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Abstract

Before the 2008 financial crisis, most research in financial mathematics focused on risk man-

agement and pricing of options without considering effects of counterparties’ default, illiquidity

problems, systemic risk and the role of the repurchase agreement (Repo). During the 2008 finan-

cial crisis, a frozen Repo market led to a shutdown of short sales in the stock market. Cyclical

interdependencies among financial corporations caused that a default of one firm seriously affected

other firms and even the whole financial network.

In this dissertation, we will consider financial markets which are shaped by financial crises.

This will be done from two distinct perspectives, an investor’s and a regulator’s. From an in-

vestor’s perspective, recently models were proposed to compute the total valuation adjustment

(XVA) of derivatives without considering a potential crisis in the market. In our research, we in-

clude a possible crisis by apply an alternating renewal process to describe the switching between a

normal financial status and a financial crisis status. We develop a framework for pricing the XVA

of a European claim in this state-dependent framework. We represent the price as a solution to a

backward stochastic differential equation and prove the existence and uniqueness of the solution.

To study financial networks from a regulator’s perspective, one popular method is the fixed point

based approach by L. Eisenberg and T. Noe. However, in practice, there is no accurate record of

the interbank liabilities and thus one has to estimate them to use Eisenberg – Noe type models.

In our research, we conduct a sensitivity analysis of the Eisenberg – Noe framework, and quantify

the effect of the estimation errors to the clearing payments. We show that the effect of the missing

specification of interbank connection to clearing payments can be described via directional deriva-

tives that can be represented as solutions of fixed point equations. We also compute the probability

of observing clearing payment deviations of a certain magnitude.
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Chapter 1

Introduction

1.1 Motivation

While the most important cause of the 2008 financial crisis was unhealthy mortgage market, the
interconnections of the financial market was crucial for the spread of the contagion (crisis). The
percentage of sub-prime mortgage, compared with all mortgages, doubled in 2004 and continued to
increase until 2006. In 2006, the Federal Reserve increased interest rates. Because many mortgages
were given to people without enough financial capacity, many households experienced high financial
pressure. Some sold their house, others had to default on their mortgage loans. Because the supply
of houses was larger than the demand, prices of real estate dropped sharply. Meanwhile many
investment banks also suffered, because of losses in their investments in sub-prime mortgages and
loans. Some financial companies even went bankrupt during that time, such as Lehman Brothers.
The 2008 sub-prime financial crisis resulted out from this situation.

The crisis of sub-prime mortgages spread out significantly. Two major reasons are their inter-
connections among financial companies and roles in sale and repurchase agreement (Repo) markets.
Before the 2008 financial crisis, it is more popular to study models with pairwise structure — a
pair of an investor and its direct counterparty. Based on these models, an effect of a company’s
default could be controlled within its direct counterparty. However, all counterparties have further
counterparties on their own. The interconnections among financial companies extended effects of
several defaults to the global financial markets. Moreover, severe bankruptcies of companies led
to low confidence in many securities. Because the trades in the Repo market use these securities
as collateral, low confidence in these securities caused adverse effects to the Repo market. As the
Repo market froze, companies could not finance themselves through the Repo market, which caused
liquidity issues. The Liquidity risk aggravate the financial market.

Overall, this adverse loop of market risk, credit risk, liquidity risk and systemic risk led the whole
financial environment collapse. To deal with the decreasing price of houses, stocks and financial
derivatives, we need to include market risk. To deal with the defaults of counterparties, we need to
take credit risk into account. To include market illiquidity problems, we need to describe liquidity
risk. In order to model the interconnections among companies in the whole financial market, we
need to consider systemic risk.

However, it is hard to include all risks in one model. In order to practically tackle the loop,
we divide it into two aspects: an investor’s aspect and a regulator’s aspect. From the investor’s
perspective, we are interested in the pricing of options while taking credit risk, liquidity risk and
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funding spread into consideration. From the regulator’s perspective, we are interested in systemic
risk, the effect of one default event to the whole financial market.

1.2 Literature Review

Both options trading and interbank loans have a long history. The 20th century witnessed the birth
and development of financial mathematics, but the 2008 financial crisis changed it dramatically.
An overview of the effects of the financial crisis and their modeling in financial mathematics can
be found in Bullard et al. (2009), Bijlsma et al. (2010), and Hördahl and King (2008).

Many different indicators have been proposed to delliate a financial crisis from regular market
behavior. Hollo et al. (2012) introduce a Composite Indicator of Systemic Stress (CISS), which
puts more weight on the stress shared by several markets at the same time. Whaley (2008) argues
that the CBOE’s Market Volatility Index (VIX), introduced in Whaley (1993), is a good investor
fear gauge of the expected return volatility of the S&P 500 index over the next 30 days. Bekaert
et al. (2013), Bekaert and Hoerova (2014) decompose the squared VIX index into two parts, the
conditional variance of stock returns and the equity variance premium. Adrian and Brunnermeier
(2011) introduce the value at risk of financial institutions conditional on other institutions being in
distress (abbreviated CoVaR) as a new measure for systemic risk. The difference between the three
month London Interbank Offered Rate (LIBOR) and the government’s interest rate for a three-
month period (called the Ted spread) changed alot during the financial crisis. As result, Heider
et al. (2009) and Acharya and Skeie (2011) argue that the Ted spread is a good indicator for the
liquidity and counterparty risk in the interbank system. Mancini et al. (2013), Coffey et al. (2009)
and Gorton and Metrick (2012), Gorton et al. (2010) use the Ted spread to measure the capital
constraints in a secured lending system. Boudt et al. (2013) confirm the existence of a two-regime
Ted spread over the period between 2006 and 2011, describing stable and unstable situation by the
analysis of historical data. However, these difference regimes have so far not been considered in
pricing derivatives.

Many risky rates changed a lot during the financial crisis, some research focus on the perfor-
mance of the banking system during the financial crisis. After review the definition of the Sale and
Repurchase Agreement (Repo) market, the general collateral and different Repo rates, Sundaresan
(2009) compares the Repo rates with other short-term interest rates. Ivashina and Scharfstein
(2010) state that bank lending is affected more by the credit-line drawdown than the short-term
debt. Hördahl and King (2008) point out that the Repo market froze during the financial crisis and
compare its performances in the US, Euro countries and UK. Gorton (2009) studies the contagion of
subprime mortgages to other securities and the effects of asymmetric information to the spreading
of the risk. Gorton and Metrick (2012) compare the securitized banking (i.e. the Repo market)
in the 2008 financial crisis with the traditional banking in the banking panics in the 19th century.
They find that the LIBOR-OIS spread is strongly correlated with changes in the credit spread and
the Repo rate.

After the financial crisis, Basel regulations have required to take the effect of default risk and
cost of collateralization strategies into account in the replication framework (Basel Committee on
Banking Supervision (2010)). From the derivative traders’ perspectives, research focused on the
valuation adjustment (XVA) of a fair price due to credit risk and funding risk. Before the 2008
financial crisis, it was common to apply LIBOR as the risk-free interest rate. But the LIBOR is not
a risk-free rate, as can be seen by the large Ted spread during the financial crisis. Research need to
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include asymmetric interest rates into their pricing models. Cvitanić and Karatzas (1993) introduce
the setting of different interest rates for borrowing and lending in a stochastic control problem for
hedging. Korn (1995) prices European call and put options with a higher interest rate for borrowing
than lending. El Karoui et al. (1997) study super-hedging under asymmetric interest rates by
nonlinear backward stochastic differential equations. Piterbarg (2010) calculates the adjustment for
non-collateralised derivatives in a setting including a Repo account. Laughton and Vaisbrot (2012)
emphasize the necessity of a funding valuation adjustment (FVA) in an incomplete market. Siadat
and Hammarlid (2017) discuss the hedging, collateral optimization and reverse stress testing with
funding cost and funding benefit adjustment. Bielecki et al. (2018) study the nonlinear arbitrage-
free pricing of derivatives, considering differential funding cost, collaterlization, counterparty credit
risk, and capital requirements.

Besides the FVA, the credit valuation adjustment (CVA) is the difference between derivatives’
prices with and without credit risk. Since it is a measure of counterparties’ credit risk, some banks
already studied it before the financial crisis. At first, research focuses on the default risk of the
counterparty (unilaterally), which lead to a price asymmetry. To solve this problem, bilateral mod-
els were introduced. The debt valuation adjustment (DVA) is the difference between the price of a
derivative with and without the benefit from the investor’s default risk. Bielecki et al. (2008) and
Crépey et al. (2010) study the valuation and hedging of credit default swap (CDS) including coun-
terparty credit risk. Crépey et al. (2013) model the total valuation adjustment using a Markovian
pre-default backward stochastic differential equation and give numerical valuation results of several
derivatives. Brigo et al. (2013) derive a risk-neutral pricing formula, using a backward stochastic
differential equation considering counterparty credit risk, funding and collateral service cost. Bur-
gard and Kjaer (2011a,b) generalize Piterbarg’s model by considering bilateral credit risk. Nie and
Rutkowski (2014) prove the existence of fair bilateral prices. Bielecki and Rutkowski (2013) intro-
duce a general semimartingale market framework for an arbitrage-free valuation. Bichuch et al.
(2015, 2016, 2018a) introduce a backward stochastic differential equation representation of Euro-
pean call and put option prices with bilateral credit risk, asymmetric funding, Repo, and collateral
rates. Bichuch et al. (2018b) extend the valuation of the XVA with considering the uncertainty
bond rates.

From the regulator’s perspective, research focuses on the network models to quantify the effect of
one default event to the whole financial system. An important stream of the literature on contagion
in networks has focused on interbank contagion, building on the network model of Eisenberg and
Noe (2001). Central banks and regulators have applied the model to study default cascades in
their jurisdictions’ banking systems (Anand et al. (2014), Ha laj and Kok (2015), Boss et al. (2004),
Elsinger et al. (2013), Upper (2011), Gai et al. (2011)). Hüser (2015) provides a comprehensive and
detailed review of the interbank contagion literature. Hurd (2016) presents a unified mathematical
framework for modeling these contagion channels. Recently, the Bank of England has extended
this model to analyze insolvency contagion in the UK financial system (Bardoscia et al. (2017)).
Multiple, extensions of this model have been developed to include effects such as

• Bankruptcy costs: Elsinger (2009), Rogers and Veraart (2013), Elliott et al. (2014), Glasser-
man and Young (2015), Weber and Weske (2017),

• Cross-ownership: Elsinger (2009), Elliott et al. (2014), Weber and Weske (2017)

• Fire sales: Cifuentes et al. (2005), Nier et al. (2007), Gai and Kapadia (2010), Chen et al.
(2016), Amini et al. (2015, 2016b), Weber and Weske (2017), Feinstein (2017a), Feinstein and
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El-Masri (2017), Feinstein (2017b), Di Gangi et al. (2015), and

• Multiple maturities: Capponi and Chen (2015), Kusnetsov and Veraart (2016), Banerjee et al.
(2018).

Moreover, a number of papers analyze the implications of network topology on systemic risk
in greater detail. Amini et al. (2016a) derive rigorous asymptotic results for the magnitude of
the default cascade in terms of network characteristics and find that institutions that have large
connectivity and a high number of “contagious links” contribute most to contagion. Detering et al.
(2016) show that if the degree distribution of the network does not have a second moment, local
shocks can propagate through the entire network. This is relevant as realistic financial networks
typically display a core-periphery structure with inhomogeneous degree distribution (Cont et al.
(2013)). Chong and Klüppelberg (2018) characterize the joint default distribution of a financial
system for all possible network structures and show how Bayesian network theory can be applied
to detect contagious channels.

Regulators have identified the inclusion of such contagion mechanisms in stress tests as a key
priority (Basel Committee on Banking Supervision (2015), Anderson (2016)). Furthermore, recent
research illustrates that accounting for feedback effects and contagion can change the pass/fail
result in stress tests for individual institutions (Cont and Schaanning (2017)).

A key ingredient required to estimate contagion in these models is the so-called liabilities matrix
L, where Lij is the nominal liability of bank i to bank j. Often, the exact bilateral exposures are
not known and thus need to be estimated (Ha laj and Kok (2013), Anand et al. (2015), Elsinger
et al. (2013), Ha laj and Kok (2015)). Despite considerable efforts after the crisis to improve data
collection, data gaps have not been closed yet. Beyond logistical issues like the standardization of
reporting formats and the creation of unique and universal institution identifiers, further hurdles
remain, such as legal restrictions that limit regulators’ access only to data pertinent to their respec-
tive jurisdictions. Therefore, the estimation of specific bilateral exposures remains an important
issue (Langfield et al. (2014), Anand et al. (2015, 2018), Financial Stability Board and International
Monetary Fund (2015)). The early literature often used entropy maximizing techniques to “fill in
the blanks” in the liabilities matrix given the total assets and liabilities of banks (viz. the row and
column sums of L). However, a growing empirical literature has shown that real-world interbank
networks look quite different from the homogeneous networks that are obtained with such tech-
niques (Bech and Atalay (2010), Mistrulli (2011), Cont et al. (2013), Soramäki et al. (2007)). A
recent Bayesian method to estimate the bilateral liabilities, given the total liabilities and potential
other prior information, is proposed in Gandy and Veraart (2016) and applied to reconstruct CDS
markets in Gandy and Veraart (2017). In particular, Mistrulli (2011), Gandy and Veraart (2016)
show how wide estimates of systemic risk may fluctuate when estimating contagion on real-world
and heterogeneous networks versus uniform networks. This highlights the pivotal role that the
matrix of bilateral exposures plays in quantifying the extent of contagion when computing default
cascades. Beyond the above-mentioned legal hurdles that restrict regulator’s access to data outside
their jurisdiction, another important example of uncertainty in the interbank exposures arises due
to time gaps between data collection and the run of the stress test: For some regulatory stress
tests (e.g. Dodd-Frank stress tests) data is collected annually, which can both give rise to window-
dressing behavior by banks, as well as exposures naturally changing over time. In this case the
existence or non-existence of an exposure between two banks will be known, and the uncertainty
mainly surrounds its magnitude. Capponi et al. (2016) study the effects of the network topology
on systemic risk through the use of majorization-based tools. Birge et al. (2018) discuss the risk
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analysis and policy of a financial network with limited information by several optimization models.
To the best of our knowledge, Liu and Staum (2010) is so far the only paper that performs a
sensitivity analysis of the Eisenberg–Noe model. Their analysis focuses on the sensitivity of the
clearing vector with respect to the initial net worth of each bank.

1.3 Structure

The organization of this dissertation is as follows. The first part of this dissertation focuses on the
total valuation adjustment for one European option with investor’s and its counterparty’s defaults,
different financial statuses, and funding liquidity problems. The second part focuses on a sensitivity
analysis of the Eisenberg-Noe financial network model with respect to the error in liabilities.

In Chapter 2, we study an alternating renewal processes without independent increments prop-
erty. Then, we define a corresponding jump counting process in Section 2.2. In Section 2.3, we
define a stochastic integral with respect to the jump counting process and prove a martingale
decomposition theorem.

In Chapter 3, we prove most theoretical results about backward stochastic differential equations
(BSDEs). We construct a general BSDE containing stochastic integrals including nonindependent
increments process in Section 3.1. Under some necessary assumptions, we prove the existence and
uniqueness of its solutions in Section 3.2. In Section 3.3, we reduce the original BSDE with a jump
terminal condition to a BSDE in a smaller filtration with a continuous terminal condition.

In Chapter 4, we price European options and compute the total valuation adjustment (XVA),
considering credit risk, asymmetric interest rate, and different financial states. In Section 4.1,
we review several topics about the Repo market. In Section 4.2, we apply an alternating renewal
process to describe the switching between financial regimes. After the discussion of several financial
accounts in Section 4.3, we create a hedging portfolio for European options in Section 4.4. In Section
4.5, we construct a BSDE to evaluate the arbitrage-free price of a European option and prove the
existence and uniqueness of the solution. In Section 4.6, we construct a BSDE of the XVA and
derive a corresponding reduced BSDEs to a smaller filtration. In Section 4.7, we estimate the
parameters of the alternating renewal process by the Ted spread historical data and analyze the
sensitivity of the XVA with respect to the financial states, volatilities and funding rates.

In Chapter 5, we present the Eisenberg–Noe framework and provide initial continuity results
of that model. We then study directional derivatives and the Taylor series of the Eisenberg–Noe
clearing payments with respect to the relative liability matrix. These results allow us to consider
the sensitivity of the clearing payments. In Section 5.2 we use the directional derivatives in order
to determine the perturbations to the relative liabilities matrix that present the “worst” errors in
terms of misspecification of the clearing payments and impact to society. These results are extended
to also consider the probability of the various estimation errors. In Section 5.3 we implement our
sensitivity analysis on data calibrated to a network of European banks. The main results of this
chapter are already published in Feinstein et al. (2018).
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Chapter 2

Poisson Processes With
Not-independent Increments Property

In order to describe the switching between a normal financial status and a financial crisis status,
we study an alternating renewal process and its corresponding jump counting process. With the
stochastic integral with respect to this process, we prove a martingale decomposition theorem,
including nonindependent increments processes.

2.1 Alternating Renewal Processes

In this section, we will discuss cumulative distribution functions and properties of the alternating
renewal process. An alternating renewal process is a nonhomogeneous Poisson process without
independent increments property. This process is well known in engineering field, where it is used
to describe a service period and a shutdown period of a machine. For a machine, we assume that
the service time follows an exponential distribution with a constant parameter. The shut down
time, or the time to fix this machine, follows an exponential distribution with another constant
intensity. This process is also called an On-Off process.

An alternating renewal process is a stochastic process switching between 0 and 1. We denote
Ui ∼ exp(λU ) as the ith inter-arrival (holding) time in “0” status and Vi ∼ exp(λV ) as the ith

holding time in “1” status, where i ∈ N. Let Ti be the arrival (alternating) time for i ∈ N,

T1 = U1,

T2 = U1 + V1,

T3 = U1 + V1 + U2,

· · · · · ·

Definition 2.1.1. An alternating renewal process is defined as

βt =
∞∑
i=1

(−1)i+11{Ti≤t},

where odd inter-arrival times T2n+1 − T2n follow an exponential distribution with a constant pa-
rameter λU > 0, and even inter-arrival times T2n− T2n−1 follow an exponential distribution with a
constant parameter λV > 0.

7



The graph of one path of the stochastic process β is given in Figure 2.1.

Figure 2.1: One path of the process β.

Distributions

By its definition, the stochastic process β is a right continuous Markov process with left limits
(càdlàg) switching between status “0” and status “1”. At each alternating time Tn, the jump
direction of the process β depends on the status of βTn−. When βTn− = 0, then βTn = 1 as a result
of an upward jump. When βTn− = 1, then βTn = 0 as a result of a downward jump. Therefore, the
alternating renewal process β does not have an independent increments property. Because β has
only countable many jumps almost surely, it has one left-continuous with right limits modification
(càglàd). We decompose β as the sum of two processes β+ and β−:

β+
t =

∑
s≤t

1{βs−<βs}, β−t = −
∑
s≤t

1{βs−>βs}. (2.1.1)

The process β+ is a jump counting process of the upward jumps and the process β− is a jump
counting process of a downward jumps.

Figure 2.2: One path of the process β+.

Since β− is a non-increasing càdlàg process, it is a supermartingale. The supermartingale β− is
a negative Poisson process with inter-arrival times (holding time) following independent identically

8



Figure 2.3: One path of the process β−.

distributed (i.i.d.) exponential distributions. Since the inter-arrival times of the process β− are
the sum of inter-arrival times of processes Ui and Vi, we have that the relation 1

λ = 1
λU

+ 1
λV

, so

the inter-arrival times of β− are exponential distributed random variables with parameter λ, where
λ = λUλV

λU+λV
.

In the same way, we know β+ is a submartingale. Contrary to β−, it does not have the
independent increments property. We define Yi = Vi + Ui+1, which is an exponential distributed
random variable with parameter λ. The alternating time is given by T+

1 = U1 = T1 ∼ exp(λU ) and
T+
n+1 = U1 +

∑n
i=1 Yi = T2n+1 for n ≥ 1. By the properties of the sum of i.i.d. random variables,

we have
∑n

i=1 Yi ∼ Gamma(n, λ). By the convolution, we know T+
n+1 = T2n+1 follows a sum of one

exponential distribution exp(λU ) and a Gamma distribution Gamma(n, λ), where λ = λUλV
λU+λV

.

So the probability density function of T2n+1 = U1 +
∑n

i=1 Yi is

fT2n+1(z) = fU1+
∑n
i=1 Yi

(z)

=

∫ ∞
−∞

fU1(z − y)f∑n
i=1 Yi

(y)dy

=

∫ z

0
λU exp

(
− λU (z − y)

) λnyn−1

(n− 1)!
exp(−λy)dy

=
λUλ

n exp(−λUz)
(n− 1)!

∫ z

0
yn−1 exp

(
(λU − λ)y

)
dy

=
λUλ

n exp(−λUz)
(n− 1)!

exp
(
(λU − λ)y

) n−1∑
k=0

(−1)n−k−1 (n− 1)!yk

k!(λU − λ)n−k

∣∣∣z
0

=
λUλ

n exp(−λUz)
(n− 1)!

exp
(
(λU − λ)y

) n−1∑
k=0

(−1)(n− 1)!yk

k!(λ− λU )n−k

∣∣∣z
0
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=
λUλ

n exp(−λUz)
(n− 1)!

exp
(
(λU − λ)z

) n−1∑
k=0

(−1)(n− 1)!zk

k!(λ− λU )n−k
− λUλ

n exp(−λUz)
(n− 1)!

n−1∑
k=0

(−1)(n− 1)!0k

k!(λ− λU )n−k

=
λUλ

n exp(−λUz)
(λ− λU )n

− λUλn exp(−λz)
n−1∑
k=0

zk

k!(λ− λU )n−k
.

Here we apply the formula∫
xn exp(ax)dx = exp(ax)

n∑
k=0

(−1)k
n!xn−k

(n− k)!ak+1
= exp(ax)

n∑
k=0

(−1)n−k
n!xk

k!an−k+1
.

Thus, we compute the cumulative distribution function of T2n+1. For n = 0, we have

P(T1 ≤ t) =

∫ t

0
λU exp(−λUu)du = 1− exp(−λU t).

For n ≥ 1, by integration by parts, we have

P(T2n+1 ≤ t) =

∫ t

0
fT2n+1(z)dz

=

∫ t

0

λUλ
n exp(−λUz)

(λ− λU )n
dz −

∫ t

0
λUλ

n exp(−λz)
n−1∑
k=0

zk

k!(λ− λU )n−k
dz

=
λn

(λ− λU )n

∫ t

0
λU exp(−λUz)dz −

n−1∑
k=0

λUλ
n

k!(λ− λU )n−k

∫ t

0
zk exp(−λz)dz

= −λ
n exp(−λUz)
(λ− λU )n

∣∣∣t
0
−
n−1∑
k=0

λUλ
n exp(−λz)

k!(λ− λU )n−k

k∑
j=0

(−1)k−jk!zj

j!(−λ)k−j+1

∣∣∣t
0

=
λn

(λ− λU )n
− λn exp(−λU t)

(λ− λU )n
+
n−1∑
k=0

λUλ
n exp(−λz)

(λ− λU )n−k

k∑
j=0

zj

j!λk−j+1

∣∣∣t
0

=
λn

(λ− λU )n
− λn exp(−λU t)

(λ− λU )n
+
n−1∑
k=0

λUλ
n exp(−λt)

(λ− λU )n−k

k∑
j=0

tj

j!λk−j+1

−
n−1∑
k=0

λUλ
n

(λ− λU )n−k

k∑
j=0

0j

j!λk−j+1

=
λn

(λ− λU )n
− λn exp(−λU t)

(λ− λU )n
+
n−1∑
k=0

λUλ
n exp(−λt)

(λ− λU )n−k

k∑
j=0

tj

j!λk−j+1

−
n−1∑
k=0

λUλ
n

(λ− λU )n−k
1

λk+1

= 1− λn exp(−λU t)
(λ− λU )n

+

n−1∑
k=0

λUλ
n exp(−λt)

(λ− λU )n−k

k∑
j=0

tj

j!λk−j+1
.

We get the probability distribution function of β+
t as follows:
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P(β+
t = 0) = P(T1 > t)

=

∫ ∞
t

λU exp(−λUz)dz

= e−λU t.

(2.1.2)

P(β+
t = 1) = P(T1 ≤ t)− P(T3 ≤ t, T1 ≤ t)

= P(T1 ≤ t)− P(T3 ≤ t)

= 1− exp(−λU t)− (1− λ exp(−λU t)
λ− λU

+
λU exp(−λt)
λ− λU

)

=
λU

λ− λU
(

exp(−λU t)− exp(−λt)
)
.

(2.1.3)

For n ≥ 1

P(β+
t = n+ 1) = P(T2n+1 ≤ t)− P(T2n+3 ≤ t, T2n+1 ≤ t)

= P(T2n+1 ≤ t)− P(T2n+3 ≤ t)

=
λn+1 exp(−λU t)

(λ− λU )n+1
− λn exp(−λU t)

(λ− λU )n

+

n−1∑
k=0

λUλ
n exp(−λt)

(λ− λU )n−k

k∑
j=0

tj

j!λk−j+1
−

n∑
k=0

λUλ
n+1 exp(−λt)

(λ− λU )n−k+1

k∑
j=0

tj

j!λk−j+1

=
λUλ

n exp(−λU t)
(λ− λU )n+1

−
n−1∑
k=0

λ2
Uλ

n exp(−λt)
(λ− λU )n−k+1

k∑
j=0

tj

j!λk−j+1
− λU exp(−λt)

λ− λU

n∑
k=0

tkλk

k!
.

(2.1.4)

Remark 2.1.2. Note that Equation (2.1.3) can be recovered from Equation (2.1.4) by setting n = 0
and eliminate the second term

∑n−1
k=0 .

2.1.1 Properties

Proposition 2.1.3. The stochastic process β− is square integrable on any finite time horizon.

Proof. By the definition of a homogeneous Poisson process, we have P(−β− = n) = (λt)n

n! e−λt. For
any given t <∞, E[(β−t )2] = λt+ (λt)2 <∞.

Proposition 2.1.4. The stochastic process β+ is square integrable on any finite time horizon.

Proof. If t < T1, then β+
t = 0 and E[(β+

t )2] = 0.

If t ≥ T1, then β̂+
t = β+

t − β
+
T1− is a homogeneous Poisson process with parameter λ. So

E[(β̂+
t )2] = (λt)2 + λt <∞.
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Since β+
T1− = 0, we have

E[(β+
t )2] = E[(β+

t − β
+
T1−)2] = E[(β̂+

t )2] <∞.

Overall, we proved β+
t is square integrable for 0 ≤ t <∞.

Proposition 2.1.5. For the stochastic process β+, there exist a finite variation stochastic process
Λ+ such that β̃+

t := β+
t −Λ+

t = β+
t −

∫ t
0 λ

+
s ds, β̃

+ is a martingale with respect to the natural filtration

(F β
t )t≥0, F β

t = σ(βs : s ≤ t).

Proof. By Proposition 2.1.4, the process β+ is square integrable. Since β+
t is a nondecreasing

process, it is a submartingale. By the Doob–Meyer Decomposition Theorem, there exist a finite
variation process Λ+

t such that β̃+
t = β+

t − Λ+
t , β̃

+ is a square integrable martingale with respect

to the filtration (F β
t )t≥0.

Then, by the intensity of Poisson processes λ+
t = limh→0

P(β+
t+h−β

+
t =1)

h and Λ+
t :=

∫ t
0 λ

+
s ds, we

have

lim
h→0

P(β+
t+h − β

+
t = 1)

h
= lim

h→0

P(β+
t+h − β

+
t = 1|t < T1)

h
1{t<T1} + lim

h→0

P(β+
t+h − β

+
t = 1|T1 ≤ t)
h

1{T1≤t}

= lim
h→0

P(β+
h = 1|t < T1)

h
1{t<T1} + lim

h→0

P(β+
t+h − β

+
t = 1|T1 ≤ t)
h

1{T1≤t}.

For the second term, when T1 < t < t+h, the process (βt+h−βt)t≥T1 is a Poisson process with the
intensity λ. For the first term,

lim
h→0

P(β+
h = 1|t < T1)

h
= lim

h→0

λU
λ−λU

(
exp(−λUh)− exp(−λh)

)
h

=
λU

λ− λU
lim
h→0

exp(−λUh)− exp(−λh)

h

=
λU

λ− λU
lim
h→0

−λUh exp(−λUh) + λh exp(−λh)

h

=
λU

λ− λU
lim
h→0

(
λ exp(−λh)− λU exp(−λUh)

)
=

λU
λ− λU

(λ− λU )

= λU .

Therefore, λ+
t = λU1{t<T1} + λ1{T1≤t}, the proposition is proved.

Lemma 2.1.6. The process β has countably infinite many jumps and T∞ := limn→∞ Tn = ∞
almost surely.

Proof. Based on the definition, βt has countably infinite many jumps. For any given time t ≥ 0, a
sequence of events {T2n+1 ≤ t} is decreasing events as n→∞. By the equation P(T2n+1 ≤ t) and
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Fubini’s theorem, we have

P(T∞ ≤ t) = lim
n→∞

P(T2n+1 ≤ t)

= lim
n→∞

{
1− λn exp(−λU t)

(λ− λU )n
+
n−1∑
k=0

λUλ
n exp(−λt)

(λ− λU )n−k

k∑
j=0

tj

j!λk−j+1

}

= 1− exp(−λU t) lim
n→∞

( λ

λ− λU

)n
+
λU
λ

exp(−λt) lim
n→∞

( λ

λ− λU

)n n−1∑
k=0

k∑
j=0

(λt)j

j!

(λ− λU
λ

)k
= 1− exp(−λU t) lim

n→∞

( λ

λ− λU

)n
+
λU
λ

exp(−λt) lim
n→∞

( λ

λ− λU

)n n−1∑
j=0

(λt)j

j!

n−1∑
k=j

(λ− λU
λ

)k
= 1− exp(−λU t) lim

n→∞

( λ

λ− λU

)n
+
λU
λ

exp(−λt) lim
n→∞

( λ

λ− λU

)n n−1∑
j=0

(λt)j

j!

(
λ−λU
λ

)j(
1−

(
λ−λU
λ

)n−j)
1− λ−λU

λ

= 1− exp(−λU t) lim
n→∞

( λ

λ− λU

)n
+
λU
λ

exp(−λt) lim
n→∞

( λ

λ− λU

)n n−1∑
j=0

(λt)j

j!

λ

λU

((λ− λU
λ

)j
−
(λ− λU

λ

)n)

= 1− exp(−λU t) lim
n→∞

( λ

λ− λU

)n
+ exp(−λt) lim

n→∞

( λ

λ− λU

)n n−1∑
j=0

((λ− λU )t)j

j!

− exp(−λt) lim
n→∞

n−1∑
j=0

(λt)j

j!

= 1− exp(−λU t) lim
n→∞

( λ

λ− λU

)n(
1− exp

(
− (λ− λU )t

) n−1∑
j=0

(
(λ− λU )t

)j
j!

)

− exp(−λt) lim
n→∞

n−1∑
j=0

(λt)j

j!
,

= 1− I1 − I2,

where the term 1 − exp
(
− (λ − λU )t

)∑n−1
j=0

(
(λ−λU )t

)j
j! in I1 is the tail probability of a Poisson

process with parameter λ− λU . By the Proposition 1 in Glynn (1987), we have

1− exp
(
− (λ− λU )t

) n−1∑
j=0

(
(λ− λU )t

)j
j!

≤
(

1− λ− λU
n+ 1

)−1
exp

(
− (λ− λu)t

)((λ− λU )t
)n

n!
.
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Thus, the term I1

I1 ≤ exp(−λU t) lim
n→∞

( λ

λ− λU

)n(
1− λ− λU

n+ 1

)−1
exp

(
− (λ− λu)t

)((λ− λU )t
)n

n!

= exp(−λt) lim
n→∞

(
1− λ− λU

n+ 1

)−1 (λt)n

n!

where it is nonnegative when n is even. So, we have limn→∞ I1 = 0. For the term I2, we get

I2 = exp(−λt) exp(λt) = 1.

Therefore P(T∞ ≤ t) = 1− 0− 1 = 0. Since t is arbitrary, we proved T∞ =∞ almost surely.

Theorem 2.1.7. For an alternating renewal process β, there exists a finite variation stochastic
process Λβ such that β̃t := βt − Λβt = βt −

∫ t
0 λ

β
s ds, β̃ is a martingale with respect to the filtration

(F β
t )t≥0.

Proof. By Proposition 2.1.3 and 2.1.4, the integrability is trivial. Since −β− is a Poisson process
with parameter λ, we have that process β̃−t := β−t + λt, β̃− is a martingale with respect to the

filtration (F β
t )t≥0. By Proposition 2.1.5, β̃+ is a martingale with respect to the filtration (F β

t )t≥0.

Since βt = β+
t + β−t , we define Λt = Λ+

t + λt and λβt = λ+
t + λ, then the expectation is as follows

E
[
βt −

∫ t

0
λβudu|F β

s

]
= E

[
β+
t + β−t −

∫ t

0
λ+
u − λdu|F β

s

]
= E

[
β+
t −

∫ t

0
λ+
u du|F β

s

]
+ E

[
β−t +

∫ t

0
λdu|F β

s

]
= β+

s −
∫ s

0
λ+
u ds+ β−s + λs

= βs −
∫ s

0
λβudu.

So β̃t := βt − Λβt = βt −
∫ t

0 λ
β
s ds, β̃ is a martingale with respect to the filtration (F β

t )t≥0.

2.2 Jump Counting Processes

In this section, we define a nondecreasing processes corresponding to alternating renewal processes
β, called jump counting processes, and discuss its property.

Definition 2.2.1. For the alternating renewal process β with parameters λU and λV , we define a
jump counting process J as

Jt =
∑
s≤t

1{βs−βs− 6=0}(s). (2.2.1)

Remark 2.2.2. The value of the stochastic process J at time t is the number of jumps of the
process β until time t. By Equation (2.1.1), we have Jt = β+

t − β
−
t .

Proposition 2.2.3. The jump counting process J has countably infinite many jumps and T∞ =∞.

Proof. By Equation (2.2.1) and the Lemma 2.1.6, we have this result.
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Remark 2.2.4. Similar to the process β, the jump counting process J is a stochastic process without
independent increments property when λU 6= λV .

Proposition 2.2.5. The jump counting process J is a square integrable semimartingale with respect
to the filtration (F β

t )t≥0.

Proof. By Equation (2.2.1), J is a nondecreasing stochastic process, so it is a finite variation process.

Thus, Jt is a semimartingale with respect to the filtration (F β
t )t≥0.

Based on Remark 2.2.2, Proposition 2.1.3 and 2.1.4, we have E[(Jt)
2] = E[(β+

t − β−t )2] ≤
2E[(β+

t )2] + 2E[(β−t )2] <∞.

Proposition 2.2.6. For the jump counting process J , there exists a finite variation stochastic
process ΛJ such that J̃t := Jt − ΛJt = Jt −

∫ t
0 λ

J
s ds, J̃ is a square integrable martingale with respect

to the filtration (F β
t )t≥0.

Proof. Since J = β+ − β−, we define ΛJt := Λ+
t + λt, λJ = λ+ + λ−. Similar to the proof of

Theorem 2.1.7, J̃t := Jt −ΛJt = Jt −
∫ t

0 λ
J
s ds is a martingale with respect to the filtration (F β

t )t≥0

by Proposition 2.1.5.
By Proposition 2.2.5, we have E[(J̃t)

2] = E[(Jt −
∫ t

0 λ
J
s ds)

2] ≤ 2E[(Jt)
2] + 2E[(

∫ t
0 λ

J
s ds)

2] < ∞.

So J̃t is a square integrable martingale with respect to the filtration (F β
t )t≥0.

We call the stochastic process J̃ as a compensated jump counting process of J .

2.3 Stochastic Calculus With Respect To Compensated Jump Count-
ing Processes

In general, we can rewrite a corresponding martingale problem with respect to each BSDE, since
the stochastic integral with respect to a Brownian motion is a local martingale. Then, the exis-
tence and uniqueness of a solution to a BSDE is a direct result of the martingale representation
theoremKaratzas and Shreve (1998). For preparation of the proof in Chapter 3, we discuss the
stochastic integral with respect to the process J̃ and a theorem similar to the martingale represen-
tation theorem. We first prove that the space of all square integrable martingales with a stochastic
integer representation is a Banach space and then prove the martingale decomposition theorem.

2.3.1 Stochastic Integrals

Since the compensated jump counting process J̃ is a martingale with respect to the filtration
(F β

t )t≥0, we can define the stochastic integral with respect to J̃ ; see (Métivier 1982, Chapter 4)

for details. Let X be a predictable process with respect to the filtration (F β
t )t≥0, and we denote

the stochastic integral with respect to the compensated jump counting process J̃ as∫ t

0
XsdJ̃t.

Proposition 2.3.1 (Isometry). Let X be a predictable process with respect to the filtration (F β
t )t≥0

and [J̃ ]t be the quadratic variation of the compensated jump counting process J̃ . We have the
following isometry property
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E

[(∫ t

0
XsdJ̃s

)2
]

= E
[∫ t

0
(Xs)

2d[J̃ ]s

]
= E

[∫ t

0
(Xs)

2λJs ds

]
.

Proof. By Proposition 2.2.6, we know that J̃ is a square integrable martingale with respect to the
filtration (F β

t )t≥0. By Proposition 18.13 in Métivier (1982) and Proposition 2.2.6, we have this
result.

The Space of Square Integrable Martingales

To prove that a square integrable martingale has a representation of stochastic integrals with
nonindependent increments processes, we introduce several assumptions and notations at first.

Assumption 2.3.2. Let W be a Brownian motion, β be an alternating renewal process, $I , $C be
two compensated processes with a single exponential distributed jump, which are independent and
strongly orthogonal.

Notation 2.3.3.

• (Ω,F ,P) is a probability space.

• Ft = σ(Ws, βs, $
I
s , $

C
s : s ≤ t).

• (Ω,F , (Ft)t≥0,P) is a filtered probability space.

• H β,2 = {X|X is B([0, t]) ⊗F β
t predictable process with ‖X‖H 2

t
< ∞, for ∀t ≤ T}, where

‖ · ‖H 2
T

= E[
∫ t

0 X
2
sds].

• H 2 = {(X,XI , XC , Xβ)|X,XI , XC , Xβ are B([0, t])⊗Ft predictable process with ‖X‖H 2
T
<

∞, ‖XI‖H 2
T
<∞, ‖XC‖H 2

T
<∞ and ‖Xβ‖H 2

T
<∞, for ∀t ≤ T}.

• M β = {M |M is a (F β
t )t≥0 martingale with supt≤T E[M2

t ] <∞, for ∀t ≤ T}.

• M = {M |M is a (Ft)t≥0 martingale with supt≤T E[M2
t ] <∞, for ∀t ≤ T}.

• M β,∗
T = {MT |MT is a F β

T measurable random variable with MT := IβT (X) =
∫ T

0 XsdJ̃s,
for supt≤T E[M2

t ] <∞, X ∈H β,2}.

• M β,∗ = {M |M ∈M β and Mt := Iβt (X) =
∫ t

0 XsdJ̃s with X ∈H β,2, for ∀t ≤ T}.

• M ∗
T = {MT |MT is a FT measurable random variable with MT =: IT (X) =

∫ T
0 XsdWs +∫ T

0 XI
s d$

I
t +

∫ T
0 XC

s d$
C
t +

∫ T
0 Xβ

s dJ̃s, for supt≤T E[M2
t ] <∞, (X,XI , XC , Xβ) ∈H 2

T }.

• M ∗ = {M |M ∈M and Mt =: It(X) =
∫ t

0 XsdWs+
∫ t

0 X
I
s d$

I
s +
∫ t

0 X
C
s d$

C
s +

∫ t
0 X

β
s dJ̃s with

(X,XI , XC , Xβ) ∈H 2, for ∀t ≤ T}.

Proposition 2.3.4. Given (Ω,F , (F β
t )t≥0,P), (M β,∗, ‖ ‖) is a Banach space with the norm ‖·‖2 =

E[M2
t ] for M ∈M β,∗.
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Proof. I. We prove first that (M β,∗, ‖ ‖) is a vector space. Let M
(1)
t ,M

(2)
t ∈ M β,∗, then we have

two predictable square integrable processes X(1) and X(2) such that M
(1)
t =

∫ t
0 X

(1)
s dJ̃s,M

(2)
t =∫ t

0 X
(2)
s dJ̃s. Let µ1, µ2 ∈ R and X = µ1X

(1) + µ2X
(2), then X is still predictable and square

integrable. So µ1M
(1)
t + µ2M

(2)
t =

∫ t
0 XsdJ̃s ∈M β,∗.

II. Let M
(n)
t ∈ M β,∗ be a Cauchy sequence. Since this vector space is a topological normed

space, the limit of M
(n)
t exists, denoted by Mt = limn→∞M

(n)
t . Then we need to prove that

Mt ∈ M β,∗. Since M
(n)
t ∈ M β,∗, there exists a sequence of adapted square integrable processes

X(n) such that M
(n)
t = Iβt (X(n)) =

∫ t
0 X

(n)
s dJ̃s.

i) Let X = limn→∞X
(n), we need to prove it exist and X is predictable and square integrable.

Since M
(n)
t is a Cauchy sequence, for any given ε > 0, there exists N ∈ N such that ‖M (n)

t −
M

(m)
t ‖ < ε for any n,m > N . Since M

(n)
t ,M

(m)
t ∈M β,∗, there exist X(n), X(m) such that M

(n)
t =∫ t

0 X
(n)
s dJ̃s,M

(m)
t =

∫ t
0 X

(m)
s dJ̃s. Based on the definition of H β,2 and the isometry property, we

have

‖X(n) −X(m)‖H 2
t

=E
[∫ t

0
|X(n)

s −X(m)
s |2ds

]
=E

[∫ t

0
|X(n)

s −X(m)
s |2 1

λJs
λJs ds

]
≤ 1

λ
E
[∫ t

0
|X(n)

s −X(m)
s |2λJs ds

]
=

1

λ
E
[∫ t

0
|X(n)

s −X(m)
s |2d[J̃ ]s

]
=

1

λ
E
[( ∫ t

0
|X(n)

s −X(m)
s |dJ̃s

)2]
=

1

λ
‖M (n) −M (m)‖2t

<ε.

So the sequence X(n) is a Cauchy sequence. Since H β,2 is complete, the limit X = limn→∞X
(n)

exists. By the definition of X, the predictability and square integrability properties are trivial.

ii) For any ε > 0, there exists N ∈ N such that ‖M (n)
t −Mt‖2 < ε for any n > N . We need to

prove the square integrability. For any n > N be given, we have ‖M‖2 ≤ (‖Mt−M (n)
t ‖+‖M

(n)
t ‖)2 ≤

(ε + ‖M (n)
t ‖)2 < ∞, which proved the square integrability. By the square integrability, Mt =

limn→∞M
(n)
t = limn→∞

∫ t
0 X

(n)
s dJ̃s =

∫ t
0 limn→∞X

(n)
s dJ̃s =

∫ t
0 XsdJ̃s, which proved Mt ∈M β,∗.

So any Cauchy sequence M
(n)
t ∈ M β,∗ is convergent in the space (M β,∗, ‖ ‖), which means

(M β,∗, ‖ ‖) is close.
Overall, (M β,∗, ‖ ‖) is a Banach space.

Remark 2.3.5. By the square integrability in this Banach space, it is also a Hilbert space for a
inner produce < M1

t ,M
2
t >= E[M1

tM
2
t ].

Proposition 2.3.6. M β,∗
t ∈M β, which means for any Mt := Iβt (X) ∈M β,∗, Iβ(X) is a square

integrable martingale with respect to the filtration (F β
t )t≥0.
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Proof. I. By Proposition 2.3.4, the square integrability of Iβt (X) follows the square integrability of
X.

II. For a given t ≥ 0, we need to prove the martingale property of Iβt (X). By the definition of
process J̃ , We have

E[IβT (X)|F β
t ] = E

[ ∫ T

0
XsdJ̃s|F β

t

]
= E

[ ∫ t

0
XsdJ̃s|F β

t

]
+ E

[ ∫ T

t
XsdJ̃s|F β

t

]
=

∫ t

0
XsdJ̃s + E

[ ∫ T

t
XsdJ̃s|F β

t

]
= Iβt (X) + E

[ ∫ T

t
XsdJ̃s|F β

t

]
(2.3.1)

Next, We show that the second term in the above equation is equal 0 in two steps.

i) Assume that X is an elementary process, i.e. X =
∑N

i=1 ati1{ti≤s<ti+1} with ati are F β
ti

measurable square integrable random variables and 0 = t1 < · · · < tk−1 < t < tk < · · · < tN = T .
Then the second term in Equation (2.3.1) becomes

E
[ ∫ T

t
XsdJ̃s|F β

t

]
= E

[ ∫ T

t

N∑
i=1

ati1{ti≤s<ti+1}dJ̃s|F
β
t

]
= E

[ N∑
i=1

∫ T

t
ati1{ti≤s<ti+1}dJ̃s|F

β
t

]
=

N∑
i=1

E
[
ati

∫ T

t
1{ti≤s<ti+1}dJ̃s|F

β
t

]
= E[atk−1

(J̃tk − J̃t)|F
β
t ] +

N∑
i=k

E[ati(J̃ti+1 − J̃ti)|F
β
t ]

= E
[
E[atk−1

(J̃tk − J̃t)|F
β
ti

]
∣∣∣F β

t

]
+

N∑
i=k

E
[
E[ati(J̃ti+1 − J̃ti)|F

β
ti

]
∣∣∣F β

t

]
= E

[
atk−1

E[J̃tk − J̃t|F
β
ti

]
∣∣∣F β

t

]
+

N∑
i=k

E
[
atiE[J̃ti+1 − J̃ti |F

β
ti

]
∣∣∣F β

t

]
. (2.3.2)

By the definition of J̃t =
∑

s≤t 1{βs−βs− 6=0}(s)−
∫ t

0 λ
J
s ds, we have

J̃ti+1 − J̃ti =
∑
s≤ti+1

1{βs−βs− 6=0}(s)−
∫ ti+1

0
λJs ds−

(∑
s≤ti

1{βs−βs− 6=0}(s)−
∫ ti

0
λJs ds

)
=

∑
ti<s≤ti+1

1{βs−βs− 6=0}(s)−
∫ ti+1

ti

λJs ds.
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Let s′ = s− ti for s ≥ ti, we have s = s′ + ti, then

J̃ti+1 − J̃ti =
∑

ti≤s′+ti≤ti+1

1{βs′+ti−β(s′+ti)−
}(s
′)−

∫ ti+1

ti

λJs′+tid(s′ + ti)

=
∑

0<s′≤ti+1−ti

1{βs′+ti−β(s′+ti)−
6=0}(s

′)−
∫ ti+1−ti

0
λJs′+tid(s′).

Let β′t = βt′+ti and λJ
′
t = λJt′+ti , we have

J̃ti+1 − J̃ti =
∑

0≤s≤t
1{β′s−β′s− 6=0}(s)−

∫ t

0
λJ
′
s ds,

denoted by J̃ ′t. By the definition of compensated jump counting processes, J̃ ′ is a compensated
jump counting process by the memoryless property of exponential processes. When βti = 0, J̃ ′ has
same distribution as J̃ . When βti = 1, J̃ ′ is a compensated jump counting process starting with
the initial value 1. In summary, we have E[J̃ ′t1{βti=0}] = 0 and E[J̃ ′t1{βti=1}] = 0 for t ≥ ti. By the
Markov property of a Poisson process, we have

E[J̃ti+1 − J̃ti |F
β
ti

] = E[J̃ ′ti+1
|σ(βti)]

=
E[J̃ ′ti+1

1{βti=1}]

P(βti = 1)
1{βti=1} +

E[J̃ ′ti+1
1{βti=0}]

P(βti = 0)
1{βti=0}

= 01{βti=1} + 01{βti=0}

= 0.

Similarly, the first term in Equation (2.3.2) becomes E
[
atk−1

E[J̃tk − J̃t|F
β
ti

]
∣∣∣F β

t

]
= 0. Thus, the

second term in Equation (2.3.1) becomes

E
[
atk−1

· 0
∣∣∣F β

t

]
+

N∑
i=k

E
[
ati · 0

∣∣∣F β
t

]
= 0.

Therefore E[IβT (X)|F β
t ] = Iβt (X). Since t is any arbitrage time, we proved the martingale property

of Iβ(X) when X is an elementary process.
ii) For any predictable square integrable stochastic process X, there exists a sequence of square

integrable elementary processes X(n) → X, as n → ∞. By the square integrability, the second
term in Equation (2.3.1) becomes

E
[ ∫ T

t
XsdJ̃s|F β

t

]
= E

[ ∫ T

t
lim
n→∞

X(n)
s dJ̃s|F β

t

]
= lim

n→∞
E
[ ∫ T

t
X(n)
s dJ̃s|F β

t

]
= lim

n→∞
0

= 0.

So we proved the martingale property of Iβ(X).
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Remark 2.3.7. In Proposition 2.3.6, we apply the square integrability to switch the sequence of a
integral and limit in the proof. Without the square integrability property, Iβ(X) still has the mar-
tingale property with a L1 integrability condition, by adding a condition to satisfy the requirement
to switch the integral and the limit.

Assume that the stochastic processes W,β,$I , $C are independent and strongly orthogonal,
Proposition 2.3.4 and Proposition 2.3.6 can be extended to the martingale M with respect to the
natural filtration (Ft)t≥0.

Proposition 2.3.8. Given (Ω,F , (Ft)t≥0,P), (M ∗, ‖ ‖) is a Banach space with the norm ‖ · ‖2 =
E[M2

t ] for Mt ∈M∗.

Proof. I. First we prove that (M ∗, ‖ ‖) is a vector space. Let M1
t ,M

2
t ∈M ∗ and µ1, µ2 ∈ R. By

the linearity of stochastic integrals, we have

µ1M
1
t + µ2M

2
t =

∫ t

0
(µ1X

1
s + µX2

s )dWs +

∫ t

0
(µ1X

1,I
s + µ2X

2,I
s )d$I

s

+

∫ t

0
(µ1X

1,C
s + µ2X

2,C
s )d$C

s +

∫ t

0
(µ1X

1,β
s + µ2X

2,β
s )dJ̃s

∈M ∗
t .

II. Since (Ft)t≥0,P) is a normed space, we want to prove the completeness of this space. By the
definition of ‖ · ‖2, Proposition 2.3.4 and the strongly orthogonality of the processes W,β,$I , $C ,
we have the completeness of (M ∗, ‖ ‖).

Overall, we proved that (M ∗, ‖ ‖) is a Banach space.

Proposition 2.3.9. M ∗ ∈M , which means for any Mt = It(X) ∈M ∗, I(X) is a square integrable
martingale with respect to the filtration (Ft)t≥0.

Proof. I. For the square integrability, since (X,XI , XC , Xβ) ∈H 2, we have this property.

II. Then we want to prove the martingale property of I(X). By the linearity of the expectation,
independence and Proposition 2.3.6, we have

E
[
IT (X)|Ft

]
= E

[ ∫ T

0
XsdWs +

∫ T

0
XI
s d$

I
s +

∫ T

0
XC
s d$

C
s +

∫ T

0
Xβ
s dJ̃s|Ft

]
= E

[ ∫ T

0
XsdWs|Ft

]
+ E

[ ∫ T

0
XI
s d$

I
s |Ft

]
+ E

[ ∫ T

0
XC
s d$

C
s |Ft

]
+ E

[ ∫ T

0
Xβ
s dJ̃s|Ft

]
= E

[ ∫ T

0
XsdWs|FW

t

]
+ E

[ ∫ T

0
XI
s d$

I
s |F I

t

]
+ E

[ ∫ T

0
XC
s d$

C
s |FC

t

]
+ E

[ ∫ T

0
Xβ
s dJ̃s|F

β
t

]
=

∫ t

0
XsdWs +

∫ t

0
XI
s d$

I
s +

∫ t

0
XC
s d$

C
s +

∫ t

0
Xβ
s dJ̃s

= It(X).

Thus, M ∗ is a subspace of M .
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2.3.2 Martingale Decomposition Theorem

In this section, we will prove the existence and uniqueness of a decomposition of a square integrable
martingale. Any square integrable martingale with respect to the filtration (Ft)t≥0 can be write
in a form as the sum of stochastic integrals with respect to W, J̃,$I , $C and a orthogonal term.
Similar to Proposition 4.1 in Kunita and Watanabe (1967), we will prove a decomposition for a
random variable MT and then extend the decomposition ot any martingale M ∈Mt.

Proposition 2.3.10. Let MT be an F β
T measurable random variable with supt≤T E[M2

t ] < ∞,
(M ∗

T )⊥ be the orthogonal space with respect to M ∗
T . Then, there exists a unique pair IT (X) ∈M ∗

T

and Y ∈ (M ∗
T )⊥ such that MT = IT (X) + YT .

Proof. I. First we want to prove the existence of the decomposition MT = IT (X)+YT . Because M ∗
T

is complete subspace of MT , there exists an orthogonal space of M ∗
T in MT , denoted as (M ∗

T )⊥.

Let IT (X) = projM ∗
T
MT , Y = MT − IT (X). We have MT = IT (X) + Y with

‖IT (X)Y ‖2 = ‖IT (X)(MT − IT (X))‖2 = ‖(projM ∗
T
MT )2 − (projM ∗

T
MT )2‖2 = 0.

So we have Y ∈ (M ∗
T )⊥. We proved the existence of the decomposition.

II. Then, we want to prove the uniqueness of the decomposition. Assume that there exists two
decompositions, I1

T (X), I2
T (X) ∈M ∗

T and Y1, Y2 ∈ (M ∗
T )⊥ such thatMT = I1

T (X)+Y1 = I2
T (X)+Y2.

Thus, I1
T (X)−I2

T (X) = Y2−Y1. Since M ∗
T and (M ∗

T )⊥ are linear spaces and I1
T (X)−I2

T (X) ∈M ∗
T

and Y2 − Y1 ∈ (M ∗
T )⊥, we have I1

T (X)− I2
T (X) = Y2 − Y1 ∈M ∗

T ∩ (M ∗
T )⊥. By the property of an

orthogonal space, I1
T (X) − I2

T (X) = Y2 − Y1 = 0. Therefore, we get I1
T (X) = I2

T (X) ∈ M ∗
T and

Y1 = Y2 ∈ (M ∗
T )⊥. So, we proved the uniqueness.

By the unique decomposition of MT ∈MT , we have the following decomposition of a martingale
M ∈M .

Theorem 2.3.11. Let M ∈Mt. Then, there exists a unique decomposition M = I(X) + Y within
the space (M , ‖ ‖), where I(X) ∈M ∗ and Y ∈ (M ∗)⊥.

Proof. I. We want to prove the existence of a decomposition of M ∈M .

By Proposition 2.3.10, for any MT ∈MT , we have MT = YT + IT (X), where

IT (X) =

∫ T

0
XsdWs +

∫ T

0
XI
s d$

I
t +

∫ T

0
XC
s d$

C
t +

∫ T

0
Xβ
s dJ̃s ∈M∗T ,

and YT ∈ (M∗T )⊥.

Since M is a martingale, by Proposition 2.3.9, we have

Mt = E[MT |Ft] = E[YT + IT (X)|Ft] = E[YT |Ft] + It(X).

Define a stochastic process Y by Yt := E[YT |Ft]. So we have a decomposition of Mt = Yt + It(X).
Then, we want to prove that Y ∈ (M ∗)⊥. Since I(X) ∈ M ∗, we denote It(X) =

∫ t
0 XsdWs +
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∫ t
0 X

I
s d$

I
t +

∫ t
0 X

C
s d$

C
t +

∫ t
0 X

β
s dJ̃s ∈M ∗. Then

E[YtIt(X)] = E
[
Yt

(∫ t

0
XsdWs +

∫ t

0
XI
s d$

I
s +

∫ t

0
XC
s d$

C
s +

∫ t

0
Xβ
s dJ̃s

)]
= E

[
E[YT |Ft]

(∫ t

0
XsdWs +

∫ t

0
XI
s d$

I
s +

∫ t

0
XC
s d$

C
s +

∫ t

0
Xβ
s dJ̃s

)]
= E

[
E
[
YT

(∫ t

0
XsdWs +

∫ t

0
XI
s d$

I
s +

∫ t

0
XC
s d$

C
s +

∫ t

0
Xβ
s dJ̃s

)
|Ft

]]
= E

[
YT

(∫ t

0
XsdWs +

∫ t

0
XI
s d$

I
s +

∫ t

0
XC
s d$

C
s +

∫ t

0
Xβ
s dJ̃s

)]
.

Define X ′s = 1{s≤t}Xs, X
′I
s = 1{s≤t}X

I
s , X

′C
s = 1{s≤t}X

C
s , X

′β
s = 1{s≤t}X

β
s , ∀s ∈ [0, T ],

(X ′s, X
′I
s , X

′C
s , X

′β
s ) ∈H 2, we have It(X) = IT (X ′) ∈M ∗

T . Hence

E
[
YtIt(X)

]
=E
[
YT

(∫ t

0
XsdWs +

∫ t

0
XI
s d$

I
s +

∫ t

0
XC
s d$

C
s +

∫ t

0
Xβ
s dJ̃s

)]
=E
[
YT

(∫ T

0
X ′sdWs +

∫ T

0
X
′I
s d$

I
s +

∫ T

0
X
′C
s d$C

s +

∫ T

0
X
′β
s dJ̃s

)]
=0.

Since Y ⊥ I(X) for any I(X) ∈M ∗, we proved Y ∈ (M ∗)⊥.
II. Next, we want to prove the uniqueness of this decomposition. For any given M ∈ M , we

assume that I1(X), I2(X) ∈M ∗ and Y 1, Y 2 ∈ (M ∗)⊥ such that Mt = Y 1
t + I1

t (X) = Y 2
t + I2

t (X),
for 0 ≤ t ≤ T <∞. Then 0 = Mt −Mt becomes

0 = Y 1
t − Y 2

t + I1
t (X)− I2

t (X)

= Y 1
t − Y 2

t +

∫ t

0
(X1

s −X2
s )dWs +

∫ t

0
(XI,1

s −XI,2
s )d$I

s +

∫ t

0
(XC,1

s −XC,2
s )d$C

s

+

∫ t

0
(Xβ,1

s −Xβ,2
s )dJ̃s,

which means that

Y 2
t −Y 1

t =

∫ t

0
(X1

s−X2
s )dWs+

∫ t

0
(XI,1

s −XI,2
s )d$I

s+

∫ t

0
(XC,1

s −XC,2
s )d$C

s +

∫ t

0
(Xβ,1

s −Xβ,2
s )dJ̃s ∈M ∗.

Since Y 2−Y 1 ∈ (M ∗)⊥∩M ∗, we have Y 2−Y 1 = 0 within the space (M , ‖ ‖). And I1(X)−I2(X) =
0. So the decomposition is unique in the space (M , ‖ ‖).
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Chapter 3

Backward Stochastic Differential
Equations

In this chapter, we will define a general backward stochastic differential equation (BSDE), including
a stochastic integral with respect to the process J̃ . Because J̃ does not have the independent
increments property, we cannot apply any general martingale representation theorem for Brownian
motions and Lévy processes. Therefore, we will apply the martingale decomposition in Chapter 2
and some results of a fixed point problem to prove the existence and uniqueness of the solutions.
Then we will rewrite the original BSDEs with the filtration (Ft)t≥0 to a smaller filtration and show
their equivalence.

For convenience, we define several notations here.

Notation 3.0.1.

• H2 = {X|X : Ω× [0, T ]→ R is a predictable process with E
[ ∫ T

0 |Xs|2ds
]
<∞}.

• S2 = {X|X : Ω× [0, T ]→ R is a càdlàg adapted processes with E
[

sups∈[0,T ] |Xs|2
]
<∞}.

• M2 = {M |M is a martingale with respect to (Ft)t≥0 in S2}.

3.1 Construction of the General BSDEs

Let W be a Brownian Motion, N I , NC be two Poisson processes with parameters λI , λC and β
be an alternating renewal process. Given indicator processes H i

t := 1{N i
t≥1}, i ∈ {I, C}, then $i

are the compensated processes with respect to H i, i ∈ {I, C}. Define τ I = inf{t : N I
t = 1}, τC =

inf{t : NC
t = 1} and τ = τ I ∧ τC . Let J̃ a corresponding compensated jump counting process

with parameter λJ . Assume that W, J̃,$I and $C are independent and strongly orthogonal. In
this section, we study a general BSDE on the filtered probability space (Ω,F , (Ft)t≥0,P), where
Ft = σ(Ws, βs, N

I
s , N

C
s : s ≤ t) as following form

{
dVt = f(ω, t, Vt−, Zt, Z

I
t , Z

C
t , Z

β
t )dt− ZtdWt − ZIt d$I

t − ZCt d$C
t − Z

β
t dJ̃t,

VT = θ,
(3.1.1)
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where 0 ≤ t ≤ T <∞, (Z,ZI , ZC , Zβ) ∈H 2.
To simplify notations, we define a martingale M of a specific form and a generator Ft(V,M) as

follows.

Definition 3.1.1. Define Mt :=
∫ t

0 ZsdWs+
∫ t

0 Z
I
sd$

I
t+
∫ t

0 Z
C
s d$

C
t +
∫ t

0 Z
β
s dJ̃s, for (Z,ZI , ZC , Zβ) ∈

H 2 and 0 ≤ t ≤ T <∞.

Proposition 3.1.2. M is a martingale with respect to (Ft)t≥0.

Proof. Since (Z,ZI , ZC , Zβ) ∈H 2, we have that Zt, Z
I
t , Z

C
t , Z

β
t are B([0, t])⊗Ft predictable and

square integrable. By Proposition 2.3.6, we have that M is a martingale.

Definition 3.1.3. Define a generator as a function Ft(V,M) : H 2 ×M ∗ → S2 with Ft(V,M) =∫ t
0 f(ω, s, V, Z, ZI , ZC , Zβ)ds.

For general BSDE (3.1.1), we have the following assumptions:

Assumption 3.1.4.

(i) (Lipschitz Conditon) The generator f : Ω × [0, T ] × R5 → R, (ω, t, v, z, zI , zC , zβ) 7→ (ω, t)

is predictable and Lipschitz continuous in v, z, zI , zC , zβ, i.e. for (v1, z1, z
I
1 , z

C
1 , z

β
1 ) ∈ R5 and

(v2, z2, z
I
2 , z

C
2 , z

β
2 ) ∈ R5, we have

|f(ω, t, v1, z1, z
I
1 , z

C
1 , z

β
1 )− f(ω, t, v2, z2, z

I
2 , z

C
2 , z

β
2 )|

<
1

5T

(
1√
T
|v1 − v2|+ |z1 − z2|+

√
λI |zI1 − zI2 |+

√
λC |zC1 − zC2 |+

√
λJ |zβ1 − z

β
2 |
)
.

(ii) (Terminal Condition) The terminal value satisfies θ ∈ L2(Ω,FT ,P).

(iii) (Integrability Condition) f(ω, t, 0, 0, 0, 0, 0) ∈ H2.

Proposition 3.1.5. The generator Ft(V,M) satisfies the following inequality

‖Ft(V1,M1)−Ft(V2,M2)‖S2 <
1

5

(
‖V1−V2‖S2+‖Z1−Z2‖S2+‖ZI1−ZI2‖S2+‖ZC1 −ZC2 ‖S2+‖Zβ1−Z

β
2 ‖S2

)
.

Proof. Since the function f satisfies the Lipschitz condition in Assumptions 3.1.4 and W, J̃,$I , $C

are orthogonal, we have

‖Ft(V1,M1)− Ft(V2,M2)‖S2

=E
[

sup
0≤t≤T

∣∣∣ ∫ t

0
f(ω, s, V1, Z1, Z

I
1 , Z

C
1 , Z

β
1 )ds−

∫ t

0
f(ω, s, V1, Z1, Z

I
1 , Z

C
1 , Z

β
1 )ds

∣∣∣2]
=E
[

sup
0≤t≤T

∣∣∣ ∫ t

0
f(ω, s, V1, Z1, Z

I
1 , Z

C
1 , Z

β
1 )− f(ω, s, V1, Z1, Z

I
1 , Z

C
1 , z

β
1 )ds

∣∣∣2]
≤E
[

sup
0≤t≤T

t

∫ t

0

∣∣∣f(ω, s, V1, Z1, Z
I
1 , Z

C
1 , Z

β
1 )− f(ω, s, V1, Z1, Z

I
1 , Z

C
1 , Z

β
1 )
∣∣∣2ds]

<E
[

sup
0≤t≤T

∫ t

0

{1

5

( 1√
T
|V1 − V2|+ |Z1 − Z2|+

√
λI |ZI1 − ZI2 |+

√
λC |ZC1 − ZC2 |+

√
λJ |Zβ1 − Z

β
2 |
)}2

ds
]

≤E
[

sup
0≤t≤T

∫ t

0
5 · 1

25

( 1

T
|V1 − V2|2 + |Z1 − Z2|2 + λI |ZI1 − ZI2 |2 + λC |ZC1 − ZC2 |2 + λJ |Zβ1 − Z

β
2 |

2
)
ds
]

=E
[

sup
0≤t≤T

∫ t

0

1

5

( 1

T
|V1 − V2|2 + |Z1 − Z2|2 + λI |ZI1 − ZI2 |2 + λC |ZC1 − ZC2 |2 + λJ |Zβ1 − Z

β
2 |

2
)
ds
]
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≤ 1

5T
E
[

sup
0≤t≤T

∫ t

0
|V1 − V2|2ds

]
+

1

5
E
[

sup
0≤t≤T

(∫ t

0
|Z1 − Z2|2ds+

∫ t

0
λI |ZI1 − ZI2 |2ds+

∫ t

0
λC |ZC1 − ZC2 |2ds+

∫ t

0
λJ |Zβ1 − Z

β
2 |

2ds
)]
.

By the properties of isometry and orthogonality, the second term is

1

5
E
[

sup
0≤t≤T

(∫ t

0
|Z1 − Z2|2ds+

∫ t

0
λI |ZI1 − ZI2 |2ds+

∫ t

0
λC |ZC1 − ZC2 |2ds+

∫ t

0
λJ |Zβ1 − Z

β
2 |

2ds
)]

=
1

5
E
[ ∫ T

0
|Z1 − Z2|2ds+

∫ T

0
λI |ZI1 − ZI2 |2ds+

∫ T

0
λC |ZC1 − ZC2 |2ds+

∫ T

0
λJ |Zβ1 − Z

β
2 |

2ds
]

=
1

5
E
[( ∫ T

0
|Z1 − Z2|dWs +

∫ T

0
|ZI1 − ZI2 |d$I

s +

∫ T

0
|ZC1 − ZC2 |d$C

s +

∫ T

0
|Zβ1 − Z

β
2 |dJ̃s

)2]
≤1

5
E
[

sup
0≤t≤T

(∫ t

0
|Z1 − Z2|dWs +

∫ t

0
|ZI1 − ZI2 |d$I

s +

∫ t

0
|ZC1 − ZC2 |d$C

s +

∫ t

0
|Zβ1 − Z

β
2 |dJ̃s

)2]
≤1

5
‖M1 −M2‖S2

Therefore, we have

‖Ft(V1,M1)− Ft(V2,M2)‖S2 ≤
1

5T
E
[ ∫ T

0
|V1 − V2|2ds

]
+

1

5
‖M1 −M2‖S2

≤ 1

5T
E
[
T sup

0≤t≤T
|V1 − V2|2

]
+

1

5
‖M1 −M2‖S2

=
1

5
E
[

sup
0≤t≤T

|V1 − V2|2
]

+
1

5
‖M1 −M2‖S2

=
1

5

(
‖V1 − V2‖S2 + ‖M1 −M2‖S2

)
.

So, we proved this proposition.

3.2 Existence and Uniqueness of Solution

In this section, we will prove the existence and uniqueness of the solutions of the general BSDE.
For BSDEs, we can prove the existences of solutions of a BSDE by proving the existence of the
solutions for a corresponding fixed point problem, more details in Cheridito and Nam (2017). Since
we have a stochastic process with nonindependent increments property, we also need the martingale
decomposition theorem to prove the existence and uniqueness.

Theorem 3.2.1. If the BSDE (3.1.1) satisfies the Assumption 3.1.4, then the BSDE (3.1.1) admits
a unique solutions (V,Z, ZI , ZC , Zβ) ∈ S2 ×M .

Proof. By Proposition 3.1.5, the generator Ft(V,M) satisfies

‖Ft(V1,M1)− Ft(V2,M2)‖S2 <
1

5

(
‖V1 − V2‖S2 + ‖M1 −M2‖S2

)
.
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Since the generator satisfies the terminal condition and integrability condition, by the theorem 3.1
in Cheridito and Nam (2017), the BSDE (3.1.1) admits a unique solution (V,M) ∈ S2×M . ( Com-
pared with the notation Ft(k)(V,M) in Cheridito and Nam (2017), we only need Ft(k)(V,M) :≡
Ft(V,M) in our case.)

Since M ∈M is a martingale with respect to the filtration (Ft)t≥0, by Theorem 2.3.11, we can
rewrite M ∈M as

MT −Mt =

∫ T

t
ZsdWs +

∫ T

t
ZIsd$

I
t +

∫ T

t
ZCs d$

C
t +

∫ T

t
Zβs dJ̃s + YT − Yt.

With the definition of the generator Ft(V,M), the unique solution (V,Z, ZI , ZC , Zβ, Y ) ∈ S2 ×M
is represented as the form

Vt = ξ+

∫ T

t
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds+

∫ T

t
ZsdWs+

∫ T

t
ZIsd$

I
t+

∫ T

t
ZCs d$

C
t +

∫ T

t
Zβs dJ̃s+YT−Yt.

Based on the form of the general BSDE (3.1.1) and the uniqueness of its solution, the orthogonal
term YT − Yt ≡ 0. Therefore, the unique solution of the general BSDE (3.1.1) is

Vt = ξ +

∫ T

t
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds+

∫ T

t
ZsdWs +

∫ T

t
ZIsd$

I
t +

∫ T

t
ZCs d$

C
t +

∫ T

t
Zβs dJ̃s.

3.3 Reduced Backward Stochastic Differential Equations

Based on BSDE (3.1.1), we assume that the terminal condition Vτ depends on the two stopping
time τ I and τC are{

−dVt = f(ω, t, Vt−, Zt, Z
I
t , Z

C
t , Z

β
t )dt− ZtdWt − ZIt d$I

t − ZCt d$C
t − Z

β
t dJ̃t,

Vτ = θIτ1{τ<τC∧T} + θCτ 1{τ<τI∧T},
(3.3.1)

where 0 ≤ T < ∞, (Z,ZI , ZC , Zβ) ∈ H 2 with Assumptions 3.1.4, θIt ∈ Ft and θCt ∈ Ft. In this
section, we want to rewrite the general BSDE (3.1.1) with a terminal condition at τ to a BSDE in

a smaller filtration (FW,β)t≥0,F
W,β
t = σ(Ws, βs : s ≤ t).

To prove the existence and uniqueness of the solution to a BSDE, we can consider a corre-
sponding martingale problem, which means the sum of stochastic integrals with respect to Brow-
nian motion, $I , $C and J̃ is a local martingale. Crépey and Song (2015) reduce a BSDE to a
BSDE within a smaller filtration. Based on the same method, we want to simplify BSDE (3.3.1)
in the filtration (Ft)t≥0 with a jump terminal condition to a reduced BSDEs within the filtration

(FW,β
t )t≥0 with a continuous terminal condition.
First, we consider a corresponding martingale problem to the BSDE (3.3.1)

M
V
t = Vt∧τ +

∫ t∧τ

0
f(ω, s, Vt−, Zt, Z

I
t , Z

C
t , Z

β
t )ds is an (Ft)t≥0 local martingale,

Vτ = θIτ1{τ<τC∧T} + θCτ 1{τ<τI∧T}.

(3.3.2)
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We want to show that if V is a solution of BSDE (3.3.1), then MV
t is a local martingale. Assume

that V is the solution to BSDE (3.3.1), then MV
t is

MV
t = Vt∧τ +

∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds

=
(
Vτ +

∫ τ

t∧τ
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds−

∫ τ

t∧τ
ZsdWt −

∫ τ

t∧τ
ZIsd$

I
s −

∫ τ

t∧τ
ZCs d$

C
s −

∫ τ

t∧τ
Zβs dJ̃s

)
+

∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds

= Vτ +

∫ τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds−

∫ τ

t∧τ
ZsdWt −

∫ τ

t∧τ
ZIsd$

I
s −

∫ τ

t∧τ
ZCs d$

C
s −

∫ τ

t∧τ
Zβs dJ̃s

=
(
V0 −

∫ τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds+

∫ τ

0
ZsdWs +

∫ τ

0
ZIsd$

I
s +

∫ τ

0
ZCs d$

C
s +

∫ τ

0
Zβs dJ̃s

)
+

∫ τ

0∧τ
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds−

∫ τ

t∧τ
ZsdWt −

∫ τ

t∧τ
ZIsd$

I
s −

∫ τ

t∧τ
ZCs d$

C
s −

∫ τ

t∧τ
Zβs dJ̃s

= V0 +

∫ t∧τ

0
ZsdWs +

∫ t∧τ

0
ZIsd$

I
s +

∫ t∧τ

0
ZCs d$

C
s +

∫ t∧τ

0
Zβs dJ̃s,

is a local martingale with respect to the filtration (Ft)t≥0. To prove that MV
t is an (Ft)t≥0 local

martingale gives V is a solution to BSDE (3.3.1), we need Theorem 2.3.11. We define

M•t =
(
θIτ1{τ<τC∧T} + θCτ 1{τ<τI∧T} − Vτ−

)
1{t≥τ}

−
∫ t−

0

(
θIs1{s<τC∧T} − Vs−

)
(λI1{s<τI}ds+ d1{s≥T>τI})

−
∫ t−

0

(
θCs 1{s<τI∧T} − Vs−

)
(λC1{s<τC}ds+ d1{s≥T>τC})

=
(
θIτ1{τ<τC∧T} + θCτ 1{τ<τI∧T} − Vτ−

)
1{t≥τ} −

∫ t

0

(
θIs1{s<τC∧T} − Vs−

)
λI1{s<τI}ds

−
∫ t

0

(
θCs 1{s<τI∧T} − Vs−

)
λC1{s<τC}ds+ Vt−1{t≥T}.

M◦t = MV
t −M•t .

For M• we have

M• =
(
θIτ1{τ<τC∧T}1{t≥τ} −

∫ t

0
θIs1{s<τC∧T}λ

I1{s<τI}ds
)

+
(
θCτ 1{τ<τI∧T}1{t≥τ} −

∫ t

0
θCs 1{s<τI∧T}λ

C1{s<τC}ds
)

−
(
Vτ−1{T>t≥τ} −

∫ t

0
Vs−λ

I1{s<τI}ds−
∫ t

0
Vs−λ

C1{s<τC}ds
)
.

Here the intensity of 1{T>t≥τ} is λI1{s<τI} + λC1{s<τC}, so Vτ−1{T>t≥τ} −
∫ t

0 Vs−λ
I1{s<τI}ds −∫ t

0 Vs−λ
C1{s<τC}ds is a local martingale. The other two terms are all local martingales. Thus,

M• is a local martingale. Because M◦ is a difference of two local martingales, M◦ is also a local
martingale.
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We develop a martingale problem and its corresponding BSDEs with a terminal condition 0.


MU
t = Ut∧τ +

∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds+

∫ t∧τ

0
θIs1{s<τC∧T}(λ

I1{s<τI}ds+ d1{s≥T>τI})

+

∫ t∧τ

0
θCs 1{s<τI∧T}(λ

C1{s<τC}ds+ d1{s≥T>τC}) is an (Ft)t≥0 local martingale,

Uτ = 0.
(3.3.3)

Its corresponding BSDEs is
−dUt = f(ω, t, Vt−, Zt, Z

I
t , Z

C
t , Z

β
t )dt− ZtdWt − ZIt d$I

t − ZCt d$C
t − Z

β
t dJ̃t

+ θIt 1{t<τC∧T}(λ
I1{t<τI}dt+ d1{s≥T>τI}) + θCt 1{t<τI∧T}(λ

C1{t<τC}dt+ d1{s≥T>τC}),

Uτ = 0.

(3.3.4)

Theorem 3.3.1. If V is a solution to the martingale problem (3.3.2), then Ut := Vt1{t<τ} and U
is a solution to the martingale problem (3.3.3). Conversely, if U is a solution to the martingale
problem (3.3.3), then

Vt := Ut1{t<τ} + θIτ1{τ<τC∧T}1{t≥τ} + θCτ 1{τ<τI∧T}1{t≥τ},

and V is a solution to the martingale problem (3.3.2).

Proof. Assume that V is a solution to the martingale problem (3.3.2). Since (1{t<τ})− := lims↑t 1{s<τ} =
1{t≤τ}1{0<τ}, we have

Vt1{t<τ} = V01{0<τ} +

∫ t

0
Vs−d1{s<τ} +

∫ t

0
(1{t<τ})−dVs

= V01{0<τ} +

∫ t

0
Vs−d1{s<τ} +

∫ t

0
1{s≤τ}1{0<τ}dVs

= V01{0<τ} +

∫ t

0
Vs−d1{s<τ} +

∫ t

0
1{s≤τ}1{0<τ}

(
dMV

s − f(ω, s, Vs−, Zs, Z
I
s , Z

C
s , Z

β
s )ds

)
= V01{0<τ} +

∫ t

0
Vs−d1{s<τ} +

∫ t

0
1{s≤τ}1{0<τ}dM

V
s

−
∫ t

0
1{s≤τ}1{0<τ}f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds

= V01{0<τ} +

∫ t

0
Vs−d1{s<τ} + (MV

t∧τ −MV
0 )−

∫ t

0
1{s≤τ}1{0<τ}f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds

= V01{0<τ} +

∫ t

0
Vs−d1{s<τ} + (M◦t∧τ −M◦0 ) + (M•t∧τ −M•0 )

−
∫ t

0
1{s≤τ}1{0<τ}f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds
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= V01{0<τ} +

∫ t

0
Vs−d1{s<τ} + (M◦t∧τ −M◦0 ) +

(
θIτ1{τ<τC∧T} + θCτ 1{τ<τI∧T} − Vτ−

)
1{t≥τ}

−
∫ t

0

(
θIs1{s<τC∧T} − Vs−

)
(λI1{s<τI}ds+ d1{s≥T>τI})

−
∫ t

0

(
θCs 1{s<τI∧T} − Vs−

)
(λC1{s<τC}ds+ d1{s≥T>τC})

−
∫ t

0
1{s≤τ}1{0<τ}f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds

= V01{0<τ} + (M◦t∧τ −M◦0 )−
∫ t∧τ

0
Vs−(d1{s≥τ} − λI1{s<τI}ds− λC1{s<τC}ds− d1{s≥T})

−
∫ t

0
θIs1{s<τC∧T}(λ

I1{s<τI}ds+ d1{s≥T>τI})−
∫ t

0
θCs 1{s<τI∧T}(λ

C1{s<τC}ds+ d1{s≥T>τC})

−
∫ t

0
1{s≤τ}1{0<τ}f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds.

Let Ut = Vt1{t<τ}, plugging the above equation into (3.3.3), we have

MU
t = Ut∧τ +

∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds+

∫ t∧τ

0
θIs1{s<τC∧T}(λ

I1{s<τI}ds+ d1{s≥T>τI})

+

∫ t∧τ

0
θCs 1{s<τI∧T}(λ

C1{s<τC}ds+ d1{s≥T>τC})

= V01{0<τ} + (M◦t∧τ −M◦0 )−
∫ t∧τ

0
Vs−(d1{s≥τ} − λI1{s<τI}ds− λC1{s<τC}ds− d1{s≥T})

−
∫ t∧τ

0
θIs1{s<τC∧T}(λ

I1{s<τI}ds+ d1{s≥T>τI})

−
∫ t∧τ

0
θCs 1{s<τI∧T}(λ

C1{s<τC}ds+ d1{s≥T>τC})

−
∫ t

0
1{s≤τ}1{0<τ}f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds+

∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds

+

∫ t∧τ

0
θIs1{s<τC∧T}(λ

I1{s<τI}ds+ d1{s≥T>τI})

+

∫ t∧τ

0
θCs 1{s<τI∧T}(λ

C1{s<τC}ds+ d1{s≥T>τC})

= V01{0<τ} + (M◦t∧τ −M◦0 )−
∫ t∧τ

0
Vs−(d1{T>s≥τ} − λI1{s<τI}ds− λC1{s<τC}ds),

is a local martingale. And the terminal condition Uτ = Vτ1{τ<τ} = 0. So we proved that V is a
solution to the martingale problem (3.3.2), implies that U is a solution to the martingale problem
(3.3.3).

Conversely, we denote

M∗t =
(
θIτ1{τ<τC∧T} + θCτ 1{τ<τI∧T}

)
1{t≥τ} −

∫ t−

0
θIs1{s<τC∧T}(λ

I1{s<τI}ds+ d1{s≥T>τI})

−
∫ t−

0
θCs 1{s<τI∧T}(λ

C1{s<τC}ds+ d1{s≥T>τC}),
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which is a local martingale. Assume that U is a solution to the martingale problem (3.3.3), we
have

Ut1{t<τ} + θIτ1{τ<τC∧T}1{t≥τ} + θCτ 1{τ<τI∧T}1{t≥τ}

=U01{0<τ} +

∫ t

0
(1{s<τ})−dUs +

∫ t

0
Us−d1{s<τ} + θIτ1{τ<τC∧T}1{t≥τ} + θCτ 1{τ<τI∧T}1{t≥τ}

=U01{0<τ} +

∫ t

0
1{s≤τ}1{0<τ}dUs −

∫ t

0
Us−d1{s≥τ} +M∗t

+

∫ t−

0
θIs1{s<τC∧T}(λ

I1{s<τI}ds+ d1{s≥T>τI}) +

∫ t−

0
θCs 1{s<τI∧T}(λ

C1{s<τC}ds+ d1{s≥T>τC})

=U01{0<τ} +

∫ t

0
1{s≤τ}1{0<τ}

(
dMU

s − f(ω, s, Vs−, Zs, Z
I
s , Z

C
s , Z

β
s )ds

− θIs1{s<τC∧T}(λI1{s<τI}ds+ d1{s≥T>τI})− θCs 1{s<τI∧T}(λC1{s<τC}ds+ d1{s≥T>τC}

)
−
∫ t

0
Us−d1{s≥τ} +M∗t +

∫ t−

0
ξIs1{s<τC∧T}(λ

I1{s<τI}ds

+ d1{s≥T>τI}) +

∫ t−

0
θCs 1{s<τI∧T}(λ

C1{s<τC}ds+ d1{s≥T>τC})

=U01{0<τ} +

∫ t

0
1{s≤τ}1{0<τ}dM

U
s −

∫ t

0
1{s≤τ}1{0<τ}f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds− Uτd1{t≥τ} +M∗t

=U01{0<τ} +MU
t∧τ −

∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds+M∗t .

Let Vt = Ut1{t<τ}+ θIτ1{τ<τC∧T}1{t≥τ}+ θCτ 1{τ<τI∧T}1{t≥τ}, plugging into (3.3.2). Since MU and
M∗ are local martingales, we proved that Vt is a local martingale. We proved that U is a solution to
the martingale problem (3.3.3) implies that V is a solution to the martingale problem (3.3.2).

Next we want to rewrite this BSDE to a BSDE with terminal condition without jumps. The
corresponding martingale problem is the following:

M Ū
t = Ūt∧τ− +

∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds

+

∫ t∧τ

0

(
θIs1{s<τC∧T} − Ūs−

)
(λI1{s<τI}ds+ d1{s≥T>τI})

+

∫ t∧τ

0

(
θCs 1{s<τI∧T} − Ūs−

)
(λC1{s<τC}ds+ d1{s≥T>τC})

is an (Ft)t≥0 local martingale,

ŪT−1{T=τ} = 0

(3.3.5)

The corresponding BSDE is

−dŪt = f(ω, t, Ūt−, Zt, Z
I
t , Z

C
t , Z

β
t )dt− ZtdWt − ZIt d$I

t − ZCt d$C
t − Z

β
t dJ̃t

+
(
θIt 1{t<τC∧T} − Ūt−

)
(λI1{t<τI}dt+ d1{s≥T>τI})

+
(
θCt 1{t<τI∧T} − Ūt−

)
(λC1{t<τC}dt+ d1{s≥T>τC}),

ŪT−1{T=τ} = 0

(3.3.6)
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Theorem 3.3.2. If U is a solution to the martingale problem (3.3.3), then Ūt := Ut1{t<τ} +
2Ut−1{t≥τ} and Ūt is a solution to the martingale problem (3.3.5). Conversely, if Ū is a solution to
the martingale problem (3.3.5), then Ut := Ūt1{t<τ} and Ut is a solution to the martingale problem
(3.3.3).

Proof. Assume that U is a solution to the martingale problem (3.3.3), then

Ūt =Ut1{t<τ} + 2Uτ−1{t≥τ}

=U01{0<τ} +

∫ t

0
Us−d1{s<τ} +

∫ t

0
(1{s≤τ})−dUs + 2Uτ−1{t≥τ}

=U01{0<τ} +

∫ t

0
Us−d1{s<τ} +

∫ t

0
1{s≤τ}1{0<τ}dUs + 2Uτ−1{t≥τ}

=−
∫ t

0
Us−d1{s≥τ} + Ut∧τ + 2Uτ−1{t≥τ}

=

∫ t

0
Us−d1{s≥τ} + Ut∧τ

=

∫ t

0
Us−d1{s≥τ} +MU

t −
∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds

−
∫ t∧τ

0
θIs1{s<τC∧T}(λ

I1{s<τI}ds

+ d1{s≥T>τI})−
∫ t∧τ

0
θCs 1{s<τI∧T}(λ

C1{s<τC}ds+ d1{s≥T>τC})

=MU
t −

∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds

−
∫ t∧τ

0

(
θIs1{s<τC∧T} − Us−1{s−<τ}

)
(λI1{s<τI}ds+ d1{s≥T>τI})

−
∫ t∧τ

0

(
θCs 1{s<τI∧T} − Us−1{s−<τ}

)
(λC1{s<τC}ds+ d1{s≥T>τC})

+

∫ t

0
Us−(d1{T>s≥τ} − λI1{s<τI}ds− λC1{s<τC}ds),

where MU and the last term are local martingales. Plugging Ūt into (3.3.5), we have that M Ū
t is a

local martingale. By the martingale property, we get E[M Ū
T −M Ū

T−|Fτ−] = 0. So, ŪT−1{T=τ} = 0.
So we proved that if U is a solution to the martingale problem (3.3.3), then Ūt is a solution to the
martingale problem (3.3.5).

Next, we assume that Ū is a solution to the martingale problem (3.3.5), then

Ūt1{t<τ} =Ūt∧τ−1{t<τ}

=Ū0∧τ−1{0<τ} +

∫ t

0
Ūs−∧τd1{s<τ} +

∫ t

0
(1{s≤τ})−dŪs∧τ−

=Ū0∧τ−1{0<τ} +

∫ t

0
Ūs−∧τd1{s<τ} +

∫ t

0
1{s≤τ}1{0<τ}dŪs∧τ−

=−
∫ t

0
Ūs−∧τd1{s≥τ} + Ūt∧τ−
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=−
∫ t

0
Ūs−∧τd1{s≥τ} +M Ū

t −
∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds

−
∫ t∧τ

0

(
θIs1{s<τC∧T} − Ūs−

)
(λI1{s<τI}ds+ d1{s≥T>τI})

−
∫ t∧τ

0

(
θCs 1{s<τI∧T} − Ūs−

)
(λC1{s<τC}ds+ d1{s≥T>τC})

=M Ū
t −

∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds−

∫ t∧τ

0
θIs1{s<τC∧T}(λ

I1{s<τI}ds+ d1{s≥T>τI})

−
∫ t∧τ

0
θCs 1{s<τI∧T}(λ

C1{s<τC}ds+ d1{s≥T>τC})

−
∫ t

0
Ūs−∧τ (d1{T>s≥τ} − λI1{s<τI}ds− λC1{s<τC}ds),

where M Ū and the last term are local martingales. Let Ut = Ūt1{t<τ}, plugging into (3.3.3), we

have that MU
t is a local martingale. Hence, this converse direction is proved.

Now we show how to rewrite a BSDE to a smaller filtration (FW,β
t )0≤t≤T . The corresponding

martingale problem is the following:
M Ŭ
t = Ŭt∧τ− +

∫ t∧τ

0
f(ω, s, Vs−, Zs, θ

I
s − Ŭs, θCs − Ŭs, Zβs )ds+

∫ t∧τ

0

(
θIs − Ūs−

)
λIds

+

∫ t∧τ

0

(
θCs − Ūs−

)
λCds is an (FW,β

t )t≥0 local martingale,

ŬT− = 0.

(3.3.7)

The corresponding BSDE is
−dŬt = f(ω, t, Ŭt−, Zt, ξ

I
t − Ŭt, θCt − Ŭt, Z

β
t )dt+

(
ξIt − Ūt−

)
λIdt+

(
θCt − Ūt−

)
λCdt

− ZtdWt − Zβt dJ̃t,
ŬT− = 0.

(3.3.8)

Theorem 3.3.3. If Ū is a solution to the martingale problem (3.3.5), then Ŭt := E[Ūt∧τ−|Fτ ] and
Ŭ is a solution to the martingale problem (3.3.7). Conversely, if Ŭ is a solution to the martingale
problem (3.3.7), then Ūt := Ŭt∧τ− and Ū is a solution to the martingale problem (3.3.5).

Proof. Assume that Ū is a solution to the martingale problem (3.3.5). For t < τ ∧ T , we have

Ūt∧τ− = M Ū
t −

∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds

−
∫ t∧τ

0

(
θIs1{s<τC∧T} − Ūs−

)
(λI1{s<τI}ds+ d1{s≥T>τI})

−
∫ t∧τ

0

(
θCs 1{s<τI∧T} − Ūs−

)
(λC1{s<τC}ds+ d1{s≥T>τC})

= M Ū
t −

∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds−

∫ t∧τ

0

(
θIs − Ūs−

)
λIds

−
∫ t∧τ

0

(
θCs − Ūs−

)
λCds.
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Let Ŭt = E[Ūt∧τ−|Fτ ] = Ūt∧τ−, Z
I
t = (ξIt − Ŭt) and ZCt = (ξCt − Ŭt), plugging the above equation

into M Ŭ
t , we have

M Ŭ
t = Ŭt∧τ− +

∫ t∧τ

0
f(ω, s, Vs−, Zs, θ

I
s − Ŭs, θCs − Ŭs, Zβs )ds+

∫ t∧τ

0

(
θIs − Ūs−

)
λIds

+

∫ t∧τ

0

(
θCs − Ūs−

)
λCds

= M Ū
t −

∫ t∧τ

0
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds−

∫ t∧τ

0

(
θIs − Ūs−

)
λIds

−
∫ t∧τ

0

(
θCs − Ūs−

)
λCds+

∫ t∧τ

0
f(ω, s, Vs−, Zs, ξ

I
s − Ŭs, ξCs − Ŭs, Zβs )ds

+

∫ t∧τ

0

(
θIs − Ūs−

)
λIds+

∫ t∧τ

0

(
θCs − Ūs−

)
λCds

= M Ū
t ,

which is (FW,β
t )t≥0 measurable. So M Ŭ is an (FW,β

t )t≥0 martingale.
Conversely, assume that Ŭ is a solution to the martingale problem (3.3.7). Since the filtration

(FW,β
t )t≥0 ⊂ (Ft)t≥0 and W,β,N I , NC are independent and strongly orthogonal, we have Ūt =

Ŭt∧τ− is a solution to the martingale problem (3.3.5).
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Chapter 4

Arbitrage-free Pricing

In this chapter, we price a European option of a stock and calculate the total valuation adjustment
(XVA), considering credit risk, asymmetric interest rates, and differential financial states.

4.1 Sale and Repurchase Agreement (Repo) Market

Before we study the switching between differential financial statuses, we review the Sale and Repur-
chase Agreement (Repo) market and its history. In this section, we analyze different performances
during a calm financial market and a financial crisis period as well as its influence to the stock
market.

4.1.1 Background

A Sale and Repurchase Agreement (Repo) is the sale of a security combined with an agreement
to repurchase the same security at a specified price at the end of the contract. This transaction
can be also viewed as a collateralized loan. Over the last 40 years, the size of the Repo market
increased dramatically. From 2002 to 2007, its capital size even doubled. To better understand
reasons of the popularity and developments of the Repo market in the U.S., we look back at the
Great Depression.

The traditional banking system attracts depositors, keeps deposits on their balance sheets and
lend loans to the other commercial debtors. The depositors save their money in the traditional
banks and get interest rates in return. At the same time, the depositors have a right to withdraw
their money at any time. This right is underwritten by the government and applicable to all
depositors, including cash-rich depositors. During the Great Depression, some banks failed on
their promises. At that time, the public did not have enough information to be able to judge
the financial health of many banks. One isolated default cases of one bank led to a terrible panic
nationally. All depositors ran to banks and withdrew every cent from their accounts. The more
withdrawals, the less cash on the banks balance sheets. The depositors’ panics and low beliefs in
the financial system led to more bankruptcies. The deteriorating situation of the banking system
led to an even more panic and even poorer confidence among depositors. As a result of this adverse
loop, Americans experienced the Great Depression in 1930s. More details in Gorton et al. (2010),
Gorton and Metrick (2012).

Learning from the Great Depression, the government legislated that companies and banks make
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public reports on their profits, loans and essential economic information. To protect depositors, the
government provides deposition insurances to retail depositors. However, this insurance does not
cover the loss of non-retail depositors, including mutual funds, cash-rich companies and sovereign
wealth funds. But cash-rich companies need to lend or invest their wealth with some protections
in short term. After the Great Depression, more and more companies started to lend and borrow
their money in a securitized banking system, i.e. the Repo markets.

4.1.2 Structure of Repo markets

One of the important secularized banking system is the sale and repurchase agreement (Repo)
market. A contract in the Repo market specifies two transactions. At the beginning, one party
sells a specific security to the counterparty at a given price. At the end of the contract, the party
repurchases the same security from its counterparty at the agreed price, which was decided by two
parties during the contract’s negotiation. Here, the specific security can be seen as a collateral
in a collateralized borrowing transaction. The collateral provider is also a cash receiver, and the
collateral receiver is also a cash lender. In this terminology, the above transactions can also be
explained in another way. At the initial time, the cash provider (collateral receiver) lends m dollar
to its counterparty (cash receiver, collateral provider). At the same time, the collateral provider
(cash receiver) gives a security as collateral to the cash provider (collateral receiver). At the
maturity time, the cash receiver (collateral provider) returns the m+ r dollars to the cash provider
(collateral receiver). At the same time, the collateral receiver (cash provider) returns the collateral
to the collateral provider (cash receiver).

Figure 4.1: Transactions in Repo Market.

In this transaction, a relative difference between the two cash flows (m+r−m)
m = r

m is called a
Repo rate. Usually, the market value of the collateral is larger than the cash transaction. For
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example, when borrowing m dollars, one needs to provide a collateral with a market price as m+h
dollars. The relative difference between the market price of the collateral and the cash lent is called
the haircut, m+h−m

m = h
m . Based on different confidences played in the collateral, the haircut varies

from 0.5% to over 8%. In the U.S. Repo market, a group of safe collaterals is called the general
collateral, it includes, i.e. 10 years U.S. treasury bonds.

There are three types of Repo markets – Bilateral Repo, Triparty Repo and Hold-in-custody
Repo. The Bilateral Repo has been already introduced in the beginning of this section. In the
Triparty Repo, there is an agent between two parties in the transactions in the Repo market. The
contract is prepared by the agent and the collateral is held by the agent during the lifetime of the
contract. A Hold-in-custody Repo can be a Bilateral Repo or a Triparty Repo, but the collateral
is held on the balance sheet of the collateral provider during the lifetime of the contract.

As we mentioned before, many companies use the Repo market as a source to borrow money.
This is called a cash driven Repo activity. On the other hand, there are many companies that use
the Repo market as a source to borrow a specific security to meet their liquidity requirements. This
is called a security driven Repo activity. To attract collateral providers of some special securities,
the Repo rate can be even a negative value, which means the collateral providers will earn a profit
by this Repo activity.

4.1.3 Performance in Sub-prime Financial Crisis

During the 2008 financial crisis, most traders lost their confidence on all collateral except the general
collateral. As a result, only contracts with the general collaterals was traded at that time. Although
using the general collateral was welcome, traders holding the general collateral were unwilling to
lend them to other traders. Some general collateral receivers defaulted and rejected to return the
general collateral. As a result, the trading in contracts based on the general collateral also froze.
As a result, we assume that there was no contracts at Repo markets during a financial crisis. More
details in Gorton and Metrick (2012).

Since the Repo market is an important source of illiquid securities, many traders conduct their
short sells of stocks by borrowing the stocks at the Repo market and then selling them in the stock
market. Based on the frozen situation of the U.S. Repo markets, the short-selling of stocks in the
stock market was affected. Without this source of stocks, short-selling trades also disappeared. In
fact, more than 90% of the contracts in the Repo market are short-term contracts, normally for
only one day. Thus, most short stock trades ceased during the financial crisis. More information
about liquidity problem can be found at Brunnermeier and Pedersen (2008).

4.2 The Status Process

There are many indicators to measure or forecast an incoming financial crisis, such as CISS, VIX,
conditional Value-at-Risk (CoVaR), CDS index, and the Ted spread, where proposed. Boudt et al.
(2013) used a two-status model to describe the market and funding liquidity problem. In their
paper, they use statistical methods to divide the performance of the financial market into two
periods, a calm financial period and a financial crisis. They propose a threshold of 48 basis points
of the TED spread. In Chapter 2, we already defined an alternating renewal process. In this
dissertation, we apply an alternating renewal process to describe this switching between a normal
financial status and a financial crisis status.
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When βt = 0, financial markets are in a calm period. When βt = 1, financial markets are in
a financial crisis period. Based on the definition of the alternating renewal processes, the average
holding time of a calm status follows an exponential distribution with parameter λU and the average
holding time of a financial crisis follows an exponential distribution with parameter λV . Then we
use this alternating renewal process to distinguish the performances of the Repo market and the
stock market in a calm financial period and a financial crisis.

4.3 Financial Assets

We consider a filtered probability space (Ω,F , (Ft)t≥0,P), which is rich enough to provide all nec-
essary information, containing information about stock prices, default of risky bonds and switching
between a normal financial status and a financial crisis status. The probability P is the physical
probability measure. The basic model follows Bichuch et al. (2018a). The main difference is that
we consider different performances of the Repo account and stock account during different financial
statuses.

4.3.1 Repo Account

The Repo account is the main source of cash for stock purchase by investors. We assume that Repo
rates are different for cash lending and cash borrowing. For cash lenders, they receive constant
interest rate r+

r from Repo markets. For cash borrowers, they pay constant interest rate r−r to
Repo markets, with general collateral and implementing long positions.

Let ψt be a number of shares of a Repo account, then the Repo rate is

rr(ψ) = r−r 1{ψ<0} + r+
r 1{ψ>0}.

In a normal financial status, we represent the Repo accounts as Br−r and Br+
r for the borrowers

and lenders, respectively. The dynamics of the Repo account is dBr±r
t = r±r B

r±r
t dt. So, the value of

the Repo account is

Brr
t = Brr

t (ψ) = exp
(∫ t

0
rr(ψs)ds

)
.

But, Repo markets froze during the financial crisis. Thus, we represent the Repo account

(1− βt)Brr
t = (1− βt) exp

(∫ t

0
rr(ψs)ds

)
,

reflecting there is no activity of the Repo market during the financial crisis. The dynamics of the
Repo account is

(1− βt)dBr±r
t = (1− βt)r±r B

r±r
t dt.

4.3.2 Stock Security

We assume that W P is a standard Brownian motion under the physical measure P. A stock price
follows a geometric Brownian motion with the dynamics

dSt = µStdt+ σStdW
P
t ,
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where µ is a constant drift rate and σ is a constant volatility. We assume that the initial price of
the stock is S0.

Let ξt be a number of shares of stocks in the stock account. In a normal financial status (βt = 0),
we have that the value of the stock account is ξtSt.

In this dissertation, all short trades of stocks are done by borrowing a specific stock from Repo
markets, and then sell them in the stock markets. During the financial crisis, the U.S. Repo markets
froze. So no short-selling transactions can be conducted during a financial crisis. In the financial
crisis status (βt = 1), the stock account is 1{ξ≥0}ξtSt.

We summarize the value of the stock account as

(1− βt1{ξt<0})ξtSt.

Here the term (1 − βt1{ξt<0}) is the adjustment, corresponding to the frozen short trades in a
financial crisis.

4.3.3 Risky Bond Securities

We denote an investor as “I” and its counterparty as “C”. Let τi, i ∈ {I, C} be the default times
of an investor and a counterparty, respectively. We assume that default times follow exponential
distributions with constant intensities hPi , i ∈ {I, C}. We use H i

t = 1{τi≤t}, t ≥ 0, i ∈ {I, C}
to denote the default indicator processes of risky bonds, underwritten by the investor and the
counterparty, respectively. The default times follow an exponential distribution with parameters
ri + hi, i ∈ {I, C}, respectively. So, the two risky bond prices P It , P

C
t have the following dynamics

dP it = (ri + hPi )P it dt− P it−dH i
t , P i0 = exp(−(ri + hPi )T ),

where ri + hPi , i ∈ {I, C} are constant return rates, respectively.

4.3.4 Collateral Account

The collateral account is to protect one party from the counterparty’s default. The collateral
process C := (Ct : t ≥ 0) is a stochastic process with constant collateral rates. We assume that
collateral providers and receivers’ interest rates are different. For collateral receivers (Ct < 0), they
pay a constant interest rate r−c . For collateral providers (Ct > 0), they receive a constant interest

rate r+
c . We represent the collateral cash account as Br±c by representing collateral interest rates

as
rc(c) = r−c 1{c<0} + r+

c 1{0<c}.

The collateral cash account is

Brc
t := Brc

t (C) = exp

(∫ t

0
rc(Cs)ds

)
.

Based on this definition, its dynamics is

dBr±c
t = r±c B

r±c
t dt.

Denote a number of shares of the collateral account Brc
t by ψct , we have

ψctB
rc
t = −Ct.
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This means, a collateral receiver (Ct < 0) should purchase shares of the collateral account, and
vice versa. Assume that V̂ be a third party valuation of the European claim, the collateral account
is assigned different collateralization levels based on the safe levels of the counterparty. This is
modeled as

Ct := αV̂ ,

where α is the collateralization level. When the counterparty is very reliable, for example the U.S.
government, the collateralization level α = 0. When the counterparty has low credit rating, the
collateralization level could be α = 1.

4.3.5 Funding Account

We assume that the lenders’ and the borrowers’ interest rates are different. For cash lenders, they
receive constant interest rates r+

f from the treasury desk. For cash borrowers, they pay constant

interest rates r−f to funding desks. We represent the funding cash accounts as Br±f by representing
the funding interest rates as

rf := rf (ξ) = r−f 1{ξ<0} + r+
f 1{ξ>0}.

Let ξft be a number of shares in the funding account at time t. The funding account is

B
rf
t := B

rf
t (ξf ) = exp

(∫ t

0
rf (ξfs )ds

)
,

with dynamics

dB
r±f
t = r±f B

r±f
t dt.

4.4 Hedging Portfolio and Arbitrage-Free Pricing

In our model, we want to price an option, considering an investor and its counterparty’s default,
liquidity problems in the Repo market and the stock markets, and asymmetric interest rates. We
assume that the whole Repo market and short stock trades freeze during the financial crisis. We
take the default of an investor and its counterparty into account, by including the default of the
investor’s and a counterparty’s bonds in our hedging portfolio.

Assumption 4.4.1. In a normal financial status, we have that

ψrtB
rr
t = −ξtSt,

which means the stock account is financed by the Repo market.

This is a reasonable assumption. Because borrowing in the Repo market is a collateralized
borrowing trade, the borrowing Repo rate r−r is less than the uncolleralized funding rate r−f in
general.

However, in the financial crisis status (βt = 1), Repo markets freeze. Without a source to
borrow stocks, all short trades of stocks freeze too. Meanwhile, an investor has to borrow money
from the funding desk to buy stocks at a more expensive funding rate. Considering both: the
normal financial status and the financial crisis status, we summarize the relationship of all asset
accounts as

(1− βt)ψrtB
rr
t + βtξ

f
t B

rf
t = βtVt + βtψ

c
tB

rc
t − (1− βt1{ξt<0})ξtSt − βtξIt P It − βtξCt PCt . (4.4.1)

40



4.4.1 Valuation Measure

For two default indicator processes HP
i , i ∈ {I, C} with constant parameters hPi , i ∈ {I, C}, we have

$i,P
t = H i

t −
∫ t

0
(1−H i

u)hPi du,

is a (Ft)t≥0 martingale.
By the Radon–Nikodym derivative, we define the valuation measure Q with respect to a discount

rate rD as

dQ
dP

∣∣∣
Ft

= exp

(
rD − µ
σ

W P
t −

(rD − µ)2

2σ2
t

)
(

1 +
rI − rD
hPI

)HI
t

exp((rD − rI)t)
(

1 +
rC − rD
hPC

)HC
t

exp((rD − rC)t).

We denote µI = rI +hPI and µC = rC +hPC , which are return rates of risky bonds, underwritten
by the investor and counterparty, respectively. The above Radon-Nikodym derivative becomes

dQ
dP

∣∣∣
Ft

= exp

(
rD − µ
σ

W P
t −

(rD − µ)2

2σ2
t

)(
µI − rD
hPI

)HI
t

exp((rD − µI + hPI )t)

(
µC − rD
hPC

)HC
t

exp((rD − µC + hPC)t).

Under the valuation measure Q, the dynamics of three risky assets are

dSt = rDStdt+ σStdW
Q
t ,

dP It = rDP
I
t dt− P It−d$

I,Q
t ,

dPCt = rDP
C
t dt− PCt−d$

C,Q
t ,

(4.4.2)

whereWQ
t = W P

t −
rD−µ
σ t is a Brownian Motion under Q and$i,Q

t = $i,P
t +

∫ t
0 (1−H i

u)(hPi−h
Q
i )du, i ∈

{I, C} are ((Ft)t≥0,Q) martingales. Here hQi = µi − rD ≥ 0 are default intensities of default
indicator processes under Q.

4.4.2 Wealth Process

Let ϕ := (ξt, ξ
f
t , ξ

I
t , ξ

C
t , ψ

r
t , ψ

c
t ; t ≥ 0) be our investment strategy, where ξt denotes shares of stocks,

ξft denotes shares of the funding account, ξit, i ∈ {I, C} denotes shares of risky bonds, underwritten
by the investor an its counterparty, respectively, ψrt denotes shares of the Repo account, and ψct
denotes shares of the collateral account. Based on previous definitions of all assets, we have the
hedging portfolio as

Vt(ϕ) = (1− βt1{ξt<0})ξtSt + ξIt P
I
t + ξCt P

C
t + ξft B

rf
t + (1− βt)ψrtB

rr
t − ψctB

rc
t . (4.4.3)

Its dynamics is

dVt(ϕ) = (1− βt1{ξt<0})ξtdSt + ξIt dP
I
t + ξCt dP

C
t + ξft dB

rf
t + (1− βt)ψrt dB

rr
t − ψctdB

rc
t .
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Definition 4.4.2. An investment strategy is self-financing if for any t ∈ [0, T ], the following
identity

Vt(ϕ) = V0(ϕ) +

∫ t

0
(1− βt1{ξt<0})ξtdSt +

∫ t

0
ξIt dP

I
t +

∫ t

0
ξCt dP

C
t

+

∫ t

0
ξft dB

rf
t +

∫ t

0
(1− βt)ψrt dB

rr
t −

∫ t

0
ψctdB

rc
t ,

where V0(ϕ) is the initial capital.

4.4.3 Closeout Valuation

In this dissertation, we assume that the collateral account is liquid at the default time of both
the investor and its counterparty. We do not consider the fire sales and liquidity problems of the
collateral account. Let τ = τ I ∧ τC ∧ T , where τ I = inf{t : HI

t = 1} is a default stopping time
for investors and τC = inf{t : HC

t = 1} is a default stopping time for the counterparty. Let
0 ≤ LI , LC ≤ 1 be loss rates of investors and counterparties at their default time, respectively. Let
V̂ be a third party valuation of the hedging portfolio. We have a terminal condition of our hedging
portfolio

θ(τ, V̂ ) :=V̂τ + 1{τC<τI}LCY
− − 1{τI<τC}LIY +

=1{τI<τC}θI(V̂τ ) + 1{τC<τI}θC(V̂τ ),

where Y := V̂τ − Cτ = (1 − α)V̂τ is the value of the claim at default and θI(v) := v − LI((1 −
α)v)+, θC(v) := v + LC((1− α)v)−. Here (·)+ = max(0, (·)) and (·)− = max(0,−(·)).

Here the term 1{τC<τI}LCY
− is the credit valuation adjustment term after collateral mitigation

and the term 1{τI<τC}LIY
+ is the debit valuation adjustment term.

4.5 Arbitrage-Free Pricing

In this section, we will discuss arbitrage-free financial markets and its required assumptions. In
this section, we denote the initial capital of our portfolio as x ≥ 0.

4.5.1 Arbitrage-free Assumptions

Definition 4.5.1 (Arbitrage). The market admits an investor’s arbitrage, if there exists a invest-

ment strategy ϕ = (ξt, ξ
I
t , ξ

C
t , ξ

f
t , ψ

r
t , ψ

c
t ; t ≥ 0) such that

P[Vt(ϕ, x) ≥ exp(r+
f t)x] = 1, P[Vt(ϕ, x) > exp(r+

f t)x] > 0,

for a given initial capital x ≥ 0 and a corresponding wealth process V (ϕ, x).

Definition 4.5.2 (Arbitrage-free Financial Markets). If a financial market does not admit an
investor’s arbitrage for any initial capital x ≥ 0, the market is arbitrage free from the investor’s
perspective.

Assumption 4.5.3. Necessary Assumptions of Arbitrage-free Financial Markets
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1. r+
f ≤ r

−
f ,

2. r+
f ∨ rD < µI ∧ µC ,

3. (1− βt)r+
r ≤ (1− βt)r−f (i.e. r+

r ≤ r−f in a normal financial status).

Remark 4.5.4. These three assumptions are necessary to exclude an arbitrage potentiality.

1. If r+
f > r−f , one can borrow cash from the funding desk at a funding rate r−f , and then lend it

to the funding desk at the funding rate r+
f . There is a positive arbitrage profit of r+

f − r
−
f > 0

multiplies the amount of cash.

2. If r+
f > µI (or r+

f > µC), one can short sell an investor’s (or a counterparty’s) risky bond
with an expected return rate µI (or µC), and then lend the money to the funding desk, earning
an arbitrage profit r+

f − µI > 0 (or r+
f − µC > 0) multiplies the shares of the bonds.

If rD > µI (or rD > µC) and the investor can trade by the interest rate rD (or rD), the
discussion is similar to the cases r+

f > µI (or r+
f > µC). If the investor cannot trade by rD

(or rD), then the investor’s default intensity is hQI = µI − rD < 0 (or hQC = µC − rD < 0)
under the discount measure Q, which is not realistic.

3. In a normal financial status (βt = 0), if r+
r > r−f , one can borrow cash from the funding

desk at the funding rate r−f and lend it to the Repo market at the Repo rate r+
r , earning a

positive arbitrage profit r+
r −r−f > 0 multiplies the amount of cash. In a financial crisis status

(βt = 1), the inequality holds trivially.

Proposition 4.5.5. Suppose that Assumption 4.5.3 holds. A financial market is arbitrage-free if

(1− βt)r+
r ≤ (1− βt)r+

f ≤ (1− βt)r−r ,

which means r+
r ≤ r+

f ≤ r
−
r in the normal financial status.

Proof. Suppose the inequality (1− βt)r+
r ≤ (1− βt)r+

f ≤ (1− βt)r−r holds. By the definition of the
alternating renewal process β and the setting of a Repo rate, we have

(1− βt)rrψrt =(1− βt)r−r ψrt1{ψrt<0} + (1− βt)r+
r ψ

r
t1{ψrt>0}

≤(1− βt)r+
f ψ

r
t1{ψrt<0} + (1− βt)r+

f ψ
r
t1{ψrt>0}

=(1− βt)r+
f ψ

r
t .

Similarly, for the funding account we have

rfξ
f
t =r−f ξ

f
t 1{ξft <0} + r+

f ξ
f
t 1{ξft >0}

≤r+
f ξ

f
t 1{ξft <0} + r+

f ξ
f
t 1{ξft >0}

=r+
f ξ

f
t .
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We will rewrite the wealth process under a suitable measure P̃ with a discount rate r+
f , defined by

the Radon-Nikodym derivative

dP̃
dP

∣∣∣
Ft

= exp

(
r+
f − µ
σ

W P
t −

(r+
f − µ)2

2σ2
t

)
(

1 +
rI − r+

f

hPI

)HI
t

exp((r+
f − r

I)t)

(
1 +

rC − r+
f

hPC

)HC
t

exp((r+
f − r

C)t)

= exp

(
r+
f − µ
σ

W P
t −

(r+
f − µ)2

2σ2
t

)(
µI − r+

f

hPI

)HI
t

exp((r+
f − µI + hPI )t)

(
µC − r+

f

hPC

)HC
t

exp((r+
f − µ

C + hPC)t),

where µi, i ∈ {I, C} are return rates of risky bonds, underwritten by an investor and its counter-
party, respectively.

By Girsanov’s theorem, we rewrite the dynamics of the risky assets under P̃ as

dSt = r+
f Stdt+ σStdW

P̃
t ,

dP It = r+
f P

I
t dt− P It−d$

I,P̃
t ,

dPCt = r+
f P

C
t dt− PCt−d$

C,P̃
t ,

where W P̃
t = W P

t −
r+
f −µ
σ t is a Brownian Motion under P̃ and $i,P̃

t = $i,P
t +

∫ t
0 (1−H i

u)(hPi −hP̃i )du, i ∈
{I, C} are ((Ft)t≥0, P̃) martingales. Here hP̃t = µi − r+

f , i ∈ {I, C} are the default intensities under

P̃.
We denote a hedging portfolio in the underlying market by V̌t (Ct = 0), and its dynamics under

P̃ is given by

dV̌t =
(
ξft rfB

rf
t + (1− βt)ψrt rrB

rr
t

)
dt+ (1− βt1{ξt<0})ξtdSt + ξIt dP

I
t + ξCt dP

C
t

=
(

(1− βt1{ξt<0})r
+
f ξtSt + r+

f ξ
I
t P

I
t + r+

f ξ
C
t P

C
t + rfξ

f
t B

rf
t + (1− βt)rrψrrt B

rr
t

)
dt

+ (1− βt1{ξt<0})σξtStdW
P̃
t − ξIt P It−d$

I,P̃
t − ξCt PCt−d$

C,P̃
t .

This yields

V̌t(ϕ, x)− V̌0(ϕ, x) =

∫ t

0

(
(1− βt1{ξt<0})r

+
f ξsSs + r+

f ξ
I
sP

I
s + r+

f ξ
C
s P

C
s + rfξ

f
sB

rf
s + (1− βs)rrψrsBrr

s

)
dt

+

∫ t

0
(1− βs1{ξs<0})σξsSsdW

P̃
s −

∫ t

0
ξIsP

I
s−d$

I,P̃
s −

∫ t

0
ξCs P

C
s−d$

C,P̃
s

≤
∫ t

0

(
(1− βt1{ξt<0})r

+
f ξsSs + r+

f ξ
I
sP

I
s + r+

f ξ
C
s P

C
s + r+

f ξ
f
sB

rf
s + (1− βs)r+

f ψ
r
sB

rr
s )dt

+

∫ t

0
(1− βs1{ξs<0})σξsSsdW

P̃
s −

∫ t

0
ξIsP

I
s−d$

I,P̃
s −

∫ t

0
ξCs P

C
s−d$

C,P̃
s
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=

∫ t

0
r+
f V̌s(ϕ, x)ds+

∫ t

0
(1− βs1{ξs<0})σξsSsdW

P̃
s −

∫ t

0
ξIsP

I
s−d$

I,P̃
s −

∫ t

0
ξCs P

C
s−d$

C,P̃
s .

So we have for the discounted V̌t

e−r
+
f tV̌t(ϕ, x)− V̌0(ϕ, x) ≤

∫ t

0
(1− βs1{ξs<0})σξsSsdW

P̃
s −

∫ t

0
ξIsP

I
s−d$

I,P̃
s −

∫ t

0
ξCs P

C
s−d$

C,P̃
s .

Since |1−βt1{ξt<0}| ≤ 1, we have the right hand side of the above equation is a local martingale
bounded from below, which is a supermartingale. By the property of the supermartingale, taking
expectations,

EP̃[e−r
+
f tV̌t(ϕ, x)− V̌0(ϕ, x)] ≤EP̃

[ ∫ t

0
(1− βs1{ξs<0})σξsSsdW

P̃
s −

∫ t

0
ξIsP

I
s−d$

I,P̃
s −

∫ t

0
ξCs P

C
s−d$

C,P̃
s

]
≤EP̃

[ ∫ 0

0
(1− βs1{ξs<0})σξsSsdW

P̃
s −

∫ 0

0
ξIsP

I
s−d$

I,P̃
s −

∫ 0

0
ξCs P

C
s−d$

C,P̃
s

]
=0.

Thus, we have either P̃[V̌t(ϕ, x) = er
+
f tx] = 1 or P̃[V̌t(ϕ, x) < er

+
f tx] > 0. We proved that no

arbitrage investment opportunity exists under the measure P̃. Since P̃ is equivalent to P, we proved
that the financial market is arbitrage-free.

Remark 4.5.6. If an investor knows the information of the financial status (β), this financial
market is still arbitrage-free, based on the previous proposition.

4.5.2 Dynamics of The Wealth Process

By Equations (4.4.3) and (4.4.2) and the self-financing condition, the dynamics of the hedging
portfolio Vt under the valuation measure Q with the discount rate rD is

dVt =(1− βt1{ξt<0})ξtdSt + ξIt dP
I
t + ξCt dP

C
t + ξft dB

rf
t + (1− βt)ψrrt dB

rr
t − ψctdB

rc
t

=(1− βt1{ξt<0})ξt(rDStdt+ σStdW
Q
t ) + ξIt (rDP

I
t dt− P It−d$

I,Q
t )

+ ξCt (rDP
C
t dt− PCt−d$

C,Q
t ) + ξft rfB

rf
t dt+ (1− βt)ψrrt rrB

rr
t dt− ψct rcB

rc
t dt

=
(

(1− βt1{ξt<0})rDξtSt + rDξ
I
t P

I
t + rDξ

C
t P

C
t + rfξ

f
t B

rf
t + (1− βt)rrψrrt B

rr
t − rcψctB

rc
t

)
dt

+ (1− βt1{ξt<0})σξtStdW
Q
t − ξIt P It−d$

I,Q
t − ξCt PCt−d$

C,Q
t .

By the identity (1− βt)ψrrt B
rr
t = −(1− βt)ξtSt,

dVt =
(

(1− βt1{ξt<0})rDξtSt + rDξ
I
t P

I
t + rDξ

C
t P

C
t + rfξ

f
t B

rf
t − (1− βt)rrξtSt − rcψctB

rc
t

)
dt

+ (1− βt1{ξt<0})σξtStdW
Q
t − ξIt P It−d$

I,Q
t − ξCt PCt−d$

C,Q
t

=
(

(rD − rDβt1{ξt<0} − rr + rrβt)ξtSt + rDξ
I
t P

I
t + rDξ

C
t P

C
t + rfξ

f
t B

rf
t − rcψctB

rc
t

)
dt

+ (1− βt1{ξt<0})σξtStdW
Q
t − ξIt P It−d$

I,Q
t − ξCt PCt−d$

C,Q
t .
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For the wealth process itself, by the identity (1−βt)ψrrt B
rr
t = −(1−βt)ξtSt and the wealth portfolio

(4.4.3), we have that

Vt = (1− βt1{ξt<0})ξtSt − (1− βt)ξtSt + ξIt P
I
t + ξCt P

C
t + ξft B

rf
t − ψctB

rc
t

= βt(1− 1{ξt<0})ξtSt + ξIt P
I
t + ξCt P

C
t + ξft B

rf
t − ψctB

rc
t .

We rewrite the above equation,

ξft B
rf
t = Vt − βt(1− 1{ξt<0})ξtSt − ξIt P It − ξCt PCt + ψctB

rc
t .

Since ψtB
rc
t = −Ct

ξft B
rf
t = Vt − βt(1− 1{ξt<0})ξtSt − ξIt P It − ξCt PCt − Ct.

Plugging the above equation into the dynamics of Vt

dVt =
(

(rD − rDβt1{ξt<0} − rr + rrβt)ξtSt + rDξ
I
t P

I
t + rDξ

C
t P

C
t + rcCt

+ rf
(
Vt − βt(1− 1{ξt<0})ξtSt − ξIt P It − ξCt PCt − Ct

))
dt

+ (1− βt1{ξt<0})σξtStdW
Q
t − ξIt P It−d$

I,Q
t − ξCt PCt−d$

C,Q
t

=
(

(rD − rDβt1{ξt<0} − rr + rrβt − rfβt + rfβt1{ξt<0})ξtSt

+ (rD − rf )ξIt P
I
t + (rD − rr)ξCt PCt + rfVt + (rc − rf )Ct

)
dt

+ (1− βt1{ξt<0})σξtStdW
Q
t − ξIt P It−d$

I,Q
t − ξCt PCt−d$

C,Q
t .

Setting
Zt = (1− βt1{ξt<0})σξtSt, ZIt = −ξIt P It−, ZCt = −ξCt PCt−,

we have
(rD − rf )ξIt P

I
t = −(rD − rf )ZIt , (4.5.1)

(rD − rf )ξCt P
C
t = −(rD − rf )ZCt . (4.5.2)

Therefore,

(rD − rDβt1{ξt<0} − rr + rrβt − rfβt + rfβt1{ξt<0})ξtSt

=(1− βt1{ξt<0})rDξtSt + (rrβt − rfβt + rfβt1{ξt<0} − rr)ξtSt

=
rD
σ
Zt + (rrβt − rfβt + rfβt1{ξt<0} − rr − rf + rf )ξtSt

=
rD
σ
Zt − (1− βt1{ξt<0})rfξtSt + (rrβt − rfβt − rr + rf )ξtSt

=
rD
σ
Zt −

rf
σ
Zt + (rrβt − rfβt − rr + rf )ξtSt

=
rD
σ
Zt −

rf
σ
Zt + (rf − rr)(1− βt)ξtSt.

(4.5.3)

We want to rewrite (1− βt)ξtSt in a representation by Zt. We summarize the relationship between
these two equations in Table 4.1.
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Case βt ξt (1− βt)ξtSt Zt (1− 1{Zt>0,βt=1})
1
σ (1− 1{Zt>0,βt=1})Zt

1 = 0 < 0 < 0 (−|ξt|St) < 0 = 1 < 0 (−|ξt|St)
2 = 0 = 0 = 0 = 0 = 1 = 0

3 = 0 > 0 > 0 (ξtSt) > 0 = 1 > 0 (ξtSt)

4 = 1 < 0 = 0 = 0 = 1 = 0

5 = 1 = 0 = 0 = 0 = 1 = 0

6 = 1 > 0 = 0 > 0 = 0 = 0

Table 4.1: Summary of Zt and (1− βt)ξtSt.

We conclude that (1− βt)ξtSt = 1
σ (1− 1{Zt>0,βt=1})Zt, so

(rf − rr)(1− βt)ξtSt =
rf − rr
σ

(1− 1{Zt>0,βt=1})Zt. (4.5.4)

Plugging Equations (4.5.1), (4.5.2), (4.5.3), (4.5.4) into the dynamics of Vt, we get

dVt =
(rD − rf + (rf − rr)(1− 1{Zt>0,βt=1})

σ
Zt − (rD − rf )ZIt − (rD − rf )ZCt + rfVt + (rc − rf )Ct

)
dt

+ ZtdW
Q
t + ZIt d$

I,Q
t + ZCt d$

C,Q
t

=
(
rf (Vt + ZIt + ZCt − Ct)− rDZI − rDZC + rcCt + ((rD − rf ) + (rf − rr)(1− 1{Zt>0,βt=1}))

Zt
σ

)
dt

+ ZtdW
Q
t + ZIt d$

I,Q
t + ZCt d$

C,Q
t

=
(
rf (Vt + ZIt + ZCt − Ct)− rDZI − rDZC + rcCt + (rD − rf1{Zt>0,βt=1} − rr(1− 1{Zt>0,βt=1}))

Zt
σ

)
dt

+ ZtdW
Q
t + ZIt d$

I,Q
t + ZCt d$

C,Q
t

=
(
rf (Vt −

1{Zt>0,βt=1}

σ
Zt + ZIt + ZCt − Ct)− rDZI − rDZC + rcCt + (rD − rr(1− 1{Zt>0,βt=1}))

Zt
σ

)
dt

+ ZtdW
Q
t + ZIt d$

I,Q
t + ZCt d$

C,Q
t

=
(
r+
f (Vt −

1{Zt>0,βt=1}

σ
Zt + ZIt + ZCt − Ct)+ − r−f (Vt −

1{Zt>0,βt=1}

σ
Zt + ZIt + ZCt − Ct)−

+
rD − r−r (1− 1{Zt>0,βt=1})

σ
(Zt)

+ −
rD − r+

r (1− 1{Zt>0,βt=1})

σ
(Zt)

−

+ r+
c (αV̂t)

+ − r−c (αV̂t)
− − rDZI − rDZC

)
dt

+ ZtdW
Q
t + ZIt d$

I,Q
t + ZCt d$

C,Q
t .

4.5.3 Construction BSDEs of the Wealth Process

In order to construct the BSDEs corresponding of the wealth process, we define a generator function
f(t, v, z, zI , zC ;β, V̂ ) as followings
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f+(t, v, z, zI , zC ;β, V̂ ) = −
(
r+
f (v −

1{z>0,β=1}

σ
z + zI + zC − αV̂ )+ − r−f (v −

1{z>0,β=1}

σ
z + zI + zC − αV̂ )−

+
rD − r−r (1− 1{z>0,β=1})

σ
z+ −

rD − r+
r (1− 1{z>0,β=1})

σ
z−

+ r+
c (αV̂ )+ − r−c (αV̂t)

− − rDzI − rDzC
)
,

f−(t, v, z, zI , zC ;β, V̂ ) = −f+(t,−v,−z,−zI ,−zC ;β,−V̂ ).

In order to attach the existence and uniqueness of the solution of a BSDE with the above
generator functions, we need the following assumptions.

Assumption 4.5.7. We assume that

(i) r−f < 1
5
√
T

,

(ii)
(r−f +rD∨|rD−r−r |)∨|rD−r+

r |
σ∧1 < 1

5 ,

(iii) r−f − rD <
√
λI∧
√
λC

5 .

Now we have two BSDEs with generator functions f± : Ω× [0, T ]× R5 × {0, 1} → R,
(ω, t, v, z, zI , zC ;β, V̂ ) 7→ f±(t, v, z, zI , zC ;β, V̂ ). The BSDEs are{

−dV +
t = f+(t, V +

t , Z
+
t , Z

I,+
t , ZC,+t ;β, V̂ )dt− Z+

t dW
Q
t − Z

I,+
t d$I,Q

t − ZC,+t d$C,Q
t ,

V +
τ = θI(V̂τ )1{τI<τC∧T} + θC(V̂τ )1{τC<τI∧T} + Θ1{τ=T},

(4.5.5)

and{
−dV −t = f−(t, V −t , Z

−
t , Z

I,−
t , ZC,−t ;β, V̂ )dt− Z−t dW

Q
t − Z

I,−
t d$I,Q

t − ZC,−t d$C,Q
t ,

V −τ = θI(V̂τ )1{τI<τC∧T} + θC(V̂τ )1{τC<τI∧T} + Θ1{τ=T},
(4.5.6)

where V̂ is a third party valuation of V with E
[ ∫ T

0 V̂ 2
s ds

]
<∞ and Θ is the terminal value at time

T without defaults.
The process V + describes the wealth process to hedge the claim Θ with zero initial capital by

selling securities with terminal payoff Θ. In a financial crisis status, because all short selling trades
of stock freeze, we can only super-hedge the claim Θ. The V −t describes the wealth process to
hedge the claim Θ by buying securities with terminal payoff Θ.

4.5.4 Existence and Uniqueness of Solutions for the Valuation BSDEs

To prove the existence and uniqueness of the solution for these BSDEs, we need to prove the
Lipschitz continuity of the generators f±.

Lemma 4.5.8. For any given 0 < t < T, β, V̂ , the generator functions f± are Lipschitz continuous
in v, z, zI , zC .

Proof. Given ε > 0, t ≥ 0 and ω ∈ Ω, for v1, v2, z1, z2, z
I
1 , z

I
2 , z

C
1 , z

C
2 with |v1 − v2| < ε, |z1 − z2| < ε,

|zI1 − zI2 | < ε and |zC1 − zC2 | < ε, we have
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• When z1, z2 are nonnegative, we have

|f+(t, v1, z1, z
I
1 , z

C
1 ;β, V̂ )− f+(t, v2, z2, z

I
2 , z

C
2 ;β, V̂ )|

≤
∣∣∣r+
f

(
(v2 −

1{z2>0,β=1}

σ
z2 + zI2 + zC2 − αV̂t)+ − (v1 −

1{z1>0,β=1}

σ
z1 + zI1 + zC1 − αV̂t)+

)
+ r−f

(
(v1 −

1{z1>0,β=1}

σ
z1 + zI1 + zC1 − αV̂t)− − (v2 −

1{z2>0,β=1}

σ
z2 + zI2 + zC2 − αV̂t)−

)
+
rD − r−r (1− 1{z2>0,β=1})

σ
z+

2 −
rD − r+

r (1− 1{z2>0,β=1})

σ
z−2

−
(rD − r−r (1− 1{z1>0,β=1})

σ
z+

1 −
rD − r+

r (1− 1{z1>0,β=1})

σ
z−1

)
+ rD(zI1 − zI2) + rD(zC1 − zC2 )

∣∣∣
≤ (r+

f ∨ r
−
f )
∣∣∣(v2 −

1{z2>0,β=1}

σ
z2 + zI2 + zC2 − αV̂t)− (v1 −

1{z1>0,β=1}

σ
z1 + zI1 + zC1 − αV̂t)

∣∣∣
+
rD
σ
|z+

1 − z
+
2 |+ rD|zI1 − zI2 |+ rD|zC1 − zC2 |

≤ r−f

∣∣∣(v2 −
1{z2>0,β=1}

σ
z2 + zI2 + zC2 − αV̂t)− (v1 −

1{z1>0,β=1}

σ
z1 + zI1 + zC1 − αV̂t)

∣∣∣
+
rD
σ
|z1 − z2|+ rD|zI1 − zI2 |+ rD|zC1 − zC2 |

≤ r−f |v1 − v2|+
r−f + rD

σ
|z1 − z2|+

(
r−f + rD

)
|zI1 − zI2 |+

(
r−f + rD

)
|zC1 − zC2 |

≤ A1

(
|v1 − v2|+ |z1 − z2|+ |zI1 − zI2 |+ |zC1 − zC2 |

)
,

where A1 =
r−f +rD
σ∧1 .

• When z1, z2 are negative, we have

|f+(t, v1, z1, z
I
1 , z

C
1 ;β, V̂ )− f+(t, v2, z2, z

I
2 , z

C
2 ;β, V̂ )|

≤
∣∣∣r+
f

(
(v2 + zI2 + zC2 − αV̂t)+ − (v1 + zI1 + zC1 − αV̂t)+

)
+ r−f

(
(v1 + zI1 + zC1 − αV̂t)− − (v2 + zI2 + zC2 − αV̂t)−

)
+
rD − r−r

σ
(z+

2 − z
+
1 )− rD − r+

r

σ
(z−2 − z

−
1 ) + rD(zI1 − zI2) + rD(zC1 − zC2 )

∣∣∣
≤ (r+

f ∨ r
−
f )
∣∣∣(v2 + zI2 + zC2 − αV̂t)− (v1 + zI1 + zC1 − αV̂t)

∣∣∣
+
|rD − r+

r |
σ

|z−1 − z
−
2 |+ rD|zI1 − zI2 |+ rD|zC1 − zC2 |

≤ r−f |v1 − v2|+
|rD − r+

r |
σ

|z1 − z2|+ (r−f + rD)|zI1 − zI2 |+ (r−f + rD)|zC1 − zC2 |

≤ A2

(
|v1 − v2|+ |z1 − z2|+ |zI1 − zI2 |+ |zC1 − zC2 |

)
,

where A2 = (r−f + rD) ∨ |rD−r
+
r |

σ∧1 .
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• Without loss of generality, we assume that z1 > 0 and z2 < 0, we have |z1 + z2| ≤ |z1 + |z2|| =
|z1 − z2| < ε and |z1| ≤ |z1 + |z2|| = |z1 − z2| < ε.

|f+(t, v1, z1, z
I
1 , z

C
1 ;β, V̂ )− f+(t, v2, z2, z

I
2 , z

C
2 ;β, V̂ )|

≤
∣∣∣r+
f

(
(v2 + zI2 + zC2 − αV̂t)+ − (v −

1{z1>0,β=1}

σ
z1 + zI1 + zC1 − αV̂t)+

)
+ r−f

(
(v1 −

1{z1>0,β=1}

σ
z1 + zI1 + zC1 − αV̂t)− − (v2 + zI2 + zC2 − αV̂t)−

)
+
(rD − r−r

σ
z+

2 −
rD − r+

r

σ
z−2

)
−
(rD − r−r (1− 1{z1>0,β=1})

σ
z+

1 −
rD − r+

r (1− 1{z1>0,β=1})

σ
z−1

)
+ rD(zI1 − zI2) + rD(zC1 − zC2 )

∣∣∣
≤ (r+

f ∨ r
−
f )
∣∣∣(v2 + zI2 + zC2 − αV̂t)− (v1 −

1{z1>0,β=1}

σ
z1 + zI1 + zC1 − αV̂t)

∣∣∣
+
∣∣∣rD − r−r (1− 1{z1>0,β=1})

σ
z+

1 +
rD − r+

r

σ
z−2

∣∣∣+ rD|zI1 − zI2 |+ rD|zC1 − zC2 |

≤ r−f

∣∣∣(v2 + zI2 + zC2 − αV̂t)− (v1 −
1{z1>0,β=1}

σ
z1 + zI1 + zC1 − αV̂t)

∣∣∣
+
rD ∨ |rD − r+

r |
σ

|z1 + |z2||+ rD|zI1 − zI2 |+ rD|zC1 − zC2 |

≤ r−f |v1 − v2|+
r−f
σ
|z1|+

rD ∨ |rD − r−r |
σ

|z1 + |z2||+ (r−f + rD)|zI1 − zI2 |+ (r−f + rD)|zC1 − zC2 |

≤ r−f |v1 − v2|+
r−f
σ
|z1 − z2|+

rD ∨ |rD − r−r |
σ

|z1 − z2|+ (r−f + rD)|zI1 − zI2 |+ (r−f + rD)|zC1 − zC2 |

≤ r−f |v1 − v2|+
r−f + (rD ∨ |rD − r−r |)

σ
|z1 − z2|+ (r−f + rD)|zI1 − zI2 |+ (r−f + rD)|zC1 − zC2 |

≤ A3

(
|v1 − v2|+ |z1 − z2|+ |zI1 − zI2 |+ |zC1 − zC2 |

)
,

where A3 =
r−f +(rD∨|rD−r−r |)

σ∧1 ∨ (r−f + rD).

Overall, the function f+ satisfies the Lipschitz condition in v, z, zI , zC such that

|f+(t, v1, z1, z
I
1 , z

C
1 ;β, V̂ )−f+(t, v2, z2, z

I
2 , z

C
2 ;β, V̂ )| ≤ K

(
|v1 − v2|+ |z1 − z2|+ |zI1 − zI2 |+ |zC1 − zC2 |

)
,

where K = A1 ∨A2 ∨A3 =
(r−f +rD∨|rD−r−r |)∨|rD−r+

r |
σ∧1 independently for β and V̂ .

Theorem 4.5.9. Given (Ω, (Ft)t≥0,F ,P), the BSDE (4.5.5) admits a unique solution
(V +, Z+, ZI,+, ZC,+) ∈ S2 ×M . The solutions satisfies the following equation

V +
t = V +

τ +

∫ τ

t
f+(s, V +

s , Z
+
s , Z

I,+
s , ZC,+t ;β, V̂ )ds−

∫ τ

t
Z+
s dW

Q
s −

∫ τ

t
ZI,+s d$I,Q

t −
∫ τ

t
ZC,+s d$C,Q

t .

Proof. By the Lemme 4.5.8, we have
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the generator satisfies the Lipschitz condition, i.e.

|f+(t, v1, z1, z
I
1 , z

C
1 ;β, V̂ )− f+(t, v2, z2, z

I
2 , z

C
2 ;β, V̂ )|

≤r−f |v1 − v2|+
(r−f + rD ∨ |rD − r−r |) ∨ |rD − r+

r |
σ

|z1 − z2|+ (r−f + rD)|zI1 − zI2 |+ (r−f + rD)|zC1 − zC2 |.

By Assumptions 4.5.7, the above equation becomes

|f+(t, v1, z1, z
I
1 , z

C
1 ;β, V̂ )− f+(t, v2, z2, z

I
2 , z

C
2 ;β, V̂ )|

<
1

5
√
T
|v1 − v2|+

√
λI

5
|zI1 − zI2 |+

√
λC

5
|zC1 − zC2 |+

1

5
|z1 − z2|

=
1

5

(
1√
T
|v1 − v2|+ |z1 − z2|+

√
λI |zI1 − zI2 |+

√
λC |zC1 − zC2 |

)
.

So our generator function f+ satisfies the Lipschitz condition in Assumption 3.1.4. By the definition
of Vτ , we have Vτ ∈ L2(Ω,Fτ ,P), so the closeout valuation satisfies the terminal condition in
Assumption 3.1.4. By the definition of f+, we have

f+(t, 0, 0, 0, 0;β, V̂ ) = −
(
r+
f (−αV̂t)+ − r−f (−αV̂t)− + r+

c (αV̂t)
+ − r−c (αV̂t)

−
)
.

For T <∞,

E
[ ∫ T

0
|f+(s, 0, 0, 0, 0;β, V̂ )|2ds

]
<∞,

so f+(t, 0, 0, 0, 0;β, V̂ ) ∈ H2 satisfies the integrability condition in Assumption 3.1.4. By Theorem
3.2.1, this valuation BSDE with the generator f+ admits a unique solution (V,Z, ZI , ZC , Zβ, Y ) ∈
S2 ×M .

V +
t = V +

τ +

∫ τ

t
f(ω, s, Vs−, Zs, Z

I
s , Z

C
s , Z

β
s )ds+

∫ τ

t
ZsdW

Q
s +

∫ τ

t
ZIsd$

I,Q
t +

∫ τ

t
ZCs d$

C,Q
t

+

∫ τ

t
Zβs dJ̃s + Yτ − Yt.

Based on the specific form of the valuation BSDE with the generator f+, the solution does not
depend on the stochastic integral with respect to J̃ and the orthogonal term Y . So the solution
(V,Z, ZI , ZC) to BSDE (4.5.5) is given by

V +
t = V +

τ +

∫ τ

t
f+(s, V +

s , Z
+
s , Z

I,+
s , ZC,+s ;β, V̂ )ds−

∫ τ

t
Z+
s dW

Q
s −

∫ τ

t
ZI,+s d$I,Q

t −
∫ τ

t
ZC,+s d$C,Q

t .

Theorem 4.5.10. Given (Ω, (Ft)t≥0,F ,P), BSDE (4.5.6) admits a unique solution
(V −, Z−, ZI,−, ZC,−) ∈ S2 ×M . The solutions satisfies the following equation

V −t = V −τ +

∫ τ

t
f−(s, V −s , Z

−
s , Z

I,−
s , ZC,−t ;β, V̂ )ds−

∫ τ

t
Z−s dW

Q
s

−
∫ τ

t
ZI,−s d$I,Q

t −
∫ τ

t
ZC,−s d$C,Q

t .
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Proof. Similar to the proof of Theorem 4.5.9, we have that BSDE (4.5.6) admits unique solutions
(V −, Z−, ZI,−, ZC,−) ∈ S2 ×M .

Since the Repo market freezes during the financial crisis, there are no short trade of stocks
during the financial crisis. During a finanical crisis (βt = 1), whenever we need short stocks to
hedge our European option (Z+ < 0), we cannot short stocks. So, we can only super-hedge the
derivatives.

4.6 Total Valuation Adjustment (XVA)

The total valuation adjustment (XVA) is an adjustment made to the fair value of a derivative
contract to take into account funding and credit risk. We want to compute the total valuation ad-
justment, which is added to the Black-Scholes price of a European option, considering an investor’s
and its counterparty’s defaults, funding liquidity and asymmetric interest rates. Since adjustments
are asymmetric for the buy-side and sell-side, we define both seller’s and buyer’s valuation adjust-
ments.

4.6.1 Construction of XVA BSDEs

Definition 4.6.1. The seller’s XVA is a stochastic process defined as

XVA+
t := V +

t − V̂t, (4.6.1)

and the buyers’ XVA is defined as
XVA−t := V −t − V̂t. (4.6.2)

XVA+ is a valuation adjustment by the trader to hedge a long position in the option, and XVA−

is a valuation adjustment by the trader to hedge a short position in the option.
Here V̂ is a third party valuation of the option, which is a solution of the Black-Scholes model{

−dV̂t = −rDV̂tdt− ẐtdWQ
t ,

V̂T = Θ,
(4.6.3)

where Θ is the terminal value of the claim from the point of view the third party.
Based on the existence and uniqueness of the solutions of the Black-Scholes model, we have the

BSDEs for the XVA± as{
−dXVA±t = f̃±(t,XVA±t , Z̃

±
t , Z̃

I,±
t , Z̃C,±t ;β, V̂ , Ẑ)dt− Z̃±t dW

Q
t − Z̃

I,±
t d$I,Q

t − Z̃C,±t d$C,Q
t ,

XVA±τ = θ̃I(V̂τ )1{τI<τC∧T} + θ̃C(V̂τ )1{τC<τI∧T},

(4.6.4)
where

Z̃±t := Z±t − Ẑt,

Z̃I,±t := ZI,±t ,

Z̃C,±t := ZC,±t ,

θ̃I(v̂) := −LI((1− α)v̂)+,

θ̃C(v̂) := LC((1− α)v̂)−,

(4.6.5)
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and the generators are

f̃+(t, xva, z̃, z̃I , z̃C ;β, V̂ , Ẑ) = −
(
r+
f (xva−

1{z̃+Ẑ>0,β=1}

σ
(z̃ + Ẑ) + z̃I + z̃C + (1− α)V̂ )+

− r−f (xva−
1{z̃+Ẑ>0,β=1}

σ
(z̃ + Ẑ) + z̃I + z̃C + (1− α)V̂ )−

+
rD − r−r (1− 1{z̃+Ẑ>0,β=1})

σ
(z̃ + Ẑ)+

−
rD − r+

r (1− 1{z̃+Ẑ>0,β=1})

σ
(z̃ + Ẑ)−

+ r+
c (αV̂t)

+ − r−c (αV̂t)
− − rDz̃I − rDz̃C

)
+ rDV̂t,

f̃−(t, xva, z̃, z̃I , z̃C ;β, V̂ , Ẑ) := −f̃+(t,−xva,−z̃,−z̃I ,−z̃C ;β,−V̂ ,−Ẑ).

(4.6.6)

Based on the definition of the generator function of BSDEs (4.5.5) and (4.5.6), we have

f̃±(t, xva, z̃, z̃I , z̃C ;β, V̂ , Ẑ) = f±(t, xva, z̃ + Ẑ, z̃I , z̃C ;β, V̂ )± rDV̂ . (4.6.7)

Theorem 4.6.2. Given (Ω, (Ft)t≥0,F ,P). The XVA BSDEs (4.6.4) admit a unique solution
(XVA±, Z̃±, Z̃I,±, Z̃C,±). The solution satisfies the following equation

XVA±t = XVA±τ +

∫ τ

t
f̃±(s,XVA±s , Z̃

±
s , Z̃

I,±
s , Z̃C,±t ;β, V̂ , Ẑ)ds−

∫ τ

t
Z̃+
s dW

Q
s

−
∫ τ

t
Z̃I,±s d$I,Q

t −
∫ τ

t
Z̃C,±s d$C,Q

t .

Proof. The result is a direct consequence of Theorem 4.5.9 and the Black-Scholes formula.

4.6.2 Reduced XVA BSDEs

We want to rewrite XVA BSDEs (4.6.4) in the filtration (Ft)t≥0 with a jump terminal condition
to a reduced XVA BSDEs with a smaller filtration (FW,β)t≥0 and a continuous terminal condition,
based on the results in Section 3.3. The reduced XVA BSDEs are{

−dŬ±t = ğ±(t, Ŭ±t , Z̆
±
t ;β, V̂ , Ẑ)dt− Z̆±t dW

Q
t ,

Ŭ±T = 0,
(4.6.8)

in the filtration (FW,β
t )t≥0 without default events with

ğ+(t, ŭ, z̆;β, V̂ , Ẑ) := hQI (θ̃I(V̂t)− ŭ) + hQC(θ̃C(V̂t)− ŭ)

+ f̃+(t, ŭ, z̆, θ̃I(V̂t)− ŭ, θ̃C(V̂t)− ŭ;β, V̂ , Ẑ),

ğ−(t, ŭ, z̆;β, V̂ , Ẑ) := −ğ+(t,−ŭ,−z̆;β,−V̂ ,−Ẑ).

(4.6.9)

Theorem 4.6.3. The reduced XVA BSDE (4.6.8) admits a unique solution (Ŭ±, Z̆±). When
(XVA±, Z̃±, Z̃I,±, Z̃C,±) is a unique solution of BSDEs (4.6.4), then (Ŭ±, Z̆±) defined as

Ŭ±t := XVA±t∧τ−, Z̆±t := Z̃±t 1{t<τ}, (4.6.10)
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are solutions to the reduced XVA BSDE (4.6.8). When (Ŭ±, Z̆±) are unique solutions to the reduced
XVA BSDEs (4.6.8), then (XVA±, Z̃±, Z̃I,±, Z̃C,±), defined as

XVA±t := Ŭ±t 1{t<τ} +
(
θ̃I(V̂τI )1{τI<τC∧T} + θ̃C(V̂τC )1{τC<τI∧T}

)
1{t≥τ},

Z̃±t := Z̆±t 1{t<τ},

Z̃I,±t :=
(
θ̃I(V̂t)− Ŭ±t

)
1{t≤τ},

Z̃Ct :=
(
θ̃C(V̂t)− Ŭ±t

)
1{t≤τ},

(4.6.11)

are unique solutions of the XVA BSDEs (4.6.4).

Proof. To prove the existences and uniqueness of solutions for the reduced XVA BSDE (4.6.8), we
need to prove the Lipschitz condition of the generator functions f̃±.

I. For the generator function f̃+, by the Lipschitz condition of the generator function f+ and
Equation (4.6.7), we have∣∣∣f̃+(t, xva1, z̃1, z̃

I
1 , z̃

C
1 ;β, V̂ , Ẑ)− f̃+(t, xva2, z̃2, z̃

I
2 , z̃

C
2 ;β, V̂ , Ẑ)

∣∣∣
=
∣∣∣f+(t, xva1, z̃1 + Ẑ, z̃I1 , z̃

C
1 ;β, V̂ ) + rDV̂ −

(
f̃+(t, xva2, z̃2 + Ẑ, z̃I2 , z̃

C
2 ;β, V̂ ) + rDV̂

)∣∣∣
=
∣∣∣f+(t, xva1, z̃1 + Ẑ, z̃I1 , z̃

C
1 ;β, V̂ )− f̃+(t, xva2, z̃2 + Ẑ, z̃I2 , z̃

C
2 ;β, V̂ )

∣∣∣
≤K(|xva1 − xva2|+ |(z̃1 + Ẑ)− (z̃2 + Ẑ)|+ |z̃I1 − z̃I2 |+ |z̃C1 − z̃C2 |)
=K(|xva1 − xva2|+ |z̃1 − z̃2|+ |z̃I1 − z̃I2 |+ |z̃C1 − z̃C2 |).

Similarly, we establish the Lipschitz continuity of the generator function f−. Based on the definition
of f̃±, the integrability and terminal conditions are trivial. By Theorem 3.2.1, the reduced XVA
BSDEs (4.6.8) admit a unique solution.

The equivalence between the XVA BSDEs (4.6.4) and the reduced XVA BSDEs (4.6.8) is a
direct result from Theorem 3.3.1, 3.3.2 and 3.3.3.

Next, we will discuss the replicating strategies of the XVA process. Since the Repo market
freezes during a financial crisis, there are no short trade of stocks during the financial crisis. So
we cannot hedge the long position of a call option. As a result, We can only super-hedge the long
position of a call option. Same with the BSDEs of XVA processes, we will use symbol ∼ to denote
a hedging strategies of our XVA. Here, we apply the relationship between stock account and Repo
account, and the hedging portfolio.

Remark 4.6.4. The trading strategy of the XVA is given by

ξ̃±t =


Z̃±t +Ẑ±t
σSt

1{t<τ}, βt = 0,(
Z̃±t +Ẑ±t
σSt

)+
1{t<τ}, βt = 1,

ψ̃r,±t = −(1− βt)
ξ̃±t St
Brr
t

1{t<τ},

ξ̃I,±t = − Z̃
I,±
t

P It−
,
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ξ̃C,±t = − Z̃
C,±
t

PCt−
,

ψ̃ct = −αV̂t
Brc
t

1{t<τ},

ξ̃f,±t =
V ±t − V̂t − ξIt P It− − ξCt PCt− − αV̂t − (1− βt1ξt<0)ξtSt − ψr,±t Brr

t

B
rf
t

1{t<τ},

where we can only have a super-hedging portfolio if Z̃±t + Ẑ±t < 0 when βt = 1.

4.7 Empirical Application

In this section, we illustrate some simulation results of the alternating renewal process β and the
XVA valuation of a European call option. We want to estimate the parameters of the alternating
renewal process by using historical data and compare the XVA with and without considering the
different performances of the Repo account and stock account during different financial statuses.

4.7.1 Estimations of Alternating Renewal Processes

In this section, we want to estimate the parameters λU and λV of the alternating renewal process
β. The inter-arrival times in this process follow two exponential distributions. Because we use this
process to describe the switching between a normal financial status and a financial crisis status,
the parameter λU is the expected length of a normal financial status and the parameter λV is
the expected length of a financial crisis. Therefore, we may use historical data from some financial
stress index to estimate these parameters. As we reviewed in Chapter 1, there are several indicators
of financial distress, such as VIX, CISS, CoVaR and the Ted spread.

Boudt et al. (2017) confirm the existence of a two-regime Ted spreads from January 2006 to
December 2011. They estimate threshold for the regime switching as 0.48 basis points. Here we
also use the historical data of the Ted spread to estimate the parameters λU and λV .

Setting the threshold at .48 basis points, when the Ted spread is larger than the .48 basis points,
we claim that the financial market enters a crisis status. When the Ted spread is smaller or equal
to the .48 basis points, we claim that the financial market is in a normal status. Then λU describes
the average length of a normal financial regime and λV describe the average length of a financial
crisis regime. Assuming all financial status are independent, we use the sample mean to estimate
the expectation of the lengths of the financial statuses. The results are given in Table 4.2. In
this result, the estimates of λU and λV are relatively small. In Figure 4.2, we can see that the
Ted spread crossed the threshold (green line) several times, which means we have several switches
between the normal financial status and the financial crisis status. Both statuses appeared five
times in the dataset. But this number contradicts to the real financial condition from 2006 to 2011.
Therefore, we should find a different way to set the threshold, in order to remove the effect of small
movements of the Ted spread.

Boudt et al. (2013) mention that the 0.8 basis points is also a meaningful threshold, which is
the threshold for the central bank responds to a financial crisis. In order to eliminate the effect of
the Ted spread’s noise movements, we change the setting of the threshold. When the Ted spread
up-crosses the .80 basis points (red line in Figure 4.4), we claim that the financial market enters a
financial crisis status. When the Ted spread down-crosses the .48 basis points (green line in Figure
4.4), we claim that the financial market enters a normal financial status.
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Figure 4.2: Ted spread from Jan 2006 to Dec 2011.

Threshold 0.48 basis points as green line.

Normal Financial Statuses Financial Crisis Statuses

Number of Statuses 5 5

Average Length (days) 179 172

Estimates for λU and λV 0.49 0.47

Table 4.2: Estimates of λU and λV when threshold is .48 basis points.

Based on the setting of .48 and .80 basis points, we estimate the parameters λU and λV of the
alternating renewal process β, given in Table 4.3.

Normal Financial Statuses Financial Crisis Statuses

Number of Statuses 2 2

Average Length (days) 507 361

Estimates of λU and λV 1.39 0.99

Table 4.3: Estimations of λU and λV when threshold is .48 and .8 basis points.
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Figure 4.4: Ted spread from Jan 2006 to Dec 2011.

Threshold 0.48 basis point as green line and the threshold 0.8 basis point as red line.

To put this result in a broader period, we consider all historical data for the Ted spread we
have available. Using the same setting for the thresholds, we estimate the parameters using the
whole historical data, from Jan 2rd, 1986 to July 24th, 2018. In Figure 4.6, we find the Ted spread
is relatively high before 1998. The result of the estimation is given in Table 4.4. The estimate of
average length of the normal financial status (λU = 1.75) is larger than λU = 1.39, which is the
results for smaller estimation period.

Normal Financial Statuses Financial Crisis Statuses

Number of Statuses 12 12

Average Length (days) 639 321

Estimations of λU and λV 1.75 0.88

Table 4.4: Estimates of λU and λV with threshold .48 and .8 basis points.
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Figure 4.6: Historical Ted spread.

Threshold 0.48 basis points as green line and the threshold 0.8 basis points as red line.

4.7.2 Simulation Results of XVAs

In practice, to evaluate the XVA, we should use the estimation of λU and λV to generate paths of
the alternating renewal process. Then using the simulation methods to solve the XVA BSDE. But
in this section, we want to focus on the effect of different financial statuses to the XVA. Therefore,
we only evaluate the XVA during a normal financial status (β ≡ 0) and during a financial crisis
(β ≡ 1). For a European call option, we assume that an initial stock price S0 = $1, the strike price
K = $1 and the terminal time of the option T = 1 year. We set the following benchmark coefficients:
r+
r = r−r = 0.05, r+

c = r−c = 0.01, r+
f = 0.05, rD = 0.01, µI = 0.21, µC = 0.16, hQI = 0.2, hQC = 0.15,

and LI = LC = 0.5, as in Bichuch et al. (2018a). Then we want to analyze the effect of the financial
statuses (βt), the different collateralization levels α and the funding rates (r−f ) on the XVA.

In this dissertation, we use the deep learning-based numerical method to solve our XVA BSDE,
the algorithm can be found in Weinan et al. (2017). During a normal financial status (βt = 0),
we compute the XVA for different collateralization levels α between 0 and 1 and different values
of the funding rate r−f = 0.08, 0.1, 0.15, and 0.2. When the volatility rate of the stock is σ = 0.2,
the result is plotted in Figure 4.8(a). Consistent to the results in Bichuch et al. (2018a), the XVA
also increase corresponding to the increase in the collateralization level α. The increasement of the
XVA for the different funding rates r−f achieve minimum around α = 0.2 and increases for other
collateralization levels.

In a financial crisis status (βt = 1), we compute the XVA for different collateralization levels
and different funding rates r−f when the volatility rate of stock is σ = 0.2. The results are plotted
in Figure 4.8(b). Similar to the normal financial status, the XVA also increases, corresponding to
the collateralization level α increases. When α increases, the investor needs to hold more shares
in the collateral account Ct, which leads to borrowing more cash from the funding account. In
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(a) βt = 0. (b) βt = 1.

Figure 4.8: XVA when σ = 0.2

this situation, the XVA also increases due to the higher funding cost incurred the hedging of the
investor’s and its counterparty’s default risks. Because the Repo market freezes during a financial
crisis, all borrowing of cash has to be ceased through the funding market. The relationship between
XVA and the collateralization level α is simplified to a linear relationship. For different funding
rates r−f , the differences between XVA are similar to the differences between the different funding

rates r−f .
We also compare the XVA in a normal financial status and a financial crisis status when the

volatility rate σ = 0.2 and the funding rate r−f = 0.08, given in Figure 4.9. In a financial crisis, the
XVA is nearly double the size of the XVA in a normal financial regime. Therefore, it is important
to differentiate the different financial statuses when pricing an option. Moreover, in the crisis case,
the increment of the XVA has linear relationship with the increment of the funding interest rate r−f ,
as shown in Figure 4.10. In the financial crisis status, we also compare different XVAs for different
collateralization levels α for different volatilities σ. In Figure 4.11, we find the increment of the
XVA has positive correlation with the volatility of the stock price.
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Figure 4.9: XVA for βt = 0 or βt = 1 when σ = 0.2.

Figure 4.10: XVA when βt = 1 and σ = 0.6.
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Figure 4.11: Comparison of XVA with σ = 0.2 and σ = 0.6 when βt = 1.
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Chapter 5

Network Model and Systemic Risk

In this chapter, we will analysis the systemic risk from a regulator’s perspective. We will do a
sensitivity analysis of the Eisenberg–Noe model and a society network model.

5.1 Sensitivity analysis of Eisenberg–Noe clearing vector

We consider a financial system consisting of n banks, N = {1, . . . , n}. For i, j ∈ N , Lij ≥ 0 is the
nominal liability of bank i to bank j.

Remark 5.1.1. External liabilities can be considered as well through the introduction of an “ex-
ternal” bank 0. This is discussed in more details in Section 5.2.3.

Equivalently, Lij is the exposure of bank j to bank i. Let L ∈ Rn×n be the liabilities matrix of
the financial network, and we assume that no bank has an exposure to itself, i.e., Lii = 0 for all
i ∈ N . The total liability of bank i is given by p̄i =

∑n
j=1 Lij . The relative liability of bank i to

bank j is denoted by πij ∈ [0, 1], where πij =
Lij
p̄i

when p̄i > 0. We allow πij ∈ [0, 1] to be arbitrary

when p̄i = 0 and only require
∑n

j=1 πij = 1.

Remark 5.1.2. The arbitrary choice of πij in the case p̄i = 0 has no impact on the outcome of
the Eisenberg–Noe model since the transpose of the relative liability matrix Π is multiplied by the
incoming payment vector p(Π), whose jth entry is 0 when p̄j = 0 (cf. (5.1.2)).

We denote the relative liability matrix Π ∈ Rn×n. Any relative liability matrix Π must belong
to the set of admissible matrices Πn, defined as the set of all right stochastic matrices with entries
in [0, 1] and all diagonal entries 0:

Πn :=

{
Π ∈ [0, 1]n×n

∣∣∣ ∀i : πii = 0,
n∑
j=1

πij = 1

}
. (5.1.1)

Finally, denote the external assets of bank i from outside the banking system by xi ≥ 0. A bank
balance sheet then takes the simplified form of Table 5.1, and a financial system is given by the
triplet (Π, x, p̄) ∈ Πn × Rn+ × Rn+.

A bank is solvent when the sum of its net external assets and performing interbank assets
exceeds its total liabilities. In this case, the bank honours all of its obligations. However, if the
value of its obligations is greater than the bank’s net assets plus performing interbank assets, then
the bank will default and repay its obligations pro-rata.
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Assets Representation Liabilities Representation

Interbank aIBi =
∑n

j=1 Lji Interbank lIBi =
∑n

j=1 Lij
External xi External Li0

Capital ci

Table 5.1: Stylized bank balance sheet.

Remark 5.1.3. This corresponds to the assumption that all interbank and external claims can be
aggregated to a single figure per bank and that all creditors of a defaulting bank are paid pari passu.

These rules yield a clearing vector (clearing payments) as the solution of the fixed point problem

p(Π) = p̄ ∧
(
x+ Π>p(Π)

)
. (5.1.2)

Let p : Πn → Rn+; Π 7→ p(Π) be the fixed point function with parameters (x, p̄). As proved in
(Eisenberg and Noe 2001, Theorem 2), the clearing vector is unique if a system of banks is regular.
Regularity is defined as follows: a surplus set S ⊆ N is a set of banks in which no bank in the set
has any obligations to a bank outside of the set and the sum over all banks’ external net asset values
in the set is positive, i.e., ∀ (i, j) ∈ S × Sc : πij = 0 and

∑
i∈S xi > 0. Next, consider the financial

system as a directed graph in which there is a directed link from bank i to bank j if Lij > 0.
Denote the risk orbit of bank i as o(i) = {j ∈ N | there exists a directed path from i to j}. This
means that the risk orbit of bank i is the set of all banks which may be affected by the default of
bank i. A system is regular if every risk orbit is a surplus set. Uniqueness of the clearing vector has
important consequences in terms of the continuity of the function p, which in turn is important for
our sensitivity analysis. For this reason we will proceed under the assumption that our financial
system is regular.

Proposition 5.1.4. Consider a regular financial system (Π, x, p̄) in which x and p̄ are fixed. The
function p, defined via (5.1.2), is continuous with respect to Π ∈ Πn.

Proof. This proof follows the logic of (Feinstein et al. 2017, Lemma 5.2) and (Ren et al. 2014,
Theorem 4). Fix the net assets x and total obligation p̄. Let φ : [0, p̄]×Πn → [0, p̄] be the function

defined by φ(p̂,Π) :=
(
φ1(p̂,Π), · · · , φn(p̂,Π)

)>
, where

φi(p̂,Π) = p̄i ∧
(
xi +

n∑
j=1

πjip̂j

)
, i ∈ N .

The function φ is jointly continuous with respect to the payment vector p̂ and the relative liabilities
πij for i, j ∈ N . Because the system is regular and thus has a unique fixed point, it follows from
(Feinstein et al. 2017, Proposition A.2) that the graph

graph(p) =
{

(Π, p̂) ∈ Πn × [0, p̄]
∣∣ φ(p̂,Π) = p̂

}
is closed. Define the projection Ψ : Πn × [0, p̄] → Πn as Ψ(Π, p) = Π. By (Feinstein et al. 2017,
Proposition A.3), Ψ is a closed mapping in the product topology. Then, in order to show that p is
continuous, take U ⊂ [0, p̄] closed. Then

p−1[U ] =
{

Π ∈ Πn
∣∣ p(Π) ∈ U

}
= Ψ

(
graph(p) ∩ (Πn × U)

)
.

The graph of p is closed and Πn is closed by definition. Hence p−1[U ] is closed and the function p
is continuous with respect to Π.
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We finish these preliminary notes by considering a simple example of the Eisenberg–Noe clearing
payments under a system of n = 4 banks. We will return to this example throughout as a simple
illustrative case study.

Example 5.1.5. Consider the following example of a network consisting of four banks in which
the bank’s nominal interbank liabilities are given by

L =


0 7 1 1
3 0 3 3
1 1 0 1
1 1 1 0

 ,

as shown in Figure 5.1(a). Assume that the banks’ external assets are given by the vector x =
(0, 2, 2, 2)>. With 0 net worth and positive liabilities, Bank 1 defaults initially. The Eisenberg–Noe
clearing vector (5.1.2) can be easily computed to be p = (4.5, 7.5, 3, 3)>, showing that Bank 2 also
defaults through contagion. The realized interbank payments are shown in Figure 5.1(b). Banks
who are in default are colored red and payments that are repaid less than whole are also colored red.
The edge widths are proportional to the payment size.

(a) Nominal interbank liabilities. (b) Clearing interbank payments.

Figure 5.1: Initial network defined in Example 5.1.5.

5.1.1 Quantifying estimation errors from the (relative) liabilities matrices

We assume that some estimation error is attached to the entries of the relative liability matrix,
leading to a deviation of the clearing vector from the “true” clearing vector p(Π). Denote the true
relative liabilities matrix by Π and let Π + h∆ denote the liabilities matrix that includes some
estimation error, for a perturbation matrix ∆ and size h ∈ R. First, we consider the class of
perturbation matrices, ∆n(Π), under which we assume that the existence or non-existence of a link
between two banks is known to the regulator and hence, the error is limited to a misspecification
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of the size of that link. In practice, this type of uncertainty arises when data is collected at a low
frequency, which can lead to exposure evolving naturally, as well as banks trying to improve their
balance sheet composition ahead of regulatory reporting dates.1

Remark 5.1.13, Corollary 5.2.5 and Corollary 5.2.20 will utilize the results in this section to
provide bounds for the perturbation error in general without predetermining existence or non-
existence of links.

Definition 5.1.6. For a fixed p̄ ∈ Rn+, define the set of relative liability perturbation matrices by

∆n(Π) :=

{
∆ ∈ Rn×n

∣∣∣∣ ∀i : δii = 0,
n∑
j=1

δij = 0,
n∑
j=1

δjip̄j = 0, and (πij = 0)⇒ (δij = 0)∀ j
}
.

The summation conditions ensure that the total liabilities and total assets, respectively, of each
bank are left unchanged by the perturbation. Of course it is not possible to have Π + h∆ ∈ Πn

for any h ∈ R. Throughout this work we consider perturbation magnitudes in a bounded interval,
h ∈ (−h∗, h∗), where

h∗ := min

{
min

δij<0, p̄i>0

−πij
δij

, min
δij>0, p̄i>0

1− πij
δij

}
> 0,

for any ∆ ∈ ∆n(Π) to assure Π + h∆ ∈ Πn. We exclude from this calculation of h∗ any bank i
where p̄i = 0 since this has no impact on the results. It is natural to consider directional derivatives
on a unit-ball, whence we focus on the bounded set of perturbations

∆n
F (Π) := ∆n(Π) ∩

{
∆ ∈ Rn×n

∣∣ ‖∆‖F ≤ 1
}
,

where ‖ · ‖F is the Frobenius norm, i.e., ‖∆‖F =
√∑n

i=1

∑n
j=1 |δij |2.

Remark 5.1.7. A more general case can be considered in which one allows for errors that create
links where there were none or remove connections where there was one. This set is defined as
follows: for a fixed p̄ ∈ Rn+,

∆
n
(Π) :=

{
∆ ∈ Rn×n

∣∣∣∣ ∀i : δii = 0,

n∑
j=1

δij = 0,

n∑
j=1

δjip̄j = 0, and (πij = 0)⇒ (δij ≥ 0)∀ j
}
.

We will consider in particular the bounded set of perturbations

∆
n
F (Π) := ∆

n
(Π) ∩

{
∆ ∈ Rn×n

∣∣ ‖∆‖F ≤ 1
}
.

Such perturbations thus allow a “rewiring” of the network. In general, allowing edges to be added
or deleted increases the potential error in the clearing vector. However, the infinitesimal nature of
the sensitivity analysis necessarily restricts the rewiring to the creation of new links; any strictly
positive liability cannot be deleted through an infinitesimal perturbation. We discuss this issue in
more detail in Corollary 5.2.5, where we apply our methodology to the complete network, as well as
in Figure 5.16(a), which shows a distribution of payouts to society under a rewiring of the interbank
network.

1Evidence for such behaviour at the end of a quarter can, for instance, be seen in the bal-
ance sheet reduction of European Banks and the corresponding spikes this creates in the utilization of
the Federal Reserve’s Reverse Repo facility, see: http://libertystreeteconomics.newyorkfed.org/2017/08/

regulatory-incentives-and-quarter-end-dynamics-in-the-repo-market.html.
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5.1.2 Directional derivatives of the Eisenberg–Noe clearing vector

Next, we analyze the error when using the clearing vector of a perturbed liability matrix, p(Π+h∆),
instead of the clearing vector of the original liability matrix, p(Π), for small perturbations h∆, with
∆ ∈∆n(Π).

Definition 5.1.8. Let ∆ ∈ ∆n(Π). In the case that the following limit exists, we define the
directional derivative of the clearing vector p(Π) in the direction of a perturbation matrix ∆ as

D∆p(Π) := lim
h→0

p(Π + h∆)− p(Π)

h
.

The first order Taylor expansion of p about Π gives

p(Π + h∆)− p(Π) = hD∆p(Π) +O
(
h2
)
.

The following theorem provides an explicit formula for the directional derivative of the clearing
vector for a fixed financial network.

Theorem 5.1.9. Let (Π, x, p̄) be a regular financial system. The directional derivative of the
clearing vector p(Π) in the direction of a perturbation matrix ∆ ∈∆n(Π) exists almost everywhere
and is given by

D∆p(Π) =
(
I − diag(d)Π>

)−1
diag(d)∆>p(Π), (5.1.3)

where diag(d) is the diagonal matrix defined as diag(d1, . . . , dn), where

di := 1{xi+
∑n
j=1 πjipj(Π)<p̄i}.

Here, (5.1.3) holds outside of the measure-zero set {x ∈ Rn+ | ∃i ∈ N s.t. xi +
∑n

j=1 πjipj(Π) = p̄i}
in which some bank is exactly at the brink of default.

We note that our proof does not assume a priori that the clearing vector p is differentiable; we
comment on this simpler case below.

Proof. We assume that the net external assets lie in the set{
x ∈ Rn+

∣∣∣@i ∈ N s.t. xi +

n∑
j=1

πjipj(Π) = p̄i

}
.

Denote α(1) = x+Π>p(Π) = (α
(1)
1 , · · · , α(1)

n )> and α(2) = x+(Π+h∆)>p(Π+h∆) = (α
(2)
1 , · · · , α(2)

n )>.

By continuity of p with respect to Π (Proposition 5.1.4) we have for all i ∈ N , α
(2)
i → α

(1)
i as

h → 0 and thus 1{{α(1)
i <p̄i}∩{α

(2)
i >p̄i}}

→ 0, 1{{α(1)
i >p̄i}∩{α

(2)
i <p̄i}}

→ 0 and 1{{α(1)
i <p̄i}∩{α

(2)
i <p̄i}}

→
1{α(1)

i <p̄i}
. To prove the existence of D∆p(Π), we will show that the following two limits,

D∆p(Π)i = lim sup
h→0

pi(Π + h∆)− pi(Π)

h
,

D∆p(Π)
i

= lim inf
h→0

pi(Π + h∆)− pi(Π)

h

are equal for each component. Consider the upper limit
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D∆p(Π)i = lim sup
h→0

pi(Π + h∆)− pi(Π)

h

= lim sup
h→0

1

h

((
p̄i ∧ (xi +

n∑
j=1

(πji + hδji)pj(Π + h∆))

)
−
(
p̄i ∧ (xi +

n∑
j=1

πjipj(Π))

))

= lim sup
h→0

(
0× 1{{α(1)

i >p̄i}∩{α
(2)
i >p̄i}}

+
p̄i − (xi +

∑n
j=1 πjipj(Π))

h
1{{α(1)

i <p̄i}∩{α
(2)
i >p̄i}}

+
xi +

∑n
j=1 πjipj(Π + h∆) + h

∑n
j=1 δjipj(Π + h∆)− p̄i

h
1{{α(1)

i >p̄i}∩{α
(2)
i <p̄i}}

+

∑n
j=1 πji

(
pj(Π + h∆)− pj(Π)

)
+ h

∑n
j=1 δjipj(Π + h∆)

h
1{{α(1)

i <p̄i}∩{α
(2)
i <p̄i}}

)

=

( n∑
j=1

πjiD∆p(Π)j +

n∑
j=1

δjipj(Π)

)
1{α(1)

i <p̄i}

= di

n∑
j=1

πjiD∆p(Π)j + di

n∑
j=1

δjipj(Π) =: Ψi

(
D∆p(Π)

)
for some function Ψ : Rn → Rn.

Similarly, we get

D∆p(Π)
i

= di

n∑
j=1

πjiD∆p(Π)
j

+ di

n∑
j=1

δjipj(Π) = Ψi

(
D∆p(Π)

)
.

Hence, both D∆p(Π) and D∆p(Π) are fixed points of the same mapping Ψ. Assuming that this
fixed point problem has a unique solution it follows

D∆p(Π)i = D∆p(Π)
i
,

for all i ∈ N . Therefore, under this assumption, D∆p(Π) is well defined and it is the solution to
the fixed point equation

D∆p(Π) = Ψ
(
D∆p(Π)

)
= diag(d)Π>D∆p(Π) + diag(d)∆>p(Π).

Next, we proceed to show that
(
I − diag(d)Π>

)
is invertible, which establishes uniqueness of the

fixed point and the directional derivative (5.1.3) to conclude the proof.

First, assume that diag(d)Π> is irreducible, i.e., the graph with adjacency matrix diag(d)Π> has
directed paths in both directions between any two vertices i 6= j. Then by the Perron–Frobenius
Theorem (see, e.g., (Gentle 2007, Section 8.7.2)), diag(d)Π> has an eigenvector v > 0 corresponding
to eigenvalue ρ(diag(d)Π>), where ρ(·) is the spectral radius of a matrix. As eigenvectors are only
unique up to a multiplicative constant, we may assume ‖v‖1 = 1. Under the assumption of a
regular system, at least one bank must be solvent, i.e., there exists some i such that diag(d)ii = 0.
This implies that there exists a column such that the column sum of diag(d)Π> is strictly less than
1. In fact, any insolvent institution j with obligations to bank i will have column sum of diag(d)Π>
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strictly less than 1. If all banks are solvent, diag(d) is the zero matrix and the result is trivial.
Thus, there is some matrix M ≥ 0, M 6= 0 so that each column sum of diag(d)Π> +M is 1, i.e.

1>
(
diag(d)Π> +M

)
= 1>.

Note that the column sums of diag(d)Π> are at most 1 since each row sum of Π is 1. There-
fore the spectral radius of diag(d)Π> must be less than or equal to 1. Moreover, we must have
ρ(diag(d)Π>) < 1. Otherwise, ρ(diag(d)Π>) = 1, which along with the scaling of the eigenvector
so that ‖v‖1 = 1 implies

1 = 1>v = 1>
(
diag(d)Π> +M

)
v = 1>(v +Mv) = 1 + 1>Mv > 1,

as Π>v = 1v by the definition of eigenvalues. Therefore, we can conclude that, in the case diag(d)Π>

is irreducible, ρ(diag(d)Π>) < 1.
Now suppose that diag(d)Π> is reducible, i.e., diag(d)Π> is similar to a block upper triangular

matrix D, with irreducible diagonal blocks Di, i = 1, . . . ,m for some m < n. Under the assumption
of a regular system, each Di has at least one column whose sum is strictly less than 1. As in the
preceding case, this implies that ρ(Di) < 1 for each i and therefore

ρ(diag(d)Π>) = ρ(D) < 1.

Since the maximal eigenvalue of diag(d)Π> is strictly less than 1, 0 cannot be an eigenvalue of
I − diag(d)Π>. This suffices to show that I − diag(d)Π> is invertible.

Remark 5.1.10. If one assumes that p is differentiable with respect to the relative liabilities Π, the
result of Theorem 5.1.9 can be obtained directly from implicit differentiation of the representation

p(Π) = (I − diag(d))p̄+ diag(d)[x+ Π>p(Π)].

The term (I − diag(d)Π>)−1 also appears in Chen et al. (2016), which the authors call the
“network multiplier.” This multiplier appears in the dual formulation of the linear program charac-
terizing the Eisenberg–Noe clearing vector, where the authors introduce it to study the sensitivities
of the clearing vector with respect to the capital (of defaulting banks) and the total liabilities (of
non-defaulting banks). The computation of the directional derivative above can be viewed as a
generalisation of this result to arbitrary perturbations. The interpretation remains the same in our
case: the “network multiplier” describes how an estimation error propagates through the network.

5.1.3 A Taylor series for the Eisenberg–Noe clearing payments

In the same manner, we can define higher order directional derivatives.

Definition 5.1.11. For k ≥ 1, we define the kth order directional derivative of the clearing vector
with respect to a perturbation matrix ∆ as

D(k)
∆ p(Π) := lim

h→0

D(k−1)
∆ p(Π + h∆)−D(k−1)

∆ p(Π)

h
, (5.1.4)

when the limit exists, and

D(0)
∆ p(Π) = p(Π).
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Remarkably, as Theorem 5.1.12 shows, all higher order derivatives also have an explicit formula,
which allows us to obtain an exact Taylor series for the clearing vector. We impose an additional
assumption on allowable perturbations h∆ so that the matrix diag(d) (as defined in Theorem 5.1.9)
as a function of Π + h∆ is fixed with respect to h, i.e., we require h sufficiently small so that the
same subset of banks is in default when the liability matrix is Π + h∆ as when the liability matrix
is Π. Let

h
∗∗

:= sup

{
h ≤ h∗

∣∣∣∣ xi +
∑n

j=1 πjipj(Π) < p̄i
⇔ xi +

∑n
j=1(πji + hδji)pj(Π + h∆) < p̄i ∀i ∈ N

}
,

h∗∗ := inf

{
h ≥ −h∗

∣∣∣∣ xi +
∑n

j=1 πjipj(Π) < p̄i
⇔ xi +

∑n
j=1(πji + hδji)pj(Π + h∆) < p̄i ∀i ∈ N

}
,

h∗∗ := min{−h∗∗, h∗∗}. (5.1.5)

We necessarily have h∗∗ > 0 because we exclude the measure-zero set {x ∈ Rn+ | ∃i ∈ N s.t. xi +∑n
j=1 πjipj(Π) = p̄i} in which a bank is exactly at the brink of default.

Theorem 5.1.12. Let (Π, x, p̄) be a regular financial system. Then for ∆ ∈ ∆n(Π), and for all
k ≥ 1:

D(k)
∆ p(Π) = k

(
I − diag(d)Π>

)−1
diag(d)∆>D(k−1)

∆ p(Π) (5.1.6)

= k!
((
I − diag(d)Π>

)−1
diag(d)∆>

)k
p(Π),

where D(0)
∆ p(Π) = p(Π). Moreover, for h ∈ (−h∗∗, h∗∗), the Taylor series

p(Π + h∆) =

∞∑
k=0

hk

k!
D(k)

∆ p(Π) (5.1.7)

converges and has the following representation

p(Π + h∆) =
(
I − h

(
I − diag(d)Π>

)−1
diag(d)∆>

)−1
p(Π) (5.1.8)

outside of the measure-zero set {x ∈ Rn+ | ∃i ∈ N s.t. xi +
∑n

j=1 πjipj(Π) = p̄i}.

Proof. We prove the result by induction. Theorem 5.1.9 shows the result for k = 1. We now assume
that equation (5.1.6) holds for k and we proceed to show that it holds for k + 1. As in Theorem
5.1.9, we show the existence of (5.1.4) by computing the two limits:

D(k+1)
∆ p(Π)i = lim sup

h→0

D(k)
∆ p(Π + h∆)i −D(k)

∆ p(Π)i
h

,

D(k+1)
∆ p(Π)

i
= lim inf

h→0

D(k)
∆ p(Π + h∆)i −D(k)

∆ p(Π)i
h

.

The first order Taylor approximation for matrix inverses gives by the differentiation rules for the
matrix inverse (cf. (Gentle 2007, p. 152)) for X,Y ∈ Rn×n and h small enough: (X + hY )−1 ≈
X−1 − hX−1Y X−1. Applying this fact with X = I − diag(d)ΠT and Y = −diag(d)∆T , we have(
I−diag(d)(Π+h∆)>

)−1 ≈
(
I−diag(d)Π>

)−1
+h
(
I−diag(d)Π>

)−1
diag(d)∆>

(
I−diag(d)Π>

)−1
.
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Additionally, we note that the kth order derivative, similar to all lower order derivatives, is con-
tinuous with respect to the relative liabilities matrix Π since (by assumption of the induction)

D(k)
∆ p(Π) = k!

((
I − diag(d)Π>

)−1
diag(d)∆>

)k
p(Π), where p(Π) and

(
I − diag(d)Π>

)−1
are both

continuous with respect to Π (see Proposition 5.1.4 and the continuity of the matrix inverse).
Consider now the upper limit

D(k+1)
∆ p(Π) = lim sup

h→0

D(k)
∆ p(Π + h∆)−D(k)

∆ p(Π)

h

= lim sup
h→0

k

h

((
I − diag(d)(Π + h∆)>

)−1
diag(d)∆>D(k−1)

∆ p(Π + h∆)

−
(
I − diag(d)Π>

)−1
diag(d)∆>D(k−1)

∆ p(Π)
)

= lim sup
h→0

k
(
I − diag(d)Π>

)−1
diag(d)∆>

D(k−1)
∆ p(Π + h∆)−D(k−1)

∆ p(Π)

h

+ lim sup
h→0

k h

h

(
I − diag(d)Π>

)−1
diag(d)∆>

(
I − diag(d)Π>

)−1
diag(d)∆>D(k−1)

∆ p(Π + h∆)

= k
(
I − diag(d)Π>

)−1
diag(d)∆>D(k)

∆ p(Π)

+ k
(
I − diag(d)Π>

)−1
diag(d)∆>

(
I − diag(d)Π>

)−1
diag(d)∆>D(k−1)

∆ p(Π)

= k
(
I − diag(d)Π>

)−1
diag(d)∆>D(k)

∆ p(Π) +
(
I − diag(d)Π>

)−1
diag(d)∆>D(k)

∆ p(Π)

= (k + 1)
(
I − diag(d)Π>

)−1
diag(d)∆>D(k)

∆ p(Π).

Similarly, we obtain D(k+1)
∆ p(Π) = (k + 1)

(
I − diag(d)Π>

)−1
diag(d)∆>D(k)

∆ p(Π). The existence of

the limit and the result (5.1.6) follow for all k ≥ 1.
With the above results on all kth order directional derivatives, we now consider the full Taylor

expansion. First, by the definition of h∗∗ given in (5.1.5), diag(d) is fixed for h ∈ (−h∗∗, h∗∗). By
the definition of the clearing payments p (given in (5.1.2)) and defaulting firms diag(d) (defined in
Theorem 5.1.9), along with the fact that I − diag(d)(Π + h∆)> is invertible (as shown in the proof
of Theorem 5.1.9 since (Π +h∆, x, p̄) remains a regular system by h ∈ (−h∗∗, h∗∗) ⊆ (−h∗, h∗)), we
have

p(Π + h∆) = diag(d)
(
x+ (Π + h∆)>p(Π + h∆)

)
+
(
I − diag(d)

)
p̄

=
(
I − diag(d)(Π + h∆)>

)−1
(

diag(d)x+
(
I − diag(d)

)
p̄
)
.

(5.1.9)

Similarly, we find that

p(Π) =
(
I − diag(d)Π>

)−1
(

diag(d)x+
(
I − diag(d)

)
p̄
)
. (5.1.10)

By combining (5.1.9) and (5.1.10), we immediately find

p(Π + h∆) =
(
I − diag(d)(Π + h∆)>

)−1(
I − diag(d)Π>

)
p(Π).

Additionally, we can show that(
I − diag(d)(Π + h∆)>

)−1(
I − diag(d)Π>

)
=
(
I − h

(
I − diag(d)Π>

)−1
diag(d)∆>

)−1
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directly by(
I − diag(d)(Π + h∆)>

)−1(
I − diag(d)Π>

)(
I − h

(
I − diag(d)Π>

)−1
diag(d)∆>

)
=
(
I − diag(d)(Π + h∆)>

)−1(
I − diag(d)Π> − hdiag(d)∆>

)
=
(
I − diag(d)(Π + h∆)>

)−1(
I − diag(d)(Π + h∆)>

)
= I.

Therefore, for any h ∈ (−h∗∗, h∗∗), we find

p(Π + h∆) =
(
I − h

(
I − diag(d)Π>

)−1
diag(d)∆>

)−1
p(Π),

i.e., (5.1.8).

Now let us consider the perturbations of size h within the neighborhood

H :=

h ∈ R

∣∣∣∣∣ |h| < min

{
h∗∗,

1

ρ
((
I − diag(d)Π>

)−1
diag(d)∆>

)}
 .

We will employ the following property of matrix inverses (see (Meyer 2000, p. 126)): If X,Y ∈ Rn×n
so that X−1 exists and limk→∞(X−1Y )k = 0, then

(X + Y )−1 =
∞∑
k=0

(
−X−1Y

)k
X−1.

We take X = I − diag(d)Π> and Y = −hdiag(d)∆>. Since ρ
(
h
(
I − diag(d)Π>

)−1
diag(d)∆>

)
=

|h|ρ
((
I − diag(d)Π>

)−1
diag(d)∆>

)
< 1 by the assumption that |h| < 1

ρ
((
I−diag(d)Π>

)−1
diag(d)∆>

) ,

we have

lim
k→∞

[
h
(
I − diag(d)Π>

)−1
diag(d)∆>

]k
= 0,

using a property of the spectral radius (see (Meyer 2000, p. 617)). Thus, by combining this result
with (5.1.9), we have

p(Π + h∆) =
(
I − diag(d)(Π + h∆)>

)−1
(

diag(d)x+
(
I − diag(d)

)
p̄
)

=
∞∑
k=0

(
h
(
I − diag(d)Π>

)−1
diag(d)∆>

)k(
I − diag(d)Π>

)−1
(

diag(d)x+
(
I − diag(d)

)
p̄
)

=
∞∑
k=0

(
h
(
I − diag(d)Π>

)−1
diag(d)∆>

)k
p(Π)

=
∞∑
k=0

hk

k!
D(k)

∆ p(Π).

The penultimate equality above follows directly from (5.1.10). The last equality follows directly
from the definition of the kth order directional derivatives proven above. Thus, we have shown the
full Taylor expansion is exact on H ⊆ (−h∗∗, h∗∗).
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Finally, since we have already shown that (5.1.8) is exact for any h ∈ (−h∗∗, h∗∗) and(
−h
(
I − diag(d)Π>

)−1
diag(d)∆>

)
is singular for at least one of the elements h ∈

{
− 1
ρ((I−diag(d)Π>)−1diag(d)∆>)

, 1
ρ((I−diag(d)Π>)−1diag(d)∆>)

}
by construction, it must follow that h∗∗ ≤ 1

ρ((I−diag(d)Π>)−1diag(d)∆>)
. That is, H = (−h∗∗, h∗∗).

Comparing the directional derivative (5.1.3) to the full Taylor series (5.1.7) allows us to make
the interpretation of the “network multiplier” more precise: the network multiplier captures the
first order effect of the error propagation in the final “round” of the fictitious default algorithm.
The kth order effect of the error propagation is captured by the network multiplier raised to the kth

power. Finally, the Taylor series of the fixed point is the infinite series of these kth order network
multipliers; as this is of a similar form it can be interpreted as the multiplier of the network
multiplier.

Remark 5.1.13. We can extend the Taylor series expansion results to the more general space of
perturbation matrices ∆

n
(Π) rather than ∆n(Π). Over such a domain the Taylor series (5.1.8) is

only guaranteed to converge for

h ∈
[
0,min

{
h
∗∗
,

1

ρ
(
(I − diag(d)Π>)−1diag(d)∆>

)}),
as negative perturbations are not feasible.

Figure 5.2: Loglog plot of the approximation error

||p(Π) − p(Π + h∆)||2 against the size of the perturbation h for a random perturbation of the network
introduced in Example 2.2.
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5.2 Perturbation errors

In this section we study in detail estimation errors in an Eisenberg–Noe framework, relying on the
directional derivatives discussed in the previous section. Specifically we calculate both maximal
errors as well as the error distribution assuming a specific distribution of the mis-estimation of the
interbank liabilities, notably uniform and Gaussian. We do this first in the original Eisenberg–
Noe model, considering the Euclidean norm of the clearing vector as objective. Then we turn to
an enhanced model that includes an additional node representing society and study the effect of
estimation errors on the payout to society.

5.2.1 An orthonormal basis for perturbation matrices

We construct here an orthonormal basis for the matrices in ∆n(Π). To fix ideas, consider the case
n = 4, where the general form of a matrix ∆ ∈ ∆4(ΠC) for a fully connected network ΠC can be
written as

∆4(ΠC) =

diag(p̄)−1


0 z1 z2 −z1 − z2

z3 0 z4 −z3 − z4

z5 −
∑5

k=1 zk 0
∑4

k=1 zk
−z3 − z5

∑5
k=2 zk −z2 − z4 0


∣∣∣∣∣∣∣∣ z ∈ R5

 ,

from which it is clear that there are 5 degrees of freedom. It is easy to see that in general one has
d = n2−3n+ 1 degrees of freedom. In the case n = 4, two such basis elements Ê1 and Ê2 are given
by

Ê1 =


0 1

p̄1
0 −1

p̄1

0 0 0 0
0 −1

p̄3
0 1

p̄3

0 0 0 0

 and Ê2 =


0 0 1

p̄1

−1
p̄1

0 0 0 0
0 −1

p̄3
0 1

p̄3

0 1
p̄4

−1
p̄4

0

 .

In general we note that ∆n(Π) is a closed, convex polyhedral set; we will take advantage of this
fact in order to generate a general method for constructing basis matrices for ∆n(Π), as follows:

1. Define

~∆
n
(Π) :=

{
δ ∈ Rn

2

∣∣∣∣ δi+n(i−1) = 0,
n∑
j=1

δi+n(j−1) = 0,

n∑
j=1

p̄jδn(i−1)+j = 0, 1{πij=0}δi+n(j−1) = 0 ∀i, j
}

to be a vectorised version of ∆n(Π).

2. Construct a matrix A(Π) ∈ R(n2+2n)×n2
so that ~∆

n
(Π) = {δ ∈ Rn2 | A(Π)δ = 0}. Note that

the total degrees of freedom for ~∆
n
(Π) (and therefore also for ∆n(Π)) is given by the rank

of the matrix A(Π). We include enough rows in the matrix A(Π) in order to ensure that the
n row sums and n (weighted) column sums are 0 and that components of δ are equal to zero
based on πij = 0.
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3. An orthonormal basis of ~∆
n
(Π) can be found by generating the orthonormal basis {e1, ..., ed}

of the null space of A(Π).

4. Finally our basis matrices {E1, ..., Ed} can be generated by reshaping the basis of the null
space of A(Π) by setting Ek;i,j := ek;i+n(j−1) for any k = 1, ..., d and i, j ∈ N .

Definition 5.2.1. The set

~En(Π) := {E1, . . . , Ed}

is an orthonormal basis of perturbation matrices for the relative liability matrix Π. Additionally,
the vector

D ~E(Π)p(Π) :=
(
DE1p(Π), . . . ,DEdp(Π)

)
∈ Rn×d

is a vector of basis directional derivatives for the relative liability matrix Π.

We define two matrices to be orthogonal when their vectorised forms are orthogonal in Rn2
, and note

that, by construction, any matrix in the basis of perturbation matrices ~En(Π) has unit Frobenius
norm.

Proposition 5.2.2. Let Π ∈ Πn. Then the set of eigenvalues of
(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π) is

the same for any choice of orthonormal basis of perturbation matrices ~E(Π). Additionally, if
z
(
λ, ~E(Π)

)
∈ Rd is the eigenvector corresponding to eigenvalue λ and basis ~E(Π), then

∑d
k=1 zk

(
λ, ~E(Π)

)
Ek

is independent of the choice of basis.

Proof. Let E be the vectorized version of ~E(Π) and let F 6= E be a different orthonormal ba-
sis. By linearity of the directional derivative (see Theorem 5.1.9) we can immediately state that(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π) = E>CE for some matrix C ∈ Rn2×n2
. Let (λ, v) be an eigenvalue and

eigenvector pair for the operator E>CE and let z ∈ Rd such that Ev = Fz. We will show that
(λ, z) is an eigenvalue and eigenvector pair for F>CF and thus the proof is complete:

λz = λF>Fz = λF>Ev = F>E(λv) = F>EE>CEv = F>CFz.

The last equality follows from the fact that EE> = FF> is the unique projection matrix onto
~∆
n
(Π).

Proposition 5.2.3. Let Π ∈ Πn. Then
∥∥(D ~E(Π)p(Π)

)>
c
∥∥

2
is independent of the choice of or-

thonormal basis of perturbation matrices ~E(Π) and for any fixed vector c ∈ Rn.

Proof. Let E and F be two distinct basis matrices for the vectorized perturbation space ~Pn(Π) as
in the proof of Proposition 5.2.2. By linearity of the directional derivative (see Theorem 5.1.9) we

can immediately state that
(
D ~E(Π)p(Π)

)>
c = E>c̃ for some vector c̃ ∈ Rn2

. Immediately we can

see that ‖E>c̃‖2 = ‖F>c̃‖2 since EE> = FF> is the unique projection matrix onto ~∆
n
(Π).
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5.2.2 Deviations of the clearing vector

We concentrate first on the L2-deviation of the actual clearing vector from the estimated one.
Largest shift of the clearing vector
We return to the first order directional derivative to quantify the largest shift of the clearing

vector for estimation errors in the relative liability matrix given by perturbations in ∆n(Π). Let
∆ ∈ ∆n(Π) and assume that for a given h ∈ R : Π + h∆ ∈ Πn. Then, the worst case estimation
error under ∆n(Π) is given as

max
∆∈∆n(Π)

‖p(Π + h∆)− p(Π)‖22.

In order to remove the dependence on h and the magnitude of ∆, we consider instead the bounded
set of directions ∆n

F (Π) and infintesimal perturbations,

max
∆∈∆n

F (Π)
lim
h→0

‖p(Π + h∆)− p(Π)‖22
h2

= max
∆∈∆n

F (Π)
‖D∆p(Π)‖22.

In this section, we call ‖D∆p(Π)‖22 the estimation error and max∆∈∆n
F (Π) ‖D∆p(Π)‖22 the maxi-

mal deviation in the clearing vector under ∆n
F (Π). Because ∆ appears via a linear term in (5.1.3),

this allows us to use a basis of perturbation matrices in an elegant way to quantify the deviation
of the Eisenberg–Noe clearing vector under the space of perturbations ∆n

F (Π).
Throughout the following results we will take advantage of an orthonormal basis ~E(Π) =

(E1, . . . , Ed) of the space ∆n(Π). More details of this space are given in Section 5.2.1.

Proposition 5.2.4. Let (Π, x, p̄) be a regular financial system. The worst case first order estimation
error under ∆n

F (Π) is given by

max
∆∈∆n

F (Π)
‖D∆p(Π)‖22 =

(
‖D ~E(Π)p(Π)‖o2

)2
(5.2.1)

for any choice of basis ~E(Π) where ‖ · ‖o2 denotes the spectral norm of a matrix. Furthermore, the
largest shift of the clearing vector is achieved by

∆∗(Π) := ±
d∑

k=1

zkEk,

where zk are the components of the (normalized) eigenvector corresponding to the maximum eigen-

value of
(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π).

Proof. Note first that any perturbation matrix ∆ ∈∆n(Π) can be written as a linear combination
of basic perturbation matrices, i.e., ∆ =

∑d
k=1 zkEk. Thus,

‖D∆p(Π)‖22 =

∥∥∥∥ d∑
k=1

zkDEkp(Π)

∥∥∥∥2

2

= z>
(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π)z.

Immediately this implies, denoting the largest eigenvalue of a matrix A by λmax(A),

max
∆∈∆n

F (Π)
‖D∆p(Π)‖22 = max

‖z‖2≤1
z>
(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π)z

= λmax

((
D ~E(Π)p(Π)

)>D ~E(Π)p(Π)
)

=
(
‖D ~E(Π)p(Π)‖o2

)2
.

76



Finally, the independence of the solution from the choice of basis ~E(Π) is a direct result of Propo-
sition 5.2.2.

Hence, if the true liability matrix were perturbed in the direction of ∆∗(Π), this would generate
the largest first order estimation error in the clearing vector. By error, we mean the Euclidean
distance between the “true” clearing vector in the standard Eisenberg–Noe framework, and the
clearing vector under the perturbed liabilities matrix. This is in general not equivalent to the
direction that would change the default set most rapidly. Moreover, if regulatory expert judgement
allowed to estimate reasonable absolute perturbations, our infinitesimal methodology could be used
iteratively in a greedy approach until such an absolute estimation error was reached.

We can use this result on the maximum deviations of the clearing vector under ∆n
F (Π) in order

to provide bounds of the worst case perturbation error without predetermining the existence or
non-existence of links.

Corollary 5.2.5. Let (Π, x, p̄) be a regular financial system. The worst case first order estimation
error under all perturbations is bounded by(

‖D ~E(Π)p(Π)‖o2
)2 ≤ max

∆∈∆n
F (Π)
‖D∆p(Π)‖22 ≤

(
‖D ~E(ΠC)p(Π)‖o2

)2
(5.2.2)

for any choice of orthonormal bases ~E(Π) as above and ~E(ΠC) of any completely connected network
ΠC . In the case that Π itself is a completely connected network then this upper bound is attained.

Proof. For all Π and all completely connected networks ΠC , we have ∆n
F (Π) ⊆∆

n
F (Π) ⊆∆n

F (ΠC).
Hence, using (5.1.3), one obtains

max
∆∈∆n

F (Π)
‖D∆p(Π)‖22 ≤ max

∆∈∆n
F (ΠC)

‖D∆p(Π)‖22

= max
‖z‖2≤1

∥∥∥∥(I − diag(d)Π>)−1diag(d)

[ d∑
k=1

zkEk

]>
p(Π)

∥∥∥∥2

2

=
(
‖D ~E(ΠC)p(Π)‖o2

)2
,

max
∆∈∆n

F (Π)
‖D∆p(Π)‖22 ≥ max

∆∈∆n
F (Π)
‖D∆p(Π)‖22

=
(
‖D ~E(Π)p(Π)‖o2

)2
,

where ~E(ΠC) := (E1, . . . , Ed) is an orthonormal basis of the space ∆n(ΠC). As in Proposition 5.2.4,
the independence of the solution from the choice of basis ~E(ΠC) is a direct result of Proposition
5.2.2.

Remark 5.2.6. Our empirical analysis suggests that this bound is quite sharp (see Figure 5.16(b)).

Example 5.2.7. We return to Example 5.1.5 and consider the same toy network consisting of four
banks in which each bank’s nominal liabilities are shown in Figure 5.1(a). The largest shift of the
clearing vector (5.2.1) under ∆4

F (Π), as described in Proposition 5.2.4, is given by the matrix

∆∗(Π) =


0 0.3230 −0.1615 −0.1615

−0.0381 0 0.0190 0.0190
0.0571 −0.4845 0 0.4274
0.0571 −0.4845 0.4274 0

 .
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As this network is complete, this is furthermore a solution to both optimization problems (5.2.1) and
(5.2.2) for the worst case perturbation. Additionally, the upper bound in Corollary 5.2.5 is attained.
This perturbation is depicted in Figure 5.4. As before, banks who are in default are colored red.
The edges are labeled with the perturbation of the respective link between banks that achieves this
greatest estimation error. The edge linking one node to another is red if the greatest estimation
error under the set of perturbations ∆n

F (Π) occurs when we have overestimated the value of this link
and green if we have underestimated it. Note that due to the symmetry of the optimal estimation
error problem, −∆∗(Π) is also optimal and thus the interpretation of red and green links in Figure
5.4 can be reversed. Indeed, when studying the deviation of the clearing vector, the solutions ∆∗(Π)
and −∆∗(Π) are equivalent. When analyzing the shortfall of payments to society in Section 5.2.3,
this will be no longer the case. Edge widths are proportional to the absolute value of the entries
in ∆∗(Π). Though our Taylor expansion results (Theorem 5.1.12) are provided for h ∈ (−h∗∗, h∗∗)
only, the strict inequality is only necessary if h∗∗ denotes the perturbation size at which a new bank
defaults, not when a connection is removed. So when h = h∗∗ ≈ 0.688, we obtain

L∗ =


0 9 0 0

2.76 0 3.12 3.12
1.12 0 0 1.88
1.12 0 1.88 0

 ,

which has the clearing vector
p̂ ≈ (4.11, 6.11, 3, 3)>.

One can immediately verify that L∗ has indeed the same total interbank assets and liabilities for
each bank, but they are distributed in a different manner. Hence, in this example, there can be
a deviation of up to 15% in the relative norm of the clearing vector for a network that is still
consistent with the total assets and total liabilities.

Figure 5.4: Worst case network perturbation under ∆n
F (Π) defined in Example 5.2.7.

Remark 5.2.8. It may be desirable to normalize the first order estimation errors by, e.g., the
clearing payments or total nominal liabilities, rather than considering the absolute error. In a gen-
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eral form, let A ∈ Rn×n denote a normalization matrix (e.g., A = diag(p(Π))−1 or A = diag(p̄)−1).
Then we can extend the results of Proposition 5.2.4 and Corollary 5.2.5 by

max
∆∈∆n

F (Π)
‖AD∆p(Π)‖22 =

(
‖AD ~E(Π)p(Π)‖o2

)2
max

∆∈∆n
F (Π)
‖AD∆p(Π)‖22 ≤

(
‖AD ~E(ΠC)p(Π)‖o2

)2
for any completely connected network ΠC . Similarly, the distribution results presented below can be
generalized by considering AD ~E(Π)p(Π) in place of D ~E(Π)p(Π).

Clearing vector deviation for uniformly distributed estimation errors
Then, we will extend the above analysis to the case when estimation errors are uniformly

distributed. This is done by considering the linear coefficients z for the basis of perturbation
matrices to be chosen uniformly on the d-dimensional Euclidean unit ball. Then ∆ =

∑d
k=1 zkEk

is a perturbation matrix.

Proposition 5.2.9. Let (Π, x, p̄) be a regular financial system. The distribution of the estimation
error when the perturbations are uniformly distributed in the L2-unit ball is given by

P
(
‖D∆p(Π)‖22 ≤ α

)
=

vol
({
w ∈ Rd

∣∣w>w ≤ 1, w>Λw ≤ α
})

Γ
(
d
2 + 1

)
πd/2

, α ≥ 0,

where Λ is the diagonal matrix with elements given by the eigenvalues of
(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π)

for any choice of orthonormal basis ~E(Π), vol denotes the volume operator, and Γ is the gamma
function.

Proof. Let z be uniform on the d-dimensional unit ball. Then ∆ =
∑d

k=1 zkEk is a perturbation
matrix. One obtains

P
(
‖D∆p(Π)‖22 ≤ α

)
=P
((
D∆p(Π)

)>D∆p(Π) ≤ α
)

=P
(
z>
(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π)z ≤ α
)
.

The matrix
(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π) is diagonalizable because it is real and symmetric. Therefore,
we can write (

D ~E(Π)p(Π)
)>D ~E(Π)p(Π) = V >ΛV,

where Λ is a diagonal matrix of the eigenvalues and V is orthonormal. Combining the above
equations, we have

P
(
z>
(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π)z ≤ α
)

=P
(
z>V >ΛV z ≤ α

)
.

Then since z is uniform on the unit ball and V V > = I, w = V z is also uniform on the unit ball
and thus we have

P
(
z>V >ΛV z ≤ α

)
=P
(
w>Λw ≤ α

)
=

vol
({
w
∣∣ w>w ≤ 1, w>Λw ≤ α

})
vol
({
w
∣∣ w>w ≤ 1

})
=

vol
({
w
∣∣ w>w ≤ 1, w>Λw ≤ α

})
Γ
(
d
2 + 1

)
πd/2

.
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As in Proposition 5.2.4, the independence of the distribution from the choice of basis ~E(ΠC) is a
direct result of Proposition 5.2.2.

Remark 5.2.10. In the case where α ≤ mink λk or α ≥ maxk λk then P
(
‖D∆p(Π)‖22 ≤ α

)
can

be given explicitly by αd
∏d
k=1

1√
λk

and 1 respectively where {λk | k = 1, . . . , d} is the collection of

eigenvalues of
(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π). In the case that mink λk < α < maxk λk, the probability

P
(
‖D∆p(Π)‖22 ≤ α

)
can be given via the volume formula provided in Proposition 5.2.9 as d nested

integrals,

Γ
(
d
2 + 1

)
πd/2

∫ 1

−1

∫ √1−x2
1

−
√

1−x2
1

· · ·
∫ √

1−
∑m−1
k=1 x2

k

−
√

1−
∑m−1
k=1 x2

k

∫ √
α−

∑m
k=1

λ[k]x
2
k

λ[m+1]

−

√
α−

∑m
k=1

λ[k]x
2
k

λ[m+1]

· · ·
∫ √

α−
∑d−1
k=1

λ[k]x
2
k

λ[d]

−

√
α−

∑d−1
k=1

λ[k]x
2
k

λ[d]

dxd · · · dx1,

where λ[m] ≤ α ≤ λ[m+1] and λ[m] is a reordering of the eigenvalues such that 0 ≤ λ[1] ≤ λ[2] ≤
· · · ≤ λ[d].

Example 5.2.11. We return again to Example 5.1.5 to consider perturbations ∆ sampled from
the uniform distribution. Figure 5.5 shows the probability density function and the cumulative dis-
tribution function (CDF) estimation for the relative estimation error, ‖D∆p(Π)‖22/‖p(Π)‖22, corre-
sponding to our stylized four-bank network. The probabilities are estimated from 100,000 simulated
uniform perturbations.

Figure 5.5: The Probability density (left) and the CDF (right)

The relative estimation error, ‖D∆p(Π)‖22/‖p(Π)‖22, under uniform perturbations ∆ as described in Example
5.2.11.

Clearing vector deviation for normally distributed estimation errors
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We extend our previous analysis by considering normally distributed perturbations. To do
so, we consider the linear coefficients z for the basis of perturbation matrices to be chosen dis-
tributed according to the standard d-dimensional multivariate standard Gaussian distribution.
Then

∑d
k=1 zkEk is a perturbation matrix ∆. Though our prior results on the deviations of the

clearing payments have been within the unit ball ∆n
F (Π), under a Gaussian distribution the mag-

nitude of the perturbation matrices are no longer bounded by 1 and thus the estimation errors can
surpass the worst case errors determined in Proposition 5.2.4 and Corollary 5.2.5.

Proposition 5.2.12. Let (Π, x, p̄) be a regular financial system. The distribution of estimation
errors where the perturbations are distributed with respect to the standard normal is given by the
moment generating function

M(t) := det
(
I − 2Λt

)−1/2
,

where Λ is the diagonal matrix with elements given by the eigenvalues of
(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π)

for any orthonormal basis ~E(Π).

Proof. Let z be a d-dimensional standard normal Gaussian random variable. Then ∆ =
∑d

k=1 zkEk
is a perturbation matrix. As in Proposition 5.2.9, we can write

z>
(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π)z =z>V >ΛV z,

where Λ is the diagonal matrix of eigenvalues of
(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π) and V is orthonormal.

Since z ∼ N(0, I) and V V > = I, we have w = V z ∼ N(0, V V > = I). Therefore,

z>V >ΛV z =w>Λw = w>Λ1/2Λ1/2w.

Then y = Λ1/2w ∼ N(0,Λ) and so each component yk ∼ N(0, λk) and the yk’s are independent.
Therefore,

w>Λ1/2Λ1/2w =y>y =
d∑

k=1

y2
k.

The distribution of y2
k is Γ(1/2, 2λk), and thus the sum

∑d
k=1 y

2
k has the moment generating function

M(t) =
d∏

k=1

(
1− 2λkt

)−1/2
,

where λk are the eigenvalues of
(
D ~E(Π)p(Π)

)>D ~E(Π)p(Π). As in Proposition 5.2.4, the independence

of the distribution from the choice of basis ~E(ΠC) is a direct result of Proposition 5.2.2.

Remark 5.2.13. A closed form for the density of the distribution found in Proposition 5.2.12 is
given in equation (7) of Mathai (1982).

Example 5.2.14. We return again to Example 5.1.5 to consider perturbations ∆ sampled from
the standard normal distribution. Figure 5.7 shows the density and CDF estimation for the rela-
tive estimation error, ‖D∆p(Π)‖22/‖p(Π)‖22, corresponding to our stylized four-bank network. The
probabilities are estimated from 100,000 simulated Gaussian perturbations.
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Figure 5.7: The estimated probability density (left) and the CDF (right)

The estimation error, ‖D∆p(Π)‖22/‖p(Π)‖22, under standard Gaussian perturbations ∆ as described in Ex-
ample 5.2.14.

5.2.3 Impact to the payout to society

In this section, we assume that in addition to their interbank liabilities, banks also have a liability
to society. Here, society is used as totum pro parte, encompassing all non-financial counterparties,
corporate, individual or governmental. Hence, the set of institutions becomes N0 = {0} ∪ N .
Without loss of generality, we assume that all banks i ∈ N owe money to at least one counterparty
j ∈ N0 within the system. Otherwise, a bank who owes no money can be absorbed by the society
node as it plays the same role within the model structure. The question of interest is then how the
payout to society may be mis-estimated (and in particular overestimated) given estimation errors in
the relative liabilities matrix. This setting has been studied in, e.g., Glasserman and Young (2016)
with the introduction of outside liabilities. We adopt their framework to analyze this question.

The interbank liability matrix L of the previous section is expanded to L0 ∈ R(n+1)×(n+1) given
by

L0 =


0 · · · L1n L10
...

. . .
...

...
Ln1 · · · 0 Ln0

0 · · · 0 0

 =

 L l0

0 · · · 0 0

 ,
where l0 =

(
L10, · · · , Ln0

)>
is the society liability vector. We require that at least one bank has an

obligation to society, i.e., Li0 > 0 for some 1 ≤ i ≤ n. The total liability of bank i is now given by
p̄i =

∑n
j=0 Lij . As stated above, we also require that each bank owes to at least one counterparty

within the system (possibly society), i.e., p̄i > 0 for all i ∈ N . The relative liability matrix Π0 is

transformed accordingly, i.e., πij ∈ [0, 1] and πij =
Lij
p̄i

. An admissible relative liability matrix Π0

thus belongs to the set of all right stochastic matrices with entries in [0, 1], all diagonal entries 0,
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and at least one πi0 > 0:

Πn
0 :=

Π0 ∈ [0, 1](n+1)×(n+1)
∣∣∣ ∀i : πii = 0,

n∑
j=0

πij = 1 and ∃i s.t. πi0 > 0

 .

An admissible interbank relative liability matrix Π thus belongs to the set

Πn
I :=

Π ∈ [0, 1]n×n
∣∣∣ ∀i : πii = 0,

n∑
j=1

πij ≤ 1 and ∃i s.t.
n∑
j=1

πij < 1

 ,

which has the same properties as the original interbank relative liability matrix Πn defined in
(5.1.1), except that row sums are smaller or equal to 1, with at least one strictly smaller than 1.

The following result is implicitly used in the subsequent sections. This provides us with the
ability to, e.g., consider the directional derivative with respect to the payments made by the n
financial firms without considering the societal node (which is equal to 0 by assumption).

Proposition 5.2.15. If (Π0, x, p̄) is a regular network then I − diag(d)Π is invertible.

Proof. This follows immediately from

I − diag(d0)Π>0 =

(
I − diag(d)Π> −diag(d)π0

0> 1

)
,

where π0 =
(
π10, · · · , πn0

)>
and d0 is the vector of default indicators (of length n + 1 to include

the societal node). In particular, since det(I − diag(d0)Π>0 ) 6= 0 (as shown in the proof of Theorem
5.1.9), we can conclude that det

(
I − diag(d)Π>

)
6= 0.

Example 5.2.16. We include now a society node into our example from Section 5.1. The nominal
interbank liabilities and liabilities from each bank to society are shown in Figure 5.9(a). Note that
at least one bank has an obligation to society and the society does not owe to any bank. As above,
the banks’ external assets are given by the vector x = (0, 2, 2, 2)>. The clearing payments, or the
amount of its obligations that each bank is able to repay, is given in Figure 5.9(b). Banks who are
in default are colored red, as are the liabilities that are not repaid in full.

Largest reduction in the payout to society
Next, we use the directional derivative in order to quantify how estimation errors, under ∆n

F (Π)
in the interbank relative liability matrix, could lead to an overestimation of the payout to society.
As it turns out, this problem also has an elegant solution using the basis of perturbation matrices
discussed in Section 5.2.1. We assume that (Π0, x, p̄) is a regular financial system and additionally
that both the relative liabilities to society π0 = (π10, ..., πn0)> and the total liabilities p̄ are exactly
known.

Definition 5.2.17. Let (Π0, x, p̄) be a regular financial system. The payout to society is defined as
the quantity π>0 p(Π) where p(Π) is the clearing vector of the n firms.

Herein we consider the relative liabilities matrix Π0 to be an estimation of the true relative liabilities.
We thus consider the perturbations of the estimated clearing vectors to determine the maximum
amount that the payout to society may be overestimated. To study the optimisation problem of
minimizing the payout to society, we assume that at least one bank, but not all banks, default.
The following proposition shows that this assumption excludes only trivial cases.
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(a) Nominal interbank liabilities.
(b) Clearing interbank payments.

Figure 5.9: Initial network defined in Example 5.2.16.

Proposition 5.2.18. Let (Π0, x, p̄) be a regular system with the interbank relative liability matrix
Π ∈ Πn

I and ∆ ∈ ∆n(Π). If all banks default, or if no bank defaults, then the payout to society
remains unchanged for an arbitrary admissible perturbation ∆.

Proof. Let ∆ be an arbitrary perturbation matrix. We show that in both cases π>0 D∆p(Π) = 0.

1. Assume that no bank defaults. Then diag(d) = 0, and the result holds as D∆p(Π) = 0.

2. Assume all banks default. Then diag(d) = I. Hence, π>0 D∆p(Π) = π>0
(
I −Π>

)−1
∆>p(Π).

Note that π>0
(
I −Π>

)−1
= 1>, because by definition π>0 = 1>

(
I −Π>

)
. Using this and the

definitions of D∆p(Π) and ∆, it follows π>0 D∆p(Π) =
∑n

i=1

∑n
j=1 δjipj(Π) = 0.

Let ∆ ∈∆n(Π) and assume that for a given h ∈ R : Π + h∆ ∈ Πn
I . Then, the minimum payout to

society is

min
∆∈∆n(Π)

π>0 p(Π + h∆).

In order to remove the dependence on h and the magnitude of ∆, we subtract the constant term
π>0 p(Π) and consider instead

min
∆∈∆n

F (Π)
lim
h→0

π>0
p(Π + h∆)− p(Π)

h
= min

∆∈∆n
F (Π)

π>0 D∆p(Π).

Using the basis of perturbation matrices ~E(Π) of ∆n(Π) (see Section 5.2.1), we can compute the
shortfall to society due to perturbations in the relative liability matrix in ∆n

F (Π).
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Proposition 5.2.19. Let (Π0, x, p̄) be a regular financial system. The largest shortfall in payments
to society due to estimation errors in the liability matrix in ∆n

F (Π) is given by

min
∆∈∆n

F (Π)
π>0 D∆p(Π) = −‖π>0 D ~E(Π)p(Π)‖2.

Furthermore, the largest shortfall to society is achieved by

∆∗0(Π) := −
d∑

k=1

π>0 DEkp(Π)

‖π>0 D ~E(Π)p(Π)‖2
Ek.

Additionally, both the largest shortfall and the perturbation matrix that attains that shortfall are
independent of the chosen basis ~E(Π).

Proof. Since the problem
minπ>0 D ~E(Π)p(Π)z s.t. ‖z‖2 ≤ 1,

has a linear objective, it is equivalent to

minπ>0 D ~E(Π)p(Π)z s.t. z>z = 1.

By the necessary Karush–Kuhn–Tucker conditions, we know that any solution to this problem must
satisfy (

D ~E(Π)p(Π)
)>
π0 + 2µz = 0,

z>z = 1,

for some µ ∈ R. The first condition implies z∗ = −
(D~E(Π)

p(Π))>π0

2µ . Plugging this into the second

implies that µ = ±
‖π>0 D~E(Π)

p(Π)‖2
2 . With two possible solutions we plug these back into the original

objective to find that the minimum is attained at µ =
‖π>0 D~E(Π)

p(Π)‖2
2 for an optimal value of:

π>0 D ~E(Π)p(Π)z∗ = −

(
π>0 D ~E(Π)p(Π)

)(
π>0 D ~E(Π)p(Π)

)>
‖π>0 D ~E(Π)p(Π)‖2

= −‖π>0 D ~E(Π)p(Π)‖2.

Therefore, the solution is

∆∗0(Π) =
d∑

k=1

z∗kEk = −
d∑

k=1

π>0 DEkp(Π)

‖π>0 D ~E(Π)p(Π)‖2
Ek.

By Proposition 5.2.3, this result is independent of the choice of basis matrices.

Corollary 5.2.20. Let (Π0, x, p̄) be a regular financial system. The worst case shortfall to society
is bounded by

−‖π>0 D ~E(ΠC)p(Π)‖2 ≤ min
∆∈∆n

F (Π)
π>0 D∆p(Π) ≤ −‖π>0 D ~E(Π)p(Π)‖2,

where ~E(ΠC) is any orthonormal basis of perturbation matrices of any completely connected network
ΠC . In the case that Π itself is a completely connected network then this upper bound is attained.
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Proof. This follows by the same logic as Corollary 5.2.5 through the inclusion ∆n
F (Π) ⊆∆

n
F (Π) ⊆

∆n
F (ΠC) for any completely connected network ΠC . The independence of this result to the choice

of orthonormal basis ~E(Π) follows as in Proposition 5.2.19.

Example 5.2.21. We continue the discussion from Example 5.2.16: The perturbation resulting
in the greatest shortfall for the society’s payout, as described in Proposition 5.2.19, is given by the
matrix

∆∗0 =


0 0.16 −0.46 0.30

0.11 0 0.16 −0.27
0.06 0.04 0 −0.10
−0.26 −0.34 0.60 0

 .

This perturbation is depicted in Figure 5.10. Each edge is labeled with the perturbation of the
respective link between banks that achieves this greatest reduction in payout to society. As before,
banks who are in default are colored red. The edge linking one node to another is red if the greatest
reduction in payout occurs when we have overestimated the value of this link and green if, in
the worst case under ∆n

F (Π), we have underestimated the value of this link. Edge widths are
proportional to the absolute value of the entries in ∆∗0(Π). In contrast to Example 5.2.7, note that
−∆∗0(Π) is not a solution anymore. As this network is complete, this also equals the worst case
shortfall of −1.4513, which is nearly 32% of the entire estimated payment to society.

Figure 5.10: The perturbation in ∆n
F (Π) which generates the largest shortfall in Example 5.2.21.

Shortfall to society for uniformly distributed estimation errors

In this section we compute the reduction in the payout to society when the perturbations are
uniformly distributed. To do so, we consider the linear coefficients z for the basis of perturbation
matrices to be chosen uniformly from the d-dimensional Euclidean unit ball. Then ∆ =

∑d
k=1 zkEk

is a perturbation matrix.

Proposition 5.2.22. Let (Π0, x, p̄) be a regular financial system. The distribution of changes in
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payments to society where the perturbations are uniformly distributed on the unit ball is given by

P
(
π>0 D∆p(Π) ≤ α

)
=

1

2
+

α∥∥(D ~E(Π)p(Π)
)>
π0

∥∥
2

Γ(1 + d
2)

√
πΓ(1+d

2 )
2F1

(
1

2
,
1− d

2
;
3

2
;

α2∥∥(D ~E(Π)p(Π)
)>
π0

∥∥2

2

)

for α ∈ [−
∥∥(D ~E(Π)p(Π)

)>
π0

∥∥
2
,
∥∥(D ~E(Π)p(Π)

)>
π0

∥∥
2
] and 0 for α ≤ −

∥∥(D ~E(Π)p(Π)
)>
π0

∥∥
2

and 1

for α ≥ ‖
(
D ~E(Π)p(Π)

)>
π0‖2. In the above equation, 2F1 is the standard hypergeometric function.

Furthermore, this distribution holds for any choice of basis matrices ~E(Π).

Proof. Let z be a uniform random variable on the unit ball in Rd centered at the origin. Then
∆ =

∑d
k=1 zkEk is a perturbation matrix. Note that by linearity of the directional derivative, we

have
D∆

(
π>0 p(Π)

)
= π>0 D ~E(Π)p(Π)z,

where D ~E(Π)p(Π) =
(
DE1

(
p(Π)

)
, . . . ,DEd

(
p(Π)

))
. Since z is uniform on the unit ball,

P
(
D∆

(
π>0 p(Π)

)
≤ α

)
= P

(
π>0 D ~E(Π)p(Π)z ≤ α

)
=

vol
({
z ∈ Rd

∣∣ π>0 D ~E(Π)p(Π)z ≤ α, z>z ≤ 1
})

vol({z ∈ Rd | z>z ≤ 1})
(5.2.3)

=
vol
({
z ∈ Rd

∣∣∣ ((D ~E(Π)p(Π)
)>
π0

)>
z ≤ α, z>z ≤ 1

})
vol({z ∈ Rd | z>z ≤ 1})

=

vol

({
z ∈ Rd

∣∣∣∣ ( (D~E(Π)
p(Π))>π0

‖(D~E(Π)
p(Π))>π0‖2

)>
z ≤ α

‖(D~E(Π)
p(Π))>π0‖2

, z>z ≤ 1

})
vol({z ∈ Rd | z>z ≤ 1})

=

vol

({
z ∈ Rd

∣∣∣∣ e>1 z ≤ α
‖(D~E(Π)

p(Π))>π0‖2
, z>z ≤ 1

})
vol({z ∈ Rd | z>z ≤ 1})

(5.2.4)

=


0 if α < −

∥∥(D ~E(Π)p(Π)
)>
π0

∥∥
2

1
2Iθ(

1+d
2 , 1

2) if α ∈
∥∥(D ~E(Π)p(Π)

)>
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∥∥
2
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2 , 1

2) if α ∈
∥∥(D ~E(Π)p(Π)
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2
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=
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2 + α
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) 2F1
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1
2 ,

1−d
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‖(D~E(Π)
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2
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1 if α >
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2

,

where Iθ(a, b) is the regularized incomplete beta function (see, e.g., (DLMF, Chapter 8.17)) and

2F1 is the standard hypergeometric function (see, e.g., (DLMF, Chapter 15)). Equation (5.2.3)
follows from considering the probability by taking the ratio of the volume of the fraction of the unit
ball satisfying the probability event to the full volume of the unit ball. Equation (5.2.4) follows

by symmetry of the unit ball and since
(
D ~E(Π)p(Π)

)>
π0/‖

(
D ~E(Π)p(Π)

)>
π0‖2 has unit norm. The
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penultimate result follows directly from the volume of the spherical cap (see, e.g., (Li 2011, Equation
(2))). The final result follows from properties of the regularized incomplete beta function (see, e.g.,
(DLMF, Chapter 8.17)), i.e.,

Iθ

(
1 + d

2
,
1

2

)
= 1− 2

√
1− θ

Γ(1 + d
2)

√
πΓ(1+d

2 )
2F1

(
1

2
,
1− d

2
;
3

2
; 1− θ

)
,

with θ =

∥∥(D~E(Π)
p(Π)
)>

π0

∥∥2

2
−α2∥∥(D~E(Π)

p(Π)
)>

π0

∥∥2

2

, and noting that the case for α positive and negative can be written

under the same equation using the standard hypergeometric function. The independence of this
result to the choice of orthonormal basis ~E(Π) follows as in Proposition 5.2.19 as the distribution

only depends on the basis ~E(Π) through the norm ‖
(
D ~E(Π)p(Π)

)>
π0‖2.

Figure 5.11: Estimated probability density (left) and CDF (right)

Relative reduction in payout to society,
π>

0 D∆p(Π)

π>
0 p(Π)

, under uniform perturbations ∆ as described in Example

5.2.23.

Example 5.2.23. We return to Example 5.2.16 and consider perturbations ∆ sampled from the
uniform distribution on a unit ball. The left and right panels of Figure 5.11 show the PDF and
the CDF respectively for the relative reduction in society payout under uniformly distributed errors
in our stylized four-bank network. Figure 5.13(a) shows both the largest reduction and increase
in the payout to society as well as various confidence intervals for the change in the payout as a
function of the perturbation size, h. As h∗ and h∗∗ depend on the choice of perturbation matrix ∆,
we present the confidence intervals on an extrapolated interval for h ∈ [0, 1].

Shortfall to society for normally distributed estimation errors

88



We will now consider the same problem as above under the assumptions that the errors follow
a standard normal distribution. As in the previous section, we note that the magnitude of the
perturbations is no longer bounded by 1 in this setting.

Proposition 5.2.24. Let (Π0, x, p̄) be a regular financial system. The distribution of changes to
payments to society where the perturbations follow a multivariate standard normal distribution is
given by

D∆

(
π>0 p(Π)

)
∼ N

(
0,
∥∥(D ~E(Π)p(Π)

)>
π0

∥∥2

2

)
.

Furthermore, this distribution holds for any choice of basis matrices ~E(Π).

Proof. Let z be a d-dimensional standard normal Gaussian random variable. The result follows
immediately by linearity and affine transformations of the multivariate Gaussian distribution. The
independence of this result to the choice of orthonormal basis ~E(Π) follows as in Proposition 5.2.19

as the distribution only depends on the basis ~E(Π) through the norm
∥∥(D ~E(Π)p(Π)

)>
π0

∥∥
2
.

(a) Uniformly distributed perturbations. (b) Normally distributed perturbations.

Figure 5.13: Society payout.

Largest increase and decrease of the payout to society and confidence intervals for the payout as a function
of the size h of perturbations in ∆n

F (Π), respectively ∆n(Π), where perturbations ∆ are sampled uniformly
(left) and from the standard Gaussian distribution (right) for the stylized four-bank system with society as
described in Example 5.2.16.

Example 5.2.25. We return once more to Example 5.2.16 to consider perturbations ∆ sampled
from the standard normal distribution. Figure 5.13(b) shows various confidence intervals for the
relative change in payout to society under normally distributed errors under ∆4(Π), as a function
of the perturbation size, h. As h∗ and h∗∗ depend on the choice of perturbation matrix ∆ we present
the confidence intervals on an extrapolated interval for h ∈ [0, 1].
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5.3 Empirical application: assessing the robustness of systemic
risk analyses

In this section, we study the robustness of conclusions that can be drawn from systemic risk studies
that use the Eisenberg–Noe algorithm to model direct contagion. We use the same dataset from
2011 of European banks from the European Banking Authority that has been used in previous
studies relying on the Eisenberg–Noe framework (Gandy and Veraart (2016), Chen et al. (2016)).
As in these papers, given the heuristic approach to the dataset, our exercise should be considered
to be an illustration of our results and methodology, rather than a realistic full-fledged empirical
analysis.

With respect to the model’s data requirements, the EBA dataset only provides information on
the total assets TAi, the capital ci and a proxy for interbank exposures, aIBi . To populate the
remaining key variables of the Eisenberg–Noe model, we therefore first assume, as in Chen et al.
(2016), that for each bank the interbank liabilities are equal to the interbank assets. Furthermore,
we assume that all non-interbank assets are external assets, and the non-interbank liabilities are
liabilities to a society sink-node. Hence,

lIBi := aIBi ,

Li0 := TAi − lIBi − ci,
a0
i := TAi − aIBi .

Consequently, the Eisenberg–Noe model variables are

Total liabilities: p̄i = Li0 + lIBi ,

Total external assets: xi = a0
i .

Note that each bank’s net worth hence exactly corresponds to the book value of equity, or the
banks’ capitals: TAi − p̄i = a0

i + aIBi − lIBi − Li0 = ci .

The final key ingredient to the model is the (relative) liabilities matrix. This is usually highly
confidential data, and is not provided in the EBA data set. In Gandy and Veraart (2016), Gandy
and Veraart propose an elegant Bayesian sampling methodology to generate individual interbank
liabilities, given information on the total interbank liabilities and total interbank assets of each
bank. The authors have developed an R-package called “systemicrisk” that implements a Gibbs
sampler to generate samples from this conditional distribution. As our analysis requires an initial
liability matrix, we use the European Banking Authority (EBA) data as input to their code in order
to generate such a liability matrix. As suggested by (Gandy and Veraart 2016, Section 5.3), we
perturb the interbank liabilities lIBi slightly (such that they are not exactly equal to the interbank
assets, while keeping the total sums equal) to fulfill the condition that L be connected along rows
and columns. We then run their algorithm, with parameters p = 0.5, thinning = 104, nburn−in =

109, λ = pn(n−1)∑N
i=1 a

IB
i

≈ 1.217810−3, to create one realisation of a 87 × 87 network of banks from the

data. (We needed to exclude banks DE029, LU45 and SI058 because the mapping of the data to
the model as described above created violations of the conditions for the algorithm and resulted in
an error message.)

For simplicity and to consider an extreme event that would trigger a systemic crisis in the
European banking system, we analyze what might have happened if Greece had defaulted on its

90



(a) Distribution of Greek exposures. (b) Distribution of bank obligations to society.

Figure 5.15: Histograms of data from the EBA dataset.

debt and exited the Eurozone. We study this shock by decreasing the external assets of each
bank by its individual Greek exposures, i.e. setting Greek bond values to zero. The histogram of
Greek exposures (as a percentage of total exposures), displayed in Figure 5.15(a), shows a large
heterogeneity of exposures, with the majority of banks having no (or negligible) exposures to Greece,
but a small number of Greek banks having substantial exposures to Greece (between 64% - 96%
of total assets). In our sensitivity analysis we resample the underlying liabilities matrix from the
Gandy & Veraart algorithm Gandy and Veraart (2016) 1000 times.

In each of our 1000 simulated networks considered there were 9 specific institutions that default
on their debts in the Eisenberg–Noe framework; in only 3 simulated networks (0.3% of all simula-
tions) there were between 1 and 3 additional banks that fail. As such, the traditional analysis of
sensitivity of the Eisenberg–Noe framework would conclude that this contagion model is robust to
errors in the relative liabilities matrix. This is consistent with the work of, e.g., Glasserman and
Young (2015).

However, we now consider the maximal deviation in both the estimation errors and the payments
to society in each of our 1000 simulated networks under ∆n

F (Π). The societal obligations are the
same in all 1000 simulated networks, and their histogram, depicted in Figure 5.15(b), reveals as
for the Greek exposures, considerable heterogeneity. Figure 5.16(a) depicts the empirical density

of the maximal deviation estimation errors
‖D∆p(Π)‖22
‖p(Π)‖22

for ∆ ∈ ∆n
F (Π). Figure 5.16(b) depicts the

empirical density of maximal fractional shortfalls to society D∆e0(Π)
e0(Π) . We also depict the upper

bound of the worst case perturbation errors for each of the 1000 simulated networks.

Notably in Figure 5.16(a) we see that the shape of the network, calibrated to the same EBA
data set, can vastly change the impact that the worst case estimation error has under perturbations
in ∆n

F (Π). In this plot of the empirical densities, we see the range of normalized worst case first
order estimation errors range from 0 to nearly 4× 10−4. That is a 0 to 2% normed deviation of the
clearing payments (while the value of ‖p(Π)‖2 itself has only minor variations: a total range of under
27 million EUR compared to its norm of near 5 trillion EUR for the different simulated networks
Π). The upper bound on these perturbation errors (for the norm rather than norm squared) is
approximately 2%, and as can be seen in Figure 5.16(a), the range of obtained upper bounds is

91



very small. This indicates that such a bound is rather insensitive to the initial relative liability
matrix Π. Therefore, any such computed upper bound is of value to a regulator, even if the initial
estimate of the relative liabilities Π is incorrect.

When we consider instead Figure 5.16(b) we see that the density is more bell shaped, again
with a large variation from the least change (roughly −0.001) to the most change (roughly −0.007)
in the normalized impact to society; this proves as with Figure 5.16(a) that the underlying network
can provide large differences in the apparent stability of a simulation to validation. While these
values may appear small, the 10−3 arises from normalising the deviation of the clearing vector with
the value of the societal node but still amounts to a variation on the order of 23.2 - 162.4 billion
EUR. Thus, this sensitivity is as if entire banks’ assets vanished from the wealth of society. The
upper bound of these perturbation errors is approximately twice as high as the obtained maximal
deviations computed under ∆n

F (Π). Notably, the median upper bound of the worst case error is
nearly equal to the minimum possible value, though with a skinny tail reaching off to greater errors.

Finally, Figures 5.16(c) and 5.16(d) analyze the impact of network heterogeneity on the pertur-
bation of the clearing vector. To this end, we quantify “network heterogeneity” as the variance of
the degree distribution of out-edges. It varies between 110 to 170 in the 1000 simulated networks,
thus displaying a reasonable level of heterogeneity. Figure 5.16(c) shows the worst case relative
error over ∆n

F (Π) (blue circles) and ∆
n
F (Π) (red crosses) respectively. Similarly, Figure 5.16(d)

shows a scatter plot of the relative error of the payment to society against the variance of the
degree distribution in the network. Neither figure seems to suggest a clear relation between the
relative errors and the network heterogeneity. Note that Figures 5.16(a) and 5.16(b) are obtained
by projecting all points onto the y-axis in Figures 5.16(c) and 5.16(d).
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(a) Relative error of the clearing vector. (b) Relative error of the payments to society.

(c) There is no clear dependence between relative
error of the clearing vector and network heterogene-
ity.

(d) There is no clear relationship between the rel-
ative error of the payments to society and network
heterogeneity.

Figure 5.16: Empirical result.

Top: Empirical densities of the relative errors in the Eisenberg–Noe framework as a function of random
networks calibrated to the same EBA dataset. The dotted vertical lines indicate the maximal and minimal
empirical values of the upper bound of the worst case and the dashed line indicates the median upper bound.
Bottom: Dependence of the clearing vector perturbation on network heterogeneity.
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Chapter 6

Conclusion

In this dissertation, we discussed several topics emerging in the wake of the 2008 financial crisis.
From investors’ perspectives, we provided the arbitrage free pricing of European options traded
between two risky parties, considering different financial statuses. From regulators’ perspectives,
we analyzed the sensitivity of clearing payments in the Eisenberg – Noe network model with respect
to an estimation error in the relative liabilities matrix.

We computed the XVA of European options, considering credit risk, asymmetric interest rates
and the different performances of several financial accounts during different financial statuses. To
model the Repo market freeze during the financial crisis, we used an alternating renewal process
to describe the switching between different financial statuses. With a hedging portfolio including
risky bonds from the investor and the counterparty, we constructed a BSDE with respect to a mar-
tingale without independent increments property to price European options and the corresponding
XVA. We proved the existence and uniqueness of the solution to these BSDEs. In the empirical
application, we estimated the length of different financial periods. Our result provides unbiased
estimates of the parameters in the alternating renewal process. In a simulation study, the XVA in
the financial crisis increased 100%, compared with the XVA in a calm financial market. We also
analyzed the sensitivity of the XVA to collateralization levels, the volatility of the underlying stock,
and the funding rates.

In order to quantify the effect of clearing payments of the estimation error in the relative
liabilities matrix, we determined the directional derivative of the clearing payments with respect
to the relative liabilities matrix. We extended this result to consider the full Taylor expansion
of the fixed points to determine the clearing payments as a closed-form perturbation of an initial
solution. We also studied the worst case and probabilistic interpretations of our perturbation
analysis. Our results provided an upper bound on the largest shift for the clearing payments as
well as a lower bound for the shortfall to society. In a numerical case study of the European banking
system, we demonstrated that, even when the set of defaulting firms remains constant, the clearing
payments and wealth of society can be greatly impacted. This is true even in the case that the
existence and non-existence of links is pre-specified. When the existence and non-existence of links
is unknown, then the upper bound of the errors can be utilized which generally provides errors that
are significantly less sensitive to the initial estimate of the relative liabilities and roughly twice as
large as the errors under pre-specification of links.
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Chapter 7

Future Work

Our analysis of the alternating renewal process focuses on the basic properties and the decom-
position of a martingale including an orthogonal term. There are many other interesting topics,
such as a martingale representation theorem, Feynman-Kac theorem and a comparison theorem
of a BSDE including the nonindependent increment processes. In order to apply the alternating
renewal processes in broader fields, extension from two statuses to a larger number is necessary.
Besides using the Ted spread to estimate the parameters λU and λV , we can also use other finan-
cial stress indicators, such as the CBOE Volatility Index (VIX), the LIBOR-OIS spread, and the
Composite Indicator of Systemic Stress (CISS). It would be interesting to analyze these financial
indicators statistically and find reasonable thresholds of different financial regimes. With those new
thresholds, we can evaluate the estimation of the parameters λU and λV , and then compared new
estimations with the results in this dissertation.

Moreover, the structures of Repo markets are very complicated in practice. For different col-
laterals and different counterparties, Repo rates and collateral levels are different. The rules and
structures are different between American Repo markets and European Repo markets. Considering
the complicated structures of Repo markets, differences between U.S. and Europe, and the switch-
ing among different financial statuses, there are many interesting topics. Although we assume that
all trades in the Repo market freeze during a financial crisis, a few trades were executed occasion-
ally. So it is feasible to weaken the freezing assumption of the Repo market during a financial
crisis.

Our sensitivity analysis is based on the standard Eisenberg–Noe model. As such, it omits a num-
ber of other important extensions that have been developed in the literature (such as bankruptcy
costs, fire sales, or the impact of the network topology). For a full quantification of risk and uncer-
tainty, future research will therefore need to develop a model that combines – and weighs – all of
these relevant channels of contagion. In addition, besides the symmetric distribution setting of the
perturbation matrix, an asymmetric distribution and heavy-tailed distributions could be included
in future research.
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