inner hair cells, and neurons.

The exact amount of each model component for each simulation can be seen in Table 2

below. Each iteration of Simulation 2 accurately compares the effects of changing the quantity of

the three element types in the model to understand the importance of their effect on the signal

processing of speech.

4.2.1 Simulation 2A: Large Scale Simulation

Simulation 2A was run for the input signal defined in Figure 17 above in Section 4.2.

The model was specified with 10 basilar membrane locations, 3 inner hair cells for each location,

and 5 neurons in each neural population. The model produced the graphs and output values

shown in the table and figures below.
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Figure 18: Basilar Membrane Outputs. The graph on the left panel displays the input wave

signal in blue, and the summed outputs of each basilar membrane channel in red. The graph on

the right panel displays the output of each filter channel after filtering the input signal. The

channels outputs at the bottom of the graph represent locations closer to the base of the basilar

membrane (lower center frequency) and channels closer to the apex are higher on the graph

(higher center frequency).
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Figure 19: Inner Hair Cell Outputs. The graph on the left panel displays the input waveform in

red, and the summed outputs of each inner hair cell in blue. The graph on the right panel

displays the inner hair cell outputs that correspond to the first two basilar membrane locations

for Simulation 2A. Both Location 1 and Location 2 have three inner hair cells receiving the same

input signal from that location’s output.

Figure 20: Activation Functions. The left panel displays the activation functions for the first 10

neural populations, with each function corresponding to one of the five neurons in each

population. The right panel highlights the graph of the activations for one neural population.
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Figure 21: Model Outputs. The graph displayed on the left panel compares the original input

signal to the raw signal decoded by the auditory nerve to the final low pass filtered signal output

to reduce high frequency noise. The graph displayed on the right panel compares the signal at

the 3 major checkpoints throughout the model: Basilar Membrane Output, Inner Hair Cell

Output, and Final Low Pass Filtered Decoded Signal.

4.2.2 Simulation 2A-H Outputs

The graphs shown below compile all of the outputs of Simulation 1 to be used as a

qualitative comparison between the effects of each model element’s effect on the accuracy. This

is done by comparing the output of each of the three model components: basilar membrane, inner

hair cell, and auditory nerve.
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Figure 22: Outputs for Simulations 1-H. The figure displays eight panels, one for each

simulation for the 2 Hz signal, each with three subplots displaying the Basilar Membrane

Output, Inner Hair Cell Output, and Low Pass Filtered Decoded Output.

4.3 Analysis of Simulations

4.3.1: Comparison of Model Components

The data from each of the simulations run for Simulation 1 and Simulation 2 were

compiled into Table 1 and Table 2 below to compare each simulation's efficiency and accuracy.

Table 3 has the average values and standard deviations for each simulation for easy comparison.

Table 1: Model Correlation Values. displays the correlation between the input signal and the

signal after being filtered by the basilar membrane, inner hair cells, neural decoding, and low

pass filtering (to reduce noise) for all iterations of Simulation 1. The time it took for the model to

run to completion is also recorded.

Simulation # BM/IHC/Neurons BM Corr IHC Corr Decoded

Corr

LP Decoded

Corr

Model

Duration
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1A 10/3/5 0.99998 0.99999 0.96258 0.97002 640.432013

1B 2/3/5 0.99996 0.99985 0.94551 0.96856 132.720302

1C 10/1/5 0.99998 1.00000 0.95712 0.96808 217.667115

1D 10/3/1 0.99998 0.99999 0.91727 0.96948 557.257850

1E 2/1/5 0.99996 0.99987 0.91720 0.92944 47.436233

1F 2/3/1 0.99996 1.00000 0.93188 0.94910 114.910441

1G 10/1/1 0.99998 0.99998 0.94189 0.96324 190.624951

1H 2/1/1 0.99996 0.99998 0.72083 0.82043 41.496254

Table 2: Model Correlation Values. displays the correlation between the input signal and the

signal after being filtered by the basilar membrane, inner hair cells, neural decoding, and low

pass filtering (to reduce noise) for all iterations of Simulation 2. The time it took for the model to

run to completion is also recorded.

Simulation # BM/IHC/Neurons BM Corr IHC Corr Decoded

Corr

LP Decoded

Corr

Model

Duration

2A 10/3/5 0.82638 0.87689 0.76228 0.83489 695.294174

2B 2/3/5 0.30572 0.01634 0.29494 0.29763 143.869999

2C 10/1/5 0.82638 0.85854 0.69759 0.82426 239.954774
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2D 10/3/1 0.82638 0.80727 0.57806 0.57523 617.615783

2E 2/1/5 0.30572 0.67835 0.38387 0.47554 53.846081

2F 2/3/1 0.30572 0.88407 0.39591 0.39766 140.545675

2G 10/1/1 0.82638 0.86321 0.49607 0.51021 210.689034

2H 2/1/1 0.30572 0.67400 0.58391 0.61210 45.082965

+

Table 3. Average values and standard deviations for all trials in both simulations

Simulation Basilar Membrane

output correlation

Inner Hair Cell

Output Correlation

LP Decoded Output

Correlation

Model Duration

(seconds)

Average SD Average SD Average SD Average SD

2Hz Signal 0.99997 1E-5 0.99996 5.7E-5 0.94229 0.0479 242.818 214.334

Speech 0.56605 0.26033 0.70733 0.27307 0.56594 0.17779 268.3623 233.476

4.3.2: Model Efficiency, Speed, and Accuracy

For each simulation run above, the Low Passed Decoded Signal’s correlation to the Input

Signal is used as the measure for the model’s accuracy. This value for accuracy is plotted against

the model duration which is a measure of the models’ speed. The accuracy value is plotted

against its corresponding speed value for each simulation to understand how these values are

correlated for each simulation and give a method to judge the efficiency of the model.
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Figure 23: Model Efficiency Analysis. The left panel of the above figure displays the correlation

value for each simulation plotted against the time it took to complete for Simulation 1. The same

relationship is plotted on the right panel for Simulation 2.

4.4 Audibility Test

For the audibility test, two input audio files were imported into MATLAB with different

speech patterns for processing. The first audio file recorded the word “apple” and the second file

recorded the word “orange”. These words were chosen to give a wide range in the frequency

spectrums composed within the pronunciation of the word. Participants were then asked to repeat

the word that they listened to from the model’s output played using MATLAB’s soundsc

function. Initially the participants were not told what words were inputting into the model to

prevent them from inferring the answer and data bias. Each participant listened to each model

output 10 times in a random order and their audio perception was recorded and they were given

an accuracy score out of 20.
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Table 4: Audibility Test Scores. The table shown above displays the scores of the predescribed

audibility test to analyze the comprehension rate of the model output.

Participant Accuracy Score

1 100%

2 100%

3 100%

Average 100%

5. Discussion

5.1 Simulation 1

The basilar membrane and inner hair cells closely resemble the input signal with average

correlations of 0.99997 and 0.99996 each. Each of the final outputs with the constant signal

contained two distinct peaks and two distinct valleys, which can be considered a success for the

model. Across all of the model’s simulations, the output signal’s amplitude was greatly reduced.

Over the simulations with the 2Hz signal, the output’s amplitude was reduced by a factor of 1000

to 100000. Passing the output through a low pass filter increased the correlation in all of the

simulations. Simulation 1A produced the highest correlated output signal, 0.97, which is to be

expected for a model that has higher counts of basilar membrane locations, inner hair cells, and

auditory nerves. This is also the most physiologically relevant simulation, as there is a large
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number of basilar membrane locations, inner hair cells, and auditory nerve fibers in the auditory

system. Simulation 1H, with the lowest amount of membrane locations, inner hair cells and

neurons still had a high correlation, 0.82, although it closely resembles a square wave. Apart

from this one sub-simulation, the variation in the model’s components did not have a large effect

on the correlation, averaging at 0.942. The largest difference between the simulations was the

runtime with a range of 598.936 seconds.

5.2 Simulation 2

When the model was tested using a speech clip, there were varying degrees of success.

The average correlation of all simulations was 0.566 with a standard deviation of 0.19. Each of

the outputs somewhat share a similar pattern of high and low amplitudes, mirroring the input

signal. The average correlations of the basilar membrane and inner hair cell outputs were much

lower than the previous simulation, being 0.566 and 0.707 respectively. Simulations 2A and 2C

were the most clear when played back to the user and have correlations of 0.83 and 0.82.

Simulation 2B was barely audible and had the lowest correlation, 0.298. This is as expected and

adds to the physiological relevance of the model because reducing the number of basilar

membrane locations on the model greatly reduces the distinct frequencies that a signal can be

broken down into. The other playback audios for the simulation had some drawbacks as well.

Simulation 2D’s playback was choppy, simulations 2E, 2F, and 2G have lots of background

noise, and simulation 2H was muffled when played back. This simulation had a greater range of

time values than the constant signal - 650.211 seconds. An average score of 100% on the

listening test is extremely helpful when validating the model, and shows that the model’s output

is accurate.
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5.3 Efficiency

In the development and optimization of our auditory model, efficiency has emerged as a big

concern, particularly because of parameter optimization efforts. While the optimization process

significantly enhanced the model's accuracy, it inadvertently introduced a substantial increase in

computational demand. This increase primarily affects the model's runtime, making it a crucial

aspect to address in our evaluation of the model's efficiency.

As detailed in Section 4.4 ("Comparison of Simulations") and substantiated by the data

within, the structure of our model inherently influences its computational efficiency. The model's

architecture, which branches out from basilar membrane (BM) locations to inner hair cells

(IHCs) and further to neurons (LIFNs), creates a scenario where the number of BM locations has

the most pronounced effect on runtime. This effect is due to the increase in the number of IHCs

and LIFNs, which escalates the computational load. For instance, simulation 2A, with a

configuration of 10 BM spots, 3 IHCs, and 5 neurons, exhibits a model duration significantly

higher than other configurations with fewer BM spots (e.g., Simulation 2B).

Following the BM spots, the second biggest factor on runtime is the number of IHCs.

This is because IHCs contribute to the branching complexity of the model, impacting the

computational resources required for simulation. The correlation between the model's

components and its runtime is evident when examining different configurations and their

corresponding durations, as shown in the comprehensive table provided in Section 4.4.1

("Comparison of Model Components").

Post-optimization, the script's runtime has notably increased, highlighting a trade-off

between model accuracy and computational efficiency. This increase is attributed to the

optimized parameters enhancing the model's accuracy but also adding to its complexity and, by
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extension, its computational demands. The data shows that configurations with a higher number

of BM locations endure the most significant impact on runtime due to the amplified branching

and consequent increase in IHCs and LIFNs.

Despite these challenges, understanding the dynamics between model configuration and

computational efficiency is crucial. It provides insights into how modifications in the model's

structure can disproportionately affect its performance and operational viability. For instance,

simulation results such as those from 2A versus 2E reveal how varying BM, IHC, and neuron

counts impact model duration, offering an idea which to gauge the efficiency of different

configurations.

In conclusion, while parameter optimization has undeniably aided in the model's

accuracy and capability in simulating auditory processes, it has also spotlighted the critical

balance between computational efficiency and simulation accuracy. The insights gained from

analyzing the impact of model configurations on runtime are valuable as to how our model

performs under different configurations.
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6. Conclusion and Recommendations

This project aimed to create the first physiologically relevant neuromorphic model of the

auditory system, with the aim of addressing the limitations of current algorithmic and

implementational models by integrating both into one unified framework. As mentioned

previously, objectives were established to ensure the accurate structuring of the model in

alignment with the physiology of the inner ear, successful simulation of each individual part's

processing of inputs, generation of graphs for monitoring the results of each model section,

production of a decoded output signal matching the input, and facilitation of real-time signal

processing.

The model was shown to produce outputs for each model section that matched the

expected physiological response. The gammatone filters were successful in modeling the

function of the basilar membrane. The frequency specificity was achieved through using the

filter banks, the outputs of which are shown in figure 10. The plots representing the outputs of

the inner hair cells also matched the expectations of typical hair cell behavior, in figure 11. The

auditory nerve section exhibited behavior that matched expectations. The activation functions

matched physiological behavior, as shown in figure 14. As mentioned previously in the results

and discussion section, the model successfully processed and produced a decoded result for both

the simple 2Hz sinusoid and the complex speech waveform. The correlation values before being

filtered through a low-pass filter had a high of 0.963 and a low of 0.721 for the sinusoid, and a

high of 0.762 and low of 0.384 for speech, shown in Table 1 and Table 2 respectively. This is

indicative of the model functioning successfully.

Although the model could successfully process signals in the same way the physiology

can, there were a few limitations. During development, the inner hair cell and auditory nerve was
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not effective at producing the expected outputs, but through optimizing hyperparameters, a clear

decoded output was produced. As well, the model is not efficient enough to facilitate real-time

signal processing, which was another objective. Further, the model is published as one complete

script, so individual sections can not be run standalone.

Future work on this model should focus on optimizing the efficiency of the model to

facilitate real-time signal processing. A better method of producing hyperparameters should be

found in order to reduce run-time and increase the correlation value for the decoded output

signal. Furthermore, enabling for the tweaking of individual parameters, such as disabling certain

regions of the basilar membrane should become a feature, in order to facilitate more functions of

the model as a research tool for specific auditory processing disorders. Finally, it would be

helpful to separate the model sections, and enable standalone running of individual model

sections, so that individual physiological parts can be focused on, rather than the system as a

whole.

This project marks the creation of the first neuromorphic model of the auditory system.

By utilizing this model as a tool for research, it is possible to better understand how the auditory

system processes sound, how hearing disorders affect the processing of the ear, and potentially

allowing for better diagnosis and treatment of disease.
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