
Applying Reinforcement Learning Based Tutor Strategy
Recommendation Service To The ASSISTments

by

Zekun Dai

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

May 2021

APPROVED:

Professor Neil T. Heffernan, Major Thesis Advisor

Professor Craig Wills, Head of Department

Abstract

Reinforcement Learning, specifically Multi-armed bandit algorithm(MAB), has shown

great results in personalized recommendation. This thesis focused on adding a re-

inforcement learning based personalized hints/explanations recommendation service

to the ASSISTments, an online learning platform. This thesis investigated differ-

ent MABs and implemented them to test on collected educational dataset. This

thesis also explored the design and implementation of the infrastructure that can

give support to provide tutor-strategy recommendation service for ASSISTments.

This thesis conducted experiments to compare different bandit algorithms using the

mean cumulative regret as the metric, Thompson Sampling among all selected was

the best choice for actual production usage. By comparing both contextual and

non-contextual MABs with random controlled methods for the specific application,

MAB does not introduce bias as well as they do not have significant advantage over

random methods.

Acknowledgements

I would like to thank my advisor, Professor Neil T. Heffernan for the guidance

I received from him during my graduate study period. I would like to thank Ethan

Prihar for his guidance and help over the Thesis work. His patience and attention to

details has been instrumental in making me a better researcher. I would like to thank

ASSITments Engineering Team: Christopher Donolley, David Magid, Joseph St.

Pierre, Ryan Emberling, Tom Bolton for their support in building the infrastructure.

I also want to thank my thesis reader, Professor Joseph Beck, for giving useful

feedback to make this thesis a success.

i

Contents

1 Introduction 1

1.1 Crowdsourcing for Education . 1

1.2 Personalized Learning . 2

1.3 Background . 2

1.4 Goal of the thesis . 4

1.5 Research Questions . 4

2 Multi-armed Bandits 7

2.1 Exploitation & Exploration . 9

2.2 Regret . 10

2.3 ε-greedy . 12

2.3.1 Standard ε - greedy . 12

2.3.2 Annealing ε - greedy . 13

2.4 Softmax . 14

2.4.1 Standard Softmax . 14

2.4.2 Annealing Softmax . 16

2.5 Upper Confidence Bound(UCB) . 16

2.5.1 UCB1 . 17

2.5.2 UCB2 . 18

ii

2.5.3 LinUCB . 19

2.6 Thompson Sampling . 20

3 Infrastructure design 24

3.1 Requirements of the system . 24

3.2 Techstack . 25

3.3 Database design . 26

3.4 Workflow . 26

3.5 System Components . 30

3.5.1 DAO layer . 30

3.5.2 Manager Layer . 34

4 Experiments 38

4.1 Comparing different bandit algorithms on the ability of recommend-

ing different tutor strategies . 38

4.1.1 Dataset . 38

4.1.2 Preprocessing . 38

4.1.3 Methodology . 39

4.1.4 Results . 40

4.1.5 ε -greedy . 40

4.1.6 Softmax . 42

4.1.7 Upper Confidence Bound(UCB) 44

4.1.8 Thompson Sampling . 45

4.1.9 Analysis . 45

4.1.10 Discussion . 47

5 Experiments 50

iii

5.1 Comparing Bias and Regret in Reinforcement Learning and Random-

ized Controlled Trials . 50

5.1.1 Dataset . 51

5.1.2 Preprocessing . 51

5.1.3 Methodology . 51

5.1.4 Results . 53

6 Summary 56

A Class Diagram 57

A.1 Class diagram . 57

iv

List of Figures

2.1 Tutor strategy reward distribution example 10

2.2 ε - greedy pseudocode . 13

2.3 Annealing ε - greedy pseudocode . 14

2.4 Standard Softmax pseudocode . 15

2.5 Annealing Softmax pseudocode . 16

2.6 UCB1 pseudocode . 18

2.7 UCB2 pseudocode . 19

2.8 LinUCB pseudocode . 21

2.9 Thompson Sampling pseudocode . 23

3.1 ER Diagram of Reinforcement Learning Service 26

3.2 Reinforcement Learning Flowchart 27

3.3 Reward Calculation Flowchart . 28

3.4 Nightly Update Flowchart . 31

4.1 Cumulative regret of Standard ε-greedy over 100 trials 42

4.2 Cumulative regret of Annealing ε-greedy over 100 trials 43

4.3 Cumulative regret of Standard Softmax over 100 trials 44

4.4 Cumulative regret of Annealing Softmax over 100 trials 45

4.5 Cumulative regret of UCB1 over 100 trials 46

v

4.6 Cumulative regret of UCB2 over 100 trials 47

4.7 Cumulative regret of Thompson Sampling over 100 trials 48

4.8 Cumulative regret comparison of all bandits 49

4.9 Final mean cumulative regret comparison of all bandits 49

5.1 Reward comparison between differnt methods 55

A.1 RLS class diagram . 58

vi

List of Tables

4.1 Processed data samples . 39

4.2 mean cumulative regret of using standard ε - greedy with different ε . 41

4.3 mean cumulative regret of using standard Softmax with different τ . . 43

5.1 Processed additional student feature data samples 51

5.2 Result of problem-level best tutor strategy data samples 53

5.3 Result of problem-level best tutor strategy of using different methods 53

5.4 Fraction in agreement of best tutor strategy 54

vii

Chapter 1

Introduction

1.1 Crowdsourcing for Education

Crowdsourcing by definition is a way of achieving a certain goal with the information

gathered from a crowd. It is a technique that has been used in many applications in-

cluding educational field. As the needs and usage of online learning, “crowdsourcing

for education” (CfE) [JSB18] as a technique to develop online educational technolo-

gies receives a lot of attention from both educational researchers and developers.

For the reason that crowdsourcing is aimed to deliver quality education for learners,

and online education as a newly established area is relatively unexplored in terms

of creating crowds[WAC+12]. Online learning technologies have provided both new

methods and resources for crowdsourcing. Platform such as DALITE [BLDC16]

creates a crowd of users and let them access resources and information provided

by peers. PeerWise[DLRH08] crowdsources teachers and students to create and

evaluate multiple choice questions, which enchances the standarad learning process.

Started since mid-1990s, learning through digital technology and online environ-

ment has become more and more popular for K-12 students and teachers. Especially

1

during COVID-19 times, online learning usages has increased drastically[BFT20].

As identified by many researchers, personalized learning is one of the direction of

applying crowdsouring[JSB18][WAC+12].

1.2 Personalized Learning

Personalized Learning has been one of the most popular topics in educational study.

The goal of Personalized Learning is to provide customized learning experience for

different students for their different characteristics such as strengths and interests.

A learning plan will be established at a individual level.

Personalized learning have positive effects on students learning achievement.

With adoption of personalized learning, student who received personalized help im-

proved substantially on mathematics and reading performance than their peers[PSBH15].

There are many attempts to apply personalized learning in different forms. Per-

sonalized Learning through the form of educational computer game can promote

students’ motivation in learning and improve their learning achievements at the

same time[HSH+12]. Crowdsourcing Videos based and other learning resources is

also helpful in realizing personalized learning at a large scale.[WS17].

1.3 Background

The ASSISTments[HH14] as an online educational platform founded by Professor

Neil Heffernan. The ASSISTments provides teachers with various educational tech-

nologies as well as data and tools for educational researchers to examine different

educational hypotheses.

Under ASSITments’s Ideas Lab grant, ”Just-in-time Instruction” project is ded-

icated to provide personalized learning to students. Since Reinforcement Learning,

2

specifically Multi-armed bandit algorithms(MAB), has shown great results in per-

sonalized recommendation, part of the goal is build a reinforcement learning based

recommendation system.

Inspired by this, providing a personalized tutoring strategy recommendation ser-

vice has became a goal for educational technology developers. TeacherAssist[PH20],

as part of newly introduced services the ASSISTments. TeacherAssist allows teach-

ers to create customized assistance messages for the specific problems they assigned

to their students at the students’ demand. The assistance can also redistributed and

accessed by other students outside the teacher’s class. With TeacherAssist service,

ASSISTments now can provide different tutoring strategies for students. Students

using the ASSISTments online tutor are currently given problem specific hints, ex-

planations, and scaffolding. Hints represent a series of helpful messages that teacher

created that aims to provide students with some additional information to help solve

the assigned problem. When student request hint, the system will provide a single

hint at once, and the student can attempt to solve the problem again, which ensures

the student mastered the help material. Scaffoldings represent a set of problems that

are decomposed into step-by-step guidance for students to answer the problem. Scaf-

folding requires students to have no prior knowledge, this also helps students who

struggles to master knowlege to slove complicated problems. Explanations represent

the detailed write up for answer the question along with the answer. Explanations

demonstrates students the way to solve the particular problem type. As only hints

and explanation are created by teachers among all three tutor strategies that are

supported, this thesis will focus on these two types.

The random controlled experiments using data provided by TeacherAssist show

that students has significant statistical improvement on answering the problems

if they received on-demand assistance for previous problem[PH20]. With this a

3

foundation, the next step towards providing personalized tutoring strategy recom-

mendation service would be building the a AI based recommendation service that

can provide the best hints/explanations for each student.

1.4 Goal of the thesis

The goal of this thesis is to explore how to apply reinforcement learning in helping

the system make the decision to provide students with the best tutor strategy and

introduce it within ASSISTments as Reinforcement Learning Service(RLS). This

involves the following tasks of both building the infrastructure and test out different

reinforcement learning models, specifically multi-armed bandit algorithms(MAB).

1. To design the infrastructure that can support using multi-armed bandit algo-

rithms(MAB) in tutor strategy recommendation decision making.

2. To investigate different multi-armed bandit algorithm models and implement

these models.

3. To test out different multi-armed bandit algorithm models in same educational

context and analysis each model’s results.

1.5 Research Questions

This thesis intends to achieve these goals by addressing the following research ques-

tions:

4

1. Which Hints/Explanations are relevant to each problem?

The effect of provided tutor strategies are indistinguishable at glance, since

there’s no obvious way to tell if this particular tutor strategy is relevant to

this problem. Hence, to analyze if this tutor strategy is relevant, the RLS that

uses MAB algorithms has to demonstrate if there is a particular tutor strategy

has the good effect on students in helping them answering the particular type

of questions.

2. Which Hints/Explanations is most helpful to an individual student?

To achieve the goal of personalized learning, RLS has to be able to provide

the most suitable tutor strategy to individual student, and this will be demon-

strated by if the student receiving an particular tutor strategy can answer the

next problem correct.

3. What features determine which Hints/Explanations is most helpful?

The fact that individual students are different in their learning abilities, back-

ground, etc and the fact that problems are different in types, difficulties. These

factors will affect the recommendation largely. This thesis will need to in-

vestigate and identify which features can determine which tutor strategy to

recommend.

4. Which bandit algorithms is the most suitable for this application context?

As there are many MAB algorithms, this thesis will need to try different MAB

algortihms out and find the most suitable one in this particular application.

5. Does bandit algorithms introduce bias on the best tutor strategies comparing

with random controlled experiments?

Machine learning models have the possibility that they could incorporate bias

within them. In order to find out if the MAB algorithms will introduce bias

5

with them, this thesis will need to compare MAB results with non-machine

learning methods like using Random Controlled Experiments.

6

Chapter 2

Multi-armed Bandits

Multi-armed bandits algorithms(MAB) is an instance of Reinforcement Learning

where in a reinforcement learning setup, agents make decisions to interact with the

environment based on observations and get a feedback of the action from the en-

vironment. The term “Bandit” in “multi-armed bandits” comes from “one-armed

bandit” machines used in a casino[KVJ87]. In the original set up, an agent’s goal

is to maximize the outcomes when playing many one-armed bandit machines that

have different probabilities of win. The problem involves a trade-off between ex-

ploration/exploitation, which means the agent needs to find a balance between ex-

ploring other machines and exploiting the machine that have the best payoff so

far.

The multi-armed bandit problem was formalized to is used to describe the

decision-making with the outcomes to be uncertain, the outcomes can be either

stochastic or adversarial, and it includes the fundamentals of reinforcement learn-

ing, such as rewards, time steps etc. In a multi-armed bandit problem, at a certain

time step, there are multiple different actions/arms for the agent to choose from

and the reward which is the feedback is based on the chosen action. Ideally, the

7

distribution of rewards of different actions is independent, and there appears to be

at least one action that will give maximum reward. In this case, the goal of the agent

in to identify this best arm that will produce the maximum reward after a certain

number of trials. Different MABs in this case will be the agent, and the quicker and

more accurate the MAB finds the best arm, the better this agent is. MABs that

select action without utilizing the information from the environment(context) are

referred as non-contextual multi-armed bandit algorithms, the ones does are referred

as contextual multi-armed bandit algorithms.

The contextual MABs expand the non-contextual MAB decison-making by in-

corporating the conditional contexts. The contextual MABs can serve as a good

method of penalization, but it also increase the chance of including bias in the

decision making process. There are couple most popular contextual bandit algo-

rithms: LinUCB[LCLS10] extends UCB algorithm to contextual cases. Thompson

sampling[AG13] [RVRK+17] has been shown to perform competitively to the state-

of-the-art in a variety of bandit and other learning contexts.

Ideally, under the personalized learning scenario, the recommendation service

will give hints/explanations to each student with the consideration of their different

personalities. By achieving this, both non-contextual and contextual MABs will be

crucial to determine what is the best option to recommend.

Problem Definition

A k-arm MAB can be formally decribed as a tuple < A,R >, where A is the the

set of actions which represents the interaction with one slot machine and R is the

reward function, which in this case, is either 0 or 1. At each time step t, among

all available k arms, the agent will choose one and receive a reward r. The whole

sequence over t time step would be {< a1, r1 >, ... < at, rt >}. And the probability

8

distribution of the reward of the k arms is {θ1, ..., θk}. The value function of this

action a is expected reward of taking that action.

Q(a) = E[r|a]

If at the time step t, the action taken is a certain arm i, the value function will be

Q(a) = θi. And the optimal action a∗ has θ∗ as optimal reward is:

θ∗ = Q(a∗) = max
a∈A

Q(a) = max
1≤i≤K

θi (2.1)

Applying to tutor strategy recommendation context

For the specific application of this thesis, the available tutor strategies(hints/explanation)

are the the ”arms” in this case for each problem. And each arm has a reward prob-

ability distribution, the task of the multi-armed bandits is to find the arm with the

highest reward probability distribution. Take figure 2.1 as an example, the expla-

nation 1 is the best option for that it has the highest reward distribution, if the

distributions are known, it’s fairly easy to make a decision. However, in actual case

this are unknown to the decision make, the goal is to obtain the distribution of

the following in a fast and efficient manner. That’s where the multi-armed bandit

algorithms mentioned comes into use.

2.1 Exploitation & Exploration

Exploitation & Exploration dilemma is one of the key factors of any decision related

problems, it is one of the most basic trade-offs in nature. Exploitation & Exploration

dilemma describes the trade-off between making the optimal decision by leveraging

current knowledge (Exploitation) and exploring new knowledge to improve the per-

9

Figure 2.1: Tutor strategy reward distribution example

formance (Exploration). This is crucial for a recommendation system. For example,

every time the system gets a new user, how to quickly obtain the knowledge of the

user’s interest in order to recommend best options for specific user. Also, if the

system has the information of the best recommendation for current state, when a

new recommendation option is added to current option pool, how the system will

recommend the new option is another problem that need to be solved.

2.2 Regret

In a reinforcement learning setup, an agent will take actions to current environment

and receive a feedback from the environment. The feedback is usually defined as a

reward function that measures how good is a certain action taking by the reinforce-

ment learning agent. The goal of the reinforcement learning algorithm is to learn

the policy that will return maximum cumulative reward.

In regret theory, regret is defined as the foregone utility from the actual action

choice in comparison to the case where the random states of the world are treated as

known[LS82], and within regret theory, for the decision-maker is usually to minimise

10

cumulative regret as the optimisation problem.

Regret is a more appropriate measurement than reward as it describes the gap

of not taking the optimal action.[KLM96]. Similarly to reward, regret in reinforce-

ment learning describes opportunity loss for a certain action taken by the agent.

Specifically, the difference between the optimal payoff of a possible action and the

payoff of the action that has been actually taken. Formally, the optimal value is

Q(a∗) according to Equation 2.1. And the regret at certain step t of action taken is

lt = E(Q(a∗)−Q(at)) (2.2)

The cumulative regret of is the sum of the regret at each step

Lt =
T∑
1

E(Q(a∗)−Q(at)) (2.3)

The goal of reinforcement learning agent now becomes minimizing the total cu-

mulative regret.

For the specific application of this thesis, the idea is to recommend student

users with tutor strategies that help them learning certain skill point. The straight-

forward measurement of if the tutor strategy helps is to track their performance

on the next problem with the same skill point as the one they received help, the

correctness of next problem. Hence, the regret at each time step t becomes:

lt =


1, if the student answer the next problem correctly

0, otherwise.

(2.4)

11

2.3 ε-greedy

2.3.1 Standard ε - greedy

Greedy Algorithm does not take long-term effect of a decision into consideration

and only focus on the best option available at the moment. This decision making

process may pick the option that is sub-optimal and in the end does not provide

maximum reward. Hence, ε - greedy adds randomness into the decision making

process, and aims to balance exploration and exploitation[TL00]. Instead of picking

the best available option every time, the algorithm introduces a ε parameter. For

ε probability, the algorithm randomly explore other options instead of the current

best option, and for 1− ε probability, it stick to current best available option.

The estimated action value is defined as:

Qt(a) =
1

Nt(a)

T∑
t=1

rtp(at = a) (2.5)

where p(at = a) is the probability of at taking action a time step t and Nt(a) is total

number so far of taking action a.

And ε - greedy selects action a at time step t is:

at =


action with largest Qt(a), with probability 1− ε

random select, with probability ε

(2.6)

12

The higher ε value is, the more randomness will be added to the decision mak-

ing process. Additionally, ε need to be tuned for different experiment as there is

no universal best value for all setups. The algorithm’s pseudocode is showed in

Figure 2.2.

Standard ε - greedy (ε, arm size, T)
(1) Initialize(arms, regrets)
(2) for each timestep t ∈ T

do random generate p
if p < ε

then random select an arm
else p >= ε

then select current best arm
(3) do update arms and regrets
(4) return regrets

Figure 2.2: ε - greedy pseudocode

2.3.2 Annealing ε - greedy

ε - greedy’s performance is largely rely on the choice of the ε value and need to

be tuned according to different experiment setups. The tuning process is time-

consuming and the result suffers from high uncertainty. In order to avoid setting

up the epsilon values and make the algorithm parameter-free, Annealing ε - greedy

takes idea of Simulated Annealing and sets the ε to decay in a constant rate with

specified rule, so that it will explore less over time. Specifically, for the experiment

of this thesis, the ε value at time step t is set to be:

ε =
1

log(t+ 1e−7)
(2.7)

13

In such setup, at the beginning of the decision making process, ε value is set to be

close to infinity and this would allow the algorithm to explore different options. And

as time goes, ε value will start approaching zero and the algorithm would become

more towards choosing the best available option and exploit more and more on

current learnt knowledge.

The algorithm’s pseudocode is showed in Figure 2.3.

Annealing ε - greedy (ε, arm size, T)
(1) Initialize(arms, regrets)
(2) for each time step t ∈ T

ε = 1/log(t+ 1e−7)
do random generate p

if p < ε
then random select an arm

else p >= ε
then select current best arm

(3) do update arms and regrets
(4) return regrets

Figure 2.3: Annealing ε - greedy pseudocode

2.4 Softmax

2.4.1 Standard Softmax

The Softmax (Boltzmann exploration) bandit is related to the Boltzmann distribu-

tion in Physics. Taking a Physics concept that systems tend to be at a more random

state at high temperatures, while at low temperatures a more stable structure are

formed, the algorithm sets a temperature parameter τ to affect how the agent makes

its decisions.

Softmax is similar to ε - greedy and it enhances the effect of reward during

exploration. As ε - greedy does not take in the information of average rewards of

14

different arms, Softmax sets arms with different chance of being interacted with

based on the current reward average instead of uniformly exploring all arms.

At time step t, the probability of Softmax choosing a certain arm can be defined

as:

p(at = a) =
e
Qt(a)
τ∑A

i e
Q(i)
τ

(2.8)

When τ is large enough, the probability of exploring any specific arm is ap-

proaching 1 as the overall exponential element of all arms approach is close to 1.

Otherwise, when τ is small, arms with higher average return is more likely to be

chosen by the agent.

Instead of segmenting each time step to be either exploration or exploration,

Softmax takes a different approach to solve the dilemma by increasing the chance of

picking an arm with higher return than others and still having the options to pick

arms with low return value.

Figure 2.4 shows the pseudocode of Standard Softmax.

Softmax (τ, arm size, T)
(1) Initialize(arms, regrets)
(2) for each time step t ∈ T

do random select according to equation 2.8
(3) do update arms and regrets
(4) return regrets

Figure 2.4: Standard Softmax pseudocode

15

2.4.2 Annealing Softmax

Annealing Softmax uses the same annealing process as Annealing ε - greedy. It

decreases the temperature in a Softmax algorithm over time, specificly:

τ =
1

log(t+ 1e−7)
(2.9)

As the τ decays over time, the agent will explore less.

Figure 2.5 shows the pseudocode of Annealing Softmax.

Softmax (τ, arm size, T)
(1) Initialize(arms, regrets, τ)
(2) for each time step t ∈ T

τ = 1/log(t+ 1e−7)
do random select according to equation 2.8

(3) do update arms and regrets
(4) return regrets

Figure 2.5: Annealing Softmax pseudocode

2.5 Upper Confidence Bound(UCB)

If the number of pulling certain arm is large enough, the reward observed from

the experiments will reflect the actual reward of the arm. However, in a simulated

experiment setup, the sample number are often limited, which creates a cap between

the actual reward and observed reward. The Upper Confidence Bound method

leverages this confidence interval between the observed reward and the actual reward

to help select the best option among the K arms. The confidence interval reflects

16

the randomness, the larger the interval is, the reward of the arm is more uncertain.

And as time step increases, the agent gets more observation, and the interval will

decrease. Ideally with infinite number of samples, the interval will eventually become

a specific value.

To avoid inefficient exploration that the agent might explore action that is pre-

viously observed to be bad, one approach is to decrease the parameter that controls

the exploration ε as time increases like Annealing ε - greedy. UCB takes another

approach and is set to be optimistic and prefers the options with high uncertainty.

The agent will lean towards the actions that has strong potential to have the opti-

mal reward. And this is described by an upper confidence bound Ut(a). The true

reward is set as

Q(a) ≤ Qt(a) + Ut(a)

At each time step, UCB will choose the arm with the maximum upper confidence

bound:

at = argmaxa∈A(Qt(a) + Ut(a))

Hoeffding’s Inequality

Hoeffding’s Inequality[Hoe94] is an theorem proved by Wassily Hoeffding, which

provides an upper bound of a probability, the formal definition: Let X1, X1 , ..., Xt

be independent random variables and the value of is within the interval [0, 1]. Given

the actual mean value X t = 1
t

t∑
i=1

Xi, for any u > 0, P[E[X] > X t + u] ≤ e−2tu
2
.

2.5.1 UCB1

According to Hoeffding’s Inequality, let Q(a) denotes the true value and Qt(a) de-

notes the sample value, and the upper confidence bound of the arm Ut(a), the

17

following equation can be established:

P[Q(a) > Qt(a) + Ut(a)] ≤ e−2tUt(a)
2

In order to make the choice of which arm to pull, UCB will need to compute the

Ut(a):

Ut(a) =

√
− log e−2tUt(a)2

2Nt(a)

UCB1 redueces the threshold e−2tUt(a)
2

as the more rewards observed in time and

set e−2tUt(a)
2

= t−4 and take certain action at time t becomes:

at = arg max
a∈A

(Qt(a) +

√
2 log t

Nt(a)
) (2.10)

Where Qt(a) is the mean expected reward and Nt(a) is the number of choosing

arm a.

Figure 2.6 shows the pseudocode of UCB1.

UCB1 (arm size, T)
(1) Initialize: Pull each arm once
(2) for each time step t ∈ (K,T)

Choose amr according to equation 2.10
(3) do update arms and regrets
(4) return regrets

Figure 2.6: UCB1 pseudocode

2.5.2 UCB2

UCB2 is an adaptation implementation of UCB1. UCB2[ACBF02] lowers the upper

bound of the regret, which is the gap between best reward and actual reward.

Similarly to UCB1, UCB2 computes a bound for each of the K arm and then uses

18

the reward history and the bound value to select which arm to choose. And the

difference is that UCB2 tests each arm more than once, specifically τ(rj + 1)− τ(rj)

times. Here, τ(r) = d(1 + α)re and must be a integer, and α is a hyperparameter,

ri is the current time steps.

And the upper confidence bound of UCB2 sets as:

Ut(a) =
(1 + α)ln(ne/τ(r))

2τ(r)
(2.11)

Figure 2.7 shows the pseudocode of UCB2.

UCB2 (α, arm size, T)
(1) Initialize: Pull each arm once
(2) for each time step t ∈ (K,T)

for times in τ(rj + 1) - τ(rj)
Choose arm according to equation 2.10

(3) do update arms and regrets
(4) return regrets

Figure 2.7: UCB2 pseudocode

2.5.3 LinUCB

All the bandit algorithms above are based on the observation of the expected return,

however, they does not consider the how different each user is. Hence, they are all

context-free.

LinUCB was first introduced in recommending news paper articles[LCLS10].

LinUCB takes in the users’ interests as one of the factors that affect the recom-

mending strategy. It takes in different features such as interests, preferences, region,

19

etc of an individual user and compose those features as contexts. LinUCB believes

that the context and the final return has a linear relationship.

In the particular application, the context of user features are introduced in fea-

ture creation section which answered RQ3. Those features are designed specificity

to reflect the differences of each individual student.

Formally, the contexts are introduced as a d dimensional feature vector xt,a, and

the agent will now not only observe the return but also the contexts. And based on

the action at ∈ At taken, the observed payoff will be rt,at . And for T time steps,

it will observe xa,t, at, rtat . And the expected reward of an arm is believed to have

linear relation in vector xt,a with a certain coefficient vector θ, specifically:

E[rt,a|xt,a] = xTt,aθa (2.12)

And based on the expectation of reward, the recommendation strategy for each

time step t is:

at = argmax(xTt,aθa + α
√
xTt,aA

−
a 1xt,a) (2.13)

Figure 2.8 shows the pseudocode of LinUCB.

2.6 Thompson Sampling

Above methods takes Frequentist Inference approach, which set each arm with a

specific value and use the values as criteria to compare different arms. And if have

20

LinUCB (arm size, T)
(1) for each time step t ∈ T

Observe features of all arms a ∈ At : xt,a
for a ∈ At do

if a is new then
Aa ← Id(d-dimensional identity matrix)
ba ← 0d(d-dimensional zero vector)

θa ← A−a 1ba

t,a ← θTa xt,a + α
√
xTt,aA

−
a 1xt,a

Choose arm at = argmax(pt)
(3) do update arms A and regrets
(4) return regrets

Figure 2.8: LinUCB pseudocode

infinite samples to experiment, the value will approach the actual reward. Since

the samples are limited in actual case, the value is approximated and use a bound

to measure the gap between estimated and actual value. Thompson Sampling, on

the other hand, takes Bayesian Inference approach and set the criteria to follow a

probability distribution. The idea is to repeat the process of using observed history

to update the likelihood function of this probability distribution to get the posterior

probability. As the samples being observed increases, the density of this probability

distribution will be more closer to the actual probability distribution.

At each time step t, Thompson Sampling will select the optimal action a accord-

ing to the probability:

p(a|ht) = P[Q(a) > Q(a
′
,∀a′ 6= a|ht)]

= ER|ht [p(a = argmax
a∈A

Q(a)]
(2.14)

where p(a|ht) is the probability of taking a certain action under current played

21

history ht.

In a Bernoulli bandit setup, the action value Q(a) is set to follow the Beta

distribution, hence the value of Beta(α, β) is within the interval [0, 1], The two

parameter α and β counts if the action is good or bad with the reward being 1 or

0. For K arms, the parameter sets α = [α1, α1, ..., αk] and β = [β1, β1, ..., βk]. At

each time t, the expected reward of each action Q(a) will be sampled using the prior

distribution Beta(αi, βi). And the agent will select the best action:

at = argmax(θi,
αt,i

αt,i + βt, i
) (2.15)

With the action, the observed reward will be computed and used to update the

the Beta distribution accordingly by using the already known prior probability to

compute the posterior.

Beta(αk, βk) =


Beta(αk, βk) + (rt, 1− rt), if a = ak

Beta(αk, βk), otherwise.

(2.16)

Figure 2.9 shows the pseudocode of Bernoulli Thompson Sampling, the alphas

and betas are the parameters for beta distribution, the successes and failures are

counting the times of getting a reward 1 and 0.

22

Thompson Sampling (alphas, betas, successes, failures, arm size)
(1) Initialize(alphas, betas, successes, failures)
(2)for each time step t ∈ T
(3) for each arm i ∈ 1, ..., K

do Sample θi ∼ Beta(αt, i, βt, i)
do Select arm at = argmax(θi,

αt,i
αt,i+βt,i

)

do update Beta(αt, i, βt, i) according to 2.16 and regrets
(5) return regrets

Figure 2.9: Thompson Sampling pseudocode

23

Chapter 3

Infrastructure design

Building infrastructure that supports providing Reinforcement Learning based tutor

strategies to students on ASSISTments is one of the goal of this thesis. The infras-

tructure will be seamlessly integrated into ASSISTments as an additional service

and communicate with different components within ASSISTments currently. Also

the infrastructure will not only serve as a new feature of ASSISTments but also

help better design and train different bandit models and support other educational

researches.

3.1 Requirements of the system

1. Functional requirements:

1. When Student requests help with a specific problem, the system will

generate student-specific tutor strategy recommendations.

2. When tutor strategy recommendations are not available, the system can

random generate recommendations.

3. The system can update the model in online fashion.

24

4. The system can trace the if the recommendation is helpful or not by

automatically lookup the next problem correctness.

5. The system can calculate the different features daily.

2. Non-functional requirements:

1. The system can support different kind of tutor strategy recommendations,

and is extendable when new types of tutor strategy are developed.

2. The system is seamlessly integrated with different components within

current ASSISTments ecosystem.

3. The system supports the feature extension.

4. The system supports the model extension.

3.2 Techstack

ASSISTments platform built its whole ecosystem with Spring, a Java application

framework and inversion of control container for the Java platform. In order to inte-

grate the reinforcement learning based recommendation service into ASSISTments

seamlessly, the infrastructure is written in Java using ASSISTments SDK2.0. The

project is created as a JEE web project. As described in requirements, the ser-

vice will intact with different components in ASSISTments, specifically the tutor,

teacherAssist, and ASSISTments database. The connection with tutor to display

the recommendation is specified in a Java Manifest file format. The communication

with teacherAssist is done with wrapping the methods into a jar file format. The

communication with ASSISTments database is using spring-jdbc. Lastly, with the

nightly update task, it is done with spring scheduler and have the task running as

a service on a Tomcat server.

25

3.3 Database design

Figure 3.1 shows the database design of RLS. RLS stores different context table for

model training. The system stores different model in the model table.

Figure 3.1: ER Diagram of Reinforcement Learning Service

And the class diagram of RLS is listed in the appendix as A.1.

3.4 Workflow

General workflow

ASSITments as a whole is a well-designed platform that involves a lot of different

components and services. In order to integrate the Reinforcement Learning Ser-

vice seamlessly into the platform, the implementation will utilize the ASSITments

SDK2.0 and communicate with the existing TeacherAssist service. The very first

step will be designing the features for the reinforcement learning model, and then

TeacherAssist will collect the available tutoring and provide a list of options to the

26

RLS. The RLS will rank the options with the models and return a ranked list to

TeacherAssist. TeacherAssist will use the ranked list to decide which tutoring to

provide to the student The RLS will record the request in the database.

Every night, the RLS will look through the recorded requests and determine the

action taken and reward received, then update each model with the new data every

night, the student and problem features will be recalculated. Figure 1 shows the

workflow of the whole process of the service.

Figure 3.2: Reinforcement Learning Flowchart

Reward calculation process

Specifically, for the reinforcement learning, finding the reward is an important part

of the infrastructure, and it’s going to be application related reward. For specific Re-

inforcement Learning applications, for example, the game-playing agents, the reward

is the final score of the score. As the bandit algorithms used here is for re command-

ing tutor strategies, the best criteria would be the score of a certain problem that

27

the students achieved. Figure 3.3 shows the workflow of reward calculation process.

First, the service gets a request from TeacherAssist, then using the the information

in the request to query the database to find where exactly did the student request

the help, this step marks the start of the finding reward process. Then the service

will check if the problem is answered before the students actually watched through

the hints/explanations. If the answer is no, which means the student watched the

tutor strategy before answer the problem, the tutor strategy has an effect on the

student. If it’s good tutor strategy for the student, the score would be positive and if

it’s not, the score will also reflect that is this tutor strategy suitable for this specific

student. If the answer to the previous question is yes, then this problem’s score

cannot be counted as a reward since the tutor strategy doesn’t affect the student’s

answer. Then the service will locate the next problem with the same skill code, to

ensure that it’s the tutor strategy has an effect on student’s answer, then the score

of this problem will be count as the reward.

Figure 3.3: Reward Calculation Flowchart

28

Feature Creation

The bandit algorithm increases false positive rates when used to conduct educational

experiments [RYW19]. To mitigate this effect, features that are likely to correlate

with learning are being created. This method for selecting features led to the cre-

ation of a small number of features to be used as context by the multi-armed bandit

algorithm.

Three problem features is chosen. These features do not include the skill asso-

ciated with the problem, as that feature is used to determine which multi-armed

bandit instance to use to choose tutor strategies for that problem. The first of

the three features is a one-hot-encoded, categorical representation of the ”type of

problem”, e.g., multiple choice or short answer. This feature is included because

studies [FSA+18] [But18] have shown that students learn different amounts from

different types of problems. The other two features are based on studies [SDW+18]

that built models that incorporated problem difficulty to improve student learning.

”the median percent correct” and ”the median time to complete each problem” are

used as an analog for problem difficulty.

The features created for students are also motivated by a desire to ensure the

multi-armed bandit algorithm acts fairly. While there are many definitions of al-

gorithmic fairness, in the context of education, fairness has to do with equity, not

equality. Unlike many of the fairness definitions in literature, which strive to give

every group the same content, the definition used to give every group the best

content for that group. This is motivated by an understanding that marginalized

groups may not have been given the same opportunities as the non-marginalized

groups, which may necessitate additional tutoring or a different tutoring strategy

for those groups. Striving to provide each group with content most effective for

that group works toward closing the achievement gap. And the specific features are:

29

”Median time after clicking additional instruction before interacting with the tutor

over past 50 problems”, ”Percent of tutoring used on past 50 problems”, ”Percent of

secondary tutoring used on past 50 problems”, ”Percent of problems correct on past

50 problems”, ”Median time to answer a problem on past 50 problems”, ”Gender”,

”Race”

In order to measure the fairness of the multi-armed bandit algorithm, gender

and race features. These features are based on lookup tables created from online

repositories of names and the United States census data.

Nightly update process

Every night, the RLS will collect the problem logs and assignment logs that hap-

pened within the 24 hour time frame for feature update. This process aims to

provide the updated features for retraining the different bandit algorithm models.

Figure 3.4 shows the process of nightly update process.

For student features, RLS will query through the ASSISTments database for

the assignment logs of the past 24 hours and then calculate the sutdent features

described in the section above and the same for problem features.

3.5 System Components

3.5.1 DAO layer

DAO Layer is designed to communicate with the database, as showed in Appendix

A.1. DAO classes included in RLS are ProblemFeatureDao, StudentFeatureDao,

AdditionalInstructionDao, RLSModelDao, BanditFeatureDao, RLSLogDao.

30

Figure 3.4: Nightly Update Flowchart

31

ProblemFeatureDao

Variable name Type

id int

problem id int

problem type id int

mean discrete score double

median time to complete double

is active feature row boolean

calculation timestamp Timestamp

32

StudentFeatureDao

Variable name Type

id int

student xref String

mean discrete score double

class percentile double

mean number of attempts double

mean number of attempts with hints double

percent help requested before attempt double

median problem completiontime double

median time between responses double

median time between hint requested and interaction double

median time spent without attempting before hint double

gender String

ethnicity String

is active feature row boolean

calculation timestamp timestamp

AdditionalInstructionDao

Variable name Type

id integer

skill id integer

value string

type id integer

33

RLSModelDao

Variable name Type

id integer

model id integer

model type String

model values String

model keys String

RLSLogDao

Variable name Type

id integer

problemfeatureid integer

studentfeature id integer

tutorstrategy type id integer

turtorstrategyfeature id integer

predict reward double

recommendationtimestamp Timestamp

next problem correctness boolean

next problem correctness timestamp(Timestamp

3.5.2 Manager Layer

In Spring framework, manager layer serves as the program’s logic control, it follows

the Manger Design Pattern. Manager classes

34

RequestManager

The Request Manager builds this RequestInfo by gathering the student, problem,

and tutor strategy context objects provided by the Context Manager. Request

Manager is set to be able to make multiple predictions for different tutor strategy

types.

• Method name: selectTutorStrategy

Parameters: String studentXref, int problemID, int problemID, HashMap<String,

ArrayList<Integer>> tutorStrategies

Return: HashMap<String, Integer>

ModelManager

The Model Manager is in charge of the tutor strategy recommendation. The pur-

pose of the loadModel function is to take the context from RequestInfo and decide

which model to choose. (Currently, it is based on whether it is a Tutor Strategy or

Additional Instruction) The purpose of the formContextArray function is to form an

array of doubles that the chosen model will understand and use to make a predicted

reward. When the model is loaded and the context array is formed, the ID of the

model and the predicted reward from the model are put in the ModelInfo object

which is returned to the Request Manager.

• Method name: getStudentContext

Parameters: String studentID

Return: StudentContext

35

• Method name: getProblemContext

Parameters: int problemID

Return: ProblemContext

• Method name: getTutorStrategyContext

Parameters: String tutorStrategyType, int tutorStrategyID

Return: TutorStrategyContext

LogManager

LogManager is created to handle all the log information. An RLS log entry is created

when a tutor strategy is assigned. LogManager uses the RLSLogDao to update the

information in the database.

• Method name: writeLog

Parameters: RequestInfo requestInfo, ModelInfo modelInfo

Return: boolean

FindRewardManager

FindRewardManager is created to find the reward of a certain tutorstrategy given

by RLS. The process is described in the previous workflow section.

• Method name: getTargetProblemActions

Parameters: XInfo userID, XInfo assignmentID, int problemID

Return: List<Action>

36

• Method name: additionalInstructionTracker

Parameters: List<Action> allActions

Return: boolean

• Method name: findNextProblemWithSameSkillCode

Parameters: XInfo userID, XInfo assignmentID, int problemID

Return: int

• Method name: calculateReward

Parameters: XInfo userID, XInfo assignmentID, int problemID

Return: int

UpdateManager

This class handles the nightly updating of Problem and Student features. It contains

one public method ”updateFeatures” which, when called, will update the Problem

and Student features based on the previous day’s data, and add new entries to the

ProblemFeatures and StudentFeatures tables.

• Method name: updateFeatures

Parameters: None

Return: None

37

Chapter 4

Experiments

4.1 Comparing different bandit algorithms on the

ability of recommending different tutor strate-

gies

4.1.1 Dataset

The thesis conducts the experiments on the data from the ASSISTments. After

TeacherASSIST’s deployment for 3 years, 40,292 instances of on-demand assistance

were created for 25,957 distinct problems across different curricula. The timestamp

for the data is by the end 2029-2020 school year.

4.1.2 Preprocessing

In order to test different bandit algorithms, the thesis defines treat the Hint/Explanation

as a specific arm, and the students answer the next problem correctness as the re-

gret. Hint/Explanation that has been used over 50 times were selected to ensure

38

the bandit algorithm has enough chance to explore different arms. Also, the avail-

able tutor strategy(arm) number is at least 2 to allow the bandits to make decision.

After the prepossessing, the data contains 104 different questions and 240 different

tutor strategies. A total number of 28,700 instances were selected with distinct

Hint/Explanation. The figure below shows an example of the data sample.

The table 4.1 shows data samples of the processed data.

id teacher id student id tutor strategy id tutor strategy type problem id next problem id next problem correct

6337 488160 523294 Hint 1208538 1501983 1502001 0
23169 485865 523425 Explanation 1180174 1501233 1501234 1
23170 436919 523447 Explanation 1183056 1501233 1501234 1

...
23203 436919 523648 Explanation 1183056 1501233 1501234 1
23205 436919 523654 Explanation 1183056 1501233 1501234 1
34883 485865 490980 Explanation 1180463 1501642 1501644 1
34884 485865 490980 Explanation 1181094 1501644 1501645 1

Table 4.1: Processed data samples

teacher id represents the teacher that created this specific tutor strategy. stu-

dent id represents the student that requested this help. tutor strategy id and tu-

tor strategy type denotes the specific tutor strategy and its type(Hint/Explanation,

excluding Scaffolding). problem id marks which problem the student asked for

help. next problem id is to track after the help which problem the student did,

and next problem correct tracks if the student did correct or not after watching the

tutor strategy.

4.1.3 Methodology

To simulate a reinforcement learning setup and test out different bandit algorithms,

the idea is to for each problem of the total 104 problems, the bandit will random

sample different samples and compute the overall mean accumulative regret as a

metric to compare which bandit algorithm has the best performance in this specific

application context. In order to rule out the randomness effect, each algorithm will

39

be executed 100 times and the mean cumulative reward is computed for each bandit

algorithm. In each of the 100 trials, the time step should be significant larger than

the arm number to allow the bandit algorithms to explore every arm at least once,

the time step is set to be 500. At each time step, the agent will make an action and

compute the regret of this choice.

4.1.4 Results

4.1.5 ε -greedy

Standard ε -greedy

For Standard ε - greedy, the key parameter to determine the bandit algorithm to

explore new action or taking the current best action is ε. For ε probability, the agent

will take a random action, otherwise for 1 − ε probability, the agent pick the best

action that it has learnt so far.

To satisfy the purpose of using bandit to recommend service in a production

environment, the agent is expected to be able to be able to rank the available tutor

strategies quickly and efficiently. And since at the very beginning of the deployment

of the data samples are very small, the agent might not be able to find the universal

best option. Hence, in order to avoid this kind of cold start, the regret is set to

be the metric. The idea scenario would be the agent can quickly find the an above

average tutor strategy and stick with it so that most of the students would get a

fairly good one, and at the mean time the agent still needs to consider other available

tutor strategies as well.

In order to learn the best ε that satisfies the purpose, the experiment set ε in a

set of values and run the proposed simulation with each value and choose the one

with the best result to represent standard ε - greedy algorithm and compare with

40

other bandit algorithms.

The table 4.3 demonstrates the mean cumulative regret of using standard ε -

greedy with different ε.

ε mean cumulative regret

0.01 93.368
0.1 55.218
0.2 63.669
0.3 73.867
0.4 84.654
0.5 95.778
0.8 129.257

Table 4.2: mean cumulative regret of using standard ε - greedy with different ε

In extreme cases, when ε = 0.01, the agent the agent sticks to the ’best’ arm

too early with the low sample number that this ’best’ might not be the case. When

ε = 0.8, the agent hardly exploits, it explores most of the time. Both situations,

the performances are not ideal. Among all different ε value, ε = 0.1 has the best

performance in terms of the regret. However, when the ε is set to a large value, the

bandit will converge faster as it explores more to find the best arm.

The 4.1 shows the regret plot over 100 trials. The regret is sparse in terms of

different trials, the algorithm learns the best action to take in different times.

Annealing ε -greedy

While Standard ε - greedy depends on different ε to explore different options, An-

nealing ε -greedy is more of a straight forward and parameter free implementation.

The algorithm sets the decaying epsilon with time and runs with no hyper-parameter

configurations. As described in the previous section, the annealing process will set

the epsilon to follow:

ε =
1

log(t+ 1e−7)
(4.1)

Ideally, the, at the beginning of the decision making process, ε value is set to be

41

Figure 4.1: Cumulative regret of Standard ε-greedy over 100 trials

close to infinity and this would allow the algorithm to explore different options. And

as time goes, ε value will start approaching zero and the algorithm would become

more towards choosing the best available option and exploit more and more on

current learnt knowledge.

The 4.2 shows the regret plot over 100 trials. The regret is less sparse compares

to standard epsilon, the figure indicate that generally, the bandit started to converge

around cumulative regret of 60.

4.1.6 Softmax

Standard Softmax

The Softmax algorithm uses the reward information rate of different arms to balance

the explorationexploitation.

The 4.3 shows the regret plot over 100 trials.

42

Figure 4.2: Cumulative regret of Annealing ε-greedy over 100 trials

τ mean cumulative regret

0.01 38.958
0.03 38.972
0.05 38.982
0.1 38.995
0.2 40.682
0.3 47.546

Table 4.3: mean cumulative regret of using standard Softmax with different τ

Annealing Softmax

Annealing softmax decreases the temperature in a Softmax algorithm as time in-

creases, which means the there will be less exploration for the agent over time.

The 4.4 shows the regret plot over 100 trials. Annealing Softmax is slightly

stable than Standard Softmax, and the mean cumulative regrets is 41.479 which is

slightly worse than Standard Softmax.

43

Figure 4.3: Cumulative regret of Standard Softmax over 100 trials

4.1.7 Upper Confidence Bound(UCB)

UCB1

UCB1 has a significant advantage over ε− greedy bandits, the fact that the regret

plot 4.5 is tighten within a very small range.

UCB2

As long as the α is kept relatively small, the parameter will be relatively ineffective

for UCB2[ACBF02]. Hence, the α is set to 0.001 as recommended in the paper.

Figure 4.6 shows the result of UCB2. Comparing with UCB1, UCB2 is stable in

terms of the mean cumulative regret. Also UCB2 can find the best arm faster than

UCB1.

44

Figure 4.4: Cumulative regret of Annealing Softmax over 100 trials

4.1.8 Thompson Sampling

Thompson Sampling is relatively stable through the experiments. As Thompson

Sampling does not require hyperparameter tuning, it can quickly find the best arm

to pull.

4.1.9 Analysis

Figure 4.8 and Figure 4.9 show the parallel comparison of different bandit algo-

rithms, the figure not only shows the mean cumulative regrets, but also the range

of regrets value of the 100 trials. The range is included as a metric to demonstrate

how stable the bandit algorithm is, as in 4.8.

For example, although Standard epsilon greedy has the highest mean regret, its

best performance and worst performance are closer than the performances of UCB1,

45

Figure 4.5: Cumulative regret of UCB1 over 100 trials

hence its more stable than UCB1. Even though UCB1 has a better overall result

than Standard epsilon greedy, if were to put into actually production usage, the

might produce unwanted result.

Among all the bandits, Standard Softmax, UCB2, Thompson Sampling are the

ones have best results, and they are relatively close in performance and stability.

However, Standard Softmax UCB2 does require hyperparameter tuning, which is

more troublesome and costing if were to put into production usage. Also, UCB

methods use empirical mean as the base of deciding which action to take, it does

not take the arm’s reward distribution into consideration, which mean if the arms

are good enough, the result might be good, but if arms are not, the results might not

be that ideal. In general, Thompson Sampling considers the reward distribution of

different arm, and use the probability distribution as the base of selecting different

action, it is not affected by how good or bad the arms are. Another advantage of

Thompson Sampling is that it does not require hyperparamer tuning which made it

46

Figure 4.6: Cumulative regret of UCB2 over 100 trials

applicable to actual production use. In summary, even though UCB2 is a good choice

for low conversion rate scenarios, Thompson Sampling is more of an applicable choice

that not only in scenarios with higher baseline conversion rate or higher expected

effect size but also in the actual production usage.

4.1.10 Discussion

As demonstrated in the experiments, different bandit algorithms have different per-

formances on the dataset. All algorithms will be able to show the ability to find the

best tutor strategy over time. Thompson Sampling, or UCB2 or standard softmax

have the best result in terms of minimizing the regret.

With this, it is worth trying to use bandit algorithms for tutor strategy rec-

ommendation. This would be an answer to RQ4. However, this experiment only

compares the performance among bandit algorithms and these bandit algorithms are

47

Figure 4.7: Cumulative regret of Thompson Sampling over 100 trials

context-free. The next chapter will explore if the bandit algorithms will introduce

bias compare to using random trial methods.

48

Figure 4.8: Cumulative regret comparison of all bandits

Figure 4.9: Final mean cumulative regret comparison of all bandits

49

Chapter 5

Experiments

5.1 Comparing Bias and Regret in Reinforcement

Learning and Randomized Controlled Trials

The learning science community is perpetually developing new instructional inter-

ventions aimed at increasing student engagement and learning. Typically, these

new interventions are evaluated using randomized controlled experiments in which

students are placed into a control condition, where they receive no intervention, or

one of potentially many treatment conditions, where they receive an intervention.

These experiments can have a set end date, or they can run until a statistically sig-

nificant result is observed. An alternative to this paradigm is to use reinforcement

learning to provide interventions to students instead of random selection, and to

reward the reinforcement learning algorithm when students show positive signs of

learning and engagement. While this alternative is optimized for providing students

with the interventions most likely to help them succeed as quickly as possible, the

lack of randomized analysis creates the opportunity for false assertions and bias in

the reinforcement learning algorithms assignment of treatments.

50

5.1.1 Dataset

The data this experiment use is the same from the last experiment on testing dif-

ferent multi-armed bandit algorithms.

5.1.2 Preprocessing

Apart from the data processed in 4.1, the student features data is also added as in

Table5.1.

student id s answer count s mean score s mean tot s mean attempts s mean frt

14 53 0.408163 32.467074 1.037736 27.698113
18317 9 0.333333 25.602220 1.000000 14.666667
21421 31 0.741935 13.835258 1.161290 8.903226
21432 1 1.000000 24.478766 1.000000 25.000000

...
21825 67 0.656716 22.876940 1.194030 16.731343
22673 12 0.750000 27.291382 1.083333 23.500000
23098 7 0.714286 21.207534 1.000000 21.142857
24278 56 0.711538 35.037859 1.017857 24.571429

Table 5.1: Processed additional student feature data samples

After concatenating the student features with the processed data, the unique

problem number is 2564 and the total samples is 126744. The problem with at least

2 tutor strategies options is 327. And the tutor strategies number is 685 with a

unique student number of 9046.

5.1.3 Methodology

Randomly assign tutor strategies randomly to students on a problem level showed

great promise. By requesting on-demand assistance, students are more likely to

correctly answer the next problem on the first attempt attempt[PH20].

Inspired by the experiment, the way to find out if the MABs will introduce

bias in recommending tutor strategies is to conduct random controlled experiment

that compared different tutoring strategies available to simulate the effects of us-

51

ing MABs. Comparing these options revealed that the MAB was able to increase

student’s correctness on future problems but also led to analysis that found more

reliable differences between the available tutoring than the randomized controlled

experiment found.

For the random controlled experiments, the two designed methods are:

1. Pure random

The method is intend to assign randomly tutor strategies all the way.

2. Random until p significant

The method is intend to assign randomly tutor strategies until there appears

to be a significantly better tutor strategy among all available ones. In order

to achieve this, after each time that a tutor strategy is given and the reward

is observed, performing a t-test on the reward data and calculate the p-value.

Once the p-value is less than 0.05, the tutor strategy that has the best effect

so far is considered significantly better than the rest and for the remaining

time steps, the best one will be the only recommendation.

To compare with the MABs, UCB1 and LinUCB are selected for that they are

the counterparts of non-contextual and contextual MAB.

Specifically, the experiment set up is similar to the reinforcement learning setup

used in Chapter 4’s experiments. For each of the 327 problems and a time step of

500, the experiment will collect the cumulative reward of using pure random method,

random until p significant method, context-free bandit algorithm and contextual

bandit algorithm. Also the experiment will be run 5 times in order to reduce the

random effect.

52

After each experiment, the accumulative reward will be calculated as well as the

best tutor strategy selected by each of the 4 methods. By comparing the reward

and fraction is agreement of the best tutor strategies for each problem, the answer

to RQ5 will be obtained.

5.1.4 Results

Table 5.2 and 5.3 demonstrates the result of the experiments, note that the NaNs

means that there is no statistical best tutor strategies of the given trials using the

specific method.

trial num problem id average correctness available ts random until p best random until p reward

0 1057696 0.498 2 NaN 249.0
0 1057697 0.624 2 NaN 312.0
0 1057698 0.924 2 1178526.0 462.0
0 1198578 0.840 2 NaN 420.0
0 1214706 0.552 2 NaN 276.0
...

Table 5.2: Result of problem-level best tutor strategy data samples

Here, trial num is the trial id (0-4), problem id is the problem id,average correctness

is average correctness among all the collected samples, available ts is the number

of available tutor strategies of the problem, random until p best denotes the best

tutor strategy of using random until p significant method random until p reward

is the accumulative reward of random until p significant method.

linucb best linucb reward ucb1 arm ucb1 reward pure random best pure random reward

1257187.0 252 NaN 228 NaN 234
NaN 291 1178525.0 295 NaN 275
NaN 452 NaN 454 NaN 457
NaN 452 NaN 454 NaN 457
NaN 411 NaN 413 NaN 408
NaN 273 NaN 284 NaN 284

...

Table 5.3: Result of problem-level best tutor strategy of using different methods

53

Here, linucb best denotes the best tutor strategy using contextual bandit, lin-

ucb reward is the accumulative reward using contextual bandit, ucb1 arm denotes

the best tutor strategy using noncontextual bandit, ucb1 reward accumulative re-

ward using noncontextual bandit , pure random best denotes the best tutor strategy

using pure random method, pure random reward is accumulative reward using pure

random method.

By listing the best tutor strategy of different method, the RQ1 can be answered.

The results is showed in Table 5.4. For the selected problems different methods

provides generally the same result. For this particular setup, the answer for RQ5 is

that does not introduce bias.

Method name Fraction in agreement:

random until p significant 0.6886850152905198
contextual bandit 0.7363914373088685

noncontextual bandit 0.728440366972477

Table 5.4: Fraction in agreement of best tutor strategy

Also by analysing the rewards in Figure5.1, the 4 different methods does not

appear to have very significant differences which means all other methods are not

showing significant advantage over just randomly assign the different tutor strategies

every time.

Although the result is not as idea as the assumption that MABs will show sig-

nificant advantage, the experiments do demonstrate that MABs have the ability

identify the best tutor strategies. The limitation might come from the fact that

most of the problems only have two available tutor strategies and the sample num-

ber of the given the different tutor strategy is almost equal. Another possible factor

is that the tutor strategies are created by trusted teachers, the quality of the tu-

tor strategies is almost the same for helping the student answer the next problem

correctly.

54

Figure 5.1: Reward comparison between differnt methods

With this assumptions in mind, the next step would be introduce more tutor

strategies for the problems and gather more data. Once the data is large enough, the

MABs might have significant advantage over just randomly assign tutor strategies.

55

Chapter 6

Summary

This thesis explores the possibility and effectiveness of utilizing Multi-armed ban-

dits for recommending different tutor strategy. This thesis intruded the design and

implementation of the infrastructure that can support to provide tutor-strategy rec-

ommending service for ASSISTments. The infrastructure is designed to integrated

seamlessly into ASSISTments ecosystem.

This thesis achieved the goals by answering proposed research questions. For

RQ1, as showed in experiments from Chapter 4 and 5, the MABs were able to

discover the best tutor strategy for the specific problem. For RQ2, by introducing

student features created, the contextual bandit algorithm is also able to provide the

best recommendation for the students. For RQ3, in feature creation, the important

features were selected on both student-level and problem-level. For RQ4, comparing

different bandit algorithms using the mean cumulative regret as the metric. And the

results suggests that Thompson Sampling is the best choice for actual production

usage. For RQ5, the comparison between different random control experiments with

MABs on the specific setup and found that the bandit algorithms does not introduce

bias.

56

Appendix A

Class Diagram

A.1 Class diagram

57

Figure A.1: RLS class diagram

58

Bibliography

[ACBF02] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis
of the multiarmed bandit problem. Machine learning, 47(2):235–256,
2002.

[AG13] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual
bandits with linear payoffs. In International Conference on Machine
Learning, pages 127–135, 2013.

[BFT20] Erik Black, Richard Ferdig, and Lindsay A Thompson. K-12 virtual
schooling, covid-19, and student success. JAMA pediatrics, 2020.

[BLDC16] Sameer Bhatnagar, Nathaniel Lasry, Michel Desmarais, and Elizabeth
Charles. Dalite: Asynchronous peer instruction for moocs. In European
Conference on Technology Enhanced Learning, pages 505–508. Springer,
2016.

[But18] Andrew C Butler. Multiple-choice testing in education: Are the best
practices for assessment also good for learning? Journal of Applied
Research in Memory and Cognition, 7(3):323–331, 2018.

[DLRH08] Paul Denny, Andrew Luxton-Reilly, and John Hamer. The peerwise
system of student contributed assessment questions. In Proceedings of
the tenth conference on Australasian computing education-Volume 78,
pages 69–74. Citeseer, 2008.

[FSA+18] Fareeha Farooqui, Nadia Saeed, Sahira Aaraj, Muneeza A Sami, and
Muhammad Amir. A comparison between written assessment methods:
Multiple-choice and short answer questions in end-of-clerkship exami-
nations for final year medical students. Cureus, 10(12), 2018.

[HH14] Neil T Heffernan and Cristina Lindquist Heffernan. The assistments
ecosystem: Building a platform that brings scientists and teachers to-
gether for minimally invasive research on human learning and teaching.
International Journal of Artificial Intelligence in Education, 24(4):470–
497, 2014.

59

[Hoe94] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. In The Collected Works of Wassily Hoeffding, pages 409–426.
Springer, 1994.

[HSH+12] Gwo-Jen Hwang, Han-Yu Sung, Chun-Ming Hung, Iwen Huang, and
Chin-Chung Tsai. Development of a personalized educational com-
puter game based on students’ learning styles. Educational Technology
Research and Development, 60(4):623–638, 2012.

[JSB18] Yuchao Jiang, Daniel Schlagwein, and Boualem Benatallah. A review
on crowdsourcing for education: State of the art of literature and prac-
tice. In PACIS, page 180, 2018.

[KLM96] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Rein-
forcement learning: A survey. Journal of artificial intelligence research,
4:237–285, 1996.

[KVJ87] Michael N Katehakis and Arthur F Veinott Jr. The multi-armed bandit
problem: decomposition and computation. Mathematics of Operations
Research, 12(2):262–268, 1987.

[LCLS10] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A
contextual-bandit approach to personalized news article recommenda-
tion. In Proceedings of the 19th international conference on World wide
web, pages 661–670, 2010.

[LS82] Graham Loomes and Robert Sugden. Regret theory: An alternative
theory of rational choice under uncertainty. The economic journal,
92(368):805–824, 1982.

[PH20] Thanaporn Patikorn and Neil T Heffernan. Effectiveness of crowd-
sourcing on-demand assistance from teachers in online learning plat-
forms. In Proceedings of the Seventh ACM Conference on Learning@
Scale, pages 115–124, 2020.

[PSBH15] John F Pane, Elizabeth D Steiner, Matthew D Baird, and Laura S
Hamilton. Continued progress: Promising evidence on personalized
learning. Rand Corporation, 2015.

[RVRK+17] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband,
and Zheng Wen. A tutorial on thompson sampling. arXiv preprint
arXiv:1707.02038, 2017.

[RYW19] Anna Rafferty, Huiji Ying, and Joseph Williams. Statistical conse-
quences of using multi-armed bandits to conduct adaptive educational
experiments. JEDM— Journal of Educational Data Mining, 11(1):47–
79, 2019.

60

[SDW+18] Avi Segal, Yossi Ben David, Joseph Jay Williams, Kobi Gal, and Yaar
Shalom. Combining difficulty ranking with multi-armed bandits to
sequence educational content. In International conference on artificial
intelligence in education, pages 317–321. Springer, 2018.

[TL00] Sebastian Thrun and Michael L Littman. Reinforcement learning: an
introduction. AI Magazine, 21(1):103–103, 2000.

[WAC+12] Daniel S Weld, Eytan Adar, Lydia B Chilton, Raphael Hoffmann,
Eric Horvitz, Mitchell Koch, James A Landay, Christopher H Lin, and
Mausam Mausam. Personalized online education-a crowdsourcing chal-
lenge. In HCOMP@ AAAI. Citeseer, 2012.

[WS17] Jacob Whitehill and Margo Seltzer. A crowdsourcing approach to col-
lecting tutorial videos–toward personalized learning-at-scale. In Pro-
ceedings of the Fourth (2017) ACM Conference on Learning@ Scale,
pages 157–160, 2017.

61

