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Abstract

The growth of digital systems underscores the need to convert analog information to the

digital domain at high speeds and with great accuracy. Analog-to-Digital Converter (ADC)

calibration is often a limiting factor, requiring longer calibration times to achieve higher

accuracy. The goal of this dissertation is to perform a fully digital background calibration

using an arbitrary input signal for A/D converters. The work presented here adapts the

cyclic “Split-ADC” calibration method to the time interleaved (TI) and successive approx-

imation register (SAR) architectures.

The TI architecture has three types of linear mismatch errors: offset, gain and aperture

time delay. By correcting all three mismatch errors in the digital domain, each converter

is capable of operating at the fastest speed allowed by the process technology. The total

number of correction parameters required for calibration is dependent on the interleaving

ratio, M. To adapt the “Split-ADC” method to a TI system, 2M+1 half-sized converters are

required to estimate 3(2M+1) correction parameters. This thesis presents a 4:1 “Split-TI”

converter that achieves full convergence in less than 400 000 samples.

The SAR architecture employs a binary weight capacitor array to convert analog inputs

into digital output codes. Mismatch in the capacitor weights results in non-linear distortion

error. By adding redundant bits and dividing the array into individual unit capacitors,

the “Split-SAR” method can estimate the mismatch and correct the digital output code.

The results from this work show a reduction in the non-linear distortion with the ability to

converge in less than 750 000 samples.
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Chapter 1

Introduction

One of the most common themes in electrical engineering is the transmission, storage and

processing of data. Early forms of this handled data in the analog domain, by manipulating

signals with analog components such as resistors, capacitors, inductors, and amplifiers. This

can be found in examples such as early analog oscilloscopes used for test and measurement.

Figure 1.1 shows a block diagram of an analog oscilloscope which uses only components

in the analog domain such as attenuators, amplifiers and delay circuits [1]. These types

of oscilloscopes, while essential for analog circuit evaluation, had limited abilities in signal

processing, analysis, and display abilities. The Cathode Ray Tube (CRT) could only display

the input signal in real-time and didn’t have the ability to store an input waveform for post-

analysis [1].

With the advent of digital computing, there has been a tremendous shift of signal pro-

cessing and storage from analog to the digital domain. To extend the example of the

oscilloscope, the quantization and Data Acquisition (DAQ) of digital sampling oscilloscopes

allowed for more advanced analysis [1]. Figure 1.2 shows how an input signal is mini-

mally processed and filtered before being sampled and quantized by an Analog-to-Digital

Converter (ADC). The digitized waveform can then be processed, sorted, analyzed and

displayed entirely in the digital domain [1]. Both analog and digital scopes are capable

of simple analysis such as measuring peak voltage (Vpk) and frequency. However, digital

scopes can perform statistical analyses and generate frequency spectrum plots of analog
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waveforms [1].

When analog signals are transferred to the digital domain, the performance of the Digital

Signal Processing (DSP) is limited by the accuracy of the Analog to Digital Converter

(ADC) used. As the amount of data bandwidth has increased over the years, so has the

speed, resolution and overall precision required of ADCs. Unfortunately, physical limitations

and variations in the semiconductor fabrication process introduces sources of error into the

A/D converters [2]. In order to increase their performance, much research has been done to

calibrate out and correct for these inherent errors. The work presented here looks into two

types of converter, time interleaved and Successive Approximation Register ADCs. These

two A/Ds each have their own types of unique errors that must be corrected.

The Time Interleaved (TI) A/D is a technique that uses multiple converters to increase

the throughput of the data. The interleaving method has some flexibility because it uses

existing ADC architectures. It is capable of achieving faster conversion speeds than what

a given technology would allow for a single converter [3]. Interleaving converters are often

used in applications such as instrumentation. Typical TI systems use M sub-ADCs that

each operate at 1/M the master sampling rate, fS . The M digital output codes are then
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multiplexed into a single stream of digital codes. A 2:1 example of which is shown in Figure

1.3 [2]. Mismatch between the sub-ADCs produces three types of errors, offset, gain, and

aperture time delay which affect all interleaved A/Ds. These errors are often dealt with

using a combination of analog and digital calibration techniques [2, 4, 3].

Successive Approximation Register ADCs use a binary search algorithm with a charge

redistribution network to convert an analog input into a digital output. Use of capacitors in

a binary weighted redistribution network help the SAR achieve moderate to high resolutions

with relatively low power [5, 6, 7]. The mismatch between these capacitors leads to nonlin-

earity errors in the digital output code. The traditional technique for correcting this error

source is to use a calibration DAC to offset the charge mismatch [7, 8]. This calibration

still requires a method for measuring ratio errors of the binary weighted capacitors.

The goal of this work is to apply a self-calibrating algorithm to both the time interleaved

and SAR converters. This algorithm uses the Split-ADC method introduced in [9, 10]. Most

recent calibration techniques are performed using a digital logic, however they often require

foreground operation or statistical methods to achieve full convergence. The Split-ADC

performs the calibration and correction completely in the digital domain, while operating

in the background and achieving a deterministic convergence rate. The original Split-ADC

algorithm was used to estimate only two correction parameters. Both the time interleaved

and the SAR converters require a much larger number of correction parameters to be found.
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The majority of this research focused on adapting the Split-ADC method to calibrate the

multiple parameters needed for these two architectures.

This thesis is organized as follows; Chapter 2 describes the performance metrics used to

characterize ADCs. It then goes on to introduce the different types of architectures, their

trade-offs, and the applications they are best suited for. Chapter 3 describes the interleaved

and SAR architectures in more detail, as well as error sources and their affects on the output

code. Chapter 4 discusses the work done using previous calibration techniques, including

the Split-ADC method and its advantages over other methods. Chapter 5 presents what

work has been to adapt the Split-ADC algorithm to a time interleaved converter and the

results from simulation. Chapter 6 reviews the Split-SAR algorithm presented in [11], the

design of the integrated circuit used for this research and the results from the fabricated

chip. Finally, Chapter 7 concludes the research work presented here and provides possible

paths for future designs.
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Chapter 2

Background

A wide variety of analog to digital converters exist with each type suited for different

applications. Section 2.1 describes the characterization of ADCs, in order to determine

which ADC architecture to use for a given application. Section 2.2 describes different ADC

architectures and their trade-offs in characteristics.

2.1 ADC Characterization

There are several characteristics of A/D converters that measure their performance.

These are useful in determining which type of ADC to use for a target application. This

section will discuss the parameters of conversion speed and resolution, integral and differ-

ential nonlinearity (INL and DNL), total harmonic distortion (THD), and signal to noise

and distortion ratio (SNDR).

2.1.1 Sampling Rate and Resolution

The sampling rate of an ADC is used to determine the number of analog to digital

code conversions that are completed within a specific period. Typically, this is measured in

samples per second, such as 1 MS/sec showing that 1 million samples are collected within

one second. This sampling rate is equal to the master sampling clock frequency for Nyquist

rate ADCs. For these converters, the clock frequency must be greater than twice the highest

frequency component in the analog input signal [12].
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Figure 2.1: Ideal ADC Transfer Characteristic

The resolution of an analog to digital converter describes how many quantization levels

the ADC can represent. Since the output of an ADC is in binary format, the resolution is

given in powers of 2. For example, a 10-bit A/D converter can represent an analog signal

using 210 or 1024 quantization levels. As a general rule with Nyquist rate ADCs, there is

a trade-off between sampling rate and converter accuracy and resolution. As the sampling

rate increases, the converter resolution must be reduced in order to complete the conversion

in a shorter period of time [12].

A single quantization level is the smallest analog voltage level that an ADC can resolve.

This is called the Least Significant Bit, or LSB. The analog voltage value of the LSB is

determined by the ADC resolution and the full scale voltage range, VFS :

1 LSB =
VFS
2N

(2.1)

A transition level is the point from one quantization level to the next. The distance between

two consecutive transition points is equal to a single quantization level or 1 LSB. Some input

voltage changes are small enough to occur between the transition levels without crossing
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them. These small changes are not detectable by the converter. This finite limit is referred

to as the quantization error or noise in the A/D.

If an ideal transfer function of an ADC is compared to an ideal analog ramp, there is a

difference of ±1
2 LSB. This quantization noise signal has an average value of zero, but its

Root Mean Squared (RMS) value can be shown as:

(RMS)Vq ≈
1 LSB√

12
=

VFS

2N
√

12
(2.2)

[12, 13]

The ideal dynamic range of an A/D is the maximum Signal-to-Noise Ratio (SNR), or

the ratio from the largest to the smallest analog signal the converter can represent. The

SNR for signals with a uniform distribution from 0 to VFS can be shown as a ratio of VFS

to 1 LSB [12, 5, 13].

Dynamic Range (dB) = 20 log
(

VFS
1 LSB

)
= 20 log

(
2N
)
≈ 6.02N (2.3)

However, since most input signals are sinusoidal with a non-uniform distribution, the max-

imum SNR is more commonly represented as the ratio of the AC power of the input to 1

LSB [5].

Dynamic Range (dB) = 20 log

(
VFS/(2

√
2)

1 LSB

)
≈ 6.02N + 1.76 (2.4)
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Figure 2.3: ADC Transfer Function with Offset and Gain Error.

2.1.2 Nonidealities and Nonlinearity

The ideal analog to digital converter has a linear transfer function within ±1
2 LSB as

previously shown in Figure 2.1. Real converters produce errors due to non ideal devices and

component mismatch. The most common types of errors are offset, gain, and nonlinearity.

Offset error represents a fixed difference between the output and input signals. Gain error

(or scaling factor) occurs when the slope of the real transfer function is different from the

ideal transfer function. These two errors can be calibrated in hardware or software using

y = Ax+ b.

In an ideal case, each quantization step of a converter is equal to 1 LSB. However, in

a real converter this is not always the case and any deviation from 1 LSB is measured

as Differential Nonlinearity (DNL). The deterministic approach to measuring this error is

defined as

DNL[i] =
Vi+1 − Vi
VLSB

− 1 (2.5)
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Figure 2.4: ADC Transfer Function with Nonlinearity.

where i is the quantization code level [13]. For example, if the output changes levels when

the analog input increases by only 3/4 LSB, then the DNL for that transition is −1/4 LSB.

Each transition has an associated DNL value that can be greater than or equal to -1 as seen

in Equation 2.5. In the case where the DNL is -1, the transition never occurs. When the

DNL exceeds +1, the quantization level is skipped completely, which results in a missing

code [12, 13].

A different approach to finding the DNL of a converter is to perform a statistical analysis

using an input signal with a known probability density function (pdf). The most common

input signal used is a sinewave which has an ideal pdf of

fS(v) =
1

π
√
V 2
pk − v2

(2.6)

where v represents the input voltage and Vpk represents the amplitude [14]. By integrating

the pdf over all code levels or bins, the ideal probability value for each bin can be calculated
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as P (i).

P [i] =
1
π

[
arcsin

(
VFS × (i− 2N−1)

2NVpk

)
− arcsin

(
VFS × (i− 1− 2N−1)

2NVpk

)]
(2.7)

Equation 2.7 requires the code level, i, the resolution of the A/D, N , the full scale voltage

for the converter, VFS , and the amplitude of the sinewave, Vpk. The DNL for each code can

be found by comparing the deviation between the measured histogram for each code of the

converter, MP [i], to the ideal histogram P [i] [14].

DNL[i] (LSB) =
MP [i]
P [i]

− 1 (2.8)

The summation of DNL measurements is referred to as the Integral Nonlinearity (INL).

Using the individual DNL measurements from Equation 2.5 or 2.8, the INL can be shown

as the sum of the DNL errors.

INL[k] =
k∑
i=0

DNL[i] (2.9)

This can be shown as a nonlinear transfer function of the A/D as shown in Figure 2.4. A

plot of the INL can be made by taking the difference of the converter transfer function from

the best linear fit of the two endpoints.

While individual DNL errors may be less than 1/2 LSB, the summation can result in

INL error greater than 1/2 LSB. This is important to note because a 16-bit ADC that is still

capable of resolving an LSB voltage change may have an overall accuracy of the converter

less than 16-bit [15]. Figure 2.4 shows how the individual DNL errors can result in a large

INL error.

Nonlinearity errors result in harmonic distortion in the frequency domain. This is mea-

sured as Total Harmonic Distortion (THD) which is the sum of the power of the harmonics

divided by the power of the fundamentals. The THD measurement can be added to the

SNR value to calculate the Signal to Noise and Distortion Ratio (SNDR). This SNDR value

provides one type of measurement of the overall accuracy of the analog to digital converter.

The Effective Number of Bits (ENOB) is another method of measuring the overall
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Figure 2.5: ADC DNL and INL

accuracy of an A/D. Using the ideal SNR Equation 2.4 the ENOB can be calculated from

the measured SNDR.

ENOB =
SNDR− 1.76

6.02
(2.10)

The overall accuracy presented in this format makes it easier to compare the real ADC’s

performance to its ideal resolution.

Aperture delay error is one more type of nonideality. There is always a delay from

the time the ADC is told to capture a new sample to the time the converter acquires the

sample. This delay is composed of a finite, deterministic delay and a varying, random delay.

The finite delay component is due to such factors as signal path length and digital circuit

propagation. The random component is called clock jitter, which is caused by phase noise

in the sample clock generator circuit. The clock jitter component is a concern for all ADCs

as too much jitter can affect the noise floor of the converter. The maximum clock jitter

requirement is dependent on both the quantization level and the input signal frequency.

∆t =
1

2Nπfo
(2.11)
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Figure 2.6: The Effects of Aperture Delay on the Sampled Voltage

The fixed deterministic component of aperture delay does not affect most converters.

While clock jitter is a varying delay, the deterministic component of aperture delay does not

affect the absolute sample period, since most ADCs are time invariant. The one exception

to this is a time interleaved architecture. A time interleaved architecture is made of multiple

ADC channels to create a single, high-speed converter system. Any difference in the signal

paths between each ADC channel in a TI system will result in different fixed aperture delays.

This results in a master sampling period that changes based on which ADC channel is used.

The effects of this fixed delay on a TI architecture will be discussed further in Chapter 3.

2.2 ADC Architectures

Nyquist rate converters are designed using a variety of different architectures. Each type

of architecture design has its advantages and disadvantages which makes them suitable for

different applications. As stated earlier, Nyquist rate architectures have a common trade-off

between sampling rate and resolution. This makes architectures with high speeds and low

resolutions well suited for applications such as video imaging, while high resolution paired

with slower speeds are more suited for measurement systems.
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Figure 2.7: Block Diagram of a Flash ADC

2.2.1 Flash Architecture

The flash ADC architecture is one of the more commonly used converters [2, 7]. The

basic design of the flash A/D uses a comparator for every quantization level in order to

compare an input voltage with a series of reference voltages. These voltages are typically

generated using a single reference input and a voltage divider resistor ladder. The analog

input signal is then fed to the negative input of each converter while the reference voltage is

fed to the positive input. This results in a thermometer code output, where all comparators

with reference voltages greater than the input voltage will output a logic ‘1’ and vice versa. A

digital decoder circuit is required to translate the thermometer code into a binary weighted

output code [5, 2].

This type of setup requires 2N − 1 comparators, making a high-resolution flash ADC
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impractical. For example, an 8-bit converter would require 255 comparators, placing large

demands on both die area and power consumption. However, the converter speed is directly

dependent on the propagation delay from the analog input signal to the output of the

comparators (and subsequent thermometer to binary logic). For this reason, normal flash

ADCs are used in applications such as video imaging and wide band radio transceivers

where speed is preferred over resolution [15, 16, 6].

2.2.2 Cyclic Architecture

While the flash ADC is useful on its own, there are several architectures that use the

flash to achieve higher resolutions. The cyclic ADC uses a low resolution flash converter

with a negative feedback loop that operates over multiple internal cycles. The block diagram

in Figure 2.8 shows the function of the cyclic converter [12].

For the first cycle, the frontend multiplexer switch selects the analog input voltage to

be held on the track and hold circuit. This voltage held on the track and hold circuit

is quantized by a small resolution, m-bit flash converter while simultaneously fed to a

subtracter circuit. The m-bit digital code from the flash is then sent to a m-bit DAC. The

analog voltage from the DAC is subtracted from the analog voltage held by the track and
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hold circuit which, generates a small residue voltage. This small voltage is then amplified

with a gain of 2m to produce a larger residue voltage, VRES . For the next cycle, the frontend

switch is set to sample VRES on the track and hold circuit. This process from the previous

cycle is repeated for a total of n cycles. Using this method, the converter generates n

number of m-bit digital codes to create a single N-bit output code [12, 5]. In more recent

systems, there is at least a 1-bit overlap in the m-bit codes between cycles for redundancy.

To achieve this overlap, the amplifier stage has a gain of less than 2m (typically ≈ 1.8m)

[17]. The result is a N-bit converter output code that is less than n×m.

The primary advantage of the cyclic ADC over a straight flash converter is that it uses

less comparators and achieves a higher resolution. For an N-bit cyclic ADC, the number of

comparators required is only 2m−1. This requires less die area and power than an equivalent

N-bit flash converter. In addition, a full resolution of more than 8-bits can be achieved by

increasing the number of cycles used for each conversion. The main drawback for this

architecture is the converter speed. Since a single conversion requires multiple cycles, the

sample period is dependent on the signal propagation times the number of cycles performed.

This makes the cyclic ADC well suited to moderate speed, moderate resolution applications

that require a small die area and low power [5, 17].

2.2.3 Pipelined Architecture

The advantages of the cyclic ADC are improved upon by the pipelined architecture.

A pipelined A/D breaks up a single conversion into multiple stages, similar to the way

a pipelined microprocessor breaks up a single instruction execution. In this setup, the

feedback loop from the cyclic ADC is removed and multiple copies or stages are used in a

daisy chain array as shown in Figure 2.9 [2].

For example, the first stage samples the input signal with a track and hold circuit

without the frontend selection switch. The path is the same as a cyclic ADC up until

output of the residue amplifier. Instead of sending the VRES voltage back to the beginning

of the system, the voltage is sent to another stage that looks similar to the first stage. The

frontend track and hold amplifier at the beginning of the first stage is now free to capture

the next analog input sample while the second stage THA can sample the residue voltage
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from the first stage. The delay time from input to output for a N stage pipeline converter is

about the same as a N cycle ADC. The sampling rate is only limited by the slowest stage in

the pipeline converter as opposed to the sum of all stages. The pipeline converter is capable

of moderate to high speed sample rates and moderate resolutions [7]. This architecture

is common in such applications as Charge Coupled Device (CCD) imaging and ultrasonic

medical imaging [2].

2.2.4 SAR Architecture

Unlike the previous architectures the Successive Approximation Register (SAR) ADC

does not use a flash sub-converter. The SAR instead uses a full resolution DAC and one

comparator to perform a binary search algorithm [5, 6]. The SAR iterates through each

bit of the DAC to find an analog voltage that is approximately equal to the sampled input

voltage. Most SARs use a binary weighted charge balancing architecture for the D/A

since capacitors are easier to match than resistors and offer better noise performance. A

comparator is used to determine if the DAC voltage is greater or less than the original input

voltage. The decision of the comparator is used to determine the next bit in the DAC code.

Once the SAR has reached the last bit, the complete digital word is used as the ADC’s

output.

Figure 2.10 shows the first couple of steps in the successive approximation process for a

unipolar, charge balancing SAR converter [5]. For the first step, the analog input voltage is

sampled onto all of the capacitors in the switch-cap network while the comparator is reset

to its threshold voltage (ground in this case). During the hold mode, the comparator output
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is released and all capacitors are switched to ground. This forces the DAC output voltage

(Vx) to go to negative VIN . At the same time, s1 is switched to VREF . The next step is the

start of the bit-cycling mode, which is where the binary search takes place. In the scenario

shown in Figure 2.10 the comparator output during the hold mode was a logic ’1’ decision.

Using this information, the first capacitor which represents the MSB is switched to VREF .

This changes the DAC voltage to −VIN +
VREF

2
resulting in a new comparator decision for

the next DAC bit. This process is repeated until all DAC bits have been set and sent as

the A/D digital output code [7, 6, 5].

Iterating through the sample, hold, and bit cycling modes requires a longer sample period

than flash, cyclic, and pipeline ADCs [6]. This makes the SAR converter a moderate speed

ADC, but it is capable of higher resolutions than the flash based architectures. In the cyclic

and pipeline converter, a residue voltage must be amplified by a fixed gain amplifier before

being sent to the next cycle or stage. This amplifier circuit will add noise to the residue

voltage with a cumulative effect for each cycle or stage. This places a practical limit on the

number of cycles or stages used, thereby restricting the full A/D resolution to moderate

levels. The noise in a charge balancing, successive approximation converter is limited by

the capacitor DAC network and the preamp for the comparator. Charge balancing SAR

converters are more power efficient that flash or pipeline converters due to the low number

of active components and the elimination of a resistor ladder [7, 6]. This makes the SAR

converter well suited for both low power and higher resolution applications such as portable

instrumentation and data acquisition [2, 7].

2.2.5 Time Interleaved Architecture

The time interleaved architecture is a system that uses multiple full resolution ADCs

running on a subdivided master sample clock [2, 3]. For a given M:1 time interleaved A/D,

there are M converters which operate at sample rate of fS
M . Figure 2.11 shows the operation

of a 2:1 interleaved converter. Two separate ADCs operate at an individual sample rate

of fS
2 . One converter processes the odd samples of the input while the other converter

processes the even samples. This allows for the system sample rate, fS , to be twice the

maximum sample rate of the two sub-converters [3].
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The 2:1 example can be extended to any M:1 interleaved system that can operate at

M times the sample rate of its M interleaved converters. The primary advantage of a time

interleaved system is the increase in speed without sacrificing resolution. This makes them

well suited for applications that require high speed and high resolution converters such as

instrumentation and measurement. Unfortunately, linear errors that were trivial in a single

converter system present a new set of problems in the interleaved architecture.

As discussed earlier gain and offset errors can be easily calibrated out for a single con-

verter [2, 3]. In an interleaved system, the individual converters have each have their own

unique gain and offset errors. The mismatch in these errors between each converter channel

can no longer be modeled as y = Ax+b. The third linear mismatch error is the deterministic

component of aperture delay. As previously mentioned, a fixed delay in the sample time of

a single converter does not affect the output code. However, in the interleaved architecture,

mismatch in signal path lengths leads to differences in the aperture delay between each

sub-converter channel [4, 3]. Since the delay is no longer fixed for each sample time, this

results in a varying sample period. The effects of gain, offset, and aperture delay channel

mismatch will be discussed further in Chapter 3.
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Chapter 3

Interleaved and SAR Architectures

The two ADC architectures that are the focus of this research are the time interleaved

and successive approximation register converters. Both architectures can provide high reso-

lution samples with moderate to high speed conversions. However, as previously discussed,

each type has unique non-idealities which can limit the accuracy of the ADC. Section 3.1

describes the interleaved ADC and the effects of gain, offset and aperture delay on the

output signal. Section 3.2 describes the charge balancing, SAR converter and the effects of

capacitor mismatch.

3.1 The Time Interleaved Converter

As discussed earlier, the time interleaved converter is an effective architecture for achiev-

ing high speed conversions using M full resolution subconverters. Each Nyquist-rate sub-

converter operates at a rate of fS/M , allowing the full system to run M times faster than

the maximum sample rate of a single subconverter. However, differences between each sub-

converter channel leads to errors in a TI system. As device technology scales deeper into

the nanoscale region, physically matching subconverter channels becomes a critical issue.

Because of this, the error sources in a TI structure have been studied to determine their

cause and how to minimize their effects.

The three main error contributions due to channel mismatch are offset, gain and aperture

or timing delay. The effects of all three errors on the digital output code for a single channel
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Figure 3.1: Effects of time interleaved channel mismatch on an input signal

can be modeled as (3.1).

xI = x+ xOSI + xGI + ẋtI (3.1)

The three error coefficients for channel 1 are xOSI as the offset error, GI as the gain error,

and tI for the aperture delay. The ideal output code is represented by x, while ẋ represents

the derivative and xI represents the non-ideal output code from channel 1. Using Equation

(3.1), one can see how the effects of gain mismatch are proportional to the magnitude of

the input signal and the effects of aperture delay are proportional to the derivative.

Figure 3.1 shows a graphical example of (3.1). The solid black curve represents the signal

with only offset and gain distortion. The delay in sampling time can be seen as difference

in VIN that is dependent on the derivative of the input signal as described by (3.1).

To understand the effects of this channel mismatch, the time interleaved converter should

be analyzed in the frequency domain. The work presented in [4] quantifies the relationship

between the effects of the channel mismatch and the error spurs in a FFT.

3.1.1 Offset Mismatch Error

The magnitude of the offset mismatch spurs can be found in (3.2). The location of the

spurs in the frequency domain is dependent on the frequency components of the input signal

and the interleaving ratio of the TI converter. For a 4:1 system, the offset spurs would occur
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at fS/4 and fS/2.

Offset Spur = 20 log
(

∆OS
VFS

)
(3.2)

Equation (3.2) shows how the spurs are proportional to the offset mismatch, ∆OS (in volts),

with relation to the full scale voltage, VFS .

A simulation of a 4:1 TI system with only offset channel mismatch provides a clear

example of its effect on the output spectrum. For this setup, all gain and aperture delay

errors are set to zero and the offset mismatch is limited to ±0.1%. While the mean or system

offset is 215 µV, it has no effect on the image spurs. A block diagram of the configuration

is shown in Figure 3.2. A 317 kHz, full scale input sinewave is fed to four A/D converters.

A unique offset voltage is added to the signal before the input stage of each ADC. All four

converters have a 16-bit resolution and operate at 3 MHz each to produce a master sampling

frequency of 12 MHz.

The simulation results are presented in Figure 3.3. The spectrum plot is normalized to



25

Figure 3.3: 4:1 Time Interleaved Output Spectrum with Offset Errors

the 317 kHz input sinewave at 0 dB. The plot shows two errors spurs at 3 MHz and 6 MHz.

The Spurious Free Dynamic Range is the ratio of the input signal to the largest distortion

or error spur. In this simulation the SFDR is 58.81 dB from the input signal at 317 kHz to

the offset error spur at 3 MHz.

3.1.2 Gain Mismatch Error

The effects of gain mismatch error on the output spectrum of a TI system is described

by (3.3). In a 4:1 time interleaved converter, the image spurs due to gain mismatch error

would occur at fS/2 − fin and fS/4 ± fin [4]. The gain mismatch error is the full scale

voltage ratio between two channels as defined by (3.4).

Gain Spur = 20 log
(

Gerr
2 · VFS

)
(3.3)

Gerr =
∣∣∣∣1− VFSA

VFSB

∣∣∣∣ (3.4)

This simulation of a time interleaved system with a 4:1 ratio used a gain mismatch error
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Figure 3.4: Block Diagram of 4:1 Time Interleaved Converter with Gain Error Introduced

of ±0.2% and all other errors set to zero. The sampling rate used was 12 MHz with an input

signal of 317 kHz. The sinewave is fed to four gain stages where each stage has a unique

gain of 1± 0.002. The gain stage outputs are then fed to their respective 16-bit converters.

The simulation results showed a system gain error of -617 mV. The image spurs can be

seen in Figure 3.5 at 2683 kHz, 3317 kHz and 5683 kHz. The largest spurs are the two at

2683 kHz and 3317 kHz which gives a SFDR of 65.15 dB.

3.1.3 Aperture Delay Mismatch Error

The effect of aperture delay mismatch error on the output spectrum can be represented

by (3.5). A 4:1 TI system has image spurs in the same locations as those due to gain

mismatch error. When both gain and aperture delay mismatch errors are present, the Root

Mean Square value is shown by (3.6) [4]. The magnitude of the image spurs due to aperture

delay mismatch are dependent on both the time delay and input frequency.
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Figure 3.5: 4:1 Time Interleaved Output Spectrum with Gain Errors

Aperture Delay Spur = 20 log
(

2πfin∆tapd
2

)
(3.5)

Gain & Aperture Delay Spurs = 20 log

√(Gerr
2

)2

+
(

2πfin∆tapd
2

)2
 (3.6)

A simulation of a 4:1 TI converter was used to show the effect of aperture delay. The

setup for this simulation was similar to the one used for gain mismatch. A single input

signal was fed to four individual delay stages. Each stage had a delay between 0 and 50 ps

with a mean aperture delay error of 23 ps. The delayed signals were then sent to their

respective, 16-bit converters. As before, the sampling rate was 12 MHz, but this time the

input frequency was set to 3175 MHz. As previously mentioned, the effects of aperture

delay are proportional to the frequency of the input signal, as seen in (3.5). Therefore, an

input with a higher frequency was used to show the effect of aperture delay for signals close

to Nyquist.
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Figure 3.7 shows the output spectrum of the simulated TI converter with spurs at

175 kHz, 2825 kHz and 5825 kHz. The largest spur at 2825 kHz produces a SFDR of

approximately 62.29 dB.

The total power of all image spurs due to offset, gain, and aperture delay can be found

using the Root Sum Square (RSS) as shown in (3.7).

Total Spurs = 20 log


√√√√ M∑

i=1

(
∆OSi
VFS

)2

+
M∑
i=1

(
Gerri

2

)2

+
M∑
i=1

(
2πfin∆tapdi

2

)2
 (3.7)

For a given M:1 interleaved converter, the square of each mismatch error for each, ith

channel is summed before taking the square root. The total power is used to determine

how much calibration is necessary to reduce the errors enough for an N-bit converter. For

example, using the SNDR from (2.4), a 16-bit converter can have a maximum SNDR of

98 dB. Therefore, the total power of all spurs due to mismatch error after calibration must

be less than -98 dB.
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Figure 3.7: 4:1 Time Interleaved Output Spectrum with Aperture Delay Errors

3.1.4 Bandwidth Mismatch Error

Channel bandwidth mismatch is a type of nonlinear error in TI converters. An in-depth

analysis of effects due to this error is presented in [18]. The T/H circuit in each channel

can be approximated as a first-order system in the frequency domain as

Hk(j2πf) = 1/(1 + jf/fc(i)) (3.8)

where fc(i) is the mismatch of the bandwidth in each channel (i = 1, 2, · · · ,M). The output

signal has two error components due to bandwidth mismatch, AC gain mismatch Gi and

AC phase mismatch θi [18].

Gi =
1√

1 + (fin/fc(i))
(3.9)

θi = − arctan(fin/fc(i)) (3.10)

It is important to note that AC gain and phase depend on bandwidth mismatch and the

input frequency fin, unlike the linear gain and aperture delay mismatch. [18] presents a
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detailed analysis of bandwidth mismatch in a 4:1 time interleaved system. It shows that

the SNR in a 4:1 is

SNR (dB) = 20 log
B2
s4

B2
n1 +B2

n2 +B2
n3

(3.11)

where

Bs4 =
√
B2
sc +B2

ss Bn1 =
√
B2
n1c +B2

n2s Bn2 =
√
B2
n2c +B2

n2s Bn3 =
√
B2
n3c +B2

n3s

and the the values Bsc, Bss, Bn1c, Bn1s, Bn2c, Bn2s, Bn3c and Bn3s are defined below [18].

Bsc =
1
4

(
+ (G1 +G3) cos(θ) cos(θ13) + (G2 +G4) cos(θ) cos(θ24)

− (G1 −G3) sin(θ) sin(θ13) + (G2 −G4) sin(θ) sin(θ24)
)

(3.12)

Bss =
1
4

(
− (G1 +G3) sin(θ) cos(θ13) + (G2 +G4) sin(θ) cos(θ24)

− (G1 −G3) cos(θ) sin(θ13)− (G2 −G4) cos(θ) sin(θ24)
)

(3.13)

Bn1c =
1
4

(
− (G1 +G3) sin(θ) sin(θ13) + (G2 +G4) cos(θ) sin(θ24)

+ (G1 −G3) cos(θ) cos(θ13)− (G2 −G4) sin(θ) cos(θ24)
)

(3.14)

Bn1s =
1
4

(
− (G1 +G3) cos(θ) sin(θ13) + (G2 +G4) sin(θ) sin(θ24)

− (G1 −G3) sin(θ) cos(θ13) + (G2 −G4) cos(θ) cos(θ24)
)

(3.15)

Bn2c =
1
4

(
+ (G1 +G3) cos(θ) cos(θ13)− (G2 +G4) cos(θ) cos(θ24)

− (G1 −G3) sin(θ) sin(θ13)− (G2 −G4) sin(θ) sin(θ24)
)

(3.16)

Bn2s =
1
4

(
− (G1 +G3) sin(θ) cos(θ13)− (G2 +G4) sin(θ) cos(θ24)

− (G1 −G3) cos(θ) sin(θ13) + (G2 −G4) cos(θ) sin(θ24)
)

(3.17)
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Bn3c =
1
4

(
− (G1 +G3) sin(θ) sin(θ13)− (G2 +G4) cos(θ) sin(θ24)

+ (G1 −G3) cos(θ) cos(θ13) + (G2 −G4) sin(θ) cos(θ24)
)

(3.18)

Bn3s =
1
4

(
− (G1 +G3) cos(θ) sin(θ13)− (G2 +G4) sin(θ) sin(θ24)

− (G1 −G3) sin(θ) cos(θ13)− (G2 −G4) cos(θ) cos(θ24)
)

(3.19)

The values G1 through G4 and θ1 and θ4 are defined in 3.9 and 3.10 respectively. The values

θ, θ13 and θ24 in (3.12) through (3.19) are defined as

θ =
1
4

(θ1 − θ2 + θ3 − θ4) θ13 =
1
2

(θ1 − θ3) θ24 =
1
2

(θ2 − θ4) . (3.20)

To determine how much bandwidth mismatch is acceptable for an N-bit converter, (2.4)

must be used with (3.11). Again, for a 16-bit converter the SNDR must be better than

98 dB, however, the SNDR due to bandwidth mismatch is dependent on the bandwidth of

each channel and the input frequency fin. Therefore, a numerical analysis of bandwidth

mismatch can show SNDR performance over a range of input frequencies. Figure 3.8 shows

SNDR performance versus channel bandwidth mismatch for multiple input frequencies. To

perform this analysis a set of restrictions were placed on the variables fc1, fc2, fc3 and fc4.

The channel bandwidths were uniformly distributed with a mean bandwidth fcµ, of 50 MHz

and a standard deviation σfc , determined by

σfc =

√
(fc1 − fcµ)2 + (fc2 − fcµ)2 + (fc3 − fcµ)2 + (fc4 − fcµ)2

4
. (3.21)

The master sampling frequency was 12 MHz and four input frequencies were tested, 1.2 MHz,

6 MHz, 12 MHz, and 18 MHz. According to the plot in Figure 3.8, a 16-bit TI ADC with

an average bandwidth of 50 MHz and an input frequency near Nyquist fS/2, can tolerate

a maximum bandwidth mismatch of ±3%.
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Figure 3.8: Plot of Bandwidth Mismatch for Multiple Input Frequencies
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3.2 The SAR Converter

Successive approximation ADCs provide high resolution samples at moderate conversion

speeds with moderate circuit complexity [5]. The SAR converter requires only one precision

analog comparator, a DAC network with a sample and hold circuit, as well as supporting

digital logic for the binary search algorithm.

One of the more common designs for a successive approximation ADCs uses a differential,

charge balancing DAC network. The benefits of using capacitors in the DAC circuit is two

fold. In an IC layout, capacitors are better than resistors at both device matching as well as

noise performance [12, 5]. The use of a switched-capacitor DAC also eliminates the need for

a separate sample and hold circuit. A fully differential, charge balancing SAR is presented

as an example, in the following section. Section 3.2.2 describes the non-idealites and errors

that are found in this type of A/D.

3.2.1 Operation of a Differential SAR

The basic operation of a differential SAR is similar to the operation of the single-ended

converter described in Section 2.2.4. Two switched-cap DAC networks are used, one positive

and one negative. Figure 3.9 shows a block diagram of the differential converter with the

two DAC circuits. Instead of comparing a single DAC voltage to a fixed common-mode

DC voltage, the positive DAC voltage is compared to the negative side. This allows for the

sampling of a differential input while making use of a high Common Mode Rejection Ratio

(CMRR). The differential output of the comparator is fed into digital logic that makes the

appropriate capacitor selection in the DACs. With each bit decision, the differential voltage

is driven to zero, balancing the charge between the positive and negative DACs.

Figure 3.10 shows the first three steps of the differential SAR converter. There are a few

differences between the single-ended and differential circuits. During the sample phase, the

capacitors are switched to their respective input voltages. In this case, the comparator is

fully differential and there is no closed-loop feedback for the sample mode. Instead, the two

DAC voltages are shorted to a common mode voltage. For the hold phase, the capacitor

network is switched to the common mode while the differential DAC voltage is allowed to
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Figure 3.9: Block Diagram of a Differential SAR

Table 3.1: Table of DAC Voltages for a Single Conversion
Cycle Vx (V) Vy (V) Bit Decision

Sample 0.900 0.900 N/A
Hold 1.375 0.425 +1
Bit 1 0.925 0.875 +1
Bit 2 0.700 1.100 -1
Bit 3 0.8125 0.9875 -1
Bit 4 0.8688 0.9313 N/A

settle to the sampled differential input voltage. For the bit cycling mode, the comparator

decision is used to switch the capacitors used for that bit in each DAC.

To better illustrate the operation for a full conversion, Figure 3.11 shows the voltage

waveforms from both DACs for a 4-bit SAR converter. The voltage reference used for this

example was 1.8 V with a 0.9 V common mode and a differential input voltage of +0.95 V.

The two DAC voltages, VP and VN are brought to 0.9 V for the sample mode, while the

input side of the capacitors are shorted to the differential input voltage. For the hold mode,

VP is allowed to settle to 1.375 V while VN is allowed to settle 0.425 V. At this point, the

magnitude of the differential DAC voltage is equal to the magnitude of the sampled input

voltage. The comparator then makes a +1 decision, switching bit one in the negative DAC

to 0 V and the positive DAC to 1.8 V. This forces the differential DAC voltage to settle to a

new value, 0.05 V. Once the DACs have enough time to settle, the comparator makes a new

decision of +1, bringing VP to 0.7 V and VN to 1.1 V. Table 3.1 describes the remaining

bit decisions and DAC voltages for the entire conversion cycle.
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Figure 3.10: Basic Circuit Operation of a Differential SAR
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Figure 3.11: DAC Voltage Waveform of the Differential SAR

In the ideal case, the DAC voltages quickly settle to the correct values and the com-

parator always makes the right decision. In addition, the capacitor weights would always

be perfectly matched to powers of 2. Unfortunately, this is never the case in the real world,

and non-idealities with the comparator, DAC settling time, and capacitor mismatch results

in output errors.

3.2.2 Non-Idealities in a SAR Converter

The two main types of errors in a SAR A/D are incorrect comparator decisions and

nonlinearity. The sources for these errors can range from capacitor mismatch, voltage

reference noise and distortion, to insufficient DAC settling time. These types of errors are

difficult to account for outside of the SAR, so extra circuitry is usually added to correct for

these errors internally.

3.2.3 Incorrect Comparator Decisions

Noise or distortion on the reference voltage side of the DAC network can result in

an incorrect decision. The charge balancing network is a capacitively loaded circuit that
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Figure 3.12: DAC Voltage Waveform of the SAR with Redundant Bit and Recovery

changes voltage in sharp steps. When the differential DAC voltage changes after a bit

decision, there is a finite amount of time required to allow for the voltage to settle from

ringing. If the differential voltage does not settle in time, the comparator might make the

wrong the decision and tell the DAC to switch in the wrong direction. Once this occurs, it

is no longer possible to drive the differential DAC voltage to within one half LSB. This will

also result in a digital output code that does not match with the sampled input voltage. A

bad decision at the beginning of the conversion with one of the first couple of bits would

result in a larger error than a bad decision with one of the last few bits.

In order to correct for this kind of error, the DAC network must be expanded to allow

for the ability to recover from a wrong decision. The classic method of doing this is to add

redundant bits to the charge balancing circuit. Using the four bit SAR example, a fifth bit

decision can be added in between bits two and three. This redundant bit would have the

same weight as the second bit and allow for a recover if a mistake is made with either the

first or second bit decision. Figure 3.12 and Table 3.2 shows how the ADC can recovery

from an early, incorrect bit decision.

In this simulation, the differential voltage input is still +0.95 V, but the comparator
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Table 3.2: Table of DAC Voltages for a SAR Conversion with Decision Recovery
Cycle Vx (V) Vy (V) Bit Decision

Sample 0.900 0.900 N/A
Hold 1.375 0.425 +1
Bit 1 1.120 0.875 -1
Bit 2 1.150 0.650 +1
Bit 3 0.925 0.875 +1
Bit 4 0.8125 0.9875 -1
Bit 5 0.8688 0.9313 N/A

makes a wrong decision with the second bit. Without the redundant bit, the final digital

output would be 1011 which results in an equivalent analog voltage of 0.787 V. Using the

redundant bit with a weight equal to the second bit, the new output code is 10110 with

an equivalent analog voltage of 1.0125 V. As one can see, the fifth bit does not add to the

resolution of the A/D, but it does help correct for a decision error in the first two bits. For

higher resolution converters, the number of redundant bits can be increased to correct for

multiple bad decisions.

3.2.4 Capacitor Weight Mismatch

In a SAR converter, the second type of error, nonlinearity, is due to the capacitor size

mismatch in the DAC network. An ideal SAR DAC has a binary weighted capacitor network

where each successive capacitor is exactly one half the size of the previous capacitor. When

the weights are not exact binary multiples of each other, the transfer characteristic of the

converter is nonlinear. This effect is most obvious with transition at the Most Significant

Bit. The weight of the MSB should be one LSB greater than the sum of the weights for the

remaining bits. However, the mismatch between the MSB and the remaining bits is usually

the largest.

In the example shown in Figure 3.13, a discontinuity can be seen when the code changes

from 0111 to 1000. Table 3.3 shows both the ideal and non-ideal weights for a 4-bit A/D.

Using this table the combined weights of the last three bits is 0.7782 V while the weight of

the MSB is 0.9135 V resulting in a weight mismatch of 0.1353 V.

The nonlinearity due to capacitor size mismatch can be easily measured and character-
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Table 3.3: Table of Ideal and Non-Ideal DAC Weights
Ideal Weights Non-Ideal Weights

0.9000 V 0.9135 V
0.4500 V 0.4478 V
0.2250 V 0.2212 V
0.1125 V 0.1092 V

Figure 3.13: INL of Non-Ideal SAR Converter

ized externally. There are several methods used to measure DNL and INL for an A/D. The

most straight forward method requires a computer controlled, precision voltage generator

and a Digital Acquisition unit. The computer steps through all 2N quantization levels, while

DAQ captures the output code for each sample. This allows for a direct measurement of

the nonlinearity errors. However, it is difficult to precisely iterate through all quantization

levels of a high resolution ADC. More often, a statistical method is used by feeding a sinu-

soidal input to the A/D and plotting a histogram of the output as discussed in Section 2.1.2.

After several million samples, the output histogram is compared to the ideal histogram of

the sinewave input. Deviations from the ideal histogram curve translate to DNL and the

INL can be calculated from the DNL. [14]

Measuring and quantifying the nonlinearity error due to capacitor mismatch can pro-
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vide information to be used in correcting the output. Typically these measurements are

fed back to a calibration circuit within the SAR converter. This eliminates the need for

external circuitry to compensate for non-ideal weights. There are several calibration and

correction techniques used with both TI and SAR converters, each with their own benefits

and drawbacks. These methods and the method used for this research are discussed in more

detail in the following chapter.
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Chapter 4

ADC Calibration

As integrated circuit technology scales down to deep sub-micron sizes, device mismatch-

ing and increased variability introduce more challenges to analog circuit design. These

difficulties have a large impact on the accuracy and distortion of all analog to digital con-

verters. Therefore, much effort has gone into calibrating and correcting the outputs of A/Ds

using combinations of analog and digital techniques.

4.1 Time Interleaved ADC Calibration

There are several techniques for reducing errors found in TI converters. One method

can reduce the errors within the desired frequency range and increases the signal-to-noise-

and-distortion ratio (SNDR). An example of this is the use of digital filters at the output

of the converter to shift or shape the spectrum of the overall signal [19, 20, 21]. Another

method involves calibrating the ADC to remove or reduce the cause of the errors and thus

remove their effects. There are various forms of converter calibration, each with their own

advantages and disadvantages. The main goal for this research is to perform converter

calibrations as quickly and as accurately as possible. Therefore, it is necessary to ensure

that a deterministic and digital background calibration technique is used.

In the past, analog circuit techniques have been used for calibration, but suffered the

penalty of adding complex circuitry. In the analog domain, an increase in circuit com-

plexity results in a larger penalty of die area, power, and noise [22, 9]. Common analog
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techniques include variable signal delay stages or a reference ramp signal generator [23, 24].

These components can be very sensitive to noise and interference, producing invalid error

estimates.

The work in [24] uses digital techniques to generate timing delay estimates which are

discussed later. While the calibration estimates are done in the digital domain, this con-

verter implements adjustable delay lines for each channel in the analog domain to correct

for aperture delay mismatch. Another analog technique for correcting aperture delay mis-

match is a distributed Sample and Hold network [25, 26]. A front-end S/H circuit operates

at the full speed of the interleaved converter, fS , to capture every sample. In order to re-

duce loading of the master S/H circuit, each channel has its own S/H circuit placed before

the sub-ADC. By reducing the load on the front-end S/H circuit, the converter can run at

a higher speed without any delay mismatch [25]. The additional S/H networks introduce

extra analog complexity and the top speed of the master S/H is still limited by the process

technology. An analog technique for offset error is shown in [21]. This work introduces a

TI structure that adds a PRN chopping circuit to the analog front-end of each channel for

offset estimation (correction is done in the digital domain).

[27] describes a 2:1 interleaved pipeline converter. This novel technique uses a single first

stage that runs at the full sampling rate, fS , but uses two interleaved subsequent stages that

each operate at fS/2. The ADC uses two tack and hold circuits that run at the full speed

sampling rate, fS . One T/H drives the first stage 2.8-bit flash A/D. The output of the first

A/D is fed to two MDACs that use the second T/H to generate the two, interleaved residue

paths. While the two T/H allow for a higher throughput rate, it adds analog complexity

and the need to design for time delay mismatch. The ADC performs gain and offset error

calibration in the digital domain. However, the offset error corrections that are calculated

are then fed into offset cancellation circuits inside each pipeline stage. This introduces

another layer of analog complexity to the calibration and correction hardware.

One of the advantages of technology scaling is the ability to use redundancy as a method

for calibrating interleaved converters [26, 24]. The highly interleaved converter in [26]

achieved a 36:1 ratio by implementing 42 ADCs on the chip. Instead of directly calibrating

out all of the mismatch errors for each sub-ADC, the 6 worst performing channels were
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eliminated in order to improve the system level performance. While this method does not

use any additional power as those six sub-ADCs are turned off, it does require additional

space for both analog and digital circuitry. This method also has the disadvantage of

requiring foreground calibration to determine which six channels must be turned off.

Another redundant method which is similar to this author’s work described in Chap-

ter 5 compares the different ADC channels with each other [24]. In [24] two redundant

ADC channels are added to a 16:1 interleaved converter. One of the channels is chosen as

the reference channel. For some conversions, this reference channel is run simultaneously

with another channel. A calibration loop observes the long-term RMS and mean values

and attempts to make them identical for each channel pairing by making gain and offset

adjustments in the digital domain [24]. While this calibration is similar to the one used in

Chapter 5, there are two main differences. As mentioned earlier, [24] uses variable delay

lines to correct for timing delay in the analog domain. In addition, the use of two redundant,

full sized A/Ds adds both die area and power to the circuit design.

Digital calibration takes advantage of the scalability and improved performance of dig-

ital circuits [28, 9]. These circuits are more robust and less sensitive to noise from the

system, which allows for accurate estimation and correction. Unfortunately, previous dig-

ital calibration techniques have not been both background and deterministic. Statistical

calibration techniques usually require known inputs and long calibration times [29, 30, 31].

As mentioned earlier, [21] used a front-end PRN chopping circuit to calibrate offset error.

The digital outputs from each channel are then fed into their respective accumulators. The

output of each channel’s accumulator is subtracted from the channel’s digital code. The

residual is then fed back into the accumulator in a feed-back loop. This forces the average

accumulator inputs to be zero. Since the chopped signal is white noise, offset error would

show up as DC spurs. The feed-back loop with the accumulators would drive the mean to

zero, removing the offset error. There are two draw backs to this approach; it requires the

additional chopping circuits and it takes a long time to converge.

To calibrate gain error, [21] upsamples the digital code by inserting zeros. The signal

is then processed through a Finite Impulse Response (FIR) filter to remove the spurs due

to gain error. By removing the spurs using filters, a portion of the usable spectrum is lost.
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This method reduces the frequency range to less than Nyquist since the higher frequencies

are filtered out with the gain spurs.

For aperture time delay, the offset and gain digital output codes are sent to an adaptive

timing calibration system. Two adaptive FIR filters are used to remove the spurs due to

delay. The filter coefficients are updated from a feed-back loop containing a phase detector

and an accumulator. This method has two main drawbacks that were brought up with the

gain and the offset calibration. The filtering reduces the usable spectrum, similar to the

gain correction, while the accumulator feed-back loop is a statistical technique that takes a

large number of samples to converge.

The foreground calibration techniques used in the past do not track with changes in the

ADC non-idealities during operation such as temperature or supply voltage drift [22, 25, 26].

Both [25] and [26] use a distributed S/H network to avoid aperture delay error, but the

remaining errors due to mismatch are calibrated using foreground techniques. [25] uses

traditional gain and offset calibration techniques with a known test signal. Once enough

data has been collected for each channel, the errors are then subtracted out of the digital

code and multiplexed to generate the system output. As was previously mentioned, [26]

performs a foreground calibration by characterizing all 42 channels in the converter. Once

this is done, the six channels with the worst performance characteristics are then shutdown,

while the remaining 36 are used for interleaving. Fully characterizing 42 ADCs requires a

long amount of time. In addition, the performance of the remaining ADCs may still change

over time, reducing the overall system performance.

Background calibration allows for error tracking while the ADC is operating. As the er-

rors in the converters change over time, the correction system can track with those changes.

This eliminates the need to take the converter off-line in the course of its operation [32, 33].

Using this technique, a constant stream of calibrated output data is achieved with no gaps

or breaks. The research presented in [34] is able to calibrate out gain and offset error in the

background. Timing delay is handled by using the traditional method of a front-end, full

speed S/H circuit. A slow, highly accurate reference ADC is used to compare with each

interleaved channel. An adaptive Least Mean Squares (LMS) loop is used to adjust the gain

and offset for each channel in the digital domain until the mismatch error is eliminated.
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Unfortunately, this calibration method requires the addition of this slow ADC that must

be designed to operate with greater accuracy than each of the interleaved sub-ADCs. This

reference ADC still places a burden on both die area and power consumption.

4.2 SAR A/D Calibration

Most calibration methods of the SAR converters are designed to correct for errors due

to the effects of capacitor mismatch in the DAC. One technique used is to modify the

DAC network itself to provide the ability to correct for mismatch. An example of this is

shown in [35], where extra capacitors can be switched in or out of the DAC network to

“trim” out the mismatch. A common method of reducing the die area of the charge scaling

DAC is the use of bridging or coupling capacitors in series with banks of binary weighted

capacitors. Figure 4.1 shows the comparison of an 8-bit SAR DAC with one bank of straight

binary weighted capacitors versus two banks of parallel capacitors separated by a fractional

coupling capacitor in series. In theory, the total capacitance of the lower bank on the left

side should be equal to the LSB of the upper bank on the right side. Unfortunately, the

matching is very dependent on the size of the coupling capacitor and the parasitics at that

node. Therefore, additional calibration is required to achieve the correct matching between

the two banks [35].

The 8-bit SAR presented in [35] uses two banks separated by a single coupling capaci-

tor. The DAC uses some matching techniques such as the placement of dummy capacitors

surrounding the upper bank to improve matching. In order to compensate for process varia-

tions with the size and parasitics of the coupling capacitor, additional “trim” capacitors are

added. The upper bank uses an additional unit capacitor while an adjustable capacitor is

added to the lower bank. To calibrate the DAC, the appropriate trim settings are calculated

in the foreground by attempting to make the total charge value of the lower bank equal to

the LSB of the upper bank. Throughout this calibration mode, the LSB of the upper bank

is compared to the total value of the lower bank. The output of the comparator determines

which side is greater and the appropriate adjustments are made to the trim capacitors.

This process is repeated until the final values are found and the trim settings are stored in
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Figure 4.1: (a) An 8-bit SAR with straight binary weighted DAC
(b) An 8-bit SAR with a Coupling Capacitor DAC

memory for normal SAR operation.

This technique is highly dependent on the accuracy of the comparator for calibration.

Therefore, it is necessary for the comparator to have a small offset error in order for the

calibration algorithm to work. In order to minimize additional analog complexity, [35] uses

a two-step timing delay to adjust for offset error. Additional transistors are added for course

and fine adjustment for the time delay. During the regenerative phase, additional charge is

injected into the nodes of the comparator to set the compensation voltage. The regenerative

transistor pair amplifies the input-referred offset voltage. A longer time delay results in a

higher gain, allowing the small offset to be canceled by the compensation voltage [35].

While [35] does require additional analog circuitry, another method proposed in [36]

does not. This method uses a non-binary weighted DAC in a unique way to “learn” the

correct capacitor weights. The SAR in [36] accomplishes this by using a Linear Feedback

Shift Register and digital feedback loop to calculate the individual capacitor weights and a

single offset weight. At the start of a calibration loop, the LFSR generates a PRN vector of

the capacitors used to sample the reference voltage. The current set of weights and offset

are then applied to the digital result, Da. Then the normal SAR operation is performed and

the weights are applied again to generate a new digital decision, Db. The new weight values

are calculated by taking the old weight values and adding the weighted difference between
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Da and Db [36]. In fact, the digital feedback method and the use of the PRN is similar to

the calibration presented in 6. However, both [35] and [36] require a foreground calibration,

requiring the converter to be taken offline periodically to correct for errors dependent upon

environmental changes.

There are several examples of using non-binary weighted ADCs to overcome the effects

of mismatch error. [37] uses non-binary weighted capacitors with the addition of redundant

bits to overcome non-linearity errors. This work was able to compensate for nonlinearity

of up to 65 LSBs. A later example of this is described in [38], where the non-binary

weighted SAR is used with the addition of digital signal processing. The main drawback

of this method is the limitation on the amount of linearity that can be corrected [37]. It is

important to note that the additional digital processing in [38] allowed for calibration of a

higher resolution SAR converter.

Background calibration provides the benefit of tracking and correcting these errors over

time. The background method used in [39] was developed for both pipeline and SAR con-

verters. It corrects for errors in these converters with the addition of offset comparators

and additional offset voltage references. Similar to some of the work described in the previ-

ous section, this work also takes advantage of redundant circuitry. The calibration method

“swaps out” an extra stage in the pipeline converter in order to generate the correction

data. This can also be performed in a SAR converter by swapping out capacitors or groups

of capacitors. The use of extra capacitors is similar to the research presented in Chapter 6.

The additional analog circuitry increases the power and die area requirements more than

an all digital technique.

One common form of SAR calibration is to use an extra capacitive calibration DAC to

correct for charge imbalance in the SAR DAC [40]. This method is used in [8] with the

addition of digital logic to self-correct the SAR DAC. A calibration DAC with a range of

±16 LSBs and a step size of 1/4 LSB is used to correct charge imbalance due to offset

and linearity error. For the calibration cycle, all capacitors are discharged to VCM and

the input is switched to a known measurement signal. The main DAC is held at VCM

while the calibration DAC operates as a normal SAR DAC to search for the error voltage

across the entire dynamic range of the converter. Once these errors are found, the binary
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code from the calibration DAC is stored in a digital memory block. The converter is then

switched to normal conversion mode and begins sampling the input signal. Data from the

calibration memory block are then fed to the calibration DAC to correct for voltage error

in each conversion.

The calibration performed in [8], like [35, 36], still requires an extra reference signal

during a separate calibration mode. The ideal method would not require any additional

reference signal or converter to generate the appropriate weight values for the SAR DAC.

It would also perform the weight calculation in the background without the need to take

the system offline or interrupt the input signal.

One technique that performs digital, background calibration is presented in [41]. This

SAR uses linear equalization to match the digital output codes of the SAR with that of a

slower, more accurate reference ADC. The SAR DAC uses non-binary weighted capacitors

with a radix of 1.84 and two redundant bit decisions, which is similar to [37]. Reducing

the capacitor radix to less than 2 prevents the problem of missing decision levels and works

with the digital calibration and correction algorithm [41]. The main SAR A/D operates at

a sample rate of fS while the accurate reference ADC operates at a speed of fS/M . The

raw digital output of the SAR A/D is decimated by a factor M and equalized with the

digital output of the reference ADC. The tap values for the linear equalization adaptive

filter are updated using an LMS loop that runs at the sample rate of the main SAR A/D.

The undecimated raw bit stream from the main SAR is corrected using the information

from the latest linear equalization and sent as the system output. While this calibration

technique does operate in the background using mostly digital hardware, its main drawback

is that an extra reference ADC must be used to generate calibration data.

The sub-radix 2 technique used in [41] was modified and presented again in [42] to achieve

a fully digital, background calibration method for a 12-bit SAR. This newer technique is

similar to the Split-ADC architecture described in [9] and used in this work. The SAR in

[41] performs two successive approximation conversions for each sample taken. In addition

to the redundant capacitors used in [41], the SAR has an additional perturbation capacitor,

C∆. This capacitor decision is switched to positive Vref for the first conversion and negative

Vref for the second conversion. This generates two unique, weighted digital codes, x+ and
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Table 4.1: Comparison of Previous Calibration Techniques
Time-Interleaved ADC SAR ADC Split-ADC [9]

Background [24] [21] [34] [38] [39] X

All Digital [26] [25] [21] [36] [38] [8] [42] X

Deterministic [24] [26] [25] [34] [35] [8] [42] X

Arbitrary [24] [21] [34] X

x−, that contain the known perturbation offset. If the difference ∆x between those codes

minus the perturbation offset is non-zero, then some error exists in the current values for

the weights and perturbation. The stream of ∆x data is fed into an LMS loop that is used

to estimate the correct weights and perturbation values.

The perturbation calibration used in [42] has similar advantages as the Split-ADC cal-

ibration [9], which is described in the next section. Both techniques operate in the back-

ground without the need for a known analog signal or an extra reference ADC. They both

perform the calibration and correction entirely in the digital domain to take advantage of

scaling in deep sub-micron technologies. However, since the perturbation method must per-

form two conversions for each sample during calibration, it must operate at half of its full

speed. In addition, the use of the extra perturbation capacitor requires a dynamic input

signal and will not converge with an input at DC. The Split-ADC can operate with any

input signal and maintain its maximum sampling rate for the entire operation as opposed

to previous methods shown in Table 4.1. Therefore, the Split-ADC calibration method was

chosen as the calibration technique to be applied to the SAR and interleaved converters in

this work.

4.3 The Split-ADC Architecture

The Split-ADC architecture presented in [9] is a fully digital, deterministic, background

self-calibration method for a cyclic ADC. Performing both the calibration and correction

in the digital domain takes advantage of CMOS scaling. The background self-calibration

eliminates the need for using a known benchmark signal and allows the converter to con-

tinue operating without being taken offline. Finally, the deterministic nature of the split

architecture refers to a short time constant necessary to achieve full calibration.



50

ADC "A"

Error Estimation

VIN

ΣADC "B"

xA

xB

x = xA xB+
2

Δx = xA xB-

ADC Output Code

Difference

Figure 4.2: Block Diagram of Split-ADC Architecture

A system overview of the Split-ADC architecture is presented in Figure 4.2. The funda-

mental structure of the Split-ADC is composed of two independent converters that sample

the same input signal VIN . The individual outputs of the two A/Ds xA and xB are used to

calibrated the two converters.

The system uses the two signals xA and xB to generate an average x, which is used

as the digital output code, as well as a difference ∆x, which is used for calibration. The

∆x code is used to estimate the error in the current set of correction parameters for each

ADC. This error estimate is used to update the correction parameters in the background.

The ∆x is driven to zero as the correction parameters are updated each time, reducing the

estimated error. The calibration process is performed using digital CMOS logic, entirely

in the background with a Least Mean Squares loop. The individual output codes xA and

xB are digitally corrected in the foreground with the latest correction parameters. As ∆x

approaches zero, the average output signal x converges to the correct code.

The Split-ADC calibration described in [9] was applied to a cyclic A/D converter to

correct for the gain parameter of the amplifiers used in the two ADCs. The fixed gain

parameter for the amplifiers is a linear error correction; the analog amplifiers were designed

to be highly linear. The ∆x values were used to estimate the gain correction parameters in

a Loop-Up Table (LUT). The error estimation loop was able to achieve full convergence in
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Figure 4.3: Splitting an ADC into two halves

less than 10,000 samples. Using a sampling rate of 1 MS/s, the convergence time constant

is fast enough to track with any parameter variations while operating [9].

The primary trade-off when using the Split-ADC calibration structure is the need for

two independent converters. However, [9] demonstrates how it is possible to use two ADCs

that are half the size of the original, but still achieve the same performance with a minimal

addition of digital circuitry. This is achieved by taking the average of the two output codes,

xA and xB. With a single A/D, the size and complexity of the analog circuitry is the

limiting factor with regards to die area and power. The capacitor sizes are chosen so that

the
√
kT/C noise performance is less than 1 LSB. If the capacitor and subsequent transistor

sizes are reduced by 2, then the noise level will increase by
√

2. However, by taking the

average of the two outputs, the noise level decreases by
√

2, back to the same performance

level as the original, full sized converter. Figure 4.3 shows how a single ADC is split into

two halves with equivalent power and die area usage.

For the analog circuitry in the single converter, the power, P, is assumed to be pro-

portional to gm. Using the Split-ADC method, the gm in the analog circuitry is half the

amount of original, single ADC. Therefore, the total power for the Split-ADC is shown as

(4.1).

PTotal ∝
gm
2

+
gm
2

= gm (4.1)

(4.1) shows how the total power of the two, half-sized ADCs is equivalent to the single,

full-sized ADC. The bandwidth fT , of the single ADC is assumed to be proportional to

gm/C. When the single converter is split into two halves, the bandwidth of one half-sized
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A/D is represented by (4.2).

fT ∝
gm
2
· 2
C

=
gm
C

(4.2)

As such, the bandwidth of the Split-ADC is equal to the bandwidth of the single, full-sized

converter.

The Split-ADC calibration method requires significant adaptation to be applied to dif-

ferent architectures. Chapters 5 and 6 discuss how to apply the Split-ADC method to the

time interleaved and SAR converters, respectively.
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Chapter 5

Split-Interleaved ADC

The previous section described the benefits of the Split-Cyclic ADC architecture over

previous calibration methods for A/D. However, the work presented in [9] had less error

coefficients than the amount required for a Split-Interleaved converter. The research pre-

sented in this chapter discusses the digital error correction for a TI converter and how the

Split-ADC method can be adapted to estimate the correction parameters.

5.1 Digital Error Correction

Section 3.1 discussed the three channel mismatch error coefficients in an interleaved

A/D, offset, gain, and aperture delay. From Equation (3.1), one can see that the difference

between the ideal output code x, and the real output code, xI is the sum of the three error

components, xOSI , xGI , and ẋtI .

In order to get the correct output code, all three error components must be subtracted

from the real code. This can be done in the digital domain using estimated correction

parameters, x̂OSI , ĜI , and t̂I representing the error coefficients.

x̂ = xI − x̂OSI − xIĜI − ẋt̂I (5.1)

The corrected output code x̂ will be equal to the ideal output code x, once the estimated

correction parameters are equal to the real error coefficients.
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Correcting the aperture delay error in the digital domain has an additional advantage

over traditional methods using a high-speed track and hold analog circuit prior to the sub-

ADCs. This front-end circuit runs at the master sample rate fS and each sub-ADC converts

the sample held by the main track and hold circuit. While this does eliminate the issue

of aperture delay mismatch between channels, the device technology must be fast enough

for the track and hold circuit run at fS . This results in the sub-ADCs running at speeds

less than what the device technology is capable of. By eliminating the front-end circuit and

correcting the aperture delay in the digital domain, the individual sub-ADCs can be run at

the maximum speed that the technology allows.

Estimating the correction parameters directly can be difficult; so instead, the error in

the correction parameters can be estimated. This error in the correction parameters can be

shown by plugging (3.1) into (5.1) to yield (5.2).

x̂ = x+ xOSI − x̂OSI︸ ︷︷ ︸
εOSI

+xI
(
GI − ĜI

)
︸ ︷︷ ︸

εGI

+ẋI
(
tI − t̂I

)︸ ︷︷ ︸
εtI

(5.2)

By estimating the error in the correction parameters, the ideal values of x̂OSI , ĜI , and

t̂I can be calculated. Using this information, the Split-ADC method is used to estimate

εOSI , εGI , and εtI .

5.2 Split-ADC and the Time Interleaved Converter

In the original Split-Cyclic ADC, a single, full-sized A/D was split into two half-sized

ADCs. The basic concept of the Split-TI converter is to split each channel into half-sized,

sub-ADCs. In order to generate estimates for all mismatch errors, every channel must

be compared with each other. Figure 5.1 shows how the Split-ADC is applied to a 2:1

interleaved converter. In this configuration, there are 2M+1, or 5 sub-ADCs allowing one

A/D to be “swapped out” for each master sample period, TS . For example, at sample S3,

ADCs 1 and 2 have just completed the conversion for S1, while ADCs 3 and 4 are still busy

with S2. This leaves ADCs 1, 2 and 5 available to convert sample S3. ADCs 1 and 5 are

chosen to free up sub-ADC 2 to be paired with sub-ADC 3 on the next sample conversion.
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Figure 5.1: Block Timing Diagram of Split 2:1 TI ADC

This allows for all possible pair permutations to be used, generating a unique ∆x for each

pair.

The addition of the one extra half-sized sub-ADC channel does add some die area, an

increase of 1/2M or 1/4 for a 2:1 interleaved converter. However, as the interleaving ratio

M, increases, the fractional excess die area required decreases. Power usage will remain the

same since since only 2M half-sized, sub-ADCs are operating at any given point in time.

The ∆x values from each sub-ADC pair represent the channel mismatch error. For

example, the difference in the corrected outputs of sub-ADCs 1 and 2 can be shown using

(5.2) as (5.3).

∆x1;2 = x̂1 − x̂2 = (εG2 − εG1)x+ εxOS2 − εxOS1 + (εtAPTD2 − εtAPTD1)
dx

dt
(5.3)

As the correction parameters approach the ideal values, the error in the correction

parameters goes to zero. As this error decreases, so does the ∆x for the corresponding

sub-ADC pair. This demonstrates one of the fundamental concepts of the Split-ADC archi-

tecture, as the calibration converges to the correct parameters, the ∆x output goes to zero.

However, while the ∆x is non-zero, the error in the correction parameters can be solved for
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using ∆x data.

To demonstrate this calibration, consider a TI architecture with only offset error. By

removing gain and aperture delay error, the example of the ∆x for sub-ADCs 1 and 2 from

(5.3) can be reduced to (5.4).

∆x1;2 = x1 − x2 = εxOS2 − εxOS1 (5.4)

If all ten possible pairing combinations for a 2:1 TI converter are used, the resulting

linear equation becomes (5.5).

∆︷ ︸︸ ︷

∆x1;2

∆x3;4

∆x5;1

∆x2;3

∆x4;5

∆x1;3

∆x2;4

∆x3;5

∆x1;4

∆x2;5



=

S︷ ︸︸ ︷

+1 −1 0 0 0

0 0 +1 −1 0

−1 0 0 0 +1

0 +1 −1 0 0

0 0 0 +1 −1

+1 0 −1 0 0

0 +1 0 −1 0

0 0 +1 0 −1

+1 0 0 −1 0

0 +1 0 0 −1



e︷ ︸︸ ︷

εOS1

εOS2

εOS3

εOS4

εOS5


(5.5)

The +/- 1 matrix, S, shows which sub-ADC channel was used for a given conversion. The

sign shows the sub-ADC’s contribution to the ∆x value. In this format, the estimated errors

in the correction parameters e can be solved for using the data in ∆ and S.

While the format presented in 5.5 does allow for the solution of e, a more condensed and

intuitive format can be used. The total error component for a given channel is represented

by the sum of all of the ∆x values that use that specific channel. For example, the error

contribution from channel 1 can be shown as (5.6).

∆x1;2 + ∆x1;3 + ∆x1;4 + ∆x1;5 = 4εOS1 − εOS2 − εOS3 − εOS4 − εOS5 (5.6)
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Here, the rows in S corresponding to channel 1 are summed, inverting the sign when

indicated by column 1. When this is done for every channel, the resulting matrix equation

looks like

ST∆︷ ︸︸ ︷

∆x1;2 + ∆x1;3 + ∆x1;4 + ∆x1;5

∆x2;1 + ∆x2;3 + ∆x2;4 + ∆x2;5

∆x3;1 + ∆x3;2 + ∆x3;4 + ∆x3;5

∆x4;1 + ∆x4;2 + ∆x4;3 + ∆x4;5

∆x5;1 + ∆x5;2 + ∆x5;3 + ∆x5;4


=

STS︷ ︸︸ ︷

4 −1 −1 −1 −1

−1 4 −1 −1 −1

−1 −1 4 −1 −1

−1 −1 −1 4 −1

−1 −1 −1 −1 4



e︷ ︸︸ ︷

εOS1

εOS2

εOS3

εOS4

εOS5


(5.7)

Note that matrix STS is singular. This is due to the fact that the absolute error in each

channel cannot be calculated with ∆x values. However, the goal of this work is to correct

the channel mismatch error, not the absolute error. Therefore, a constraint is added to the

system to force the calibration algorithm to solve for only mismatch error. The sum of the

errors is set to zero by adding a row to both the ST∆ and STS.



...

ST∆
...

0

 =

STS︷ ︸︸ ︷

4 −1 −1 −1 −1

−1 4 −1 −1 −1

−1 −1 4 −1 −1

−1 −1 −1 4 −1

−1 −1 −1 −1 4

1 1 1 1 1



e︷ ︸︸ ︷

εOS1

εOS2

εOS3

εOS4

εOS5


(5.8)

By redistributing the average error constraint to all channels as was done for Equation
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5.7, the final result is linear system with a STS matrix with coefficients along the diagonal.

ST∆ =

A︷ ︸︸ ︷

5 0 0 0 0

0 5 0 0 0

0 0 5 0 0

0 0 0 5 0

0 0 0 0 5



e︷ ︸︸ ︷

εOS1

εOS2

εOS3

εOS4

εOS5


(5.9)

The linear equation (5.9) can easily be solved, reducing the digital hardware requirements

for calibration. In fact, since A is a diagonal matrix, it does not need to be stored in

memory. Each εOSi can be solved for using the sum of the ∆x values in ST∆ and a fixed

division by a power of 2, further simplifying the necessary digital hardware.

Using (5.3), the linear system described by (5.9) can be expanded to include all three

mismatch errors and 2M+1 sub-ADCs.

∆︷ ︸︸ ︷
...

∆xi;j
...

 =

B︷ ︸︸ ︷
...

...
...

S x̂ ˆ̇x
...

...
...


e︷ ︸︸ ︷

εOS(i)

εG(i)

εt(i)

 (5.10)

From (5.3), the coefficients matrix consists of +/- 1 for the offset, +/- x̂ for the gain, and

+/- ˆ̇x for the aperture delay. The number of rows in e is dependent upon the number of

sub-ADCs.

One important difference between Equations 5.9 and 5.10 is that matrix B is no longer

just the Selection matrix, S. The values in the Selection matrix are restricted to just three

integers, -1, 0 +1, but matrix B contains the input signal x, and its estimated derivative

ˆ̇x. These values can be scaled to be contained from -1 to +1, but they may take on

any non-integer value. This requires more digital complexity to divide by floating point,

high precision coefficients. In addition, numerical precision error may be introduced when

dividing by a small coefficient that’s close to 0. To reduce the digital hardware complexity,
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the sgn of the coefficients is multiplied by the ∆x values and summed for each error value.

[sgn (B)]T

∆︷ ︸︸ ︷
...

∆xi;j
...

 =

C︷ ︸︸ ︷
[sgn (B)]T B

e︷ ︸︸ ︷
εOS(i)

εG(i)

εt(i)

 (5.11)

Multiplying the B matrix by [sign (B)]T creates the coefficient matrix C where each three

sub-matrices are diagonally dominant, similar to matrix A from 5.9. Essentially the sgn()

function indicates whether the size of the error in the correction parameters is negative or

positive. Instead of solving for the e directly, the errors can be found iteratively by using

the sgn() function to take steps in the direction towards the solution.

The x values for the gain coefficients are easy to find; the average of the two corrected

outputs from the Split-ADC which are used as the system output can also serve as the

coefficients. The ˆ̇x values for the aperture delay coefficients are supposed to be the derivative

of the input x. However, it is difficult to know the exact derivative of the input for every

sample, therefore, a digital estimate is used for ˆ̇x.

5.2.1 Digital Derivative Estimate

In the ideal case, the true value of dx/dt would be used for the aperture delay coefficients

in 5.11. Since the true value can’t be used, a digital estimate using the finite difference

equation is used. The simplest form is the second order accurate O(h2), central finite

difference method described in (5.12) [43].

ˆ̇x[n] =
x̂[n+ 1]− x̂[n− 1]

2
(5.12)

Using this derivative estimate does introduce a delay of one sample, but a single conver-

sion latency is a small delay. As the input signal increases in frequency the effects of aperture

delay increase since the magnitude of the derivative increases. In this situation, second or-

der accuracy may not be sufficient and a higher order estimate must be used. A fourth
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order accurate approximation O(h4), is presented in (5.13) with increased latency [43].

ˆ̇x[n] =
−x̂[n+ 2] + 8x̂[n+ 1]− 8x̂[n− 1] + x̂[n− 2]

12
(5.13)

The main trade-off with choosing the order for the difference equation is accuracy versus

latency. For inputs with low frequencies, a low order estimate can be used, and for inputs

with frequencies near Nyquist, a higher order approximation is required. Figure 5.2 shows

the comparison of different orders of the difference equation estimate used for error correc-

tion. This graph shows the RMS error of an input signal with a 50 ps delay introduced. The

error is plotted in units of LSBs for a 16-bit converter with a sampling rate of 12 MS/sec.

The solid block line shows that a signal without any delay correction will be accurate within

one LSB for low frequencies. The corrected signal using a second order accurate difference

method maintains an error less than one LSB for frequencies below 70% of Nyquist. The

error is less than one LSB for all frequencies below Nyquist for correction using a fourth

order accurate method.

5.2.2 The LMS Calibration

As was previously mentioned, solving for the error estimates exactly would require com-

plex digital hardware. To eliminate the need for an exact solution and relax the hardware

requirements, a Least Means Square adaptive filter technique is used. Figure 5.3 shows a

block diagram of the LMS calibration and the digital error correction. The right hand side

shows the path from input to output. The two sub-ADC outputs for a single conversion are

digitally corrected using the current parameters. Their differences, average, and derivative

estimates are then stored in the estimation matrix for calibrating the current correction

parameters.

The LMS loop shown on the left hand side, operates continuously in the background,

updating the error estimates (εOS(i), εG(i), and εt(i)) and correction parameters (x̂OS(i), Ĝ(i),

and t̂(i)) every 128 samples. The number of samples needs to be sufficiently large as to make

sure that all possible channel pairing combinations have been used. This is dependent on

the interleaving factor M, as more pair combinations will require more samples to calculate
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Figure 5.2: Comparison of Derivative Estimates used for Error Correction
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the new correction parameters.

Similar to matrix A in (5.9), empirical results have shown that coefficient sub-matrices

C are diagonally dominant [44]. Using this information and the properties of the LMS

adaptive filter algorithm, the error matrix e can be solved for by iteratively using a fixed

step parameter µe. 
εOS(i)

εG(i)

εt(i)

 = µe [sgn (B)]T


...

∆xi;j
...

 (5.14)

This iterative method removes the need to store matrix C and avoid calculations. Once

the new errors are found after 128 conversions, the old errors are updated within the LMS

loop. By averaging the error solutions over time, the effects of any incorrect solutions are
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reduced. The errors are updated with the inner LMS loop using (5.16).

ε
(new)
OS(i) = (1− µe) ε(old)

OS(i) + µe

(
[sgn (S)]T ∆

)
ε

(new)
G(i) = (1− µe) ε(old)

G(i) + µe

(
[sgn (x)]T ∆

)
(5.15)

ε
(new)
t(i) = (1− µe) ε(old)

t(i) + µe

([
sgn

(
ˆ̇x
)]T

∆
)

Once the updated error values are found using the inner LMS loop, the outer loop is used

to update the correction parameters. The estimated digital parameters are updated using

the LMS step parameter µg in (5.17).

x
(new)
OS(i) = x

(old)
OS(i) − µgεOS(i)

G
(new)
(i) = G

(old)
(i) − µgεG(i) (5.16)

t
(new)
(i) = t

(old)
(i) − µgεt(i)

The two LMS parameters µe and µg are chosen so that the calibration loop converges quickly

while still remaining stable. To maintain stability, µe is greater than µg while µe is chosen

to be as large as possible to keep the convergence time constant small. Once the estimated

correction parameters have converged, the corrected digital output codes are within one

LSB of the ideal output code.

5.3 Simulation Results

To demonstrate the Split-Interleaved converter, the calibration method was applied to

a 4:1 TI ADC in a simulation. The converter was modeled after the AD7621, a 16-bit

SAR A/D from Analog Devices. The simulations were performed in two stages. First, a

MATLAB model of the 4:1 converter was used to test and develop the calibration algorithm.

For the second stage, the simulation used a mixture of SPICE and HDL models from an IC

layout of nine AD7621 while the calibration algorithm was performed in MATLAB.
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Table 5.1: Behavioral Simulation Parameters
PARAMETER VALUE

Subchannel ADC Resolution 16b
Sample Rate 3 MSps
SNR 90.2 dB
INL ±1LSB
DNL ±0.5LSB
Bandwidth 50 MHz ±1%

Error Range Offset ±0.1% FSR
Gain ±0.2% FSR
Aperture Delay ±50 ps

LMS Parameter µg 1/1024
µe 1/32

Internal Digital Precision 24b
Interleaved ADC Interleaving 4:1

Sample Rate fS 12 MSps
SNDR Uncorrected 34.2 dB
SNDR Corrected 92.9 dB

5.3.1 MATLAB Simulation

The parameters for the MATLAB simulation were chosen based on the performance of

the AD7621 in anticipation for the IC layout. The setup used nine 16-bit ADCs that each

ran at 3 MS/sec, generating a master sample rate of 12 MS/sec. The nonlinearity of the

sub-ADCs was restricted to be less than +/-1 LSB while the SNR was 90.2 dB. A full list

of the simulation parameters is given in Table 5.1.

As Figure 5.1 shows, for each new sample there are always three sub-ADCs available to

chose from. The previous section described how the LMS loop accumulated 128 samples

of ∆x to gather enough pair combinations. Iterating through a repeating set of all pair

combinations does help provide enough information to solve for all errors. However, the

repeating pattern of pair selections produces the spurs similar to the ones seen in a normal

TI ADC without calibration. Figure 5.4 shows the FFT of the uncorrected digital output

of the 4:1 converter with a repeating sequence of channel pair selections.

Simulation results have shown that a problem can occur with multi-tone inputs with

the error spurs present. If one of the fundamentals of the input frequency overlaps with one
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of the error spurs, it is difficult to distinguish the difference between the ideal input signal

and the error. When this occurs, the calibration algorithm does not always converge to a

final state. Therefore, a pseudo-random channel pair selection is used to spread out the

error spurs, similar to the work presented in [19]. For every conversion, two out of the three

available sub-ADCs are chosen using a PRN generator. Instead of iterating through a set of

128 known pairs, the new set is composed of a permutation of shuffled channel pairs. Even

though there is no guarantee that all 36 unique pairs of sub-ADCs have been selected, the

relaxed requirements of the LMS loop takes adjusts for this. If a few pairs are missing, the

LMS algorithm averages out the occasional bad error estimate. Figure 5.5 shows the FFT

of the uncorrected output with the pair shuffling introduced. Even without error correction,

the shuffling alone greatly improves the SFDR of the output signal by spreading the errors

across all frequencies.

Finally, once the calibration loop is turned on and allowed to converge, the FFT of the

fully corrected output is displayed in Figure 5.6. The SFDR is 104.8 dB and the total

SNDR was 92.9 dB, 2.7 dB above the SNDR of the individual sub-ADCs. This is consistent
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with the explanation previously given that averaging the two individual outputs for each

conversion would decrease the noise level by 3 dB. Using the calculation for the ENOB

given by (2.10), the Effective Number of Bits is approximately 15.14. It is important to

note that the ENOB of a converter must always be less than the ideal number of bits due

to all non-idealities.

The two error spurs seen at 3 and 4 MHz are due to the nonlinearity of the individual

channels. Since this calibration method is designed to correct for linear error mismatch,

the performance is still limited by the INL and DNL of the sub-ADCs. It is important to

note that bandwidth mismatch can also contribute to these error spurs, imposing another

limit to maximum performance of the Split-Interleaved method. As described in 3.1.4, the

analysis performed in [18] shows how bandwidth mismatch is dependent on two factors,

the average bandwidth and the input frequency. For a mean bandwidth of 50 MHz and

input frequencies near Nyquist, the maximum tolerable bandwidth mismatch can be ±3%.

However, the input signal is bandwidth limited by a first order, low pass filter at 16 MHz.

The numerical analysis for an input frequency at 1.5 of fS or 18 MHz shows that the
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maximum bandwidth mismatch in this 16-bit system is ±1%.

Simulations were also run to test the convergence rate based on the type of input signal

and the LMS parameters. Using the parameters shown in Table 5.1, several types on input

signals were tested. Figure 5.7 shows the convergence rate with four different input signals.

For three input signals, a multi-tone sinewave and two DC inputs, the calibration loop

achieves full convergence in less than 100 000 samples. The random input signal takes

400 000 samples, however, with the master sample of 12 MS/sec, the time elapsed is only

33 ms. Even with the random input, all signals have a convergence time that is fast enough

to track with most error variations due to environmental changes.

Figure 5.8 shows the convergence rate due to LMS parameter adjustments. As the step

size is increased, the calibration loop reaches its final state at a faster rate. Increasing the

step size can also translate to a longer recovery time if a bad error estimate is calculated.

Therefore, a compromise is chosen by using µe = 2−5 and µg = 2−10.
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5.3.2 IC Layout Simulation

With the Split-Interleaved concept successfully demonstrated using a complete MAT-

LAB simulation, an IC was made by Rosa Croughwell to implement this calibration [45].

The following simulation uses the SPICE and HDL models from that layout to perform the

calibration and correction in MATLAB. The IP cores for nine AD7621s were laid out in a

0.25um process with added digital logic for timing and I/O. This layout was extracted to

a combination SPICE and HDL model to be tested with the calibration algorithm. Each

sub channel was assigned an offset error of +/- 0.1%, a gain error of +/-0.2%, and an aper-

ture time delay error of +/-50 ps. The input signal used was a 2V peak-to-peak sinewave

with 1024 sample points. The overall sampling rate was 12 MS/s (each sub channel pair

operating at 3 MS/s) which was used to determine the input signal frequency with (5.17).

fin =
(
NumberofCycles

1024

)
fsample (5.17)

Using 12 cycles of the input sinewave, the frequency used was 140.625 kHz.

The actual calibration algorithm was performed in MATLAB. The nonideal output of

the model from the IC layout was fed into the algorithm with 512K samples of the simulated

input sinewave. This signal was created by replicating the 1024 samples 500 times. Figure

5.9 shows an FFT of the output sinewave before calibration. Notice the nonideal signal

spectrum does not have the frequency spurs normally associated with channel mismatch

errors due to the PRN pairing. In Figure 5.10, the spectrum of the corrected signal is shown

after the calibration routine has achieved full convergence. Here the corrected waveform’s

performance matches the ideal signal without any errors.

The output spectrum with PRN pairing prior to calibration convergence had a SNDR

of 53.12 dB and a SFDR of 62.58 dB. After calibration has achieved full convergence, the

corrected output signal had a SNDR of 99.07 dB and a SFDR of 116.04 dB.
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Chapter 6

Split-SAR ADC

Chapter 3 discussed capacitor mismatch as the main source of error in successive ap-

proximation register ADCs. Most calibration methods attempt to correct the weights of

the individual bit decisions. The Split-ADC method can be applied to estimate for and

apply the capacitor weights to the bit decisions for the digital output. In order to solve

for this capacitor mismatch the traditional SAR architecture must be adapted to use the

Split-ADC calibration. Section 6.1 reviews the application of the Split-ADC method to the

SAR converter. Section 6.2 describes the design of the Split-SAR integrated circuit and

Section 6.3 presents the results.

6.1 Applying the Split-ADC to the SAR Converter

The thesis work presented by Chilann Chan in [11] described the development and

simulation of the Split-SAR calibration architecture. The goal of using the Split-ADC

structure with a SAR converter is to calculate the capacitor weight mismatch of the charge

balancing DAC. As such, the number of calibration parameters is directly proportional to

the resolution of the A/D. Similar to the time interleaved converter, the SAR converter must

be modified to the accommodate the Split-ADC method. These changes to the converter

are made in the charge balancing DAC network and the digital domain in order to calibrate

out the capacitor mismatch. Figure 6.1 shows the block diagram of the entire Split-SAR

including both the integrated circuit hardware and the off-chip digital logic.
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Figure 6.1: Split-SAR Block Diagram

6.1.1 Modifying the SAR DAC Network

The 4-bit SAR example presented in Section 3.2.3 contained a redundant bit to correct

for a bad comparator decision. To extend this example to a 16-bit converter, a total of

20-bits are used, where every fourth bit is a redundant bit. Distributing redundant bits

across the DAC network allows the SAR to compensate for a bad decision though out the

entire conversion cycle.

The 4-bit example shows how the charge scaling network uses binary weighted capacitor

sizes. Each bit decision is a binary multiple of a fixed unit capacitor size C, where the LSB

decision is equal to one C. This unit capacitor is useful for scaling a design for different

resolutions and technology professors. As stated earlier, the capacitor sizes in an A/D are

limited by the noise performance
√
kT/C. The unit capacitor is sized so that this noise

level is less than one LSB. The use of a unit capacitor can help reduce mismatch error in

layout. By constructing the physical DAC capacitors out of unit capacitor blocks, the IC

fabrication process yields better matched capacitors [12].

When creating a 16-bit weighted DAC out of unit capacitors, it is impractical to create

a MSB weight out of 65 536 unit caps. As described in Section 4.2 it is necessary to use

a charge dividing network by placing coupling capacitors in series with banks of parallel,

binary weighted caps. For this SAR converter, all 20-bits are divided into five banks of 4-
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bits. Each bank consists of three binary weighted capacitors and one redundant bit. Figure

6.2 shows one side of the 20-bit, differential SAR DAC with three coupling caps dividing

the last four banks. The first bank containing the top three MSB decisions uses a unit

capacitor weight of 1 pF. The remaining four banks use a unit capacitor weight of 125 fF.

The coupling capacitors are sized so that each successive bank is half the weight of the

previous one. This eliminates the need for unreasonably sized capacitors.

Like the Split-Interleaved converter, in order to solve for capacitor mismatch, the unit

capacitors must be compared with each other. To accomplish this, extra unit caps are added

to allow for swapping out a different unit capacitor every conversion. As shown in Figure

6.2 each bank consists of 16 unit capacitors giving a total of 80 unit capacitors for each side

of the differential charge balancing network. To apply the Split-ADC calibration, one unit

cap is swapped out in each conversion to permutate through 16 capacitor combinations.

Traditional SAR A/Ds use bit decisions that consist of a fixed set of unit capacitors.

The novel content of the Split-SAR converter is the ability to have all 80 unit capacitors

in each bank be individually selectable. This means each bit decision in a bank can use

different combinations of unit capacitors. To facilitate this ability, a 4-bit base code is used

for each bank in the DAC. The base code selects one of the 16 unit caps to be swapped out

and the remaining 15 to be used as the four bit decisions. Figure 6.3 demonstrates how the

base code selects one of 16 unit capacitor combinations.

The base code sets up a selection matrix S, to distribute the four bit decisions, Dk

through Dk+4, among the 16 capacitors in each bank. The result is a 16 element vector d,

of ±1 bank segment decisions. For example, with a base code of 3, the first bank of segment
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decisions dI, are determined by (6.1).

dT
I︷ ︸︸ ︷

d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

d13

d14

d15



=

S︷ ︸︸ ︷

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0



DI︷ ︸︸ ︷
D1

D2

D3

D4

 (6.1)

Since the base code is 3, the segment decision d3 equals 0 so the unit capacitor C3 is swapped

out. The next eight segment decisions, d4 – d11, are assigned bit decision D1, and switch

bank capacitors C4 – C11 to appropriate VREF . The second bit decision, D2 is assigned to
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the following four segment decisions, d12 – d15, to switch the capacitors C12 – C15. Finally

segment decisions d0 and d1 are assigned bit D3 and segment d2 is assigned D4, selecting

switches C0 – C1 and C2 respectively.

6.1.2 Split-SAR Error Calibration

To fully implement the Split-ADC algorithm, two separate Split-SAR A/Ds are placed

on the same chip. The average of the two outputs are used as the converter output while the

differences are used to estimate the correct unit cap weights. The digital output code for

each conversion uses the current set of DAC weights. After a certain amount of conversions

are completed, the current DAC weights are updated with a new estimate of the error in

those weights.

The previous section described how each Split-SAR sub-ADC consists of 80 unit capac-

itor selections instead of just the 20 bit decisions a regular SAR would use. These decisions

dec, are divided up by the five banks and grouped into segment decisions d. Each segment

represents the four bit decisions translated by the base code and distributed among the 16

capacitors. For the example used in (6.1) where bank segment 1 was assigned the base code

3, the decision distribution would look like

dI = [D3D3D40D1D1D1D1D1D1D1D1D2D2D2D2] (6.2)

Each conversion consists of five segments to form one decision vector, dec.

dec = [dIdIIdIIIdIV dV ] (6.3)

Note that the individual capacitor mismatch in the final two banks is not sufficient enough

to have a significant impact on linearity. Therefore, only the total capacitor decisions are
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stored for segments 4 and 5. The result is

dm =

S︷ ︸︸ ︷[
8 4 2 1

]
Dm︷ ︸︸ ︷
Dk

Dk+1

Dk+2

Dk+4

 (6.4)

where dm and Dk – Dk+4 is dIV and D13 – D16 for bank 4 and dV and D17 – D20 for

bank 5 respectively. This forces the capacitor values in the last two banks to be treated as

binary-weighted capacitors.

The final decision vector dec, contains a total of 50 elements. The first 48 elements are

±1 for segment unit capacitor decisions and a 0 for each unused capacitor. The last two

elements are the sums of the capacitor decisions for the last two banks. To generate the

final output code, the decisions are multiplied by the estimated weights Ŵ.

x̂ = [dIdIIdIIIdIV dV ]︸ ︷︷ ︸
dec

·Ŵ (6.5)

The first 48 estimated weights represent the actual weight of each unit capacitor in the first

3 banks. The last two weights represent a scaling factor for the binary-weighted sums of

the last two banks.

The Split-ADC calibration algorithm is used to update the estimated unit capacitor

weights in the SAR DAC. The left hand side of the block diagram in Figure 6.4 shows the

single LMS loop used to estimate the DAC weights. On the right hand side, two independent

decisions, DA and DB are generated by the SAR A and SAR B. The PRN base selection is

used to decode the bit decisions into segmented unit capacitor decisions, decA and decB.

These are multiplied by their current estimated weights, ŴA and ŴB, to generate the two

codes x̂A and x̂B. The average of the codes are used as the system output x̂, while the

difference, ∆x is fed to the estimation matrix to generate the next set of estimated weights.

The Split-SAR algorithm works on the basis that the ∆x represents the nonlinearity

error in both SAR DACs. By accumulating enough ∆x values to estimate the nonlinearity
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Figure 6.4: Split-SAR Error Estimation Algorithm and Correction

and correcting the error, the ∆x values should go to zero. However, when using two parallel

SAR converters, additional error components are introduced to the system, offset and gain

mismatch. The fixed offset mismatch can be represented by (6.6).

x̂A = x̂− x̂OS
2

x̂B = x̂+
x̂OS

2
(6.6)

Since gain mismatch is represented by a multiplication factor, it can be incorporated into

the estimated weights values. The offset mismatch, the estimated weights, and the decisions

vectors decA and decB can be expressed in (6.7).

x̂A =

decA︷ ︸︸ ︷
[dIdIIdIIIdIV dV ] ·ŴA −

x̂OS
2

x̂B =

decB︷ ︸︸ ︷
[dIdIIdIIIdIV dV ] ·ŴB +

x̂OS
2

(6.7)
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The estimated weights can be represented as a combination of the ideal weights and the

error in the estimated weights.

ŴA = WA + εA

ŴB = WB + εB (6.8)

The estimated offset mismatch can be represented as the sum of the ideal offset and error

in the estimated offset.

x̂OS = xOS + εOS (6.9)

From (6.8) and (6.9), the output codes can be represented as

x̂A = decA ·
ŴA︷ ︸︸ ︷

[WA + εA]−

x̂OS/2︷ ︸︸ ︷(xOS
2

+
εOS

2

)
(6.10)

x̂B = decB ·
ŴB︷ ︸︸ ︷

[WB + εB] +

x̂OS/2︷ ︸︸ ︷(xOS
2

+
εOS

2

)
(6.11)

The difference, ∆x can be shown to represent error in the current estimated weights by

substituting in (6.10) and (6.11) for the two SAR codes, x̂A and x̂B respectively.

∆x = x̂B − x̂A

=

decB ·WB︸ ︷︷ ︸
xB

−decA ·WA︸ ︷︷ ︸
xA

+ decB · εB − decA · εA + εOS (6.12)

As both SAR ADCs are converting the same input at the same time, the ideal output codes

xA and xB should be equal, leaving only the error components as shown in (6.13).

∆x = x̂B − x̂A = decB · εB − decA · εA + εOS (6.13)

The calibration loop can solve for the error in current weights by collecting 1024 ∆x
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and solving the linear equation

↑

1024

Samples

↓

∆︷ ︸︸ ︷
∆x1

...

∆x1024

 =

R︷ ︸︸ ︷
−decA(1) decB(1) 1

...
...

...

−decA(1024) decB(1024) 1


e︷ ︸︸ ︷
εA

εB

εOS

 (6.14)

Similar to the matrix manipulation performed in Section 5.2.2 and due to the relaxed

requirements of the LMS algorithm, the error in the weights can be approximated as

e︷ ︸︸ ︷
εA

εB

εOS

 = µe[sgn(R)]T

∆︷ ︸︸ ︷
∆x1

...

∆x1024

 (6.15)

By removing the need to store R, the digital calculations are simplified with a multipli-

cation by a sgn() and summation of ∆x values. After 1024 samples have been acquired the

new errors are calculated with the inner LMS loop using the parameter µe.

ε
(new)
A(i) = (1− µe) ε(old)

A(i) + µe

(
[sgn (R)]T ∆

)
ε

(new)
B(i) = (1− µe) ε(old)

B(i) + µe

(
[sgn (R)]T ∆

)
(6.16)

ε
(new)
OS(i) = (1− µe) ε(old)

OS(i) + µe

(
[sgn (R)]T ∆

)
Once the updated error values are found using the inner LMS loop, the outer loop is used

to update the weights. The estimated weights are updated using the LMS step parameter

µW in (6.17).

Ŵ(new)
A = Ŵ(old)

A − µW εA

Ŵ(new)
B = Ŵ(old)

B − µW εB (6.17)

x̂
(new)
OS = x̂

(old)
OS − µW εOS
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This LMS loop requires two step parameters that directly affect the convergence time con-

stant of the calibration algorithm. If the step sizes are too large, the algorithm may diverge,

making it necessary to select a compromise between speed and instability.

6.2 Split-SAR IC Design

The work presented in [11] described a circuit design for the Split-SAR converter using

the TSMC 0.25µm CMOS process. The original design included a schematic level simulation

with Verilog-A modules for the digital timing and control blocks. This work adapts the

Split-SAR IC design to the Jazz Semiconductor 0.18µm CMOS process. The majority

of the analog circuit design and layout, including the comparator and switched capacitor

network, was performed by Cody Brenneman. The work presented here will describe the

digital hardware design for the timing and control of the Split-SAR DACs.

6.2.1 Split-SAR IC Overview

To maintain the original performance requirements from [11] the basic structure and

functionality was preserved. The block diagram in Figure 6.5 represents a one of the SAR

converters. This structure is very similar to a traditional SAR, with the exception of the

additional DAC capacitor selection lines and the base number decoder. The serial to parallel

base code block reads in the PRN serial base codes from the FPGA and sends them to the

base decoder logic. The comparator decision Dk, is fed to the base decoder which selects

the appropriate unit capacitors in the DAC network using the base codes.

The integrated circuit layout was organized to provide separation between the analog

and digital domains while reducing interconnect complexity and propagation delay. Figure

6.6 shows the basic floor plan for the IC layout and the division between analog and digital

domains. The area budget for each SAR converter is 700 µm by 800 µm for a total area of

0.56 mm2. The bottom and top halves of the differential SAR DAC are placed on the left

and right sides of the layout, respectively. This allows for the main analog signal path to

enter from the top and pass down the center of the layout to the comparator at the bottom.

The switches for the unit capacitors in the DAC network connect the bottom plates to one
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Figure 6.5: Split-SAR Circuit Block Diagram

of several analog voltage nodes. The digital signals that control these switches must not be

allowed to overlap, otherwise the bottom plates may be shorted to multiple voltage sources

at the same time. Therefore, a non-overlap logic block is used for each unit capacitor switch

in the DAC. These blocks are placed right next to each of the analog switches in the circuit

layout to minimize delay. The timing and control logic is placed at the bottom of the layout

to keep it separate from the analog components. The switch control signals from the main

control block are routed along the outside to the non-overlap blocks.

6.2.2 Split-SAR Analog Circuit

The analog domain consists of two main circuit blocks, the DAC switching network

and the comparator. The top-level analog circuit diagram in Figure 6.2 shows the signal

interconnect between the two blocks while Figure 6.6 shows their placement on the chip.

Note that the MSB banks are placed at the top of the layout with the comparator towards

the bottom. This is the opposite of what the circuit diagram depicts, with the MSB bank
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placed next to the comparator. In the layout, the analog input signal enters at the top of

the chip. Therefore, the input sampling switches are placed as close to the input source as

possible to reduce effects from parasitics. Since only the first bank samples the input, the

placement order of the capacitor banks in the IC layout is reversed from the order depicted

in Figure 6.2.

Split-SAR DAC Switching Network

As stated earlier, the novel work in this SAR converter is the ability to individually select

each unit capacitor in the DAC. To accomplish this, each capacitor has its own switching

circuit controlled by digital signals. Capacitor banks two through five are made up of 125 fF

capacitors that can switch the bottom plate between three voltage sources, VREF+, VCM,

and VREF−. The circuit diagram shown in Figure 6.7 uses a PMOS transistor for the VREF+

switch, and NMOS transistors for the VCM and VREF− switches.

The digital signals that control theses switches are generated by digital circuits that use

minimum size transistors resulting in a high impedance output. The large gate sizes on

the analog switches, M1 through M3, present a large capacitive load to the high impedance

logic output. In order to compensate for this capacitive load, a tapered buffer is used to
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lower the output impedance and prevent the digital logic from being loaded down. The

tapered buffer consists of one inverter that uses transistors twice the minimum size followed

by another inverter that uses transistors four times the minimum size.

Capacitor bank one uses 1 pF unit capacitors for the first four MSBs of the charge

scaling DAC. These capacitors are not only larger than the capacitors in banks two through

five, but they are also used to sample the analog input voltage. The 1 pF unit capacitor

switching circuit, shown in Figure 6.8, is used to switch the bottom plate between the four

voltage sources, VREF+, VCM, VREF−, and VIN. The circuit uses the same configuration as

the one for the 125 fF capacitors with the addition of a transmission gate for the VIN switch.

Since the most critical phase of the conversion cycle is sampling the input, a transmission

gate is used to eliminate the threshold voltage effects when using a single pass-transistor.

Another difference with the 1 pF switching circuit is the use of larger transistor sizes due

to the large unit capacitor.

Split-SAR Comparator

The comparator is a key component in a successive approximation converter. The com-

parator takes in the analog DAC voltage and converts it to a digital bit decision for the

SAR. The comparator is made up of two sub components, a preamplifier and an analog

latch. The goal of the preamplifier is to increase the smallest DAC voltage beyond the

offset voltage of the latch. The latch used in this SAR converter has an approximate offset

voltage of 20 mV. The smallest DAC voltage that needs to be resolved is one half LSB as

expressed by (6.18).

1
2

LSB =
3.6V
217

= 27.5 µV (6.18)

Therefore, the minimum required gain for the preamplifier is 20 µV/27.5 µV or a gain of

730. While it is possible to design a single stage amplifier with a gain of 730, the high

impedance node would reduce the speed of the amplifier. In order to achieve necessary

speed, the preamplifier is broken into four stages with a gain of 5.2 each.

The circuit for each stage of the preamplifier, shown in Figure 6.9, consists of a differen-
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Table 6.1: Transistor Sizes for the Preamplifier Stages
Stage M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

1 6µm
180nm

6µm
180nm

3µm
1µm

3µm
1µm

6µm
180nm

6µm
180nm

11µm
0.3µm

10.5µm
0.3µm

10.5µm
0.3µm

11µm
0.3µm

20µm
180nm

2-4 3µm
180nm

3µm
180nm

3µm
1µm

3µm
1µm

6µm
180nm

6µm
180nm

3.25µm
0.3µm

2.75µm
0.3µm

2.75µm
0.3µm

3.25µm
0.3µm

20µm
180nm

tial amplifier with an enable switch, M11. When the stage is disabled, the PMOS transistor

M11 is turned on, pulling the differential output nodes to a common mode. When the stage

is turned on, the PMOS transistor turns off, releasing the differential output nodes and

allowing them to settle to a final output voltage.

The final component in the comparator circuit is the analog, regenerative latch shown

in Figure 6.10. The latch is essentially two, cross-coupled inverters whose outputs are tied

together with PMOS transistors. When the PMOS transistors are turned on, the outputs

of the inverters are brought together and the latch is placed into a tracking mode. At the

same time, transistors M3 and M4 are also turned on, equalizing the current through both

inverters. When a differential, analog input signal is placed at the inputs to the preamplifiers

M1 and M2, it starts to create a small current imbalance. Once the switches are turned off

and the inverter outputs are released, the small current imbalance forces one inverter output



88

high and the opposite inverter output low. This final logic decision indicates whether or not

the analog DAC voltage was positive or negative. The decision is fed to the digital logic to

be stored in the SAR and switch the next set of capacitors to their appropriate reference

voltage.

6.2.3 Split-SAR Digital Logic

A more detailed block diagram of the digital logic for the Split-SAR is shown in Figure

6.11. The main digital logic block shown at the bottom of the floor plan contains the internal

timing and control logic, the array of twenty 2-bit registers, and all of the base code logic.

The timing and control logic takes in the three external timing signals, sample, latch In, and

preamp In. This timing and control block then distributes these timing signals to control

the comparator circuit and when to switch the DAC capacitors during the conversion cycle.

A complete hardware description of the main digital logic block is presented in Appendix

C. The hierarchical structure of the logic block is presented in Figure 6.12. The top level

consists of five blocks, the timing and control logic block, the SAR array block, the base

decoder block, and two capacitor selection multiplexers. The control block generates the

three main timing signals, φS , latchEn, and preampEn.

The timing diagram of the three signals is shown in Figure 6.13. A full conversion cycle is

designed to take a sampling period TS, of 1 µs. The first 200 ns of the cycle are used for the

sample and hold modes for SAR converter, where the control signal φS is active. During this

time, the first bank of capacitors sample the input voltage while the remaining capacitors

are tied to the common mode voltage. The bit cycling mode takes up the remaining 800 ns

of the sampling period. Each bit decision is given 40 ns to settle on a final value. The

first 20 ns are allotted for digital propagation from the last bit decision and to allow the

DAC voltage to settle after the capacitors have been switched. The next 10 ns has only

the preampEn signal active to enable the pre-amplifiers in the front-end of the comparator.

These preamps amplify the differential DAC voltage to the rails. For the remaining 10 ns,

both the preampEn and latchEn are activated to keep the preamps enabled along with the

analog latch. The latch is the output stage of the comparator and sets the comparator

decision for that bit. The analog latch output is sent to the digital register array which
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eventually gets used to select the appropriate capacitors in the DAC.

The array of 2-bit registers store each of the comparator decisions for a single conversion.

At the start of the cycle during the sample mode, the forty registers are reset to 11, the

signal to select the common mode voltage in the DAC. When the comparator makes a

decision, it outputs either a 10 for a +1 or a 01 for a -1. This decision is stored in the

appropriate bit register for base decoding.

The base decoding logic block serves two functions, the serial to parallel transformation

of the base code input and the decoding of the bit decisions to individual unit capacitor

selections. As stated earlier, the two input signals that are fed into this block are the 20-bit

serial sequence of the five base codes and the accompanying serial clock. This serial code is

fed into the chip during the preceding conversion and then stored as five, 4-bit base codes

at the start of the current cycle. The five base codes are fed into the capacitor selection

multiplexers, which are used to control the capacitor switches.
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The selection multiplexers perform the base decoding logic by using the comparator bit

decisions and 4-bit base codes to select the appropriate unit capacitors in the DAC network.

The multiplexers are divided into five blocks, one for each capacitor bank. Each block takes

in one 4-bit base code and four bit decisions stored in the SAR array. The multiplexer

splits up the four bit decisions into sixteen unit capacitor decisions using the base code.

The outputs of the multiplexer block are then routed from the main digital circuit to the

non-overlap logic blocks next to the capacitor switches.

The logic diagram for the non-overlap blocks is shown in Figure 6.14. There are two

types of non-overlap blocks used for the DAC circuit. The first bank of capacitors (the

1 pF block) can connect to one of four analog voltage nodes; the input signal voltage for

sampling, VREF+, common mode, or VREF−. The remaining banks of 125 fF capacitors

can only switch between three voltages; VREF+, common mode, or VREF−. There are

five or seven signals required to connect the non-overlap blocks to the analog switches.

However, only two or three signals are used to connect the rest of the SAR digital logic to

the non-overlap blocks. Placing the non-overlap blocks next to the analog switches, rather

than integrating them into the SAR logic block, has the added advantage of reducing the

number of switching signals to be routed across the chip.

The digital block does not contain the logic necessary for generating the PRN sequence

of base codes, applying the digital calibration and error correction. These functions were

left to be performed off-chip to allow for flexibility while developing the algorithm. This

allows the calibration and error correction to be prototyped in MATLAB and a development

FPGA. The results from the final IC fabrication and MATLAB analysis are presented in

the next section.

6.3 Split-SAR Results

The final Split-SAR layout was fabricated on a chip containing another design project.

The entire Split-SAR circuitry used up 1.2 mm2, not including the pad ring. A die photo of

the Split-SAR layout is displayed in Figure 6.15. The digital and analog blocks are outlined

in the photo to demonstrate the floor plan used throughout the IC design process. The
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separation of the analog and digital domains in the layout floor plan allows for grouping

the analog pins together at the top of the chip while the digital pins are kept on the sides.

This provides for easy isolation of the analog and digital signals during evaluation.

For evaluation, a Tektronix AFG3021B function generator provides the analog test signal

for the ADC. Since the generator uses a 14-bit DAC to generate the waveform, the analog

signal is filtered using a bandpass from 100 Hz through 20 kHz. The filter reduces the

harmonic distortion and quantization noise level to achieve 16-bit performance. The signal

is sent through a single-end-to-differential-end (SE-DE) circuit before being routed to the

Split-SAR ADC. A FPGA is used to provide timing and control signals, including the PRN

base codes for selecting the unit capacitors. The output of the SAR ADC is connected

to a digital logic analyzer capable of acquiring up to approximately 104 000 samples for

calibration and analysis.

The acquired data block is replicated 100 times before being processed by the split

calibration algorithm. Figure 6.16 shows how the algorith convergence uses different input

signals ranging from DC to full-scale. This demonstrates the ability to process various input
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Figure 6.15: Die Photo of Split-SAR
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signals regardless of the waveform used. The ability to calculate new weights using a DC

input is an improvement of [42], which requires a varying signal. Adjusting the LMS loop

parameters produces different rates and levels of convergence. Similar to the parameters

using the Split-Interleaved converter, the loop in the Split-SAR algorith has a trade-off

between speed and accuracy. The effects of different LMS parameters is shown in Figure

6.17. A faster rate of convergence results in a higher level of error in the estimated weights

and vice versa. To achieve a 16-bit level of accuracy, the error level must remain below

-100 dB.

For the purposes of testing, a sinewave of 18 kHz is used with the converter sample rate

set to 100 kS/sec. The output spectrum of the signal prior to calibration is shown in Figure

6.18. The SNR is 59.09 dB with a THD of -70.41 dB for a total SNDR of 59.10 dB. After

the algorithm is allowed to achieve full convergence, the spectrum in Figure 6.19 shows a

small improvement. The SNR increases by 4 dB to 63.05 dB, while the THD decreases by

2 dB to -72.5 dB. The total SNDR of the calibrated output is 63.07 dB, an improvement of

4 dB. From 2.10, the ENOB of the calibrated output is a small improvement from 9.5 bit
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to 10.2 bits, which is much less than the desired 15 to 16 bit range.

It is clear from the results that the noise level is the limiting factor to the overall

performance of the SAR converter. In early tests, it was discovered that the gain in the

preamplifier was unstable at the target bias current. The transconductance in the M8 and

M9 PMOS transistors is very sensitive to variations in the drain current, resulting in an

oscillating output. This causes the latch to make bad decisions and produce stuck output

codes. To achieve a functional converter, the bias current was lowered until the oscillations

were reduced and the stuck codes were eliminated. Unfortunately, lowering the bias current

decreases the gain on the preamplifier, thereby increasing the output referred noise level.

This results in a lowered SNR performance as seen in the previous figures.

An additional concern is the large third order harmonic seen in both Figures 6.18 and

6.19. While there is a slight improvement from -70.41 dB to -72.54 dB, the third harmonic

remains the dominant in both the uncorrected and corrected case. The effects of this third

order harmonic is evident in the INL plot shown in Figure 6.20. The plot represents a

linearity test by sampling 100 DC values and measuring the difference between the output
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Figure 6.18: FFT of Split-SAR Output before Calibration

Figure 6.19: FFT of Split-SAR Output before Calibration
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Figure 6.20: 100 Point INL of Calibrated Split-SAR

codes and the analog input. The result shows a clear third order effect across the entire

range of the converter with a +25/-25 LSB error. The INL plot in Figure 6.21 shows

the linearity of the converter with the third order harmonic removed. This shows a linear

performance of +10/-12 LSB with not including the few outliers. The source of this third

order distortion can be attributed to a combination of capacitor mismatch and nonlinearity

in the input sampling switches. When the input signal is sampled onto the capacitors in the

charge DAC, these switches are turned on by the digital control lines. When the switches

are turned off, the charge built up on the gates must be removed. This can result in a

phenomenon known as charge injection, where some to the gate charge is leaked into the

sampling capacitors. This creates non-linearity distortion during the sample and hold phase

of the conversion process. Unfortunately, this error can not be removed by calibrating out

capacitor mismatch, limiting the performance of the SAR ADC.

Overall, the split-SAR method does show some improvement in ADC performance by

estimating capacitor weights. In fact, it has been shown that the algorithm can still converge

in the presence of noise and distortion due to sampling. Unfortunately, due to the limitations

as a result of other non-ideal effects, the final calibrated SAR converter has a performance
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Figure 6.21: 100 Point INL of Calibrated Split-SAR with Third Order Effect Removed

level 5 bits lower than expected. It is important to note, however, that the algorith is

successful in estimating capacitor weights that improve the operation of the converter.
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Chapter 7

Conclusions

The application of the Split-ADC calibration method to the TI and SAR architectures

was presented in this thesis. Chapters 2 and 3 provided a detailed background on the

two architectures and the nature of the errors associated with them. Chapter 4 presented

previous calibration techniques and their respective advantages and disadvantages. It went

on to review the Split-ADC method for calibration as well as the three advantages over

previous techniques. Chapters 5 and 6 described the research involved with adapting the

Split-ADC method to the time interleaved and SAR architecture, respectively.

While the concept of the Split-ADC as a calibration method for cyclic converters was

demonstrated in [9, 10], the adaptation to different architectures was non-trivial. The Split-

Interleaved or Splinta calibration architecture was shown using simulations in both MAT-

LAB and layout. The findings from this research was additionally presented in [10]. The

research and development of the Split-SAR architecture was presented in [11] however, this

was done in MATLAB and schematic simulations only. The work presented here extended

the Split-SAR design by implementing it in an IC fabricated in the Jazz Semiconductor

0.18µm CMOS process. The Split-ADC algorithm was applied off-chip to demonstrate the

concept in practice.
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7.1 Future Work

Although much research was done to show the Splinta and Split-SAR concepts, there

are several paths that can be followed to extend the work presented here. Since the Split-

Interleaved architecture uses any type of Nyquist rate sub-ADCs, it can be implemented on

either a PCB or IC. Research is currently being done on implementing either a 4:1 or 3:1

Splinta architecture using discrete AD7621 ADCs on a printed circuit board. This method

constructing a Splinta system may not be the most efficient in terms of resources such as

power and area, but it has the advantage of being less costly to implement than on an

IC. This can allow for faster prototyping and direct hardware modification setup. An IC

version of the Splinta was attempted with the help of Rosa Croughwell and Analog Devices.

Unfortunately, the process used was different than the one that the original AD7621s were

made in. As a result, the capacitor mismatch was much greater in the Splinta, more than

what the calibration DAC could handle. This meant that the converters on the chip could

not have their non-linearity calibrated out before attempting the Splinta operation.

The Split-SAR was implemented on chip, however, a few problems were noted during

the testing. The design of the preamplifier stages did not fully account for instability which

resulted in bad comparator decisions and stuck codes. Correcting for this after fabrication

by reducing the preamplifier gain decreased the noise performance of the ADC. The non-

linearity effects due to sampling also presented a problem by introducing a third order

harmonic that was not a result of capacitor mismatch. Despite these problems, it is the

belief of this author that the Split-SAR method is capable of calibrating capacitor mismatch

with a redesign of the integrated circuit.
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Glossary

VFS Full-Scale Voltage

Vpk Peak Voltage

fS Sample Frequency

A/D Analog-to-Digital Converter

ADC Analog-to-Digital Converter

CCD Charge Coupled Device

CMOS Complementary Metal Oxide Semiconductor

CMRR Common Mode Rejection Ratio

CRT Cathode Ray Tube

D/A Digital-to-Analog Converter

DAC Digital-to-Analog Converter

DAQ Data Acquisition

DE Differential End

DNL Differential Non-Linearity

DSP Digital Signal Processing

ENOB Effective Number of Bits

FFT Fast Fourier Transform
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FS Full Scale

FSR Full Scale Range

HDL Hardware Description Language

IC Integrated Circuit

INL Integral Non-Linearity

IP Intellectual Property

LFSR Linear Feedback Shift Register

LMS Least Mean Squares

LSB Least Significant Bit

LUT Lookup Table

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MS/sec Mega-Samples per second

MSB Most Significant Bit

MSps Mega-Samples per second

NMOS N-Channel Metal Oxide Semiconductor

PMOS P-Channel Metal Oxide Semiconductor

PRN Pseudo Random Number

RMS Root Mean Square

RSS Root Sum Square

SAR Successive Approximation Register

SE Single End
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SFDR Spurious Free Dynamic Range

SNDR Signal-to-Noise-and-Distortion Ratio

SNR Signal-to-Noise Ratio

THA Track and Hold Amplifier

THD Total Harmonic Distortion

TI Time Interleaved
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Appendix A

Split-Interleaved MATLAB Code

./source code/splinta/adlec figs V01d.m

1 % adlec_figs.m

3 % makes figures used in ADLEC presentation

5 % First run setup

%multi_ADC_setup05a

7

% Then quantizer

9 %quantizer01

11 % Then actually correct errors

%multi_ADC_5ptderivEst_cor01a

13 %

15 % Plot of rms variation of output difference vs conversion

%Nchunks=floor(size(VoutCor ,2)/100);

17 %RMS_errors=zeros (1 ,100* Nchunks );

19 %for ek=1: Nchunks

% RMS_errors ((100*(ek -1)+1):100* ek)=std(Vin ((100*(ek -1)+1):100* ek)-VoutCor ((100*(ek -1)+1):100* ek));

21 %end

23 figure (5);

25 semilogy(RMS_errors_10_5 ,’LineWidth ’ ,2); hold on;

semilogy(RMS_errors_11_6 ,’LineWidth ’ ,2);

27 semilogy(RMS_errors_8_3 ,’LineWidth ’ ,2); hold off;

%semilogy(RMS_errors_10_5 ,’LineWidth ’,2)

29 %semilogy(RMS_errors_12_7 ,’LineWidth ’,2)

set(gca ,’Xlim’ ,[0 150000])

31 set(gca ,’Ylim’ ,[1e-5 31.6e-3])

Xlabel ([’CONVERSION INDEX’],’FontSize ’,10,’Fontweight ’,’normal ’)

33 Ylabel ([’rms ADC ERROR [dBFS]’],’FontSize ’,10,’Fontweight ’,’normal ’)

set(gca ,’YTickMode ’,’manual ’)

35 %set(gca ,’YTick ’,{1e-5; 1e-4; 1e-3; 1e-2; 1e-1})
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set(gca ,’YTickLabel ’,{’ -80’;’ -60’;’ -40’;’ -20’})

37 set(gca ,’XTickMode ’,’manual ’)

%set(gca ,’XTick ’,{0; 50000; 100000; 150000; 200000})

39 set(gca ,’XTickLabel ’,{’0’;’50000’;’100000 ’;’150000 ’})
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./source code/splinta/fft win intl an02.m

1 %**************************************************************************

% FFT Anlaysis With Windowing for Intl Simulation vers. 01

3 % fft_win_intl_an01.m

% 06.11.06

5 % Compute , normalize and plot the FFTs with Blackman windowing of Corrected

% and Uncorrected Vout.

7 % This program was designed for the the purposes of presentation.

%

9 %**************************************************************************

11

numCycles = 11; % Number of cycles for the sinewave

13 Td1 =1/fd1*1E6; % Get Scaled Period T1

Td2 =1/fd2*1E6; % Get Scaled Period T2

15 Ts=1/fs*1E6; % Get Scaled Period Ts

cycSmpl = (Td1/Ts)*( Td2/Ts); % Get the number of samples per cycle

17

% Try and get an integral number of cycles

19 totalSmpls = 4*128* round(numCycles*cycSmpl );

21 lng_Vout=length(VoutCor)-Ncoef; % Get the number of samples for Vout

%t_end=t(1: totalSmpls ); % Setup time for the last 16 cycles

23 % Setup Vout for the last 16 cycles

25 % Get Samples of Fully Corrected Ouput after Full Convergence

VoutCor_end=VoutCor(lng_Vout -totalSmpls +1: lng_Vout );

27 % Get Samples of G and OS Corrected Ouput (No AptD) after Full Convergence

VoutBad_end=VoutBad(lng_Vout -totalSmpls +1: lng_Vout );

29 % Get Sample of Uncorrected Output (Before Convergence)

VoutBad_start=VoutBad (1: totalSmpls );

31

Vin_end=Vin(lng_Vout -totalSmpls +1: lng_Vout );

33

35 % Process FFT of Vin

VIN=abs(fft(Vin_end )); % FFT of Vin

37 VIN_dB =20* log10(VIN); % Convert to dB

maxVIN=max(VIN_dB ); % Normalize to zero dB

39 VIN_n=VIN_dB -maxVIN;

%VIN_c=max(VIN_n , -200); % Clip at -100 dB

41

% Use a Windowing technique to reduce spectral leakage

43 w=blackman(length(VIN));

VINw=abs(fft(Vin_end .*w’,1* totalSmpls )); % FFT of Vin w/ Window

45 VINw_dB =20* log10(VINw); % Convert to dB

maxVINw=max(VINw_dB ); % Normalize to zero dB

47 VINw_n=VINw_dB -maxVINw;

VINw_c=max(VINw_n , -200); % Clip at -200 dB

49

% Process FFT of Vout With No Correction (Before Convergence)

51 VOUT1=abs(fft(VoutBad_start )); % FFT of Vout

VOUT1_dB =20* log10(VOUT1); % Convert to dB

53 maxVOUT1=max(VOUT1_dB ); % Normalize to zero dB

VOUT1_n=VOUT1_dB -maxVOUT1;

55 %VOUT1_c=max(VOUT1_n , -100); % Clip at -100 dB
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57 % Use a Windowing technique to reduce spectral leakage

w=blackman(totalSmpls );

59 VOUT1w=abs(fft(VoutBad_start .*w’,1* totalSmpls )); % FFT of Vin w/ Window

VOUT1w_dB =20* log10(VOUT1w ); % Convert to dB

61 maxVOUT1w=max(VOUT1w_dB ); % Normalize to zero dB

VOUT1w_n=VOUT1w_dB -maxVOUT1w;

63 VOUT1w_c=max(VOUT1w_n , -200); % Clip at -200 dB

65 % Process FFT of VoutRaw G and OS Corrected Ouput (No AptD) after Full

% Convergence

67 VOUT1b=abs(fft(VoutBad_end )); % FFT of Vout

VOUT1b_dB =20* log10(VOUT1b ); % Convert to dB

69 maxVOUT1b=max(VOUT1_dB ); % Normalize to zero dB

VOUT1b_n=VOUT1b_dB -maxVOUT1b;

71 %VOUT1_c=max(VOUT1_n , -100); % Clip at -100 dB

73 % Use a Windowing technique to reduce spectral leakage

w=blackman(totalSmpls );

75 VOUT1bw=abs(fft(VoutBad_end .*w’,1* totalSmpls )); % FFT of Vin w/ Window

VOUT1bw_dB =20* log10(VOUT1bw ); % Convert to dB

77 maxVOUT1bw=max(VOUT1bw_dB ); % Normalize to zero dB

VOUT1bw_n=VOUT1bw_dB -maxVOUT1bw;

79 VOUT1bw_c=max(VOUT1bw_n , -200); % Clip at -200 dB

81 % Process FFT of VoutCor after Full Convergence

VOUT2=abs(fft(VoutCor_end )); % FFT of Vout

83 VOUT2_dB =20* log10(VOUT2); % Convert to dB

maxVOUT2=max(VOUT2_dB ); % Normalize to zero dB

85 VOUT2_n=VOUT2_dB -maxVOUT2;

%VOUT2_c=max(VOUT2_n , -100); % Clip at -100 dB

87

% Use a Windowing technique to reduce spectral leakage

89 w=blackman(length(VOUT2 ));

VOUT2w=abs(fft(VoutCor_end .*w’,1* totalSmpls )); % FFT of Vin w/ Window

91 VOUT2w_dB =20* log10(VOUT2w ); % Convert to dB

maxVOUT2w=max(VOUT2w_dB ); % Normalize to zero dB

93 VOUT2w_n=VOUT2_dB -maxVOUT2w;

VOUT2w_c=max(VOUT2w_n , -200); % Clip at -200 dB

95

% Plot Vin

97 figure (1); % Plot Vin in time and frequency

f=fs*(0: length(VINw_n )/2 -1)/ length(VINw_n );

99 plot(f,VINw_n (1: floor(length(VINw )/2)) ,’Color’,’black’); % Plot Vin in frequency

xlabel(’Frequency (Hertz)’); ylabel(’|VIN| dB’);

101 title(’Plot of Vin in Frequency Domain ’);

axis ([0 fs/2 -140 1]);

103 set(gca ,’XTickMode ’,’manual ’)

set(gca ,’XTickLabel ’,{’0’;’1’;’2’;’3’;’4’;’5’;’6’})

105

% Plot VoutRaw

107 figure (2);

f=fs*(0: length(VOUT1w_n )/2 -1)/ length(VOUT1w_n );

109 plot(f,VOUT1w_n (1: floor(length(VOUT1w )/2)) ,’Color’,’black’); % Plot Vout in frequency

xlabel(’Frequency (Hertz)’); ylabel(’|VOUT| dB’);

111 title(’Plot of Vout Before Callibration in Frequency Domain ’);

axis ([0 fs/2 -140 1]);
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113 set(gca ,’XTickMode ’,’manual ’)

set(gca ,’XTickLabel ’,{’0’;’1’;’2’;’3’;’4’;’5’;’6’});

115

% Plot VoutRaw

117 figure (3);

f=fs*(0: length(VOUT1bw_n )/2 -1)/ length(VOUT1bw_n );

119 plot(f,VOUT1bw_n (1: floor(length(VOUT1bw )/2)),’Color ’,’black’); % Plot Vout in frequency

xlabel(’Frequency (Hertz)’); ylabel(’|VOUT| dB’);

121 title(’Plot of Vout After Gain and Offset Callibration in Frequency Domain ’);

axis ([0 fs/2 -140 1]);

123 set(gca ,’XTickMode ’,’manual ’)

set(gca ,’XTickLabel ’,{’0’;’1’;’2’;’3’;’4’;’5’;’6’});

125

% Plot VoutCor

127 figure (4);

f=fs*(0: length(VOUT2w_n )/2 -1)/ length(VOUT2w_n );

129 plot(f,VOUT2w_n (1: floor(length(VOUT2w )/2)) ,’Color’,’black’); % Plot Vout in frequency

xlabel(’Frequency (Hertz)’); ylabel(’|VOUT| dB’);

131 title(’Plot of Fully Corrected Vout in Frequency Domain ’);

axis ([0 fs/2 -140 1]);

133 set(gca ,’XTickMode ’,’manual ’)

set(gca ,’XTickLabel ’,{’0’;’1’;’2’;’3’;’4’;’5’;’6’});

135

%Subplot

137 % figure (5);

% subplot (1,4,1);

139 % f=fs*(0: length(VINw_n )/2 -1)/ length(VINw_n );

% plot(f,VINw_n (1: floor(length(VINw)/2)),’Color ’,’black ’); % Plot Vin in frequency

141 % xlabel(’Frequency (Hertz )’); ylabel(’|VIN| dB ’);

% title(’Plot of Vin in Frequency Domain ’);

143 % axis ([0 fs/2 -140 1]);

% set(gca ,’XTickMode ’,’manual ’)

145 % set(gca ,’XTickLabel ’,{’0’;’1’;’2’;’3’;’4’;’5’;’6’});

%

147 % subplot (1,4,2);

% f=fs*(0: length(VOUT1w_n )/2 -1)/ length(VOUT1w_n );

149 % plot(f,VOUT1w_n (1: floor(length(VOUT1w )/2)),’Color ’,’black ’); % Plot Vout in frequency

% xlabel(’Frequency (Hertz )’); ylabel(’|VOUT| dB ’);

151 % title(’Plot of Vout Before Callibration in Frequency Domain ’);

% axis ([0 fs/2 -140 1]);

153 % set(gca ,’XTickMode ’,’manual ’)

% set(gca ,’XTickLabel ’,{’0’;’1’;’2’;’3’;’4’;’5’;’6’});

155 %

% subplot (1,4,3);

157 % f=fs*(0: length(VOUT1bw_n )/2 -1)/ length(VOUT1bw_n );

% plot(f,VOUT1bw_n (1: floor(length(VOUT1bw )/2)),’Color ’,’black ’); % Plot Vout in frequency

159 % xlabel(’Frequency (Hertz )’); ylabel(’|VOUT| dB ’);

% title(’Plot of Vout After Gain and Offset Callibration in Frequency Domain ’);

161 % axis ([0 fs/2 -140 1]);

% set(gca ,’XTickMode ’,’manual ’)

163 % set(gca ,’XTickLabel ’,{’0’;’1’;’2’;’3’;’4’;’5’;’6’});

%

165 % subplot (1,4,4);

% f=fs*(0: length(VOUT2w_n )/2 -1)/ length(VOUT2w_n );

167 % plot(f,VOUT2w_n (1: floor(length(VOUT2w )/2)),’Color ’,’black ’); % Plot Vout in frequency

% xlabel(’Frequency (Hertz )’); ylabel(’|VOUT| dB ’);

169 % title(’Plot of Fully Corrected Vout in Frequency Domain ’);
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% axis ([0 fs/2 -140 1]);

171 % set(gca ,’XTickMode ’,’manual ’)

% set(gca ,’XTickLabel ’,{’0’;’1’;’2’;’3’;’4’;’5’;’6’});
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./source code/splinta/Intl Error Examples01a.m

%**************************************************************************

2 % Interleaved Errors Examples Vers. 01

% 2006.11.06

4 %

% This program sets up a 4:1 interleaving example using Intl_Error_Setup01

6 % and generates the FFT plots using fft_1tone_an01.

%

8 %

% Modified to include all errors together CLD 2008.10.26

10 %

%**************************************************************************

12 close all;

clear all;

14

Intl_Error_Setup01a

16

% Setup input vector for FFT Analysis

18 Vin_fft=Vinq;

fft_1tone_an01; % Perform FFT Analysis

20 % Plot FFT of Qunatized Vin with Noise using Blackman Window

figure (1); % Plot Vin in time and frequency

22 f=fs*(0: length(VIN_n )/2 -1)/ length(VIN_n);

plot(f,VINw_n (1: floor(length(VIN_n )/2))); % Plot Vin in frequency

24 xlabel(’Frequency (Hertz)’); ylabel(’|VIN| dB’);

title(’Plot of Vin in Frequency Domain ’);

26 axis ([0 fs/2 -150 1]);

28 % Setup Vout Gain Error vector for FFT Analysis

Vin_fft=VoutGq;

30 fft_1tone_an01; % Perform FFT Analysis

% Plot FFT of Qunatized Vout with G Error and Noise using Blackman Window

32 figure (2); % Plot Vin in time and frequency

f=fs*(0: length(VIN_n )/2 -1)/ length(VIN_n);

34 plot(f,VINw_n (1: floor(length(VIN_n )/2))); % Plot Vin in frequency

xlabel(’Frequency (Hertz)’); ylabel(’|VIN| dB’);

36 title(’Plot of Vout with Offset Errors in Frequency Domain ’);

axis ([0 fs/2 -150 1]);

38

% Setup Vout Offset Error vector for FFT Analysis

40 Vin_fft=VoutOSq;

fft_1tone_an01; % Perform FFT Analysis

42 % Plot FFT of Qunatized Vout with OS Error and Noise using Blackman Window

figure (3); % Plot Vin in time and frequency

44 f=fs*(0: length(VIN_n )/2 -1)/ length(VIN_n);

plot(f,VINw_n (1: floor(length(VIN_n )/2))); % Plot Vin in frequency

46 xlabel(’Frequency (Hertz)’); ylabel(’|VIN| dB’);

title(’Plot of Vout with Gain Errors in Frequency Domain ’);

48 axis ([0 fs/2 -150 1]);

50 % Setup Vout Aperture Delay Error vector for FFT Analysis

Vin_fft=VoutAPTDq;

52 fft_1tone_an01; % Perform FFT Analysis

% Plot FFT of Qunatized Vout with APT Error and Noise using Blackman Window

54 figure (4); % Plot Vin in time and frequency

f=fs*(0: length(VIN_n )/2 -1)/ length(VIN_n);
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56 plot(f,VINw_n (1: floor(length(VIN_n )/2))); % Plot Vin in frequency

xlabel(’Frequency (Hertz)’); ylabel(’|VIN| dB’);

58 title(’Plot of Vout with Delay Errors in Frequency Domain ’);

axis ([0 fs/2 -150 1]);

60

% Setup Vout All Errors vector for FFT Analysis

62 Vin_fft=VoutALLq;

fft_1tone_an01; % Perform FFT Analysis

64 % Plot FFT of Qunatized Vout with APT Error and Noise using Blackman Window

figure (5); % Plot Vin in time and frequency

66 f=fs*(0: length(VIN_n )/2 -1)/ length(VIN_n);

plot(f,VINw_n (1: floor(length(VIN_n )/2))); % Plot Vin in frequency

68 xlabel(’Frequency (Hertz)’); ylabel(’|VIN| dB’);

title(’Plot of Vout with Offset , Gain and Aperture Delay Errors in Frequency Domain ’);

70 axis ([0 fs/2 -140 1]);
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./source code/splinta/Intl Error Setup01a.m

%**************************************************************************

2 % Interleaved Errors Examples Setup Vers. 01

% 2006.11.06

4 %

% This program sets up a 4:1 interleaving example with individual Gain ,

6 % Offset , and Aperture Delay.

%

8 % Uses function quantizerFcn01.m

%

10 %

%**************************************************************************

12

% Modified for two tones

14

M = 4; % Number of Interleaved ADCs

16 nsamples =500*1024+4;

fs=12E+6; % Sampling Frequency

18 fd1=1E+6; % Fundemental Frequency

fd2=2E+6; % Fundemental Frequency

20 Vin_amp =0.4; % Vin Amplitude

t=(0: nsamples -1)./ fs; % sample time vector

22 lngVout = nsamples;

24 %Hardcoded Errors

E_g1 =0.012; % ADC_1 Gain Error

26 E_os1 =0.011; % ADC_1 Offset Error

t_apd1 =0.02E-9; % ADC_1 Aperture Delay

28 E_g2 = -0.005; % ADC_2 Gain Error

E_os2 = -0.003; % ADC_2 Offset Error

30 t_apd2 = -0.035E-9; % ADC_2 Aperture Delay

E_g3 = -0.01; % ADC_3 Gain Error

32 E_os3 = -0.008; % ADC_3 Offset Error

t_apd3 =0.072E-9; % ADC_3 Aperture Delay

34 E_g4 = -0.007; % ADC_4 Gain Error

E_os4 =0.005; % ADC_4 Offset Error

36 t_apd4 = -0.027E-9; % ADC_4 Aperture Delay

38 EG=[E_g1; E_g2; E_g3; E_g4];

EOS=[E_os1; E_os2; E_os3; E_os4 ;];

40 EAPTD=[ t_apd1;t_apd2;t_apd3;t_apd4 ;];

realErrors = [EG; EOS; EAPTD];

42

44 % Add Gaussian noise to the input signal

QNoise =16;

46 %Vnoise=zeros(1,lngVout ); % Zero Noise

%Vnoises=zeros(M,lngVout ); % Zero Noise

48 Vnoise =(1/2^( QNoise -1)).* randn(1,nsamples ); % 16-bit Gaussian Noise

Vnoises =(1/2^( QNoise -1)).* randn(M,nsamples ); % 16-bit Gaussian Noise

50

% Input Voltage Signal (assumes 1V reference)

52 %Vin=Vin_amp*sin ((2*pi)*fd1*t)+ Vnoise;

Vin=Vin_amp*sin ((2*pi)*fd1*t)+ Vin_amp*sin ((2*pi)*fd2*t)+ Vnoise;

54

%Initialize memory for matrices
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56 %Vins=repmat(Vin_amp*sin ((2*pi)*fd1*t),M,1)+ Vnoises;

Vins=repmat(Vin_amp*sin ((2*pi)*fd1*t)+ Vin_amp*sin ((2*pi)*fd2*t),M,1)+ Vnoises;

58 OUT_G=zeros(M,lngVout );

OUT_OS=zeros(M,lngVout );

60 OUT_APTD=zeros(M,lngVout );

62 VoutG=zeros(1,lngVout );

VoutOS=zeros(1,lngVout );

64 VoutAPTD=zeros(1,lngVout );

66 % Create MxNSamples Matrices with Individual G and OS Errors

OUT_G = Vins.* repmat ((1+EG),1,lngVout ); % MxN Output Matrix w/ G Errors

68 OUT_OS = Vins+repmat(EOS ,1,lngVout ); % MxN Output Matrix w/ OS Errors

% Create MxNSamples Matrices with Individual APTD Errors

70 OUT_APTD (1 ,:)=( Vin_amp*sin ((2*pi)*fd1*(t+t_apd1 ))+ Vin_amp*sin ((2*pi)*fd2*(t+t_apd1 )))+ Vnoises (1,:);

OUT_APTD (2,:)= Vin_amp*sin ((2*pi)*fd1*(t+t_apd2 ))+ Vin_amp*sin ((2*pi)*fd2*(t+t_apd2 ))+ Vnoises (2 ,:);

72 OUT_APTD (3,:)= Vin_amp*sin ((2*pi)*fd1*(t+t_apd3 ))+ Vin_amp*sin ((2*pi)*fd2*(t+t_apd3 ))+ Vnoises (3 ,:);

OUT_APTD (4,:)= Vin_amp*sin ((2*pi)*fd1*(t+t_apd4 ))+ Vin_amp*sin ((2*pi)*fd2*(t+t_apd4 ))+ Vnoises (4 ,:);

74

OUT_ALL (1 ,:)=( Vin_amp*sin ((2*pi)*fd1*(t+t_apd1 ))+ Vin_amp*sin ((2*pi)*fd2*(t+t_apd1 )))*(1+ EG (1))+ EOS (1)+ Vnoises (1,:);

76 OUT_ALL (2,:)= Vin_amp*sin ((2*pi)*fd1*(t+t_apd2 ))+ Vin_amp*sin ((2*pi)*fd2*(t+t_apd2 ))*(1+ EG(2))+ EOS (2)+ Vnoises (2 ,:);

OUT_ALL (3,:)= Vin_amp*sin ((2*pi)*fd1*(t+t_apd3 ))+ Vin_amp*sin ((2*pi)*fd2*(t+t_apd3 ))*(1+ EG(3))+ EOS (3)+ Vnoises (3 ,:);

78 OUT_ALL (4,:)= Vin_amp*sin ((2*pi)*fd1*(t+t_apd4 ))+ Vin_amp*sin ((2*pi)*fd2*(t+t_apd4 ))*(1+ EG(4))+ EOS (4)+ Vnoises (4 ,:);

80 % Set up the interleaving order

Intl_Order=repmat ([1:4],1, floor(nsamples /4));

82 adjustment =0:4: floor (4* lngVout )-1;

Intl_Order=Intl_Order+adjustment;

84

% Get the final outputs

86 VoutG=OUT_G(Intl_Order );

VoutOS=OUT_OS(Intl_Order );

88 VoutAPTD=OUT_APTD(Intl_Order );

VoutALL=OUT_ALL(Intl_Order );

90

% Quantize the final output

92 Vinq=quantizerFcn01(Vin);

VoutGq=quantizerFcn01(VoutG);

94 VoutOSq=quantizerFcn01(VoutOS );

VoutAPTDq=quantizerFcn01(VoutAPTD );

96 VoutALLq=quantizerFcn01(VoutALL );
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./source code/splinta/LPF Test03.m

% Low Pass Filter Example

2 fs=12E6;

fT=1/fs;

4

for (j=1:M)

6 RC = ((rand *.02)+0.99)*3.18E-9;

a = fT / (RC + fT);

8 for i=2: length(Vout(j,:))

Vout(j,i) = a * Vout(j,i) + (1-a) * Vout(j,i-1);

10 end

end



116

./source code/splinta/multi ADC 5ptderivEst cor01b.m

1 %**************************************************************************

% Iterative Correction Algorithm for the Multi Interleaved ADC Vers. 03

3 % 2006.11.06

%

5 % This program builds up the deltaX values for finding the gain , offset

% and apperture delay , errors in the Multi Intlerleaved , Split ADC

7 % architecture. A coefficient matrix is also built for testing and

% debugging purposes.

9 %

% This program also computes the RMS Error between the Ideal and Corrected

11 % output.

%

13 % For use with the multi_ADC_setup03 ,4,5.

%

15 %**************************************************************************

17 % increased my to 1/3 to try to reduce oscillations - JM, ADLEC2006

19 % Estimation Loop Parameters

% mx is the step size in the Gain and Offset error estimation

21 %mxrecip =32; % mu_e

mxrecip =2^4; % mu_e

23 mx=1/ mxrecip; %Step size of aproaching the Estimated Error

25 %myrecip =1024; %mu_G

myrecip =2^10; %mu_G

27 my=1/ myrecip;

mtrecip =2^8;

29 mt=1/ mtrecip;

31 Ncoef =128; % Number of conversions used to build up matrices

jacobLeng=floor(nsamples/Ncoef ); %Number of main loops

33

% Initialize all Matrices to make room in Memory and save time

35 VoutA=zeros (1,(jacobLeng -1)* Ncoef +1);

VoutB=zeros (1,(jacobLeng -1)* Ncoef +1);

37 VoutBad=zeros (1,(jacobLeng -1)* Ncoef +1);

VoutCorA=zeros(1,(jacobLeng -1)* Ncoef +1);

39 VoutCorB=zeros(1,(jacobLeng -1)* Ncoef +1);

VoutCor=zeros (1,(jacobLeng -1)* Ncoef +1);

41

%EATPD=[ t_apd1;t_apd2;t_apd3;t_apd4;t_apd5 ].*10 E6; % Real Aperture coefficients

43

Eg_est=zeros(M,1); % Initialize all Error Estimates to zero

45 Eg_eps=zeros(M,1);

Eos_est=zeros(M,1);

47 Eos_eps=zeros(M,1);

Etpd_est=zeros(M,1); % Initialize all Error Estimates to zero

49 Etpd_eps=zeros(M,1); % Initialize Error in the Estimate to zero

51 jacobLeng=floor(nsamples/Ncoef );

RMS_Convergence=zeros(1,jacobLeng -1);

53 tempRMS_0=zeros(1,Ncoef -2);

tempRMS=zeros(1,Ncoef);

55 ADC_Convergence=zeros(1,jacobLeng -1);
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tempADC_0=zeros(1,Ncoef -2);

57 tempADC=zeros(1,Ncoef);

j=1;

59 % Initialize the coeficients and bins matrices to zero

Eos_coef=zeros(Ncoef ,M); % Initialize Offset Error Coefficients matrix

61 Eg_coef=zeros(Ncoef ,M); % Initialize Gain Error Coefficients matrix

Etpd_coef=zeros(Ncoef ,M);

63 Eos_bins=zeros(1,M);

Eg_bins=zeros(1,M);

65 Etpd_bins=zeros(1,M);

deltaX=zeros(Ncoef +3,1);

67

% Fill up the first two samples of the uncorrected vectors using Vout

69 VoutA (1:3)=[ Vout(Apick (1) ,1) Vout(Apick (2),2), Vout(Apick (3) ,3)];

VoutB (1:3)=[ Vout(Bpick (1) ,1) Vout(Bpick (2),2), Vout(Bpick (3) ,3)];

71 VoutBad (1:3)=( VoutA (1:3)+ VoutB (1:3))/2;

deltaX (1:2)= VoutB (1:2)- VoutA (1:2);

73

for (i=3: Ncoef)

75 k=(Ncoef*(j-1)+i); % Generate the proper index for the Apick and

% Bpick matrices to keep track of ADC A and

77 % ADC B

VoutA(k+1)= Vout(Apick(k+1),k+1)- Eos_est(Apick(k+1)); % Correct for G and OS

79 VoutA(k+1)= VoutA(k+1)/(1+ Eg_est(Apick(k+1)));

VoutB(k+1)= Vout(Bpick(k+1),k+1)- Eos_est(Bpick(k+1));

81 VoutB(k+1)= VoutB(k+1)/(1+ Eg_est(Bpick(k+1)));

83 VoutA(k+2)= Vout(Apick(k+2),k+2)- Eos_est(Apick(k+2)); % Correct for G and OS

VoutA(k+2)= VoutA(k+2)/(1+ Eg_est(Apick(k+2)));

85 VoutB(k+2)= Vout(Bpick(k+2),k+2)- Eos_est(Bpick(k+2));

VoutB(k+2)= VoutB(k+2)/(1+ Eg_est(Bpick(k+2)));

87 %VoutA(k+1)= Vout(Apick(k+1),k+1);

%VoutB(k+1)= Vout(Bpick(k+1),k+1);

89 VoutBad(k+1:k+2)=( VoutA(k+1:k+2)+ VoutB(k+1:k+2))/2;

%deltaConv =( VoutBad(k+1)- VoutBad(k -1))/2; % Get Average Delta Conversion

91 deltaConv =( VoutBad(k+1)- VoutBad(k -1))*(2/3)+...

(VoutBad(k-2)- VoutBad(k+2))*(1/12); % Get Average Delta Conversion

93 VoutCorA(k)= VoutA(k)-Etpd_est(Apick(k))* deltaConv;

VoutCorB(k)= VoutB(k)-Etpd_est(Bpick(k))* deltaConv;

95 VoutCor(k)=( VoutCorA(k)+ VoutCorB(k))/2; % Get Average Corected Output

deltaX(i)=( VoutCorB(k)-VoutCorA(k)); % Get difference between

97 % corrected outputs

99 Eos_coef(i,:)= pmmat(:,k)’;

Eg_coef(i,:)= VoutCor(k)* pmmat(:,k)’;

101 Etpd_coef(i,:)= deltaConv*pmmat(:,k)’; % Collect Coefficients

Eos_bins =(sign(Eos_coef(i,:))* deltaX(i))+ Eos_bins;

103 Eg_bins =(sign(Eg_coef(i ,:))* deltaX(i))+ Eg_bins;

Etpd_bins =(sign(Etpd_coef(i ,:))* deltaX(i))+ Etpd_bins;

105 tempRMS_0(i)=Vin(k)-VoutCor(k);

tempADC_0(i)=Vin(k)-VoutCor(k);

107 end

109 E_coef =[ Eos_coef Eg_coef Etpd_coef ];

E_coef =[ E_coef; [ones(1,M),zeros (1,2*M)]; [zeros(1,M),ones(1,M),zeros(1,M)];...

111 [zeros (1,2*M),ones(1,M)]];
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113 % Calculate and track the Error in the Esitmate

Eos_eps =(1-mx)* Eos_eps+Eos_bins ’*mx;

115 Eg_eps =(1-mx)* Eg_eps+Eg_bins ’*mx;

Etpd_eps =(1-mx)* Etpd_eps+Etpd_bins ’*mx;

117

Eos_eps_track (:,j)= Eos_eps;

119 Eg_eps_track (:,j)= Eg_eps;

Etpd_eps_track (:,j)= Etpd_eps;

121

% Calculate and track the Estimate

123 Eos_est=my.* Eos_eps+Eos_est;

Eg_est=my.* Eg_eps+Eg_est;

125 Etpd_est=mt.* Etpd_eps+Etpd_est;

127 Eos_est_track (:,j)= Eos_est;

Eg_est_track (:,j)= Eg_est;

129 Etpd_est_track (:,j)= Etpd_est;

131 RMS_Convergence (1)= sum(tempRMS_0 .^2)/ length(tempRMS_0 );

133 jacobLeng=floor(nsamples/Ncoef );

135 for (j=2: jacobLeng -1)

137 % Initialize the coeficients and bins matrices to zero

Eos_coef=zeros(Ncoef ,M); % Initialize Offset Error Coefficients matrix

139 Eg_coef=zeros(Ncoef ,M); % Initialize Gain Error Coefficients matrix

Etpd_coef=zeros(Ncoef ,M);

141 Eos_bins=zeros(1,M);

Eg_bins=zeros(1,M);

143 Etpd_bins=zeros(1,M);

deltaX=zeros(Ncoef +3,1);

145

for (i=1: Ncoef)

147 k=(Ncoef*(j-1)+i); % Generate the proper index for the Apick and

% Bpick matrices to keep track of ADC A and

149 % ADC B

VoutA(k+1)= Vout(Apick(k+1),k+1)- Eos_est(Apick(k+1)); % Correct for G and OS

151 VoutA(k+1)= VoutA(k+1)/(1+ Eg_est(Apick(k+1)));

VoutB(k+1)= Vout(Bpick(k+1),k+1)- Eos_est(Bpick(k+1));

153 VoutB(k+1)= VoutB(k+1)/(1+ Eg_est(Bpick(k+1)));

VoutA(k+2)= Vout(Apick(k+2),k+2)- Eos_est(Apick(k+2)); % Correct for G and OS

155 VoutA(k+2)= VoutA(k+2)/(1+ Eg_est(Apick(k+2)));

VoutB(k+2)= Vout(Bpick(k+2),k+2)- Eos_est(Bpick(k+2));

157 VoutB(k+2)= VoutB(k+2)/(1+ Eg_est(Bpick(k+2)));

%VoutA(k+1)= Vout(Apick(k+1),k+1);

159 %VoutB(k+1)= Vout(Bpick(k+1),k+1);

VoutBad(k+1:k+2)=( VoutA(k+1:k+2)+ VoutB(k+1:k+2))/2;

161 %deltaConv =( VoutBad(k+1)- VoutBad(k -1))/2; % Get Average Delta Conversion

deltaConv =( VoutBad(k+1)- VoutBad(k -1))*(2/3)+...

163 (VoutBad(k-2)- VoutBad(k+2))*(1/12); % Get Average Delta Conversion

VoutCorA(k)= VoutA(k)-Etpd_est(Apick(k))* deltaConv;

165 VoutCorB(k)= VoutB(k)-Etpd_est(Bpick(k))* deltaConv;

VoutCor(k)=( VoutCorA(k)+ VoutCorB(k))/2; % Get Average Corected Output

167 deltaX(i)=( VoutCorB(k)-VoutCorA(k)); % Get difference between

% corrected outputs

169
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Eos_coef(i,:)= pmmat(:,k)’;

171 Eg_coef(i,:)= VoutCor(k)* pmmat(:,k)’;

Etpd_coef(i,:)= deltaConv*pmmat(:,k)’; % Collect Coefficients

173 Eos_bins =(sign(Eos_coef(i,:))* deltaX(i))+ Eos_bins;

Eg_bins =(sign(Eg_coef(i ,:))* deltaX(i))+ Eg_bins;

175 Etpd_bins =(sign(Etpd_coef(i ,:))* deltaX(i))+ Etpd_bins;

177 tempRMS(i)=Vin(k)-VoutCor(k); %Get difference for RMS Convergence

tempADC(i)=Vin(k)-VoutCor(k); %Get difference for RMS Convergence

179 end

181 E_coef =[ Eos_coef Eg_coef Etpd_coef ];

E_coef =[ E_coef; [ones(1,M),zeros (1,2*M)]; [zeros(1,M),ones(1,M),zeros(1,M)];...

183 [zeros (1,2*M),ones(1,M)]]; % Coefficient matrix with averaging

185 % Calculate and track the Error in the Esitmate

Eos_eps =(1-mx)* Eos_eps+Eos_bins ’*mx;

187 Eg_eps =(1-mx)* Eg_eps+Eg_bins ’*mx;

Etpd_eps =(1-mx)* Etpd_eps+Etpd_bins ’*mx;

189

Eos_eps_track (:,j)= Eos_eps;

191 Eg_eps_track (:,j)= Eg_eps;

Etpd_eps_track (:,j)= Etpd_eps;

193

% Calculate and track the Estimate

195 Eos_est=my.* Eos_eps+Eos_est;

Eg_est=my.* Eg_eps+Eg_est;

197 Etpd_est=mt.* Etpd_eps+Etpd_est;

199 Eos_est_track (:,j)= Eos_est;

Eg_est_track (:,j)= Eg_est;

201 Etpd_est_track (:,j)= Etpd_est;

203 % Compute RMS Error

RMS_Convergence(j)=sum(tempRMS .^2)/ Ncoef;

205 end



120

./source code/splinta/multi ADC setup06.m

1 %**************************************************************************

% Multi Interleaved ADCs with Random Iteration Matrix Setup Vers. 05

3 % 06.04.04

% This program simulates nine non -ideal ADC (without quantization) in an

5 % interleaved setup. This interleaved setup uses overlapping ADCs for

% digital error correction later on. The program sets up 3*M error

7 % parameters; M gain errors , M offset errors , and M aperture delay errors.

%

9 % Gaussian Noise Added. No quantization (Handled by quantizer01.m)

%

11 %**************************************************************************

13 % changed to set sum of tpd errors to zero - JM ADLEC 2006

15 clear all;

close all;

17 intlRatio =4; % Ratio of ADC Interleaving (x:1)

M=2* intlRatio +1; % Number of ADCs required for interleaving

19 nsamples =500*1024+4;

fs=12E+6; % Sampling Frequency

21 %fd1 =0.1* fs*.5; % Fundemental Frequency 1

%fd2 =0.4* fs*.5; % Fundemental Frequency 2

23 fd1=1e6; % Fundemental Frequency 1

fd2=2e6; % Fundemental Frequency 2

25 Vin_amp =0.40; % Vin Amplitude

t=(0: nsamples -1)./ fs; % sample time vector

27 lngVout = nsamples;

DC = 0.0;

29

%**************************************************************************

31 % Code for randomly generating Errors

% The following was an attempt to randomly generate the errors removing all

33 % hardcoded values and giving the simulation a more realistic performance.

% Initial tests did not work becasue of scaling issues with the apperture

35 % delay. The code should be fixed to make this work , but it has not been

% tested fully at this time.

37

%Perc_EG =0.05; % Gain Error Percent (1=100%)

39 %Perc_EOS =0.1; % Offset Error Percent (1=100%)

%Perc_Apt =0.001; % Aperture Error Percent (1=100%)

41

%EG=Perc_EG +2* Perc_EG*rand(1,M); % Generate Random Gan Errors

43 %EG=EG’-mean(EG); % Set mean = 0

%EOS=Perc_EOS +2* Perc_EOS*rand(1,M); % Generate Random Gan Errors

45 %EOS=EOS ’-mean(EOS); % Set mean = 0

%EATPD=Perc_Apt*fs+2*fs*Perc_Apt*rand(1,M);% Generate Random Gan Errors

47 %EATPD=EATPD ’-mean(EATPD ); % Set mean = 0

%**************************************************************************

49

%Hardcoded Errors

51 E_g1 =0.045; % ADC_1 Gain Error

E_os1 =0.035; % ADC_1 Offset Error

53 t_apd1 =0.05E-9; % ADC_1 Aperture Delay

E_g2 = -0.03; % ADC_2 Gain Error

55 E_os2 = -0.094; % ADC_2 Offset Error
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t_apd2 =-0.05E-9; % ADC_2 Aperture Delay

57 E_g3 = -0.01; % ADC_3 Gain Error

E_os3 = -0.008; % ADC_3 Offset Error

59 t_apd3 =0.02E-9; % ADC_3 Aperture Delay

E_g4 = -0.06; % ADC_4 Gain Error

61 E_os4 =0.024; % ADC_4 Offset Error

t_apd4 =-0.02E-9; % ADC_4 Aperture Delay

63 E_g5 =0.055; % ADC_5 Gain Error

E_os5 =0.043; % ADC_5 Offset Error

65 t_apd5 =-0.03E-9; % ADC_5 Aperture Delay

E_g6 = -0.038; % ADC_6 Gain Error

67 E_os6 = -0.013; % ADC_6 Offset Error

t_apd6 =-0.01E-9; % ADC_6 Aperture Delay

69 E_g7 = -0.027; % ADC_7 Gain Error

E_os7 =0.052; % ADC_7 Offset Error

71 t_apd7 =0.04E-9; % ADC_7 Aperture Delay

E_g8 =0.049; % ADC_8 Gain Error

73 E_os8 = -0.031; % ADC_8 Offset Error

t_apd8 =-0.01E-9; % ADC_8 Aperture Delay

75 E_g9 =0.016; % ADC_9 Gain Error

E_os9 = -0.008; % ADC_9 Offset Error

77 t_apd9 =0.01E-9; % ADC_9 Aperture Delay

79

%realErrors = [EG; EOS; EATPD];

81 EG=[E_g1; E_g2; E_g3; E_g4; E_g5; E_g6; E_g7; E_g8; E_g9];

EOS=[E_os1; E_os2; E_os3; E_os4; E_os5; E_os6; E_os7; E_os8; E_os9 ];

83 EATPD=[ t_apd1;t_apd2;t_apd3;t_apd4;t_apd5;t_apd6;t_apd7;t_apd8;t_apd9 ];

realErrors = [EG; EOS; EATPD];

85

87 % Add Gaussian noise to the input signal

QNoise =16;

89 % Modify to make SNR some number of dB

SNR =90; % Published SNR of AD7621

91 QNoise =(SNR /(20* log10 (2))) -0.5;

%Vnoise=zeros(1,lngVout ); % No Noise

93 %Vnoises=zeros(M,lngVout ); % No Noise

Vnoise =(1/2^( QNoise +1)).* randn(1,nsamples ); % 16-bit Gaussian Noise

95 Vnoises =(1/2^( QNoise +1)).* randn(M,nsamples ); % 16-bit Gaussian Noise

Vnoise1 =(1/2^( QNoise +1)).* randn(1,nsamples ); % 16-bit Gaussian Noise

97 Vnoise2 =(1/2^( QNoise +1)).* randn(1,nsamples ); % 16-bit Gaussian Noise

Vnoise3 =(1/2^( QNoise +1)).* randn(1,nsamples ); % 16-bit Gaussian Noise

99 Vnoise4 =(1/2^( QNoise +1)).* randn(1,nsamples ); % 16-bit Gaussian Noise

Vnoise5 =(1/2^( QNoise +1)).* randn(1,nsamples ); % 16-bit Gaussian Noise

101 Vnoise6 =(1/2^( QNoise +1)).* randn(1,nsamples ); % 16-bit Gaussian Noise

Vnoise7 =(1/2^( QNoise +1)).* randn(1,nsamples ); % 16-bit Gaussian Noise

103 Vnoise8 =(1/2^( QNoise +1)).* randn(1,nsamples ); % 16-bit Gaussian Noise

Vnoise9 =(1/2^( QNoise +1)).* randn(1,nsamples ); % 16-bit Gaussian Noise

105

%Initialize memory for matrices

107 Vins=zeros(M,lngVout );

OUT=zeros(M,lngVout );

109 Vout=zeros(M,lngVout );

111 lng_Vin=length(Vins); % Length of Input Voltage
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113 % Input Voltage (assumes 1V reference)

Vin=DC+Vin_amp*sin ((2*pi)*fd1*t)+ Vin_amp*sin ((2*pi)*fd2*t)+ Vnoise;

115

% PRN Input Signal Setup

117 % Vin = zeros(1,lng_Vin );

% PRN_Phase = zeros (1 ,90);

119 % PRN_Freq = zeros (1 ,90);

% for (i=1:90)

121 % PRN_Phase(i) = 4*rand (1)-2;

% PRN_Freq(i) = 1E+6* rand (1)+1e+6;

123 % Vin =0.01* sin (((2*pi*PRN_Freq(i)*t)+( PRN_Phase(i)*pi)))+ Vin;

% end

125 % Vin = Vin + Vnoise;

%

127 % % ADC Input with Aperture Delay

% for (i=1:M)

129 % for (j=1:90)

% Vins(i ,:)=0.01* sin (((2*pi*PRN_Freq(j)*t)+EATPD(i)...

131 % +( PRN_Phase(j)*pi)))+ Vins(i,:);

% end

133 % Vins(i,:) = Vins(i,:) + Vnoises(i,:);

% end

135

% Setup Intlereaved Pattern Matrix

137 % Initialize Matrix sizes in memory to increase execution speed

pmmat=zeros(M,lngVout );

139 intlvdSetup=zeros(M,lngVout );

pathTrack=zeros(1,lngVout );

141 Apick=zeros(1,lngVout );

Bpick=zeros(1,lngVout );

143 %ADCTimer =[0 1 1 2 2 3 3 4 4]; %Setup Counter to keep track of ADCs

ADCTimer=zeros(1,M); %Setup Counter to keep track of ADCs

145 for (k=1:(M -1)/2)

ADCTimer (2*k:2*k+1)=k;

147 end

TimerDecr=ones(1,M); %Initialize Timer Decrement Vector

149

%comboMat=triu(ones(M),1);

151

% Random Path Generation is done by choosing 2 out of the 3 available ADCs

153 % for the next conversion cycle. ADCTimer keeps track of the available

% ADCs and the number of conversions before they become available again.

155 % comboMat is a Matrix that keeps track of which ADCs have already been

% chosen. This allows for keeping the number of repeated choices to a

157 % minimum and generating full paths with every possible combination in

% them.

159 for (i=1: lngVout)

choices=find(ADCTimer <2); %Get Possible Choices

161 newChoice=ceil (3* rand (1)); %Generate Random Number

switch newChoice %Choose 2 out of the 3 possible ADCs

163 case {3} %based on the Random Number Generated.

ADCA =1;

165 ADCB =2;

case {2}

167 ADCA =1;

ADCB =3;

169 case {0 , 1}
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ADCA =2;

171 ADCB =3;

otherwise

173 disp(’Failed ’);

break;

175 end

ADCA=choices(ADCA);

177 ADCB=choices(ADCB);

179 % The following code was used to try and minimize repeated pari

% combinations , however , it was eventually shown that this was not

181 % necessary. This code was removed to try and simplify the PRN technique

% for the eventual FPGA implementation.

183 % if (comboMat(ADCA ,ADCB )==1)

% comboMat(ADCA ,ADCB )=0;

185 % %i=i+1;

% elseif (comboMat(ADCA ,ADCB )==0)

187 % ADCA =1;

% ADCB =2;

189 % ADCA=choices(ADCA);

% ADCB=choices(ADCB);

191 % if (comboMat(ADCA ,ADCB )==1)

% comboMat(ADCA ,ADCB )=0;

193 % %i=i+1;

% else

195 % ADCA =1;

% ADCB =3;

197 % ADCA=choices(ADCA);

% ADCB=choices(ADCB);

199 % if (comboMat(ADCA ,ADCB )==1)

% comboMat(ADCA ,ADCB )=0;

201 % %i=i+1;

% else

203 % ADCA =2;

% ADCB =3;

205 % ADCA=choices(ADCA);

% ADCB=choices(ADCB);

207 % if (comboMat(ADCA ,ADCB )==1)

% comboMat(ADCA ,ADCB )=0;

209 % %i=i+1;

% else

211 % newChoice=ceil (3* rand (1)); %Generate Random Number

% switch newChoice

213 % case {3}

% ADCA =1;

215 % ADCB =2;

% case {2}

217 % ADCA =1;

% ADCB =3;

219 % case {0 , 1}

% ADCA =2;

221 % ADCB =3;

% otherwise

223 % disp(’Failed ’);

% break;

225 % end

% ADCA=choices(ADCA);
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227 % ADCB=choices(ADCB);

% end

229 % end

% end

231 % end

233 % if (isempty(find(comboMat ))==1)

% comboMat=triu(ones(M),1);

235 % end

237 ADCTimer=ADCTimer -TimerDecr; %Decrement the timer

ADCTimer(ADCA )=(M -1)/2; %Set 1st ADC in ADCTimer to 4

239 ADCTimer(ADCB )=(M -1)/2; %Set 2nd ADC in ADCTimer to 4

Apick(i)=ADCA;

241 Bpick(i)=ADCB;

intlvdSetup (((i-1)*M)+Apick(i))=1; %Setup ’A’ ADC pattern

243 pmmat (((i-1)*M)+Apick(i))= -1; %Setup P/M ’A’ ADC pattern for -1

intlvdSetup (((i-1)*M)+Bpick(i))=1; %Setup ’B’ ADC pattern

245 pmmat (((i-1)*M)+Bpick(i))=1; %Setup P/M ’B’ ADC pattern for +1

247

for (j=1:M)

249 % ADC Input with Aperture Delay

Vins(j,i)=DC+Vin_amp*sin ((2*pi)*fd1*(t(i)+EATPD(j)))...

251 +Vin_amp*sin ((2*pi)*fd2*(t(i)+ EATPD(j)))+ Vnoises(j,i);

end

253

% Calculate the latest input samples with Gain and Offset Errors

255 OUT(:,i) = Vins(:,i).*(1+ EG)+EOS; % MxN Output Matrix

257 % Generate the next output sample

Vout(:,i)=OUT(:,i).* intlvdSetup (:,i);

259 %**********************************************************************

261 end
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./source code/splinta/NonLinQuantizer03.m

%**************************************************************************

2 % 5 Interleaved ADCs Quantizer Vers. 01

% 2009.01.22

4 %

% This program quantizes the Vout vector with a nonlinear performance.

6 % This applies a PRN INL to each ADC.

%

8 % For use with the multi_ADC_setup06

%

10 %**************************************************************************

12 numBits = 24; %Number of Bits for quantization

LSB = 2^-19;

14 LSB2 = 2^ -10.3;

Vout_old=Vout; %Store the old , unquantized values

16 qVout=Vout *2^ numBits -1; %Start quantizing the values

for (i=1:M)

18 qVout(i,:)= qVout(i ,:).*(1+((( rand /2)+0.5)* LSB)*sin(qVout(i ,:)/(2^ numBits )*2*pi));

end

20 qVout=round(qVout);

qVout=min(qVout ,2^ numBits -1);

22 qVout=max(qVout ,-2^numBits -1);

qVout=qVout /(2^ numBits -1);

24 Vout=qVout; %Store the new , quantized values for correction

26 Vin_old = Vin;

Vin = Vin .*(1+ LSB2*sin(Vin /(2^10.3)*2* pi));
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./source code/splinta/quantizerFcn01.m

1 function Vout=quantizerFcn01(Vin)

%**************************************************************************

3 % Quantizer Function with One Input

% 06.11.06

5 %

% This a function version of the older Quantizer01 program. This function

7 % reads in an input vecotr , quantizes it to the number of bits hardcoded in

% this function , then returns a quantized output. Future versions of this

9 % function may include an argument for setting the quantization level.

%

11 % Inputs:

% Vin = The input vector to be quantized

13 %

% Outputs:

15 % Vout = The output vector containing quantized values of the input

% vecotr Vin.

17 %

% Parameter:

19 % numBits = The number of bits that determines the quantization levels

% for the output vector. Future versions may set this paramter up to

21 % be an input argument to this function.

%

23 %**************************************************************************

25 numBits = 16; %Number of Bits for quantization

27

qVout=Vin*2^ numBits -1; %Start quantizing the values

29 qVout=round(qVout);

qVout=min(qVout ,2^ numBits -1);

31 qVout=max(qVout ,-2^numBits -1);

qVout=qVout /(2^ numBits -1);

33 Vout=qVout; %Store the new , quantized values for correction
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./source code/splinta/SNR V02.m

1 numpt = length(VIN_n);

fin=find(VIN_n (1: numpt /2)>-1);

3 spectP =(abs(VIN )).*( abs(VIN));

span = 3;

5 Pdc=sum(spectP (1));

Ps=sum(spectP ([fin(1)-span:span+fin(1), fin(2)-span:span+fin (2)]));

7 Pn=sum(spectP (1: numpt /2))-Pdc -Ps;

SNR_IN =10* log10(Ps/Pn)

9

numpt = length(VOUT1w_n );

11 fin=find(VOUT1w_n (1: numpt /2)>-1);

spectP =(abs(VOUT1w )).*( abs(VOUT1w ));

13 span = 3;

Pdc=sum(spectP (1));

15 Ps=sum(spectP ([fin(1)-span:span+fin(1), fin(2)-span:span+fin (2)]));

Pn=sum(spectP (1: numpt /2))-Pdc -Ps;

17 SNR_UNCOR =10* log10(Ps/Pn)

19 numpt = length(VOUT2w_n );

fin=find(VOUT2w_n (1: numpt /2)>-1);

21 spectP =(abs(VOUT2w )).*( abs(VOUT2w ));

span = 3;

23 Pdc=sum(spectP (1));

Ps=sum(spectP ([fin(1)-span:span+fin(1), fin(2)-span:span+fin (2)]));

25 Pn=sum(spectP (1: numpt /2))-Pdc -Ps;

SNR_COR =10* log10(Ps/Pn)



128

./source code/splinta/TestNonLin02.m

multi_ADC_setup06;

2 LPF_Test03;

NonLinQuantizer03;

4 multi_ADC_5ptderivEst_cor01b;

fft_win_intl_an02;
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Appendix B

Split-SAR MATLAB Code

./source code/split sar/annotate fft.m

1 % Annotate Plots

% Basic Info

3 figure (21);

text( 500, -5, [’Vref = ’ num2str(Vref) ’ V’]);

5 text( 500, -10, [’Vin = ’ num2str(Vfrac) ’ Vref’]);

text( 500, -15, [’Vin = ’ num2str(Vfrac*Vref) ’ V’]);

7 text( 500, -20, [’Vin = ’ num2str (20* log10(Vfrac)) ’ dB’]);

text( 500, -25, [’Vin Freq = ’ num2str(fin_A) ’ Hz’]);

9

text( f(fh2i), -40, ’Second Harmonic ’, ’HorizontalAlignment ’, ’center ’);

11 text( f(fh2i), -45, [’Freq = ’ num2str(f(h2A_i)) ’ Hz’], ’HorizontalAlignment ’, ’center ’);

text( f(fh2i), -50, [num2str(h2A) ’ dB’], ’HorizontalAlignment ’, ’center ’);

13

text( f(fh3i), -40, ’Third Harmonic ’, ’HorizontalAlignment ’, ’center ’);

15 text( f(fh3i), -45, [’Freq = ’ num2str(f(h3A_i)) ’ Hz’], ’HorizontalAlignment ’, ’center ’);

text( f(fh3i), -50, [num2str(h3A) ’ dB’], ’HorizontalAlignment ’, ’center ’);

17

text( f(fh4i), -40, ’Fourth Harmonic ’, ’HorizontalAlignment ’, ’center ’);

19 text( f(fh4i), -45, [’Freq = ’ num2str(f(h4A_i)) ’ Hz’], ’HorizontalAlignment ’, ’center ’);

text( f(fh4i), -50, [num2str(h4A) ’ dB’], ’HorizontalAlignment ’, ’center ’);

21

text( f(fh5i), -40, ’Fifth Harmonic ’, ’HorizontalAlignment ’, ’center ’);

23 text( f(fh5i), -45, [’Freq = ’ num2str(f(h5A_i)) ’ Hz’], ’HorizontalAlignment ’, ’center ’);

text( f(fh5i), -50, [num2str(h5A) ’ dB’], ’HorizontalAlignment ’, ’center ’);

25

text( f(fh7i), -55, ’Seventh Harmonic ’, ’HorizontalAlignment ’, ’center ’);

27 text( f(fh7i), -60, [’Freq = ’ num2str(f(h7A_i)) ’ Hz’], ’HorizontalAlignment ’, ’center ’);

text( f(fh7i), -65, [num2str(h7A) ’ dB’], ’HorizontalAlignment ’, ’center ’);

29

% Figure 2 for SAR B

31 figure (22);

text( 500, -5, [’Vref = ’ num2str(Vref) ’ V’]);

33 text( 500, -10, [’Vin = ’ num2str(Vfrac) ’ Vref’]);

text( 500, -15, [’Vin = ’ num2str(Vfrac*Vref) ’ V’]);

35 text( 500, -20, [’Vin = ’ num2str (20* log10(Vfrac)) ’ dB’]);
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text( 500, -25, [’Vin Freq = ’ num2str(fin_A) ’ Hz’]);

37

text( f(fh2i), -40, ’Second Harmonic ’, ’HorizontalAlignment ’, ’center ’);

39 text( f(fh2i), -45, [’Freq = ’ num2str(f(h2B_i)) ’ Hz’], ’HorizontalAlignment ’, ’center ’);

text( f(fh2i), -50, [num2str(h2B) ’ dB’], ’HorizontalAlignment ’, ’center ’);

41

text( f(fh3i), -40, ’Third Harmonic ’, ’HorizontalAlignment ’, ’center ’);

43 text( f(fh3i), -45, [’Freq = ’ num2str(f(h3B_i)) ’ Hz’], ’HorizontalAlignment ’, ’center ’);

text( f(fh3i), -50, [num2str(h3B) ’ dB’], ’HorizontalAlignment ’, ’center ’);

45

text( f(fh4i), -40, ’Fourth Harmonic ’, ’HorizontalAlignment ’, ’center ’);

47 text( f(fh4i), -45, [’Freq = ’ num2str(f(h4B_i)) ’ Hz’], ’HorizontalAlignment ’, ’center ’);

text( f(fh4i), -50, [num2str(h4B) ’ dB’], ’HorizontalAlignment ’, ’center ’);

49

text( f(fh5i), -40, ’Fifth Harmonic ’, ’HorizontalAlignment ’, ’center ’);

51 text( f(fh5i), -45, [’Freq = ’ num2str(f(h5B_i)) ’ Hz’], ’HorizontalAlignment ’, ’center ’);

text( f(fh5i), -50, [num2str(h5B) ’ dB’], ’HorizontalAlignment ’, ’center ’);

53

text( f(fh7i), -55, ’Seventh Harmonic ’, ’HorizontalAlignment ’, ’center ’);

55 text( f(fh7i), -60, [’Freq = ’ num2str(f(h7B_i)) ’ Hz’], ’HorizontalAlignment ’, ’center ’);

text( f(fh7i), -65, [num2str(h7B) ’ dB’], ’HorizontalAlignment ’, ’center ’);
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./source code/split sar/DC linearity test V02.m

% DC_linearity_test_V02

2 % DC Lineartiy Test

% Imports pre -estimated weights , applies them to the pre -loaded DC points

4 % and finds the difference between the corrected and measured DC values.

% This version leaves out some of the values in each DC level to account

6 % for filtering out "bad" decisions

%

8

import_measured_DC_file(’../../ DC_levels_V2/Chip1_Measured_DC_Levels.csv’);

10 %load ’../ Estimated_Weights_sine_10 .04.08.01. mat ’;

%load ’../ Estimated_Weights_DC_10 .04.08.01. mat ’;

12 x_A_hat = D_A_bits_filtered * W_A_hat_final;

x_B_hat = D_B_bits_filtered * W_B_hat_final;

14

conv_DC_levels_A = zeros (1 ,101);

16 conv_DC_levels_B = zeros (1 ,101);

18 LSB = 3.6/2^16;

20 for i=1:101;

conv_DC_levels_A(i) = mean(x_A_hat ((i -1)*1310+1:i*1310 -256));

22 conv_DC_levels_B(i) = mean(x_B_hat ((i -1)*1310+1:i*1310 -256));

end

24

INL_A = conv_DC_levels_A -Measured_SAR_A ’;

26 INL_A = INL_A - mean(INL_A);

slope_A = linspace(INL_A(end),INL_A (1) ,101);

28 INL_A = INL_A + slope_A;

INL_A = INL_A/LSB;

30

INL_B = conv_DC_levels_B -Measured_SAR_B ’;

32 INL_B = INL_B - mean(INL_B);

slope_B = linspace(INL_B(end),INL_B (1) ,101);

34 INL_B = INL_B + slope_B;

INL_B = INL_B/LSB;

36

conv_DC_levels_avg = (conv_DC_levels_A+conv_DC_levels_B )/2;

38 Measures_SAR_avg = (Measured_SAR_B ’ + Measured_SAR_A ’)/2;

INL_avg = conv_DC_levels_avg - Measures_SAR_avg;

40 INL_avg = INL_avg - mean(INL_avg );

slope_avg = linspace(INL_avg(end),INL_avg (1) ,101);

42 INL_avg = INL_avg + slope_avg;

INL_avg = INL_avg/LSB;

44

x_ax = linspace (-1,1,101);

46

figure (1);

48 plot(x_ax ,INL_A);

title(’INL of SAR A’);

50 ylabel(’LSBs’);

xlabel(’V_{REF}’);

52 %axis([-1 1 -25 25]);

54 figure (2);

plot(x_ax ,INL_B);
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56 title(’INL of SAR B’);

ylabel(’LSBs’);

58 xlabel(’V_{REF}’);

%axis([-1 1 -25 50]);

60

figure (3);

62 plot(x_ax ,INL_avg );

title(’INL of Averaged SAR Output ’);

64 ylabel(’LSBs’);

xlabel(’V_{REF}’);

66 %axis([-1 1 -25 25]);

68 % Fit third order polynomial and remove from averaged INL

p_inl = polyfit(x_ax ,INL_avg ,3);

70 f_inl = polyval(p_inl ,x_ax);

INL_avg_no_3rd = INL_avg - f_inl;

72

figure (4);

74 %plot(x_ax ,INL_avg ); hold on;

%plot(x_ax ,f_inl); hold off;

76 plot(x_ax ,INL_avg_no_3rd );

title(’INL of Averaged SAR Output with Third Order Removed ’);

78 ylabel(’LSBs’);

xlabel(’V_{REF}’);
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./source code/split sar/dual ADC data import no limit No DOutP B.m

1 %Import data: Final data will be in actual_data , manipulate from there

% Auto -generated by MATLAB on 09-Sep -2009 11:28:02

3

% Import the file

5 newData1 = importdata(filename );

7 % Break the data up into a new structure with one field per column.

colheaders = genvarname(newData1.colheaders );

9 for i = 1: length(colheaders)

dataByColumn1 .( colheaders{i}) = newData1.data(:, i);

11 end

13 % Create new variables in the base workspace from those fields.

vars = fieldnames(dataByColumn1 );

15 for i = 1: length(vars)

assignin(’base’, vars{i}, int8(dataByColumn1 .(vars{i})));

17 end

19 clear vars; clear newData1; clear i; clear dataByColumn1; clear colheaders;

21 actual_data_A = DataOutP_A - DataOutN_A;

num_decisions = floor(length(actual_data_A )/20)*20;

23 actual_data_A = actual_data_A (1: num_decisions );

base_A = BaseOut_A (1: num_decisions );

25

DataOutP_B = int8(not(DataOutN_B ));

27 actual_data_B = DataOutP_B - DataOutN_B;

actual_data_B = actual_data_B (1: num_decisions );

29 base_B = BaseOut_B (1: num_decisions );
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./source code/split sar/fft sine V02.m

1 % Creating and plotting FFT

% Generate Window Function for x_A

3 window = blackman(length(sinewave_A ));

5 % Apply windowing for SAR A Output and normalize

blackman_sine_A_fft = abs(fft(sinewave_A .* window ));

7 blackman_sine_A_fft_dB = 20* log10(blackman_sine_A_fft );

FFT_A = blackman_sine_A_fft_dB - max(blackman_sine_A_fft_dB );

9 FFT_A_2 = FFT_A (1: floor(length(FFT_A )/2));

11 % Plot and label FFT for SAR A

f = linspace(0, fs/2, length(FFT_A_2 ));

13 figure (21);

plot(f,FFT_A_2 );

15 xlabel(’Frequency Hz’);

ylabel(’|FFT| dB’);

17 title([’FFT of SAR A Output Normalized to Vin = ’ num2str(Vfrac) ’ Vref’]);

ylim ([ -160 0]);

19

% Generate Window Function for x_B

21 window = blackman(length(sinewave_B ));

23 % Apply windowing for SAR B Output and normalize

blackman_sine_B_fft = abs(fft(sinewave_B .* window ));

25 blackman_sine_B_fft_dB = 20* log10(blackman_sine_B_fft );

FFT_B = blackman_sine_B_fft_dB - max(blackman_sine_B_fft_dB );

27 FFT_B_2 = FFT_B (1: floor(length(FFT_B )/2));

29 % Plot and label FFT for SAR B

f = linspace(0, fs/2, length(FFT_B_2 ));

31 figure (22);

plot(f,FFT_B_2 );

33 xlabel(’Frequency Hz’);

ylabel(’|FFT| dB’);

35 title([’FFT of SAR B Output Normalized to Vin = ’ num2str(Vfrac) ’ Vref’]);

ylim ([ -160 0]);

37

% Generate Window Function for x_avg

39 window = blackman(length(sinewave_avg ));

41 % Apply windowing for SAR avg Output and normalize

blackman_sine_avg_fft = abs(fft(sinewave_avg .* window ));

43 blackman_sine_avg_fft_dB = 20* log10(blackman_sine_avg_fft );

FFT_avg = blackman_sine_avg_fft_dB - max(blackman_sine_avg_fft_dB );

45 FFT_avg_2 = FFT_avg (1: floor(length(FFT_B )/2));

47 % Plot and label FFT for SAR B

f = linspace(0, fs/2, length(FFT_avg_2 ));

49 figure (23);

plot(f,FFT_avg_2 );

51 xlabel(’Frequency Hz’);

ylabel(’|FFT| dB’);

53 title([’FFT of Averaged SAR Output Normalized to Vin = ’ num2str(Vfrac) ’ Vref’]);

ylim ([ -160 0]);
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./source code/split sar/filter bad decs.m

% Filter out "Bad Decisions" containing 15 in the last bank

2

% Find "bad" decisions

4 bad_A = find(D_A_bits (:,50) == 15);

bad_B = find(D_B_bits (:,50) == 15);

6

% Combine the two , sort the indeces (not necessary) and remove duplicates

8 bad_decs = [bad_A; bad_B];

bad_decs = sort(bad_decs );

10 bad_decs = unique(bad_decs );

12 % Delete the bad entries

D_A_bits_filtered = D_A_bits;

14 D_A_bits_filtered(bad_decs ,:) = [];

D_B_bits_filtered = D_A_bits;

16 D_B_bits_filtered(bad_decs ,:) = [];



136

./source code/split sar/harmonic locations.m

% Find local harmonics based on known sampling frequency and sinewave input

2 % frequency

4 % Get the single sinewave input frequency

%fin_A = interp1(FFT_A ,f,0,’nearest ’);

6 fin_A = f(find(FFT_A == max(FFT_A )));

8 % Get Second Harmonic

[fh2 , fh2i] = min(abs(f-(2* fin_A )));

10 h2A = max(FFT_A(fh2i -50: fh2i +50));

h2A_i = find(FFT_A ==h2A);

12 h2B = max(FFT_B(fh2i -50: fh2i +50));

h2B_i = find(FFT_B ==h2B);

14

% Get Third Harmonic

16 [fh3 , fh3i] = min(abs(f-(fs -3* fin_A )));

h3A = max(FFT_A(fh3i -50: fh3i +50));

18 h3A_i = find(FFT_A ==h3A);

h3B = max(FFT_B(fh3i -50: fh3i +50));

20 h3B_i = find(FFT_B ==h3B);

22 % Get Fourth Harmonic

[fh4 , fh4i] = min(abs(f-(fs -4* fin_A )));

24 h4A = max(FFT_A(fh4i -500: fh4i +500));

h4A_i = find(FFT_A ==h4A);

26 h4B = max(FFT_B(fh4i -500: fh4i +500));

h4B_i = find(FFT_B ==h4B);

28

% Get Fifth Harmonic

30 [fh5 , fh5i] = min(abs(f-(fs -5* fin_A )));

h5A = max(FFT_A(fh5i -500: fh5i +500));

32 h5A_i = find(FFT_A ==h5A);

h5B = max(FFT_B(fh5i -500: fh5i +500));

34 h5B_i = find(FFT_B ==h5B);

36 % Get Seventh Harmonic

[fh7 , fh7i] = min(abs(f -(1.5*fs -7* fin_A )));

38 h7A = max(FFT_A(fh7i -500: fh7i +500));

h7A_i = find(FFT_A ==h7A);

40 h7B = max(FFT_B(fh7i -500: fh7i +500));

h7B_i = find(FFT_B ==h7B);
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./source code/split sar/import measured DC file.m

1 function import_measured_DC_file(fileToRead1)

%IMPORTFILE(FILETOREAD1)

3 % Imports data from the specified file

% FILETOREAD1: file to read

5

% Auto -generated by MATLAB on 08-Apr -2010 15:25:32

7

% Import the file

9 newData1 = importdata(fileToRead1 );

11 % Break the data up into a new structure with one field per column.

colheaders = genvarname(newData1.colheaders );

13 for i = 1: length(colheaders)

dataByColumn1 .( colheaders{i}) = newData1.data(:, i);

15 end

17 % Create new variables in the base workspace from those fields.

vars = fieldnames(dataByColumn1 );

19 for i = 1: length(vars)

assignin(’base’, vars{i}, dataByColumn1 .(vars{i}));

21 end
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./source code/split sar/reshape dual data shuffled banks1 3 V03.m

% Reshape the actual data into the 20bit by N conversion array

2 D_A_bits = reshape_shuffled_bank1_3_data_fcn(actual_data_A , base_A );

D_B_bits = reshape_shuffled_bank1_3_data_fcn(actual_data_B , base_B );

4

6 % Get the data output using the starting weights

x_A = D_A_bits * W_A - OS_init /2;

8 x_B = D_B_bits * W_B + OS_init /2;
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./source code/split sar/reshape shuffled bank1 3 data fcn.m

function [segmented_data] = reshape_shuffled_bank1_3_data_fcn(data_in , base);

2 %**************************************************************************

% Function: reshape_shuffled_bank1_3_data_fcn

4 % [segmented_data] = reshape_shuffled_bank1_3_data_fcn(data_in , base)

% This function takes in two vectors from the Split SAR , a decisions vector

6 % and a base vector , both stored as 8-bit integers consisting of -1, 0 or 1

% This function then reshapes the data vector and uses the base codes to

8 % construct a segmented_data matrix (also 8-bit signed integers) that

% breaks down the top three bank decisions into individual segments.

10 % The result is a Nx50 matrix , where N is the number of samples. The

% first 48 colums are the segmented decisions from banks 1 through 3.

12 % The last two are the summed decisions of banks 4 and 5. Banks 4 and 5

% are weighted as powers of 2.

14 %

% Inputs:

16 % data_in = An 8-bit signed integer vector of -1s and 1s of each bit

% decision from the SAR.

18 %

% base = An 8-bit signed integer vector of 0s and 1s representing the

20 % base code used for each bank.

%

22 % Outputs:

% segmented_data = a Nx50 8-bit signed integer matrix of the segmented

24 % decisions from the SAR

%

26 %**************************************************************************

28 %reshape the actual data into the 20bit by number of samples conversion array

num_samples = length(data_in )/20;

30 D = reshape(double(data_in), 20, num_samples )’;

32 % Divide up individual bank decisions

D_bank1_bits = D(: ,1:4);

34 D_bank2_bits = D(: ,5:8);

D_bank3_bits = D(: ,9:12);

36 D_bank4_bits = D(: ,13:16);

D_bank5_bits = D(: ,17:20);

38

% Weight the banks 4 and 5 decisions by powers of 2 (8 4 2 1)

40 D_bank4_decs = D_bank4_bits .* repmat ([8 4 2 1], num_samples , 1);

D_bank5_decs = D_bank5_bits .* repmat ([8 4 2 1], num_samples , 1);

42

% Sum banks 4 and 5 powers of 2 decisions

44 D_bank4_sum = sum(D_bank4_decs ,2);

D_bank5_sum = sum(D_bank5_decs ,2);

46

base_bits = reshape(base , 20, num_samples )’;

48 % Get the Base Bits for Bank 1

bank1_bits = base_bits (: ,1:4);

50 % Get the Base Bits for Bank 2

bank2_bits = base_bits (: ,5:8);

52 % Get the Base Bits for Bank 3

bank3_bits = base_bits (: ,9:12);

54 % Set up Base Code Weights

base_code_weights = [1; 2; 4; 8];
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56 % Calculate the value of each base code for bank 1

bank1_codes = double(bank1_bits) * base_code_weights;

58 % Calculate the value of each base code for bank 2

bank2_codes = double(bank2_bits) * base_code_weights;

60 % Calculate the value of each base code for bank 3

bank3_codes = double(bank3_bits) * base_code_weights;

62

% Initialize the segment matrix with the expanded bank 1 segments

64 segmented_data = zeros(num_samples ,50);

66 % Convention: Base Number indiactes the position of the unused unit cap

% For example: Base Code = 0 gives the following segment

68 % 0 d1 d1 d1 d1 d1 d1 d1 d1 d2 d2 d2 d2 d3 d3 d4

% Base Code = 6 gives the following segment

70 % d2 d2 d2 d3 d3 d4 0 d1 d1 d1 d1 d1 d1 d1 d1 d2

72 % Set up the full segment matrix using the bank1 base codes

for i = 1: num_samples;

74 %for i = 1:1;

% Start with expanded segment with the unused cap in position 0

76 bank1_segment = [0 repmat(D_bank1_bits(i,1),1,8) ,...

repmat(D_bank1_bits(i,2) ,1 ,4),...

78 repmat(D_bank1_bits(i,3),1,2) D_bank1_bits(i,4)];

80 bank2_segment = [0 repmat(D_bank2_bits(i,1),1,8) ,...

repmat(D_bank2_bits(i,2) ,1 ,4),...

82 repmat(D_bank2_bits(i,3),1,2) D_bank2_bits(i,4)];

84 bank3_segment = [0 repmat(D_bank3_bits(i,1),1,8) ,...

repmat(D_bank3_bits(i,2) ,1 ,4),...

86 repmat(D_bank3_bits(i,3),1,2) D_bank3_bits(i,4)];

88 % Then shift the bank segments based on the bank base code number

bank1_segment = circshift(bank1_segment , [0 bank1_codes(i)]);

90 bank2_segment = circshift(bank2_segment , [0 bank2_codes(i)]);

bank3_segment = circshift(bank3_segment , [0 bank3_codes(i)]);

92

segmented_data(i,:) = [bank1_segment bank2_segment bank3_segment ,...

94 D_bank4_sum(i) D_bank5_sum(i)];

end
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./source code/split sar/run dual data without DOutP B v01.m

1 clear all;

close all;

3

5 %filename = ’./ Modified_ref_buffers/Tri2Hz_base0_SAR_A_DOutP_B_Off_100k .09.10.15.01. txt ’

filename = ’./ Modified_ref_buffers/Tri2Hz_base0_SAR_A_only_100k .09.10.15.01. txt’

7

single_ADC_data_import_v02;

9

actual_data = actual_data_A;

11 figure (1);

reshape_single_data_fixed_LSBs;

13 title(’Triangle Wave with Ideal Weights for SAR A’);

calculate_weights_v02;

15 figure (2);

INL_calculation;

17 title(’INL with Fixed Base for SAR A’);

19 % DataOutP_B = int8(not(DataOutN_B ));

% actual_data_B = DataOutP_B - DataOutN_B;

21 % actual_data_B = actual_data_B (1:2097140);

% actual_data = actual_data_B;

23 % figure (3);

% reshape_single_data_fixed_LSBs;

25 % title(’Triangle Wave with Ideal Weights for SAR B’);

% calculate_weights_v02;

27 % figure (4);

% INL_calculation;

29 % title(’INL with Fixed Base for SAR B’);
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./source code/split sar/run sine test v02.m

1 % Split SAR Sinewave Test

3

sinewave_A = D_A_bits * W_A;

5 sinewave_B = D_B_bits * W_B;

7 % sinewave_A = D_A_bits * W_A_hat_final;

% sinewave_B = D_B_bits * W_B_hat_final;

9

sinewave_avg = (sinewave_A+sinewave_B )/2;

11

fft_sine_V02;

13

SNDR_V02;

15

% harmonic_locations;

17 % annotate_fft;
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./source code/split sar/run split SAR test v02.m

% Split SAR Delta X Calibration Test

2 close all;

clear all;

4

fs = 100E3;

6 Vref = 1.8;

Vfrac = 0.96;

8

%filename = ’../ Bias_changes/Sine18kHz_1 .8Vpk_0.9 Vvcm_SARAB_shuffled_10 .01.29.01. txt ’;

10 %filename = ’../ Noise_testing/Sine18kHz_FS_500uA_SARAB_shuffled_10 .03.30.01. txt ’;

%filename = ’../ Noise_testing/FG_0.9 Vdc_500uA_SARAB_shuffled .10.31.03.01. txt ’;

12 %filename = ’../ Noise_testing/Sine18kHz_quarter_scale_430uA_SARAB_shuffled_10 .31.03.01. txt ’;

filename = ’../ DC_levels_V2 /101 _DC_Levels_500uA_SARAB_shuffled_10 .31.03.01. txt’;

14

%weightsfile = ’SAR_Chip1_Vcm0 .92 _DAC_Weights_2010 .01.20.txt ’;

16 %weightsfile = ’SAR_Chip1_fixed_bias_Vcm0 .9 _DAC_shuffled_Weights_2010 .02.03.txt ’;

18 %import_weights_file;

20 %Setup Initial Weights

hs = 1.8; % Half -Scale voltage

22 init_seg1_weights = repmat(hs/2^4 ,16 ,1);

init_seg2_weights = repmat(hs/2^7 ,16 ,1);

24 init_seg3_weights = repmat(hs/2^10 ,16 ,1);

other_seg_weights = [hs /2^13; hs /2^16];

26

init_weights = [init_seg1_weights; init_seg2_weights ;...

28 init_seg3_weights; other_seg_weights ];

30 %Initial offset

OS_init = 0;

32

W_A = init_weights;

34 W_B = init_weights;

36

dual_ADC_data_import_No_DOutP_B;

38

reshape_dual_data_shuffled_banks1_3_V03;
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./source code/split sar/run split SAR test v03.m

1 % Split SAR Delta X Calibration Test

close all;

3 clear all;

5 fs = 100E3;

Vref = 1.8;

7 Vfrac = 0.96;

9 filename = ’../ Bias_changes/Sine18kHz_1 .8Vpk_0 .9 Vvcm_SARAB_shuffled_10 .01.29.01. txt’;

%filename = ’../ Noise_testing/Sine18kHz_FS_500uA_SARAB_shuffled_10 .03.30.01. txt ’;

11 %filename = ’../ Noise_testing/Grounded_SARAB_shuffled_10 .04.08.01. txt ’;

%filename = ’../ Noise_testing/FG_0.9 Vdc_500uA_SARAB_shuffled .10.31.03.01. txt ’;

13 %filename = ’../ Noise_testing/FG_1.8 Vdc_no_bias_adjustment_SARAB_shuffled .10.30.03.01. txt ’;

%filename = ’../ Noise_testing/Sine18kHz_quarter_scale_430uA_SARAB_shuffled_10 .31.03.01. txt ’;

15

%filename = ’../../ Chip2/Sine18kHz_FS_SARAB_shuffled_10 .04.07.01. txt ’;

17 %filename = ’../../ Chip25/Sine18kHz_FS_SARAB_shuffled_10 .04.07.01. txt ’;

%filename = ’../../ Chip7/Sine18kHz_FS_SARAB_shuffled_10 .04.07.01. txt ’;

19

%weightsfile = ’SAR_Chip1_Vcm0 .92 _DAC_Weights_2010 .01.20.txt ’;

21 %weightsfile = ’SAR_Chip1_fixed_bias_Vcm0 .9 _DAC_shuffled_Weights_2010 .02.03.txt ’;

23 %import_weights_file;

25 %Setup Initial Weights

hs = 1.8; % Half -Scale voltage

27 init_seg1_weights = repmat(hs/2^4 ,16 ,1);

init_seg2_weights = repmat(hs/2^7 ,16 ,1);

29 init_seg3_weights = repmat(hs/2^10 ,16 ,1);

other_seg_weights = [hs /2^13; hs /2^16];

31

init_weights = [init_seg1_weights; init_seg2_weights ;...

33 init_seg3_weights; other_seg_weights ];

35 %Initial offset

OS_init = 0;

37

W_A = init_weights;

39 W_B = init_weights;

41

dual_ADC_data_import_no_limit_No_DOutP_B;

43

reshape_dual_data_shuffled_banks1_3_V03;

45

splitcal_V02i;

47 %splitcal_V02j2;

49 run_sine_test_v02;
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./source code/split sar/SNDR V02.m

1 % Calculate SNDR for SAR A

numpt = length(blackman_sine_A_fft );

3 % Find all frequencies that are NOT the input signal

fin=find(FFT_A (1: floor(numpt /2))> -1);

5 % Set span "window" for number of bins around the input frequency

span = 25;

7 % Get maximum value of noise floor

noise_level = max(FFT_A (50:250));

9 % Find bins with levels above noise floor

fhd = find(FFT_A (50: floor(numpt /2)) > (noise_level +2)) + 49;

11 % Remove levels associated with input signal to get only the harmonic bins

fhd = fhd( find(fhd > fin + span ));

13

% Get total spectral power

15 spectP =(abs(blackman_sine_A_fft )).*( abs(blackman_sine_A_fft ));

17 Pdc=sum(spectP (1:1+ span ));

Ps=sum(spectP(fin -span:fin+span ));

19 Phd=sum(spectP(fhd));

Pn=sum(spectP (1: floor(numpt /2))) -Pdc -Ps -Phd;

21 SNR_SAR_A = 10* log10((Ps)/Pn)

THD_SAR_A = 10* log10((Phd)/Ps)

23 SNDR_SAR_A =10* log10((Ps+Pdc)/Pn)

%%

25 % Calculate SNDR for SAR B

numpt = length(blackman_sine_B_fft );

27 % Find all frequencies that are NOT the input signal

fin=find(FFT_B (1: floor(numpt /2))> -1);

29

% Set span "window" for number of bins around the input frequency

31 span = 25;

% Get maximum value of noise floor

33 noise_level = max(FFT_B (50:250));

% Find bins with levels above noise floor

35 fhd = find(FFT_B (50: floor(numpt /2)) > (noise_level +2)) + 49;

% Remove levels associated with input signal to get only the harmonic bins

37 fhd = fhd( find(fhd > fin + span ));

39 % Get total spectral power

spectP =(abs(blackman_sine_B_fft )).*( abs(blackman_sine_B_fft ));

41

Pdc=sum(spectP (1:1+ span ));

43 Ps=sum(spectP(fin -span:fin+span ));

Phd=sum(spectP(fhd));

45 Pn=sum(spectP (1: floor(numpt /2)))-Pdc -Ps -Phd;

SNR_SAR_B = 10* log10((Ps)/Pn)

47 THD_SAR_B = 10* log10((Phd)/Ps)

SNDR_SAR_B =10* log10((Ps+Pdc)/Pn)

49

% Calculate SNDR for SAR avg

51 numpt = length(blackman_sine_avg_fft );

% Find all frequencies that are NOT the input signal

53 fin=find(FFT_avg (1: floor(numpt /2)) >-1);

55 % Set span "window" for number of bins around the input frequency
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span = 25;

57 % Get maximum value of noise floor

noise_level = max(FFT_avg (50:250));

59 % Find bins with levels above noise floor

fhd = find(FFT_avg (50: floor(numpt /2)) > (noise_level +2)) + 49;

61 % Remove levels associated with input signal to get only the harmonic bins

fhd = fhd( find(fhd > fin + span ));

63

% Get total spectral power

65 spectP =(abs(blackman_sine_avg_fft )).*( abs(blackman_sine_avg_fft ));

%spectP =(abs(FFT_avg )).*( abs(FFT_avg ));

67

Pdc=sum(spectP (1:1+ span ));

69 Ps=sum(spectP(fin -span:fin+span ));

Phd=sum(spectP(fhd));

71 Pn=sum(spectP (1: floor(numpt /2)))-Pdc -Ps -Phd;

SNR_SAR_avg = 10* log10 ((Ps)/Pn)

73 THD_SAR_avg = 10* log10 ((Phd)/Ps)

SNDR_SAR_avg =10* log10((Ps+Pdc)/Pn)
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./source code/split sar/splitcalplot SAR AB V01a.m

% splitcalplot

2

% plot results of split cal

4 figure (1)

plot(delta_x_track ’)

6 title(’delta x track’)

8 figure (2)

plot(OS_hat_track)

10 title(’offset ’)

12 % Plot SAR A Weights and Errors

14 figure (3)

plot(eps_A_hat_track ’)

16 title(’SAR A Weight Errors (Epsilon hat)’)

18 figure (4)

plot(( W_A_hat_track (:,:)- repmat(W_A_hat_final ,1,num_iters ))’)

20 title(’SAR A Weight Error ’)

22 figure (5)

semilogy(abs(( W_A_hat_track (:,1:(end -1))- repmat(W_A_hat_final ,1,num_iters -1)) ’))

24 title(’SAR A Weight Error ’)

26 figure (6)

semilogy(abs(( W_A_hat_track (:,1:(end -1))- repmat(W_A_hat_final ,1,num_iters -1))’), ...

28 ’k’,’linewidth ’ ,1)

title(’SEGMENT WEIGHT ERROR ’)

30 ylim ([1e-9 3e-3])

%xlim ([0 2000])

32 grid on

34 figure (7)

hold off

36 semilogy(abs(( W_A_hat_track (:,1:(end -1))- repmat(W_A_hat_final ,1,num_iters -1))’), ...

’Color’ ,[.5 .5 .5 ],’linewidth ’ ,1)

38 hold on

semilogy(std(( W_A_hat_track (:,1:(end -1))- repmat(W_A_hat_final ,1,num_iters -1))) , ...

40 ’k’,’linewidth ’ ,2)

title(’SEGMENT WEIGHT ERROR ’)

42 ylim ([1e-9 3e-3])

%xlim ([0 2000])

44 grid on

46 figure (8)

plot(filt_eps_A_hat_track (1:16 ,:) ’)

48 title(’SAR A Filtered Epsilons 1-16’)

50 figure (9)

plot(std(filt_eps_A_hat_track (1:16 ,:) ’))

52 title(’std SAR A Filtered Epsilons 1-16’)

54 figure (10)

plot(W_A_hat_track (1:16,:)’,’k’,’linewidth ’ ,2)
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56 title(’SEGMENT WEIGHTS ’)

%xlim ([0 1000])

58

figure (11)

60 subplot (5,3,1)

plot(W_A_hat_track (1:16 ,:) ’)

62 title(’A weights 1-16’)

subplot (5,3,4)

64 plot(W_A_hat_track (17:32 ,:) ’)

title(’block 2’)

66 subplot (5,3,7)

plot(W_A_hat_track (33:48 ,:) ’)

68 title(’block 3’)

subplot (5,3,10)

70 plot(W_A_hat_track (49:50 ,:) ’)

title(’BLOCKS 4, 5’)

72 subplot (5,3,13)

plot(OS_hat_track)

74 title(’offset ’)

subplot (5,3,2)

76 plot(eps_A_hat_track (1:16 ,:) ’)

title(’A epsilon 1-16’)

78 subplot (5,3,5)

plot(eps_A_hat_track (17:32 ,:) ’)

80 title(’A epsilon 17-32’)

subplot (5,3,8)

82 plot(eps_A_hat_track (33:48 ,:) ’)

title(’A epsilon 33-48’)

84 subplot (5,3,11)

plot(eps_A_hat_track (49:50 ,:) ’)

86 title(’A epsilon 49,50’)

subplot (5,3,14)

88 plot(eps_os_hat_track ’)

title(’Epsilon Offset ’)

90 subplot (5,3,3)

plot(filt_eps_A_hat_track (1:16 ,:) ’)

92 title(’A filt epsilon 1-16’)

subplot (5,3,6)

94 plot(filt_eps_A_hat_track (17:32 ,:) ’)

title(’A filt epsilon 17-32’)

96 subplot (5,3,9)

plot(filt_eps_A_hat_track (33:48 ,:) ’)

98 title(’A filt epsilon 33-48’)

subplot (5,3,12)

100 plot(filt_eps_A_hat_track (49:50 ,:) ’)

title(’A filt epsilon 49,50’)

102 subplot (5,3,12)

plot(filt_eps_os_hat_track ’)

104 title(’Filtered Epsilon Offset ’)

106

% Plot SAR B Weights and Errors

108

110 figure (12)

plot(eps_B_hat_track ’)

112 title(’SAR B Weight Errors (Epsilon_hat)’)
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114 figure (13)

plot(( W_B_hat_track (:,:)- repmat(W_B_hat_final ,1,num_iters ))’)

116 title(’SAR B Weight Error ’)

118 figure (14)

semilogy(abs(( W_B_hat_track (:,1:(end -1))- repmat(W_B_hat_final ,1,num_iters -1)) ’))

120 title(’SAR B Weight Error ’)

122 figure (15)

semilogy(abs(( W_B_hat_track (:,1:(end -1))- repmat(W_B_hat_final ,1,num_iters -1))’), ...

124 ’k’,’linewidth ’ ,1)

title(’SEGMENT WEIGHT ERROR ’)

126 ylim ([1e-9 3e-3])

%xlim ([0 2000])

128 grid on

130 figure (16)

hold off

132 semilogy(abs(( W_B_hat_track (:,1:(end -1))- repmat(W_B_hat_final ,1,num_iters -1))’), ...

’Color’ ,[.5 .5 .5 ],’linewidth ’ ,1)

134 hold on

semilogy(std(( W_B_hat_track (:,1:(end -1))- repmat(W_B_hat_final ,1,num_iters -1))) , ...

136 ’k’,’linewidth ’ ,2)

title(’SEGMENT WEIGHT ERROR ’)

138 ylim ([1e-9 3e-3])

%xlim ([0 2000])

140 grid on

142 figure (17)

plot(filt_eps_B_hat_track (1:16 ,:) ’)

144 title(’SAR A Filtered Epsilons 1-16’)

146 figure (18)

plot(std(filt_eps_B_hat_track (1:16 ,:) ’))

148 title(’std SAR A Filtered Epsilons 1-16’)

150 figure (19)

plot(W_B_hat_track (1:16,:)’,’k’,’linewidth ’ ,2)

152 title(’SEGMENT WEIGHTS ’)

%xlim ([0 1000])

154

figure (20)

156 subplot (5,3,1)

plot(W_B_hat_track (1:16 ,:) ’)

158 title(’B weights 1-16’)

subplot (5,3,4)

160 plot(W_B_hat_track (17:32 ,:) ’)

title(’block 2’)

162 subplot (5,3,7)

plot(W_B_hat_track (33:48 ,:) ’)

164 title(’block 3’)

subplot (5,3,10)

166 plot(W_B_hat_track (49:50 ,:) ’)

title(’BLOCKS 4, 5’)

168 subplot (5,3,13)

plot(OS_hat_track)
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170 title(’offset ’)

subplot (5,3,2)

172 plot(eps_B_hat_track (1:16 ,:) ’)

title(’B epsilon 1-16’)

174 subplot (5,3,5)

plot(eps_B_hat_track (17:32 ,:) ’)

176 title(’B epsilon 17-32’)

subplot (5,3,8)

178 plot(eps_B_hat_track (33:48 ,:) ’)

title(’B epsilon 33-48’)

180 subplot (5,3,11)

plot(eps_B_hat_track (49:50 ,:) ’)

182 title(’B epsilon 49,50’)

subplot (5,3,14)

184 plot(eps_B_hat_track ’)

title(’B epsilon offset ’)

186 subplot (5,3,3)

plot(filt_eps_B_hat_track (1:16 ,:) ’)

188 title(’B filt epsilon 1-16’)

subplot (5,3,6)

190 plot(filt_eps_B_hat_track (17:32 ,:) ’)

title(’B filt epsilon 17-32’)

192 subplot (5,3,9)

plot(filt_eps_B_hat_track (33:48 ,:) ’)

194 title(’B filt epsilon 33-48’)

subplot (5,3,12)

196 plot(filt_eps_B_hat_track (49:50 ,:) ’)

title(’B filt epsilon 49,50’)

198 subplot (5,3,12)

plot(filt_eps_os_hat_track ’)

200 title(’Filtered Epsilon Offset ’)
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./source code/split sar/splitcal V02i.m

% Split SAR Calibration Algorithm Vers. 2 I

2 % Use iterative method without permutation of data blocks

% (Strongly) Force average of weights to be constant

4 % Track Weights and Errors after each block (of block_size)

6 % Initialize variables

num_weights = length(init_weights );

8

% Get the starting average of the total weights (A and B);

10 mean_total_init_weights = mean(init_weights );

12 % Calculated Epsilon Values

eps_A_hat = zeros(num_weights ,1);

14 eps_B_hat = zeros(num_weights ,1);

eps_os_hat = 0;

16

% Filtered Epsilon Values

18 % Since direct pinv method is used in this version , the filtered epsilon

% values will be equal to the calculated epsilon values

20 filt_eps_A_hat = zeros(num_weights ,1);

filt_eps_B_hat = zeros(num_weights ,1);

22 filt_eps_os_hat = 0;

24 W_A_hat = init_weights;

W_B_hat = init_weights;

26 OS_hat = 0;

28 % Setup Run Lengths

30 % data_set_length is the length of the importated data set

data_set_length = length(D_A_bits );

32

num_sets = 10;

34

data_length = num_sets * data_set_length;

36

% Permutation would go here

38 % For now , just use iterations;

40 dec_A = zeros(data_length , num_weights );

dec_B = zeros(data_length , num_weights );

42

for k = 1: num_sets;

44 seq = 1: data_set_length;

%seq = randperm(data_set_length );

46 dec_A( ((k-1)* data_set_length )+1:(k*data_set_length), :) = ...

D_A_bits(seq ,:);

48 %seq = randperm(data_set_length );

dec_B( ((k-1)* data_set_length )+1:(k*data_set_length), :) = ...

50 D_B_bits(seq ,:);

end

52

% Calculate total run length and number of iterations

54

num_runs = 10; % Set the number of runs used with this data set
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56

run_length = data_length; % Get total run length

58

block_size = 2^8; % Set block size

60

% Get total number of iterations used

62 num_iters = floor(data_length/block_size) * num_runs;

64 % Initialize variables used to keep track of Weights and Epsilons (errors)

66 % Track calculated epsilons

eps_A_hat_track = zeros(num_weights ,num_iters );

68 eps_B_hat_track = zeros(num_weights ,num_iters );

eps_os_hat_track = zeros(1,num_iters );

70

% Track filtered epsilons

72 filt_eps_A_hat_track = zeros(num_weights ,num_iters );

filt_eps_B_hat_track = zeros(num_weights ,num_iters );

74 filt_eps_os_hat_track = zeros(1, num_iters );

76 % Track estimated weights

W_A_hat_track = zeros(num_weights ,num_iters );

78 W_B_hat_track = zeros(num_weights ,num_iters );

OS_hat_track = zeros(1,num_iters );

80

% Track delta_x values

82 % Force avg error set to zero (the reason for the +2)

%delta_x_track = zeros(block_size + 2,num_iters );

84 delta_x_track = zeros(block_size + 1,num_iters );

86 % Set LMS loop parameters

mu_e = 2^-6;

88 mu_w = 2^ -15;

90

% Initialize iteration count;

92 iter_cntr = 1;

94 for run_cntr = 1: num_runs;

for i = 1: block_size:run_length -block_size;

96

% First apply current weights and offsets to find x_hat values

98

dec_A_i = dec_A(i: (i+block_size) -1,:);

100 dec_B_i = dec_B(i: (i+block_size) -1,:);

102 x_A_hat = dec_A_i * W_A_hat - OS_hat /2;

x_B_hat = dec_B_i * W_B_hat + OS_hat /2;

104

% Then calculate delta_x and record those values

106 % Force average error to be zero

delta_x = x_B_hat - x_A_hat;

108 delta_x = [delta_x; 0];

110 delta_x_track (:,iter_cntr) = delta_x;

112 % Generate the estimation matrix using the decisions
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% Force the sum of the errors to be zero

114 est_mat = [ -dec_A_i dec_B_i ones(block_size ,1)];

est_mat = [est_mat; block_size*ones (1,2* num_weights) 0];

116

% Calculate estimated errors using pinv method

118 %[epsilons] = pinv(est_mat) * delta_x;

epsilons = sign(est_mat ’) * delta_x;

120

eps_A_hat = epsilons (1: num_weights );

122 eps_B_hat = epsilons(num_weights +1:2* num_weights );

eps_os_hat = epsilons(end);

124

% Record calculated epsilons

126 eps_A_hat_track (:, iter_cntr) = eps_A_hat;

eps_B_hat_track (:, iter_cntr) = eps_B_hat;

128 eps_os_hat_track(iter_cntr) = eps_os_hat;

130 % Filter epsilons with LMS loop

132 filt_eps_A_hat = (1-mu_e)* filt_eps_A_hat + mu_e * eps_A_hat;

filt_eps_B_hat = (1-mu_e)* filt_eps_B_hat + mu_e * eps_B_hat;

134 filt_eps_os_hat = (1-mu_e)* filt_eps_os_hat + mu_e * eps_os_hat;

136 % Record calculated epsilons

filt_eps_A_hat_track (:,iter_cntr) = filt_eps_A_hat;

138 filt_eps_B_hat_track (:,iter_cntr) = filt_eps_B_hat;

filt_eps_os_hat_track(iter_cntr) = filt_eps_os_hat;

140

% Get new wieghts using old weights

142 W_A_hat = W_A_hat - mu_w * filt_eps_A_hat;

W_B_hat = W_B_hat - mu_w * filt_eps_B_hat;

144

% Force the average total weights to remain constant

146 % (But allow A and B Weights to have different gains)

W_hat = [W_A_hat; W_B_hat ];

148 W_mean_gain = mean_total_init_weights/mean(W_hat);

W_A_hat = W_A_hat * W_mean_gain;

150 W_B_hat = W_B_hat * W_mean_gain;

152 OS_hat = OS_hat - mu_w * filt_eps_os_hat;

154 W_A_hat_track (:,iter_cntr) = W_A_hat;

W_B_hat_track (:,iter_cntr) = W_B_hat;

156 OS_hat_track (:, iter_cntr) = OS_hat;

158 % Increase the Iteration Counter

iter_cntr = iter_cntr + 1;

160 end

162 Run_Count = run_cntr

end

164

% Get the sums of the calculated epsilons

166 sum_eps_A_hat = sum(eps_A_hat_track );

sum_eps_B_hat = sum(eps_B_hat_track );

168

% Get the sums of the filtered epsilons
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170 sum_filt_eps_A_hat = sum(filt_eps_A_hat_track );

sum_filt_eps_B_hat = sum(filt_eps_B_hat_track );

172

W_A_hat_final = mean(W_A_hat_track (:,(end -100): end),2);

174 W_B_hat_final = mean(W_B_hat_track (:,(end -100): end),2);

OS_hat_final = mean(OS_hat_track (:,(end -100): end),2);
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./source code/split sar/splitcal V02j2.m

1 % Split SAR Calibration Algorithm Vers. 2 J

% Use iterative method without permutation of data blocks

3 % (Strongly) Force average of weights to be constant

% This is broken down by each bank of weights in an attempt to fix

5 % DC convergence

% Track Weights and Errors after each block (of block_size)

7

% Initialize variables

9 num_weights = length(init_weights );

11 % Get the starting average of the total weights (A and B);

mean_init_weights_bank_12 = mean(init_weights (1:32));

13 mean_init_weights_bank_345 = mean(init_weights (33:50));

15 % Calculated Epsilon Values

eps_A_hat = zeros(num_weights ,1);

17 eps_B_hat = zeros(num_weights ,1);

eps_os_hat = 0;

19

% Filtered Epsilon Values

21 % Since direct pinv method is used in this version , the filtered epsilon

% values will be equal to the calculated epsilon values

23 filt_eps_A_hat = zeros(num_weights ,1);

filt_eps_B_hat = zeros(num_weights ,1);

25 filt_eps_os_hat = 0;

27 W_A_hat = init_weights;

W_B_hat = init_weights;

29 OS_hat = 0;

31 % Setup Run Lengths

33 % data_set_length is the length of the importated data set

data_set_length = length(D_A_bits );

35

num_sets = 10;

37

data_length = num_sets * data_set_length;

39

% Permutation would go here

41 % For now , just use iterations;

43 dec_A = zeros(data_length , num_weights );

dec_B = zeros(data_length , num_weights );

45

for k = 1: num_sets;

47 seq = 1: data_set_length;

%seq = randperm(data_set_length );

49 dec_A( ((k-1)* data_set_length )+1:(k*data_set_length), :) = ...

D_A_bits(seq ,:);

51 %seq = randperm(data_set_length );

dec_B( ((k-1)* data_set_length )+1:(k*data_set_length), :) = ...

53 D_B_bits(seq ,:);

end

55



156

% Calculate total run length and number of iterations

57

num_runs = 15; % Set the number of runs used with this data set

59

run_length = data_length; % Get total run length

61

block_size = 2^12; % Set block size

63

% Get total number of iterations used

65 num_iters = floor(data_length/block_size) * num_runs;

67 % Initialize variables used to keep track of Weights and Epsilons (errors)

69 % Track calculated epsilons

eps_A_hat_track = zeros(num_weights ,num_iters );

71 eps_B_hat_track = zeros(num_weights ,num_iters );

eps_os_hat_track = zeros(1,num_iters );

73

% Track filtered epsilons

75 filt_eps_A_hat_track = zeros(num_weights ,num_iters );

filt_eps_B_hat_track = zeros(num_weights ,num_iters );

77 filt_eps_os_hat_track = zeros(1, num_iters );

79 % Track estimated weights

W_A_hat_track = zeros(num_weights ,num_iters );

81 W_B_hat_track = zeros(num_weights ,num_iters );

OS_hat_track = zeros(1,num_iters );

83

% Track delta_x values

85 % Force avg error set to zero (the reason for the +2)

%delta_x_track = zeros(block_size + 2,num_iters );

87 delta_x_track = zeros(block_size + 1,num_iters );

89 % Set LMS loop parameters

mu_e = 2^-6;

91 mu_w = 2^ -15;

93

% Initialize iteration count;

95 iter_cntr = 1;

97 for run_cntr = 1: num_runs;

for i = 1: block_size:run_length -block_size;

99

% First apply current weights and offsets to find x_hat values

101

dec_A_i = dec_A(i: (i+block_size) -1,:);

103 dec_B_i = dec_B(i: (i+block_size) -1,:);

105 x_A_hat = dec_A_i * W_A_hat - OS_hat /2;

x_B_hat = dec_B_i * W_B_hat + OS_hat /2;

107

% Then calculate delta_x and record those values

109 % Force average error to be zero

delta_x = x_B_hat - x_A_hat;

111 delta_x = [delta_x; 0];
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113 delta_x_track (:,iter_cntr) = delta_x;

115 % Generate the estimation matrix using the decisions

% Force the sum of the errors to be zero

117 est_mat = [ -dec_A_i dec_B_i ones(block_size ,1)];

est_mat = [est_mat; block_size*ones (1,2* num_weights) 0];

119

% Calculate estimated errors using pinv method

121 %[epsilons] = pinv(est_mat) * delta_x;

epsilons = sign(est_mat ’) * delta_x;

123

eps_A_hat = epsilons (1: num_weights );

125 eps_B_hat = epsilons(num_weights +1:2* num_weights );

eps_os_hat = epsilons(end);

127

% Record calculated epsilons

129 eps_A_hat_track (:, iter_cntr) = eps_A_hat;

eps_B_hat_track (:, iter_cntr) = eps_B_hat;

131 eps_os_hat_track(iter_cntr) = eps_os_hat;

133 % Filter epsilons with LMS loop

135 filt_eps_A_hat = (1-mu_e)* filt_eps_A_hat + mu_e * eps_A_hat;

filt_eps_B_hat = (1-mu_e)* filt_eps_B_hat + mu_e * eps_B_hat;

137 filt_eps_os_hat = (1-mu_e)* filt_eps_os_hat + mu_e * eps_os_hat;

139 % Record calculated epsilons

filt_eps_A_hat_track (:,iter_cntr) = filt_eps_A_hat;

141 filt_eps_B_hat_track (:,iter_cntr) = filt_eps_B_hat;

filt_eps_os_hat_track(iter_cntr) = filt_eps_os_hat;

143

% Get new wieghts using old weights

145 W_A_hat = W_A_hat - mu_w * filt_eps_A_hat;

W_B_hat = W_B_hat - mu_w * filt_eps_B_hat;

147

% Force the average total weights to remain constant

149 % (But allow A and B Weights to have different gains)

W_hat_bank12 = [W_A_hat (1:32); W_B_hat (1:32)];

151 W_hat_bank345 = [W_A_hat (33:50); W_B_hat (33:50)];

W_mean_gain_12 = mean_init_weights_bank_12/mean(W_hat_bank12 );

153 W_mean_gain_345 = mean_init_weights_bank_345/mean(W_hat_bank345 );

W_A_hat (1:32) = W_hat_bank12 (1:32) * W_mean_gain_12;

155 W_B_hat (1:32) = W_hat_bank12 (33:64) * W_mean_gain_12;

W_A_hat (33:50) = W_hat_bank345 (1:18) * W_mean_gain_345;

157 W_B_hat (33:50) = W_hat_bank345 (19:36) * W_mean_gain_345;

159 OS_hat = OS_hat - mu_w * filt_eps_os_hat;

161 W_A_hat_track (:,iter_cntr) = W_A_hat;

W_B_hat_track (:,iter_cntr) = W_B_hat;

163 OS_hat_track (:, iter_cntr) = OS_hat;

165 % Increase the Iteration Counter

iter_cntr = iter_cntr + 1;

167 end

169 Run_Count = run_cntr
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end

171

% Get the sums of the calculated epsilons

173 sum_eps_A_hat = sum(eps_A_hat_track );

sum_eps_B_hat = sum(eps_B_hat_track );

175

% Get the sums of the filtered epsilons

177 sum_filt_eps_A_hat = sum(filt_eps_A_hat_track );

sum_filt_eps_B_hat = sum(filt_eps_B_hat_track );

179

W_A_hat_final = mean(W_A_hat_track (:,(end -100): end),2);

181 W_B_hat_final = mean(W_B_hat_track (:,(end -100): end),2);

OS_hat_final = mean(OS_hat_track (:,(end -100): end),2);
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Appendix C

Split-SAR Hardware Description

./source code/SARLogicBlockV03.v

‘timescale 1ns / 1ps

2 // ////////////////////////////////////////////////////////////////////////////////

// Company:

4 // Engineer:

//

6 // Create Date: 15:55:50 10/08/2008

// Design Name:

8 // Module Name: SARLogicBlockV01

// Project Name:

10 // Target Devices:

// Tool versions:

12 // Description:

//

14 // Dependencies:

//

16 // Revision:

// Revision 0.01 - File Created

18 // Additional Comments:

//

20 // ////////////////////////////////////////////////////////////////////////////////

module SARLogicBlockV03(reset , comp_p , comp_n , sample , serClk , serBaseIn , serBaseOut ,

22 latch_In , preamp_In , latchEn , preampEn ,

capSelect0T , capSelect1T , capSelect2T , capSelect3T , capSelect4T ,

24 capSelect0B , capSelect1B , capSelect2B , capSelect3B , capSelect4B );

26 input reset;

input comp_p , comp_n;

28 input sample;

input serClk;

30 input serBaseIn;

input latch_In;

32 input preamp_In;

output latchEn;

34 output preampEn;

output serBaseOut;
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36

//Top

38 output [31:0] capSelect0T;

output [31:0] capSelect1T;

40 output [31:0] capSelect2T;

output [31:0] capSelect3T;

42 output [31:0] capSelect4T;

44 // Bottom

output [31:0] capSelect0B;

46 output [31:0] capSelect1B;

output [31:0] capSelect2B;

48 output [31:0] capSelect3B;

output [31:0] capSelect4B;

50

//wire sample;

52 wire [3:0] base0;

wire [3:0] base1;

54 wire [3:0] base2;

wire [3:0] base3;

56 wire [3:0] base4;

wire [4:0] SARAddr;

58 wire [39:0] bitSelect;

wire decStore;

60

62 SARControl04 ControlBlock(reset , sample , latch_In , preamp_In , latchEn , preampEn , decStore , SARAddr );

SAR02 SARArray(comp_p , comp_n , decStore , SARAddr , sample , bitSelect );

64 BaseIOV01 SerBaseBlock(reset , serBaseIn , sample , serClk , base0 , base1 , base2 , base3 , base4 , serBaseOut );

HalfDACCapMux CapMuxB(base0 , base1 , base2 , base3 , base4 , bitSelect , capSelect0B , capSelect1B ,

66 capSelect2B , capSelect3B , capSelect4B );

HalfDACCapMux CapMuxT(base0 , base1 , base2 , base3 , base4 , bitSelect , capSelect0T , capSelect1T ,

68 capSelect2T , capSelect3T , capSelect4T );

70

72 endmodule
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./source code/SARControlV04.v

‘timescale 1ns / 1ps

2 // ////////////////////////////////////////////////////////////////////////////////

// Company:

4 // Engineer:

//

6 // Create Date: 14:16:06 10/02/2008

// Design Name:

8 // Module Name: SARControl03

// Project Name:

10 // Target Devices:

// Tool versions:

12 // Description:

//

14 // Dependencies:

//

16 // Revision:

// Revision 0.01 - File Created

18 // Additional Comments:

//

20 // ////////////////////////////////////////////////////////////////////////////////

module SARControl04(reset , sample , latchEn_Ext , preampEn_Ext , latchEn , preampEn , decStore , SARAddr );

22

input reset;

24 input sample;

input latchEn_Ext;

26 input preampEn_Ext;

28 output latchEn;

output preampEn;

30 output decStore;

output SARAddr;

32 // output rdy;

34 // At this time , unused parameters

// parameter WAIT = 0;

36 // parameter SAMPLE = 2’d1;

// parameter BITCYCLE = 2’d2;

38

40 reg done;

reg [4:0] SARAddr; // SARAddr corresponds to bit number

42

// Nonoverlap logic for internal LatchEn , PreampEn , and SoreBitDecision Signals

44 assign decStore = ~latchEn_Ext;

assign latchEn = ~decStore;

46 assign preampEn = latchEn | preampEn_Ext;

48 always @ (posedge preampEn_Ext or posedge reset or posedge sample)

begin

50 if (reset)

// If Reset signal is asserted return all internal and output

52 // signals to their initial states

begin

54 SARAddr <= 5’d20;

done <= 1;
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56 end

else if (sample) //If sample , reset SARAddr and clear done signal

58 // this restarts the bit cycling mode

begin

60 SARAddr <= 5’d20;

done <= 0;

62 end

else //Otherwise , preampEn_Ext is active , so check bit cycle status

64 begin

if (!done) //If not "done" with the bit cycle , check Bit Number

66 begin

if (SARAddr == 0) //If on the last bit cycle , toggle done

68 begin

// SARAddr <= 5’d19;

70 done <= 1;

end

72 else //Else end of 20 bit cycle , set "done" signal

begin

74 done <= 0;

end

76 SARAddr <= SARAddr - 1; // Regardless , alway decrement SARAddr

// This is used to allow for storing the "21st" bit if necessary

78 // patchEn_Ext and preampEn_Ext wil always trigger a StoreDecision signal

// As long as SARAddr is >19 (i.e. not 0 through 19) then only the positive

80 // output of the comparator will be stored onto the output data register.

// The SARegister will remain unchanged , maintaining the Cap DAC switch selections.

82 // By always decrementing the SARAddr counter when preampEn_Ext goes high ,

// the counter is allowed to rollover to 31, preventing the Comp Decision from

84 // being stored into the SAR (it is only stored into the Output Data Register ).

end // End of if (!done) case

86 end // end of else Reset or Smaple case

end // End of always @ (posedge clk1 or posedge decStore or negedge preamp)

88 endmodule
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./source code/SAR02.v

‘timescale 1ns / 1ps

2 // ////////////////////////////////////////////////////////////////////////////////

// Company:

4 // Engineer:

//

6 // Create Date: 20:32:03 10/01/2008

// Design Name:

8 // Module Name: SAR01

// Project Name:

10 // Target Devices:

// Tool versions:

12 // Description:

//

14 // Dependencies:

//

16 // Revision:

// Revision 0.01 - File Created

18 // Additional Comments:

//

20 // ////////////////////////////////////////////////////////////////////////////////

module SAR02(comp_p , comp_n , store , address , preset , bitSelect );

22 input comp_p;

input comp_n;

24 input store;

input [4:0] address;

26 input preset;

output [39:0] bitSelect;

28

wire [1:0] comp_in; // 2-bit Comparator input (pos and neg)

30 //wire store_d;

32 reg [1:0] SARMem [0:19]; // Memory style register for storing the 20, 2-bit

// decisions from the output comparator. This eleminates the need for 20 "store"

34 // or clock signals for each 2-bit register for each bit of the converter.

//reg dataOut;

36

assign comp_in [1] = comp_n; // Combine the Comparator pos and neg inputs

38 assign comp_in [0] = comp_p; // into one signal

// assign store_d = store;

40

// Assign the 2-bit SARs to their respective Bit Select outputs

42 assign bitSelect [1:0] = SARMem [19];

assign bitSelect [3:2] = SARMem [18];

44 assign bitSelect [5:4] = SARMem [17];

assign bitSelect [7:6] = SARMem [16];

46 assign bitSelect [9:8] = SARMem [15];

assign bitSelect [11:10] = SARMem [14];

48 assign bitSelect [13:12] = SARMem [13];

assign bitSelect [15:14] = SARMem [12];

50 assign bitSelect [17:16] = SARMem [11];

assign bitSelect [19:18] = SARMem [10];

52 assign bitSelect [21:20] = SARMem [9];

assign bitSelect [23:22] = SARMem [8];

54 assign bitSelect [25:24] = SARMem [7];

assign bitSelect [27:26] = SARMem [6];
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56 assign bitSelect [29:28] = SARMem [5];

assign bitSelect [31:30] = SARMem [4];

58 assign bitSelect [33:32] = SARMem [3];

assign bitSelect [35:34] = SARMem [2];

60 assign bitSelect [37:36] = SARMem [1];

assign bitSelect [39:38] = SARMem [0];

62

always @ (posedge store or posedge preset)

64 begin

if (preset) // If preset , reset the SAR to 2’b11 (Vcm)

66 begin

SARMem [0] = 2’b11;

68 SARMem [1] = 2’b11;

SARMem [2] = 2’b11;

70 SARMem [3] = 2’b11;

SARMem [4] = 2’b11;

72 SARMem [5] = 2’b11;

SARMem [6] = 2’b11;

74 SARMem [7] = 2’b11;

SARMem [8] = 2’b11;

76 SARMem [9] = 2’b11;

SARMem [10] = 2’b11;

78 SARMem [11] = 2’b11;

SARMem [12] = 2’b11;

80 SARMem [13] = 2’b11;

SARMem [14] = 2’b11;

82 SARMem [15] = 2’b11;

SARMem [16] = 2’b11;

84 SARMem [17] = 2’b11;

SARMem [18] = 2’b11;

86 SARMem [19] = 2’b11;

// dataOut <= 0;

88 end

else

90 begin

// As long as SARAddr is >19 (i.e. not 0 through 19) then only the positive

92 // output of the comparator will be stored onto the output data register.

// The SARegister will remain unchanged , maintaining the Cap DAC switch selections.

94 if ((( address >= 0) || (address < 20)))

begin

96 SARMem[address] = comp_in;

end

98 // dataOut <= comp_p; // Store the positive Comparator Output

// into the serial data output register

100 end

end

102

endmodule
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./source code/HalfDACCapMux.v

1 ‘timescale 1ns / 1ps

// ////////////////////////////////////////////////////////////////////////////////

3 // Company:

// Engineer:

5 //

// Create Date: 16:10:00 09/18/2008

7 // Design Name:

// Module Name: CapMux_DUT01

9 // Project Name:

// Target Devices:

11 // Tool versions:

// Description:

13 //

// Dependencies:

15 //

// Revision:

17 // Revision 0.01 - File Created

// Additional Comments:

19 //

// ////////////////////////////////////////////////////////////////////////////////

21 module HalfDACCapMux(base0 , base1 , base2 , base3 , base4 , BitSelect , capSelect0 , capSelect1 ,

capSelect2 , capSelect3 , capSelect4 );

23

input [3:0] base0;

25 input [3:0] base1;

input [3:0] base2;

27 input [3:0] base3;

input [3:0] base4;

29 input [39:0] BitSelect;

output [31:0] capSelect0;

31 output [31:0] capSelect1;

output [31:0] capSelect2;

33 output [31:0] capSelect3;

output [31:0] capSelect4;

35

37 CapMux CapMux0(base0 , BitSelect [1:0] , BitSelect [3:2], BitSelect [5:4], BitSelect [7:6], capSelect0 );

CapMux CapMux1(base1 , BitSelect [9:8] , BitSelect [11:10] , BitSelect [13:12] , BitSelect [15:14] , capSelect1 );

39 CapMux CapMux2(base2 , BitSelect [17:16] , BitSelect [19:18] , BitSelect [21:20] , BitSelect [23:22] , capSelect2 );

CapMux CapMux3(base3 , BitSelect [25:24] , BitSelect [27:26] , BitSelect [29:28] , BitSelect [31:30] , capSelect3 );

41 CapMux CapMux4(base4 , BitSelect [33:32] , BitSelect [35:34] , BitSelect [37:36] , BitSelect [39:38] , capSelect4 );

43

endmodule
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./source code/CapMux.v

‘timescale 1ns / 1ps

2 // ////////////////////////////////////////////////////////////////////////////////

// Company:

4 // Engineer:

//

6 // Create Date: 12:46:00 09/16/2008

// Design Name:

8 // Module Name: CapMux01

// Project Name:

10 // Target Devices:

// Tool versions:

12 // Description:

//

14 // Dependencies:

//

16 // Revision:

// Revision 0.01 - File Created

18 // Additional Comments:

//

20 // ////////////////////////////////////////////////////////////////////////////////

module CapMux(base , B0S , B1S , B2S , B3S , capSelect );

22 input [3:0] base;

input [1:0] B0S;

24 input [1:0] B1S;

input [1:0] B2S;

26 input [1:0] B3S;

output [31:0] capSelect;

28

reg [1:0] capBank [15:0]; //Memory -Style Bank for storing the 16, 2-bit selects

30 //This makes for slightly easier coding by assigning the BnS signal to the

// apropriate individual Cap switch signal

32

assign capSelect [1:0] = capBank [0];

34 assign capSelect [3:2] = capBank [1];

assign capSelect [5:4] = capBank [2];

36 assign capSelect [7:6] = capBank [3];

assign capSelect [9:8] = capBank [4];

38 assign capSelect [11:10] = capBank [5];

assign capSelect [13:12] = capBank [6];

40 assign capSelect [15:14] = capBank [7];

assign capSelect [17:16] = capBank [8];

42 assign capSelect [19:18] = capBank [9];

assign capSelect [21:20] = capBank [10];

44 assign capSelect [23:22] = capBank [11];

assign capSelect [25:24] = capBank [12];

46 assign capSelect [27:26] = capBank [13];

assign capSelect [29:28] = capBank [14];

48 assign capSelect [31:30] = capBank [15];

50 always @ (base or B0S or B1S or B2S or B3S)

begin

52 case (base)

4’d0: //Cap0 is dummy cap

54 begin

capBank [0] = 2’b11;
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56 capBank [1] = B0S;

capBank [2] = B0S;

58 capBank [3] = B0S;

capBank [4] = B0S;

60 capBank [5] = B0S;

capBank [6] = B0S;

62 capBank [7] = B0S;

capBank [8] = B0S;

64 capBank [9] = B1S;

capBank [10] = B1S;

66 capBank [11] = B1S;

capBank [12] = B1S;

68 capBank [13] = B2S;

capBank [14] = B2S;

70 capBank [15] = B3S;

end

72 4’d1: //Cap1 is dummy cap

begin

74 capBank [0] = B3S;

capBank [1] = 2’b11;

76 capBank [2] = B0S;

capBank [3] = B0S;

78 capBank [4] = B0S;

capBank [5] = B0S;

80 capBank [6] = B0S;

capBank [7] = B0S;

82 capBank [8] = B0S;

capBank [9] = B0S;

84 capBank [10] = B1S;

capBank [11] = B1S;

86 capBank [12] = B1S;

capBank [13] = B1S;

88 capBank [14] = B2S;

capBank [15] = B2S;

90 end

4’d2: //Cap2 is dummy cap

92 begin

capBank [0] = B2S;

94 capBank [1] = B3S;

capBank [2] = 2’b11;

96 capBank [3] = B0S;

capBank [4] = B0S;

98 capBank [5] = B0S;

capBank [6] = B0S;

100 capBank [7] = B0S;

capBank [8] = B0S;

102 capBank [9] = B0S;

capBank [10] = B0S;

104 capBank [11] = B1S;

capBank [12] = B1S;

106 capBank [13] = B1S;

capBank [14] = B1S;

108 capBank [15] = B2S;

end

110 4’d3: //Cap3 is dummy cap

begin

112 capBank [0] = B2S;
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capBank [1] = B2S;

114 capBank [2] = B3S;

capBank [3] = 2’b11;

116 capBank [4] = B0S;

capBank [5] = B0S;

118 capBank [6] = B0S;

capBank [7] = B0S;

120 capBank [8] = B0S;

capBank [9] = B0S;

122 capBank [10] = B0S;

capBank [11] = B0S;

124 capBank [12] = B1S;

capBank [13] = B1S;

126 capBank [14] = B1S;

capBank [15] = B1S;

128 end

4’d4: //Cap4 is dummy cap

130 begin

capBank [0] = B1S;

132 capBank [1] = B2S;

capBank [2] = B2S;

134 capBank [3] = B3S;

capBank [4] = 2’b11;

136 capBank [5] = B0S;

capBank [6] = B0S;

138 capBank [7] = B0S;

capBank [8] = B0S;

140 capBank [9] = B0S;

capBank [10] = B0S;

142 capBank [11] = B0S;

capBank [12] = B0S;

144 capBank [13] = B1S;

capBank [14] = B1S;

146 capBank [15] = B1S;

end

148 4’d5: //Cap5 is dummy cap

begin

150 capBank [0] = B1S;

capBank [1] = B1S;

152 capBank [2] = B2S;

capBank [3] = B2S;

154 capBank [4] = B3S;

capBank [5] = 2’b11;

156 capBank [6] = B0S;

capBank [7] = B0S;

158 capBank [8] = B0S;

capBank [9] = B0S;

160 capBank [10] = B0S;

capBank [11] = B0S;

162 capBank [12] = B0S;

capBank [13] = B0S;

164 capBank [14] = B1S;

capBank [15] = B1S;

166 end

4’d6: //Cap6 is dummy cap

168 begin

capBank [0] = B1S;
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170 capBank [1] = B1S;

capBank [2] = B1S;

172 capBank [3] = B2S;

capBank [4] = B2S;

174 capBank [5] = B3S;

capBank [6] = 2’b11;

176 capBank [7] = B0S;

capBank [8] = B0S;

178 capBank [9] = B0S;

capBank [10] = B0S;

180 capBank [11] = B0S;

capBank [12] = B0S;

182 capBank [13] = B0S;

capBank [14] = B0S;

184 capBank [15] = B1S;

end

186 4’d7: //Cap7 is dummy cap

begin

188 capBank [0] = B1S;

capBank [1] = B1S;

190 capBank [2] = B1S;

capBank [3] = B1S;

192 capBank [4] = B2S;

capBank [5] = B2S;

194 capBank [6] = B3S;

capBank [7] = 2’b11;

196 capBank [8] = B0S;

capBank [9] = B0S;

198 capBank [10] = B0S;

capBank [11] = B0S;

200 capBank [12] = B0S;

capBank [13] = B0S;

202 capBank [14] = B0S;

capBank [15] = B0S;

204 end

4’d8: //Cap8 is dummy cap

206 begin

capBank [0] = B0S;

208 capBank [1] = B1S;

capBank [2] = B1S;

210 capBank [3] = B1S;

capBank [4] = B1S;

212 capBank [5] = B2S;

capBank [6] = B2S;

214 capBank [7] = B3S;

capBank [8] = 2’b11;

216 capBank [9] = B0S;

capBank [10] = B0S;

218 capBank [11] = B0S;

capBank [12] = B0S;

220 capBank [13] = B0S;

capBank [14] = B0S;

222 capBank [15] = B0S;

end

224 4’d9: //Cap9 is dummy cap

begin

226 capBank [0] = B0S;
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capBank [1] = B0S;

228 capBank [2] = B1S;

capBank [3] = B1S;

230 capBank [4] = B1S;

capBank [5] = B1S;

232 capBank [6] = B2S;

capBank [7] = B2S;

234 capBank [8] = B3S;

capBank [9] = 2’b11;

236 capBank [10] = B0S;

capBank [11] = B0S;

238 capBank [12] = B0S;

capBank [13] = B0S;

240 capBank [14] = B0S;

capBank [15] = B0S;

242 end

4’d10: //Cap10 is dummy cap

244 begin

capBank [0] = B0S;

246 capBank [1] = B0S;

capBank [2] = B0S;

248 capBank [3] = B1S;

capBank [4] = B1S;

250 capBank [5] = B1S;

capBank [6] = B1S;

252 capBank [7] = B2S;

capBank [8] = B2S;

254 capBank [9] = B3S;

capBank [10] = 2’b11;

256 capBank [11] = B0S;

capBank [12] = B0S;

258 capBank [13] = B0S;

capBank [14] = B0S;

260 capBank [15] = B0S;

end

262 4’d11: //Cap11 is dummy cap

begin

264 capBank [0] = B0S;

capBank [1] = B0S;

266 capBank [2] = B0S;

capBank [3] = B0S;

268 capBank [4] = B1S;

capBank [5] = B1S;

270 capBank [6] = B1S;

capBank [7] = B1S;

272 capBank [8] = B2S;

capBank [9] = B2S;

274 capBank [10] = B3S;

capBank [11] = 2’b11;

276 capBank [12] = B0S;

capBank [13] = B0S;

278 capBank [14] = B0S;

capBank [15] = B0S;

280 end

4’d12: //Cap12 is dummy cap

282 begin

capBank [0] = B0S;
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284 capBank [1] = B0S;

capBank [2] = B0S;

286 capBank [3] = B0S;

capBank [4] = B0S;

288 capBank [5] = B1S;

capBank [6] = B1S;

290 capBank [7] = B1S;

capBank [8] = B1S;

292 capBank [9] = B2S;

capBank [10] = B2S;

294 capBank [11] = B3S;

capBank [12] = 2’b11;

296 capBank [13] = B0S;

capBank [14] = B0S;

298 capBank [15] = B0S;

end

300 4’d13: //Cap13 is dummy cap

begin

302 capBank [0] = B0S;

capBank [1] = B0S;

304 capBank [2] = B0S;

capBank [3] = B0S;

306 capBank [4] = B0S;

capBank [5] = B0S;

308 capBank [6] = B1S;

capBank [7] = B1S;

310 capBank [8] = B1S;

capBank [9] = B1S;

312 capBank [10] = B2S;

capBank [11] = B2S;

314 capBank [12] = B3S;

capBank [13] = 0;

316 capBank [14] = B0S;

capBank [15] = B0S;

318 end

4’d14: //Cap14 is dummy cap

320 begin

capBank [0] = B0S;

322 capBank [1] = B0S;

capBank [2] = B0S;

324 capBank [3] = B0S;

capBank [4] = B0S;

326 capBank [5] = B0S;

capBank [6] = B0S;

328 capBank [7] = B1S;

capBank [8] = B1S;

330 capBank [9] = B1S;

capBank [10] = B1S;

332 capBank [11] = B2S;

capBank [12] = B2S;

334 capBank [13] = B3S;

capBank [14] = 2’b11;

336 capBank [15] = B0S;

end

338 4’d15: //Cap15 is dummy cap

begin

340 capBank [0] = B0S;
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capBank [1] = B0S;

342 capBank [2] = B0S;

capBank [3] = B0S;

344 capBank [4] = B0S;

capBank [5] = B0S;

346 capBank [6] = B0S;

capBank [7] = B0S;

348 capBank [8] = B1S;

capBank [9] = B1S;

350 capBank [10] = B1S;

capBank [11] = B1S;

352 capBank [12] = B2S;

capBank [13] = B2S;

354 capBank [14] = B3S;

capBank [15] = 2’b11;

356 end

default:

358 begin

capBank [0] = 2’b11;

360 capBank [1] = B0S;

capBank [2] = B0S;

362 capBank [3] = B0S;

capBank [4] = B0S;

364 capBank [5] = B0S;

capBank [6] = B0S;

366 capBank [7] = B0S;

capBank [8] = B0S;

368 capBank [9] = B1S;

capBank [10] = B1S;

370 capBank [11] = B1S;

capBank [12] = B1S;

372 capBank [13] = B2S;

capBank [14] = B2S;

374 capBank [15] = B3S;

end

376 endcase

end

378 endmodule
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./source code/NonOverlapSampleT.v

‘timescale 1ns / 1ps

2 // ////////////////////////////////////////////////////////////////////////////////

// Company:

4 // Engineer:

//

6 // Create Date: 14:14:38 09/15/2008

// Design Name:

8 // Module Name: NonOverlapV01

// Project Name:

10 // Target Devices:

// Tool versions:

12 // Description: Provide non -overlapping signals to the capacitor switches to avoid

// turning on multiple switches at once

14 //

// Dependencies:

16 //

// Revision:

18 // Revision 0.01 - File Created

// Additional Comments:

20 //

// ////////////////////////////////////////////////////////////////////////////////

22 module NonOverlapSampleT(sample , select , svin_g , svrefpB_g , svrefn_g , svcm_g ,

svin , svrefpB , svrefn , svcm);

24 input [1:0] select; //Cap switch decision

input sample; // Sample Mode signal (select Vin)

26 input svrefpB_g; // Select Vrefp (after inverters)

input svrefn_g; // Select Vrefn (after inverters)

28 input svcm_g; // Select Vcm (after inverters)

input svin_g; // Select Vin (after inverters)

30 output svin; // Select Vin (before inverters)

output svrefpB; // Select Vrefp (before inverters)

32 output svrefn; // Select Vrefn (before inverters)

output svcm; // Select Vcm (before inverters)

34

reg svrefpB , svrefn , svcm , svin;

36

always @ (sample , select , svin_g , svrefpB_g , svrefn_g , svcm_g)

38 begin

if (sample) //If it’s time to sample a new Vin

40 begin

svin = 1; // Switch Cap to Vin (ignore race glitch here)

42 svcm = 0; //Turn off all other sample switches

svrefpB = 1;

44 svrefn = 0;

end

46 else //If not sampling Vin , then test select to determine which switch to use

begin

48 svin = 0;

case (select)

50 2’b11: // Select Vcm , but only if the other sitches are done switching

begin

52 if (svrefpB_g && !svrefn_g && svin_g)

svcm = 1;

54 else

svcm = 0;
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56 svrefpB = 1;

svrefn = 0;

58 end

2’b10: // Select Vrefp , but only if the other sitches are done switching

60 begin

if (! svcm_g && !svrefn_g && svin_g)

62 svrefpB = 0;

else

64 svrefpB = 1;

svcm = 0;

66 svrefn = 0;

end

68 2’b01: // Select Vrefn , but only if the other sitches are done switching

begin

70 if (! svcm_g && svrefpB_g && svin_g)

svrefn = 1;

72 else

svrefn = 0;

74 svcm = 0;

svrefpB = 1;

76 end

default:

78 begin

svcm = 1;

80 svrefpB = 1;

svrefn = 0;

82 end

endcase //End of (select) case statement

84 end //End of else statement from if (sample)

end //End of always block

86

88 endmodule



175

./source code/NonOverlapSampleB.v

‘timescale 1ns / 1ps

2 // ////////////////////////////////////////////////////////////////////////////////

// Company:

4 // Engineer:

//

6 // Create Date: 14:14:38 09/15/2008

// Design Name:

8 // Module Name: NonOverlapV01

// Project Name:

10 // Target Devices:

// Tool versions:

12 // Description: Provide non -overlapping signals to the capacitor switches to avoid

// turning on multiple switches at once

14 //

// Dependencies:

16 //

// Revision:

18 // Revision 0.01 - File Created

// Additional Comments:

20 //

// ////////////////////////////////////////////////////////////////////////////////

22 module NonOverlapSampleB(sample , select , svin_g , svrefpB_g , svrefn_g , svcm_g ,

svin , svrefpB , svrefn , svcm);

24 input [1:0] select; //Cap switch decision

input sample; // Sample Mode signal (select Vin)

26 input svrefpB_g; // Select Vrefp (after inverters)

input svrefn_g; // Select Vrefn (after inverters)

28 input svcm_g; // Select Vcm (after inverters)

input svin_g; // Select Vin (after inverters)

30 output svin; // Select Vin (before inverters)

output svrefpB; // Select Vrefp (before inverters)

32 output svrefn; // Select Vrefn (before inverters)

output svcm; // Select Vcm (before inverters)

34

reg svrefpB , svrefn , svcm , svin;

36

always @ (sample , select , svin_g , svrefpB_g , svrefn_g , svcm_g)

38 begin

if (sample) //If it’s time to sample a new Vin

40 begin

svin = 1; // Switch Cap to Vin (ignore race glitch here)

42 svcm = 0; //Turn off all other sample switches

svrefpB = 1;

44 svrefn = 0;

end

46 else //If not sampling Vin , then test select to determine which switch to use

begin

48 svin = 0;

case (select)

50 2’b11: // Select Vcm , but only if the other sitches are done switching

begin

52 if (svrefpB_g && !svrefn_g && svin_g)

svcm = 1;

54 else

svcm = 0;
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56 svrefpB = 1;

svrefn = 0;

58 end

2’b01: // Select Vrefp , but only if the other sitches are done switching

60 begin

if (! svcm_g && !svrefn_g && svin_g)

62 svrefpB = 0;

else

64 svrefpB = 1;

svcm = 0;

66 svrefn = 0;

end

68 2’b10: // Select Vrefn , but only if the other sitches are done switching

begin

70 if (! svcm_g && svrefpB_g && svin_g)

svrefn = 1;

72 else

svrefn = 0;

74 svcm = 0;

svrefpB = 1;

76 end

default:

78 begin

svcm = 1;

80 svrefpB = 1;

svrefn = 0;

82 end

endcase //End of (select) case statement

84 end //End of else statement from if (sample)

end //End of always block

86

88 endmodule
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./source code/NonOverlapNoSampleT.v

‘timescale 1ns / 1ps

2 // ////////////////////////////////////////////////////////////////////////////////

// Company:

4 // Engineer:

//

6 // Create Date: 14:14:38 09/15/2008

// Design Name:

8 // Module Name: NonOverlapV01

// Project Name:

10 // Target Devices:

// Tool versions:

12 // Description: Provide non -overlapping signals to the capacitor switches to avoid

// turning on multiple switches at once

14 //

// Dependencies:

16 //

// Revision:

18 // Revision 0.01 - File Created

// Additional Comments:

20 //

// ////////////////////////////////////////////////////////////////////////////////

22 module NonOverlapNoSampleT(select , svrefpB_g , svrefn_g , svcm_g , svrefpB , svrefn , svcm);

input [1:0] select; //Cap switch decision

24 input svrefpB_g; // Select Vrefp (after inverters)

input svrefn_g; // Select Vrefn (after inverters)

26 input svcm_g; // Select Vcm (after inverters)

output svrefpB; // Select Vrefp (before inverters)

28 output svrefn; // Select Vrefn (before inverters)

output svcm; // Select Vcm (before inverters)

30

reg svrefpB , svrefn , svcm;

32

always @ (select , svrefpB_g , svrefn_g , svcm_g)

34 begin

case (select)

36 2’b11: // Select Vcm , but only if the other sitches are done switching

begin

38 if (svrefpB_g && !svrefn_g)

svcm = 1;

40 else

svcm = 0;

42 svrefpB = 1;

svrefn = 0;

44 end

2’b10: // Select Vrefp , but only if the other sitches are done switching

46 begin

if (! svcm_g && !svrefn_g)

48 svrefpB = 0;

else

50 svrefpB = 1;

svcm = 0;

52 svrefn = 0;

end

54 2’b01: // Select Vrefn , but only if the other sitches are done switching

begin
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56 if (! svcm_g && svrefpB_g)

svrefn = 1;

58 else

svrefn = 0;

60 svcm = 0;

svrefpB = 1;

62 end

default:

64 begin

svcm = 1;

66 svrefpB = 1;

svrefn = 0;

68 end

endcase

70 end

72

endmodule
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./source code/NonOverlapNoSampleT.v

1 ‘timescale 1ns / 1ps

// ////////////////////////////////////////////////////////////////////////////////

3 // Company:

// Engineer:

5 //

// Create Date: 14:14:38 09/15/2008

7 // Design Name:

// Module Name: NonOverlapV01

9 // Project Name:

// Target Devices:

11 // Tool versions:

// Description: Provide non -overlapping signals to the capacitor switches to avoid

13 // turning on multiple switches at once

//

15 // Dependencies:

//

17 // Revision:

// Revision 0.01 - File Created

19 // Additional Comments:

//

21 // ////////////////////////////////////////////////////////////////////////////////

module NonOverlapNoSampleT(select , svrefpB_g , svrefn_g , svcm_g , svrefpB , svrefn , svcm);

23 input [1:0] select; //Cap switch decision

input svrefpB_g; // Select Vrefp (after inverters)

25 input svrefn_g; // Select Vrefn (after inverters)

input svcm_g; // Select Vcm (after inverters)

27 output svrefpB; // Select Vrefp (before inverters)

output svrefn; // Select Vrefn (before inverters)

29 output svcm; // Select Vcm (before inverters)

31 reg svrefpB , svrefn , svcm;

33 always @ (select , svrefpB_g , svrefn_g , svcm_g)

begin

35 case (select)

2’b11: // Select Vcm , but only if the other sitches are done switching

37 begin

if (svrefpB_g && !svrefn_g)

39 svcm = 1;

else

41 svcm = 0;

svrefpB = 1;

43 svrefn = 0;

end

45 2’b10: // Select Vrefp , but only if the other sitches are done switching

begin

47 if (! svcm_g && !svrefn_g)

svrefpB = 0;

49 else

svrefpB = 1;

51 svcm = 0;

svrefn = 0;

53 end

2’b01: // Select Vrefn , but only if the other sitches are done switching

55 begin
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if (! svcm_g && svrefpB_g)

57 svrefn = 1;

else

59 svrefn = 0;

svcm = 0;

61 svrefpB = 1;

end

63 default:

begin

65 svcm = 1;

svrefpB = 1;

67 svrefn = 0;

end

69 endcase

end

71

73 endmodule
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