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ABSTRACT

Single Photon Emission Computed Tomography (SPECT) is a medical imaging

modality that allows us to visualize functional information about a patient’s specific

organ or body systems. During 20 minute scan, patients may move. Such motion

will cause misalignment in the reconstruction, degrade the quality of 3D images and

potentially lead to errors in diagnosis. Body bend and twist are types of patient mo-

tion that may occur during SPECT imaging and which has been generally ignored in

SPECT motion correction strategies. To correct for these types of motion we propose a

deformation model and its inclusion within an iterative reconstruction algorithm. One

simulation and three experiments were conducted to investigate the applicability of our

model. The simulation employed simulated projections of the MCAT phantom formed

using an analytical projector which includes attenuation and distance-dependent res-

olution to investigate applications of our model in reconstruction. We demonstrate

in the simulation studies that twist and bend can significantly degrade SPECT image

quality visually. Our correction strategy is shown to be able to greatly diminish the

degradation seen in the slices, provided the parameters are estimated accurately. To

verify the correctness of our deformation model, we design the first experiment. In

this experiment, the return of the post-motion-compensation locations of markers on

the body-surface of a volunteer to approximate their original coordinates is used to

examine our method of estimating the parameters of our model and the parameters’

use in undoing deformation. Then, we design an MRI based experiment to validate

our deformation model without any reconstruction. We use the surface marker motion

to alter an MRI body volume to compensate the deformation the volunteer undergoes

during data acquisition, and compare the motion-compensated volume with the mo-

tionless volume. Finally, an experiment with SPECT acquisitions and modified MLEM

algorithm is designed to show the contribution of our deformation correction for clinical

SPECT imaging. We view this work as a first step towards being able to estimate and

correct patient deformation based on information obtained from marker tracking data.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Single Photon Emission Computed Tomography (SPECT)

Imaging

SPECT is a nuclear imaging modality that allows us to visualize functional information

about patients’ specific organs, such as the heart, lung and liver. Before imaging, a

pharmaceutical labeled with a radioactive isotope is either injected, ingested or inhaled.

Such a pharmaceutical is called a radiopharmaceutical, or tracer. While the patient lies

supine in the SPECT machine, the tracer decays, resulting in the emission of gamma

rays from regions of high uptake. A gamma camera collects gamma rays that are

emitted from within organs of interest, allowing us to acquire 2-dimensional projections

(Figure 1.1). Each projection is a sum of the body perfusion volume in one direction.

Usually, 68 angular samples are required for one SPECT imaging process. With these

projections, a 3D reconstruction algorithm, such as Maximum-Likelihood Expectation-

Maximization (MLEM) or Filter Back-Projection (FBP), reconstructs the 3D body

volume. Ideally, the reconstructed 3D body volume is an accurate reflection of the real

organ function.

SPECT is complementary with CT or Magnetic Resonance Imaging (MRI) which

are both structural imaging modalities. Typically, SPECT imaging needs 20 minutes

to acquire the 2D projections of a patient. During that long imaging time patients

inevitably has some movement. Such movements cause misalignment in the projections,



Figure 1.1: Projections by SPECT Imaging. (Wang and Royal, 1996)

which, in turn, degrades the imaging quality. To improve the quality of the SPECT

imaging, we have to correct for such misalignments.

Since such misalignment is caused by the patient motion, we need to answer the

following questions: 1) how many kinds of motion might a patient have during the

imaging, 2) how to measure those motions and 3) how to use the motion information

to correct within the reconstruction and improve the final imaging results.

1.1.2 Motion Categories

Patient motion is mostly composed of Rigid Body Motion (RBM), Respiratory Motion

(RM) and non-rigid body motion. Each kind of motion has its own properties and

has to be treated independently. For RBM, we can consider the patient as a whole

object and omit the relative movement between the patient organs. Therefore, RBM is

described by 3 Degrees of Freedom (DOF) of patient translation and 3 DOF of patient

rotation (Feng et al., 2003).

2



Respiratory motion is another type of motion. The property of this motion is that

the patient organs are driven by periodic breathing, but in considering the patient as

a whole, there is no movement. So we can say the respiratory motion is a special non-

rigid periodic motion. A lot of work (Reyes et al., 2007) (Lamare et al., 2007) has been

done to measure and compensate for this motion.

The third kind of motion, which we focus on in this dissertation, is non-rigid and

non-periodic body motion, or so called body deformation. This happens when a patient

changes his pose. During SPECT imaging, a patient lies supine on the table for about 20

minutes. Patient deformation usually occurs if the patient feels uncomfortable during

the SPECT imaging. It is especially difficult for some older patients, who are the

majority of patients requiring scans, to maintain the same position for up to 20 minutes.

After a patient changes his pose, such as by twisting his body and stretching his arms,

the relative distances between organs are also changed. Just as for the other two

motions, body deformation also changes the body volume. As shown in Figure 1.2,

such body deformation will change the density of the gamma ray emission distribution

and, in turn, will alter the projections. If we ignore such an influence and perform

a reconstruction as before, some parts of the body may be brightened abnormally,

while some other parts of the body may appear abnormally dark. Unfortunately, such

abnormal hot or cold spots in the 3D reconstruction volume might be considered as

disease in the diagnosis (Figure 1.3).

1.1.3 Motion Measurement

Motion measurement and motion estimation is an important part of SPECT imaging

correction. Though we are aware of all the kinds of motions, we have to find a way to

measure them during the imaging process. There are two major methods for motion

capture. Firstly, we have to quantify the patient motion by the projections themselves.

In this approach, each projection image is separated by different time windows. Then

a registration method is used to estimate the motion between the frames (Kyme et al.,

2003). Currently, one of the major algorithms for image registration is optical flow

based registration. This method is widely used for motion correction, especially in

SPECT brain motion correction (Noumeir et al., 1996) (Cooper and Ritter, 2003).

However, for the torso, the motion is more complex and non-periodic. To make it worse,

3



(a) Deformation Effect for different

Gamma cameras


(b) Initial Deformation


(c) Effect


Projection During

Deformation
 Gamma Camera


Projection Without

Deformation


Figure 1.2: Body Deformation During the SPECT Imaging.

projections are acquired from different angles sequentially. We are lack of knowledge

of the projection image without motion. Therefore, the optical flow registration can

hardly help the torso motion during the reconstruction.

One important observation regarding patient motion is that internal body motion

affects the patient surface motion inevitably. On the other hand, the patient surface

motion is a good indicator of the internal body motion. If we can monitor the patient

surface motion, this surface motion information can be used to infer the interior motion

to some extent. In this project, we are trying to monitor the patient surface motion

and estimate the patient body motion from the surface motion. It is true that the

entire patient surface motion can not be monitored or described in an efficient way and

can not be used within the reconstruction easily. To make it worse, the patient body

is so complex and flexible that it is not easily separated from the background. This

means that we can not get our motion data by monitoring the patient body directly.

However, instead of tracking the whole patient surface, we can put some retro-reflective
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Figure 1.3: (a,b) Transverse (Coronal) slice from the reconstructed volume without
motion effect; (c,d) Transverse (Coronal) slice from the reconstructed volume with
some deformation effect.

markers on the patient body, which can be tracked with a set of cameras. The cameras

are placed in various directions around the patient to avoid blocking views by the

SPECT machine or the patient body anatomy. Since the patient motion can be closely

represented by the retro-reflective markers, we try to track the motion of these markers

and consider these markers’ motion as an indicator of the patient surface motion.

There are several motion capture systems that can meet this requirement. For

example, Bruyant (Bruyant et al., 2004) (Bruyant et al., 2002) developed a motion

capture system, called a Visual Tracking System (VTS), to track patient motion with

video cameras. Currently, we have adopted for clinical usage a commercial system (VI-

CON MX, Oxford, UK) because of its flexibility and ease of calibration (McNamara

et al., 2007). The markers are attached to elastic bands wrapped about the chest and

abdomen of the patient. Figure 1.4 shows a volunteer in the supine imaging position on

the table of our SPECT system with 2 bands with attached markers, and 2 of the 5 VI-

CON cameras we employ for motion-tracking. In this project, we wrap two belts, each

with 4-5 retro-reflective markers, on the chest and abdomen of the patient respectively.
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Figure 1.4: Illustration of viewing geometry for markers on stretchy bands and a vol-
unteer in the supine position for motion-tracking during SPECT imaging.

During the motion tracking, each camera records a sequence of marker images. If a

marker is viewed by at least 2 cameras at one time, the 3D surface marker trajectories

can be triangulated from 2D coordinates. The motion of the chest markers can be

combined to estimate the RBM of the chest, and the vertical motion of markers on the

abdomen allows us to track respiration (Mukherjee et al., 2009). Therefore, the patient

surface motion is indicated by the markers’ 3D coordinate sequences. Finally, the gross

motion data will be determined from the position sequences of the markers. Once such

gross motion data is acquired by the motion tracking system, a motion separation pro-

cess (Mitra et al., 2007) is used to separate the motion into three compositions (RBM,

RM and Deformation), which is described in the Section 1.1.2.

What we have considered so far is just the marker motion. A motion model is

required to build the relationship between the marker’s motion and the patient volume

motion. With such a connection, we can use the marker’s motion to correct within the

volume reconstruction.

1.1.4 Reconstruction

A 3D reconstruction algorithm (Li et al., 1994) (Shepp and Vardi, 1982a) (Lange and

Carson, 1984a) is used to build body volume data from 2D projection images. We

can get 2D projection images from CT or SPECT. The structure is not very visible in
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these projection images. To visualize it better, the 2D projection images have to be

reconstructed to a 3D volume. Regardless of motion blur, the reconstruction algorithm

uses all the projections to build a 3D body volume for clinical diagnosis.

When we take the patient motion into consideration, the reconstruction method

has to be modified. Since we have to take the motion data into consideration, a set of

details should be carefully considered, such as the reconstruction formula adjustment,

volume data interpolation and synchronization between the projections and the motion

data. For the iterative reconstruction algorithm, the iteration number to reach the best

result also may have to be adjusted.

Of all the three kinds of motion, the correction of the RBM has been the most

rigorously developed (Feng et al., 2005) (Feng et al., 2006). By inputting the RBM

component, Feng (Feng et al., 2003) improved the reconstruction algorithm to correct

the RBM effect within iterative reconstruction. The respiratory signal can also be used

for RM correction (Dey et al., 2007) (Dey et al., 2006) (Ue et al., 2005) (Kovalski et al.,

2007).

However, the human body is not a true rigid object. When the human body un-

dergoes a motion, part of the body has to deform to reach the destination followed by

other parts of the body, especially when the patient is lying down. Therefore, residual

motion always present even after removing RBM and RM. In our analysis we will term

such non-rigid non-periodic motion as body deformation. If there is some deformation

component in the gross motion, the body organs undergo relative movements, which

can not be corrected with the RBM and RM correction alone. Figure 1.5 shows the

coordinate sequence of a chest marker for 12 minutes of a real SPECT acquisition. We

can see that the patient moved unexpectedly after 10 minutes. This motion could not

be described by RBM alone. Figure 1.6 shows this sample motion before and after

the RBM correction. The residual motion of markers shows that the patient body was

undergoing a deformation. Our aim will focus on the deformation correction within the

reconstruction.
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Figure 1.5: 3D coordinate sequence of a chest marker on patient body during a real
SPECT acquisition.

1.2 Dissertation Overview

1.2.1 Project Description

The goal of this research is to eliminate or minimize the misalignment caused by body

deformation in 3D volume reconstruction. Before we describe the project, we have to

describe the input and output parameters. Basically, we have two kinds of input data.

The first is the marker coordinates for deformation. After our cameras capture the

marker motion; the motion separation module separates the motion into 3 parts based

on the motion categories. We take the data for non-periodic and non-rigid deformation

as our input motion data. The second part is the 3D volume reconstruction from 2D

projections of SPECT. The 3D volume from the reconstruction module is the only

output data.

There are many potential types of patient body deformation. In this dissertation,

however, we focus on two kinds of deformation which involve the spine: twist and bend.

We define twist as a progressive rotation around the backbone along the foot-head axis,

and bend as a progressive curving along the backbone resulting in it being bent. Bend

can occur in any direction; however a vertical bend upward (sitting up) would be

difficult for a patient to maintain for any extended period. Thus lateral bending is the
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more likely to occur when for example the patient wiggles to get comfortable. Therefore,

the twist motion defines one degree of freedom—twist, and the bend motion defines

two degrees of freedom—bend and bend direction. Our deformation computation deals

with these three degrees of freedom. Without correcting for body deformation, the

reconstruction will degenerate, which could impact diagnostic accuracy.

Even after we have acquired the marker data, we still have no specific idea of the

patient torso deformation. We can consider the marker coordinates as a set of sparse

points on the torso. How to use those sparse points to indicate the whole volume

deformation is the question we have to answer. This paper presents three steps we

have developed for correction of bending and twisting: 1) creation of a body model with

parameters describing the extent of twist and bend, 2) using patient observations in the

estimation of the deformation parameters of this model, and 3) image reconstruction

employing the model and parameters. Our body model is for imaging in the chest and

abdomen region, and is based on a simple mechanical model of the spine within that

volume. That is, we assume the spine does not stretch or compress in length but just

twists and bends (in addition to any RBM). A set of inherent body variables, such as

the spine length and center, are specified to apply the model for each patient. The

residual body deformation data remaining after removing RM and RBM from the set

of marker motions are processed by the deformation model to estimate the deformation

parameters (twist angle, bend angle, and the bend direction). The sequences of marker

coordinates are used to compute the sequence of the real-time deformation parameters.

We will discuss the model and assumptions in detail in Chapter 4.

Finally, the SPECT projections, the specified deformation model, and the defor-

mation parameters are used in a modified reconstruction algorithm to correct the mis-

alignment caused by the body deformation during the reconstruction. We modify the

mathematical reconstruction formula first by considering the deformation correction.

The new algorithm can interact with the deformation data and combine the motion

computation with the reconstruction. In the projection image, the regular counts are

less than 10 usually. Therefore, during the reconstruction of the low counts number

projections, we have to adopt Gaussian interpolation, instead of the traditional bilinear

interpolation, to improve the resolution and to minimize the alias. The final results

might not be as good as the result without deformation, but should be much better

than the result with deformation but no correction.
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1.2.2 Project Structure

Figure 1.7 depicts the block diagram for this project. Based on the goal we have,

this project is composed of three major parts, Deformation Model, Model Parameters

Estimation, and Volume Reconstruction. The deformation model will be described in

Chapter 4. All the marker-related computation and volume related computation is

described in the Chapter 5.

In the Deformation Model chapter, we will describe the deformation procedure, the

parameters that we have to estimate and how to put the markers on the patient body.

Model Parameters Estimation is composed of Initial Body Pose Estimation to specify

the body pose using a set of patient body inherent variables, such as spine location and

spine length, Pattern Independent Deformation Estimation to create the deformation

parameter sequence (twist, bend and bend direction) as indicators of the deformation,

Camera to SPECT System Mapping to associate the markers with the target volume,

Deformation Matrix to show a mathematical deformation expression, and Modified Vol-

ume Reconstruction, to embed our deformation model-based motion correction module

into the traditional reconstruction algorithm for the purpose of deformation correction.

Given the initial body pose and the deformation parameter sequence, the modified

reconstruction algorithm can generate a 3D motion-free volume. The deformation pa-

rameters and the projections should also be synchronized for reconstruction accuracy.

The six sections are exactly the six steps in the deformation correction procedure. The

reconstructed body volume is deformed by the deformation model and parameters to

simulate the real deformation of the patient and counteract the motion effects.

The major contributions of the project are included in the following three modules,

Initial Body Pose Estimation, Pattern Independent Deformation Estimation, Deforma-

tion Matrix and Modified Iterative Reconstruction.

1.2.3 Experiment and Simulation

Before we can use our method for motion correction, we have to verify our deformation

model. We propose two experiments for verification purposes in this project (Figure

1.8). Firstly, we want to verify that our deformation model is reversible, which means

the deformed volume can be reset to the initial pose with our deformation model and

parameters. We call such a reset operation as ”undeformation”. The markers can be
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considered as a set of special voxels in the volume, which also can be moved back from

the deformed position to the initial position with an undeformation computation (Note:

this is not an exact inverse computation). Such an undeformation computation for the

markers can be used as one of the deformation model validation tools. Based on a set of

markers based deformation data from real volunteers, we estimate all the deformation

parameters. Then an undeformation computation is made for the deformed marker

coordinates with our deformation model. Ideally, if our model is a perfect reversible

model, the undeformed marker coordinates should be the same as the initial ones. Since

the model directly affects the correctness of the deformation computation, our second

step is to design an MRI based experiment to verify the correctness of our deformation

model. A volunteer with retro-reflective markers is scanned twice by MRI, with and

without deformation respectively. Two sets of body volumes from the same volunteer,

with and without deformation are acquired. We estimate the deformation parameters

and undeform the body volume with our deformation model. The purpose of this

experiment is to test that our model is not restricted to the case of some special markers,

but that is generalized to the whole torso. If our model is correct, the undeformed

volume will be very close to the motionless volume.

Not only the model, but also the modified reconstruction algorithm should be

checked before we use it for correction. Therefore, a simulation procedure is designed

with the Mathematical Cardiac Torso (MCAT) phantom. The goal of the simula-

tion is to theoretically validate the correction modified reconstruction algorithm. The

simulation is composed of three steps. One is to reconstruct the 3D volume without

deformation; the second is to reconstruct the 3D volume with predesigned deformation

but no correction; the last one is to reconstruct the 3D volume with predesigned defor-

mation and our correction. Finally, we have to combine the model with the modified

reconstruction and validate the whole system with real patient data. We propose a

verification procedure with SPECT, similar to the MCAT phantom simulation.

The clinic based experiment is finally applied to a real patient. In this experiment,

the patient is required to undergo two SPECT acquisitions, one for motionless and

another for some motion including both rigid and non-rigid motion. Traditional MLEM

algorithm will be used to reconstruct the first acquisition for the motionless volume

and the second acquisition for the motion volume without correction. RBM motion

estimation and our modified reconstruction is used to reconstruct the second acquisition
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for the motion volume with correction. Then, our deformation estimation module and

our modified reconstruction is used to reconstruct the second acquisition for the motion

volume with all kinds of motion correction. Finally, these four volumes are compared

to draw our conclusions.

1.3 Road Map

The remainder of this dissertation is organized as follows: Chapter 2 provides back-

ground knowledge of the work in this proposal; Chapter 3 discusses related research

in the areas of motion data acquisition; Chapter 4 investigates the issues with defor-

mation modeling; Chapter 5 describes the proposed approach; Chapter 6 outlines the

simulation and experiments for verification and Chapter 7 discusses the future work of

this project.
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Figure 1.6: Shown as spheres are the coronal view locations of markers on the ab-
domen and chest belts of a patient during clinical cardiac SPECT imaging with motion
tracking. (a) Initial marker positions; (b) Initial (yellow spheres) and post-deformation
marker locations (green spheres); (c) Initial (yellow sphere) and post-deformation lo-
cations after RBM correction of abdominal sphere locations to match their initial
positions (green spheres) as per the first step in the correction methodology proposed
herein. Note residual marker motion is a combined CW twist when viewed from the
direction of the patient’s feet and bend to the left in 3D, and only the projection of
this motion as viewed coronally is presented in this figure.
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Figure 1.7: Block Diagram of the project. Notice: the orange module is the major
contribution of this project.
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Figure 1.8: Deformation Model Verification and Systematic Verification.
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Chapter 2

Background

2.1 SPECT Overview

SPECT is the primary modality for functional imaging in tumor detection or perfu-

sion studies. A SPECT machine consists of gamma cameras, a patient table, a gantry,

and an acquisition computer (Figure 2.1). The table can be translated to move the

patient into the center of the gantry. By injecting a radiopharmaceutical, labeled with

technetium-99m, iodine-123 and 131, gallium-67 or thallium-201 into the patient body,

photons are emitted throughout the patient body. Though such radioactivity is atten-

uated by the body anatomy, it indicates the internal function of target organs. The

gamma cameras, covered with collimators, detect the emission rays from the body. The

electronics system can turn the photon events collected with the collimators into the

intensity images, called projections. During imaging, the gamma cameras are rotat-

ing around the patient driven by the gantry. Currently, several companies, including

Siemens, GE, Toshiba and Philips, are building SPECT imaging systems.

Because SPECT indicates functional information, it is effective in separating tumors

from benign tissue (SNM, 2007). During emission of radioactivity, the body soft tissue

attenuates the radiation and alters the projection images. SPECT is often used with

an MRI or CT scanner to give a full three-dimensional view of an organ and the

location of cancer within that structure. The newest scanners are a combination of

SPECT and CT, so called SPECT-CT systems, which provide important metabolic

information from SPECT superimposed on the high-quality anatomic information from

CT. Such structural information provided from CT or MRI scans can also be used to



(a)


Gamma Camera


Gantry


Detector Crystal


Photomultiplier Tube Array


Collimator


Position Logistic Circuits


Detector Covet
Computer


Organ with radioactivity

emmissions


(b)


Figure 2.1: (a) SPECT Machine. (MedserVentures-Inc., )(b) Mechanical Structure of
a Gamma Camera in SPECT. (MIRG, )

create attenuation maps that will improve 3D reconstruction. Furthermore, with the

anatomic information, it is easier to locate malignant tumors inside the body.

2.1.1 History of SPECT

To study the radioactive source distributions in the brain, crude spatial information

were produced using a single detector positioned at various locations around the head

as early as the 1940’s. The rectilinear scanner was invented by Ben Classen to improve

methods in the 1950’s. This device produced planar images by mechanically moving

a detector in a raster-like pattern over the area of interest. Current SPECT imaging

equipment is also based on this technique. However, it requires 20 minutes of imaging

time because of the sequential nature of the scanning, and the resolution is still quite

low (Kuhl and Edwards, 1963).

Hal Anger developed a pin-hole based scanner in 1953. The image was projected

onto a scintillating screen with photographic film behind it. This technique required

extremely long exposure times because of the huge inefficiencies in the system (princi-

pally due to losses in the film). The inefficiencies in the system resulted in extremely

high radiation doses to patients which caused side effects. To deal with this problem,

Anger replaced the film and screen with a single NaI crystal and PMT array in the

late 1950’s. This formed the basis for the ”Anger Camera” which is now the standard

clinical nuclear imaging device. Modern Anger Cameras use a lead collimator perfo-

rated with many parallel, converging or diverging holes instead of the original pin-hole
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configuration.

Kuhl and Edwards produced the first tomography from emission data in 1963. This

was the beginning of the SPECT technology. Everett, Fleming, Todd and Nightengale

suggested the use of the Compton effect for gamma-radiation imaging in 1977. This

technique is currently in use in astronomy. Its adaptation to SPECT is non-trivial

because of the vastly different source distributions and geometries involved. The inves-

tigation of the Compton Camera for SPECT began in 1983. Manbir Singh and David

Doria proposed and experimented with a basic design using solid state detectors, per-

formed an analysis of possible detector materials, and produced a small prototype for

testing (James et al., 2004). At this time, the more conventional SPECT machine was

already fully developed for clinical use.

Over the past several years, cardiac Positron Emission Tomography (PET), MRI,

CT, and ultrasound have made significant advances while few new improvements in

imaging hardware and radiopharmaceuticals have been realized for cardiac SPECT.

Combining two or more imaging methods for diagnosis will significantly increase the

accuracy. Based on this, SPECT-CT and SPECT-MRI equipment has been built

for clinical use. Dynamic imaging can be performed for every cardiac SPECT pro-

cedure to provide improved lesion contrast and better evaluation of viable myocardium

(G.T.Gullberg, 2004). Though the detection methods have been improved, the scanning

time is still a big problem for SPECT. Some other problems related to long scanning

time, such as patient motion blur, are popular research topics in the area of SPECT

imaging.

2.2 Motion Capture

2.2.1 Motion Capture Introduction

Motion capture is a popular technique for generating human animation (Maiocchi,

). Considerable literature exists on using and editing motion capture data in human

animation. Motion capture yields an unstructured representation, which is a sequence

of sampled marker trajectories (Bruderlin and Williams, 1995) (Witkin and Popovi’c,

1995). Such motion acquired from human beings can be analyzed for biomechanics

(Zhou, 2001) or applied to animation in cartoons or video games.
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The basic equipment for motion-capture consists of cameras around the perimeter

of the tracking volume, a set of markers on the object, as well as hardware and software

to process the data. Each camera captures synchronized images of the motion at a very

high frame rate. All the cameras are synchronized so that it is easy to pair all the 2D

coordinates from different cameras in one time slot. After we can identify a marker

in 2 or more camera images at a given time, the 2D points pair can be triangulated

into a 3D trajectory. Such a sequence of 3D coordinates is called ”motion data”. The

triangulation algorithm is a sophisticated algorithm for 3D reconstruction from 2D

images. Lots of work has been done using this method (Avidan and Shashua, 2000)

(Bittar et al., 1995). Though the synchronized 2D coordinate pairs are acquired in

real-time, the 3D reconstruction can be done off-line. Finally, we get the motion data

of reflective markers as a sequence of 3D trajectories.

The motion capture system can be categorized into two types based on the ap-

proach used to identify different markers in different images from different cameras:

systems with identifiable markers, and systems with uniform markers. Identifiable

marker systems run with a set of distinguished markers. Such systems do not have the

correspondence problem to identify each marker for different cameras. There are two

ways to make the markers identifiable: powered and unpowered. It is helpful if we put

some electrical power on each marker to make them shine. The powered markers are a

set of LEDs that can flash in different time intervals or with different frequency. Thus

each marker can be identified from different cameras. In this way, the environment can

hardly disturb the marker identity. However, lots of applications forbid putting elec-

trical wires on the human body, especially in medical applications. Therefore, the only

choice for medical imaging is non-powered markers. If the markers are not powered,

each marker has to be distinguished from other markers. Color is a simple choice (Bros-

tow and Essa, 1999). It is convenient to acquire the correspondence information of the

markers between different cameras. However, considering the background, it is quite

difficult to specify each marker against the environment color. The lighting condition

is another restriction for such a solution. Boutchko (Boutchko et al., 2007) also tried

to identify markers with different shape, which requires complicated segmentation and

registration techniques.

The motion capture system with uniform retro-reflective markers is another popular

solution (Park et al., 2005) (Sundaresan and Chellappa, 2005) (McNamara et al., 2006)
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(Bruyant et al., 2005a) (Bruyant et al., 2005b) without putting power on the target

body. Passive and uniform markers give a lot of freedom to the motion capture system.

Since there is no power, there are no wires and no extra equipment attached to the

human body. Since the markers are uniform, theoretically, we can put as many as we

want without considering identity conflicts. (Note: too close markers will cause ghost

markers in the trajectory computation.)

For medical imaging purposes, the clinical environment is full of all kinds of color.

Thus a system with uniform reflective markers is the only choice to capture the patient

motion. The disadvantage of this type of motion capture is marker registration. Since

each camera monitors the markers from different angles, the same marker appears in

different positions for each camera image. To make it worse, when we back-project the

2D markers into 3D space for triangulation, ghost markers are created even if there is no

real marker in that position because we are lack of accurate correspondence information

for the 3D trajectory lines.

2.2.2 Calibration

Camera calibration is an important part of motion capture systems. Camera calibra-

tion is a method for calculating the camera parameters. Camera parameters include

intrinsic parameters and extrinsic parameters. The intrinsic parameters are composed

of the focal length, the principal point, the distortion parameters and skew. The extrin-

sic parameters are composed of the rotation and translation vectors, which indicate the

camera pose. Currently, several major calibration techniques are available. The direct

nonlinear minimization technique directly builds camera parameters to minimize the

residual error by iterative computation (Abdel-Aziz and H.M.Karara, 1971). To avoid

the iterative computation, phantom-based calibration is introduced. In this method, a

set of 2D and 3D corresponding coordinates of the reference spheres are required. The

intermediate parameters can be computed by solving linear equations and the final

parameters are determined from intermediate parameters. However, lens distortions

cannot be computed by this method (Ganapathy, 1984). Len (Len and Tsai, 1987) and

Tsai (Tsai, 1986) (Tsai, 1987) introduced an improved solution for calibration which is

a two-step method to compute the distortion and skew parameters. To improve the ac-

curacy of one camera calibration based on the Tsai model, Zhang (Zhang, 1999) (Zhang,

19



2000) used a flexible method with Euclidean distance (Hartley and Zisserman, 2000),

which only requires one camera and a set of grid board images. To make the calibration

more convenient and avoid requiring 3D coordinates, Azarbayejani (Azarbayejani and

Pentland, 1995) developed a one point multi-camera self-calibration method for at least

three cameras. Svoboda (Svoboda et al., 2005) made this technique more robust.

2.2.3 Motion Capture Applications

Many motion capture systems are commercially available. VICON developed a motion

capture system with retro-reflective markers. Animation and gait analysis were their

first applications. A set of VICON cameras and related 3D reconstruction software,

called ”Nexus”, were developed for the life sciences. There are other companies with

similar products, such as Phase Space Inc. and Motion-Analysis Inc.

Other motion capture systems with powered active markers are also in use currently.

Moven Inc. is building a motion capture system, in which the marker can send wireless

signal to locate itself. The Phase Space company is also developing a system in which

each marker can flash in a certain time interval to make itself distinguishable.

2.3 Motion Correction

The long scanning times for SPECT imaging causes some problems with the detection

accuracy. The most important problem is the motion blur in the 3D reconstruction

volumes. A SPECT system takes 2D projections one angle at a time. If the patient do

not move, all the projections are from the same target. The reconstruction procedure

can build a clear volume from these projection sets. However, a patient will inevitably

have motion such as shifting, respiration or deformation, due to the long scanning

time. That means some projections are coming from a moving torso, which will cause

misalignment.

We can track this motion using a motion capture system as discussed before. The

gross motion can be separated into 3 major components, RBM, RM and body defor-

mation. Since it is a non-periodic motion, it consists of patient translation and patient

rotation. At a given time, only one marker is required to calculate the rigid-body

translation and at least three markers are required to calculate the rigid-body rotation
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Figure 2.2: A sample from (Feng et al., 2005) for the RBM correction. (a) Reconstruc-
tion of the motion-free baseline acquisition. (b) The same trans-axial slice in the image
summed for the 4 images acquired in 4 sequential acquisitions, without motion com-
pensation in summing (Rigid Body Motion Only). (c) The same slice in the summed
image with compensation for motion. No post-smoothing was applied to the images.

(Horn et al., 1988). If the translation vector and the rotation matrix are determined,

Boening (Boening et al., 2004) provide a partial-reconstruction method to correct for

RBM. This solution increases the resolution by reshaping the projection frames to cor-

rect the RBM. Also, Feng (Feng et al., 2005) published another method to estimate the

patient rotation with generalized center-of-mass markers, which can be located with

external cameras. To increase the resolution of the reconstruction, Feng (Feng et al.,

2006) introduced a 3D Gaussian interpolation to substitute for the traditional bilinear

interpolation. To improve this, Schumacher (Schumacher and Fischer, 2007) introduced

a new approach to correct for abrupt rigid patient motion and the effects of gradual

motion. Using RBM correction for SPECT has been well developed. However, none of

the solutions model the relative motion between the markers, so that RBM correction

methods cannot be extended to correct for non-rigid body deformation (Figure 2.2).

Respiration is another kind of body motion, with the property that it is periodic.

During respiration, the patient body itself is deforming and the organs change their

relative distances and orientation. Though we can measure the surface motion due to

breathing, it is still difficult to deduce internal movement. Optical flow registration

(Noumeir et al., 1996) (Cooper and Ritter, 2003) is used for brain motion correction.

Gating (Livieratos et al., 2006) (Garbow et al., 2003) is a technique widely used for

phase registration of the RM correction. With the gating information (the phase infor-

mation of the periodic motion), Ablitt (Ablitt et al., 2004) tried to compensate for the

RM by optical flow and partial least squares regression. However torso motion is larger
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and more complicated than brain motion. Free-form registration, which introduces a

set of control curves for the registration procedure, (Horn et al., 2003) (Rueckert et al.,

1999) was introduced for torso RM correction. Based on a user-defined deformation

path, free-form registration has more freedom to control the smoothness and the con-

vergence time within the registration. Segmentation (Paik et al., 2004) (Armato et al.,

1999) (Armato et al., 2001) has also been introduced for RM correction. Through

segmenting the heart and lung out from other organs and gating the periodic motion,

more precise correction could be achieved with the single organ volume reconstruction,

such as cardiac or lung reconstruction. Combined with segmentation techniques, Dey

(Dey et al., 2007) (Dey et al., 2006) introduced a more robust correction method for

the RM related cardiac motion correction. Though a lot of progress has been made for

RM correction, it is still not as well developed as RBM correction.

Based on the previous work described, RBM and RM can be corrected to some ex-

tent. On the other hand, there has still not been much work on deformation correction.

Deformation correction for cardiac SPECT imaging is the focus of our project.
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Chapter 3

Related Work

3.1 Motion Data Acquisition

Motion tracking and motion data acquisition is fully developed and widely used in varied

applications. A modern motion tracking system is composed of high speed cameras,

reflective markers, a high speed router and some other accessories (Figure 3.1). In our

case, a VICON MX system, which is a flexible near infrared (NIR) multi-camera high-

speed tracking system, was chosen. The VICON cameras can capture 242 frames per

second with a resolution of 659×494. In this system, a set of reflective surface markers

(Figure 3.3) are placed over the patient body (Figure 3.4). Several high speed cameras

are positioned and calibrated in the SPECT clinic to track these reflective markers.

Two steps are required for the motion tracking acquisitions. Firstly, a multi-camera

self-calibration method is adopted by VICON to calibrate all the cameras for the camera

parameters (Figure 3.2). Currently, a multi-camera self-calibration method (Svoboda

et al., 2005), which does the calibration by waving a wand of 3 markers is used. The

accuracy of the calibration has great influence on the accuracy of the 3D coordinates.

The data flow is shown in Figure 3.7. The calibration result is used for the computation

of the trajectories of the retro-reflective markers. Secondly, the system records the

coordinates of the markers during the motion capture procedure. For a 20 minutes’

data acquisition, only several seconds is required to rebuild a 3D trajectory sequence of

all the markers using a dual-core 2.0Ghz CPU. 3D trajectories of the reflective markers

are called the motion data. Such motion data mixes all kinds of motion together.

Before we can use it for motion correction, further processing is necessary to separate



(b)
(a)
 (c)


Figure 3.1: Motion Capture System. (a)High Speed Camera. (b) Location of the
cameras. (c) Reflective Markers.

(a)
 (b)


Figure 3.2: Multi-Camera Self-Calibration (Svoboda et al., 2005). (a) A laser pointer
with plastic tip. (b) Waving trace of the stick.

the various motions.

3.2 Motion Data Separation

Patient motion always includes RBM, RM as well as body deformation. How to separate

them from the gross motion data is still an open question. For RBM, we assume that all

markers move together as a whole rigid object. However, it is not true for the non-rigid

body deformation and RM. These two motions change the relative distance between

markers. The difference between them is that the RM is changing periodically and the

body pose probably changes non-periodically.

Isaksson (Isaksson et al., 2005) introduced an adaptive approach based on a non-

linear adaptive neural network to refine the RM. Beach (Beach et al., 2007) used this
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Figure 3.3: Sixteen highly retro-reflective spheres can be clipped on a garment made of
black stretchable fabric. This garment is placed around the chest and the spheres 3-D
motion is tracked by stereo techniques. Shown as inserts, are a mounting pin with and
without sphere attached. (Bruyant et al., 2004)

technique to decompose the RBM and RM from gross motion. Though he did not

consider non-rigid body deformation, he provided an efficient method based on a neural

network technique to separate the RBM from the gross motion data. Based on the

periodic difference between the RM and RBM, we can separate these two different

motions by considering each marker oscillation individually (Mitra et al., 2007). Though

the technique is not quite efficient in separating the deformation, we still can use it for

an approximation.

Though total body motion is composed of three major components, these three mo-

tion components are not orthogonal. RM correction usually tracks individual markers

only. RBM modeling can be approximated by considering at least three markers as

one object and ignoring the inside relative deformation. Our body deformation model

requires two belts on the patient body, one for the chest and one for the abdomen. We

put 4-5 retro-reflective markers on each belt to help capture the patient surface motion.

We consider each belt as one surface object and estimate the body deformation by the

relative movement between the belts. In this research, we start with the RM extraction,

followed by RBM extraction and consider the remaining motion as deformation. If we

change the extraction order of the three components, the final result of the motion

analysis may be different. It is very hard to tell which order is correct. We claim that

our motion separation order works for our deformation correction purposes.
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Figure 3.4: High Speed Cameras for Motion Tracking (Bruyant et al., 2004)

3.3 Synchronization

When we start the motion capture and SPECT acquisition, we have to synchronize the

two systems so that we know the correspondence between the tracked motion and the

projections. McNamara (McNamara et al., 2006) developed a synchronization method

based on a square wave generated in the control box of VICON system. This square

wave is sent with the trigger for SPECT and the motion capture system. Usually, the

arrival times of the square wave to the motion capture system and the SPECT machine

are almost the same. The time difference is less than 0.1 seconds and can be ignored.

The SPECT machine will start working from this trigger after a short delay of 1-2

seconds. After the SPECT machine is started, the square wave is set to negative by

the SPECT machine. The time interval between the start and the end of the square

wave is recorded in the list most data as the synchronization information between the

motion capture system and the SPECT machine. Based on the information provided

by the square wave, we can adjust the start point of the records in the motion data to

synchronize the start point of the SPECT machine. The square wave is sent once the

SPECT gantry is ready for a new acquisition from a new angle. So the square wave

triggers every projection acquisition to make sure the SPECT system and the motion

capture system are synchronized well.
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3.4 Reconstruction Algorithm

Reconstruction algorithms are used to reconstruct the 3D patient volume from the

projections acquired by the SPECT imaging process. There are two major kinds of

algorithms for SPECT reconstruction. The first one is a non-iterative method, such

as FBP (Li et al., 1994). FBP is one of the earliest methods for reconstruction. This

method is used not only for SPECT but also for CT (Xu and He, 2006). Though this

method can reconstruct the 3D volume quickly, the quality of the reconstruction is not

optimized. To improve the reconstruction, iterative algorithms are proposed. MLEM

algorithm (Shepp and Vardi, 1982a) (Lange and Carson, 1984a) (Lalush and Tsui,

2000) (Krol et al., 2002) is a sophisticated method applied in emission tomography as

an iterative technique for computing maximum likelihood estimates of the activity den-

sity parameters. Byrne (Byrne, 1998) accelerated the method using Poisson statistics.

In this approach, the measured data are considered to be samples from a set of ran-

dom variables whose probability density functions are related to the object distribution

according to a mathematical model of the data acquisition process. Using this math-

ematical model, it is possible to calculate the probability that any initial distribution

density in the object under study could have produced the observed data. In the set of

all possible images, which represent a potential object distribution, the image having

the highest probability is the maximum likelihood estimate of the original object. The

mathematic expression of the MLEM is as follows:

fnew
j =

f old
j

∑n
i=1

aij

n
∑

i=1

gi
∑m

j′=1
aij′f

old
j′

aij (3.1)

Where the fj is one voxel of the 3D reconstruction volume, aij is the projection

matrix, and gi is a 2D projection bin. Without motion, this iterative algorithm can

reconstruct a 3D body volume from 2D projection images.

Ordered-Subset Expectation-Maximization (OSEM) algorithms (Hudson and Larkin,

1994) (Byrne, 1998) (Lalush and Tsui, 2000), which are related but much faster than

MLEM, have quickly become the dominant iterative reconstruction procedures for

SPECT in recent years. Marie(Marie et al., 2005) has proven that the OSEM algo-

rithm works well for 201Tl 16-interval gated SPECT. However, in our case, the patient

motion is different for every projection. During the reconstruction, we have to study
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each projection individually. Chen (Chen et al., 2007) changed MLEM by adding a

motion term into the reconstruction formula and adjusting it for the RBM. If we want

to treat the body as a deformable object and correct the deformation, we need to imple-

ment Chen’s method with our special deformation terms and estimate the deformation

matrix. Section 5.5 will show the details of such a modification.

3.5 Attenuation Correction

SPECT reconstructions are degraded by many physical factors, including attenuation,

scatter and noise due to the random nature of the detection processes. This results in

a loss of image quality and quantitative accuracy.

Part of the photons emitted from the patient body are absorbed by the patient body,

such as in bone and soft tissue. That means the longer the photons travel through

the body, the less likely they reach the collimator. That energy absorption creates

some distortion in the 2D projection on the gamma cameras. If we omit attenuation

correction, the final reconstruction volume will have some error.

The attenuation correction method is based on obtaining an attenuation coefficient

map of the object through sequential transmission imaging. CT can be chosen for

such transmission imaging since CT can differentiate between tissue types with varying

attenuation coefficients. By segmenting different tissue types from the CT imaging, we

can create an attenuation map to estimate the gamma ray loss in SPECT. A completely

different approach was proposed by Natterer (Natterer, 1993), where the attenuation

map is obtained without the additional acquisition of transmission images, which also

avoids problems associated with the registration between different modalities. This

method is based on the application of consistency conditions of the attenuated Radon

transform to estimate the attenuation map from the emission projections. Researchers

(Welch, 1997) (Krol, 2001) tested the method on simulated images of uniform and non-

uniform attenuating regular geometrical objects in SPECT. The current trend is to

measure and reconstruct the attenuation coefficient map using a transmission scan. The

attenuation information is then incorporated into the reconstruction algorithm of the

emission data by modifying the projector and the back-projector pair. This approach

increases the SPECT acquisition time and requires special hardware (Noumeir and

El-Daccache, 1998).
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(a)
 (b)


Figure 3.5: Sample Slices from attenuation maps. (a) A slice from the MCAT phantom
attenuation map. (b) A slice from real attenuation in clinic, acquired by transmission
imaging.

Though all the approaches have their own advantages and problems, they provide us

with a valid attenuation map for reconstruction. Furthermore, if some other methods

to acquire the attenuation map are available, they can substitute for the previous ones

in our application conveniently. Figure 3.5 shows some sample slices from attenuation

map.

3.6 Scatter Correction

Scatter correction is another important correction during reconstruction. Quantifica-

tion with SPECT images is degraded by photon scattering. When a beam of gamma

ray interacts with atoms in a material, two scattering processes occur, Rayleigh scatter

and Compton scatter. Rayleigh scatter will change the direction of a gamma ray, but

will not change the energy level. Compton scatter will change the direction as well as

the energy, depending on the scatter angle.

To correct the scatter effect, we have to estimate the magnitude of the scatter effect

inside the body with a scatter map. A general idea for the magnitude of scatter in

myocardial imaging is an estimate of the ratio of scattered to unscattered (primary)

counts. Ogawa (Bruyant et al., 2002) introduced a triple energy window (TEW) method

to estimate the scatter map. In this method, the scatter rejection windows (Figure 3.6)

and the energy main window for the photon acceptance overlap each other. Then the

scatter map can be estimated by the subwindow on both sides of the main window.

Fujioka (Fujioka et al., 1997) applied the method for scatter correction in conventional
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Figure 3.6: Position-dependent Scatter compensation method (TEW) and a simulated
energy spectrum of using MonteCarlo modeling. This figure shows the total energy
spectrum, the first to the fourth order scattering (1st Scatter, 4th Scatter), and the
sum of all orders of scattering (Scatter Sum). Most of the scattered photons in the main
window are first order scattered photons. To reduce scattered photons accurately, it is
necessary to estimate the scatter sum. In the main window,which is shown as a shaded
the angle using the counts in narrow scatter rejection windows A and C, adjacent to
the main window. (Ichihara et al., 1993)

SPECT systems without any hardware for TEW acquisition. To avoid the issue of

negative vales when the TEW estimate is subtracted from the acquired data, one can

follow the methodology of (McNamara et al., 2007) and add the scatter estimate to

the estimated scatter-free projection data in the denominator on the right-hand side

of Eq 3.1. The advantage of this method is that TEW scatter correction does not

require extra hardware and can be done to the projections before the reconstruction

computation.

Effective scatter source estimation (ESSE)(Frey and Tsui, 1997) (Clough, 1986)

(Frey and Tsui, 1993) is another scatter map estimation method developed for non-

homogeneous scatter objects based on transmission maps (Welch et al., 1995). In this

method, the scatter map can be estimated from the transmission map, which is a 3D
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volume reconstructed from the transmission projections with an outside radioactive

source. This method works well for anisotropic objects. Since the human body is an

anisotropic object, we adopt this ESSE scatter estimation method in this project.
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Figure 3.7: Data Flow of Motion Capture System
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Chapter 4

Deformation Model

4.1 Previous Body Deformation Model

Body deformation simulation is an important topic not only in medical imaging but also

in robotics. Lee (Lee and Arjunan, 1991) introduced a 3 DOF rotation computation

model to model each joint of a robot. Chablat (Chablat and Wenger, 2005) built

a robotic vertebrae with a set of 3 DOF joints, called roll, pitch and yaw angles,

corresponding to the bending, bending direction and twist angle in this dissertation.

Since a real human joint shares the same physical features with a robotic joint, we

assume that we also can use the 3 DOF motion system to simulate a real human joint,

particularly for the joints between vertebrae.

Another important factor on body deformation is the deformation distribution along

the spine. Vorro (Vorro and Johnston, 2003) designed a method to detect the twist

distribution of a human body. As shown in Figure 4.1, a volunteer who has attached a

set of sensors in the muscles along the back is required to make only twist motion. Then

the sensor measures the twist deformation of each muscle. Since the twist deformation of

the muscle is caused by or leads to a corresponding twist in the joint between vertebrae,

we can conclude how much contribution each vertebra made during the twist. Though

there were only 9 subjects studied for these experiments, a rough distribution of the

vertebra for the twist is drawn. However, such results are only for twist, not bend.

Schwartz (Rozumalski et al., 2007) designed another experiment to detect the motion

distribution of human lumbar vertebrae. To make the result more precise, Schwartz

arranged a set of pins, each attached to a reflective marker (Figure 4.2), and stuck them



 


(a)
 (b)


Figure 4.1: Experiment for twist motion distribution study. (a) Passive regional shoul-
der rotation to the left in the seated position. (b) Electrode placement at thoracic
levels 4 through 9. (Vorro and Johnston, 2003)

into each vertebra of the spine. The volunteers were required to make some bending

deformations and two calibrated cameras recorded such deformation. Finally, the 3D

coordinates of the reflective markers and the tops of the pins were computed to reveal

the distribution of the bending among the joints in the spine. In his research, 10 sets

of data from 10 different volunteers were used.

All the previous work has made contributions to our body deformation modeling.

The joints of the human body are simulated by a 3 DOF hinge system in biomechanics

research. Moreover, some methods to detect the distribution of body motion are being

developed. However, such work is far from complete. These two experimental studies

for spine modeling clearly provided a starting point, but both lack significant amounts

of data. To deal with this general problem, we wish to more robustly model the spine

with 3 DOF.
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(a)
 (b)


Figure 4.2: Experiment for bending motion distribution study. (a) Experimental setup
showing rigid triads mounted to Kirshner wires; (b) Subject-specific vertebral meshes
(grey) and defining markers (blue) are shown. The faint red point clouds around the
markers are CT-based marker meshes used to confirm proper registration (Rozumalski
et al., 2007).

4.2 Vertebra Deformation

The body deformation of internal organs is driven by the motion of the skeletal system.

Therefore, for our body deformation study, we are primarily concerned with body

skeleton deformation. The body skeleton in the thoracic region is composed of the

spine and ribs. To make the problem simpler, we only consider the spine motion and

consider the ribs as extensions of the spine and always perpendicular to the spine. In the

human body, the spine is composed of 33 vertebra. When some deformation happens

on the body, the total deformation could be decomposed into unit deformations, each

caused by a single joint between pairs of the vertebras. Since we know the mechanical

structure of joints, we can study the degree of the deformation by a single joint and

extend it to the whole spine.

Each joint of vertebras can be considered as the basic unit for our body deformation.

The connection between the vertebras is quite similar to a hinge. For a regular 3D

system, an object has 6 DOF to move, 3 degrees for translation and 3 degrees for

rotation. In a hinge system, translation between the two parts is forbidden. Most

hinge systems are modeled using only 3 DOF (Lee and Arjunan, 1991) (Chablat and
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Figure 4.3: Three Degrees of Freedom. (a) Bending Angle; (b) Bending Direction; (c)
Twist Angle.
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Figure 4.4: Approximate Spine Model.

Wenger, 2005), which is how we will represent the segments of the vertebrae. In our

research, a hinge system with 3 DOF, called twist angle, bend angle and bend direction

(Figure 4.3), is used to simulate the motion of the spine.

4.3 Spine Deformation

To measure the spine deformation distribution, we have to create a spine model that can

be parameterized by the surface markers. We define body deformations as occurring

solely within a region of interest (ROI) (Figure 4.4) consisting of a portion of the spine

imaged by our SPECT system as defined by the placement of our motion-tracking

markers. Usually, the ROI includes the body parts between vertebrae C7 to T7. A

natural spine is more like a curve (Yang et al., 2007) than a straight line. However, when

the patient is lying supine on an imaging table, the spine curve between the vertebrae

36



C7 to T7 is reduced compared to other postures. Figure 4.6 shows some examples MRI

images of volunteer spines illustrating this. These spine shapes are close to a straight

line in the ROI except due to the support provided for the patients head, shoulders

and arms. Therefore, we approximate the spine as a straight line for computational

simplicity (Figure 4.4).

It is too hard to measure the body deformation directly from the patient body.

However, body deformation leads to surface deformation. On the other hand, we can

measure the total body deformation parameters by the skin-based markers with geo-

metric computations. Then we need to determine the contribution of each vertebra to

the surface deformation so that we can estimate the deformation of each part inside the

torso. The deformation of all the vertebras has a certain inherent distribution. Even

if we know the total twist and bend angle, we still do not know the distribution along

the spine. For example, suppose the twist angle is 1 unit, the first vertebra unit may

contain 50% and the second one may only contribute 10%. We use an angle distribution

map to define the contribution ratio of the spine deformation. The deformation map

can be expressed as follows:

[Bi, Ti] = Distribution(B, D, T, i) (4.1)

where i is the index for the current vertebra unit; Bi is the bending angle of i-th

unit, Ti is the twist angle of i-th unit; Distribution() is the approximate function that

can be used to simulate the physical characteristic of the patient body. B is the total

bend angle; D is the total bend direction and T is the total twist angle of the whole

body. Since previous work has not provided a solid deformation model (Vorro and

Johnston, 2003) (Rozumalski et al., 2007), a simple distribution model is proposed in

our project. We assume that the bend distribution and the twist angle distribution of

the spine both comply with a uniform distribution. That means all the bend and twist

motion is equally shared by all the joints and each unit of the vertebra takes the same

contribution for the total angle (Figure 4.5). The most significant advantage of this

method is that it is easy to calculate. We do not need to define the Distribution()

function. However, if there is a better deformation distribution description in the

future, our model can be adapted easily.

During torso bend, some parts of the body are compressed and other parts are
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Figure 4.5: An example of the spine deformation with uniform distribution.

stretched. There must be a baseline that keeps the same length during the body bend.

With the baseline, we can describe the body bend mathematically. Therefore, we make

a second assumption that the length of the spine is not changed during the body bend.

The spine is considered as the axis of the body twist. Since we assume the spine is a

straight line along the z-axis, we can use the coordinates in the xy-plane to define the

spine position. The spine location and the spine length are considered as the inherent

parameters determined by the patient. These two inherent parameters will not change

during the motion. The spine location we mentioned in this paper is the spine location

in the start point of the ROI, beyond which all the deformation is ignored. During the

whole deformation, the spine location in the start point of the ROI will not change.

Another important assumption for spine deformation is that when a spine is bend-

ing, the spine remains co-planer and incompressible. That means for all joints in the

spine, the bend direction, D in Eq. 4.1, keeps the same value. And the spine length

will not change during the deformation. All the assumptions are reasonable approxi-

mations for the medical imaging purposes, where patients are usually in a comfortable

spine position. This assumption makes it easy for us to build a geometric description

of the deformation. Though not an accurate assumption, it is a good starting point

for our research. Now we can compute the bend direction directly from the markers
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Figure 4.6: Spine images from MRI scans when patients are lying down supine.

attached to the patient.

With all these assumptions, we have the following simple estimation for the local

twist and bend for voxel v:

Tv = T
Lv

Ls
(4.2)

Bv = B
Lv

Ls

(4.3)

where Tv and Bv are the local twist and bend angle for the v-th vertebra; Ls is the

spine length in the ROI; Lv is the distance between the local voxel and the z-axis value

of the abdomen belt, which is considered as the start point of the deformation.

4.4 Body Modeling

We define deformations as occurring solely within a region of interest (ROI) consisting

of a portion of the spine imaged by our SPECT system as defined by the placement

of our motion-tracking markers. The deformation happening outside of the ROI is

considered as RBM. Usually, the ROI includes the upper thoracic vertebrae. When

the patient is lying on a flat imaging table, the spine curve in this region is reduced

compared to other postures. Figure 4.6 shows three example MRI images of the spines

of volunteers illustrating this. These spine shapes are approximately a straight line

in the ROI except due to the support provided for the patient’s head, shoulders, and

arms, which are raised to be out of the way during SPECT imaging. Therefore, we

approximate the spine as a straight line.

Our simple deformation model utilizes 3 parameters: twist angle (T ), bend angle
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(B), and bend direction (D). The twist angle is defined as a rotation of the spine,

with the rotation increasing from the pelvis to the head. The bend angle is defined

as the extent of curving of the spine (apart from its usual curved shape) along an arc.

The bend direction is defined as the angular direction for which the bend occurs with

respect to the mid-sagittal plane. In Figures 4.7 and 4.8 we show the effects of twist

and bend separately on a patient voxel. We take a voxel v0 (Figures 4.7a and 4.8a) as

the initial position. Figure 4.7b shows that the initial voxel v0 would be moved to v1

by twist. Bend can be decomposed into three steps: 1) rotate the body to make the

bend upwards in the mid-sagittal plane; 2) make the body bend in this sagittal plane;

and 3) then rotate the body back into the initial position. This process is illustrated

in Figure 4.8. We rotate voxel v1 to v2 (Figure 4.8b). Bend is applied which moves

the voxel from v2 to v3 (Figure 4.8c). Finally, we restore the desired bend direction by

rotating voxel v3 to the final deformed position v4 (Figure 4.8d). Combining the bend

direction and the bend angle, we can model bend motion in any direction (for example,

laterally), and not just in the sagittal plane. The order in which the twist and bend

operations are performed is arbitrary, but must be consistent throughout the model, as

twist and bend do not commute. We have chosen the convention that twist precedes

bend.

We acknowledge that this model is a gross simplification of what actually happens

to the spine as patients move. The deformation is not necessarily uniform at each

joint. Given more information about the spine mechanics one could model the probable

fractional change at each vertebra. For example, Vorro (Vorro and Johnston, 2003)

evaluated myoelectric data obtained from spinal motion dynamics involved in clinical

rotation tests. A functional model is discussed for this myoelectric activity involving a

helical spinal motor pattern with a focal area of transition that is dynamic in response to

postural and motion demands. To understand human lumbar spine motion, Schwartz

(Rozumalski et al., 2007) performed an in-vivo experiment to develop a method for

visualizing the in-vivo motion of the entire human lumbar spine region, which is mostly

composed of bend motion. However, these studies were made when the patient was

sitting. In our case, the patient is lying supine during the SPECT imaging. The

relationship between the vertebrae most likely depends on the patient pose. Therefore,

in this research, we make a simple assumption that the distributions of bend and twist

along the spine are both uniform. This means that all the deformations are equally
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Figure 4.7: Model of twist. (a) Initial position; (b) Illustration of progressive body
twist about spine which by our convention increases from abdomen to chest.

shared by all the joints with each unit of the spine contributing equally toward the

total angle. This assumption is an over-simplification, which can be improved upon

with refined models in the future.

Other important assumptions for the spine deformation are 1) the spine is incom-

pressible, and 2) when the spine is bent, it continues to lie within a single plane.

Though not perfectly accurate assumptions, they are good starting points for this re-

search. With these assumptions, we can compute the bend angle and direction directly

from the markers attached to the patient.

Based on all the assumptions mentioned above, we build an approximate deforma-

tion model of the general patient body. If we can quantify the three parameters, T , B,

and D, we can map the initial patient body into the deformed one. Such a map also

can be expressed as a motion matrix M , so that ~fdeform = M ~finit ( ~finit and ~fdeform

are the motionless and deformed body).

This mapping between the motionless torso and the deformed torso can be described

as a deformation matrix M . For a voxel v, the deformation matrix determines where

it is after the deformation. So we have Eq. 4.4

Mv = Mv(Ti, Bi, D; Ls, Lv) (4.4)

where Mv is the deformation matrix for voxel v; Tv is the local twist angle of the

current voxel defined by Eq. 4.2; Bv is the local bend angle defined by Eq. 4.3; D is

the bend direction; Ls is the spine location in xy-plane and Lv is the spine length from

the voxel v to the abdomen belt alone z-axis. Then the deformation matrix for the

total torso will be
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Figure 4.8: Model of Bend. (a) Initial position; (b) Rotation around spine by an
amount equal to the bend direction so that we can apply bend in the sagittal planes;
(c) Bend by the bend angle is performed; (d) Rotate back the slice data to its original
orientation around the spine by application of the inverse of the bend direction.

M =
[

M0|M1 . . . |Mv| . . . |MN−1

]

(4.5)

where N is the number of voxels.

4.5 Marker Deployment

Based on our strategy for motion detection, we have to put a set of markers on the

patient surface to detect patient motion. Such detection can be done with a VICON

motion capture system, which uses retro-reflective markers as indicators. In the clinic

application, we have two realistic problems: 1) how to avoid the overlap and mis-

matching during the 3D trajectory computation; 2) how to use the marker position

information to represent the body deformation.

Theoretically, we can put many markers on the patient body. However, we have

learned that if we put too many markers on the body, we have a big matching problem,

which is an NP -complete problem in computational geometry. When the VICON
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system calculates the 3D trajectory from each 2D marker’s snapshot, the 2D marker

emits a 3D trajectory line into the 3D space. The VICON matching algorithm considers

the closest line from other 2D marker’s image as the correct matching and picks the

crossing point as the position in 3D. If there are too many trajectory lines in the 3D

space, mismatching will inevitably occur. Such mismatching will build some ghost

markers, which do not exist, and will miss some real markers. To avoid this problem

to some extent, we designed a marker deployment strategy.

In this research, we put two sticky plastic belts around the patient body. One

belt is around the chest area and another belt is around the abdomen area. The

area between these two belts is the body part where most of the deformation occurs.

Based on our experience, the max number of markers in each belt should not be more

than 5. Otherwise, there will be too many ghost markers created by the trajectory

algorithm of the VICON motion capture system. Mathematically, one marker is the

minimum requirement to detect the patient’s rigid body shifts and 3 markers (not

co-linear) are the minimum requirements to detect the rigid body rotation. Due to

the deviation caused by the RM correction, we prefer some redundancy. However, in

the body deformation estimation, we estimate the chest belt and abdomen belt motion

separately. That means at least 3 markers for each belt are required for the deformation

motion detection. Furthermore, most of the deformation computation will be based on

the chest belt motion. Therefore, in this project, we use 5 markers on the chest belt

and at least 3 markers on the abdomen belt.

The pattern of the markers on the belt determines the visibility of the markers

during the motion capture procedure, which is crucial to the final motion estimation.

The simplest pattern is the straight line. However, if we put the chest markers in a

straight line, we probably will create some ill-conditional matrices during the motion

estimation. Another requirement for the marker pattern is that the markers should

not block each other. Patient bodies are different in terms of the shape, height, and

gender. Due to the uncertainty of torso shapes, there is no one general pattern fit for

all patients. Figure 4.9 shows some sample patterns that could be used for motion

capture. Therefore, in this project, our deformation estimation module should work for

all kinds of marker patterns that should be decided by clinic technicians.
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Figure 4.9: Sample marker patterns.
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Chapter 5

MATERIALS AND METHODS

5.1 Initial Body Pose Estimation

Since we have described a deformation model, the motion data is used to specify the

deformation parameters for our model. In our model, the patient spine length and

spine location in xy-plane are two inherent parameters that will not change during

the deformation. In the initial body pose estimation, we have to specify these two

parameters: the spine location in xy-plane and the spline length along z-axis. These

two parameters will be used for the reconstruction as well as for validation.

For motion-tracking, two belts are wrapped about the patient body; one is about

the chest and the other about the abdomen, as shown in Figure 5.1. After we capture

the markers’ motion, we can assign some internal position of marker coordinates as

our motionless pose. That means we consider these coordinate records as reference

records. Usually, the reference records are selected from the first several second after

the volunteer lies supine. Each reference record includes the coordinates of the chest

markers and the abdomen markers.

In one set of the reference coordinates, we can compute a centroid of the chest

markers and a centroid of the abdomen markers. Since the SPECT scan usually focus

on the area between the belts, in this research, we consider the distance along the z-

axis between these two centroids as the spine length. The torso within the these two

centroids (along z-axis) is the ROI of our deformation corrections. The deformation of

the torso outside of this region is either omitted or only considered as RBM.

Before the SPECT acquisition, we have to estimate the spine location in the xy-



plane. Accurately locating the spine is important for two reasons: it provides the center

axis for twist (Figure 4.7) and the reference line for bend (Figure 4.8). If available we

can use the CT slices of a SPECT/CT system to give precise localization. Based on

MRI studies (see Figure 4.6) typically this height will be estimated as 1/3 the distance

to the average anterior level of the chest belt from the surface of the imaging table.

Since we do not have dual-modality for this study, in this paper we take this MRI

observation based estimation as the approximate level of the spine. By this way, we

can locate the spine in the xy-plane. We take the x coordinates of the chest marker

centroid as the x coordinate of the spine location. Since such an estimation is not

robust, the spine location estimation will cause some measurement error in the model.

We evaluate the error caused by the spine location estimation in our simulation and

experiments.

5.2 Pattern Independent Deformation Estimation

We have pointed out that there is no marker pattern applicable to all patients. Because

of this variability in the pattern of markers on the belts, we developed a method of

estimating our three parameters (twist T , bend B and bend direction D) for body

deformation, which is independent of the marker pattern.

The chest and abdomen belts have a Velcro layer affixed to them which does not

stretch, but does bend. Therefore, the marker patterns on these belts do not change

much during the deformation. We take the abdomen belt as the baseline for compu-

tation in that any motion in that belt after the respiratory motion has been removed

(Mukherjee et al., 2009) is taken to be rigid-body deformation. Using rigid-body cor-

rection, we return the abdomen belt to its initial pose. Then, patient deformation

is indicated entirely by the chest belt. Therefore, in the remainder of this paper, we

treat the respiratory and rigid-body motions as having been modeled, and henceforth

consider the remaining input motion data to comprise only deformation.

In our model, each of the belts has an associated plane that goes through the

centroid of the belt markers and intersects the patient spine (Figure 5.1). We call these

planes as the chest key plane for the chest belt and the abdomen key plane for the

abdomen belt. The chest key plane Pc and the abdomen key plane Pa are determined

as the planes perpendicular to the spine that intersect the average axial location of the
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Figure 5.1: Body with belts showing chest markers A − E, table plane Pt, chest key
plane Pc, abdomen key plane Pa, chest and abdomen intersections with the spine.
Shown also is the coordinate system employed in this manuscript with X being the
lateral axis, Y the vertical axis, and Z the axial axis.

markers on a given belt. We use these key planes as the start and end of the ROI for

deformation measurement. By computing the distance between the two key planes, we

estimate the length of a section of spine within the ROI.

We need a patient reference pose for motion correction; all motion computations

are carried out with respect to this pose. We pick the initial patient position as the ref-

erence, justified by the observation that the ability of patients to remain still decreases

over time. The reference pose is determined by the first set of chest marker coordinates

S = {Si}, where Si is the i-th marker coordinates. After patient motion, the markers

have another set of coordinates S ′. Following RM and RBM correction based on the

abdominal markers, the chest markers have a third set of coordinates S”, providing the

information needed to determine body deformation.

The affine transformation between S and S”, which determines the deformation
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parameters, is given by

S” = sRmotionS + τmotion (5.1)

where s is a scale factor, Rmotion is a rotation matrix, and τmotion is a translation vec-

tor. Since we will not move the position of the cameras during the motion acquisition,

the scale factor can be considered as 1.

To solve this equation, we have to consider two factors. The marker pattern could be

symmetrical, which give some freedom for the technician to design the marker pattern.

Another factor pertains to the marker trajectory. Since our motion capture system

captures the motion at 30 fps. It is a reasonable hypothesis that the patient can

not move more than 1 cm during 1/30 second. That means during the whole motion

capture process, we can follow each marker and the marker correspondence information

is always recorded by the motion capture system. Since we know the 3D coordinates

and correspondence of S and S”, the rotation matrix Rmotion can be computed as

Rmotion = (S” − S̄”)(S − S̄)+ (5.2)

where + is the pseudo-inverse operation; S and S” are the coordinate sets of all the

markers before and after RM and RBM correction, S̄ is the average marker coordinate

before the patient motion; and S̄” is the average marker coordinate after the RM and

RBM correction. We account for the translation τ by aligning the markers’ centroid of

initial and deformed configurations. As long as the markers are not co-linear, matrix

Rmotion is a full rank matrix. With this method, the matrix Rmotion is not guaranteed

to be perfectly orthonormal due to the little belts deforming during the motion. We

have to apply a SVD transformation to Rmotion for normalization.

Rmotion = UσV T (5.3)

where U and V T are orthonormal matrix; σ is a diagonal matrix. If R is a orthonor-

mal matrix, σ should be an identity matrix. In our case, we expect σ to be very close

to an identity matrix. Therefore, R can be adjusted to a closest orthonormal matrix

UV T .

In general, matrix Rmotion can be uniquely decomposed into the three components

as
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Rmotion = RD−1RBRDRT (5.4)

where RD =







cos(D) sin(−D) 0

sin(D) cos(D) 0

0 0 1






, RB =







cos(B) 0 sin(B)

0 1 0

sin(−B) 0 cos(B)






and RT =







cos(T ) sin(−T ) 0

sin(T ) cos(T ) 0

0 0 1






, RD−1 =







cos(D) sin(D) 0

sin(−D) cos(D) 0

0 0 1






. Note RD−1 is equal to

R−D where D is replaced by−D. Since the twist and bend direction share the same

rotation axis, we can simplify Eq. 5.4 to

Rmotion = R−DRBRD+T (5.5)

where RDRT = RD+T =







cos(D + T ) −sin(D + T ) 0

sin(D + T ) cos(D + T ) 0

0 0 1






.

From the elements of Rmotion we can thus determine the deformation model param-

eters. The bend angle B can be found from element R22 which is cos(B); knowing B,

the bend direction D can be found from R02 = −sin(B)cos(D) or R12 = sin(B)sin(D);

knowing B and D, the twist angle T can be found from element R20 = sin(B)cos(D+T )

or R21 = −sin(B)sin(D + T ). Note when B = 0, D is not uniquely defined. In this

case, we take D = 0 and find T in the usual way. By this way, we can estimate the

total twist angle T , the total bend angle B and the bend direction D.

Since our chest belt is quite rigid and can not be warped easily, the motion modeled

in Eq. 5.6 is almost an affine transformation between the initial chest markers and the

deformed chest belt. Eq. 5.4 also illustrates the procedure that we use to model the

deformation. We rotate the patient body with the bend direction to make the bend

occur upward, bend the patient body with the bending angle, rotate the body back

to counteract the first rotation and then make a twist movement with the twist angle.

In this way our model can deal with the bend in a random direction and not just in

the sagittal plane. Deformation throughout the volume of the ROI is modeled as the

incremental decrease in B and T (Eq. 4.2 and Eq. 4.3) to zero as one proceeds axially

from the chest side of the ROI to that of the abdominal side as illustrated in Figure
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Figure 5.2: Chest key plane and chest belt.

5.2. We check the validity of our model with some experiments in Section 6.3.
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5.3 Camera to SPECT System Mapping

To describe the relationship between the chest markers and the body volume, we define

a key plane, which is a plane passing through the belt perpendicular to the patient’s

spine (Figure 5.1). The belts and their markers define the chest key plane Pc and the

abdomen key plane Pa. The volume between these two planes is defined as the ROI.

There are lots of way to define a plane by point sets. In this research, we just let the

plane go though the centroid of the belt markers. With this definition, the rotation of

the chest key plane Pc is determined by the rotation of the chest belt, which is caused

by the body deformation. If we can map the key plane from the marker coordinate

system to the SPECT coordinate system (Figure 5.2), the motion estimated from the

markers can be used to estimate the body motion.

In this research, we use a 7-sphere phantom to build the affine transformation

(Figure 5.3). The spheres are retro-reflective so that they can be captured by the

motion capture system. The phantom also contains radioactivity for imaging with

the SPECT camera. Comparison of the 3D coordinates of the blobs obtained from the

camera system and from the SPECT reconstruction establishes an affine transformation

between the two coordinate systems. We consider the coordinates of the marker’s

physical cetroids as the marker’s coordinates. Given the marker coordinates X in the

motion capture system and the marker coordinates X ′ in the SPECT system, we have

X ′

i = sRtransXi + τtrans (5.6)

where X = {Xi|iisthemarkernumber.}, X ′ = {X ′

i|iisthemarkernumber.}, s is a

scale factor, Rtrans is a rotation matrix, and τtrans is a translation vector. We have

introduced a method to calculate the affine transformation in Section 5.1. We know

the correspondence information in that case. However, in this case, we do not know

the one to one correspondence of the markers between the SPECT system and the

motion capture system. The searching space for the correspondence is n!, where n is

the number of spheres. When we try to increase the number, the computation time

for the searching will be large. In this procedure, we have two sets of coordinates,

one from the motion capture system and another from the SPECT system. Physically,

these two point sets X and X ′ are the same, so the residual error is expected to be

close to zero. To solve this problem, we do not have to know the correspondence. Since
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Figure 5.3: Affine transformation between the motion capture system and SPECT.

the phantom stays still during this data acquisition, given 3D coordinates of X and X ′,

we can compute the rotation matrix Rtrans (Horn et al., 1988) as

Rtrans = (A(AT A)−1/2) (5.7)

where A =
∑n

i=0
((Xi − X̄)(X ′

i − X̄ ′)) with n is the marker number; and X and

X ′ are the coordinates of the blobs from two coordinate systems, X̄ and X̄ ′ are the

average marker coordinates from two coordinate systems. As long as the markers are

not co-linear, matrix A is a full rank matrix and matrix Rtrans is orthonormal.

5.4 Deformation Matrix

The spine location provides the central axis for the twist and the spine length provides

the computational baseline for the bend. By computing the distance between the two

intersection points, we can estimate the length of a section of spine within what we

will take as our ROI. All the deformation should happen inside the ROI. The motion

happening outside the ROI will be considered as RBM.

Combined with the simple spine model, the three parameters B, D, and T along

with the level of the spine specify the deformation at each voxel of the body volume.

Using Equations 4.4 and 4.5, we can map the initial body volume to the deformed

body volume with the deformation matrix M . Since M may change as a function of

time during acquisition, we use M(t) for the deformation expression. Applying the

deformation matrix M(t) for the initial volume, we have
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~fdeform(t) = M(t) ~finit (5.8)

~g =













~g0

~g1

. . .

~gl−1













=













A0 0 . . . 0

0 A1 . . . 0

. . . . . . . . . . . .

0 0 . . . Al

























M0

M1

. . .

Ml−1













~finit (5.9)

where ~finit and ~fdeform are the motionless and deformed reconstruction volumes,

respectively; ~gi is the sub-matrix of the i-th angle of the projection’s vector ; Ai is

the sub-matrix of the system matrix A related to ~gi and include imaging geometry,

attenuation, scatter, and distance-dependent spatial resolution and Mi =
∫ Ti+1

t=Ti

M(t)dt.

Ti is the start time of i-th projection and M(t) is the deformation matrix at time t.

The deformation matrix is a mapping connecting the initial body with the deformed

body for each of the series of intervals for which projections were acquired. Note

that with list-mode acquisition motion correction can be made at a finer temporal

resolution then the duration of acquisition of a projection. Currently, in this research,

we still use the frame mode based reconstruction for its simplicity. To simplify the

problem, we determine the M(t) based on a set of mean parameters calculated with

the marker coordinates during acquiring the current projection. The motion data rate

is acquired at 30 frames per angle. On the other hand, the projection rate was around

20 seconds per image. Based on our synchronization, we can determine the motion data

belonging to a certain projection time, in which a single projection image is detected.

The motion data would be put into both the RM and RBM estimation modules and

the deformation estimation module. There are 6 DOF in the RBM estimation module:

3 for translation and 3 for rotation. For the translation, we chose the mean values

of the translation vector as the translation vector of the target projection. For the

rotation, we had to extract the 3 rotation angles around the 3 axes from the rotation

matrix first. The rotation order could be arbitrarily decided. However, this order had

to be compatible with the following rotation matrix computation. The mean values

of the 3 rotation angles were used to rebuild a rotation matrix based on the mean

angles. Similarly, we could take the mean value of the deformation parameters (B, D

and T ) belonging to a certain projection as the mean deformation parameter. After
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the synchronization computation, each projection image has a single set of parameters

for RBM and deformation motion. Since the patient has different motions for different

projections, we had to choose the MLEM algorithm for the reconstruction.

Based on the estimated motion parameters, we have an explicit motion matrix

M(t), which shall be represented simply as Mi in following. Mi includes the RBM,

deformation, and interpolation necessary to implement the motion. For projection

angles when the patient has not moved or deformed, Mi is the identity matrix.

5.5 Modified MLEM Reconstruction

There are lots of algorithms for SPECT reconstruction. However, in this project, we

have to correct the patient deformation within each projection individually. The OSEM

and RBI algorithms back-project several projections simultaneously. That will increase

the deformation correction cost. Therefore, we choose the MLEM algorithm as our basic

reconstruction method.

MLEM is an ideal reconstruction method (Shepp and Vardi, 1982a) (Lange and

Carson, 1984a) (Byrne, 1998) (Lalush and Tsui, 2000) to be modified for motion cor-

rection purpose. The following is a modified MLEM algorithm based on the algorithm

description by Bruyant (Bruyant, 2002). Shepp (Shepp and Vardi, 1982b) and Lange

(Lange and Carson, 1984b) have introduced a basic way to derive the MLEM recon-

struction method. In these works, the numbers of both the emitted and the detected

counts are assumed to be Poisson random variables.

Let us consider fj , the mean number of counts from pixel j, and the element aij of

the matrix A, the probability that bin i detects a photon emitted from pixel j. The

mean number of photons emitted from pixel j and detected by bin i (gi) is the sum of

the mean number of photons emitted from each pixel:

gi =
l

∑

j=1

aijfj (5.10)

It can be shown that the number of photons emitted from the l voxels and detected

by bin i is a Poisson variable. If the patient has some deformation, deformation matrix
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Mi should be factored into the projection. Eq. 5.10 can be rewritten as:

gi =

l
∑

j=1

l
∑

k=1

aikmkjfj (5.11)

where mij are the elements of the deformation matrix Mi. Thus, the probability of

detecting gi with deformation is given by:

P (gi) =
e−gig

gi

i

gi!
(5.12)

The i Poisson variables are independent, and the conditional probability P (g|f) of

observing the vector g when the emission map is f is the product of the individual

probabilities P (gi). The likelihood function L(f) is given by:

L(f) = P (g|f) =

n
∐

i=1

e−gig
gi

i

gi!
(5.13)

The highest value for the likelihood L(f) is found by computing its derivative. To

maximize the expectation, one usually considers l(f) = ln(L(f)), where ln denotes the

natural logarithm. Eq. 5.13 becomes:

l(f) =

n
∑

i=1

−gi + giln(gi) − ln(gi!) (5.14)

and using Eq. 5.10 to introduce fj , we obtain:

l(f) = −

n
∑

i=1

l
∑

j=1

aijfj + giln(

l
∑

j=1

aijfj) − ln(gi!) (5.15)

This equation, called the likelihood function, is one of fundamental importance in

the MLEM algorithm, because it allows one to calculate the probability to observe a

projection dataset for any mean image f . Then, we use the deformation projection
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equation Eq. 5.11 to introduce fj, we obtain:

l(f) = −
n

∑

i=1

l
∑

j=1

n
∑

k=1

aikmkjfj + giln(
l

∑

j=1

l
∑

k=1

aikmkjfj) − ln(gi!) (5.16)

We want the image that has the highest probability to yield g, so the essential point

here is that the vector f for which l(f) is maximal is considered as the best estimate

for the solution. The maximum is found when the derivative of l(f) is zero.

δl(f)

δfj

= −
n

∑

i=1

l
∑

k=1

aikmkj +
n

∑

i=1

l
∑

k=1

aikmkj
gi

∑l
j′=1

∑l
k′=1

aik′(mk′j′fj′)
= 0 (5.17)

One can also write:

fj
δl(f)

δfj
= −fj

n
∑

i=1

l
∑

k=1

aikmkj + fj

n
∑

i=1

l
∑

k=1

aikmkj
gi

∑l
j′=1

∑l
k′=1

aik′(mk′j′fj′)
= 0 (5.18)

However, when we apply this reconstruction method for our purpose, we have to

take the physical computation order into account. Deformation matrix Mi describes

the deformation at each voxel of the body volume.

fnew
j =

f old
j

∑n
i=1

aki

∑l
k=1

mjk

·

n
∑

i=1

aki

l
∑

k=1

mjk
gi

∑l
j′=1

∑l
k′=1

aik′(mk′j′fj′)
(5.19)

where the aij is the projection matrix and mkj is the motion estimation. More

precision in the motion estimation matrix Mi leads to more precision in the motion

corrected data. In our non-rigid deformation correction, the motion term mkj is defined

by the three degrees of freedom. In the algorithm implementation, the deformation

operation is always followed by the back-projection. Therefore, we swap the order of

Mi and A in the formula to match the computation order.

fnew
j =

f old
j

∑l
k=1

mT
jk

∑n
i=1

aT
ki

·
l

∑

k=1

mT
jk

n
∑

i=1

aT
ki

gi
∑l

j′=1

∑l
k′=1

aik′(mk′j′fj′)
(5.20)
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(a) Reconstruction Result


with Bilinear Interpolation

(b) Reconstruction with


Gaussian Interpolation.


Figure 5.4: Comparison of different interpolation method.

During the reconstruction, we warp the body volume to simulate the real body

deformation and get a better 3D reconstruction result. The spine plane works as an

indicator, which is incompressible, so that we can apply the bending angle, bending

direction and twisting angle into the 3D volume. Figure 5.6 is the procedure for re-

construction with deformation correction. More precise deformation estimation of the

matrix Mi leads to more precise reconstruction of the body volume.

Interpolation is an important computation during such 3D deformation. Bilinear

interpolation is the most popular interpolation method for its simplicity. The spectrum

shape of the bilinear interpolation kernel is a triangle. It can not deal with the alias as

well as the Gaussian interpolation kernel. To make it worse, if we consider the rotation,

the alias problem will be worse if we choose the bilinear interpolation kernel. Gaussian

interpolation is another interpolation method, which uses a Gaussian function as the

interpolation kernel. It can reduce the alias caused by both the sampling and the

rotation. Feng (Feng et al., 2006) extended the 2D Gaussian interpolation into 3D.

Figure 5.4 shows the comparison of two interpolation methods. Gaussian interpolation

produces a visibly better result.

An important concept in the modified MLEM update equation is back-deformation,

which plays a role similar to back-projection. In traditional MLEM, the operation
∑

i a
T
jigi is the back-projection of projection data gi along the system matrix into the

reconstruction volume, arising as an alternative to inverting system matrix A directly,

which is at best an ill-posed problem. Analogously, in our modified MLEM algorithm,

the operation
∑

k mjk

∑

i a
T
kigi is the back-deformation of deformed volume

∑

i a
T
jigi
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Figure 5.5: Relationship between the initial volume, deformed volume and the projec-
tions.

along the deformation matrix into the back-deformed volume, arising as an alternative

to inverting deformation matrices Mi directly, which may also be ill-posed problems.

Figure 5.5 shows the relationship between the initial volume, deformed volume and the

projections.

5.6 Attenuation Correction and Scatter Correction

Note that system matrix A actually includes attenuation and scatter. Attenuation and

scatters maps are used to estimate the energy attenuation and scatter effect when the

photon goes through the body. Transmission maps, CT or MRI can be used to estimate

the attenuation map for the SPECT reconstruction.

For simulation purposes, we already have the corresponding attenuation map for

the MCAT phantom. To simplify this process one can employ the triple energy window

(TEW) scatter estimation method (Ogawa et al., 1991). In this method, scatter is esti-

mated from scatter windows acquired simultaneously with the photopeak data. Thus,

the scatter estimate naturally matches the motion state of the patient. To avoid the

issue of negative values when the scatter estimate is subtracted from the acquired data
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one can follow the methodology of (M. A. King and Case, 1997) and add the scatter

estimation to the scatter-free projection data.

Since the patient body is an anisotropic object, we choose the ESSE scatter cor-

rection method (Ogawa et al., 1991) for the anisotropic patient body. In the following

clinical experiments, we scan the patient with 2 beacon sources attached to the gamma

camera for the transmission projections. The transmission projections are reconstructed

into a transmission map, which is used to estimate the attenuation and scatter map.

Note that the attenuation map and scatter estimate should be modified to match

the patient RM, RBM, and body deformation. The same movement or deformation

should also be applied to the attenuation and scatter map to make the reconstruction

compatible.
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Figure 5.6: Procedure for the Modified MLEM algorithm.
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Chapter 6

Simulation and Experiments

6.1 Marker Motion based Model Reversibility Ver-

ification

We have proposed a deformation model that is described by three major parameters:

twist angle T , bend angle B, and bend direction D. Such parameters are computed by

a set of marker coordinates. Before we use this model with volume data, we have to

check the correctness of the model and verify its reversibility.

After parameters of the deformation model are determined, we should be able to

back-deform any deformed voxel of the patient body to the initial position with the

deformation parameters. The back-deformation operation is not a simple mathematical

inverse computation for the chest belt, but a reverse operation of the deformation for

the whole volume (Section 5.5). Since the deformation operation is composed of four

steps— twist with T , rotation with −D, bend with B and rotation with D, the back-

deformation also has four steps with the inverse order for each operation. Note the

bend direction D keeps the same value for both the deformation and back-deformation

procedure. In the back-deformation computation, we make a rotation with D, and

bend with −B, rotation with −D and twist with −T .

Returning now to motion detection, the surface markers that we have detected may

be considered as a set of special voxels during the computation. We can back-deform

the deformed surface markers to investigate the correctness of our back-deformation

computation. Ideally, the initial chest markers (Figure 6.1a) should match the back-

deformed chest markers (Figure 6.1b), which means the markers should also be reset



to the initial motionless positions. However, due to the inaccuracy of the motion

estimation procedure, there will always be some errors in the back-deformation, leading

to some discrepancy between these two results.

We performed an experiment to determine the extent of this discrepancy. For this

experiment, a volunteer was outfitted with two belts with five markers each. The

volunteer was instructed to make a series of deformations while lying on the imaging

bed of the SPECT system. Optical cameras tracked the marker motion at a frame rate

of 30 frames/sec. The location of the spine for use in these corrections was obtained by

approximate measurement of 1/3 thickness of volunteer’s body at the time of tracking.

We first estimated and then applied RM and RBM corrections to make the abdomen

belt stationary. The residual motion on the chest belt was considered as the input

data for the body deformation computation. We then estimated body deformation as

described above. Next, we applied a back-deformation operation to the chest markers

to correct for the deformation. The deformation correction operation is the inverse of

the deformation process. This back-deformation operation uses −T , −B, and D as

the twist, bend, and bend direction to apply to the deformed markers. Thus, as an

error measure we calculated the root-mean-square error RMSEmotion for the x, y, and

z components of the residual marker motions for each chest marker as

RMSEmotion =

√

∑K
i=0

∑L
j=0

[(xjk − x0k)2 + (yjk − y0k)2 + (zjk − z0k)2]

KL
(6.1)

where (xij , yij , zij) is the i-th marker’s position in observation j, (xi0, yi0, zi0) is the

marker’s reference position, L is the number of target markers, and K is the number

of observations (valid records).
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Figure 6.1: (a) Estimate twist, bend and bend direction with the chest belt only; (b)
Back-deform the chest belt within the deformation model provided the twist, bend and
bend direction as well as the abdomen belt position, the spine position and length.

63



with respiratory correction only


Time (Second)


Motion of the center marker on the chest belt


0


20


40


60


80


100


120


140


1
 11
 22
 33
 44
 55
 66
 77
 88


(
m

 m


 )


Z
X
 Y


with respiratory and rigid body

motion correction


Time (Second)


Motion of the center marker on the chest belt


0


20


40


60


80


100


120


140


1
 11
 22
 33
 44
 55
 66
 77
 88


(
m

 m


 )


Z
X
 Y


(a)


with respiratory and rigid body


motion and deformation correction


Time (Second)


Motion of the center marker on the chest belt


0


20


40


60


80


100


120


140


1
 11
 22
 33
 44
 55
 66
 77
 88


(
m

 m


 )


Z
X
 Y


(b)


(c)


P

o
s


i
t

i
o


n

P


o
s

i
t


i
o

n


P

o
s


i
t
i

o
n




Figure 6.2: Comparison for the trace of one marker on the chest belt before and after
deformation correction. (a) x, y, and z components of original tracked motion of center
marker on chest band. (b) Motion after correction of rigid-body motion. (c) Motion
after rigid-body and deformation correction. Note that stripping of respiratory motion
is omitted here as it is small in amplitude for the chest marker compared to the other
motions. The axes are illustrated in Figure 5.1. Note: in this experiment, we take the
record 0 as the motionless pose of the volunteer.
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Figure 6.2a shows the x, y, and z components (see Figure 5.1 of the tracked location

of the center marker on the chest of a volunteer. Note that respiratory motion has been

corrected before our processing (Mukherjee et al., 2009). We estimated the RBM

based on the motion of the abdominal markers with the goal of making their locations

stationary as required by our deformation model. After we acquired the RBM motion

from the abdomen markers, we applied this RBM correction to the chest markers to

estimate the chest marker’s motion after the abdomen markers have been re-aligned to

their initial positions (Figure 6.2b). Thus, any remaining motion of the chest markers

indicates body deformation. We calculated the deformation parameters with the spine

model as described above and applied deformation correction. The result, shown in

Figure 6.2c, is a large decrease of the marker’s motion in the x direction and moderate

decreases of the marker’s motion in the other 2 directions.

A comparison of the RMSEmotion values for the five chest markers is shown in

Figure 6.3. If there is no motion, RMSEmotion is expected to be zero. We see that

RBM correction reduced the RMSEmotion value for some markers, while increasing it

for others. Because rigid motion correction is with respect to the abdomen markers,

this correction may increase the apparent motion of the chest markers. However, after

deformation correction, the RMSEmotion for all markers is greatly decreased. Another

observation from Figure 6.3 is that if the marker is closer to the measurement center, the

RMSEmotion value is smaller. However, there are still some minor motions left. Thus

unfortunately, totally robust results were not achieved because of model imprecision

and measurement errors. We believe our model provides us a good starting point.

6.1.1 Spine Location Sensitivity

The spine position in the xy-plane is a crucial parameter for our motion estimation

model. If available one can estimate the spine location from registered CT or MRI

slices; however, this is not always available. Such was the case for the volunteer in

this study. To measure the effect of errors caused by spine location mis-estimation, we

investigated the effect of varying the spine location used in our deformation correction.

The estimated locations varied from −50mm to +45mm in the x-axis and from −65mm

to +60mm for the y-axis in 5mm steps about our selected location. A total of 520 spine

locations were sampled in this way, giving us 520 sets of deformation parameters.
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However, since the three parameters are highly correlated, it is hard to draw any

conclusion by comparing the angle values directly. Then, we made the second step

— a back-deformation computation based on these varying parameters. Therefore, we

got 520 sets of back-deformation records of marker coordinates. Eq. 6.1 was used

for RMSEmotion value computation. Figure 6.4 shows the RMSEmotion distribution

map. The RMSEmotion values vary from 9.65 to 14.34, increasing by the distance

to the pre-measured spine location. The minimum RMSEmotion value 9.65 is not far

away from the RMSEmotion value of the originally estimated spine location, which is

9.81. Therefore, the error caused by the spine location for the deformation parameter

estimation is not large.
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Figure 6.3: Comparison of RMSEmotion for each marker on the chest belt.
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Figure 6.4: RMSEmotion distribution for the xy-plane perturbation of the spine loca-
tion.
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6.2 MRI based Model Verification

Though we have shown that we can back-deform the markers to the initial positions, we

still have to check whether we can correct all the voxels given the computed deformation

parameters. We hypothesize that the total deformation is equally shared by all the

joints and each unit of the vertebrae makes the same contribution to the total angle.

Therefore, we can calculate the local twist angle Tv and local bend angle Bv for a given

voxel v through Eq. 4.2 and Eq. 4.3. Though this is not completely accurate, this

hypothesis should be reasonable.

To validate our hypothesis, we designed an MRI based experiment. First, we placed

markers on a volunteer’s torso and made sure the motion capture system could track

them. Then, we had the volunteer undergo a regular MRI scan without any defor-

mation. This MRI scan only required 20 − 30 seconds. Thus, we expected that the

3D volume was not blurred by any deformation. Finally, the volunteer moved once

and underwent a second scan, holding the same deformed pose throughout this second

scan. In this motion, the volunteer’s spine was expected to have some lateral curve. To

minimize any respiratory effect, we required the volunteer to hold his breath during the

entire two MRI scans. At the conclusion of the two scans, we had the 3D initial body

volume data finit and the deformed body volume data fdeform. After rigid-body mo-

tion correction, the volume fdeform was reshaped to the volume frigid−correct. Then, the

3D deformation parameters were computed as described. We next performed a back-

deformation computation on the 3D deformed volume with the deformation model to

build a new 3D body volume fdeform−corrected. There was no reconstruction computa-

tion required in this experiment. If our method is successful, the difference between

the finit and fdeform−corrected should be quite small. In this research, we show two sets

of MRI acquisition data, one shown from the coronal planes and another shown from

the sagittal planes.

Figure 6.5 shows sample slices of MRI data taken from the same coronal views.

The slice from finit (Figure 6.5a) is evidently more different than the slice from fdeform

(Figure 6.5b), especially around the spine area. After we corrected for the RBM (Figure

6.5c) and the body deformation with the deformation parameters specified in Section

4, we obtained fdeform−correct (Figure 6.5d). The difference images between Figure 6.5a

and Figure 6.5b,c,d are shown in Figure 6.5e,f,g. Figure 6.6 illustrates another sample of
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finit vs. fdeform finit vs.
frigid−correct

finit vs.
fdeform−correct

RMSEMRI 15.57 14.52 12.17

Table 6.1: Comparison among the MRI volumes by RMSEMRI .

similar motion and deformation correction using MRI data taken from a single sagittal

plane.

Though we have required the volunteer to hold his breath, cardiac motion still exists

during the MRI data acquisition. Since we did not perform cardiac gating, the heart

is in constant motion during MRI data acquisitions, making it meaningless to compare

the cardiac area among the three MRI data sets. However, the spine area had no such

periodic motion. From Figure 6.6d, it is clear that spine, as shown in the corrected slice,

is similar to the spine in the initial slice. On the other hand, the deformed slice (Figure

6.6b) only shows a part of the spine due to the deformation. Since the sagittal plane

included the artery and heart area, which is not gated in our experiment, we choose

the coronal plane based experiment to compare the correction results. We select the

spine area in the MRI data as the target for comparison. We define the Root Mean

Square Error (RMSEMRI ) value as:

RMSEMRI =

√

∑n
i=0

|I1 − I2|2

n
(6.2)

where I is the image intensity. I1 means the intensity of the corrected volume and I2

means the intensity of the motionless volume. Error values are shown in Table 6.2. We

see that using our model for deformation correction restores the deformed volume more

closely to the initial back-deformed volume better than RBM correction only. Though

we cannot restore the volume to the exact initial position, due to the model inaccuracy

and measurement noise, we can make the deformed volume closer to the initial volume.

From the result above, we claim that our correction method works reasonably for one

subject and one movement.
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(a) Initial MRI Image
 (b) Deformed MRI Image


(c) Rigid Motion


Corrected MRI Image


(d) Deformation


Corrected MRI Image


(e) Difference Between (a)


and (b)


(f) Difference Between (a)


and (c)


(g) Difference Between (a)


and (d)


Figure 6.5: Comparison of a coronal slice in the MRI data with resolution 1.7mm ×
6.0mm × 1.7mm for each voxel. (a) Slice from finit; (b) Slice from fdeform; (c) Slice
from frigid−corrected; (d) Slice from fdeform−correct; (e) Difference image between (a) and
(b); (f) Difference image between (a) and (c); (g) Difference image between (a) and
(d).
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(a) Initial MRI Image
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and (b)
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Figure 6.6: Comparison of a sagittal slice in the MRI data 6.0mm × 1.7mm × 1.7mm

for each voxel. (a) Slice from finit; (b) Slice from fdeform; (c) Slice from frigid−corrected;
(d) Slice from fdeform−correct; (e) Difference image between (a) and (b); (f) Difference
image between (a) and (c); (g) Difference image between (a) and (d).
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6.3 Simulation with MCAT Phantom

To test our method of deformation correction we created source and attenuation distri-

butions for Ga67 citrate imaging using the mathematical cardiac torso (MCAT) anthro-

pomorphic phantom (Ue et al., 2005) (Kovalski et al., 2007). Ga67 citrate was selected

as the radiopharmaceutical to investigate correction of body deformation due to it hav-

ing uptake in spine and organs throughout the thorax. The relative distribution in the

body structures was set to heart = 1.0, sternum and spine = 5.2, ribs = 2.6, spinal

cord = 7.2, kidneys = 2.6, liver = 5.6, spleen = 8.2, lungs = 0.3, and background =

0.4 based on post-mortem studies of activity localization in humans (Mukherjee et al.,

2009). The source distributions were 256 × 256 × 256 with a voxel size of 0.208 cm.

The values in the attenuation map were those for the effective value of the combination

of imaging the two lower energy photo peaks of Ga67 (93 and 184 keV) (Cit, ). The

source and attenuation maps were deformed by varying all 3 of the deformation model

parameters and with knowledge of the location of the spine height within the body,

just like the volume deformation. We performed a simulation with bend angle B = 25o,

twist angle T = 15o and bend direction of =15o from coronal direction.

An analytical projector that included the impact of attenuation and distance-

dependent spatial resolution was used to create the projections. We did not include

scatter in our simulation. We modeled the acquisition from three camera heads at 120

degrees relative to each other, as for a bone SPECT acquisition on our Philips Irix

SPECT system. The acquisition consisted of 120 projections in total with 40 acquired

by each head. We made two projection sets. The first projection set Pinit (Figure 6.7a)

is projected without any deformation. The second projection set Pdeform (Figure 6.7b)

was projected with a pre-defined deformation. Since the following MLEM reconstruc-

tion included attenuation correction, the attenuation map was deformed corresponding

to the deformation of the MCAT phantom when creating Pdeform.

Once the projection sets were created, projections Pinit from the original motion

volume and projections Pdeform from the deformed volume were mixed for a new pro-

jection file Pmix to simulate a simple patient deformation occurring halfway through

the acquisition. Since we simulated a three head SPECT system, any motion affected

3 projections simultaneously. So we took 60 projections from Pinit (1 − 20, 41 − 60,

81−100) and 60 projections from Pdeform (21−40, 61−80, 101−120) and mixed them
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for a new projection set Pmix.

The projection sets Pinit and Pmix were reconstructed with 24 iterations of MLEM

using Eq.. 5.20. All the reconstructions included attenuation correction. The attenua-

tion map employed when deformation was present was that of the MCAT attenuation

distribution deformed using the motion model employed within reconstruction. Scatter

correction was not included as scatter was not included in forming the projections.

The reconstruction from Pinit was taken as the standard against which the recon-

structions of Pmix were compared for: 1) no motion compensation, 2) motion compen-

sation using the correct spine location, and 3) motion compensation with inaccurate

spine locations. The inaccuracy of the spine location would introduce an error into

the deformation correction. We will investigate the error caused by spine location

inaccuracy later.

The simulation procedure is shown as follows:

1. Get original 3D body data Rinit from MCAT phantom.

2. Project Rinit into 2D to get the projection image set Pinit.

3. Reconstruct using Pinit to get the benchmark Rno−deform.

4. Deform the original 3D data Rinit to get deformed 3D data Rdeformed and deform

the original attenuation map to get deformed attenuation map. We will assign the value

for twist, bend and bend direction. Then with these three degrees of freedom, we can

make an deformation computation. (Figure 6.7)

5. Project the deformed data Rdeformed to get the projection image set Pdeform with

the deformed attenuation map.

6. Replace several images in the image set Pinit with the corresponding images in

the image set Pdeform and export these images as a new image set Pmix. This simulates

a patient undergoing periods of non-rigid motion.

7. Reconstruct using image set Pmix with the traditional MLEM algorithm to produce

the reconstruction result Rno−correction.

8. Reconstruct using image set Pmix with motion correction and the modified MLEM

algorithm to produce the reconstruction result Rcorrection.

9. Compare the two reconstruction data volumes Rno−correction and Rcorrection with

the original data Rno−deform, to conclude which result is better.

To quantitatively evaluate the impact of motion compensation, the root-mean-

square error (RMSErecon) of reconstruction (with and without motion compensation)
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was calculated by

RMSErecon =

√

∑

i∈ROI

(countsi − truecountsi)2

N
(6.3)

where N is the number of voxels inside the ROI, countsi and truecountsi are the

counts in the slices reconstructed from Pinit for voxel i.

In this simulation, we have an attenuation map for the MCAT phantom in the initial

position. Note that the attenuation map and scatter estimate should be modified to

match the patient RM, RBM, and body deformation. To simplify the process, we did

not apply scatter correction. Reconstruction was performed 24 iterations of MLEM.

The results of applying the deformation correction to SPECT simulations are il-

lustrated in Figure 6.8, which shows transverse slices through the heart region of the

MCAT phantom. Figure 6.8a is a slice from the reconstruction Rinit when there was no

motion in the projections; Figure 6.8b is a slice of Rno−correction for when deformation

was included in half of the projections without deformation correction in the recon-

struction, and Figure 6.8c is a slice of Rcorrection for when deformation was included in

half of the projections and the deformation correction was included in reconstruction.

Notice the significant degradation caused throughout the slice by the deformation and

how well deformation correction returns the distribution to its original appearance. Nu-

merically, deformation correction reduced the RMSErecon from 4.1×10−2 between Rinit

and Rno−correction to 3.4 × 10−3 between Rinit and Rcorrection, thus verifying the visual

impression of a considerable improvement. Figure 6.9 shows coronal slices illustrating

the impact of deformation and its correction on the spine, ribs, liver, and kidneys. Note

the obvious bend of the spine laterally and its correction. Also note that the kidneys

are not impacted by the bend or its correction as they were outside the ROI where it

occurred.

6.3.1 Spine Location Sensitivity

The spine location is a crucial parameter for the accuracy of our correction algorithm.

To apply our deformation correction method for clinical data, we have to understand

how much effect the measure error will have on the reconstructed volume. Therefore,

based on this simulation, we added a small perturbation, from −15mm to 15mm, to
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the x, y coordinates of the spine location respectively, with each sample step 5mm.

So we had 49 reconstructed volume with different spine location perturbations. The

RMSErecon values were computed between all the reconstructed volumes and the base-

line volume Rno−deform. In this research, we consider an improvement when we have

the less value of the RMSErecon, which indicates how close tow volumes are.

Figure 6.10 shows the results of our study of the sensitivity of deformation correction

to the identification of the spine location. The RMSErecon values increase quickly as

the magnitude of error increases. The values vary from 3.4×10−3 to 2.1×10−1 when the

spine location was uniformly distributed in the 900mm2 area about the actual location.

Therefore, it appears that our methodology is sensitive to the spine location parameter

used in deformation correction and that correction would work best when there are

registered CT or MRI slices available to provide an accurate estimate of this location.
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(a)


(b)


Figure 6.7: (a) Several projections of the initial phantom. (b) Several projections of
the deformed phantom.

(a)
 (b)
 (c)


(e)
(d)


Figure 6.8: Comparison of transverse reconstruction slices from (a) MCAT projection
set that did not include deformation, (b) MCAT projection set that included defor-
mation but no reconstruction deformation correction, (c) MCAT projection set that
included deformation and with deformation correction during reconstruction, (d) dif-
ference between (a) and (b), and (e) difference between (a) and (c).
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Figure 6.9: Coronal slices illustrating the impact of deformation and its correction on
the spine, ribs, liver, and kidneys. Note the obvious bend of the spine laterally and its
correction. Also note that the kidneys are not impacted by the bend or its correction
as they were outside the ROI where it occurred.
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Figure 6.10: RMSErecon distribution of reconstruction results considering the xy-plane
perturbation of the spine location.
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6.4 SPECT Clinic based Experiment

To validate our motion correction methods, we designed an experiment with a patient.

We made a 2-acquisition procedure, similiar to taht described in Section 6.3. This

procedure is used to verify that our method was valid not only for a phantom, but

also for a patient. Since RM correction was a very small part of motion compared with

RBM and deformation, we did not apply RM correction in this experiment. We wanted

to study practical problems that were not emphasized in the simulation.

6.4.1 Clinic Data Acquisition

Our target patient was a subject undergoing a T l201 cardiac perfusion study. A motion

capture system was set up in the clinic with three cameras observing the patient from

the head end and two cameras observing from the foot end. The cameras were used to

image retro-reflective markers attached to belts on the patient body, one belt on the

chest and another on the abdomen. Five retro-reflective markers were put on the chest

belt and three were placed on the abdomen belt. The marker patterns were carefully

adjusted so that each marker was visible to at least two of the cameras at all times

during the SPECT acquisition.

After the patient was positioned in the center of the SPECT machine, a transmission

scan was acquired to obtain for a transmission map. To simplify the problem, the

patient was required to stay still during this scan. Then our synchronization module

was launched to trigger both the SPECT machine and the motion capture system. The

synchronization module is used to relate the times between the SPECT data acquisition

and the marker motion data. During the 12 minutes of SPECT data acquisition, the

gamma camera rotated around the patient acquiring frames every three degrees, with

20 seconds acquisition time per frame. 68 projections (Figure 6.12) from two gamma

cameras were collected as the projection data. During the acquisition, the infrared

cameras were capturing the markers’ positions at 30 frames/sec and the 3D trajectories

of each marker were computed. The sequences of 3D trajectories were a motion data

and used for the motion estimation.

In this experiment, we acquired two 12 minute SPECT acquisitions. Since the

patient was required to remain still in the first acquisition, the reconstruction of the

projections from this acquisition was considered as our motion-free baseline. In the
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second acquisition, the patient was allowed to perform random movements on the table

during the acquisition. The projections from the second acquisition were used for the

reconstructions with and without deformation correction. After these acquisitions, we

had two sets of projections corresponding to two sets of motion data from our motion

capture system.

6.4.2 Data Processing

In this experiment, we used the frame mode based reconstruction for its simplicity. We

assume that the patient position changes little during each frame and can be related to

one set of corresponding motion parameters. We calculated the mean motion parame-

ters for each projection. Note the motion data rate was 30 frames per second. On the

other hand, the projection rate was around 20 seconds per image. We had to determine

a time model for the motion of each frame. Based on the synchronization module, we

could determine which motion data were collected within a certain projection. The

motion data were put into both RBM estimation module (Feng et al., 2005) and our

deformation estimation module. There are 6 DOF in the RBM estimation module-3

for translation and 3 for rotation. For the translation, we chose the mean values of

translation vector as the translation vector of the target projection. For the rotation,

we extracted the 3 rotation angles around the 3 axes from the rotation matrix. The

rotation order could be arbitrarily decided. The mean values of the 3 rotation angles

were taken as the rotation angles belonging to a certain projection. Then we calculated

the rotation matrix with the mean rotation angles. Note that the axes angle order had

to be preserved when we do the angle extraction.

As to the deformation model, each set of motion data had 3 parameters—twist

angle, bend angle and bend direction. Similarly, we could take the mean value of each

parameter sequence belonging to a certain projection as the deformation parameter.

The modified MLEM algorithm (Eq. 5.20) was used for the reconstruction because

it could be adapted for motion correction. Since the patient undergoes different mo-

tions for different projections, the reconstruction volume should be moved or warped

based on the motion parameter to properly align the reconstruction data. In turn, the

attenuation map should also be moved or warped with the reconstruction volume. In

our reconstruction computation, we used the ESSE scatter correction (Frey and Tsui,
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1993), in which the scatter map was deduced from the attenuation map (Figure 6.11).
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Figure 6.11: Sample images from the attenuation map.

Figure 6.12: (a) Raw data of one chest marker motion during the second acquisition.
(b) Motion after RM correction.
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6.4.3 Results and Comparison

When we applied our correction methods to the reconstruction, the markers on the

abdomen belt were used to estimate the RBM parameters. Figure 6.13a shows the

motion trace of one chest marker after RM correction. Figure 6.13b shows the mo-

tion trace of that marker after the RM correction and the abdomen belt based RBM

correction. Given the spine location and the marker remaining motion data, we used

our deformation correction algorithm to measure the deformation parameters. A back-

deformation computation was also applied to the marker motion data. Figure 6.13c

shows the motion trace of one chest marker after RM, RBM and deformation correction.

The RMSEmotion (Eq. 6.1) decreased from 6.46 (RM correction only) to 6.07 (RM and

RBM correction) to 5.42 (RM, RBM and deformation correction). After we estimated

the deformation parameters, we could use the parameters to correct the second SPECT

acquisition.

There are some unexpected pulses of the marker’s positions after deformation re-

construction (Figure 6.13). In our model, we assume the spine length is fixed and each

vertebra has the same contribution to the deformation, which is not completely accu-

rate. When the patient was undergoing some motion, the deformation of the moving

torso was highly unpredictable. However, when the patient stayed still again after the

motion, the body would comply to our deformation model again.

Some of the projections in the first acquisition are shown in Figure 6.14a and some

of the projections in the second acquisition are shown in Figure 6.14b. Though we

had detected the patient motion by the motion capture system, it was hard to see the

motion effect based on the projection images. Before the comparison, we performed a

reconstruction with the traditional MLEM algorithm without any motion correction for

both projection sets. Again, we used Rnomotion for the reconstruction volume without

any motion and Rno−correction for the reconstruction volume with motion but no correc-

tion. One slice from Rnomotion is shown in Figure 6.15a. The heart (bright circle) is fine.

The slice for the same position from Rno−correction is shown in Figure 6.15b. Without

any correction, the heart (bright blur area) is highly distorted. It is quite clear that for

the second acquisition motion correction is needed.
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(a)


Figure 6.13: (a) Motion of one chest marker after RM correction. (b) Motion of one
chest marker after RM and RBM correction. (c) Motion of one chest marker after RM,
RBM and deformation correction.
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(a)


(b)


Figure 6.14: (a) Raw projections from the first acquisition. (b) Raw projections from
the second acquisition with some motion involved.

(a)
 (b)


Figure 6.15: (a) One slice from the reconstruction of the first acquisition. (b) One slice
from the reconstruction of the second acquisition.
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We applied the motion correction modules for the second acquisition data. For

comparison purpose we made two kinds of motion correction. To simplify the process,

in this experiment, we omit the RM correction due to the small amplitude. The first

correction was the traditional RBM correction (Feng et al., 2003), which considered

the body as a whole object. In this procedure, all the markers were involved in the

RBM estimation. The relative motion between different belts was omitted. We used

Rrigid for the reconstruction volume with motion and RBM correction only. The second

correction was the RBM correction combined with the deformation correction. RBM

parameters were estimated from the abdomen belt markers and the deformation param-

eters were estimated from the chest belt markers after we applied RBM correction for

the chest belt markers. Then we applied RBM correction and deformation correction

for the reconstruction. We used Rallcorrection for the reconstruction volume with mo-

tion, RBM correction and deformation correction. Rnomotion is reconstructed from the

first acquisition and the other 3 volumes are reconstructed from the second acquisition.

The patient body did change between these two acquisitions. The difference between

Rnomotion and Rallcorrection is inevitable.

Based on these parameter list and the projections, we could make our motion correc-

tion computation. In this reconstruction, RM is ignored due to the minor contribution

to the entire motion. Figure 6.16 shows a comparison from the coronal plane. In Fig-

ure 6.16a, the liver is highlighted in the reconstruction volume. In Figure 6.16b and c,

the liver area is dimmed. The motion degraded the concentration of the radioactivity.

However, after our deformation correction, the liver area is bright again in Figure 6.16d.
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(a)
 (b)


(c)
 (d)


Figure 6.16: (a) Coronal slice from Rnomotion. (b) Coronal slice from Rno−correction. (c)
Coronal slice from Rrigid. (d) Coronal slice from Rallcorrection. Note: the hot circle is
the spleen.
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The RMSErecon between the volumes Rno−correction, Rrigid, Rallcorrection and Rnomotion

is going down from 0.19 (no correction), to 0.16 (RBM correction), to 0.10 (RBM and

deformation correction). Note the maximum value of the voxels is 5.74. Based on our

analysis, our deformation model improves the reconstruction quality and compensates

for the deformation effectively.

Since the heart perfusion is the focus point of our study, we extract the heart area

and analyzed the heart reconstruction. Figure 6.17 shows that we extract the heart

area from the Figure 6.17a,b,c,d. Then we abstracted (a) from (b), (c) and (d). The

difference images are shown in (e), (f) and (g). The difference between (a) and (d)

are quite small, with the RMSErecon value only 0.17. However, we can see strong

pattern in the difference images (e) and (f). The RMSErecon value is 0.50 between

Rnomotion and Rno−correction, and is 0.36 between Rnomotion and Rrigidcorrection. Based on

this comparison, we can claim we have restored the heart into the initial shape even

with deformation in the acquisition. More sample slices are shown in Figure 6.18.

The experiment was repeated for a second patient. In Figure 6.19a, the patient’s

heart is shown clearly. After motion, this patient heart is distorted to be a bright point

in Figure 6.19b. The reconstruction with RBM correction only is shown in Figure 6.19c.

The reconstruction with RBM and deformation correction are shown in Figure 6.19d.

The patient heart is corrected in Rallcorrection since we can distinguish the two ventricles,

not only a bright point in Rnocorrection without any correction. The RMSErecon around

the heart area goes down from 0.30 between Rnomotion and Rnocorrection, to 0.23 between

Rnomotion and Rrigidcorrection, to 0.18 between Rnomotion and Rallcorrecion. Note the max-

imum counts in Rnomotion are 2.74. More results from this experiment are shown in

Figure 6.20.
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(a)


(b)


(c)


(d)


(e)


(f)


(g)


Figure 6.17: Comparison between transverse slices from the reconstructions of the first
experiment. (a) 43th slice from Rnomotion. (b) 43th slice from Rnocorrection. (c) 43th slice
from Rrigid. (d) 43th slice from Rallcorrection. Note: the hot circle is the heart. (e)
Difference image between the heart area of (a) and (b). (f) Difference image between
the heart area of (a) and (c). (g) Difference image between the heart area of (a) and
(d).
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(a)


(b)


(c)


(d)


Figure 6.18: Transverse slices from the reconstructions of the first experiment. (a)
Slices from Rnomotion. (b) Slices from Rno−correction. (c) Slices from Rrigid. (d) Slices
from Rallcorrection. Note: the left two columns are the 56th and the 60th slices in the
sagittal plane; the right two columns are the 43th and the 56th in the transverse plane.
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(a)
 (b)
 (c)
 (d)


(e)
 (f)
 (g)


Figure 6.19: Comparison between transverse slices from the reconstructions of the
second experiment. (a) 48th slice from Rnomotion. (b) 48th slice from Rno−correction. (c)
48th slice from Rrigid. (d) 48th slice from Rallcorrection. Note: the hot circle is the heart.
(e) Difference image between the heart area of (a) and (b). (f) Difference image between
the heart area of (a) and (c). (g) Difference image between the heart area of (a) and
(d).
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(a)


(b)


(c)


(d)


Figure 6.20: Transverse slices from the reconstructions of the second experiment. (a)
Slices from Rnomotion. (b) Slices from Rno−correction. (c) Slices from Rrigid. (d) Slices
from Rallcorrection.
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In the third experiment, the patient made some RBM as well as RM. However, the

patient did not have clear deformation during the acquisition. The marker’s motion

before and after motion correction is shown in Figure 6.21. We notice that after RBM

correction the target marker is almost stable. Therefore, the deformation correction

has a minor contribution to the motion correction.

Figure 6.22 is a set of sample slices in the same position of the reconstructed volumes.

In Figure 6.22a, the patient’s heart is shown clearly in Rnomotion. Again, after motion,

this patient heart is distorted to be a bright point in Figure 6.22b. The reconstruction

with RBM correction only is shown in Figure 6.22c. The reconstruction with RBM

and deformation correction are shown in Figure 6.22d. The patient heart is corrected

in Rallcorrection. The RMSErecon around the heart area goes down from 0.22 between

Rnomotion and Rnocorrection, to 0.17 between Rnomotion and Rrigidcorrection, to 0.17 between

Rnomotion and Rallcorrecion. Note the maximum counts in Rnomotion are 3.98. Since the

patient had almost no deformation, the contribution of the deformation module was

insignificant. However, our module does not degenerate the improvement made by the

RBM correction module. More results from the third experiment are shown in Figure

6.23.
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(a)
 (b)
 (c)
 (d)


(e)
 (f)
 (g)


Figure 6.22: Comparison between transverse slices from the reconstructions of the third
experiment. (a) 52th slice from Rnomotion. (b) 52th slice from Rno−correction. (c) 52th slice
from Rrigid. (d) 52th slice from Rallcorrection. Note: the hot circle is the heart. (e)
Difference image between the heart area of (a) and (b). (f) Difference image between
the heart area of (a) and (c). (g) Difference image between the heart area of (a) and
(d).
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(a)


(b)


(c)


(d)


Figure 6.23: Transverse slices from the reconstructions of the third experiment. (a)
Slices from Rnomotion. (b) Slices from Rno−correction. (c) Slices from Rrigid. (d) Slices
from Rallcorrection.
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Chapter 7

Discussion and Future work

We have developed methods for estimating the parameters of a model of body deforma-

tion and investigated its application to correcting the motion of markers for a human

body as well as body deformation in a simulation study with moderate success. The

frequency of occurrence of non-rigid body motion, its impact, and whether we can suc-

cessfully separate it from respiratory motion and rigid-body patient motion in clinical

studies are still open questions. We have put significant effort into investigation of

respiratory and rigid-body motion, but this is our first attempt at non-rigid motion

estimation and correction. It is motivated by our observation that after extracting RM

and RBM components from multiple marker tracking data for patients we find cases

where there is a residual motion that does not appear to be related to respiratory mo-

tion. This is illustrated in Figure 6.2, where the chest markers and abdomen markers

show different extents of rotation about the body axis (twist) and change in the an-

gulation of the planes associated with the belts (bend). Based on these observations

we have started exploration into the detection and correction of these forms of defor-

mation as our first step into non-rigid motion correction. Future studies will include

an extensive investigation of the frequency of occurrence and success in separation of

these types of motion in a large set of clinical acquisitions. We also anticipate more

MRI based experiments to provide an anatomical assessment of our methods.



7.1 Correction of Motion of Markers on a Volunteer

Motion can cause parts of the body to move into and out of the field-of-view (FOV) of

the camera heads. This happens every time there is axial motion with cardiac imaging,

and can occur within the transverse plane, especially for larger patients and small

FOV cardiac-dedicated SPECT systems. Since the heart is typically imaged within the

central portion of the FOV, it is unlikely that such motion would lead to truncation

of the heart in the projections. Thus this should not be a significant problem for

visualizing the heart in cardiac SPECT. It could be a problem in portions of the slices

away from the heart and in general SPECT imaging.

Our model is limited in the extent of the deformations we have included and by the

number of assumptions we have employed to implement estimation and correction of

deformation. Relaxation of such assumptions as the uniform progression of twist and

bend of the spine between the two belts and accounting for the biomechanical properties

of the other tissues of the body so that we consider more than just the spine would be

good places to improve our model. One possible way to achieve such refinement would

be to implement a finite-element model (FEM) of the chest and upper abdomen. FEM

of this region has been performed by others (Sundaram and Feng, 1977) (Kimpara

et al., 2005) (Merkle et al., 2008). We propose that such modeling be based on CT

slices acquired with SPECT/CT (and PET/CT). The motion tracking could then serve

to provide boundary condition information to the model such that the motion of the

internal structures would be better estimated than with our current model.

7.2 Motion Separation

Motion separation is still an open topic. Though body motion is composed of three

major components, RBM, RM and body deformation, the three motions are not or-

thogonal. RM correction usually considers individual markers only. RBM correction

takes all the markers as one object and ignore the interior relative deformation. Our

body deformation model considers each belt as one object and estimates the body de-

formation by the relative movement between the chest belt and abdomen belt. In this

research, we start with the RM correction, followed by RBM correction and deforma-

tion correction. If we change the extraction order of the three components, the final
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motion will be different. It is very hard to tell which order is correct. We can make some

simple explanation why we extract the RM first, followed by RBM. When the patient is

undergoing respiration, both abdomen belt and the chest belt will move up and down.

Such high frequent oscillation is neither RBM nor deformation motion, since the heart

is not moved up and down simultaneously. If we do not extract the RM first, these

kind of high frequent oscillation will be considered as the RBM or deformation motion.

The reconstruction will be degraded if we correct the respiratory motion with RBM or

deformation correction module. Therefore, we claim that our motion correction order

works for our deformation correction purposes.

99



100



Chapter 8

Contribution and Future Work

In this research, we presented a body deformation model, defined by the body twist-

ing, body bending and bending direction. With this model, we can estimate a set

of deformation parameters with multiple marker patterns. In turn, these deformation

parameters and model can be used to improve the SPECT reconstruction. The correct-

ness of our model was verified both by the marker based reversible validation and MRI

based experiments. We also investigated the use of a deformation matrix based on our

model in MLEM correction of deformation, and investigated how sensitive our model

was to the estimation of the spine location. Compared to the reconstruction volume

with deformation but no compensation, our compensated reconstruction volume shows

a significant improvement. However, our correction was determined to be sensitive to

the estimation of the spine location. We thus view this work as but a first step towards

being able to estimate and correct patient deformation based on information obtained

from marker tracking data. Since we have found a way to compensate for the deforma-

tion effects in body volume reconstruction, we applied our method to real patients. A

real patient based deformation correction is done in clinic, which shows strong evidence

that our method can be applied for clinical purposes in the future.

However, there is still some room for improvement. First of all, our deformation

model is far from perfect. We can adopt refined spine motion modeling into our sys-

tem to improve our deformation model and improve the reconstruction result. Another

challenge is how to accelerate our computation speed. In this research, we only focused

on the accuracy of the motion correction. Our method requires 90 minutes for one

reconstruction procedure with deformation correction (1.8G hz CPU), which can be



improved a lot. Nowadays, computer hardware technology is developing very quickly.

There are some hardware accelerations that probably can be used to speed up our de-

formation correction computation. MMX (SSE) instructions are implemented in most

modern CPUs. Since a large part of our computation is projection and interpolation, we

can rewrite our code with the MMX (SSE) instructions to accelerate our computation.

Furthermore, the algorithms also can benefit from the modern GPGPU. The projection

and back-projection computation is quite similar to volume rendering. Volume render-

ing algorithms are fully supported by the modern GPGPU. After restructuring our

algorithm into a pipeline shape, we can use a GPGPU to accelerate the computation.
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