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Abstract 

The Creative Robotics Studio was initiated as an IQP dedicated to exploring the 

potential artistic qualities of robotic technologies. This year, we sought to better understand the 

emotional aspects of human-robot Interaction through studies of robot motion. Specifically, we 

endeavored to analyze the contexts and kinematic quantities of motion in relation to human 

affect using a preliminary survey of human opinions on robotic technologies, and an experiment 

testing human reactions to robotic movements. Using this data, we planned on designing a 

library of independent motions that can be applied to other robotic designs to facilitate more 

effective human-robot interactions. Our results, though less conclusive than initially proposed, 

showed promise for our experimental process and subsequently delivered lexicon. 

 

Mission statement:  

The Creative Robotics Studio seeks to explore how robotic motion affects an audience’s 

emotional response towards the robot itself. The team will develop an experiment to empirically 

measure a spectrum of emotional responses from fear or disgust to comfort or congeniality and 

then use those findings to develop a set of motion guidelines and tools for increasing the 

accuracy and efficacy of Human Robot Interactions.  

Project Objectives: 

1. Develop a library of gestures with the intent of exploring the emotional aspects of 

Human-Robot Interactions 

2. Map the gesture library to the ABB IRB 1600 

3. Design an experimental methodology measuring affective responses based on the 

gesture library. 

4. Conduct the experiment and using the results develop guidelines for using the gesture 

library to improve HRI 
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Executive Summary 

Introduction 

Industrial robots are generally constructed with no common method of communication.  

In an industrial setting the movement of robots is purposefully created to be functional; there is 

no need for an industrial robot to express anything or communicate with a viewer when acting 

alone. However, when an industrial robot is working together with humans, there is a need for a 

means of communication. Factory environments are often loud and would make verbal 

communication impractical. A gesture based communication method would be ideal however no 

standardized library for movement patterns and meanings exists.   

During the course of the project, the team planned to address these issues by creating a 

gesture library using an ABB IRB 1600. In this lexicon, movements are created and recorded 

that are designed to elicit specific emotional responses. In order to ensure that these motions 

are eliciting the appropriate emotion response from the user, an experiment was conducted in 

which subjects observed the motions from the library and then recorded their affective 

responses. This data was then analyzed and used to see if the gestures correlate to the 

intended emotions. Demographic information about the participants was also be recorded in 

order to determine the population being studied.  

Methodology 

We developed a library of gestures containing names and information about each one. 

When organizing our lexicon, it was necessary to define parameters and constraints so that 

others may use it effectively. For this reason, a Task Space Region (TSR), was determined. A 

TSR is a constraining representation of the 3-dimensional reference frame in which the 

proposed gesture takes place (Berenson, Srinivasa, & Kuffner 2011). Typically, when using 

TSRs to define robot-controlled motion, reference frame w would be centered at the origin of an 

object to be manipulated by the robot, but as our gestures are not designed to exclusively 

manipulate objects or environmental elements, some of them are defined by two TSR’s, with the 

latter defining the final pose (Holladay & Srinivasa, 2016). For example, our lexicon uses one 

TSR to define the space in which a robot would wave. This is because waving is a simple, 

repeating gesture that has no starting and ending point.  With these TSRs, we developed a 

lexicon that can be applicable to any robot with the appropriate anatomy. 
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After developing the lexicon we mapped the gestures to an ABB IRB 1600. Several of 

the gestures used an HTC Vive VR system which has controllers that are capable of tracking 

position in 3 dimensions. We used this to track the motion of an actors’ hand. In order to convert 

the motion capture data to a robotic animation, we used the popular animation software Blender 

with a plugin that allows the user to more easily animate ABB robotic arms. The Blender plugin 

can calculate an animation given the data. Once these animations are completed, the animation 

software can output that animation into an array which contains joint positions over time. This 

array can be converted into RAPID code, which is a high level programming language used to 

control ABB industrial robots that is similar to C in syntax. An IRC5 Compact controller, which 

controls the ABB arm, reads this RAPID Code and controls the arm.  

Findings 

For our experiment we were able to gather 30 participants. However, not all participants 

gave valid responses, so some responses had to be removed. In particular for questions 1 

through 4 there were 27, 26, 26, and 29 responses respectively. We performed the principle 

components analysis anyway to show how it might be done, and to suggest recommendations 

for future study. 

Before conducting the principle components analysis we ran the Bartlett test of 

Sphericity over the correlation matrix for the responses to ensure that the samples are not from 

populations with equal variances. The results, which suggest that for all four questions there are 

variances between the gestures, can be seen in the table below. 

Table 1 Significant Variance as Shown by Bartlett test of Sphericity 

 

The principal components analysis for elicited valence responses resulted in the four 

rotated components accounting for 18%, 17%, 15%, and 10% of total variance respectively. The 

first component, RC1, had high factor loadings for the hand animated 'Presentation' gesture, 

and the 'Point' gesture at 50%, 75% and 100% speeds. These gestures all had the robot in an 

arched posed and were performed at a high speed which suggests that RC1 is related to speed 

or arched pose. RC2 had high factor loadings on the 'No, 'Taunt', 'Presentation natural motion', 

and 'Point at 25% Speed' gestures, all of which are low speed gestures. RC3 had high loadings 
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on the 'Bored', 'Cautious', 'Dance natural motion', and 'Look Around natural motion' gestures. 

Only two gestures had high factor loadings on RC4, which makes it difficult to identify. 

The principal components analysis for elicited arousal response resulted in two rotated 

components which accounted for 30% and 25% of the total variance respectively. All of the 

gestures that load highly on the first component could be qualitatively described as slow 

gestures, and all of the gestures that load highly on the second component can be described as 

fast gestures. The three 'Point' gestures at 50%, 75%, and 100% speed had high loadings on 

the second component. This leads us to believe that the first factor of arousal is 'melancholy' 

and the second 'aggressive' or 'high velocity' motions. 

The principal components analysis for the perceived valence responses resulted in five 

rotated components which accounted for 15%, 13%, 13%, 12%, and 12% respectively. 

Unfortunately, the results are perhaps to muddled to interpret, with only half of the gestures 

having a high factor loading.  

The principal components analysis for the perceived arousal responses resulted in four 

rotated components which accounted for 17%, 15%, 12%, and 11% of the total variation 

respectively. The first rotated component, RC1, shows high factor loading for the three high 

speed 'Point' gestures, which strongly suggests that RC1 is related to high speed. RC2 shows a 

high loading on 'Bored', 'Desolation', 'Taunt', and 'Wave'. These gestures are all low speed 

gestures which suggests RC2 is related to low speed. RC3 shows high factor loadings for 

'Cautious' and 'natural motion Look Around' both of which have sudden jerky movements, 

suggesting RC3 is related to smoothness. RC4 shows high loading for 'Curiosity natural motion', 

'Dance natural motion', and 'Present'. These three gestures all have a large scale or TSR, which 

suggests RC4 is related to gesture size. 

Responses by Demographics 

To determine whether or not there was a significant difference in the responses given we 

first determined whether the variance was similar for responses by females and males. A T-test 

was then conducted for each gesture to determine whether or not the samples came from the 

same underlying population, that is whether or not males and females had different responses. 

Across all 4 questions and 19 gestures there were only 14 instances where the probabilities of 

responses being drawn from the same population was below .20, as can be seen in the table 

below. In fact, the ‘Elicited Arousal’ responses were likely drawn from the same population 
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indicating that males and females both reported similarly when asked how excited the gesture 

made them feel. 

Table 2 Results of T-Test to determine whether or not samples came from same underlying population 

 

Gesture Lexicon 

As mentioned previously, a key objective of this project was the development and 

publishing of a lexicon of movements effective in communicating ideas and emotions to 

humans. We hope as this library continues to develop, it will prove an invaluable tool in studying 

and improving HRI. 

In classifying gestures, we analyzed their kinematic properties and their common intents, 

categorizing them in any of the four movement types listed previously. Following the Task-

Space Region template, we also found it useful to track movement of the end-effector 

exclusively. We theorized that this would correlate to interactors' comfort zone and overall 

confidence in the experiment. The information for each gesture can be found in the gesture 

lexicon which is attached to this report. 

Conclusion and Recommendations  

Our findings overall were decidedly less significant than we had hoped. However, with 

this experiment we hoped to define methodologies to more effectively experiment in creative 

robotics. That said, a number of interesting correlations were shown between quantities like 

TSR and comfort zone, as well as those in the preliminary survey results. With smaller sample 

sizes and limited time to execute our experiment, our conclusions are primarily focused on 

improving the experiment methodology and data collection methods.  

After the preliminary survey and the final experiment, we received a lot of comments and 

feedback about our execution of certain things, including question phrasing and lab setup. One 

student asked if we had considered where observers were standing, indicating that each 

respondent to the questionnaire had a different view of the displayed gesture. This issue was 

something we had considered but unfortunately did not have time to integrate into the 
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experiment. Another student, upon receiving our debriefing document, voiced their opinion on 

our hypotheses, stating their unease with higher-velocity and larger-TSR gestures, while 

identifying smaller, slower gestures as relaxed and even “cute”. 

Future Works: 

A future experiment could improve upon this experiment in at least three ways. As 

mentioned before with fifteen subjects standing around the robot not all subjects were facing the 

front of the robot which was the area the gestures were designed to be viewed from. Another 

way in which future works could improve upon this experiment is by having more subjects 

participate in the experiment. The third way in which a future experiment could improve upon 

this experiment is by have a single method of gesture creation. 

The space in which the robot is situated allowed for a maximum of fifteen participants to 

view the robot at a time. However, this number of participants at once prevented all participants 

from viewing from the front of the robot. Since the gestures were designed to be viewed from 

the front some elements of the gesture could have been missed when viewing from the side. 

Additionally, since the viewpoint of each participant was not tracked, this introduces an unknown 

variable that could change the validity of results. Ideally a smaller number of people would be 

brought into the experiment at a time to reduce the problem of location of subjects having 

different views. This would be possible since we had estimated one-hour time slots and had 

finished each trial within thirty minutes.  

The minimum number of participants for the principle components analysis to have 

significance was fifty. However, we only had thirty participants. This limited the capability to 

determine underlying factors. The sign up for the experiment was not announced until within a 

week of the experiment time. Additionally, the experiment was not at an ideal time. Both of 

these problems are due to late scheduling of the experiment. By the time we went to schedule 

the experiment most of the ideal time slots were already taken. As noted above each individual 

trial could be shorter which might encourage more participants as well as allow for more 

flexibility in time slot scheduling. Instead of scheduling a three-hour block, multiple shorter 

blocks could be scheduled. This would increase the chance that potential participates would be 

available to participate.  

As mentioned above some gestures were animated by hand and others used motion 

capture data from an HTC Vive. The natural motion gestures tended to have more keyframes in 

development. Additionally, the natural gestures contained the actor’s hand shaking on a minor 

level. This made the gestures contain a bit of shaking that was not present in the hand animated 
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gestures. At the same time, they more closely simulated how the gesture would be performed 

by a human. A future work could use the already established code for turning data from an HTC 

Vive into blender animations as well as the code from the previous group that allowed blender 

animations to be turned into rapid code to animate gestures more quickly.  

We designing the gestures to use for the performance, most gestures were made to 

mimic a particular gesture of a human. As a result, many of the gestures had underlying context 

to the particulars of the motion. This resulted in the suspected factors not having proper 

variations that held the other factors constant. The point gesture was run at several speeds to 

test if a variation of speed keeping other factors constant would cause a change in responses. 

One potential way to better represent the suspected factors of trajectory, speed, and 

acceleration would be to have a set number base gestures that have different trajectories and 

run each with the same number of variations in speed and acceleration. For instance, if five 

gestures were to be created then each one would be run with five speeds and five accelerations 

leading to 125 different animations to run. This would better represent the effective space of the 

suspected factors.  
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Introduction 

Creative robots are incorporated into a number of mediums from theatrical performances 

with human and robot collaborators, to music performed or created by robots, or even kinematic 

displays that utilize robots. Ignoring philosophical questions about whether or not robots can 

truly be creators of art, it is important to understand how robots are perceived in a creative 

context; to understand how the gestures and movements of robots acting in a creative form 

influence the perception of onlookers. In an industrial setting the movement of robots is 

purposefully created to be functional; there is no need for an industrial robot to express anything 

or communicate with a viewer when acting alone. However, in an artistic setting every aspect of 

what a robot does imparts meaning and must be designed with thought and intention. What 

robotic motion expresses, whether by intention or accident, is just as important as what robotic 

motion accomplishes. 

As industrial robots, in particular, are generally constructed with no common method of 

communication, designers resort to non-verbal means of communication such as gesture.  In 

order to design these gestures, one must first study the connections between emotion and 

expression in humans. Socially Situated Robots, that is, robotic systems for which human 

interaction plays a key role, can be programmed to exhibit simplified versions of human 

characteristics, such as natural cues, distinctive personality, and even emotions. Their important 

roles in research, manufacturing, and education necessitate a set of metrics for quantifying the 

actions these robots and their human users. 

During the course of the project, the team planned to address these issues by creating a 

gesture library for an ABB IRB 1600. In this lexicon, movements are created and recorded that 

are designed to elicit specific emotional responses. All of these movements are capable of 

easily being converted into interpretable commands for a robotic arm. In order to ensure that 

these motions are eliciting the appropriate emotional response from the user, an experiment 

was conducted in which subjects observed the gestures and then recorded their affective 

responses. This data was then analyzed and used to see what features of the gestures caused 

valence and arousal responses. Demographic information about participants was also recorded 

in order to understand the population being studied.   
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Background 

Human Robot Interaction 

As robotics technology advances, human households and industrial environments 

further demand human-cooperative intelligently-designed robots. One survey predicts that 

consumer robotics shipments will double in only 2 years, and then again by 2020 (Wheelock 

2017). As the role of robots in day-to-day life grows, effective human-robot cooperation 

necessitates the implementation of non-verbal communication. Several aspects of human robot 

interaction including human dynamics, human spontaneity, and human safety need to be 

addressed. In one model, developed and analyzed by researchers at Tohoku University, it is 

assumed that a robot interacts with a human user only through a cooperatively manipulated 

object. For example, a large and heavy table is held by both the robot and a human while the 

robot responds with an equal and opposite reaction force to assist and maintain pressure on the 

table (Kosuge & Hirata, 2004). However, it only uses one-way communication (from human to 

robot). When creating robots that are designed to interact with humans, designers must be 

made aware of how humans perceive robots and how to effectively communicate a robot’s 

intentions to ensure human safety and efficacy of task completion. If robots are to become 

ubiquitous they must be able to operate within a social context. 

Robots in Social Contexts 

Human-Robot Interaction is a social field. With home robotics giant iRobot having sold 

over 14 million units of their popular Roomba to date, people are rapidly acquainting themselves 

with how robots can safely and effectively assist in day-to-day life. Though a Roomba is self-

monitoring and able to navigate and charge autonomously, owners will commonly be able to 

watch the robot as it navigates their home. Robots like the Roomba are known as Socially 

Situated: they are surrounded by (e.g., situated in) a social environment that they automatically 

perceive and react to. Tech companies like Google and Samsung are now also producing 

home-connected devices like thermostats, refrigerators, and surveillance systems that will likely 

in the future be able to facilitate complete home automation. These devices are Socially 

Embedded (Terrence, 2003): they are in a social environment and interact with other devices, 

being partially aware of these interactions. This is in contrast to socially situated robots, which 

react to human interaction automatically and are not strictly aware of such interactions. A 

socially embedded unit is one that is considered part of a social structure, versus an individual 
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unit in an external environment (Dautenhahn et al. 2002) For example, a robotic secretary would 

be socially embedded. Integrating these robots into our typical human social structure 

necessitates an efficient and implicit communication method.  

HRI in Military 

Robots are already extremely popular in organized military environments. The 

attractiveness of a mobile, non-human and therefore dispensable unit is only increased when 

this unit can effectively operate with only a few operating instructions. These instructions must 

often be simple and efficiently idiomatic in order to ensure simple interaction between operators 

and robots (Springer, 2013). For these systems, the assumption is usually made that the 

operators are not robotics engineers. As such, most of the HRI is comprised of a few 

instructions from a pilot or mission specialist. 

HRI in Medical Care 

In medicine robots are currently used in teleoperated scenarios for long-distance or high-

precision surgery, enabling dangerous and risky operations to be performed by doctors with little 

danger to patients. Robot-assisted surgery is among the fastest growing trends in medical care. 

In 2001, surgeons successfully removed a gallbladder using a teleoperated robotic system in a 

location in France 7000 kilometers from a patient in New York (Pushkar, 2012). A precise and 

efficient system that can operate independent of expensive training and time cost is invaluable 

to every major Medical Center. Once again, these robot systems operate primarily through 

teleoperation instructions from a single surgeon or specialist. HRI is not as easy/useful to study 

in these cases. However, some medical centers are looking into using robots for autism therapy. 

According to the CDC, 1 in 68 children in the US are diagnosed with ASD (Autism Spectrum 

Disorder). This prominent issue is characterized by abnormal development in social interaction 

and communication, something which numerous researchers plan to combat with robotic toys 

like the NAO platform. 

HRI in Manufacturing 

There are a number of companies manufacturing robots that are used in manufacturing and 

assembly, materials handling, and welding. According to the International Federation of 

Robotics, over 253,000 such robots were sold in 2015 Their popularity and widespread 

acceptance can be primarily attributed to reduced labor costs, increased output rate, and the 

elimination of dangerous, dirty, or dull tasks from human life. Autonomous self-monitoring 
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material handlers can fashion components while large arm-like robots with many degrees of 

freedom can assemble these components on an assembly line. Ideally in this factory 

environment, human involvement is minimal, enabling human workers to focus on more 

important tasks and only be called in for unit maintenance or upgrades. During this time, units 

are shut down and repairs are made with little or no active interaction between the robots and 

humans. Units are reactivated and the system continues with no hassle and little to no more 

human interaction. This relationship can result in a biased view of robots as cold and unfeeling, 

and impossible to interact with humans in any normal capacity. One company, Rethink 

Robotics, developed a manufacturing robot named Baxter that displays its eyes so that it can 

respond to tasks and humans with expressions and gaze (Knight, 2012). Baxter can be easily 

programmed to complete manufacturing tasks and responds to incidents such as manufacturing 

pieces falling. In addition, Baxter is somewhat aware of human movement around it and is 

designed to be able to sense objects in its path to avoid causing harm to operators. As many 

humans experience more close interactions with autonomous robots, robot manufacturers 

design robots with more ergonomic shapes and manipulators. In 2005 a design for a Variable 

Stiffness Actuator was published by the IEEE. This design used tension on drive-train 

mechanisms to control the precision and “stiffness” of a robot’s limbs (Bicchi, 2005). With lower 

stiffness, the robot's movements were more imprecise, but also proved more like natural human 

motion. These designs ensure safety as well as comfort while interacting with human beings. 

HRI in Entertainment 

Robots have been a part of human culture at least since the age of the Greeks who had 

the god Hephaestus and his mechanical servants in their mythos. More recent examples, such 

as R2D2 from Star Wars and Rosie from The Jetsons, have become both icons and inspiring 

benchmarks for robotics technology. In a more creative context, robotic displays such as 

“Please Smile” pose serious questions about how people interpret robots as artists, and explore 

the theory of intentionality (Nam and Choi, 2012). Industrial robots are also making a splash in 

today’s popular culture, with popstars such as Lady Gaga using several ABB industrial robots in 

her Grammys performance to make her keyboard ‘come alive’. These industrial robots where 

programmed by Andy Robot, developer of a creative tool for Maya that allows users to animate 

robots (Lalwani, 2016). As robots become more prolific in art and culture it is ever-more 

important to understand how to make human-robot interactions more effective. 
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Problems in HRI 

Robots that work in these fields miscommunication in three key areas: Articulation, 

Intentionality, and Interpretation (Lu & Smart, 2011). Articulation problems are defined by the 

mechanical limitations that robots possess. The articulation of robots depends on the design of 

the robot. Some robots are only able on or within a plane and others are able to move with 

multiple degrees of freedom. This reduces the space in which a robot can attempt to both 

perceive and produce communication. Whether due to a device’s physical degrees of freedom 

or to its inability to mimic social cues like body language or vocal intonation, articulation 

challenges designers to build controllers and actuators that can use motion to generate subtext 

in their conversations. The kinematic aspects of typical robotic motion are shown in figure 1 In a 

measurement of human-vs-robot movements, kinematic quantities of a typical industrial robot 

such as speed and acceleration were shown to exhibit precisely linear graphs, resulting in what 

human observers called “unnatural” or “jerky” motion, as shown in figure 2 (Baber et al, 2016). 

This is in stark contrast to measurements of human movement, which, though less precise, 

were much smoother and more natural (see figure 2).  .   

 

Figure 1 – A speed vs. time plot for ‘functional’ robotic motion 

 

Figure 2 – An example of human motion 
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Often the intention of robotic motion can be ambiguous to human viewers, which 

decreases human-robot task effectiveness. For example, if a robot exhibits a simple horizontal 

sweeping gesture it could be a deictic motion or a metaphoric one depending on factors like 

velocity and boundary angles. These quantities can be defined by a time series of TSRs, or 

Task-Space Regions. A Task-Space Region is a definition in 3-dimensional space of a system’s 

boundaries and positions (Berenson et al. 2011). This region assists in creating detailed 

frameworks for a robot’s movements, especially of the end-effector. This can clarify intentions 

with relatively minimal environmental context. If TSRs are plotted along a time axis, they can 

define the change in active space that a robot needs. 

The last communication issue, Interpretation, arises due to the disconnect between the 

actions a robot performs and the surrounding context. A modern robot may not be as aware of 

its environment as a human, and thus cannot make minor adjustments to its state. In the case of 

an industrial ABB robot, units are designed as simple but precise 6-DOF arms with 

interchangeable end-effectors, like that shown in figure 3. These robotics arms are quite 

versatile and strong, but this functionality in movement articulation can lead to interpretation 

issues. 

 

Figure 3 – An ABB robot 

Using Gestures and Motion in Communication 

One particularly interesting aspect of HRI is motion in relation to communicating and 

influencing emotion. It is worth noting that some humanoid robots designed for human 

communication make simple head or arm movements to convey different ideas/context (Li, 

2011). These machines are designed specifically with HRI in mind. However, the vast majority 

of modern robots are built with a focus on practicality and function, such as those built for an 
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industrial environment. In a joint study between the University of British Columbia and General 

Motors developed new methods of HRI to facilitate close cooperation between humans and 

robots in an industrial environment. In their experiment, human test subjects were shown video 

recordings of a human and a robot interacting. At the end of each video, either the human or 

robot would  use a motion to issue a command. The test subjects were then asked what the 

other should do in response to the command, as well as how easy it was for subjects to 

understand the gesture. Implicit information like this is often expressed in social interactions 

through gestures and cues such as body orientation. In human interactions, gently pointing is 

often used to indicate an object or direction, and is a supplement to vocal communication. In 

contrast, pointing quickly and sharply can also be used to indicate emotion such as aggression 

or anger. This shows how different kinematic features can change the interpretation of a motion, 

and why it is important to take users' affective responses into consideration when designing a 

solution for increasing the efficacy of human-robot interactions.  

Gesture-Based Communication 

Many HRI situations call for a more versatile and bilateral model of communication in 

order to facilitate effective cooperation. A more effective communication model might include 

both recognizing and reproducing expressive motions or gestures. Several research projects 

have explored human tracking and movement recognition with the hopes of generating 

equivalent motions in mechanical systems. In one study by Huang and Mutlu they determined 

that the best method for studying how people use gestures was through a scenario in which a 

narrator describes a multi-step procedure. In their example a presenter narrated the process of 

making paper with a projected visual aid. Some of the more important and exemplary motions 

that were selected included movements like pointing and size indication. This study then divided 

motions, hereafter referred to as gestures, into 4 distinct groups: Deictic, Iconic, Metaphoric, 

and Beat gestures. Deictic gestures include object indication, as well as direct references to 

processes or groups (ex: Narrator points at a particular person or thing). Iconic gestures are 

used to emphasize action verbs or adjectives (ex: Narrator uses distance between his hands to 

indicate width of object). Metaphoric gestures are characterized by making abstract motions that 

commonly refer to cultural language ideas (ex: Narrator sharply rotates his hand to refer to the 

"next" day). Finally, beat gestures are generally simple and short, presenting the next idea or 

concept to be explained (I.e. a sharp hand jerk when making a list). These four categories 

classify one aspect of human motion. Our project features of gesture elicits and influences the 

perception of affect. 
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Motion is an important aspect of human communication as can be seen by the number 

of colloquialisms relating to motion such as “head hung in shame”, “jumping for joy”, and 

“quaking in his boots”. Many studies have shown that humans can perceive emotions through 

analyzing motion, and several studies have demonstrated humans can identify emotions used in 

expressive performances such as dance (Sawada et al. 2003, Camurri et al. 2003, Shikanai et 

al. 2013). A 2016 study performed by Paul Bremner of the University of the West of England 

and Ute Leonards of the University of Bristol, tested if humanoid robots performing a gesture 

along with speech was as effective at communication as the same audio with a video of a 

human performing the same gesture (Bremner & Leonards, 2016). The study had a robot 

perform a gesture at the same time as a verbal indication of the gesture being performed and 

then asked participants to select which picture best depicted the action from multiple images. 

The same verbal prompt was repeated with a video of a human performing the same gesture. 

All verbal prompts had two possible actions they could reference and were repeated with 

gestures for each action. When given both verbal and visual cues, it was found that the robotic 

gestures were equally likely to be properly identified as the recording of the human performing 

the same gesture. The study had one gesture where the robotic performance was significantly 

lower than the human performance. This was thought to be caused by lack of articulation in the 

robot’s hand.  

Lack of articulation, which is often influenced by the number of degrees of freedom a 

robot possesses, is only one way in which robots vary from human form. The more human a 

robot appears, the more likely humans are to empathize with it, until it reaches the uncanny 

valley, as seen in figure 4.  

 

Figure 4 – A graph depicting the drop in familiarity known as The Uncanny Valley 
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The Uncanny Valley as a measure of comfort indicates a direct relationship between the visual 

similarity of robots to humans and subjects’ comfort with those robots. This may indicate that 

robots that have gestures and gesture features similar to humans may be more comfortable to 

interact with, and may increase interpretability of cooperative interaction. In contrast, in 

animation and film, a skeleton’s gestures are commonly over-exaggerated to compensate for 

unrealistic figure construction or modeling (Kopp & Wachsmuth, 2000). When conveying 

messages and themes to viewers, these exaggerations are overlooked along with these 

models. This can be observed as an alternative method of dealing with the uncanny valley 

mentioned earlier. In order to avoid the models residing in the repulsive region of human 

likeness, animators make the models move in a way that decreases the motion’s likeness to 

that of human motion, which avoids the Uncanny Valley.  

 Equally important to the motion aspects of a gesture is the robotic embodiment of the 

gesture, that is to say the form of the robot. We analyzed human and animal versions of several 

gestures in a natural context and mapped those gestures to an industrial arm while attempting 

to retain the kinematic and spatial elements of these gestures.  

Experiments in HRI 

When studying HRI it is important to consider these social and emotional effects that 

robots have when interacting with humans. This is compounded by the significance of social 

interaction to human well-being and communication. Take for example, the aforementioned 

issue of intentionality. When attempting to collaborate on tasks, subjects said that functional 

robot motion (motion generated without attempting to be predictable or legible) made it difficult 

to tell what the robot was trying to do. This made the subjects less trusting of the robots and 

decreased task efficiency (Dragan et al. 2015). When robots, even industrial ones, are 

programmed without giving thought to how the motion affects the human emotionally, it can 

produce motion with ambiguous intentions. This makes human users less trusting and slower to 

collaborate (ibid). In order to understand how robot motion affects human perception, it is 

important to know what work has been done around the measurement of emotion, the human 

perception of gesture, and human perception of robot gesture. 

Measuring Emotion 

Emotions can be described as physiological and psychological reactions to events found 

to be significant to the perceiver. Developing a model to represent the emotional space has 

been a significant focus of psychologists. For example, one such model posits that all emotions 
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exist in a two dimensional space defined by the arousal and valence axes as can be seen in 

figure 5 (Russel 1980). 

   

Figure 5 - The Circumplex Model of Affect 

Increasing evidence has suggested that there is likely a third dimension to affect, but there is 

some disagreement on how it affects the model of emotion or how it is labeled (Russel and 

Mehrabian 1977, Daly et al. 1983). Daly suggested that intensity is the third state, and it rises 

from the Circumplex Model of Affect to form a conical model as seen in figure 6. In this model 

more intense emotions would lie at the base of the cone, and more neutral emotions would lie at 

the tip.  

 

Figure 6 - A representation of the Circumplex Model of Affect with a third dimension, intensity 

Finally, the Pleasure-Arousal-Dominance (PAD) model suggests that the third dimension, 

dominance, is the amount of control over a situation experienced (Mehrabian 1996). It is 

important to understand that these are all models for the affective space, and each one seeks to 

explain some degree of variance in that model with the number of dimensions and the 

representation of those dimensions in a multi-dimensional space. Both the Pleasure-Arousal-

Dominance and Circumplex model are widely accepted and have been used for numerous 

studies to measure affective responses.  
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 In 2003, an experiment conducted using the Kismet robot (seen in figure 7) sought to 

explore how a robot using emotional models derived from ethological observations could 

effectively communicate its desires in a social interaction with a human subject. The Kismet 

robot perceives the users’ affective state by using auditory and visual sensors to interpret facial 

and vocal cues. In addition, the Kismet robot can express itself through the use of facial 

expressions, body posture, gaze, and ‘vocal babbles’. The researchers modeled Kismets 

emotional space using a 3D model of affect, and used its drives to influence how it moves 

through that space. The experiment found that users were able to effectively identify Kismet’s 

facial expressions when viewing both still images and video capture of the Kismet robot. In 

addition, when asked to display affective intent towards Kismet (approval, attention, prohibition, 

and soothing), the users used Kismets social cues to determine when their intent had been 

effectively communicated. Users also displayed affective mirroring; when Kismet lowered its 

head and closed its body language users mirrored the affective cues (Breazeal 2003). 

 

Figure 7 - The Kismet Robot 

Perceiving Motion 

Human gesture is socially expressive and emotionally dense. Take for example, the art 

of dance, in which certain choreographed events and motions can be used to affect an 

audience’s emotional response, specifically that arousal is more easily manipulated than 

valence (Stevens et al. 2009). In a 2009 study researchers seeking to develop a means for 

continuously measuring emotion used PDAs to record two dimensional emotion data taken in 

response to dance performances. The study found that choreographed events could be used to 

easily manipulate an audience’s arousal response. Although it’s important to consider that these 

performances were multi-modal, containing musical performances as well as dance, there can 

be no doubt that motion and gesture have a social significance and emotional impact (Stevens 
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Figure 9 An arm with six degrees of freedom indicating 
objects on a table 

et al. 2009). One study published in 2012 asked users to select items out of a box and place 

them in a kitchen area as instructed by a HONDA robot, which can be seen in figure 8. Subjects 

were either given unimodal (speech only) or multimodal (speech and gesture) commands by the 

robot. Some of the multimodal commands included gestures that did not match the vocal 

command. When asked to answer questions relating to their perception of the robots, subjects 

indicated that the multimodal commands made the robot seem more ‘lively’, ‘fun-loving’, 

‘communicative’, ‘active’, ‘engaged’, and ‘sympathetic’. While this research only used 

representational gestures (deictic, iconic, and pantomimic gestures) it still suggests that human-

robot interaction can be greatly improved by giving thought to how gesture influences subjects’ 

perception of the robot (Salem et al. 2012). 

 

Figure 8 - A Honda Asiimo robot giving multi-modal instructions to a participant 

Robot Motion 

In an experiment done by Paul Bremner and Ute Leonards from the University of The 

West of England, they tested whether or not gesture would help people understand robot 

intentions in an intuitive and efficient way (Bremner & Leonards 2016). This theory was tested 

using a NAO humanoid robot platform from Aldebaran Robotics. This robot can mimic the entire 

human body allowing for full body gestures. Their experiments had positive results with a robotic 

presenter improving the HRI. A humanoid robot is not necessarily required for testing the 

emotional response of certain gestures. Researchers at the University of British Columbia  have 

performed gesture experiments using a 6-DOF arm with an anthropomorphic end effector as 

seen in figure 9. They manually animated the arm using 

human gestures as reference. During the experiment 

participants were able to actually predict and identify the 
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gestures of the arm for a given situation (Gleeson et al, 2013). This research was conducted 

with the intention of developing a gestural lexicon to aid in human-robot collaboration in 

manufacturing. 

Certain aspects of motion, such as velocity and acceleration, can also influence how a 

motion is perceived; changes in both articulation and interpretation can be linked to kinematic 

features. For example, a gesture performed with high velocity and acceleration will often 

indicate a state of high arousal, whereas low velocity and acceleration will indicate low arousal; 

this was found to hold true in an experiment using a robotic arm to display several different 

motions, none of which were designed with emotional intent (Sial et al. 2016). A study at the 

Tokyo Institute of Technology had participants watch dances that were meant to convey certain 

emotions including joy, sadness, and anger. The participants in this study were able to perceive 

the intended emotion from the dance, but with different accuracy depending on the emotion they 

were supposed to detect (Sawada et al. 2003). The various dances were tracked by computers 

to measure the kinematics involved. The study found clear differences in the velocity of motions 

from dances that were meant to convey different emotions. For example, dances which 

participants perceived as angry were made up of motions with more velocity and acceleration 

than dances that produced different emotional responses. Although dances that conveyed joy 

and sadness didn’t show a significant difference in velocity or acceleration, “a longer traveled 

distance was contributed to the joy expression”. Another study used a Roomba and an iCat 

robot to find how perception of emotion was affected by types of motion. They found that 

acceleration did not affect valance but there was a correlation between acceleration and 

arousal. In addition, curvature had an influence on valence, arousal, and dominance, but not all 

were significant (Saerbeck and Bartneck 2010). This strongly suggests that other kinematic 

features of gesture could have an impact on movement in the emotional space, and that 

gestures performed by robots may have a similar (if not identical) impact on the viewer’s 

perception of affect. This does not confirm if robotic motion can change a viewer’s affective 

state; however, many studies have been done that show inanimate things such as color, 

scenery, and other visual stimuli can influence affective state. 

 Our project compiles many of these movements into a library of information like 

kinematics, prior research, context variables, and measurement tools to provide future 

researchers and designers with a baseline for non-verbal human-robot interaction. This 

endeavor is important because there is currently no standardized method of 

generating/measuring human-interactive robot motion.   
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Methodology 

Our project seeks to understand how certain types of robotic motion affect human-

robotic interactions, specifically in relation to emotional responses. We developed three primary 

goals: 1) Develop a gesture library that covers a large emotional space. 2) Map these gestures 

to the ABB IRB 1600, an industrial robotic arm with six degrees of freedom. 3) Present the 

gestures to human subjects so that the subjects’ emotional responses can be recorded. 

Analysis of the data was intended to allow a mapping of certain emotional and logical responses 

to the gestures giving us a better understanding of what emotions humans are likely to respond 

to types of robotic motion with.  

Generating the Gesture Library 

With the design of intuitive actions in mind, we needed a methodical way to measure 

and classify organic gestures and quantify their kinematic variables. Previously, we mentioned a 

study in which four categories of gestures were commonly used in the expression of ideas or 

the description of a narrative. As these categories were analyzed and compiled with human 

subjects, animal gestures may fall out of these four categories. In addition, these categories did 

not pertain to emotion so they may not be suited for classifying the emotional content of 

gestures. 

When organizing our lexicon, it was necessary to define parameters and constraints so 

that others are able use it effectively. For this reason a Task Space Region (TSR) was 

determined. A TSR is a constraining representation of the 3-dimensional reference frame in 

which the proposed gesture takes place (Berenson et al. 2011). TSRs are made up of three 

components: 𝑇𝑤
𝑂, 𝑇𝑒

𝑤,𝐵𝑤. The first of these values, 𝑇𝑤
𝑂, represents the transform from the origin 

to the task reference frame w. 𝑇𝑒
𝑤 quantifies the offset of the end-effector in the coordinates of 

reference frame w. The last quantity, 𝐵𝑤 as seen in figure 10, is a 6x2 matrix defining the 

boundaries of the task/gesture in frame w.  
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Figure 10 

 

Typically, when using TSRs to define robot-controlled motion, reference frame w would be 

centered at the origin of an object to be manipulated by the robot, but as our gestures are not 

designed to exclusively manipulate objects or environmental elements some of them were 

defined with an origin at the base of the robot (Holladay & Srinivasa, 2016). For example, our 

lexicon uses the TSR to define the space in which a robot would wave. This is because waving 

is a simple, repeating gesture that has no starting and ending point.  With these TSRs, we 

developed a lexicon that can be applicable to any robot with the appropriate anatomy. 

Mapping to ABB Robots 

In order to properly simulate understandable gestures, we first had to define a method of 

mapping natural movement to a robotic arm. This presented multiple challenges since the 

gesture library itself only outlined very abstract gestures. There are several methods that could 

have been used to generate a path for the robot to follow. Points could be manually plotted 

using any tool available for the robotic platform to create the gesture. Another method is 

analysis of existing video of gestures. This can be done in by plotting points on the video frame-

by-frame which would reduce the risk of personal bias (when compared to animating the 

gestures by hand). The downside to this technique 

is that video data contains two dimensions and 

cannot easily capture three-dimensional motion. A 

third alternative is using motion capture data to 

build a three-dimensional model of the gesture. 

From this data joint angles, velocities and 

accelerations could be calculated in a procedural 

manner to map to the robot.  

In order to map gestures to a robotic arm 

Figure 11 
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using analysis of existing videos, we originally used a program called Physmo to track motion in 

videos of the desired gestures. Physmo outputs two dimensional coordinates of points set to be 

tracked for every frame of the video. Using this data, velocity and acceleration can be calculated 

and used to form the gesture. For gestures that mostly take place in a two dimensional plane 

such as the salutation gesture this technique will work,  but this method is limited by the fact 

there is no depth in two dimensional video. One workaround for this limitation would be to 

capture a video of the gesture from two perpendicular directions and use that data to interpolate 

the motion in three dimensions. Unfortunately, Physmo ended up not being used due to 

difficulties obtaining good data from two separate video feeds. 

For more complicated movements we attempted to use a visual fiducial system called 

AprilTags. These tags and the associated algorithm are designed to be able to determine 6DOF 

position when viewed with a camera (Olson 2011). The first iteration of using this system 

included on tag on the shoulder, one on the elbow, and one on the wrist of the person to record. 

A python script was developed to convert the coordinates of the three points into quaternions for 

the arm to follow. This lead us to discover that mapping of a humanoid arm to a robotic arm with 

a three dimensional data set was not as simple as in two dimensions. The robotic arm has six 

degrees of freedom which does allow it to reach any pose within mechanical limits (see figure 

11). However, this does not allow for a one-to-one mapping from human joints to robotic joints. 

The quaternions that were calculated would have required several of the single degree of 

freedom links in the arm to turn in multiple directions. 

Next we decided to only track position and orientation of the end effector. This involved 

removing the tracker on the elbow and only using the shoulder tracker for a starting position. 

The problem of converting a pose from a human arm to a robotic arm then became a matter of 

determining what the zero configuration of the robotic arm should be for our purpose. We were 

able to get points plotted in Blender, the software we used to animate the arm, but it did not look 

close to what was desired.  

Another option that was considered was using a motion capture system. These systems 

rely on a series of two or more cameras with fixed orientations. Markers are placed on the 

subject to track key points that are recorded by the system. This technique was used in a 2016 

study “From Human Motion Capture to Industrial Robot Imitation” (Laguillaumie et al. 2016). In 

this study they used seven points on the human arm to track the motion of the shoulder, arm 

and forearm. The respective joint angles were run through a script to limit motions to within the 

bounds of the arm and avoid singularities. We were unable to get access to a standard motion 

capture system, however we did have access to an HTC Vive VR system which has controllers 
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that are capable of tracking position in 3 dimensions. We used this to track the motion of an 

actor’s hand. Then we fed the data into an inverse kinematic algorithm that output joint angles 

for the robotic arm to follow the path.  

At the same time we manually animated gestures based on existing video footage. The 

animator would watch a video of the gesture and try to get the robot make a similar motion. 

We decided to keep both the motion captured gestures and hand animated gestures to 

see if there was a difference in perception between the two types of gestures. The motion 

captured gestures had oscillations that made them seem more natural than the precise motions 

of the animated gestures. 

Once motion data for the gestures was computed the next challenge was to display 

those gestures on an ABB IRB 1600. In order to convert the motion capture data to a robotic 

animation, we used the popular animation software Blender with a plugin that allows the user to 

more easily animate ABB robotic arms. The motion capture data was converted into joint angles 

per frame. The Blender plugin can calculate an animation given these joint angles. Once these 

animations were completed, the animation software converted that animation into an array 

which contains joint positions over time. This array was converted into RAPID code, which is a 

high level programming language used to control ABB industrial robots that is similar to C in 

syntax. An IRC5 Compact controller, which controls the ABB arm, read this RAPID Code and 

controlled the arm. The RAPID Code can also be simulated in RobotStudio, which is proprietary 

software made by ABB. We used RobotStudio to accurately simulate the arm’s gestures before 

loading them onto the physical IRB 1600. This was done not only to save time but to ensure the 

arm behaved properly, for example, did not collide with anything. 

Designing the Survey and Presenting Gestures 

After we assimilated our library of gestures we performed an experiment to gather the 

participant’s affective responses to the gestures and used the collected data to determine which 

aspects of the motion influence subjects’ reactions. In researching how to conduct our 

experiment, we intended to find best practices for experimental design, to discover how to 

collect data about the population before the experiment, and how to analyze our data in a 

meaningful way. 

 The initial step in designing our experiment was to select the population we wanted to 

draw subjects from. While we would have liked to gather data about the general US population, 

it would have been impractical to try and test subjects from across the country so instead we set 
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our eyes on a smaller population: faculty and students from local colleges. We chose not to 

draw subjects from only WPI because it has a large proportion of S.T.E.M students. To get a 

baseline for the populations’ feelings about robotics and to gather other demographic 

information we sent out an exploratory survey to the nearby colleges. By reaching 200 

individuals from all colleges in the area we could survey the Worcester population of 36,000 

college students with a maximum 9% margin of error and 99% confidence level. (Smith, 2013).  

When developing the survey, we decided that the most relevant and useful information 

would be demographics about sex, level of education, age, familiarity with computerized 

devices, and comfort with different scenarios involving human-robot-interaction. We used a 

series of categorical questions to determine basic background information; categorical 

questions are easy for the user to answer and are better for analysis than open ended questions 

because they require no clean-up. To infer relations between comfort with robotic situations and 

level of technical skill we will ask participants to rate their comfort with several human-robot 

interactions on a 5 point Likert-scale. When designing the survey questions, these Likert scales 

assisted in keeping data discrete and easy to process. The Likert scale uses five points, from 

zero to four, to indicate an opinion between complete discomfort and complete comfort with 

provided scenarios. Many researchers regard seven points as the upper-level of Likert Scale 

efficiency and response coverage, but to save time and ensure compatibility with small mobile 

devices we provide five points that where numbered with only the extremes labeled (Allen & 

Seaman, 2007). The midpoint was included to accommodate the potentially significant portion of 

our sample size which has not formed an opinion on robotics in general (Weems & 

Onwuegbuzie, 2001). We put several iterations of the survey through a small (15-20 person) 

pilot study of friends, family, and WPI students. With their feedback, we made small edits to 

questions and input methods. 

 After gathering information about the population, we conducted an experiment in which 

we displayed gestures from the gesture library and asked participants to answer four questions 

about their own affect as elicited by the robot and their perception of the robot’s affect. The first 

question asked the participant to rate their pleasure (dislike-like) as caused by the gesture on a 

9 point Likert-scale with endpoints labeled as displeasure and pleasure, respectively. This was 

done to measure the participant’s valence. We chose to use 9 points because any additional 

points after 9 fail to add significant accuracy to responses. The second question asked the user 

to rate their excitement on a 9 point Likert-scale with the endpoints labeled as calm and excited 

which gave us a measure of the participant’s arousal. The third and fourth questions used the 
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same format but asked the participant how they thought the robot was feeling based on the 

gesture it performed. Each gesture was performed with no end effector.  

 After the experiment was conducted, we analyzed the data to see which elements of the 

gestures were causing variation among the affective responses of the participants. We wanted 

to discover how the kinematic and contextual elements of the gestures influenced the level of 

emotional impact they had on participants. The simplest way to analyze our gesture data would 

have been to plot certain aspects of the gestures’ motion (velocity, acceleration, jerk, Quantity of 

Motion, TSR size, etc...) against the participant’s affective responses and analyze how valence 

and arousal are influenced by those variables. Other analytical methods such as Pearson’s 

correlation could have told us how different variables are linearly related to valence and arousal. 

Finally, we used a principle components analysis to determine which gestures are grouped 

together and then found what kinematic and contextual elements they share to determine how 

those elements influence participant’s affective responses.  

We did by using the gestures as ‘variables’ and then performing an R-type principle 

components analysis to discover the elements of the gestures that influence affect. This means 

we needed at least 5 variables (gestures) for each expected factor, and at least 5 observations 

per variable, with at least 50 observations. After gathering the data, we chose to measure the 

sampling adequacy or perform a Bartlett test of sphericity over the data. This told us whether 

the gestures were correlated enough to have some sort of underlying structure. We then 

performed the factor analysis and determined the number of factors to extract using a scree 

plot. Once we determined the number of underlying factors and determined what elements of 

motion load off of them we began to develop guidelines for motion based off of our lexicon. 

These guidelines are suggestions for robotic movement in human-robot interactions that can 

help to develop interactions with more depth and subtext. 
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Findings 

Among the data received from the preliminary survey and experiment questionnaire, we 

also learned much about measuring effective space and classifying motions. We decided to use 

three key factors to classify our final gestures: velocity, acceleration, and task-space region. 

With hand-animated gestures, we controlled gesture speed and trajectory in accordance with 

the gesture's desired response. When classifying motion-captured gestures, we grouped them 

similarly, taking values like mean acceleration, peak velocities, and area-of-effect. The results of 

our experiment can be seen below. 

Survey Results 

As previously stated, the preliminary survey was tested using a pilot study of 20 friends 

and family members of the survey designer. Subsequently, the aforementioned improvements 

were made to the questions of the survey and the survey was distributed to the various 

universities of Worcester, MA. Including those of WPI, a total count of 87 respondents 

contributed to the final survey data.  

Our goal was to obtain a significant portion of the Worcester College population in order 

to represent the population of our peers as well as their respective faculty members. Among the 

schools and departments contacted were Becker's Psychology Department, upon IRB approval. 

As it happened, 90.6% of respondents were students, all undergrad, from schools like Holy 

Cross, Becker, NYU, and Texas A&M. The breakdown of Majors can be seen below. 
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Figure 12 Breakdown of Participant's Majors 

 

As shown, 60% of student respondents major in an engineering field, with the three 

largest categories being 19% in Robotics Engineering, 10% in Mechanical Engineering, and 

11% in Chemical Engineering. Other engineering majors included Biomedical Engineering (5%), 

Civil Engineering (2%), and Electrical and Computer Engineering (7%). Among the student 

respondents, 31% majored in science majors, including Computer Science, Biology, Chemistry, 

and Political Science.   

With the other demographic data, we generated cross-tabulations demonstrating some 

interesting relationships between. When asked about their general interest in robotics, the 

majority of respondents selected "somewhat interested" or "very interested". We theorized that 

their experience with Robots would likely correlate to their comfort in situations involving robots, 

such as in robotic performances, robotically cooked meals, and robotic home security. The 

graph below breaks down these situations and displays the comfort of those most interested in 

robotics. 
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Figure 13 - Comfort Levels for each situation 

Here, each colored block shows the total count of comfort level (a sum of Likert responses on a 

1-4 scale) for each situation, a quantity shown clearly to correlate to interest in robotics. 

Unfortunately, the standard deviation for our subjective Valence and Activation questions 

was too severe to draw any accurate conclusions, and our sample size of 87 was far too small 

compared to our desired quantity of 200. 

Experiment Process and Results 

The number of participants that was required for the factor analysis was at least fifty. 

Thirty participants took part in the experiment. This resulted in a reduction in the confidence 

value of the findings.  Issues in scheduling the experiment lead to the announcement being only 

five days before the experiment.  

There were two CNC machines around the robot as well as other industrial machines nearby. 

Further the environment had large yellow mirrors surrounding the robot as part of a safety 

mechanism. This environment is likely unfamiliar to many of the subjects and may have 

influenced their responses.   

When the participants entered the room for the experiment they chose a position to stand. A 

semicircle was formed resulting in a different view for each person. Since most of the gestures 

were meant to be viewed from the front this also could have influenced their responses.  
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Principle Components Analysis 

Our initial goal when developing the gesture lexicon was to show how a set of candid 

gestures might be mapped to an industrial robot, and then determine what underlying factors 

influenced subjects' perceived and elicited affect (that is how they thought the robot was feeling, 

and how they felt themselves) when viewing gestures performed by the industrial robot. This 

would enable us to provide standards and suggestions to increase the efficacy of human-robot-

interaction. The gesture lexicon we initially developed contained 20 gestures and a set of 

features for each gesture including a description, video sample, and classification of the gesture 

as deictic, iconic, metaphoric, or beat gesture. As we began to develop methods for transposing 

those gestures from their original model to a 6 DOF industrial arm, we added implementation 

specific fields to those gestures to try and describe the gesture in the context of the industrial 

arm. These fields include velocity, acceleration, end-of-arm tooling, and other contextual 

features that place our gestures in a hypothetical 'gesture space', and allow us to add more 

gestures to broadly cover the aforementioned 'gesture space'. This would allow us to better 

identify what features influenced subjects' affective responses to gestures by performing a 

factor analysis with the gestures as variables. This helps us understand the underlying factors 

that influence a subjects' affective response. Unfortunately, due to time constraints and issues 

with developing a reliable method to turn naturally generated motion into RAPID code for the 

ABB 1600 industrial arm we could only implement 19 gestures on the industrial arm within the 

time frame of our project. These gestures were a combination of natural motion gestures and 

hand animated gestures. 12 of the gestures were generated by animating a scale model of the 

industrial arm in Blender and then exporting RAPID code of the animation. The other 7 were 

generated by using an HTC Vive to track an actor's hand or head movements, and then using 

inverse kinematics to have the robot track the actors hand or head in its own space. The final 

implementation of the 19 gestures for the experiment used no end-of-arm tooling, and only one 

kinematic feature of the motion was fully explored. To determine whether or not velocity had a 

significant impact on subjects' affective responses we displayed one gesture 4 times at varying 

speeds throughout the experiment. We would like to have implemented gestures with other 

varying features so that we could more easily see how subjects' affective responses were 

influenced by things such as acceleration, smoothness of trajectory, or the scale of the gesture 

(TSR). In addition, factor analysis is usually performed with a great number of responses, as 

this helps to increase the validity of the results. Normally it is suggested to have n > 50 

responses, whereas some suggest having n > 100. At n > 50 factor loadings of .75 have a 

significance of .95% (.05% chance of the null hypothesis being true). For our experiment we 
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were able to gather 30 participants. However, not all participants gave valid responses, so some 

responses had to be removed. In particular, for questions 1 through 4 there were 27, 26, 26, 

and 29 responses respectively. We performed the principle components analysis anyway to 

show how it might be done, and to suggest recommendations for future study. 

Before conducting the principle components analysis, we ran the Bartlett test of 

Sphericity over the correlation matrix for the responses to ensure that the samples are not from 

populations with equal variances. To perform this test, we used the 'cortest.bartlett' function in 

the 'psych' package for R x64. The results, which suggest that for all four questions there are 

variances between the gestures, can be seen in the table below. 

Table 3 Significant Variance as Shown by Bartlett test of Sphericity 

 

Next we used the 'princomp' and 'screeplot' functions to determine the number of factors to 

extract for each question. As can be seen in the scree plots for each graph (see Appendix A), 

there is a clear elbow at 4, 2, 5, and 4 components for questions 1 through 4, respectively. 

Finally, principal components analysis was performed using 'principal' function from the 'psych' 

package with the correlation matrix for the given question, the suggested number of factors, and 

the varimax orthogonal rotation.  

The principal components analysis for elicited valence responses resulted in the four 

rotated components accounting for 18%, 17%, 15%, and 10% of total variance respectively. The 

first component, RC1, had high factor loadings for the hand animated 'Presentation' gesture, 

and the 'Point' gesture at 50%, 75% and 100% speeds. These gestures all had the robot in an 

arched posed and were performed at a high speed which suggests that RC1 is related to speed 

or arched pose. RC2 had high factor loadings on the 'No, 'Taunt', 'Presentation natural motion', 

and 'Point at 25% Speed' gestures, all of which are low speed gestures. RC3 had high loadings 

on the 'Bored', 'Cautious', 'Dance natural motion', and 'Look Around natural motion' gestures. 

Only two gestures had high factor loadings on RC4, which makes it difficult to identify. 

The principal components analysis for elicited arousal response resulted in two rotated 

components which accounted for 30% and 25% of the total variance respectively. All of the 

gestures that load highly on the first component could be qualitatively described as slow 

gestures, and all of the gestures that load highly on the second component can be described as 
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fast gestures. The three 'Point' gestures at 50%, 75%, and 100% speed had high loadings on 

the second component. This leads us to believe that the first factor of arousal is 'melancholy' 

and the second 'aggressive' or 'high velocity' motions. 

The principal components analysis for the perceived valence responses resulted in five 

rotated components which accounted for 15%, 13%, 13%, 12%, and 12% respectively. 

Unfortunately, the results are perhaps to muddled to interpret, with only half of the gestures 

having a high factor loading.  

The principal components analysis for the perceived arousal responses resulted in four 

rotated components which accounted for 17%, 15%, 12%, and 11% of the total variation 

respectively. The first rotated component, RC1, shows high factor loading for the three high 

speed 'Point' gestures, which strongly suggests that RC1 is related to high speed. RC2 shows a 

high loading on 'Bored', 'Desolation', 'Taunt', and 'Wave'. These gestures are all low speed 

gestures which suggests RC2 is related to low speed. RC3 shows high factor loadings for 

'Cautious' and 'natural motion Look Around' both of which have sudden jerky movements, 

suggesting RC3 is related to smoothness. RC4 shows high loading for 'Curiosity natural motion', 

'Dance natural motion', and 'Present'. These three gestures all have a large scale or TSR, which 

suggests RC4 is related to gesture size. 

 

Responses by Demographics 

If there are any differences in responses due to subjects’ demographic groups, this could 

provide valuable insight into how a socially embedded robot may want to change its gestures 

when interacting with person(s) from those demographic groups. As an example, if Male 

subjects have higher elicited excitement responses due to certain kinematic features such as 

speed or smoothness of motion and the desired goal of an instance of human-robot interaction 

is to calm the subject, the designer of that robot may want to reduce the speed of the gestures 

the robot uses. 

 To determine whether or not there was a significant difference in the responses given we 

first determined whether the variance was similar for responses by females and males. A T-test 

was then conducted for each gesture to determine whether or not the samples came from the 

same underlying population, that is whether or not males and females had different responses. 

As can be seen in figure 14, only certain gestures are likely drawn from different populations.  
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Figure 14 - T test results; probability that male/female responses are drawn from the same mean, per gesture 

Across all 4 questions and 19 gestures there were only 14 instances where the probabilities of 

responses being drawn from the same population was below .20, as can be seen in table 2. In 

fact, the ‘Elicited Arousal’ responses were likely drawn from the same population indicating that 

males and females both reported similarly when asked how excited the gesture made them feel. 

Table 4 Results of T-Test 

 

Gesture Lexicon 

As mentioned previously, a key objective of this project was the development and 

publishing of a lexicon of movements effective in communicating ideas and emotions to 

humans. We hope as this library continues to develop, it will prove an invaluable tool in studying 

and improving HRI. 

In classifying gestures, we analyzed their kinematic properties and their common intents, 

categorizing them in any of the four movement types listed previously. Following the Task-

Space Region template, we also found it useful to track movement of the end-effector 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Elicited Valence 0.22 0.73 0.57 0.16 0.20 0.16 0.08 0.36 0.32 0.39 0.02 0.30 0.40 0.38 0.60 0.29 0.52 0.12 0.07

Elicted Arousal 0.47 0.25 0.27 0.93 0.46 0.50 0.98 0.72 0.21 0.62 0.35 0.77 0.43 0.65 0.22 0.98 0.59 0.98 0.61

Percieved Valence0.35 0.27 0.90 0.75 1.00 0.45 0.86 0.86 0.94 0.19 0.05 0.55 0.92 0.60 0.01 0.22 0.17 0.92 0.65

Percieved Arousal0.13 0.26 0.14 0.91 0.83 0.47 0.56 0.72 0.72 0.31 0.24 0.90 0.15 0.76 0.46 1.00 0.49 0.03 0.28

Gesture
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exclusively. We theorized that this would correlate to interactors' comfort zone and overall 

confidence in the experiment.  

TSRs 

In calculating the TSRs using the final RAPID code export data, there were several steps 

to generating clean and precise data. Our code takes a list of jtags containing angles for each of 

the six joints on the arm. The data is read as [deltaT, angleA, angleB, angleC, angleD, angleE, 

angleF], with each time-stamped frame separated by commas. We wrote a simple python script 

to read in each .txt file and output the calculated values for a cartesian representation of the 

end-effector's location in time. 

The python function took angleB and angle C (keeping in mind that the rapid code 

angles for joint C is dependent on those of joint B, giving them independent reference frames) 

and output the j and k components of a cartesian vector. This system assumes that the robot 

zero position, that is, [deltaT, 0, 0, 0, 0, 0, 0], is as shown in figure 15. 

 

Figure 15 - Joint identification and robot zero-position 

As shown in figure 15, the robot zero-position keeps link BC at a 90 degree angle from a 

global y-axis, while link CD is held at a 0-degree angle from the global y-axis. This showed the 

angles to have the following simple relationship.  

angC = angB + 90 
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angB = globB +90 

Where globB is the angle that link BC makes with the horizontal y –axis. Therefore, the global C 

angle was defined as: 

globC = angC + globB – 90 

Once the angles were transformed into a global reference frame, it was simple to use basic 

trigonometry to calculate the Cartesian position using the dimensions of the robot with vector 

addition. 

Once the script printed values, we output them to a functional excel spreadsheet to 

confirm the math, and took the max i, j, and k values for the x, y, and z components of the TSR. 

One of the interesting quantities we thought would be interesting was the normalized distance 

from our local origin, that is, the base of the robot's joint A. The figures below compare two 

versions of the curiosity gesture, one motion-captured using our HTC Vive, and one traced 

using our Blender plugin. 

 

Figure 16: Mo-capped Curiosity Gesture 

 

 

Figure 17: Blender-traced Curiosity Gesture 

Obviously, the motion-captured data shows much less smooth and consistent data, picking up 

twitches in movement exhibited by a shaky human actor. The displayed graphs essentially show 

the change in size of the effective space in which the robot is active at that point in time. This 

quantity over time demonstrates the wide range of the end-effector's movement, but it does not 
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provide a precise boundary value for the operating space of each gesture. With the TSR's we 

are able to demonstrate the quantity of motion that the end-effector exhibits in each case. The 

TSR for each gesture is given as a min/max range for the X, Y, and Z global axes, and can be 

seen as part of the lexicon master document, attached to our report. 

Gesture Velocity Analysis: 

Along with Calculating the TSR's for each gesture the team also calculated the velocities 

over time for each one. This was done by taking the joint positions array used to animation and 

turning them into an excel spreadsheet, after that MATLAB was used to graph the angles and 

angular velocity of each joint. The idea being that gestures with high velocities will result in the 

gestures bring more uncomfortable to watch. 

 

 

Figure 18: Joint Angles 

 

Figure 19 Joint Velocities 
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Figure 20 

 

Figure 21 

 

 

In the figures above one can see the difference between a low velocity gesture 

(boredom) and a high velocity gesture (Indication). With each different colored line representing 

a different joint of the robot. After looking at the experiment results the participants rated the 

high velocity gestures as being far more displaceable compared to the low velocities gestures. 

The high velocities gestures also appeared to be more energetic with the participants rating 

them high on the arousal scale. This these results seemed to conform to the original postulate 

that that faster gestures are more uncomfortable to watch. It is not only high velocity gestures 

that are seen as uncomfortable but it is also gestures that have rapid changes in velocity and 

direction, jerky movements. These types of movements could be observed in gestures 

generated with motion capture data, contrasting the manually animated gestures that have been 
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synthetically smoothed out This however is not taking into account the noises the robot makes 

at high speeds which might be disturbing to the participants. 

Conclusions & Recommendations 

We used the term Creative Robotics to generally refer to robotic systems in artistic 

senses or environments. Indeed, many interesting projects have explored the use of robots in 

performances such as dances or symphonies. In our case, we decided to focus on the 

fundamentals of art; that is, the potential to elicit emotion through expression. 

In many artistic expressions, there are some form of gesture or meaningful motion. 

When singing, dancing, or acting, there are implicit and explicit body languages. In 

presentations or speeches, performers commonly emphasize points with hand motions. As 

stated previously, we designed this experiment to analyze the kinematic quantities of these 

motions in gesture analysis. 

Our findings overall were decidedly less significant than we had hoped. However, with 

this experiment we hoped to define methodologies to more effectively experiment in creative 

robotics. That said, a number of interesting correlations were shown between quantities like 

TSR and comfort zone, as well as those in the preliminary survey results.  

With smaller sample sizes and limited time to execute our experiment, our conclusions 

are primarily focused on improving the experiment methodology and data collection methods.  

After the preliminary survey and the final experiment, we received a lot of comments and 

feedback about our execution of certain things, including question phrasing and lab setup. One 

student asked if we had considered where observers were standing, indicating that each 

respondent to the questionnaire had a different view of the displayed gesture. This issue was 

something we had considered but unfortunately did not have time to integrate into the 

experiment. Another student, upon receiving our debriefing document, voiced their opinion on 

our hypotheses, stating their unease with higher-velocity and larger-TSR gestures, while 

identifying smaller, slower gestures as relaxed and even “cute”. 

Future Works: 

A future experiment could improve upon this experiment in at least three ways. As 

mentioned before with fifteen subjects standing around the robot not all subjects were facing the 

front of the robot which was the area the gestures were designed to be viewed from. Another 
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way in which future works could improve upon this experiment is by having more subjects 

participate in the experiment. The third way in which a future experiment could improve upon 

this experiment is by have a single method of gesture creation. 

The space in which the robot is situated allowed for a maximum of fifteen participants to 

view the robot at a time. However, this number of participants at once prevented all participants 

from viewing from the front of the robot. Since the gestures were designed to be viewed from 

the front some elements of the gesture could have been missed when viewing from the side. 

Additionally, since the viewpoint of each participant was not tracked, this introduces an unknown 

variable that could change the validity of results. Ideally a smaller number of people would be 

brought into the experiment at a time to reduce the problem of location of subjects having 

different views. This would be possible since we had estimated one-hour time slots and had 

finished each trial within thirty minutes.  

The minimum number of participants for the principle components analysis to have 

significance was fifty. However, we only had thirty participants. This limited the capability to 

determine underlying factors. The sign up for the experiment was not announced until within a 

week of the experiment time. Additionally, the experiment was at 10 am on a Saturday. On the 

campus of the university early morning on Saturday is not normally a highly active time. Both of 

these problems are due to late scheduling of the experiment. By the time we went to schedule 

the experiment most of the ideal time slots were already taken. As noted above each individual 

trial could be shorter which might encourage more participants as well as allow for more 

flexibility in time slot scheduling. Instead of scheduling a three-hour block, multiple shorter 

blocks could be scheduled. This would increase the chance that potential participates would be 

available to participate.  

As mentioned above some gestures were animated by hand and others used motion 

capture data from an HTC Vive. The natural motion gestures tended to have more key frames in 

development. Additionally, the natural gestures contained the actor’s hand shaking on a minor 

level. This made the gestures contain a bit of shaking that was not present in the hand animated 

gestures. At the same time, they more closely simulated how the gesture would be performed 

by a human. A future work could use the already established code for turning data from an HTC 

Vive into blender animations as well as the code from the previous group that allowed blender 

animations to be turned into rapid code to animate gestures more quickly.  

We designing the gestures to use for the performance, most gestures were made to 

mimic a particular gesture of a human. As a result, many of the gestures had underlying context 

to the particulars of the motion. This resulted in the suspected factors not having proper 
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variations that held the other factors constant. The point gesture was run at several speeds to 

test if a variation of speed keeping other factors constant would cause a change in responses. 

One potential way to better represent the suspected factors of trajectory, speed, and 

acceleration would be to have a set number base gestures that have different trajectories and 

run each with the same number of variations in speed and acceleration. For instance, if five 

gestures were to be created then each one would be run with five speeds and five accelerations 

leading to 125 different animations to run. This would better represent the effective space of the 

suspected factors.  
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Appendix A – PCA Results 
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Question 1 PCA Results:  

principal(r=cor(data),nfactors=4,rotate="varimax",n.obs=27) 

Principal Components Analysis 

Call: principal(r = cor(data), nfactors = 4, rotate = "varimax", n.obs = 27) 

Standardized loadings (pattern matrix) based upon correlation matrix 

             RC1   RC2   RC3   RC4   h2   u2 com 

Gesture.1  -0.13  0.07  0.69 -0.26 0.56 0.44 1.4 

Gesture.2   0.01  0.05  0.65  0.39 0.58 0.42 1.7 

Gesture.3  -0.20  0.33  0.28  0.25 0.29 0.71 3.5 

Gesture.4   0.48  0.08  0.39 -0.20 0.43 0.57 2.4 

Gesture.5   0.28 -0.34  0.75  0.00 0.76 0.24 1.7 

Gesture.6   0.08  0.17  0.10  0.65 0.47 0.53 1.2 

Gesture.7  -0.12 -0.03  0.14 -0.52 0.31 0.69 1.3 

Gesture.8   0.25  0.26  0.68  0.20 0.63 0.37 1.8 

Gesture.9   0.03  0.86 -0.09  0.08 0.75 0.25 1.0 

Gesture.10  0.27  0.78 -0.16 -0.04 0.71 0.29 1.3 

Gesture.11  0.67  0.03  0.38 -0.05 0.60 0.40 1.6 

Gesture.12 -0.05  0.87  0.08  0.36 0.89 0.11 1.4 

Gesture.13 -0.40  0.10  0.28  0.64 0.65 0.35 2.2 

Gesture.14 -0.07  0.63  0.29 -0.01 0.49 0.51 1.4 

Gesture.15 -0.08  0.48  0.47 -0.46 0.67 0.33 3.0 

Gesture.16 -0.60  0.26  0.07 -0.30 0.52 0.48 1.9 

Gesture.17  0.68  0.08 -0.18 -0.04 0.51 0.49 1.2 

Gesture.18  0.91  0.17  0.01 -0.04 0.86 0.14 1.1 

Gesture.19  0.80 -0.12  0.23  0.23 0.76 0.24 1.4 

  

                       RC1  RC2  RC3  RC4 

SS loadings           3.44 3.19 2.84 1.95 

Proportion Var        0.18 0.17 0.15 0.10 

Cumulative Var        0.18 0.35 0.50 0.60 

Proportion Explained  0.30 0.28 0.25 0.17 

Cumulative Proportion 0.30 0.58 0.83 1.00 

  

Mean item complexity =  1.7 

Test of the hypothesis that 4 components are sufficient. 

  

The root mean square of the residuals (RMSR) is  0.09  
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with the empirical chi square  82.68  with prob <  0.91  

  

Fit based upon off diagonal values = 0.86 

-------------------------------------------------------------------------------- 

Question 2 PCA Results 

> principal(r=cor(data2),nfactors=2,rotate="varimax",n.obs=26) 

Principal Components Analysis 

Call: principal(r = cor(data2), nfactors = 2, rotate = "varimax", n.obs = 26) 

Standardized loadings (pattern matrix) based upon correlation matrix 

             RC1   RC2   h2   u2 com 

Gesture.1   0.64  0.30 0.50 0.50 1.4 

Gesture.2   0.66  0.15 0.46 0.54 1.1 

Gesture.3   0.52  0.39 0.42 0.58 1.9 

Gesture.4   0.15  0.75 0.59 0.41 1.1 

Gesture.5   0.06  0.71 0.51 0.49 1.0 

Gesture.6   0.84  0.03 0.71 0.29 1.0 

Gesture.7   0.56  0.21 0.36 0.64 1.3 

Gesture.8   0.61  0.26 0.45 0.55 1.3 

Gesture.9   0.62  0.00 0.39 0.61 1.0 

Gesture.10  0.56  0.52 0.57 0.43 2.0 

Gesture.11  0.16  0.63 0.42 0.58 1.1 

Gesture.12  0.41  0.36 0.30 0.70 2.0 

Gesture.13  0.67  0.00 0.45 0.55 1.0 

Gesture.14  0.60  0.30 0.45 0.55 1.5 

Gesture.15  0.85 -0.05 0.73 0.27 1.0 

Gesture.16  0.83 -0.14 0.71 0.29 1.1 

Gesture.17 -0.05  0.88 0.77 0.23 1.0 

Gesture.18  0.10  0.86 0.75 0.25 1.0 

Gesture.19  0.09  0.91 0.83 0.17 1.0 

  

                       RC1  RC2 

SS loadings           5.69 4.69 

Proportion Var        0.30 0.25 

Cumulative Var        0.30 0.55 

Proportion Explained  0.55 0.45 

Cumulative Proportion 0.55 1.00 
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Mean item complexity =  1.3 

Test of the hypothesis that 2 components are sufficient. 

  

The root mean square of the residuals (RMSR) is  0.11  

with the empirical chi square  103.16  with prob <  0.98  

  

Fit based upon off diagonal values = 0.92 

--------------------------------------------------------------------------------- 

Question 3 PCA Results 

> principal(r=cor(data3),nfactors=5,rotate="varimax",n.obs=26) 

Principal Components Analysis 

Call: principal(r = cor(data3), nfactors = 5, rotate = "varimax", n.obs = 26) 

Standardized loadings (pattern matrix) based upon correlation matrix 

             RC4   RC5   RC2   RC3   RC1   h2   u2 com 

Gesture.1   0.12  0.78 -0.06  0.15 -0.15 0.68 0.32 1.2 

Gesture.2   0.68  0.02  0.05  0.32  0.16 0.59 0.41 1.6 

Gesture.3   0.03  0.45  0.62  0.24  0.16 0.68 0.32 2.3 

Gesture.4   0.88 -0.03 -0.07 -0.12 -0.02 0.79 0.21 1.1 

Gesture.5  -0.10  0.06 -0.74  0.33  0.18 0.70 0.30 1.6 

Gesture.6  -0.08 -0.08  0.72  0.01  0.24 0.59 0.41 1.3 

Gesture.7   0.01 -0.83  0.09  0.08 -0.29 0.78 0.22 1.3 

Gesture.8   0.84  0.11 -0.02  0.17 -0.05 0.75 0.25 1.1 

Gesture.9   0.20  0.09  0.26 -0.01  0.77 0.71 0.29 1.4 

Gesture.10 -0.21  0.16  0.05  0.17  0.73 0.63 0.37 1.4 

Gesture.11  0.13 -0.04 -0.16  0.69  0.27 0.59 0.41 1.5 

Gesture.12  0.54  0.03  0.33 -0.20  0.43 0.63 0.37 3.0 

Gesture.13  0.12  0.50  0.30 -0.35  0.27 0.55 0.45 3.3 

Gesture.14  0.18  0.35  0.40  0.59  0.14 0.68 0.32 2.8 

Gesture.15  0.31 -0.01 -0.18 -0.46  0.13 0.36 0.64 2.3 

Gesture.16 -0.17  0.15  0.20 -0.74  0.07 0.65 0.35 1.4 

Gesture.17  0.27 -0.25 -0.40 -0.08  0.54 0.59 0.41 3.0 

Gesture.18  0.17 -0.57 -0.44  0.31  0.24 0.70 0.30 3.1 

Gesture.19  0.37 -0.40 -0.18  0.32  0.44 0.62 0.38 4.2 

  

                       RC4  RC5  RC2  RC3  RC1 

SS loadings           2.77 2.50 2.40 2.32 2.29 

Proportion Var        0.15 0.13 0.13 0.12 0.12 
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Cumulative Var        0.15 0.28 0.40 0.53 0.65 

Proportion Explained  0.23 0.20 0.20 0.19 0.19 

Cumulative Proportion 0.23 0.43 0.63 0.81 1.00 

  

Mean item complexity =  2 

Test of the hypothesis that 5 components are sufficient. 

  

The root mean square of the residuals (RMSR) is  0.09  

with the empirical chi square  74.7  with prob <  0.8  

  

Fit based upon off diagonal values = 0.86> 

----------------------------------------------------------------------------- 

Question 4 Results 

> principal(r=cor(data4),nfactors=4,rotate="varimax",n.obs=26) 

Principal Components Analysis 

Call: principal(r = cor(data4), nfactors = 4, rotate = "varimax", n.obs = 26) 

Standardized loadings (pattern matrix) based upon correlation matrix 

             RC1   RC2   RC3   RC4   h2   u2 com 

Gesture.1   0.02  0.63  0.39  0.01 0.55 0.45 1.7 

Gesture.2  -0.35 -0.21  0.77 -0.07 0.77 0.23 1.6 

Gesture.3   0.26  0.49  0.13  0.03 0.33 0.67 1.7 

Gesture.4   0.08  0.03  0.26  0.68 0.54 0.46 1.3 

Gesture.5   0.21 -0.13 -0.02  0.72 0.58 0.42 1.2 

Gesture.6  -0.05  0.63 -0.34 -0.25 0.58 0.42 1.9 

Gesture.7  -0.45 -0.24 -0.28  0.51 0.60 0.40 3.0 

Gesture.8  -0.22 -0.06  0.79  0.13 0.70 0.30 1.2 

Gesture.9  -0.67  0.10  0.14  0.17 0.50 0.50 1.3 

Gesture.10  0.46  0.37  0.37 -0.03 0.49 0.51 2.9 

Gesture.11  0.07  0.23 -0.25  0.65 0.54 0.46 1.6 

Gesture.12  0.18  0.06  0.44 -0.32 0.33 0.67 2.2 

Gesture.13  0.25  0.29 -0.18 -0.19 0.22 0.78 3.4 

Gesture.14 -0.10  0.67  0.02 -0.12 0.48 0.52 1.1 

Gesture.15 -0.11  0.71 -0.32  0.10 0.62 0.38 1.5 

Gesture.16 -0.20  0.59 -0.06  0.17 0.42 0.58 1.4 

Gesture.17  0.82 -0.05 -0.24  0.14 0.76 0.24 1.2 

Gesture.18  0.65 -0.24 -0.11  0.28 0.58 0.42 1.7 

Gesture.19  0.85  0.01  0.06  0.16 0.76 0.24 1.1 
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                       RC1  RC2  RC3  RC4 

SS loadings           3.14 2.82 2.28 2.10 

Proportion Var        0.17 0.15 0.12 0.11 

Cumulative Var        0.17 0.31 0.43 0.54 

Proportion Explained  0.30 0.27 0.22 0.20 

Cumulative Proportion 0.30 0.58 0.80 1.00 

  

Mean item complexity =  1.7 

Test of the hypothesis that 4 components are sufficient. 

  

The root mean square of the residuals (RMSR) is  0.11  

with the empirical chi square  101.55  with prob <  0.47  

  

Fit based upon off diagonal values = 0.77 

 

Question 1 Loadings 

 

  



 
Creative Robotics Studio  56 
 

 

Question 2 Loadings 

 

 

Question 3 Loadings 
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Question 4 Loadings 

 


