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ABSTRACT

Currently, researchers at Sandia National Laboratories are creating software that
is designed to determine the source of a toxic release given sensor readings of the toxin
concentration at fixed locations in the building. One of the most important concerns
in solving such problems is computation time since even a crude approximation to
the source, if found in a timely manner, will give emergency personnel the chance to
take appropriate actions to contain the substance.

The manner in which the toxin spreads depends on the air flow within the building.
Due to the turbulence in the air flow, it is necessary to calculate the flow field on a
fine mesh. Unfortunately, using a fine mesh for every calculation in this problem may
result in prohibitively long computation times when other features are incorporated
into the model. The goal of this thesis is to reduce the computation time required by
the software mentioned above by applying two different mesh coarsening strategies
after the flow field is computed. The first of these strategies is to use a uniformly
coarse mesh and the second is to use our knowledge of the air flow in the building
to construct an adaptive mesh. The objective of the latter strategy is to use a fine
mesh only in areas where it is absolutely necessary, i.e., in areas where there is a great

change in the flow field.



ACKNOWLEDGMENTS

A friend once told me our expectations for how long a particular task will take
often fall short of what happens in reality. He always went with the approach of
multiplying that estimate by three and adding a day. I guess as humans, or maybe
idealists, we like to forget that simple solutions are often the hardest to find and the
details of seemingly simple methods are complex. Fortunately, a number of people
have been there to help make my reminder of these subtleties a little less painful.

Since it is the questions that we cannot answer that make us strive to improve
ourselves and our understanding, I would like to thank Professor Homer Walker and
my advisor Professor Suzanne Weekes. Without their questions, I probably would
not have come as far as I have in my understanding.

I would also like to recognize a number of researchers at Sandia National Labora-
tories without whose assistance I never would have had the opportunity to work on a
project of this magnitude. Since many aspects of fluid mechanics are still a mystery
to me, I am grateful there are people like Steve Margolis who are capable of mastering
the finer points. In addition, without the help of Kevin Long, and to a lesser degree
Jonathan Hu and James Willenbring, I likely never would have survived the trials
and tribulations of installing software. Also, I would like to thank Philippe Pebay
for his input concerning BAMG. Most importantly though, I would like to thank
Paul Boggs. In addition to helping me understand the finer points of constrained
optimization, I have found Paul’s guidance and encouragement to be invaluable.

Lastly I would like to thank my friends and family, while they rarely understood

what I was trying to do, at least they tried and for that I am grateful.

11



Contents

Introduction
Flow Field Model

Numerical Methods for Constrained Optimization

3.1 Theory for Convex Quadratic Programs . . . . . .. .. .. ..
3.2 Equality Constrained Convex QPs . . . . . . . ... ... ...
3.3 Inequality Constrained Convex QPs . . . . . . . .. .. .. ..

The Steady-State Source Inversion Problem

4.1 Toxin Transport Model . . . . . . . . ... .. ... ......
4.2 The Source Inversion Problem . . . . . . . .. ... .. ....

Mesh Strategies

5.1 Uniform Meshes . . . . . . . . . .. ... ... ... ......
5.2 Adaptive Meshes . . . . . ... ..o oL

Numerical Results

6.1 Flow Field and Geometry . . . .. .. .. .. ... .. ....
6.2 Sensor Data . . . . . . . . . . .
6.3 Discussion of the Numerical Results . . . . . . .. .. ... ..

Future Work
Meshes for Numerical Results

More Numerical Results

15
15
17

21
22
23
26
26
27
28
35
37

40



Chapter 1

Introduction

Suppose a lethal and highly contagious virus is released in an international airport
with no means of detection. Days would pass before infected patients sought medi-
cal treatment. By that time, hundreds of thousands of people throughout the world
would be infected and tracing the virus back to the source would be nearly impossible.
Furthermore, even if the original source were determined, any evidence that would
indicate who initiated the act would have likely been destroyed. Now, suppose that
the same airport had been equipped with some means of detecting and locating the
source of such a release. Given knowledge of this source location in a timely fashion,
emergency personnel would be able to take appropriate measures to prevent further
spread of the virus, thereby significantly reducing fatalities. This scenario applies
not only to viruses released in airports but also to any biological or chemical toxin
released in a heavily populated building.

To locate the source of a toxic release similar to the one described above, it is
necessary to have the following three pieces of technology in place beforehand. First,
we need to have sensors that accurately determine the type and concentration of the

toxin; second, it is necessary to have knowledge of the flow field, and lastly we need



software that can rapidly determine the source of the toxin given the concentration
readings from these sensors. In this thesis, we will only discuss the third problem.
Note that while a certain amount of accuracy is important, it is absolutely critical
that at least a crude approximation to the source location be determined quickly.
Therefore, a good software implementation should, given moderate computing abil-
ity, locate the source within a few meters in a short period of time.

Our approach for determining the concentration and source location of the toxin is
to minimize the discrepancy between the sensor readings and the computed concentra-
tion subject to a model of how the toxin permeates the building. We will refer to this
optimization problem as the source inversion problem. It is not difficult to see that
the manner in which the toxin spreads depends on the air flow within the building.
This air flow 1s determined by the building’s heating, ventilating and air-conditioning
(HVAC) system. It is our understanding that in a real world scenario similar to the
one which we described, the air flow will not change considerably throughout the day.
Therefore, we assume that only a handful of flow fields are necessary to effectively
describe the air flow in the building. Thus, each of these flow fields may be calcu-
lated beforehand and stored for use when a toxin is detected. The approach briefly
outlined above has already been implemented at Sandia National Laboratories and
will be written up in [5].

Due to the complexity of the flow in the types of buildings we are considering,
it is necessary to calculate the flow field on a relatively fine mesh. Since we are not
tremendously concerned with how quickly the flow field is calculated, computation
time is not of particular concern for that part of the problem. Unfortunately, using
the same mesh for the source inversion problem restricts how quickly we can deter-
mine the solution.

The goal of this thesis is to investigate the effect of coarsening the mesh on the

computation time required to solve the source inversion problem and the accuracy of



our solutions. In light of this goal, we consider two different strategies for coarsening
the mesh on which the flow field is provided. The first of these strategies is to project
the flow field onto a uniformly coarse mesh that we can then use to solve the source
inversion problem. The second is to use an adaptive mesh approach in which the
coarseness of the mesh in a particular area of the room is determined by how the flow
is changing in that area.

Finally, while it is clear that this problem is time-dependent, we believe that much
can be learned from the simpler steady-state case. Therefore, we only consider the
effect of these mesh refining strategies on the steady-state case. In addition, we only
consider the two-dimensional problem here.

The remainder of this thesis is organized in the following manner. In Chapter 2,
we give a brief description of some of the important features of the flow model. In
Chapter 3, we describe the numerical methods we use to solve the steady-state source
inversion problem which is developed in Chapter 4. The strategies and software that
we use to create the various meshes for this work are then discussed in Chapter 5. Fi-
nally, the numerical results for this work are presented in Chapter 6 and a discussion

of future work is given in Chapter 7.



Chapter 2

Flow Field Model

The spread of the toxin depends greatly on the air flow in the building. Therefore,
we provide a brief description of some of the important features of the flow field model
here.

If we assume that the concentration of the toxin is insufficient to affect the flow
field then we may use the time-dependent continuity and momentum (Navier-Stokes)

equations for incompressible fluid flow given by

V)-u:O

2.1

%—‘t‘—l—(u-ﬁ)u—l—%?p—uvzu:O, .

where the arrow over the gradient operator indicates the location of the object to
which the operation is applied. Here, the dependent variables u and p are, respec-
tively, fluid velocity and pressure, which are both functions of space and time. In
addition, p and v are respectively, fluid density and kinematic viscosity, which are
both assumed to be constant. It is important to note that the types of buildings we
are considering do not have simple air flow behavior. In particular, the value of the

Reynolds number for these types of problems is large, resulting in inherent instabil-

ity in the air flow particularly in the vicinity of boundary layers. In addition, the



presence of people, opening and closing doors, counters, chairs, and even the size of
the rooms involved contribute to the complexity of the air flow. Consequently, it is
necessary to incorporate turbulence into the above model.

The approach applied in [5] to account for this behavior involves decomposing the
dependent variables into time-averaged and fluctuating components. This results in

the well-known Reynolds-averaged Navier-Stokes (RANS) equations, given by

V.U=0

(2.2)
(U-V)U+1VP - »v?U - L. T) =,

where U and P are the time-averaged components of u and p respectively. Also, T is

the Reynolds stress tensor given by

T = [rij] = [—pujug], (2.3)

where u denotes the fluctuating component of u; and

1 rrtie
7 =7(tp) = lim — v dt. (2.4)

v00y Jy,

Another consequence of the turbulent behavior in the air flow is that it is necessary
to solve the system (2.2) on a fine mesh. Fortunately, the overall air flow in the types
of buildings we are considering does not change considerably over the course of a day.
Thus, only a handful of different flow fields are required to adequately represent the
air flow at any given time during any given season. As a result, the flow field can
be computed beforehand and stored for later use. Therefore, the long computation
times that result from the need for a fine mesh are of less concern at this stage.
Unfortunately, solving the source inversion problem on this same fine mesh results in
computation times that are unnecessarily large. Thus, when we discuss the issue of
coarsening the mesh, we must also address the problem of projecting the flow field

onto this mesh; see Chapter 5.



Chapter 3

Numerical Methods for
Constrained Optimization

The source inversion problems to be presented in subsequent chapters are formu-
lated as optimization problems of the following form
minimize yIQy +gly
y

subject to a;y+ b, =0, fori € &, (3.1)

a,y+b <0, forz eI,

where y, g and a; are a vectors with n components, Q is an n X n positive definite
matrix, b; is a scalar and £ and Z are sets of indices corresponding to the equality and
inequality constraints, respectively. Problems of this type are referred to as convex
quadratic programs (QP) where the convexity is due to the positive definiteness of
Q. In this chapter, we begin by discussing some theory that is necessary for solving
(3.1). Then, we discuss methods for solving the equality constrained version of this
problem, i.e. where Z = (), before addressing the more general case. Methods for

both of these situations will be relevant in later chapters.



3.1 Theory for Convex Quadratic Programs

Consider the optimization problem
minimize f(y)
Yy
subject to  l;(y) =0, fori € &,
Li(y) <0, fori e Z,

(3.2)

where f(y) is referred to as the objective function of the optimization problem. Let y
be a feasible point, i.e., a point satisfying all the constraints of (3.2). Then y is a local
solution of (3.1) if there is a neighborhood N such that for all feasible points ¥ € N
we have f(y) < f(¥). Consequently, if a point y is a local solution, then no vector
d € N exists such that y = y + d is a feasible point and V f(y)Td < 0. Notice that
Vf(y)Td < 0 implies that d is a descent direction of the objective function, f(y).
Suppose that y is a local solution. For a general constraint, /;(y) = 0 or l;(y) < 0, we
know that VI;(y) is perpendicular to the level sets of /;(y). Therefore, if |£| = 1 then
Vf(y) and VI;(y) must be parallel. As shown in Figure 3.1, if V f(y) and VI, (y) are

not parallel then there exists a descent direction d such that d +y is feasible. On the

Figure 3.1: Feasible descent direction for an equality constrained problem with £ = 1.

other hand if |€]| > 1 then V f(y) must be a linear combination of the vectors VI;(y)
for 1 € &; see [10]. Due to similar reasoning, if |Z| = 1 then V f(y) and VI;(y) must

be parallel and pointing in opposite directions. For the case where |Z| > 1, Vf(y)
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must be a linear combination of the vectors VI;(y), ¢ € Z, with negative coeflicients;

see Figure 3.2. To state this more clearly, if y i1s a local solution then

VEy) =2 AVi(y), (3:3)

€€

where A; <0 forallz € I.

Figure 3.2: At a local solution of an inequality constrained optimization problem
Vf(y) must be a linear combination of the vectors VI;(y) for ¢ € Z with negative
coeflicients.

The observations above can be stated formally for convex QP problems as the

following theorem.
Theorem 3.1 A point y* is a local solution to a convez QP defined by (3.1) if and
only if there exists a vector X*, with components X;, 1 € EUZL, such that the following
conditions, referred to as the Karush-Kuhn-Tucker (KKT) conditions, are satisfied:
VyL(y*, A*) =0,
a;,y*+b =0, fori € £,
a;y*+b; <0, forz € I, (3.4)

A <0, forz e Z,

Af(ay*+ b)) =0, for i € Z.
In addition, if the Hessian of the objective function, i.e., Q, is positive definite then

y* 1s a unique solution.



Here, the Lagrangian L(y, A) is defined by,

Ly, \)=y"Qy+g"y— > X(ay+b), (3.5)
i€ A(y)

where A(y) is the active set at y defined by

See [10] for a proof of Theorem 3.1.

3.2 Equality Constrained Convex QPs

For the equality constrained case, i.e., when Z = (), the active set at any feasible
point is equivalent to the set of indices corresponding to the equality constraints.
Therefore, by applying Theorem 3.1, finding a local solution to (3.1) translates into

the problem of solving the following system of equations for y and A;, 7 € &,
a,y+b=0, forallz €&, (3.8)
Notice that the second of these equations (3.8) is equivalent to V,L(y,A) = 0.

The system given by (3.7) and (3.8) can be solved using any number of linear

solvers. The details are beyond the scope of this thesis.

3.3 Inequality Constrained Convex QPs

The quadratic programming problem (3.1) becomes more difficult to solve when
inequality constraints are present, i.e., Z # (. If we know the active set at the desired

solution, then the problem can be reformulated as an equality constrained convex QP
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and solved as discussed in the previous section. Unfortunately, complete knowledge
of the active set at the solution is rare. As a result, more complicated algorithms are
required to solve a general convex QP.

For the algorithm we use, we assume the optimization problem contains only
inequality constraints. Thus, each equality constraint can be either represented as
a pair of inequality constraints or incorporated into the objective function in some
manner. For inequality constrained problems in this work, we incorporate the equality
constraints into the objective function via a quadratic penalty term resulting in the

following modified optimization problem

minimize yTQy + gTy + %0| |Agy + b£||§
y (3.9)
subject to Azy + bz <0,

where o > 0 is called the penalty parameter, A = [ai]gea and bg = [b;];., with
Az and bz defined similarly. In order to solve the penalty form, (3.9), we gradually
increase o until ||Agy + bg||oo is sufficiently small. This idea is incorporated into each
iteration of the inequality constrained QP solver we describe next.
We rewrite (3.9) in the form
mini;nize %yTQy +gTy

(3.10)
subject to Azy + bz <0,

where g and y are vectors with n components, Q is an n X n symmetric positive
definite matrix, bz is a vector with m components, and Az in an m X n matrix with
m = |Z|. Note that Q depends on o.

To solve (3.10), we apply a primal, interior point method called O3D, which stands
for Optimizing over 3-Dimensional subspaces. This algorithm is implemented in a
software package produced by Sandia National Laboratories. We provide a brief

description of some of the relevant aspects of this algorithm here and direct the
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reader to [2] for further details and [3] and [4] for an extension of this algorithm to
solving sequential quadratic programming problems.

As one might surmise from the name of the algorithm, at each iteration, O3D
solves a subproblem consisting of the original problem, (3.10), restricted to a three-
dimensional subspace. Solving this subproblem results in a search direction. The
approximate solution to (3.10) at the current iteration is then found by following
this search direction to either the minimizer of the subproblem, i.e., the full length
of the direction is used, or a point that is 99% of the distance to the boundary of
the feasible region along that search direction. Note that this method requires a
strictly feasible starting point, i.e., a point such that Azy + bz < 0. For this work,
a strictly feasible starting point is obtained by slightly altering the solution obtained
by solving a similar equality constrained problem; see Chapter 4. The algorithm may

be described more explicitly as follows.

Algorithm 3.1 (03D)
Given a strictly feasible starting point yo, € > 0, z > 0 and o9 > 0
For 3 =0,1,2,...
Let ¢* be the solution to
minimize 3(y; + P{)TQ(y; + P¢) + 8" (v5 + PO
¢ (3.11)
subject to Az(y; + P¢) + bz <0, fori € Z,
where P is an n x 3 matrix of search directions and { € R?
Yi+1 < Yi+1 + pPC
If final convergence criteria are satisfied
STOP
Else if ||Azy + bg||loo < €eforalli € €

Oj41 = 0;+ 2

12



Else
Oi+1 = 0

End

The search directions, p;, that form the columns of P are solutions to

[A’IFDZAI + %] pi=t;fori=1,2,3, (3.12)

where 7 is a scalar that depends upon the current iterate, y;, D is a diagonal matrix

with entries given by

1
dy=-—— forl=12..m 3.13
” (Azy; + bz); ( )

and t; is chosen so that one of these search directions is always a descent direction
with respect to the objective function. Also, if we let @ be the step length such that

Vi+1 18 99% of the distance from y; to the boundary of the feasible region along the

search direction P(, then the step length p in Algorithm 3.1 is defined by
p = min(1, 7). (3.14)

The subproblem (3.11) is solved via the dual affine method given by the following

algorithm.

Algorithm 3.2 (Dual Affine Method)
Given a strictly feasible starting point (o
For £ =0,1,2,...

Solve the 3 x 3 system

((A7P)TD*(AzP) + PTQP)w = (gTP + 2y P) + PTQP, (3.15)

1

CALPG + Azy; + bz
Ck+1 ¢ Ce + pw, where p is defined in the same manner as in Algorithm 3.1.

where D is a diagonal matrix with dj =

13



If the final convergence criteria are satisfied
STOP
End

14



Chapter 4

The Steady-State Source Inversion
Problem

The source inversion problem is formulated as an optimization problem that is
constrained by the movement of the toxin through the building. This movement
depends on the flow field. We begin this chapter by discussing the model of the
toxin’s movement that will appear in [5], referred to as the toxin transport model.

Then we discuss a few possible formulations of the source inversion problem.

4.1 Toxin Transport Model

If we assume that the time-averaged flow field from Chapter 2 is given, then we

can write the following continuity equation
kvzc—(U-V)c—l—V-j—l—s:O (4.1)

where k is the diffusivity constant and the dependent variables ¢ and s are time-
averaged components which are both dependent on space. Here, cis the concentration

of the toxin present in the building and s represents the concentration of the toxin
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we are releasing into the building which we refer to as the source. In addition, J is

the turbulence mass flux vector which is defined by

J =T = [—uicl, (4.2)

where ¢ is the fluctuating component of the concentration.
Our finite element discretizations of the source inversion problem require this

equation to be in weak form. The weak form of equation (4.1) is given by

/ﬂ {(Vr) - [kVe - cU + J] — rs} dA (4.3)

— [ {r(k¥e—cU+7) n}di =0,

where (2 is the domain and n is the outward facing unit normal to 0} and r is a test
function. This equation is simplified as we account for behavior at specific types of
boundaries. For our purposes, boundaries consist of walls, inlets, i.e., regions where
air enters the building, and outlets which are regions where air and the toxin may
exit the building. These are denoted by 0Qw, 0€;, and 0, respectively. In each
of these areas, the turbulence term, 7, is assumed to be negligible. Since we expect
that the toxin is unable to permeate walls, a no-mass-transport condition is applied
at 0Qw, i.e.

(cU — kVe) - nlgg,, = 0. (4.4)

Notice that since we know [U -njy, = 0, (4.4) implies that both the convective
term and the diffusive term are zero at walls. At inlets, we assume that the incoming
concentration of the toxin, a, may be specified, i.e. [(cU —kVc)-n]y, = —aU-n.
For now, we assume the toxin cannot enter the building through the inlet, i.e., @ = 0.

Lastly, we assume that outlets have the property that

[(Ve)-n+ ﬁc]ano =0, (4.5)

16



where B > 0 is a loss coefficient. If the actual boundary were at infinity then we
would have [(Ve) - n]zq = 0. Thus, for this work we set 8 = 0 to approximate our

finite boundary. By incorporating these boundary conditions into (4.3), we get

/n {(Vr) - [kVe— cU + J] — rs} dA (4.6)
- mU-nler/mOrc(U-nJrkﬁ) dl = 0.

an;

4.2 The Source Inversion Problem

Now we can begin to formulate the source inversion problem for the steady state
case. We assume that we already have toxin concentration readings from sensors
placed at fixed locations throughout the building; how we get this information for
our numerical results is discussed in Chapter 6. Let ¢} be the concentration reading
from the ith sensor and ¢(x;) be the concentration computed at that location by
solving (4.1). Then we want to determine the source location that results in the least
discrepancy between the computed concentration distribution satisfying (4.1) and the

sensor data. Thus, we define our preliminary objective function by

ol ) = D (elx) — 1) (1)

and write the optimization problem as

minimize f,(s,c¢)
¢ (4.8)
subject to (4.6),

where (4.6) is the weak form of the equation for the toxin transport model. Here, Ng

1s the number of sensor locations. While large values of Ng result in more accurate

solutions [1], due to practical considerations we want Ng to be relatively small.
Notice that the the solution to (4.8) is not necessarily unique. In fact, using

this formulation of the problem we can fit the concentration field, ¢(x), exactly to
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the sensor readings but this may result in values of s(x) that are highly oscillatory
and therefore unrealistic for our problem. We expect the source, s(x), to be mostly
zero with smooth transitions into peaks at the source locations. As a result, to
prevent extraneous oscillations in the source, a regularization term that minimizes
the square of the gradient of s(x) is added to (4.7). This approach is known as

Tikhonov regularization. Thus, our modified objective function is

Fls,6) = fols,c) + 5 [ (V) (4.9)

where k > 0 is a constant and our optimization problem is
minimize f(s,c)

8¢ (4.10)
subject to (4.6),

where (4.6) is the weak form of the equation for the toxin transport model. While
other types of regularization exist, as discussed in [1], applying Tikhonov regulariza-
tion has the benefit of resulting in a convex quadratic objective function when (4.10)
is discretized, which is easier to solve.

To apply the methods discussed in Chapter 3 it is necessary to use finite ele-
ment approximations to both the objective function and the constraints in (4.10).
For this work we use a software package called Sundance to construct finite element
discretizations. Sundance, produced by Sandia National Laboratories, is designed for
specifying, building and applying finite element approximations to general partial
differential equations. Given a PDE, its associated boundary conditions, and a mesh
that may be provided by the user, Sundance constructs the associated finite element
mass matrix and right-hand side. This system may then either be solved via a wide
range of solvers developed by Sandia National Laboratories, as is the case with the
equality constrained problem, or given as input to an optimization package like O3D,

as we discuss later in this chapter. Details concerning the use and implementation of
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Sundance will be forthcoming in [1], [5], [8] and [9].

It is important to notice two properties of this formulation of the problem. First,
the finite element approximation to (4.10) is an equality constrained convex quadratic
programming problem which, as we discussed in Section 3.2, is relatively easy to solve.
Second, it is necessary to solve for both the concentration and the source at every
point x where we require a solution, i.e., the problem is large. It is possible to sig-
nificantly reduce the number of computed variables by assuming s(x) has a specific
form, for example a Gaussian centered at each source location. However, there are
two problems with this. First, we would need to know beforehand how many sources
existed in the building and second, every model for the source that we have considered
is either discontinuous or results in nonlinear constraints, or an objective function that
is not quadratic, which adds computational difficulties.

While solutions to (4.10) often give adequate results, it is common to find that s(x)
contains negative values. Since this is not realistic and produces more non-physical
oscillations, we can also require that s(x) is non-negative. Thus, our problem is
redefined as

minimize f(s,c)
s,c

subject to (4.6) (4.11)
s >0,

where (4.6) is the weak form of the equation for the toxin transport model. If we
then use Sundance to construct the finite element approximations to the equations
in (4.11), we can obtain a solution to the source inversion problem by applying the
optimization algorithm called O3D which we described in Chapter 3. As discussed in
Chapter 3, in order to solve inequality constrained problems with O3D it is necessary
to incorporate equality constraints into the objective function via a quadratic penalty
term. This quadratic penalty formulation of the source inversion problem allows us

to control the accuracy with which the equality constraints are satisfied. Since we
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are using a finite element approximation to the equality constraints, it does not make
sense to require (4.6) to be satisfied with high accuracy. Also, notice that the strictly
feasible starting point required by Algorithm 3.1 can be obtained by solving the
equality constrained problem (4.10) and altering the solution so that s(x) is strictly

positive.
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Chapter 5

Mesh Strategies

In Chapter 2, we mentioned that due to the large Reynolds number, it is necessary
to solve for the flow field on a fine mesh. Since the flow field may be calculated
beforehand, computation time is not of great concern when solving the flow model.
However, time is of great importance when solving the source-inversion problem.
Thus, after the flow field is calculated, we would like to reduce the number of triangles
in the mesh, and thereby the number of variables in the source-inversion problem
without introducing a significant loss in accuracy. Here, we only consider two different
types of meshes, uniform and adaptive, which we describe in the sections below.

In order to generate these meshes, we use BAMG, which stands for Bidimensional
Anisotropic Mesh Generator and is available through Institut National de Recherche
en Informatique et en Automatique (INRIA). BAMG produces a mesh based on a
given two-dimensional geometry. More importantly for this work, BAMG can alter
a pre-existing mesh based on certain properties of a given solution on that mesh.
Specifically, given a field, the mesh on which it was computed and a metric, BAMG
calculates the value of the metric, which is a 2 X 2 symmetric positive definite matrix

M;, at each vertex i in the mesh. M; is then used to determine the mesh size, h;, in
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any direction v from vertex z via the formula

vl

WV = Ay

(5.1)

Now, based on the values for h; and user given requirements such as the maximum
and minimum edge length, BAMG constructs a new mesh. Finally, the flow field
information is transferred to the new mesh via P; Lagrange interpolation. In the
sections below, we give details concerning the mesh strategies that we use and some
of the features of BAMG that are required to produce these meshes. For further

information concerning BAMG we refer the reader to [7].

5.1 Uniform Meshes

A uniform mesh, for our purposes, refers to a mesh in which all edge lengths are
approximately the same. In BAMG, this is accomplished by specifying M; to be a
positive scalar multiple of the 2 x 2 identity matrix at every vertex in the mesh, i.e.,
M; = M = al for all 7, where a > 0 is the same for every vertex in the mesh. Thus,
we have

Il 1

h= e e (5.2)

for every unit vector v. Now we define the edge length by
€ = €max = €min, (5.3)

where e, and en;, are, respectively, the maximum and minimum edge lengths for

every edge in the mesh. Therefore, if we let
a=— (5.4)

then for each vertex in the mesh, A = e independent of the direction vector v. As

a result, when BAMG constructs a uniform mesh, it attempts to have each vertex a
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Figure 5.1: Uniform mesh with b = 0.64 and 1826 triangles.

distance of exactly e from all adjacent vertices. Unfortunately, instances arise in which
BAMG must adjust certain edge lengths in order to create the mesh and consequently
the edge lengths are not exactly the same, but they are close. An example of a uniform

mesh generated by BAMG is shown in Figure 5.1.

5.2 Adaptive Meshes

It is important to remember that after a mesh is generated, BAMG projects the
flow field onto this new mesh via P, Lagrange interpolation, i.e., linear interpolation.
Thus, we are assuming that in an area defined by the elements adjacent to any given
vertex, the flow field can be approximated by a linear function. Unfortunately, as
we coarsen the mesh, this may not always be true. Thus, a more intelligent choice
for constructing a coarser mesh is to have the mesh size in a given direction from
vertex 7 depend upon how quickly the flow field is changing in that direction, i.e., the

curvature of the flow field in that direction. We refer to meshes with this property as

23



Figure 5.2: Flow field used to construct Figure 5.3: Adaptive mesh with A, =
the adaptive mesh. 1.0, hmin = 0.5 and 1832 triangles.

adaptive meshes; see Figures 5.2-5.3 for an example.
Since at each vertex in the flow field we have both an z-component and a y-

component, it is necessary to calculate two metric values for each vertex and then

combine them later. For the meshes we use, the metric for the z-component of the

flow field is defined by
|Ha|

. )
sup u, — inf u,

MF =94

2

(5.5)

where § > 0 is constant, u, is the z-component of the flow field, and H,, is the Hessian

of u,. Here, |H,| is defined by
Mol = PAIP, (5.6)

where P is a matrix with column 7 containing the " eigenvector of H, and |A| is
a diagonal matrix with the absolute value of the i*® eigenvalue of H, in diagonal
position i. The metric for the y-component of the flow field, M/, is similar to (5.5).

For each vertex 7, the metrics M7 and M} define ellipses by the equations
wiMfw =1 (5.7)
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and

wiMlw =1, (5.8)

where w is a vector. Thus the metric, M;, that is used to compute the mesh size is the
metric that results in the largest ellipse contained in the ellipses given by (5.7) and
(5.8). While using this definition only guarantees that M; is positive semi-definite as
opposed to positive definite, we did not encounter the situation where vIM;v = 0.

Now using M; we can calculate the mesh size via (5.1) and define the edge length
in a given direction v by

hi(v)

max h;(Vv)

(émax — €min), (5.9)

€y = €min T

where ena.x and en;, are, respectively, the maximum and minimum edge lengths for
every edge in the mesh. An adaptive mesh is then created so that an edge in direction

v from vertex 7 has edge length e,.
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Chapter 6

Numerical Results

To test our source inversion approach to this problem, it is necessary to have two
pieces of information. First, it is necessary to have the solution to the flow model
discussed in Chapter 2 and second, we need some means of generating sensor data.
Both of these issues are discussed in the following sections. At the end of this chapter,

we discuss some of our numerical results.

6.1 Flow Field and Geometry

The flow field that is used for this work was computed on a 15 x 20 square units
building with one inlet and one outlet which are each 2 x 2 square units; see Figure
6.2. This particular flow field has the inlet velocity profile specified to be Poiseuille,
i.e., parabolic with respect to the z-direction and zero in the y-direction and at the
walls, with the peak velocity at the center of the inlet taken to be 4. In addition,
the Reynolds number is taken to be 10000. As mentioned in Chapter 2, due to the
complexity of the air flow in the types of buildings we consider, it is necessary to solve

the flow model on a fine mesh. This mesh is shown in Figure 6.1.
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Figure 6.1: Mesh with A = 0.15 and Figure 6.2: Calculated vector flow field
31,602 triangles. This mesh is used to for Re = 10000.
calculate the flow field.

6.2 Sensor Data

Since we do not have access to actual concentration data, it is necessary to generate
sensor data for our two dimensional example. In order to create sensor data we first

model each source as a Gaussian. Specifically, we define s(x) in (4.6) to be
) = Gre-lem (6.1)

where & = 20, v; = 2 and x; is the location at which the source is centered. Now, the
weak form of the dispersion equation (4.6) can be solved using Sundance to obtain
the concentration, ¢(x). We then determine the value of ¢(x) at fixed sensor locations
and modify it by a random amount within 5%. To minimize accuracy loss when
generating the sensor data, we solve for ¢(x) using the mesh and flow field shown in
Figures 6.1 and 6.2.

In order to determine an effective sensor arrangement, it is necessary to consider
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how the toxin is transported throughout the building and how this information is
represented by the sensor readings. Here, we will look at two different cases. First,
suppose a source is located in a region of the building in which the air flow is minimal,
e.g., a corner. Over time the toxin will accumulate and any sensor in that region will
exhibit a high concentration reading while all other sensors return comparatively low
readings, assuming only one source exists. Thus, given at least one sensor in this
region, any solution would exhibit a source in the proper area of the building. Since
any sensor in this location will eventually have a comparatively high concentration
reading, we require only one sensor to adequately determine sources in these types
of regions. For the second case, suppose we have a source in the main stream of the
flow. Instead of accumulating around the source location, the toxin will be distributed
throughout the building as dictated by the flow field. Thus, if the main stream of the
flow contains too few sensors many different source locations could result in the same
set of concentration readings. Therefore, in the main stream of the flow it is necessary
to place sensors based on both the direction and the magnitude of the flow. As a
result, we can reconstruct the source and concentration better by using an irregular
placement of sensors. A comparison of results using regular versus irregular sensor
placement will be forthcoming in [5].

For the results in this work, 30 sensor locations were selected by hand; see Figure
6.3. While we do not claim that this sensor arrangement is optimal for this geometry
and flow field, we have found that using these sensor locations we were able to locate

reasonable test sources with acceptable accuracy.

6.3 Discussion of the Numerical Results

Since it is not necessary to show all the numerical results in order to understand

the issues we address, only some of the results are presented in this section. The
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majority of the numerical results can be found in the Appendix. The meshes used to

generate these results can also be found in the Appendix.

Figure 6.4: Actual source. Figure 6.5: Computed source with h =
0.15 and 31,602 triangles.

The first issue that we address is the accuracy of our computed source field. Even
when the source inversion problem is solved on the flow field mesh shown in Figure
6.1, the sensor arrangement we use does not locate certain sources well, as shown in
Figures 6.4-6.5, or at all, as shown in Figures 6.6-6.7. In the case of Figure 6.6-6.7,
nearly all of the substance released in the rectangular region defined by [18,20] x [7, 11]
leaves the building through the outlet; see Figure 6.2. As a result, the toxin released
by a source in this region is only detected by one sensor and thus we expect these types
of sources to be difficult to locate. In addition, since nearly all of the toxin from this
source is leaving the building anyway, we assume that this source is not as dangerous
to the people in the building. Thus, we do not consider this source location to be as
important as other possible source locations and therefore this result is adequate for

the time being. If, in the future, we decide that this is not an acceptable result, we
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Figure 6.6: Actual source. Figure 6.7: Computed source with h =
0.15 and 31,602 triangles.

believe that placing sensors in the outlet will remedy this situation. Note that results
in the appendix show that if there exists only one source in the building and it is
located in the region [18,20] x [7, 11], the computed solution clearly indicates a source
in the appropriate area. For the situation in Figures 6.4-6.5, in which the computed
source is smeared, we believe that the solution is still adequate since an individual
with knowledge of the flow field still would be able to predict the region of the source
location correctly. In addition, when we expand this problem to account for time
dependence, we will have sensor readings for each time increment. Consequently, we
have significantly more information about how the substance is spreading and thus
we expect our time dependent solutions will have greater accuracy.

We solved the source inversion problem using a variety of different meshes and
source locations. Some of these results for the source are shown in Figures 6.8
6.17. The results for the concentration are not presented for two reasons. First, the
reconstruction of the concentration field is significantly better than that of the source

field, which is an indication that this problem is ill-conditioned and second, accuracy
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in the source field is of greater concern for the scenario that we are considering.
Here, the actual value of the source is given in Figure 6.8 and the result from the
source inversion problem using the flow field mesh is given in Figure 6.9. Figures
6.10-6.11 show the results on meshes with progressively fewer triangles. Notice that
the computed source using the flow field mesh is nearly indistinguishable from the
result using a mesh with over 90% fewer triangles, as in Figures 6.10-6.17. Since for
the time-dependent problem we will be solving for the values of both the source and
concentration at every time increment, the impact of this sort of reduction will be
significant. Similarly, the ability to get this level of accuracy in solutions on coarse
meshes will be a great benefit when the problem is expanded to account for three
dimensions.

These results also show that if we use adaptive meshes, we can reduce the number
of triangles a little bit more without much more loss in accuracy. Notice that for the
results calculated on meshes containing approximately 2700 triangles, there is very
little difference between the reconstructed source using the adaptive mesh and that
found using the uniform mesh, as in Figures 6.10-6.11. However, if we continue to
decrease the number of triangles, it becomes apparent that it may be beneficial to
choose an adaptive meshing strategy over a uniform one. Figure 6.15 shows that once
we decrease the number of triangles to approximately 1500, the reconstructed source
on a uniform mesh no longer clearly indicates one of the sources. At the bottom
source location, instead of the strong peak that we see in Figure 6.16, Figure 6.17
shows comparatively low source values that could easily be misinterpreted as smearing
from the top source.

Finally, many different adaptive meshes have the same number of triangles but not
all of them give good results when applied to this problem. The choice of minimum
and maximum edge lengths affects the accuracy of the solution to the source inversion

problem. After these meshes are generated, BAMG interpolates the value of the flow

33



field at each point in this new mesh; see Chapter 5. As a result, there are errors in the
flow values used to solve the source inversion problem. If the edge length is too big,
then the error in the flow field can cause extra sources or excessive smearing to appear
in the reconstructed source. Note that this is also the reason that adaptive meshes
provide better results than uniform meshes as the number of triangles decreases.

Please see the Appendix for further results.
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Chapter 7

Future Work

The results in this thesis show that by using coarse meshes we can not only obtain
adequate results but, in general, we can achieve a significant reduction in the number
of triangles in the mesh before a loss in accuracy is noticeable. Nonetheless, there is
quite a bit of work left. While much of the work done with the steady-state case may
be applied to the time-dependent case, the time-dependent problem is overall much
more complicated. For the time-dependent case, we solve for both the concentration
and the source fields at every time increment. Thus, we have significantly more un-
knowns but we also have more information about how the toxin is permeating the
building since sensor data is also retrieved at every time increment. In addition, while
we know when the toxin first reaches a sensor, it is not known how long the source
was present prior to the first sensor reading. The best strategy for determining the
time that the source first appeared is not clear. In addition, for the time-dependent
case, we will need to consider the effect of multiple sources appearing at different time
steps and moving sources.

The sensor locations that we used for the results presented here were hand-

selected. While the results obtained using this sensor arrangement were adequate, we
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would like to find some concrete means of determining an optimal sensor arrangement.
This problem is hard since it is not clear how to formulate an appropriate objective
function. One approach is to minimize the difference between the actual source field
and the computed source field. While there are infinitely many different possibilities
for the source field, we believe it will be necessary to solve this problem using a finite
set of source fields. Unfortunately, different types of toxins dictate different attack
strategies so the best way to choose a set of source fields is not obvious.

Many of the choices that were made in developing the current problem formulation
reflect the desire to preserve the quadratic program structure. In particular, this is
a benefit to using standard Tikhonov regularization. Unfortunately the results show
that this tends to smear the source. As a result, it may be beneficial to consider other

types of regularization; see [1].
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Appendix A

Meshes for Numerical Results

All the mesh images presented in this thesis were generated using MEDIT. Infor-

mation concerning this graphics software can be found in [6].
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Figure A.3:
Bmin = 0.5 and 1832 triangles.

Mesh with hgn., = 1.0,

Figure A.5:
Bmin = 0.6 and 1471 triangles.

Mesh with hgn., = 1.1,
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Appendix B

More Numerical Results

All the source field images presented in this thesis were generated using MEDIT.

Information concerning this graphics software can be found in [6].
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Figure B.11:
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puted source with h =
0.8, and 1196 trian-
gles.



Figure B.91: Actual
source.
Figure B.93: Figure B.94: Com-
Computed source  puted source with A =
with hmax = 0.6, 0.52, and 2704 trian-
hmin = 0.45 and 2760 gles.
triangles.

Figure B.92: Com-
puted source with h =
0.15 and 31,602 trian-
gles.

Figure B.95: Figure B.96: Com-
Computed source  puted source with A =
with hmax = 1.0, 0.64, and 1826 trian-
hmin = 0.5 and 1832 gles.

triangles.

Figure B.97: Figure B.98: Com-
Computed source  puted source with A =
with hpax = 1.1, 0.72, and 1488 trian-
hmin = 0.6 and 1471 gles.

triangles.

50

Figure B.99: Figure B.100:
Computed source Computed source
with hpmax = 1.2, with A = 0.8, and
hmin = 0.7 and 1172 1196 triangles.
triangles.



Figure B.101: Actual

source.

Figure B.103: Figure B.104:
Computed source Computed source
with hApax = 0.6, with A = 0.52, and
hmin = 0.45 and 2760 2704 triangles.
triangles.

Figure B.102: Com-
puted source with h =

0.15 and 31,602 trian-

gles.
-
Figure B.105: Figure B.106:
Computed source Computed source
with hpmax = 1.0, with A = 0.64, and
hmin = 0.5 and 1832 1826 triangles.
triangles.

Figure B.107: Figure B.108:
Computed source Computed source
with hpax = 1.1, with A = 0.72, and
hmin = 0.6 and 1471 1488 triangles.
triangles.
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Figure B.109: Figure B.110:
Computed source Computed source
with hpmax = 1.2, with A = 0.8, and
hmin = 0.7 and 1172 1196 triangles.
triangles.



Figure B.111: Actual

source.

Figure B.113:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.114:
Computed source
with A = 0.52, and
2704 triangles.

Figure B.112: Com-
puted source with h =

0.15 and 31,602 trian-

gles.

Figure B.115: Figure B.116:
Computed source Computed source
with hpmax = 1.0, with A = 0.64, and

hmin = 0.5 and 1832

triangles.

1826 triangles.

Figure B.117:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

B.118:

source

Figure
Computed
with A = 0.72, and
1488 triangles.
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Figure B.119: Figure B.120:
Computed source Computed source
with hpmax = 1.2, with A = 0.8, and

hmin = 0.7 and 1172

triangles.

1196 triangles.



Figure B.121: Actual

source.

Figure B.123:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.127:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.122:

Com-

puted source with h =

0.15 and 31,602 trian-

gles.

Figure B.124: Figure B.125:

Computed source Computed source

with A = 0.52, and with hmax = 1.0,

2704 triangles. Amin = 0.5 and 1832
triangles.

e
=]

Figure B.128: Figure B.129:

Computed source Computed source

with A = 0.72, and with hpmax = 1.2,

1488 triangles. hmin = 0.7 and 1172
triangles.
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B.126:

source

Figure
Computed
with A = 0.64, and
1826 triangles.
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Figure B.130:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.131: Actual

source.

Figure B.132:

Com-

puted source with h =

0.15 and 31,602 trian-

gles.

Figure B.133:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.134:
Computed source
with A = 0.52, and
2704 triangles.

Figure B.135:
Computed source
with hmaey = 1.0,

hmin = 0.5 and 1832

triangles.

Figure B.137:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

B.138:

source

Figure
Computed
with A = 0.72, and
1488 triangles.

Figure B.139:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.

Figure B.136:
Computed source
with A = 0.64, and
1826 triangles.

Figure B.140:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.141: Actual

source.

Figure B.143:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.144:
Computed source
with A = 0.52, and
2704 triangles.

Figure B.142:

Com-

puted source with h =

0.15 and 31,602 trian-

gles.

Figure B.145:
Computed source
with hmaey = 1.0,

hmin = 0.5 and 1832

triangles.

Figure B.146:
Computed source
with A = 0.64, and
1826 triangles.

Figure B.147:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

B.148:

source

Figure
Computed
with A = 0.72, and
1488 triangles.
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Figure B.149:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.

Figure B.150:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.151: Actual

source.

Figure B.153:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.157:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.154:
Computed source
with A = 0.52, and
2704 triangles.
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Figure B.152: Com-
puted source with h =

0.15 and 31,602 trian-

gles.
. .
Figure B.155: Figure B.156:
Computed source Computed source
with hpmax = 1.0, with A = 0.64, and

hmin = 0.5 and 1832

triangles.
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1826 triangles.
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B.158:

source

Figure
Computed
with A = 0.72, and
1488 triangles.
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Figure B.159:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.

Figure B.160:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.161: Actual

source.

Figure B.163:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.164:
Computed source
with A = 0.52, and
2704 triangles.

Figure B.162: Com-
puted source with h =

0.15 and 31,602 trian-

gles.
Figure B.165: Figure B.166:
Computed source Computed source
with hpmax = 1.0, with A = 0.64, and
hmin = 0.5 and 1832 1826 triangles.
triangles.

Figure B.167:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

B.168:

source

Figure
Computed
with A = 0.72, and
1488 triangles.

57

Figure B.169: Figure B.170:
Computed source Computed source
with hpmax = 1.2, with A = 0.8, and
hmin = 0.7 and 1172 1196 triangles.
triangles.



Figure B.171: Actual

source.

Figure B.173:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.174:
Computed source
with A = 0.52, and
2704 triangles.

Figure B.172: Com-
puted source with h =

0.15 and 31,602 trian-

gles.
l .
Figure B.175: Figure B.176:
Computed source Computed source
with hpmax = 1.0, with A = 0.64, and
hmin = 0.5 and 1832 1826 triangles.
triangles.

Figure B.177:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

B.178:

source

Figure
Computed
with A = 0.72, and
1488 triangles.
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Figure B.179: Figure B.180:
Computed source Computed source
with hpmax = 1.2, with A = 0.8, and
hmin = 0.7 and 1172 1196 triangles.
triangles.



Figure B.181: Actual

source.

Figure B.182:

Com-

puted source with h =

0.15 and 31,602 trian-

gles.

Figure B.183:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.184:
Computed source
with A = 0.52, and

2704 triangles.

Figure B.185:
Computed source
with hmaey = 1.0,

hmin = 0.5 and 1832

triangles.

Figure B.186:
Computed source
with A = 0.64, and

1826 triangles.

Figure B.187:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.188:
Computed source
with A = 0.72, and

1488 triangles.
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Figure B.189:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.

Figure B.190:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.191: Actual

source.

Figure B.193:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

-
Figure B.197:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.194:
Computed source
with A = 0.52, and
2704 triangles.

-
Figure B.198:
Computed source

with A = 0.72, and
1488 triangles.
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Figure B.192:

Com-

puted source with h =

0.15 and 31,602 trian-

gles.
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Figure B.195:
Computed source
with hmaey = 1.0,

hmin = 0.5 and 1832

triangles.

Figure B.196:
Computed source
with A = 0.64, and
1826 triangles.
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Figure B.199:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.

Figure B.200:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.201: Actual

source.
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Figure B.203:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.
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Figure B.207:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.204:
Computed source
with A = 0.52, and

2704 triangles.
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Figure B.208:
Computed source
with A = 0.72, and

1488 triangles.
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Figure B.202:

Com-

puted source with h =

0.15 and
gles.
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Figure B.205:
Computed source
with hmaey = 1.0,

hmin = 0.5 and 1832

triangles.
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Figure B.209:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.

31,602 trian-

Figure B.206:
Computed source
with A = 0.64, and

1826 triangles.
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Figure B.210:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.211: Actual

source.
.
Figure B.213:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.
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Figure B.217:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.214:
Computed source
with A = 0.52, and
2704 triangles.

B.218:

source

Figure
Computed
with A = 0.72, and
1488 triangles.
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Figure B.212:

Com-

puted source with h =

0.15 and 31,602 trian-

gles.
.
Figure B.215:
Computed source
with hmaey = 1.0,

hmin = 0.5 and 1832

triangles.

Figure B.219:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.
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g
Figure B.216:
Computed source

with A = 0.64, and
1826 triangles.
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Figure B.220:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.221: Actual

source.

R 1aman e 1
| e —— ) [ e e —— ]
2w [EED 2 ED 2=y e 20

Figure B.223:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.
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Figure B.227:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

B.224:

source

Figure
Computed

with A = 0.52, and
2704 triangles.

Figure B.228:
Computed source
with A = 0.72, and
1488 triangles.
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Figure B.222:

Com-

puted source with h =

0.15 and 31,602 trian-

gles.

Figure B.225:
Computed source
with hmaey = 1.0,

hmin = 0.5 and 1832

triangles.
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Figure B.229:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.

Figure B.226:
Computed source
with A = 0.64, and
1826 triangles.

Figure B.230:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.231: Actual

source.

Figure B.233:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.237:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.234:
Computed source
with A = 0.52, and
2704 triangles.
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Figure B.232: Com-
puted source with h =

0.15 and 31,602 trian-

gles.
Figure B.235: Figure B.236:
Computed source Computed source
with hpmax = 1.0, with A = 0.64, and

hmin = 0.5 and 1832

triangles.
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1826 triangles.
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B.238:

source

Figure
Computed
with A = 0.72, and
1488 triangles.
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Figure B.239:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.

Figure B.240:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.241: Actual

source.

Figure B.243:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.
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Figure B.247:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.244:

Computed source
with A = 0.52, and
2704 triangles.

B.248:

source

Figure
Computed
with A = 0.72, and
1488 triangles.
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Figure B.242:

Com-

puted source with h =

0.15 and 31,602 trian-

gles.
.
Figure B.245:
Computed source
with hmaey = 1.0,

hmin = 0.5 and 1832

triangles.

Figure B.249:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.

-
Figure B.246:
Computed source

with A = 0.64, and
1826 triangles.
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Figure B.250:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.251: Actual

source.

Figure B.253:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.
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Figure B.257:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.254:
Computed source
with A = 0.52, and

2704 triangles.

Figure B.252: Com-
puted source with h =

0.15 and 31,602 trian-

gles.
Figure B.255: Figure B.256:
Computed source Computed source
with hpmax = 1.0, with A = 0.64, and

hmin = 0.5 and 1832

triangles.

1826 triangles.

Figure B.258:
Computed source
with A = 0.72, and

1488 triangles.
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Figure B.259: Figure B.260:
Computed source Computed source
with hpmax = 1.2, with A = 0.8, and

hmin = 0.7 and 1172

triangles.

1196 triangles.



Figure B.261: Actual

source.

Figure B.262:

Com-

puted source with h =

0.15 and 31,602 trian-

gles.

Figure B.263:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.264:
Computed source
with A = 0.52, and

2704 triangles.

Figure B.265:
Computed source
with hmaey = 1.0,

hmin = 0.5 and 1832

triangles.

Figure B.266:
Computed source
with A = 0.64, and

1826 triangles.

Figure B.267:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.268:
Computed source
with A = 0.72, and

1488 triangles.
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Figure B.269:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.

Figure B.270:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.271: Actual

source.

Figure B.272: Com-
puted source with h =
0.15 and 31,602 trian-
gles.

Figure B.273: Figure B.274:
Computed source Computed source
with hpax = 0.6, with A = 0.52, and
hmin = 0.45 and 2760 2704 triangles.
triangles.

Figure B.277:  Figure B.278:
Computed source Computed source
with hpax = 1.1, with A = 0.72, and
hmin = 0.6 and 1471 1488 triangles.
triangles.
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Figure B.275: Figure B.276:
Computed source Computed source
with hpmax = 1.0, with A = 0.64, and
hmin = 0.5 and 1832 1826 triangles.
triangles.

-

Figure B.279: Figure B.280:
Computed source Computed source
with hpmax = 1.2, with A = 0.8, and
hmin = 0.7 and 1172 1196 triangles.
triangles.



Figure B.281: Actual

source.

Figure B.283:
Computed source
with hpaxy = 0.6,
hmin = 0.45 and 2760

triangles.

Figure B.284:
Computed source
with A = 0.52, and
2704 triangles.

Figure B.282: Com-
puted source with h =
0.15 and 31,602 trian-
gles.
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Figure B.285: Figure B.286:
Computed source Computed source
with hpmax = 1.0, with A = 0.64, and
hmin = 0.5 and 1832 1826 triangles.
triangles.
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Figure B.287:
Computed source
with hpaxy = 1.1,
hmin = 0.6 and 1471

triangles.

Figure B.288:
Computed source
with A = 0.72, and
1488 triangles.
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Figure B.289: Figure B.290:
Computed source Computed source
with hpmax = 1.2, with A = 0.8, and
hmin = 0.7 and 1172 1196 triangles.
triangles.



Figure B.291: Actual

source.
Figure B.293:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.297:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.294:

Computed source
with A = 0.52, and
2704 triangles.

B.298:

source

Figure
Computed
with A = 0.72, and
1488 triangles.
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Figure B.292:

Com-

puted source with h =

0.15 and 31,602 trian-

gles.
Figure B.295:
Computed source
with hmaey = 1.0,

hmin = 0.5 and 1832

triangles.

Figure B.299:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.

Figure B.296:
Computed source
with A = 0.64, and
1826 triangles.
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Figure B.300:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.301: Actual

source.

Figure B.302:

Com-

puted source with h =

0.15 and 31,602 trian-

gles.

Figure B.303:
Computed source
with Apmax = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.307:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.304:
Computed source
with A = 0.52, and

2704 triangles.

Figure B.308:
Computed source
with A = 0.72, and

1488 triangles.
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Figure B.305:
Computed source
with hmaey = 1.0,

hmin = 0.5 and 1832

triangles.

Figure B.309:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.

Figure B.306:
Computed source
with A = 0.64, and

1826 triangles.

Figure B.310:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.311: Actual

source.
Figure B.313:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.
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Figure B.317:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.314:
Computed source
with A = 0.52, and
2704 triangles.

B.318:

source

Figure
Computed
with A = 0.72, and
1488 triangles.
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Figure B.312: Com-
puted source with h =

0.15 and 31,602 trian-

gles.

Figure B.315: Figure B.316:
Computed source Computed source
with hpmax = 1.0, with A = 0.64, and

hmin = 0.5 and 1832

triangles.

1826 triangles.
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Figure B.319: Figure B.320:
Computed source Computed source
with hpmax = 1.2, with A = 0.8, and

hmin = 0.7 and 1172

triangles.

1196 triangles.



Figure B.321: Actual

source.

Figure B.323:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.327:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

Figure B.324:
Computed source
with A = 0.52, and

2704 triangles.
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Figure B.328:
Computed source
with A = 0.72, and

1488 triangles.
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Figure B.322: Com-
puted source with h =

0.15 and 31,602 trian-

gles.

Figure B.325: Figure B.326:
Computed source Computed source
with hpmax = 1.0, with A = 0.64, and

hmin = 0.5 and 1832

triangles.

1826 triangles.

Figure B.329: Figure B.330:
Computed source Computed source
with hpmax = 1.2, with A = 0.8, and

hmin = 0.7 and 1172

triangles.

1196 triangles.



Figure B.331: Actual

source.

Figure B.333:
Computed source
with Apmax = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.334:
Computed source
with A = 0.52, and
2704 triangles.

Figure B.332: Com-
puted source with h =

0.15 and 31,602 trian-

gles.

Figure B.335: Figure B.336:
Computed source Computed source
with hpmax = 1.0, with A = 0.64, and

hmin = 0.5 and 1832

triangles.

Figure B.337:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

B.338:

source

Figure
Computed
with A = 0.72, and
1488 triangles.
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1826 triangles.

Figure B.339: Figure B.340:
Computed source Computed source
with hpmax = 1.2, with A = 0.8, and

hmin = 0.7 and 1172

triangles.

1196 triangles.



Figure B.341: Actual

source.

Figure B.342:

Com-

puted source with h =

0.15 and 31,602 trian-

gles.

Figure B.343:
Computed source
with hpaxy = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.344:
Computed source
with A = 0.52, and
2704 triangles.

Figure B.345:
Computed source
with hmaey = 1.0,

hmin = 0.5 and 1832

triangles.

Figure B.346:
Computed source
with A = 0.64, and
1826 triangles.

Figure B.347:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

B.348:

source

Figure
Computed
with A = 0.72, and
1488 triangles.

75

Figure B.349:
Computed source
with hpay = 1.2,

hmin = 0.7 and 1172

triangles.

Figure B.350:
Computed source
with A = 0.8, and

1196 triangles.



Figure B.351: Actual

source.

Figure B.353:
Computed source
with Apmax = 0.6,

hmin = 0.45 and 2760

triangles.

Figure B.354:
Computed source
with A = 0.52, and
2704 triangles.

Figure B.352: Com-

puted source with h =

0.15 and 31,602 trian-

gles.

Figure B.355: Figure B.356:
Computed source Computed source
with hpmax = 1.0, with A = 0.64, and

hmin = 0.5 and 1832

triangles.

1826 triangles.

Figure B.357:
Computed source
with hpaxy = 1.1,

hmin = 0.6 and 1471

triangles.

B.358:

source

Figure
Computed
with A = 0.72, and
1488 triangles.
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Figure B.359: Figure B.360:
Computed source Computed source
with hpmax = 1.2, with A = 0.8, and

hmin = 0.7 and 1172

triangles.

1196 triangles.
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