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Abstract 
This project provided the Montachusett Regional Planning Committee with 

recommendations for residential renewable technologies to promote in the Montachusett area. 

The report analyzed current energy consumption patterns, the installation and running costs for 

renewable technologies, and developed a payback period analysis for a comparison. The project 

used climate and weather data, available cost data for renewable technologies, and historical 

energy utility costs to make these assessments. A method was devised to determine payback 

period for each device. Then, based on payback period and monthly savings, made 

recommendations for which technologies we feel that the MRPC should promote and try to 

develop in the area.  
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Introduction 
Throughout history, mankind has relied on renewable energy technologies in the forms of 

harnessing wind, biomass burning, and hydropower. It was only during the advent of the 

Industrial Revolution that coal and other fossil fuels began to outperform these renewable 

technologies in energy output, accessibility, and convenience. Nevertheless, concerns about peak 

coal and the limited capabilities of coal mining surfaced as early as 1870. French professor and 

inventor Augustin Mouchot voiced his concerns about the limitations of coal and the geopolitical 

constraints that a fossil fuel based economy could impose. "Eventually industry will no longer 

find in Europe the resources to satisfy its prodigious expansion... Coal will undoubtedly be used 

up. What will industry do then?" (Kovarik pg. 1, 2011) However, coal mining techniques would 

continue to improve, and the peak coal concerns of a generation would be alleviated. 

Concerns on the limitation of fossil fuels never truly went away, but the infrastructure of 

the United States would develop to depend on coal, oil, and natural gas long before the 

repercussions of those actions were understood. By 1920, coal had replaced wood as the primary 

method of home heating in United States cities due to its widespread availability and lower price. 

Presently, a full half of all electricity produced in the United States is done via coal burning 

(EIA.gov, 2011). Oil comprises 93% of all energy in the United States used for transportation. 

Natural gas and oil make up the majority of home heating appliances, especially in the colder 

states (EIA.gov, 2012). These current consumption patterns cannot continue indefinitely. 

Transitioning out of a fossil fuel based economy has long been a concern of both scholars 

and industrialists alike. Harold Hibbert, founder of the Division of Cellulose Chemistry of the 

American Chemical Society, was famous for his body of work relating to plastics and wary of 

unlimited sources of oil. After the founding of the Division of Cellulose Chemistry in 1922, 

Hibbert would devote much of the rest of his life to developing plastics from renewable sources 

(Wolfram, 1956). Famed industrialist Henry Ford was also a believer in the limited lifespan of an 

oil economy. By the early 1920’s, Ford was outfitting Model Ts with plastic parts derived from 

soy plants. Model Ts and the newer Model As were designed to operate on both gasoline and 

biomass-derived ethanol but by 1927, Ford was losing market dominance and ethanol burning 

cars were phased out in order to compete with General Motors (Fekete, 2007). Once again, 

market forces continued to favor fossil fuel use and development over the alternatives. 
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 The modern push for alternative energies can be traced back to 1956 and the publishing 

of Hubbert’s Peak Theory. Initially ignored at the time, this theory has come to dominate our 

understanding of the limitations of fossil fuels. Hubbert’s Peak Theory correctly predicted that 

the peak oil production in the United States would occur between 1966 and 1972, in actuality it 

occurred in 1970 (Heinburg, 2003). During the 1950’s, the post-war boom  in the United States 

allowed for the development of the expensive piping and infrastructure necessary to provide 

natural gas to residential homes. This decade also marked the first time oil eclipsed coal as the 

primary source of energy in the United States due to the growing use of the automobile 

(DOE.gov, 2007). By the time peak oil occurred in the United States, the Organization of 

Petroleum Exporting Countries (OPEC) had formed and Americans were unprepared for the 

1973 energy crisis, which quadrupled the price of a barrel of oil (Maugeri, 2006). It was during 

the 1970’s that research into alternative energy began in earnest. 

 For the first time in history, an energy infrastructure transition will need to be made based 

on the availability of a resource, not its’ convenience. The renewable energy to coal transition 

fueled the industrial revolution, oil had allowed for the transportation and automobile boom in 

the 1950’s, and nuclear energy had once purported to soon make electricity free only to be 

severely limited by the disasters at Chernobyl and more recently Fukushima (Blair, Kay, and 

Howe, 2011). In every one of these transitions, the amount of energy which could be extracted 

from a given volume of fuel increased. Modern Americans have relied on these increases in 

“energy density” to both fuel their economy and establish their current consumption patterns 

(Smil 2010). However, the transition back to renewable technologies will not have this luxury.  

 When considering the switch from fossil fuel technologies to renewable technologies, 

two issues must be addressed. First, the energy density of fossil fuels surpasses that of existing 

renewable technologies, meaning that any existing renewable device must be larger than a fossil 

fuel device meant for the same purpose and output (Smil 2010). Secondly, modern renewable 

technologies cannot match the industrial output of fossil fuel boilers and work best on a regional 

scale that takes into account the climate and efficiencies of the technology. In order to combat 

this, renewable technologies must be considered by region and implemented on a scale beneficial 

to a specific technology, not the energy demands of a population. Early adoption and less 
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reliance on fossil fuels can make the transition out of a fossil fuel based economy much less 

painful for the individual adopter. 

 Renewable energy technologies often rely on the local climate, making maintenance, 

running costs, and expected output values inaccurate and hard to understand (Hand, Baldwin, et 

al, 2012). This means that evaluations for renewable energy devices must be done on an 

individual and regional basis. Renewable technologies performance is often given in a “best 

case” or “best location” scenario which is not at all helpful to early adopters. These figures can 

misrepresent the performance and thus payback period and monthly savings that the adopters are 

hoping to achieve.  

 The purpose of this project is to develop regional metrics and expected returns for 

residential renewable energy devices if they were retrofitted into an existing Montachusetts 

home. Describe how the technologies work, what they cost, and how they can be adopted by a 

residential homeowner in this area. This will be done using a payback period analysis to show 

the amount of time needed to recoup initial losses and generate monthly savings. This payback 

period analysis will include a regional evaluation of the renewable technologies, an energy use 

profile for Montachusetts residents, and the current grants, subsidies, and tax credits that may 

apply to such a renewable device located in the area. This information will then be given to the 

Montachusett Regional Planning Committee to assist them in developing a renewable energy 

plan of action. With this data, the group hopes to be able to make a set of recommendations for 

the MRPC to pursue in the region. 
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Background 
 Federal and state promotions of renewable energy technologies have encountered 

resistance in the past and been met with mixed results. The implementation of subsidies purports 

to lower the cost of these technologies in the short term in order to allow them to compete with 

established fossil fuel technologies. However, these subsidies cannot be indefinite, the need to 

promote or increase these subsidies long term would imply that such technologies are not viable 

and can never truly compete with the establishment. Imposing stricter regulations on emissions 

has also been attempted. These programs usually claim to be taking into consideration the 

externalities of producing unclean methods of energy generation and create an economic 

incentive to reduce such emissions. Some cases of direct government financing of renewable 

technologies have been attempted. Normally, the goal of direct financing is to promote research 

and implementation of these technologies in the country and provide “green jobs”. However, 

allegations of cronyism and the failure of unsound investments imply that such financing is often 

done for political rather than economic gain. This review looks at some of the more recent 

attempts of Federal and state governments to promote renewable energy technology. 

 The Federal Residential Renewable Energy Tax Credit program was started in 2006 and 

has been scheduled to continue until at least 2016. This program promotes renewable 

technologies for homeowners by providing up to 30% of the cost of installation of a renewable 

energy device to be claimed as a tax credit for the fiscal year in which it was installed. The 

program has been met with much success. Initially only covering solar-related technologies, it 

was extended to wind, geothermal, and biomass options for residences in 2008. The 30% tax 

credit is currently the largest and most important discount available to homeowners, drastically 

lowering the initial investment required of homeowners and potentially making renewable 

energy devices competitive with nonrenewable technologies. The results of this program are 

uncertain as it is ongoing. Most of the technologies we reviewed qualify for such a tax credit and 

that reduction in cost is factored into our payback period analysis.  

 In some parts of the country, state subsidies match or supersede government incentives. 

California has long been a leader in the wind industry due to its early promotion of the 

technology and large scale state subsidies that supplement existing federal ones. From 2004 to 

2008, the United States became the largest producer of wind energy worldwide thanks to huge 
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state subsidies in California, New Jersey, and other states that attracted large amounts of 

investment capital in those areas (Hinman, 2011). The subsequent financial collapse of 2009, 

however, lowered the price of fossil fuels and dried up available investor capital. The wind 

industry in the United States has largely been at a standstill since this time. The financial 

collapse exposed the relative instability of wind power as an emerging industry. While 

technological increases in the efficiency of energy generation and storage of wind power will 

continue to make the technology more competitive, current evaluations of the viability of wind 

power must be based on locally available subsidies and the fluctuating prices of fossil fuels 

(Hinman, 2011). 

 Environmentalists have promoted emissions control as method of reducing greenhouse 

gases and curbing reliance on foreign fossil fuels. The Clean Air Act of 1969 included a 

provision for a cap-and-trade system to be implemented for SO2 emissions. While such a 

program was successful at reducing total emissions, its ability to promote renewable technology 

over the fossil fuel alternatives is questionable (Wooley, 2001). While the Clean Air Act set 

limits on the allowable emissions a given factory or plant was allowed to produce, businesses 

could circumvent this limit two different ways. The first was the cap-and-trade approach where 

businesses exceeding their emissions output could buy emissions credits from other businesses 

who were producing under their allotted emissions numbers. This first approach made the 

benefits for reducing emissions twofold. Businesses were given increased incentive for 

efficiency by installing scrubbers or switching to a more environmentally fuel source or method 

of production. Additionally, they would then be able to sell their excess credits to other 

businesses. The other method by which they were allowed to overproduce emissions was by 

participating in the Conservation and Renewable Energy Reserve (CRER) program. The CRER 

program granted additional emissions credits to a business that could demonstrate they were 

investing in renewable sources of energy or by demonstrating a significant increase in efficiency. 

While the cap-and-trade system is considered successful, there was little use of the CRER 

program. It was both easier and made more economic sense to reduce emissions or buy credits 

from another business than it was to implement renewable energy programs (Wooley, 2001). 

While the Clean Air Act succeeded in reducing emissions, it failed to promote renewable 

technologies. 
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 Through various programs, the Federal government has at times tried to promote and 

fund renewable energy companies directly. A number of “green” investments made in the 

2008/2009 stimulus package have come under fire for making hasty or politically beneficial 

decisions. One such case would the failure of Solyndra and Evergreen Solar renewable energy 

companies. Funded by the stimulus package and a Massachusetts incentive, Evergreen Solar 

opened a MA facility in 2008 near Fort Devens. The company filed for bankruptcy in 2011 and 

shifted all production to China. Solyndra received $535 million from the same stimulus package 

as well as a $25 million incentive from the state of California (Jabusch, 2011). This funding 

allowed the company to open a major state-of-the-art production facility in California, however, 

shortly after receiving these loans and beginning these projects the company rapidly started 

decreasing its orders and downsizing. Citing an inability to compete with Chinese manufacturers, 

Solyndra filed for bankruptcy in 2011. The exact cause of these failures is still the subject of 

investigation. Both companies sold high-grade, innovative, and much more expensive solar panel 

arrays than their competitors. The primary issue implicated in the failure of both companies is 

that they had priced themselves out of any reasonably-sized market (Jabusch, 2011). Despite the 

failures of these two federally-backed businesses, the rest of the solar industry is rapidly 

growing. 

 Not all government funded companies fall into the category of crony capitalism. Tesla 

motors, funded in 2003, had a focus on making electric cars aimed at wealthy early adopters with 

the end goal of transitioning into mass-market, affordable vehicles as the technology became 

more competitive. Tesla motors received a $465 million loan from the U.S. Department of 

Energy in 2009 through a program unrelated to the stimulus package (Unger, 2013). With strong 

private funding and success of their early Model S vehicle Tesla has been expanding production. 

Tesla Motors itself focuses on the design and improvements to the “electric powertrain” the 

device that replaces the engine in traditional cars. By purchasing motorless vehicles from other 

auto manufacturers and retrofitting them with an electric powertrain, Tesla’s early business 

model seems successful. The company posted their first ever profitable quarter in 2013 (Unger, 

2013). 

 With these past successes and failures in mind we set out to determine a best course of 

action for the promotion of renewable energy technologies. We have seen that governmental 



11 | P a g e  
 

support of a project has little bearing on its success or failure. We have also seen that subsidies 

are still necessary for many of these technologies to be considered competitive. The MRPC 

operates on a local level and its promotion of renewable technologies is limited to incentives to 

local businesses and residences in the area. Payback period analysis is the most common 

technique used to evaluate projects on a small scale. 

 Several small scale state and federal evaluations have utilized payback period to 

demonstrate the efficacy and savings of a particular renewable energy device. The Federal 

government has long used payback period to evaluate the potential of renewable energy 

technologies in remote or off-the-grid areas. Both the Federal Tribal Energy program and Rural 

Energy for America Program (REAP) have conducted this type of evaluation in the past (Peirce, 

2013). In the state of Massachusetts, the towns of Amherst, Ashfield, and Lancaster have 

qualified for the state designation of “Green Community” by utilizing payback metrics to 

demonstrate the feasibility of a renewable technology in their townships (Fister, 2012). The 2012 

Comprehensive Energy Strategy for Connecticut utilized payback period to demonstrate the 

relative strength of renewable energy and natural gas energy compared to that of oil and electric 

(State of Connecticut, 2012). Payback period is not only a commonly used evaluation technique 

but one of the most useful evaluations to conduct on a local scale.  
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Methodology 
           Each individual technology must be considered and evaluated for its’ potential home use 

in Montachusetts in order to determine its viability and make recommendations to the MRPC. 

Popular opinions on the use and viability of renewable technologies vary greatly from person to 

person, may not be up to date, or reflect the actual performance that a renewable energy device 

could provide in the region. First, we determined regional feasibility by conducting a review of 

the technology, understanding what the technology needs to operate, and if climate conditions in 

Montachusetts were sufficient to support a specific device. Second, we had to develop payback 

metrics for a technology or device that was deemed functional in the Montachusett region. We 

gathered energy output, installation/running costs data, and applicable grants and subsidies that 

would apply to that device if it were installed in an existing Montachusett home. Then, for 

comparison purposes, we gathered information on the cost of running standard fossil fuel based 

utilities using recent prices of #2 fuel oil, natural gas, and grid electricity in the region. Finally, 

by comparing the cost of installing and operating a renewable energy device on an existing home 

against that of “doing nothing” and having to pay for an equivalent amount of energy from a 

standard utility we could see the monthly savings a renewable energy device would generate and 

determine how long a renewable device would need to operate in order to “payback” the cost of 

installation.  Our results include the expected length of time each technology needs to recoup 

initial losses, as well as expected monthly savings from switching to such a renewable device. 

With this information we can present our findings to the MRPC in order to assist them with 

developing a plan of action to promote the best renewable devices for the Montachusetts area. 

First, a review of the viability, use, and availability of popular home devices for each of 

the five renewable technologies was needed. The review included a description of how each 

device works and how it is used in or near Montachusett. Usage of renewable energy devices do 

not necessarily reflect common perceptions, one instance would be the viability of wind 

technology. Massachusetts is not traditionally known as a windy state, even though 10 of the top 

20 windy cities in the United States lie within Massachusetts’ boarders (city-data.com, 2012). 

Each technology has potential in the region, but climate and lay-of-the-land can affect that 

performance.  

Second, we collected data on the installation and running costs of a renewable energy 

device to serve as a basis for a payback period analysis. A payback period analysis is a capital 
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budgeting technique designed to find the measure of time it will take to recoup, in the form of 

cash inflow from operations, the initial dollar amount invested (Horngren, 1974). This requires 

the installation cost for each renewable device, accounting for all steps required for installation 

and factoring in applicable subsidies and tax credits. It must also include the costs of running 

such a device, including fuel costs and maintenance. 

Then, we collected data on non-renewable utility consumption patterns and costs to 

develop an energy profile and find a basis for comparison to determine the cash inflow from the 

investment. The primary benefit of renewable energy devices is that their running costs are 

substantially lower than a comparable standard energy utility costs which they replace. 

Therefore, this comparison requires that we develop an energy usage profile for Montachusetts 

homes. Energy utilities are not uniform, so in some cases it was necessary to develop metrics for 

multiple standard utilities for the comparison. Certain technologies, like solar Photovoltaics, 

have a direct basis for comparison as their output is measured by one metric (electrical output in 

kWh) and replaces/supplements a utility directly (grid electricity which is measured the same 

way). Other technologies, like geothermal heat pumps, provide energy in multiple forms and an 

approximation of their energy savings is needed for comparison. 

Finally, once all of these metrics have been determined, they can then be graphed and 

compared directly to find a payback period. The standard capital budgeting formula for a 

payback period is the initial amount invested over cash inflow (Horngren, 1974): 

  
 

 
 

P is the payback period measured in the same unit of time as the cash inflow (O). However, 

because renewable energy devices cash inflow is measured in the form of savings, we must 

determine the savings of each device when compared to a standard energy utility: 

 

  
                                    

                                                                 
 

 

This equation may be rearranged to more accurately reflect that the costs of a standard utility are 

being compared against the total cost of installing and operating a renewable energy device: 
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The equation may then be split in two, setting each half equal to a “cumulative total cost” of 

operation. When the cumulative total cost of each equation is equal for a given value of P, the 

two equations will intercept on a Cartesian graph. 

 

                                                          

 

                                                                              

 

 This calculation should provide an accurate approximation of the length of time needed 

to recoup initial losses. Payback periods do not account for depreciation, as there is no salvage 

value for most of the devices surveyed. Once the payback period has been found, it can be 

compared to the useful life of the device. Payback periods that take longer than half the useful 

life of a device are considered risky investments (Horngren, 1974). With this information 

gathered and the payback periods of the selected technologies found, we can then base our 

recommendations for renewable technologies in the Montachusett region based on the payback 

period, monthly savings, and energy provided by each renewable device. 
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Results 
By understanding a Massachusetts residents expected consumption patterns and the 

average installation and running costs needed to get a desirable level of output for a specific 

device, we can then compare these two against one another to see where an investment in 

renewable technology finally pays off. All of the technologies that we reviewed for home use 

have a lower fuel and maintenance costs than that of traditional oil, gas, and electric energy 

utilities. However, the varying installation costs mean the time required to recoup initial losses 

changes significantly between technologies. 

Renewable Energy Sources Viability in the Region 
In order to determine the viability of each of the five technologies in the region, we first 

had to understand each technology, how it operates, and what conditions are necessary to get an 

acceptable level of performance. In order to do this we reviewed industry primers, government 

publications, and local implementations of these five technologies to better understand their 

functions. In the case of solar, wind, and geothermal technologies it was also necessary to 

confirm that the climate and weather conditions were appropriate to operate these devices in the 

region. Our findings demonstrate that all five of the technologies we reviewed were viable in the 

Montachusetts region, but dependence on large bodies of water and economies of scale 

eliminated hydropower technologies from being considered on a residential level. 

Solar Photovoltaics 

According to the Massachusetts Clean Energy Center, solar energy is the highest 

contributor to clean energy in Massachusetts (CEC, 2013). Massachusetts has a rapidly growing 

solar market (CEC, 2013). Photovoltaics collect energy even when not exposed fully to the sun. 

They work much like the small cell found in many lower end calculators. The Massachusetts 

commonwealth has many financing and ownership options for the installation and operation of 

solar technology. The options include full out ownership, leasing and power purchase agreement 

contracts (CEC, 2013). Power purchase contracts are contracts where a homeowner can purchase 

energy from a system located on their own property for a fair price (CEC, 2013). The owner of 

the equipment would be the company and the lease gets the benefit of purchasing power at a 

reduced rate, where the company benefits by giving excess power to the grid and also long term 

any investment they made is being returned as the leaser buys power. This may also be beneficial 

because the company leasing the land would repair any damage to the equipment. It is important 
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for any homeowner to be cautious as they enter these contracts as with any other contract. That 

being said, solar technology is an efficient technology that is very beneficial to have on one’s 

property. We will discuss some of those benefits in a later section. 

Although solar technology is a fairly simple one, recent advancements have made it 

easier for the consumer to benefit much more from these technologies. There are two types of 

solar technologies. The two types of technologies are solar PV (photovoltaic) and solar heating. 

Solar PV is one of the most popular renewable technologies in Massachusetts for several reasons 

(CEC, 2013). They are very easy to install and generally make more sense in the area, as solar 

water heaters are not effective year round in Massachusetts. As a result, solar hot water heaters 

are not included in this analysis. 

Solar PV, depending on the homeowners needs, requires few components and has two 

ways of working with the home to produce or produce and store power. The two ways are grid 

tie systems and off the grid or standalone systems. The two systems are different in both prices 

and the components they require. The only difference is the off grid capability requires the 

homeowner to have an array of batteries to store power for later use. The components are as 

follows for grid tie systems 

 

 Solar Array 

o These panels are connected together to collect the sun’s rays and turn them into 

electricity. Intensity of the sunlight is directly correlated to the amount of 

electricity produced both in duration and intensity. Solar panels generally produce 

DC current, which can be used directly by some electronics. 

 Inverter 

o This component converts the current from DC to AC which is what most 

electronics use in the home. Inverters are usually connected to both the panels and 

the main power input to the home. They are typically found next to the electric 

meter. Normally, they are made so that if the main power turns off so will the 

power from the panels as a safety feature so that your electronics are not damaged 

from over or under current. Although there is a voltage regulator included on all 

inverters it is always safer to shut off.  

 External Shut-off 
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o Electric companies may sometimes require a shut-off to be externally installed to 

ensure the safety of their workers while they are working on main lines. The 

shutoff feature is not necessary if you are using batteries in your system. 

 

Generally speaking, any person capable of following directions and has a basic 

understanding of how electricity works can install one of these systems themselves. However, it 

is highly recommended that a professional installer is used as these systems produce a high 

current that can be dangerous and deadly. Maximum safety precautions must be taken to be sure 

that no injuries occur. Solar panels produce electricity whenever they are exposed to sufficient 

sunlight meaning that the installation process takes place with live wires. Carefully choosing a 

professional installer is important to ensure both safety of the device and maximum energy 

output. Due to the inconsistency of Massachusetts weather it is highly recommended that a grid 

tie system is used so a household can continue using electrical appliances during periods of 

overcast weather. While it is convenient to have off grid capabilities there is a price to be paid 

for that convenience. The batteries are an added expense that also adds to the maintenance cost. 

Solar photovoltaic systems can be difficult to install but the potential benefits are many: 

 Reduce your carbon footprint: solar energy gathering is one of the cleanest ways to 

produce energy, there are no carbon emissions. 

 Economic Development: as these systems grow more popular so does the demand for 

their manufacturing and installation jobs. 

 Reduce or eliminate utility costs: Solar energy is nearly free. The more you gather the 

more money you will get back. 

 Value added to your house:  Most solar panel setups are installed on a rooftop and have 

little impact on the aesthetics of a house. There are few drawbacks to owning a solar PV 

system and potential buyers will benefit from the reduction in electrical costs. 

 Low maintenance costs: Of all the renewable technologies surveyed, the maintenance 

costs for solar PV technology is the lowest. This is due to the lack of moving parts in a 

solar PV system. 

 Federal Tax Credit: up to a 30% Federal Investment Tax Credit for qualified residential 

and commercial projects. 
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Geothermal Heat Pumps 

Geothermal heat systems are energy saving technology that can be both retrofitted into an 

old house or built into a new one. Geothermals have a long history and are an established and 

reliable technology that has been in use on farms in the United States since the beginning of the 

20
th

 century (Patange, 2007). This system greatly assists with the heating, ventilation, and air-

conditioning (HVAC) functions of a house. Geothermal systems cannot feed energy back into 

the grid, nor can they make a household entirely free of electricity bills. However, geothermals 

are one of the most efficient renewable energy devices we surveyed. 

Geothermal heat pumps work by using the ground as a heat source/heat sink. The actual 

functionality of a geothermal system varies with the season. Earth is used as a cooling source in 

the summer and a warming source in the winter months.  This is because the ambient 

temperature 20+ feet underground has little to no variability in change in temperature throughout 

the year (Patange, 2007). There are two main types of commercially available geothermal heat 

pumps, open loop and closed loop. They operate off the same thermal principals but differ in 

installation and space required. Open loop systems rely on groundwater for the transfer of heat, 

meaning they can only be installed in locations suitable for the drilling of an additional well. 

Closed loop systems work anywhere with sufficient space, they require digging up a large 

surface area (dependent on size of house) to lay coils which will be filled with some heat transfer 

fluid (usually glycol). A vapor-compression refrigeration cycle is used to extract/remove heat 

from the ground liquid as desired. This energy is used to preheat hot water tanks, warm, and cool 

air directly. The exact usage of a geothermal system varies with setup, as the device must be able 

to connect to the various HVAC functions of a house. Due to the reliance on ambient ground 

temperature, geothermal heat pumps may be installed anywhere in Montachusetts with sufficient 

space to lay ground coils or dig a well. 

 

Biomass 

             Biomass is a term used to encompass a wide range of technologies. The term “biomass” 

refers to biological material from living or recently-living organisms, most often plant matter 

(Truini, 2012). Extracting energy from these sources is done either by a chemical process, such 
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as pyrolysis, or simply by burning. Agricultural waste can frequently be converted or used as 

biomass in the form of corn husks, wood chippings, and byproducts plywood and other wood 

composite manufacturing (Bowles, 2008).  In recent years, biomass has also come to encompass 

environmentally sound methods of burning municipal waste, such as landfill gas. 

Space heating takes up a larger portion of New England home energy use than any other 

activity, as New England is one of the coldest regions in the US. Home space heating is so 

important in New England that its energy infrastructure is radically different than the rest of the 

country (EIA.gov, 2012). Instead of relying on electrical or natural gas heating, most New 

England homes opt for more efficient home heating by burning fuel oil. New Englanders burn 

about 14% more fuel oil than the national average (EIA.gov, 2012). This makes the region one of 

the most sensitive to fluctuations in the price of oil and creates an opportunity for renewable 

space heaters to flourish. This review will focus on pellet stoves and pellet boilers as they are 

more efficient than traditional wood burning stoves, receive tax credits, and can replace the space 

heating needs of a household. 

Biomass energy is obtained by burning biological material or running a biomass through 

a specific chemical process like torrefaction, pyrolysis, or gasification. The modern wood 

burning stove has been in use for hundreds of years, recent innovations have created a higher 

efficiency wood burning stove known as a pellet stove (Truini, 2012). While the stove itself 

remains largely unchanged the major increase in efficiency is due to the compression of the plant 

material. Rather than using raw wood, the much denser pellets produce a hotter flame than an 

equivalent volume of wood. This has several distinct advantages over traditional stoves and 

fireplaces. First, the thermal efficiency is greatly increased, lowering storage requirements for 

the owner and the total space occupied by the stove itself. Secondly, the pellets can be produced 

from industrial waste. Waste particulates like sawdust burn violently and quickly in their normal 

state, being compressed into pellets allows them to smolder like embers, releasing a large amount 

of heat over a relatively long period of time. Finally, the pellet-making process standardizes the 

dimensions of the fuel source. This means that pellets do not have to be prepared and added by 

hand, like natural wood, they can instead be loaded into an auger and dropped into the stove at a 

controlled rate (nevelsstoves.com, 2013). The combination of these factors makes pellet-burning 

stoves far more convenient and efficient than their wood-burning predecessors. Assuming proper 
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maintenance, pellet-burning stoves do not create creosote, the tar-like material that adheres to the 

inside of stove walls and causes chimney fires. 

Scaled up pellet stoves have begun to be used as boilers to replace traditional oil 

furnaces. These pellet boilers have only recently entered the market but found much success in 

the state of Maine, where Kedal, the first pellet boiler manufacturer in the United States is 

located. Pellet boilers are intended to fully replace the furnace. Pellet boilers work much like 

existing pellet stoves only the heat generated is connected to the house’s distribution system 

(radiators or fin tubing). As pellet boilers are much larger than their traditional oil and gas 

counterparts, installation of a pellet boiler requires the addition of a large hopper to maintain fuel 

intake. Combined, the boiler and the hopper take up approximately twice the space of a 

traditional oil burning furnace. Any household in Montachusetts with sufficient space can install 

one of these pellet devices. There are multiple pellet distributors that service the Montachusett 

region (nevelsstoves.com, 2013). 

 

Wind Power 

   Wind is a powerful source of power. Wind turbines operate by converting the kinetic 

energy of wind into some usable form, like electricity. Wind is a powerful force that increases 

with height. Residential wind energy has a lot more to consider than other technologies, such as 

the height of the turbine and the average wind speeds around the turbine and wind directions. For 

the Montachusett region there are wind maps available that catalogue the wind speeds for each 

area and at each altitude in that area. These maps are easily accessible from the MRPC website. 

These wind maps indicate that the central region of Montachusett is quite windy and all four 

current windmills/wind farms can be found along this region (MRPC, 2013). This is due to the 

heights needed to find acceptable wind speeds in the region. Outside the shores of Massachusetts 

and certain select areas wind is not always worthwhile unless you reach certain heights. 

Wind turbine towers are made of a few components: the tower, the nacelle and the rotor. 

The nacelle and the rotor are at the top of the tower. The nacelle houses all the electronics and 

the gearbox while the rotor is the blades which are connected to the nacelle (CEC, 2013). 

In order to use a wind turbine for residential establishments the installer must contend 

with the limitations that residential use brings. Safety laws require that any device installed on 

http://mrpc.org/docs.htm
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residential property must be small enough that if it fell, it would remain entirely on that property. 

Small scale wind turbines are simple especially for home use because the blades are usually not 

adjustable to compensate for wind speeds. The blades are placed on and oscillating base where 

they are designed to automatically face the direction of the wind. When the turbine starts to 

move it moves the generator. However, wind turbines must spin within a specific speed range to 

operate effectively. Outside this range wind turbines generate little power. This is because of the 

generator, which is only efficient between certain speeds (CEC, 2013). The installer must be 

certain that the local wind speeds match that in which the generator is rated for. It is important to 

make sure when installing wind turbines that there is clearance all around the turbine or that the 

turbine clears the tree lines by a few feet. This is sometimes an issue as the turbine can cast 

shadow flicker and cause motion sickness in some people. Common complaints for wind 

turbines often include noise infractions, although allegations of “wind turbine sickness” have 

proven largely unfounded (Guardian, 2013) 

 

Hydropower 

Hydropower is the oldest renewable technology, having been utilized in various ways by 

many ancient civilizations. Hydropower is the process of deriving power from falling or running 

water and converting that energy into a useful form (Atkins, 2010). Although this can mean 

anything from running saw mills, to hydraulic lifts, and textile mills, modern use and research of 

hydropower has focused exclusively on the generation of electricity. Hydroelectricity requires a 

large source of water that is constantly in motion; this heavily limits the number of potential sites 

used for energy generation. 

             Hydroelectricity accounts for 16% of all electricity generation worldwide (Atkins, 2010) 

accounting for 12% of the US’ electricity use and 49% of its total renewable energy generation, 

making it the most widely used renewable energy technology in both the US and internationally 

(Aguirre, 2011).  Large scale hydroelectric operations require a reservoir usually in the form of a 

dam. Selecting a site for dam building is a delicate and risky prospect as the environmental 

impact of damming a major body of water is often difficult to understand and affects the entire 

range of the river in question.  Without proper planning, a dam can affect fish migration patterns, 

water levels, oxygen levels in the water, and sedimentation or erosion of the lower plains 
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(Atkins, 2010). New dam constructions on bodies of water that cross country boundaries can also 

often be the source of dispute, such as water-sharing agreements in southwest United States and 

neighboring Mexico (CIA.gov, 2009). Most dams in the United States were constructed before 

their environmental and foreign impact was fully understood. Modern dam construction must 

carefully consider the area in question before construction can begin. 

             Conventional hydroelectric dams run water through a turbine to generate electrical 

energy. This electricity is then distributed normally throughout the grid. Conventional dams 

require large volumes of water to generate an appreciable amount of electricity requiring a large 

water source and/or extreme gradient. The closest conventional hydroelectric dams are the 

Robert Moses Niagara Hydroelectric Power Station and the Moses-Saunders Power Dam. Both 

are located on the New York-Canadian border and provide the household electrical needs of 

much of upstate New York, Vermont, and Canada. Combined these two dams produce 4,500 

MW of energy for use in the surrounding areas (Maloni, 2010). 

             Pumped-storage hydroelectric facilities work differently than conventional dams in that 

they supplement additional electrical generation processes and have a much more variable 

output. Pumped-storage facilities serve as a load balancer to electrical demands on the grid. The 

stored water is a source of potential energy that when released through a turbine system will 

generate electricity in the same manner as a conventional dam. However, during periods of low 

energy consumption, the water is reversed, pumped into the reservoir to be held until energy 

demand rises again. This relieves the burden on traditional oil and coal boilers, which lose 

efficiency when run over the standard demand. Although the reservoir pumping process is 

energy intensive, the costs associated with running fossil fuel burners over capacity and the 

profit made from selling electricity only during peak hours make pumped-storage facilities 

possible. One major pumped-storage facility actually serves the western Montachusett region, 

the Northfield Mountain Pumped-Storage Reservoir. The plant is located in Erving and 

Northfield Massachusetts and is capable of producing 1,080 MW of electricity (Maloni, 2010). 

The actual facility is located entirely underground and is part of the Turner Falls canal system. 

This is the only hydroelectric technology that services the Montachusett region. While small 

scale hydroelectric turbines exist, their use is largely confined to poor and remote areas of the 

world that would otherwise lack electricity. Installation of a small scale hydroelectric turbine is 
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not feasible in the Montachusetts region as there are several laws protecting the moving bodies 

of water located there. 

Cost of Installing and Operating a Renewable Energy Device 

Solar Photovoltaics 

Initial installation costs of solar photovoltaic systems can be high, but this is offset by 

their low maintenance costs. Maintenance and running costs are not normally required unless one 

of the components break, otherwise it is no required. Our running costs for solar Photovoltaics 

include yearly maintenance and the expectation that the inverter will need to be fully replaced 

once over the lifetime of the device. However, solar panels have a life expectancy of about 30 

years, due to solar cell degradation that occurs over time (CEC, 2013). The systems eventually 

end up paying for themselves and the full cost of installation is eligible for a 30% Federal Tax 

Credit. Solar photovoltaic systems qualify for the major Federal Tax Credit only if they reach a 

predetermined efficiency. It is important to understand what kind of initial cost you are looking 

at. The charts below give estimates for what you can expect to pay depending on the size of the 

system. 

Figure 1: Cost of Installing a Solar Photovoltaic System by Size  
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Grid Tie Systems 

Array Size Watts 

STC/PTC 

Monthly Output 

Based on 5 hours of 
sun a day 

Number of 

Solar Panels 

Price 

3,000 / 2,700 405 kWh 12 $4900-$5800 

5,000 / 4,500 675 kWh 20 $7800-$9300 

6,000 / 5,400 810 kWh 24 $9500-$11500 

7,500 / 6,750 1,012 kWh 30 $13,000 

9,000 / 8,100 1215 kWh 36 $16,000 

10,000 / 9,000 1350 kWh 40 $17,000 

12,500 / 11,250 1687 kWh 50 $21,000 

15,000 / 13,500 2025 kWh 60 $26,000 

20,000 / 18,000 2,700 kWh 80 $35,000 

Grid-tie Solar Systems with True Off-grid Capability 

Array 
Size 
(watts) 

output 
in V 

Monthly Output 

at 5 hours a day of sun 

Number of Panels Price 

1500 120 203 kWh 6 $6,000 

2250 120 304 kWh 9 $7,000 

3000 120 406 kWh 12 $8,000 
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3750 120 508 kWh 15 $9,000 

 

Prices will vary from one installer to another so it is important to get multiple quotes to 

get the price. The operational lifecycle of the system is 30 years making solar PV an ideal 

candidate for a payback period analysis.  

Geothermal Heat Pumps 

Geothermal systems have high upfront initial costs, but very little in the way of 

maintenance. Single-home installations vary with the size of the house. Cost estimates range 

between $14,000 and $20,000 for the average home in the Northeast. Massachusetts offers no 

subsidy programs but up to 30% of the total cost of installation may be claimed as a tax credit 

through the Residential Renewable Energy Tax Credit Federal program (MassCEC, 2012). This 

tax credit has only recently been applied to geothermal systems, as they were traditionally only 

considered a commercial device and do not “generate” energy, they merely extract/diffuse heat 

from the ground. As of 2008, they have been added to the list of devices eligible for the Federal 

Tax Credit program. 

A typical system can last anywhere from 25 to 50 years. The running and maintenance 

costs of a geothermal system scale with the size of the heat field, they can range between $200 a 

year for small systems to $500 a year for large systems (energystar.com, 2013). Geothermal 

systems use a small amount of electricity to operate the heat pump; these costs have been 

factored into the running costs of the device. 

Biomass 

Pellet stoves come in a wide variety and sizes and capacities. Adding a pellet stove to 

your home will require the addition of a new vent that is capable of handling the high-

temperature exhaust and most chimneys are unsuited for this task. Depending on the model, it 

may also be necessary to buy a hearth to rest the stove on although many models are freestanding 

or come with a hearth. The typical cost of the stove itself ranges from $1,500 to $2,500, 

professional installation adds about $500 to that cost, and an average Massachusetts user burns 

about three tons of pellets a year creating a running cost of approximately $880 to $1300 (Truini, 

2012). The installation procedure varies by house, can be done by the homeowner, and only 

requires that one exhaust vent be added in most cases. 



26 | P a g e  
 

Pellet boilers must be professionally installed and require sufficient space where the 

previous furnace was located in order to be properly connected to the house’s heat distribution 

system. Full pellet boiler/hopper installations range between $25,000 to $28,000 in price but a 

current MassCEC grant can provide up to $7,000 for eligible applicants (MassCEC.com, 2012). 

Pellet boilers are intended for large homes and homes which do not allow a pellet stove to 

adequately distribute heat via convection. Their fuel consumption is likewise much higher, 

needing 8 to 10 tons of pellets a year at a cost of $1,730 to $2,600 a year to handle a typical New 

England year (maineenergysystems.com, 2013). Pellet distribution is a growing industry and 

many Maine distributors now service all of New England. Both pellet stoves and pellet boilers 

have a useful life of 25 years (Truini, 2012). 

Wind Power 

Due to the high risk involved in installing a wind turbine it is recommended to have a 

professional installation done which drives the upfront cost upward. Unlike other renewable 

energy systems, wind turbines must always be free standing, which makes installation and 

maintenance difficult. There are also a lot more bylaws and safety problems to deal with 

compared to most technologies. However, even with these drawbacks, it is undeniable that wind 

technology is a valid technology with a lot to offer. Wind turbines can operate at all hours of the 

day and throughout all seasons. In the Montachusett region, it is important to be located in the 

windy central corridor of the region as turbine installations elsewhere will not receive sufficient 

wind (MRPC, 2013). Once the area is deemed appropriate for a wind turbine the installer must 

also cite these turbines carefully and make sure there is safe clearance on all sides.  

While wind turbine installation costs are comparable to that of other large scale 

renewable technologies we observed, maintenance and expected repair costs are higher than 

other technologies. A basic windmill for a residential installation can run between $5,000 to 

about $35,000 just for the equipment. The installation is also very costly for the reasons 

mentioned above. Wind turbines have a life expectancy of about 20 years (CEC, 2013). The parts 

in the turbines can be manufactured of better materials and thus increasing the life expectancy of 

the turbines, but because of the continuing advancements in efficiencies and power production.  

Larger and more effective wind turbines cannot be placed closer than 300 meters to any 

residential area due to the noise they make. Maintenance is minimal once installed but still costly 
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as some sort of lift is required for most repairs. As with all renewable energy devices, wind 

turbines qualify for the 30% Federal tax credit on installation costs.  

 

Non-Renewable Utility Consumption Patterns and Costs 
Massachusetts residents must deal with some of the highest utility costs nationwide. 

Infrastructure, average age of a residential home, and long winters are the primary contributing 

factors to the region’s high utility costs (EIA.gov, 2011). For example, Massachusetts residents 

pay significantly more for electricity than the national average: 

Figure 2: Grid Electrical Use in the United States 

Region Monthly Electricity Use (in kWh) 
Average 2011 Price of 1 kWh Grid Electricity 

(U.S. Dollars) 

MA 633 0.1467 

New England 639 0.1589 

US Average 940 0.1172 

Data taken from the EIA.gov factsheet and US census 

 

The only portions of the United States that experience higher average electrical costs are the 

Northern regions of New England, Hawaii, and Alaska. The national monthly use is substantially 

higher than the region for multiple reasons. Space heating and water heating, the two most 

energy intensive processes used at an average American home, are not financially feasible to do 

in Massachusetts via electricity. Electrical heating comprises a small minority of Massachusetts 

homes. This is a stark contrast to the national average, where electricity is much cheaper and 

shorter, milder winters allow the extreme cost of electrical heating to be marginalized. 

Additionally, central air conditioning systems are found in 40% of US homes compared to just 

8% of New England homes (EIA.gov, 2012). Air conditioning makes up a significant portion of 

electrical use outside of Massachusetts. In a typical Massachusetts household, grid electricity 

supplies the energy needed to run appliances and seasonal, window-mounted air conditioning, 

not the year-round HVAC systems found in much of the rest of the country. 

The New England heating market is dominated by oil. Oil burning furnaces and water 

heaters are better suited to New England weather than the other standard options. New England 

encompasses a full 82% of all oil-burning space and water heaters used in the United States, this 
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figure is so large that it actually dramatically shifts the national averages for residential oil use 

and cost upward (heatingoil.com, 2013) (EIA.gov, 2012) 

Figure 3: Heating Oil Use in the United States 

Region 

Monthly Fuel Oil Use for 
Space Heating (in 

gallons) 

Monthly Fuel Oil Use 
for Water Heating (in 

gallons) 

Average 2012 Price of 1 
gallon #2 Fuel Oil (U.S. 

Dollars) 

MA 66.66 18.33 4.0342 

New England 70.83 18.33 4.0156 

US Average 55.25 19 4.0028 

Data taken from the EIA.gov factsheet and US census 

The remainders of oil-burning furnaces in the US are located primarily in the South. The East 

coast of the United States is the only region that has grown to support oil-furnace infrastructure. 

The third major energy utility, natural gas, is little used in Massachusetts, found in only 

4% of homes (EIA.gov, 2012). Like oil and electric costs, Massachusetts residents pay above the 

national average. 

Figure 4: Natural Gas Use in the United States 

Region 

Monthly Natural Gas 
Use for Space Heating 

(in hcf) 

Monthly Natural Gas 
Use for Water Heating 

(in hcf) 

Average 2012 Price of 1 
hcf Natural Gas (U.S. 

Dollars) 

MA 71.33 18.88 3.2787 

New England 74.91 18.88 3.2327 

US Average 73.08 23.02 2.6132 

Data taken from the EIA.gov factsheet and US census 

Rather than growing to depend on oil, the north central regions of the US rely primarily 

on natural gas, especially in the colder states bordering Canada (EIA.gov, 2012). With this 

information we can establish a reasonable energy profile for an average Massachusetts resident 

who is not invested in renewable energy technologies. 

Figure 5: Average Monthly Utility Bills for Massachusetts Residents 

User 
Monthly 

Electric Bill 
Monthly 

Heating Oil Bill 
Monthly 

Natural Gas Bill Total 

MA Oil Household 92.86 342.86 - 435.72 

MA Natural Gas Household 92.86 - 295.77 388.63 

MA Electrical Only Household 675.77 - - 675.77 

 

These figures represent the average monthly utility bills a Massachusetts resident could 

be expected to pay depending on the heating source used in the home. These are averages of a 
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full year in Massachusetts to control for seasonal highs and lows. Unsurprisingly, those reliant on 

electrical heat face the highest monthly bills. Natural gas prices currently make natural gas 

heaters slightly less expensive to operate than oil-burning ones but the two are close and the 

price of these two utilities varies much more throughout the years. These findings are consistent 

with the various reports that renewable energy technologies are most immediately beneficial in 

electric heating homes (EIA.gov, 2011). By using these monthly figures as a basis, we can 

compare them to renewable energy devices and see how long a specific product requires to 

recoup its’ own installation costs. 

 

Solar Photovoltaics 
 The cost of solar PV systems is not linear. Every solar PV installation must have several 

core components (inverter, grid tie, external shutoff, etc.) and a varying number of panels that 

effect the size (and cost) of the core components. The installation cost and savings generated by 

both small and large scale systems actually makes the payback of these systems longer than that 

of the medium-sized systems we reviewed. 

Graph 1: Small-Scale Solar System Payback Period in Months 

 

Small scale systems like the 405 kWh example above have a fairly long payback period. 

Solar photovoltaic systems scale in capacity with the number of solar panels used but all systems 
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require an inverter, external shutoff, or storage battery, making the cost of installation 

comparable to larger scale systems. Additionally, the payback period analysis uses savings as its 

cash inflow and a small system would only generate $45 in savings monthly when compared to 

an equal amount of electrical usage from the grid. If a household is not using very much 

electricity to start with then they may actually sell some of that power back to the grid. As it 

stands, smaller systems have longer payback periods. 

Graph 2: Large-Scale Solar System Payback Period in Months 

 

Large scale systems also seem to have long payback periods this is because of the larger 

installation cost due to there being so many panels. Based on the estimates found on in the 

attached documents there is a large gap between the power output from the smaller systems 

output and this system’s output. Again, this graph describes how long it would take if you were 

using as much power as the system is providing. If you are not using that much power any excess 

would go to the grid and you would stand to gain from that excess. Refer to attached charts to 

further understand the numbers. 

The average cost per kWh in Massachusetts was $0.1467 in 2011. A Massachusetts 

resident uses approximately 633 kWh of electricity per month at a monthly cost of $92.86 

provided they don’t use electricity for heating purposes. A 20 panel solar array produces 675 

kWh of electricity monthly, just enough to eclipse the electrical needs of an average MA 

household. 
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Graph 3: Average MA Resident Replacement System 

 

This is the payback period for a solar PV array that replaces the electrical use of an 

average MA household. This average usage solar array actually hits an optimal payback period 

niche as it only takes 10 years to recoup instillation costs compared to 12 to 13 years for the 

larger and smaller systems respectively. Average electrical consumption households that are 

located in an appropriate location for solar photovoltaic use should be considered prime 

candidates for this technology. However, it is still prudent to study the unique situation of each 

home to be sure of how much this system will benefit the homeowner and when they can expect 

to see payback.  

Geothermal Heat Pumps 
Geothermal heat pumps do not replace any individual technology wholly; rather they 

supplement a household’s water heating, air heating, and air cooling systems. Geothermal 

systems vary greatly in capacity, ranging from 28,000 to 78,000 BTU per hour output 

(energystar.gov). The capacity of a geothermal system scales with the size of the heat field. 

Larger heat fields have a higher upfront installation cost. When properly connected to all 

relevant systems, a geothermal heat pump can offset roughly 40 gallons of fuel oil worth of 

energy per month. 
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Graph 4: Geothermal Payback Period in Months 

 

The best and worst case scenarios are based on the size of the system installed. 

Geothermal installation cost increases significantly with the size of the system as the larger the 

heat field, the more space and backhoe work is required to lay coils. Offsetting the costs of 

electrical space and water heating has the fastest payback period as usual, ranging from 3 to 5 

years. Gas and electric systems take longer, 6 to 10 years, and are highly dependent on the size 

of the system installed. Running costs for geothermal systems are minimal so the payback period 

for the system in question is mostly dependent on the desired capacity and thus size of the 

geothermal heat pump. Once again, the payback period is shortest when supplementing electrical 

heating appliances. 

Biomass 
There are two heating systems to consider, pellet stoves and the much larger pellet 

furnaces. Both of these devices aim to replace the space heating needs of a household. Whether 

or not a pellet stove is sufficient space heating for a household depends on several things, 

primarily the floor space and age of the house. Older homes tend to have significantly lower 

thermal efficiency and are more suited to pellet furnaces. Newer or smaller homes can 

adequately heat themselves via just a stove. 
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Graph 5: Pellet Stove Payback Period in Months 

 

Pellet stoves payback period is the most dependent on the kind of utility it replaces. With a 30% 

Federal tax credit; the installation price of a pellet stove can be paid in about a year for electrical 

heaters, 4 years for oil heaters, and as long as 9 years for natural gas heaters. This is due to the 

running cost of a pellet furnace being comparable to that of current fossil fuel prices. When 

replacing a natural gas system, a pellet burning stove only saves the user about $27 monthly. 

Larger and less energy efficient homes will have to opt for a large scale pellet furnace. 

This has the benefit of more even space heating but pellet furnaces come at a significantly higher 

upfront cost. This cost can be offset by a large MassCEC pellet furnace grant program and the 

30% Federal tax credit, but the size of the grant program is limited to 40 households. 
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Graph 6: Pellet Furnace Payback Period in Months 

 

With a MassCEC grant, payback period for a pellet furnace is as low as 2 to 8 years. 

However, because the grant is limited in scope and duration, most households will only be able 

to qualify for the 30% Federal tax credit. The payback period for a pellet furnace without the 

grant can be as long as 12 to 20 years when compared against oil and gas heating methods. This 

is over half the useful life of the device, making it a risky investment by payback period 

standards (Horngren, 1974). While operation costs are lower than any utility, the running costs of 

pellet burners are much higher than the running costs of most other technologies we reviewed, 

leading to a higher payback period. Unless a household is seeking to replace an electrical heating 

system, the pellet boilers are not worth considering without the large MassCEC grant. 

Wind Power 
Wind has the longest payback period of the technologies we reviewed due to its’ high 

installation and maintenance costs. The high maintenance cost is due to the equipment necessary 

to work on a wind turbine and the safety precautions that must be taken. Located outdoors and 

possessing several critical moving parts, wear and tear has a much larger impact on wind 

turbines than the other technologies. It will produce a lot of power depending on wind in your 

area and the size of the turbine installed. The graph below is based on an 8 kWh turbine that is 
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installed at an area with average 12 MPH wind. The payback period is approximately 230 

months, which is about 19 years. 

Graph 7: Wind Turbine Payback Period in Months 
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requires great heights to be effective. This is not easy to do in a residential area because higher 
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The difficulty of adhering to the strict bylaws that govern wind turbine installations only further 
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Comparisons to Previous Studies 
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Taos Pueblo Reservation, New Mexico 

One of the most major recent Federal studies in renewable technologies was the Taos 

Pueblo Renewable Energy Feasibility Study conducted on the Taos Pueblo reservation in New 

Mexico. The scope of the project included all five of the technologies we reviewed, used 

payback period as one of the primary determining factors, and also accounted for the cultural and 

political inclinations of the Taos Pueblo people. Additionally, it accounted for financial factors 

that were not applicable to our project, such as the New Mexico Clean Energy Grant. As our 

project used Massachusetts resident’s utility data as a basis for comparison, the energy profile for 

the Federal study was determined by finding the average user metrics from the Taos Pueblo 

Utility company. 

 Despite the differences of the two regions, many of our findings were remarkably similar. 

Geothermal heat pumps were given the same upper limit in payback time at 10 years (Mason, 

Gomez, et al, 2006). We reached a shorter lower limit because our geothermal survey included a 

electrical heating comparison, the Taos Pueblo study only considered the more economical 

natural gas heating utility in it’s payback analysis (oil heating and infrastructure is not present in 

this region of the US).  

The Federal study also found huge potential for solar technologies (solar PV, solar 

pumped-hydro, and greenhouses) in the region but did not include payback as a metric in the 

solar analysis. Given that electricity is roughly half as expensive in New Mexico as it is in New 

England and that New Mexico receives nearly twice the sunlight exposure than New England 

does, entering this data into the calculations we used gives a solar PV payback of about 10 years 

for the Taos Pueblo reservation (Mason, Gomez, et al, 2006). 

 Some findings in Taos Pueblo study differed from our own. One of the largest 

discrepancies was the Federal studies high opinion on large scale wood boilers. The Taos Pueblo 

region had several conveniently located sawmills and other wood waste producers that lowered 

the fuel costs to less than half of the national average (Mason, Gomez, et al, 2006). Additionally, 

the need for space heating is much lower in New Mexico than Massachusetts, meaning these 

large wood boilers would only be used a portion of the year. The projected payback for a Taos 

Pueblo wood boiler was expected to be 15 years compared to the 20 year payback a 

Massachusetts resident might encounter. 
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 Interestingly, the Federal study reached a far different conclusion on the viability of 

wind. Our study found wind turbines most appropriate for large scale commercial uses and 

residential applications were both difficult to carry out and financially unsound. The Taos Pueblo 

study eliminated commercial wind farms from consideration citing a lack of sufficient wind 

speeds in the area. This is a regional difference that does not impact our findings for 

Massachusetts. However, the Federal study also suggested that wind power may be adopted in 

Taos Pueblo on a residential scale, not due to economic benefit, but because wind power was 

deemed more culturally acceptable to the Taos Pueblo people (Mason, Gomez, et al, 2006). A 

detailed evaluation of hydropower feasibility was also conducted and found potential for a 

pumped-storage facility in the region similar to the North Brownfield facility that services 

western Montachusetts. However, a pumped-storage facility was not possible in Taos Pueblo due 

to an insufficient amount of capital. 

Other Studies 

 The UK Carbon Trust organization conducted a feasibility study for several of the 

technologies we reviewed for both home and small business use. The Carbon Trust study found 

that small scale residential wind turbine had payback period of 20 years, identical to our 

evaluation for wind turbines installed in area with sufficient wind in Montachusetts. The Carbon 

Trust also found a similar range for biomass pellet stoves, with an upper limit of 10 years 

depending on the type of fossil fuel replaced and the type of biomass used. Solar PV systems 

purportedly have a lower payback period in the UK of 5 to 8 years. This is likely due to the 

heavily subsidized cost of installation through the UK’s FIT program, as the UK actually 

receives less light annually than Massachusetts. Geothermal heat pumps have a higher expected 

payback period of 15 years, but the RHI incentive program lowers this figure to 5 to 8 years. 

This is the only major deviation from our results which is interesting because geothermal 

systems allegedly have the most consistent performance regardless of the location they are 

installed. One cause for the discrepancy could be the tariff that such geothermal systems are 

subjected to in the UK. Despite the location for this feasibility study being located on the 

opposite side of the Atlantic Ocean, the performance for many of the devices, in conjunction 

with available UK subsidies makes many of the payback periods comparable (UK Department of 

Energy and Climate Change, 2012). 
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 The Alliance for Green Heat lists the expected payback periods of various renewable 

technologies. Most notably, it does not take into account any Federal or state subsidies so its 

results are consistently slightly above the time periods we reached for our Montachusetts 

evaluation. The Alliance for Green Heat survey found an expected payback period of 30 years 

for wind turbines, 7-12 years for geothermal heat pumps, 10+ years for solar PV arrays, and 4-6 

years for pellet stoves (Wise, 2009). Without accounting for the 30% Federal tax credit, the 

payback periods for the above listed technologies are predictably about 40% higher (1/0.7 = 

1.42) than the results we reached. 

 The Synapse Energy Economic Company conducted a feasibility study into the 

possibility of renewable technologies in low income Massachusetts homes in 2005. While the 

scope of the project only overlapped with two of the technologies we surveyed, its results for 

solar were quite different. Its analysis of small scale wind turbines found an expected 20 year 

payback period matching the results of our study. However, it also found a 20 year payback 

period for solar PV arrays regardless of setup (Woolf, 2005). This figure was twice as large as 

the expected payback period we reached. However the age of study predates the 30% Federal tax 

credit and increases in solar PV efficiency (discussed below) could have resulted in this payback 

period falling within an expected range. 

 While most of our comparisons have a similar expected payback period or a payback 

period which falls within an explainable range, a complete analysis should include an example 

that does not agree with our findings. The WisconSUN payback analysis for solar PV systems 

came up with a substantially longer payback period for any of its solar PV calculations. The 

program indicted that a solar PV system installed in Wisconsin could take anywhere from 34-76 

years to payback fully (Gretz, 2004). This figure was odd considering Massachusetts and 

Wisconsin receive roughly the same amount of light annually. The two major contributing 

factors to this longer payback period are likely both related to the age of this study. Conducted in 

2004, the 30% Federal tax credit which now applies to any home installation of solar PV did not 

exist, meaning the WisconSUN analysis included the full price of installation. The other impact 

the age of the study has is the efficiency of the solar cell itself. The National Renewable Energy 

Laboratory claims that solar cells have increased from 30% to 40% efficiency in the last 9 years 

alone. Despite these differences, we are unable to account for the extreme length of time the 
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WisconSUN study found. The WisconSUN organization has no overt political affiliation and its 

stated goals are to promote solar technology in the state of Wisconsin. With the stated goal of 

promoting such technologies, it is surprising that their evaluation of solar PV was  so negative. 

Concerns 
 Throughout the project, we constantly refined our methods of data collection and analysis 

before we settled on payback period as our primary evaluation metric. Payback period analysis is 

commonly used by both private and public organizations and readily understood by most people; 

however it is not without drawbacks. Payback period analysis does not account for the time value 

of money, risk, or opportunity costs. It assumes that the homeowner has sufficient capital to 

pursue the installation of a renewable energy device and does not consider the other potentially 

beneficial investments that could be made with said capital. We only account for the expected 

maintenance costs that would occur over the life of the device. An unlikely, but entirely possible, 

failure of a device (such as a cracked solar panel or leaking heat field in a geothermal system) 

could radically increase the payback period due to costly repairs. Finally, our payback period 

analysis was a “do nothing” analysis, comparing the costs of installing and operating a renewable 

energy device against a status quo of fossil-fuel based utilities. It does not account for the 

potential of investing that capital elsewhere. As the scope of this project was renewable energy 

devices in the home there are several other investments a homeowner could make if their desired 

goal is to save money or energy. Investing in energy saving retrofits could have a larger or more 

immediate impact for the homeowner. Further research into the payback period of commonly 

used retrofits like window or roofing replacements is suggested. 

 Our data collection was limited to historic values. At no point did we attempt to calculate 

the projected values of any of the metrics used. Although this certainly resulted in a less accurate 

prediction, we feel that a payback period analysis that accounts for future changes in price would 

likely reduce the payback period. This is due to two factors. The first is that projections 

involving the future price of oil, natural gas, and coal are certain to increase, which would result 

in a larger monthly savings figure generated over time. The other is increasing amount of 

research being dedicated to renewable technologies. This is even more difficult to predict than 

fossil fuel futures. Subsequent improvements to renewable energy devices could result in lower 

installation and maintenance costs which would also lead to a more favorable payback period. 
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Other market forces are harder to predict. A sudden widespread adoption of pellet stoves could 

drive the price of wood pellets to an unfeasible level. The current expected cost of operating a 

pellet device year-round is only 15% lower than that of a comparable fossil fuel based heater. 

 While payback period is a commonly used technique, there are two similar methods of 

analysis that are regarded as more accurate, as they account for more aspects of the investment. 

A Net Present Value analysis (NPV) accounts for the discount rate. This would demonstrate the 

benefit of adopting a specific renewable energy device compared against making another 

investment with the same amount of capital and similar amount of risk (Buser, 1986). An 

Internal Rate of Return analysis (IRR) factors in the savings or profits generated by carrying out 

a specific project and assumes this cash inflow is invested elsewhere, leading to a more accurate 

evaluation. However, an IRR analysis could not be used to compare multiple potential renewable 

energy projects against one another as this method is used to evaluate the potential of individual 

projects (Horngren, 1974). 
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Recommendations 
 Emerging technologies are making a future without fossil fuels possible. The goal is 

closer today than it ever was and the new goals being set are making the realization of a future 

with no fossil fuels a reality. A precise plan must be created and followed to maximize the 

chance of success while transitioning to renewable energy. Our recommendation is that the 

following technologies are promoted and specific residences targeted. First, we recommend that 

the Montachusett region focus on supplementing and replacing electrical heating devices with 

geothermal systems and pellet stoves. Second, promote Photovoltaic technology throughout the 

region and provide incentives for using said systems. Third, promote the Massachusetts CEC 

pellet boiler grant program as it brings the payback period of this technology to an acceptable 

level. Do not promote pellet boilers otherwise. Finally, do not promote residential-scale wind 

turbines. They are too small to truly take advantage of current wind technology. These 

recommendations are for residential purposes only and do not necessarily affect the commercial 

viability of any technology in the region. We will discuss further the benefits of making these 

choices and why they are so important. 

 As discussed earlier in this document one of the costliest utilities to a home in 

Massachusetts, more specifically the Montachusett region, is heating. This cost is further 

increased by those that rely on electricity for heating. Radiant heating requires a lot more energy 

to heat a space. This is largely the reason why forced hot air has been the prime choice of many 

designs for heating in a home. Since the most energy consuming electrical usage is heating we 

recommend that systems utilizing electricity to heating be supplemented with geothermal and 

pellet stoves to heat the home. Homes that utilize these systems see a dramatic decrease in 

heating utility bills. Both these systems have and upper limit on payback period of about 10 

years, a figure which is markedly shorter when considering electrical heating appliances. We 

have also seen that the consumer can live in more comfortable temperatures when using these 

systems. The geothermal systems take advantage of the radiant energy of the earth which is the 

same year round so the consumer never stops benefitting for the system. It can supplement both 

heating and cooling needs. Pellet stove are inexpensive and easily installed. They have the most 

direct effect and can fully replace a home heating system. Although, the consumer should be 

aware of the minor inconveniences involved with owning this system, such as cleaning pipes 

yearly, filling a hopper daily and about every ton of wood the consumer goes through they will 
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need to empty the ash container which means intermittent use for about a few hours. Also, 

consumers should be aware that modern pellet stoves take significantly less work to operate than 

their standard wood burning predecessors. Both systems add huge savings and advantages to 

medium and smaller sized homes and are strongly recommended. 

 Solar photovoltaic systems seemed to have the one of the shorter payback periods and it 

is one of the most practical for many reasons. Some the reasons include that it is directly related 

to the amount of power the consumer is using and in some cases it can even pay back monthly 

other than the savings if the system is large enough. These systems have very little visual impact 

and they work year round as long there is sufficient sunlight. Solar panels melt snow at a much 

faster pace than that of a normal roof. They require little to no maintenance and have many 

financing options. They are easier to install and do not require as high installation cost as other 

systems. Although they cannot be used on all homes they are a preferred option among the 

technologies discussed for the long service life, lack of maintenance, and clean energy they 

produce. For these reasons, solar Photovoltaic systems should be one of the chief technologies 

promoted in the region. It is important to mention that solar photovoltaic cells produce power in 

all temperatures. New advances have made it so that they can be more efficient in colder 

climates. This is especially useful in Montachusetts because of the temperature range that exists 

in this region. Solar Photovoltaic cells do not make noise and they often sit on roofs and do no 

cause a large visual impact. Also, because there are no moving parts that technology is long 

lasting. Solar panel systems can last over 30 years depending on the usage and how much sun 

they are exposed to. 

 Mass CEC pellet boiler program has many benefits but is too small for everyone to 

benefit from. Pellet stoves are the more convenient option but those that can qualify for the 40 

person boiler pilot grant program will receive a much larger capacity system with a comparable 

payback period. The boiler/hopper installations are large, but require less maintenance then the 

smaller scale stoves. They can also be connected to existing duct tunnels in the home. However, 

because of the high cost of the systems and the installation costs it is not easy for all to afford. If 

there are no grants to supplement the installation then they should not be promoted as the 30% 

Federal tax credit is not sufficient to make pellet boilers a competitive technology. We suggest 
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that the MRPC promote the MassCEC boiler grant program but do not otherwise promote pellet 

boilers. 

 Wind turbines are good for power output but do not always make sense for residential 

use. The usability factor in the Montachusett region for residential district is much too low to 

consider installation. Even in areas where they can be installed it is not feasible because the wind 

readings are too low at the heights required for residential use. There are too many bylaws 

including the noise levels and safe height requirements for residential use. There are also laws 

protecting others from shadow flicker and the distance between the wind mill and the objects 

next to it if it were to fall. As we already know that wind is not constant, the 8 kWh turbine used 

in our calculations is rated to output that 8 kW per hour at ideal conditions, realistically it only 

produces about 9% of that energy over a long period of time. Also wind turbines for residential 

use don’t always come prepared for all wind speeds. The turbine will perform best only between 

certain wind speeds. There is also much opposition to the installation of wind turbines and it is 

for many reasons. Many believe these large structures can ruin a view. There are also those who 

oppose installations due to the noise. So when installing one of these structures it is important to 

consider the noise level. Normally, for a larger turbine, most would agree that it would have to 

be at least ¼ of a mile away from the nearest home. For Montachusett region to benefit from 

wind power large wind farms would be required and Montachusett region does not seem to have 

many places where this would possible. So it is important to note also the longer payback period 

due to the higher maintenance costs and initial installation. All these facts add up to one fact. The 

average Montachusett homeowner should consider other alternatives to wind energy and leave 

the bigger turbines for wind farms. 

 To conclude the recommendations, our largest energy concern in Massachusetts can be 

covered using renewable energy sources. Since the largest energy consumption in any home in 

Massachusetts is heating, renewable energy systems should be considered for supplementing or 

eliminating these energy needs first. Second, Solar photovoltaic systems may be used to 

eliminate and even produce excess power in some cases with grid tie systems and since they are 

becoming more widely available it is a good idea to keep investing in these systems to 

supplement the technology. Wind energy is competitive only with economies of scale. The 

MRPC is aware of this and they are largely promoting wind turbines for mostly commercial use. 
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Bylaws exist to protect residences from the hazards of using wind turbines locally but that strict 

regulations make installation of such a device nearly impossible for a homeowner. The MRPC 

should promote pellet stoves further as heating is one of the region’s primary concern. The 

fledgling pellet burner industry in the U.S. is located in Maine and promoting or incentivizing 

expansion to Massachusetts is recommended. Renewable energy is the future and it will create 

jobs and improve the economy. Eventually this will lead to dependence from foreign oil and 

better economic stability for the residents of Massachusetts 
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