
1 
 

Sequence Risk Simulation and Calculations Code 

To run the accumulation and decumulation 30-year simulations there were two python 

programs created. The first programmed, randomly generated 100,000 permutations using 

NumPy. NumPy is a library containing a collection of lists. Instead of using the typical lists in 

python NumPy was called upon as it runs faster allowing for us to generate a larger dataset. 

Additionally, NumPy has many functions attached with it that can be used to perform actions on 

the various arrays that are created when invoking NumPy.  The second program focused on 

performing calculations with the set of rates. For instance, finding the final balance of an account 

when the account holder is depositing or withdrawing amounts. The point of these programs is to 

discover sequence risk and how the order of rates are important when investing money.  

More specifically, in the case of our first program, the function permutations () was used 

to generate the permutations of a certain length n. In the case of our project n ended up being 30 

to represent rates for 30 years. To effectively randomize the simulations attaching NumPy to the 

beginning of the permutations function like so,  np.permutations(),  made it where every time the 

permutation function was invoked a different library was used to generate the permutations 

making it completely random. To ensure that it was completely random, below was an example 

our group ran to test. In the test we decided to print one permutation through our program with 

the rates [1,2,3,4,5,6,7,8,9,10] and then ran it again to see if they were the same. If they were the 

same python generates the code pseudo randomly otherwise it doesn’t invoke the same random 

library the same time but rather different making it completely random.   

Example 1:  

years = 10 

rates = [1,2,3,4,5,6,7,8,9,10] 

#runs through our loops for # of years specified 

print(mixedRates) #mixedRates is a list of the new permutation  

Result 1: [[5,9,8,1,3,4,10,7,6,2]] 

*Run the program a second time*  



2 
 

Result 2: [[5,2,3,9,1,7,8,4,6,10]]  

 Our results proved to us that every time we run our program; we would get a different 

shuffled version of 100,000 rates. What that exactly means is ran the same 30 rates 100,000 

times through our program twice that we would have two different lists of permutations for our 

results. Through this discovery, our group realized it was better for us to generate the 

permutations pseudo randomly. If the rates are generated pseudo randomly, then it makes it 

possible to compare distributions of different rates as the same permutations were used in both 

runs. To do this, we adjusted the code where we initialized a seed prior to using the random 

library.  By initializing a seed, every time the code ran it went to the same location of the library 

to repeat the random order that we ran the time before. The fix in the code allowed us to keep our 

trials of different rates consistent with one another.  Once the 100,000 permutations were 

generated, they were saved into a CSV file that could be observed by our group but also called 

into the next program we ran. To see the code used in our first program see Appendix A.   

In the case of our second program, there were five functions created to complete the 

calculations we found necessary. These five functions were: calculate the final balance with a 

certain deposit strategy, finding the IRR associated with the final balance values, calculate the 

final balance with a certain withdrawal strategy, finding the year in which the account failed, and 

finding the perfect withdrawal amount for a given set of rates each year.    

For the functions to work it required the user to manually input values. The first input 

was the CSV file of the 100,000 permutated rates which was done by opening the CSV file in 

this new code document. The other important inputs included a list for growth and for increase. 

The growth list was created to implement a strategy of investing a certain % increase. The 

growth list is the growth factors necessary for those increase for instance if I wanted my 

investment each year to increase by 3% then the growth list would be [1.03, 1.03…] which 

continues for the number of years being invested in our case it was 30. It was extremely 

important for the length of the growth list be equal to the number of years. Similarly, the increase 

list worked the same way however the inputs were of a dollar amount to increase an investment. 

The increase list would look something like [50, 100,…..] until you reached the 30 years of 

increasing. The reason for including these in a list was to allow the user flexibility to the 

investment strategy where they could have a growth that happen every few years where the 



3 
 

growth list would then become something like [1.03, 1.03, 1.03, 1.05, 1.05, 1.05, 1.07…].  With 

the inputs of these list it also required the user to tell the program what type of list of investments 

it would like to create. In our program, this choice is represented by an n where  

If n = 0 the program would perform a calculation on a flat amount inputted each year  

If n = 1 the program would perform a calculation on an additional increase from the flat 

amount each year  

If n > 1 the program would perform a calculation on a percentage increase from the flat 

amount  

The last two inputs the user had to provide was used for the decumulation examples. The 

user had to provide a beginning Balance to start withdrawing from and then a withdrawal amount 

to take out each year.   

After all the inputs the user would run the program until it came up with the message 

“Program is complete”. This message ensured us that the program indeed work where it was able 

to produce five different lists of the calculation results. These lists were then each converted into 

a CSV file that gave our group access to the finals values of each calculation performed. Our 

group was able to analyze these CSV files and create histograms for the accumulated values and 

probability of failure graphs for the decumulation examples. To ensure the program calculations 

were running properly our group did a check of the calculations in excel for the first five 

permutations of the 100,000. When these values matched, we believed it would be the case for 

all 100,000 permutations and that our functions were working properly. An important detail to 

this code is that the permutations generated did not include the best and the worst-case scenarios. 

Our group added these values to the dataset after the code ran to end with a total of 100,002 

permutations for analysis. To see the code in detail for these calculations please see Appendix B.    



4 
 

Appendix A: Pseudo Permutation Maker 

 '''Retirement Simulations MQP Code''' 

 

from itertools import permutations 

import functools 

import operator 

import numpy as np 

import random 

import csv 

 

#INPUTS 

years = 10 

permutations = 1 

accumList = [] 

deccumList = [] 

rates = [31.49, -4.38, 21.83, 11.96, 1.38, 13.69, 32.39, 16, 2.11, 15.06, 26.46, -37, 5.49, 15.79, 4.91, 

10.88, 28.68, -22.1, -11.89, -9.1, 21.04, 28.58, 33.36, 22.96, 37.58, 1.32, 10.08, 7.62, 30.47, -3.1, 31.69, 

16.61, 5.25, 18.67, 31.73, 6.27, 22.56, 21.55, -4.91, 32.42, 18.44, 6.56, -7.18, 23.84, 37.2, -26.47, -14.66, 

18.98, 14.31, 4.01, -8.5, 11.06, 23.98, -10.06, 12.45, 16.48, 22.8, -8.73, 26.89, 0.47, 11.96, 43.36, -10.78, 

6.56, 31.56, 52.62, -0.99, 18.37, 24.02, 31.71, 18.79, 5.5, 5.71, -8.07, 36.44, 19.75, 25.9, 20.34, -11.59, -

9.78, -0.41, 31.12, -35.03, 33.92, 47.67, -1.44, 53.99, -8.19, -43.34, -24.9, -8.42, 43.61, 37.49, 11.62, 44, -

15, -10, 15] #This is a list of rates pulled from the S&P 500 historic values 

 

#a loop creating a random permutation for a certain number of trials for our accumulating list   

def main(): 

    randomRates = [] 

    index = 0  

    while index < years: 

        position = np.random.randint(len(rates)) 

        rate = rates[position] 

        randomRates.append(rate) 

        rates.pop(position) 

        index += 1 



5 
 

    i = 0 

    mixedRates = [] 

    while i < permutations: #run the loop from i to m number of possibilities 

        accPerm = list(np.random.permutation(years)) #generate a random permutation of length n of type 

list  

        if accPerm in accumList: #check to see if permutation is already in allList 

            pass 

        else: 

            i+=1 #going to the next iteration/permutation 

            ratesPerm = change_rates(accPerm, randomRates) 

            mixedRates.append(ratesPerm) 

            print(mixedRates) 

 

    with open('MQP_Flat_Rates_10_Years_Trial_1.csv', 'w', newline='') as b: 

        writer = csv.writer(b) 

        writer.writerows(mixedRates) 

  

    print("Program has finished") 

 

def change_rates(accPerm, randomRates): 

    """Converts the permutation list of 0-n into a list of rates"""  

    permRates = []        

    for element in accPerm: 

        permRates.append(randomRates[element]) 

    return permRates 

 

if __name__ == "__main__": 

    main() 

  



6 
 

Appendix B: Simulation Calculations  

'''Retirement Simulations MQP Code''' 

 

from itertools import permutations 

import functools 

import operator  

import numpy as np 

import csv 

 

#ACCUMULATION INPUTS 

 

deposit = 1000 

n = 0 #determines which accumulation strategy to run 

 

#n = 0 is a flat amount inputed each year 

#n = 1 is an increase in amount by an additional flat amount 

#n > 1 is an increase in amount by percentage 

 

accumList = [] 

IRR = [] 

 

#DECUMULATION INPUTS 

beginningBalance = 50000 

withdrawal = 5000 

deccumList = [] 

failureYear = [] 

 

#OTHER INPUTS 

#growth = [1.00, 1.05, 1.05, 1.05, 1.05, 1.05, 1.08, 1.08, 1.08, 1.08, 1.08, 1.11, 1.11, 1.11, 1.11, 1.11, 

1.14, 1.14, 1.14, 1.14, 

             #1.14, 1.17, 1.17, 1.17, 1.17, 1.17, 1.20, 1.20, 1.20, 1.20] #The factors in which an accumulation 

fund can increase by a percentage 



7 
 

 

growth = [1.00, 1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00, 1.00,1.00,1.00,1.00,1.00,1.00, 

          1.00, 1.00,1.00,1.00, 1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00, 1.00,1.00,1.00, 

          1.00,1.00,1.00,1.00,1.00,1.00,1.00, 1.00,1.00,1.00,1.00,1.00,1.00, 

          1.00, 1.00,1.00] 

 

increase = [0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 

            750, 800, 850, 900, 950,1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450] #The 

factors in which an accumulation fund can increase by a certain amount 

 

#a loop creating a random permutation for a certain number of trials for our accumulating list   

def main(): 

    "Open the file of 100,000 rates and then performs the calculation functions resulting in a saved CSV" 

    yearly_rates = [] 

    with open('MQP_50_Years_Geo_Mean_Set_10.csv','r') as data: #opens the file 

        for line in csv.reader(data):  

            yearly_rates.append(line) 

    PWA = [] 

    for ratesPerm in yearly_rates: 

        ratesPerm = convert_to_float(ratesPerm) 

        list_of_deposits = deposits(n,deposit,growth) 

        totalWithDeposit = calc_total_with_deposit(ratesPerm, list_of_deposits) 

        calculatedIRR = compute_IRR(ratesPerm, list_of_deposits) 

        totalWithWithdrawal = calc_total_with_withdrawal(ratesPerm, beginningBalance) 

        accumList.append(totalWithDeposit) 

        print(type(accumList)) 

        deccumList.append(totalWithWithdrawal) 

        print(type(deccumList)) 

        listOfFailures = find_year_of_failure(ratesPerm, beginningBalance) 

        failureYear.append(listOfFailures) 

        print(type(failureYear)) 

        IRR.append(calculatedIRR) 



8 
 

        print(type(IRR)) 

        perfectRate = compute_perfect_withdrawal_amount(ratesPerm, beginningBalance) 

        PWA.append(perfectRate) 

        print(type(PWA)) 

             

    '''with open('Accumulation_Values_50_Years_Geo_Mean_Set_10.csv', 'w', newline='') as c: 

        writer = csv.writer(c, delimiter=';') 

        writer.writerow(accumList) 

    with open('Decumulated_Values_50_Years_Geo_Mean_Set_10.csv', 'w', newline='') as d: 

        writer = csv.writer(d, delimiter=';') 

        writer.writerow(deccumList) 

    with open('Year_of_Failure_Values_50_Years_Geo_Mean_Set_10.csv', 'w', newline='') as e: 

        writer = csv.writer(e) 

        writer.writerows(failureYear) 

        e.close() 

    with open('IRR_Values_50_Years_Geo_Mean_Set_10.csv', 'w', newline='') as f: 

        writer = csv.writer(f, delimiter= ';') 

        writer.writerow(IRR) 

    with open('Withdrawal_Values_50_Years_Geo_Mean_Set_10.csv', 'w', newline='') as g: 

        writer = csv.writer(g, delimiter=';') 

        writer.writerow(PWA) 

        g.close() 

 

    print("Program has finished")''' 

 

def deposits(n,depositAmount,growth): 

    """Determines the depositing strategy and creates it in a list of 30 years""" 

    deposits = [] 

    if n == 0: 

        i = 0 

        while i < len(growth): 



9 
 

            deposits.append(depositAmount) #adds the flat deposit to a list 

            i+= 1 

    elif n == 1: 

        total = depositAmount 

        for value in increase: #steps in the list of flat amount increases 

            total = total + value 

            deposits.append(total) #adds the increasing deposits to a list 

    else: 

        total = depositAmount 

        for rate in growth: #steps in the list of growth percentages 

            total = total * rate 

            deposits.append(total) #adds the percentage increasing deposits to a list 

 

    return deposits 

 

def convert_to_float(ratePerms): 

    """Converts the rates into a workable list changing the elements to a float""" 

    convertedRates = [] 

    for element in ratePerms: #steps through each element in the list of rates 

        convertedRates.append(float(element)) 

    return convertedRates 

 

def calc_total_with_deposit(permRates, list_of_deposits): 

    """Calculates the resulting total based on the depositing strategy and list of perm rates""" 

    totalAccumulation = [] 

    sum_of_totals = 0 

    index = 0 

    while index < len(permRates): 

        totalAccumulation = permRates[index:] #moves through the rates list and starts at new beginning 

position 

        total = list_of_deposits[index] 

        for rate in totalAccumulation: #adjust the rate to its new accumulated value 



10 
 

            total = total * ((rate/100)+ 1) 

        sum_of_totals  = sum_of_totals + total 

        index += 1 

     

    return sum_of_totals 

 

 

def calc_total_with_withdrawal(permRates, beginningBalance): 

    """Calculates the balance in the retirement fund while withdrawing money each time from the list of 

perm rates"""  

    remainingbalance = 0 

    total = beginningBalance #sets the beginning balance 

    for rate in permRates: 

        withdrawal = 0.10 * total #only include this when you want to take out a percentage each year 

        total = (((rate/100) + 1) * total) - withdrawal #calculates what is left in balance after withdrawal 

    remainingbalance = remainingbalance + total #determines what is left in the account at the end of 30 

years 

 

    return remainingbalance 

 

def find_year_of_failure(permRates, beginningBalance): 

    """Determines the year in which the account value drops below 0 (i.e fails)""" 

    remainingBalance = 0 

    total = beginningBalance #sets the beginning balance 

    failures = [] #creates a list to keep track of accounts that fail 

    for rate in permRates: 

        withdrawal = 0.10 * total #only include this when you want to take out a percentage each year 

        total = (((rate / 100) + 1) * total) - withdrawal 

        if total < 0: #determines if the account failed 

            failures.append(permRates.index(rate)) #records the year in which the account failed 

        else: 

            pass 



11 
 

    return failures 

 

def compute_IRR(permRates, list_of_deposits): 

    """Computes the IRR for the calculated accumulation fund""" 

    totalAccumulation = [] 

    sum_of_totals = 0 

    index = 0 

    while index < len(permRates): 

        totalAccumulation = permRates[index:] 

        total = list_of_deposits[index] 

        for rate in totalAccumulation: #compute the accumulation values 

            total = total * ((rate/100)+ 1) 

        sum_of_totals = sum_of_totals + total 

        futurevalue = sum_of_totals * -1 #creates the future value to be negative 

        index += 1 

    list_of_deposits.append(futurevalue) #adds the final value 

    IRR = np.irr(list_of_deposits) #computes the IRR for that accumulation trial 

    return IRR 

 

def compute_perfect_withdrawal_amount(permRates, beginningBalance): 

    """Determines the perfect withdrawal amount for a decumulation strategy""" 

    PWR = [] 

    listOfRates = [] 

    results = [] 

    i = 0  

    while i < len(permRates): 

        listOfRates = permRates[i:] #gives the starting position of rates 

        total = beginningBalance 

        for rate in listOfRates: 

            total = total * ((rate/100)+ 1) 

            PWR.append(total) #adds the perfect withdrawal rate 



12 
 

        results.append(PWR[-1]) #adds the first element of the PWR list 

        i += 1 

    finalTotal = (sum(results[1:])/beginningBalance) + 1 

    perfectWithdrawalAmount = results[0] / finalTotal #calculates the perfect withdrawal amount 

         

    return perfectWithdrawalAmount 

 

if __name__ == "__main__": 

    main() 


