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Abstract 
 
This report presents the design and construction of a wideband transceiver in the context of an 
RF frontend for a software radio development platform, the Universal Software Radio Peripheral 
(USRP). This daughterboard is designed to operate at either full or half duplex modes over a 
frequency range of 100 MHz to 1.3 GHz or greater. It is fully integrated with both the USRP and 
GNU Radio, a free software radio development toolkit, to fully control the daughterboard via 
software. 
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Executive Summary 
 

Historically, the field of radio and communications has been an ever changing and thriving field, 
both culturally and technologically. Improvements in radio technology have brought about their 
widespread use through all facets of society, for countless purposes, enabling communication 
between consumers, public utilities, military entities, and more.  Unfortunately, one of the side 
effects of the Communication Age is a scarcity of the main resource enabling radio 
communications; the wireless spectrum. Recent developments in the field of radio 
communications have sought to address this problem, increasing spectral efficiency through 
technological developments in software defined radio (SDR) and cognitive radio.  
 
This Major Qualifying Project seeks to extend the capabilities of software defined radio through 
the design and creation of a wideband RF frontend for a software defined radio development 
platform called the Universal Software Radio Peripheral (USRP). The RF frontend created in this 
project extends the frequency range available to software radio applications designed for the 
USRP, and is compatible with the accompanying open source software platform, GNU Radio. In 
addition, because all the designs for the USRP daughterboards and motherboards are available 
under the GPL license, the schematics, PCB designs and layout, and other information for this 
project will be available under the same license. 
 
The main motivation for creating a wideband transceiver lies in the convenience of having a 
large frequency range available for software radio applications. Existing daughterboards 
available for the USRP cover smaller frequency ranges and thus severely limit possible 
wideband applications that can be made on this platform. The creation of a wideband transceiver 
is truly a step in the direction of a perfect cognitive radio; able to operate over all frequencies and 
change any operating parameter, such as transmission power, modulation type, or bandwidth. 
Design elements of this daughterboard can also be abstracted and applied to other software radio 
applications, with this report serving as a guide to possible software radio engineers. 
 
Once the general idea of the project was agreed upon, a few objectives were established to make 
sure the design criteria were met. The first and most important objective was to create a 
wideband transceiver that can operate over a large range of frequencies with an accurate tunable 
resolution. Initial plans were to make it tunable between 100 MHz and 1.3 GHz, but after finding 
components with a larger available range, the final version of the transceiver is tunable between 
50 MHz and 2.5 GHz. The second objective was to make the transceiver completely compatible 
with GNU Radio and the USRP. This includes both physical connections to the USRP and 
software to allow GNU Radio to control the daughterboard. As the last objective, the transceiver 
had to be able to operate in full or half duplex modes, again controllable through GNU Radio. To 
meet these objectives the MQP team had three academic terms with a possible fourth, and a 
budget of one thousand dollars. 
 
Initial designs of this wideband transceiver explored the possibility of using relays and switches 
to control the signal path between various VCOs, mixers, or even separate daughterboards; a 
technique often used for wideband radio applications. This project takes a different approach by 
interconnecting various wideband components to save board space, reduce power consumption, 
and decrease complexity compared to an exhaustive system consisting of multiple RF frontends. 
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Once the initial design was generally determined, simulation had to be used where possible to 
help improve the design and ensure its feasibility. Unfortunately, there is no conceivable way to 
simulate the entire design, so only the amplifier and antenna switching stages could be simulated 
before the PCB design. The design of the low noise amplifiers, power amplifier, and antenna 
switches used in the design were simulated using S-Parameter data in Agilent’s ADS software. 
Though simulating these components aided in the overall design, the values of the discrete 
components were difficult to determine because small changes in these component values would 
lead to drastic changes on the overall shape of the gain of the amplifier stage. Since the 
simulation did not take into account the effects of trace length and other non-idealities of the 
final design, the usefulness of the simulation results were brought into question. In the end, the 
best component values were chosen, and the design remained open to any changes in these 
values. The design of other daughterboards was also taken into account, with some design 
aspects of the transceiver similar to other daughterboards wherever possible. 
 
Where simulations fell short in aiding in the design process, evaluation boards provided by 
generous contributors to this project greatly aided in verifying the overall design of the 
transceiver. An evaluation board for the RF2051 wideband frequency synthesizer and mixer, 
along with an evaluation board of the GVA-84+ power amplifier, allowed the creation of a basic 
prototype tunable between 300 MHz and 2.5 GHz. Experiments in transmitting a simple FM 
signal over frequencies in this range were successful, with the signal being received by other 
USRP daughterboards, commercial FM radio receivers, amateur radio receivers, and even the 
other mixer on the same evaluation board. 
 
With confidence gained from a successful prototype, the first schematic layouts and PCB designs 
were created using Mentor Graphic’s PADS software. This software was chosen because of its 
features such as stitching vias, impedance calculations, copper pouring, and trace shielding. The 
design process in this program was relatively straightforward. First, the design is created in 
schematic form in PADS Logic, linking each schematic component to a footprint file. This 
schematic is then imported into PADS Layout, where the footprint information is used to create a 
PCB design and Gerber files needed to fabricate the PCB. Changes to the schematic would be 
reflected in the PCB design, allowing easy manipulation of the overall design. 
 
A four layer PCB was used for the transceiver, with a signal layer, ground layer, power layer, 
and another signal layer. Utilities in the PADS software suite allowed the design parameters, 
such as minimum trace width and via size, to be changed so the PCB would fit in an affordable 
price bracket. These features were especially helpful to keep the project within budget, leaving 
enough money for a PCB revision to fix complications that arose from the initial PCB design. 
 
Throughout the entire design process, a common concern was the small package sizes of some of 
the components, since the VCOs and modulators/demodulators were designed to be soldered by 
machines. Thankfully, Bob Boisse, a staff member in the ECE department, was able to solder 
these components to the PCBs. All components on the PCBs were placed by hand with a fine 
tipped soldering iron under a microscope. 
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To save time and parts, the components soldered to the PCB were tested at various opportunities 
to make sure everything was working as planned. In addition, the transmitter side was soldered 
first. Due to time constraints, if the transmitter half of the board was not functional, the problem 
would be diagnosed, appropriate changes would be made to the PCB, and a fixed PCB would be 
ordered. Unfortunately, this was the case. Connecting the USRP’s general purpose input/output 
lines to the voltage regulators caused IO across the entire motherboard to stop working. A quick 
email to Matt Ettus, creator of the USRP and its daughterboards, revealed that the voltage 
regulators used in the design could not be controlled by the IO pins; they needed to always be on. 
A cut trace and jumper wire solved this problem, but further debugging revealed that a PLL filter 
was left out of the design, ensuring that another PCB revision would be needed. 
 
The second PCB addressed both problems faced with the first PCB, but it was still to be 
determined if there were any additional problems. Also, the receive side of the first PCB was not 
soldered or tested because the RF2052 was missing the same PLL loop filter. More problems 
were expected to be encountered in the second PCB revision, but both time and budget would 
not allow for a third PCB to be fabricated. 
 
After soldering the transmitter side of the PCB, it was verified that the changes to the design 
were successful and the transmitter was operating as expected. Connecting the transmitter to the 
spectrum analyzer revealed that the daughterboard operated over a range of frequencies that is 
much larger than the initial goals, but expected given the operating frequency of the components 
used in the design. Unfortunately, tests on the receiver revealed what is most likely a damaged 
demodulator, but other receiver components were verified to be functional. Software control over 
the antenna path circuitry also demonstrated that the daughterboard could indeed operate in both 
full duplex and half duplex mode if both the transmitter and receiver were fully functional. In 
short, even though the receiver was not functional in time for the deadline, the other objectives 
were technically met and the project was, overall, a success. 
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1 Introduction 

1.1 Radio History 
 
The word spectrum was initially used to refer to the range of colors observed when light passed 
through a prism. As an increasing number of radiation types in the electromagnetic spectrum 
were discovered, the term spectrum began to be used to describe any type of wave. In modern 
times, the term has found such widespread use that it is often used to describe any type of range 
of related objects or values, such as the political spectrum. Some years after James Clerk 
Maxwell predicted the propagation of electromagnetic waves in the mid 1800s, they were put to 
use in communication using spark gap transmitters. This type of design, which is incredibly 
impractical according to today’s standards, used voltages on the order of tens of thousands of 
volts to charge an antenna, emitting electromagnetic radiation as the spark gap discharged. 
Unfortunately, this type of design does not take too much care of spectral usage, and few spark 
gap stations could be used in the same geographic area without causing interference to each 
other. 

 
Figure 1 - The Electromagnetic Spectrum from long waves to gamma-rays. (Image released under Creative 

Commons Share Alike 3.0) 
 
It was around this time that people realized the electromagnetic spectrum is a commodity. 
However, unlike copper, wool, or corn, the spectrum is, for the most part, invisible, location 
dependent, and theoretically limitless. In the United States, regulation of this commodity is the 
responsibility of the Federal Communications Commission (FCC). Without such regulation, 
interference and other problems communicating would be much more prevalent. Thankfully, we 
have come a long way since the spark gap transmitter, with advances in transceiver design 
allowing simultaneous usage of the electromagnetic spectrum between many users. Despite 
technical advances, the electromagnetic spectrum is still a much sought after commodity. For 
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example, the FCC recently ended an auction on the 700 MHz band with 101 winning bidders 
awarded 1091 licenses and a total of roughly 19 billion US dollars in bids. [1] 

As usage of the electromagnetic spectrum increases steadily, the current approach to spectrum 
management is beginning to show signs of weakness. The FCC has designated different portions 
of the spectrum to different uses or services, for example, portions of the electromagnetic 
spectrum have been sectioned off for use in AM, FM, and TV broadcasting, amateur radio, 
maritime, satellite use, and many, many other uses. In the recent years, this approach has become 
more of a problem, since there is a limit to the number of users that can simultaneously use a 
portion of the spectrum at the same time and in the same geographical area. New applications are 
found for the spectrum, but there is a limited quantity of spectral space to serve these new uses.  

One of the main problems leading to spectral crowding is the inefficient usage of the spectrum. 
Measurements of spectral occupancy, even in largely metropolitan areas, are incredibly low, at 
less than 20% (See Figure 2). Despite the low values of spectral occupancy, some frequency 
ranges are extremely overcrowded, such as the cell phone bands, around 850 MHz and 1800 
MHz. [2] An obvious solution would be to allow services that need more bandwidth to take up 
unoccupied spectrum, but this type of operation is typically disallowed by the FCC because it 
causes interference. 

 

 
Figure 2- Spectral Occupancy Measured at Seven Locations - study done by the Shared Spectrum Company 

(reprinted with permission from the Shared Spectrum Company) [2] 
 

Fortunately, regulating agencies such as the FCC are aware of this problem, and to offset the 
effects of spectral overcrowding there are a few frequency bands set aside for general use, such 
as the Industrial, Scientific, and Medical (ISM) band. It is in these bands that services such as 
Wi-Fi and Bluetooth have thrived, but there is a large amount of interference due to their 
widespread usage. 

There are several techniques to help combat interference due to overcrowding, but in anticipation 
of changes in spectral laws, the next wave of radio technology seeks to make more efficient use 
of the electromagnetic spectrum with smarter radios. These radios, called cognitive radios, 
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monitor the wireless channel to choose the best parameters for transmission, such as modulation 
type or frequency. Clearly, the next step in radio history lies in effective, efficient, and intelligent 
use of spectral space, along with improvements in licensing and spectral management. 

1.2 The Emergence of Software Defined Radio (SDR) 
 
Software defined radio (SDR) is the technology enabling modern advances in cognitive radio. 
Since the invention of the term in 1991, SDR has generally referred to a radio whose 
functionality is at least partially controlled or implemented in software. To achieve this, RF 
components such as mixers and filters are moved to the software domain, where a computer or 
digital signal processor performs baseband signal processing. An ideal software radio would be 
able to replicate any waveform on any frequency, most likely by connecting digital-to-analog 
(DAC) and analog-to-digital converters (ADC) directly to an antenna. [3] The emergence of 
cheap high speed DACs and ADCs has made the ideal software radio concept closer and closer 
to a reality, while the ubiquity of personal computers and digital signal processors has caused 
quite a boom in the development of SDR and, since they are fundamentally related, cognitive 
radio.  

Wireless devices that can be described as SDR have actually been around for quite some time, 
initially finding their niche in military applications before finding applications in the civilian 
market. Military programs such as SPEAKeasy sought to enable communication and 
interoperability between different, conflicting types of military radio. [4] The SPEAKeasy 
project was very ambitious, and the first prototype worked, but design choices of programming 
waveforms in low level assembly language meant that the software was not compatible with 
better processors as they were developed. Note that the Phase I prototype of SPEAKeasy was 
large enough to fit into the back of a truck. [5] 

More recent software radio products and development testbeds take on a more modular 
approach, as to not have the same fate as the early prototype of the SPEAKeasy project. 
Commercial products, such as Vanu Inc.’s Anywave software radio, incorporate multiple cellular 
access standards into a simpler interface by using a software defined radio architecture. Since the 
cellular standards are implemented in software, they can be changed on the fly to adapt to 
different user needs of each cell, rather than by the costly approach of replacing RF hardware. 
This also means that they can easily be upgraded to match new standards. [6] To increase the 
effectiveness and improve the aging process of a software radio platform, most developers seek 
to use portable code for their software, reusable components that can work under different 
waveform configurations and generic hardware that can easily be upgraded. [7] 
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1.3 The Testbed: The Universal Software Radio Peripheral (USRP) 
 
This project is based on the Universal Software Radio Peripheral, a research testbed and 
hardware development tool for software defined radio. The USRP, developed by Matt Ettus of 
Ettus Research LLC, has found significant popularity in cognitive radio research and general 
SDR studies and applications due to its relatively low cost, simple configuration, and its ability 
to work with GNU Radio, an open source software suite for SDR development. In addition to 
working with open source software, the schematics and PCB layouts for the USRP are also 
available online, free of charge. 

The USRP is based on a motherboard/daughterboard concept. Daughterboards serve as a radio 
interface for the USRP motherboard, which is mainly concerned with providing a connection 
between the daughterboards and a PC. The motherboard connects to a PC by a USB 2.0 
connection, giving it the ability to send up to 16 MHz of RF bandwidth in either direction. The 
motherboard contains 4 ADCs and 4 DACs, along with digital I/O lines to control connected 
daughterboards. Two daughterboard transceivers can be connected to the motherboard. Figure 3 
and Figure 4 below show the design of the motherboard, along with an example of a 
daughterboard. 

 
Figure 3 - The USRP motherboard components and layout, including the mixed signal processors, FPGA, 

connectors for daughterboards, and DC power and USB connections. 
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Figure 4 – An example of a USRP Daughterboard, the RFX2400. The RFX2400 board features a transmit 

and receive range from 2.3 to 2.9 GHz, with an output power of up to 50 mW. 

1.4 The Project: A Wideband Transceiver for the USRP 
This project is concerned with building a daughterboard for the USRP, specifically, a wideband 
transceiver that would allow the USRP to operate over a frequency range greater than what 
current daughterboards can offer. The following objectives were established at the beginning of 
the project to ensure success: 

1.4.1 Objective 1: Tunable between 100 MHz and 1.3 GHz 
The main objective of this project is to have a wideband transceiver that could operate in a large 
range of frequencies with an accurate resolution of operating frequencies. The initial range was 
rather arbitrarily chosen by examining a frequency chart and the acceptable frequency range for 
use on the discone antenna that is available in the lab. In the end, based on components that were 
chosen, it is expected that the transceiver will be able to operate over an even greater range, but 
the design will also have to take parasitic effects of high frequency signals into consideration, 
which will have a negative effect on the performance of the prototype.  

1.4.2 Objective 2: Compatible with USRP and GNU Radio 
In order to ensure correct operation, the prototype must properly interface with the USRP. This 
means the prototype must physically connect with the USRP and be controlled by software 
through GNU Radio, in order to change frequency and other parameters of the daughterboard. In 
addition, the prototype needs to be recognized the same way other available daughterboards are 
recognized by GNU Radio. 
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1.4.3 Objective 3: Full Duplex and Half Duplex Transceiver 
The prototype needs to be able to act as a transceiver, such that it can both transmit and receive 
according to the needs of the user. Since the USRP has an ADC and DAC for receiving and 
transmitting, this functionality is a natural extension of the capabilities of most daughterboards. 
The mode of transceiver operation, whether half duplex or full duplex, will be controlled through 
software. 
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2 Background 
This chapter will expand upon required background information needed to understand the 
motivation behind this project. A brief explanation of topics such as software defined radios, 
cognitive radio, the RF spectrum, and RF hardware is provided to aid the reader in understanding 
topics relevant to this project and provide more information on topics touched upon in the 
introduction. 

2.1 Software Defined Radio 
 
Since software defined radio is such a relatively new concept, it is difficult to find a consensus 
on a single definition. Essentially, it is a radio whose functionality is at least partially 
implemented in or controlled by software. The SDR Forum, in collaboration with IEEE, has 
defined it as “radio in which some or all of the physical layer functions are software defined.” [8] 
To help get a better idea of what software defined radio is, it’s helpful to examine its 
applications. Traditionally, radios were designed with a single target application in mind, such as 
receiving music, making a phone call, or receiving GPS data, but as technology advances, along 
with wireless standards and protocols, the need for multipurpose radios to support different types 
of information, modulation types, frequency ranges, bandwidth, and other aspects of radio design 
is ever increasing. [9] See Figure 5 for a block diagram representation of a software radio 
system. 

 
Figure 5 - Software Defined Radio block diagram of a transmitter and receiver. 

 

As software radio concepts become more advanced, the trend is to move digital signal processing 
aspects closer and closer to the antenna, both to support radio flexibility and to drive down costs 
of expensive RF stages. Alternatively, another solution would be to design a completely flexible 
software controlled RF front end. Both approaches have their limitations, so current solutions lie 
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somewhere in between the two. Practical software radios keep signal processing in the digital 
domain as much as possible [9]. A typical approach for receivers is to digitize the signal at the 
intermediate frequency stage of a super heterodyne receiver, so the signal travels through the 
antenna, is filtered, amplified, and mixed with a local oscillator. After this stage, the signal is fed 
into an analog to digital converter, where the digital baseband processing is done on the sampled 
signal. This approach is advantageous because it is often cheaper and easier to do signal 
processing in the digital domain, as costs for microprocessors and FPGAs continue to drop while 
they increase in processing power. 

The number of applications for software defined radio is nearly endless; since it can be applied 
anywhere there is a need for greater spectral flexibility or interoperability between radio modes. 
Software radio has already had success in the military, where people’s lives depend on effective 
communications. For example, a military program called SPEAKeasy employs many aspects of 
software radio to provide communications interoperability between 10 different types of military 
radios. The SPEAKeasy radio is “an open architecture, simultaneous multichannel, multiband, 
multimode software programmable/re-programmable, networked and secure radio system that 
operates continuously and contiguously in the radio spectrum from 2 MHz to 2 GHz.” [10] 

Software radio has also seen some success in the consumer market, especially in the mobile 
phone sector. Vanu’s Software Radio is the first wireless infrastructure solution to provide 
cellular base stations the ability to simultaneously operate in GSM, CDMA, and iDEN modes. 
Clearly, this technology has the power to vastly change how cellular networks operate, provided 
better roaming coverage at different cell sites and increasing interoperability between different 
carriers and service types. [7] As DAC/ADC sample rates and processing speeds continue to 
improve, it is only a matter of time until software defined radios break into the consumer market 
to provide better features and services to the consumer. 

2.2 Cognitive Radio 
The term cognitive radio was first coined in the year 2000 by Joseph Mitola in his doctoral thesis 
entitled “Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio.” [11] 
According to Mitola, cognitive radio technology is the “intersection of personal wireless 
technology and computational intelligence.” Mitola also defines a cognitive radio as “a really 
smart radio that would be self-aware, RF-aware, user-aware, and that would include language 
technology and machine vision along with a lot of high-fidelity knowledge of the radio en-
vironment.” [12] Cognitive radio clearly goes hand in hand with software defined radio; 
together, they can efficiently manage communications to provide greater throughput and efficient 
use of the RF spectrum. 

Technological advances in cognitive radio have occurred due to the limited resource available in 
the RF spectrum. As the RF spectrum gets increasingly crowded by various users, the frequency 
allocation approach used by the FCC begins to show its limitations. According to the FCC’s 
Spectrum Policy Task Force, spectrum policy is not keeping up with increasing demand on the 
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market. [13] Cognitive radio offers a solution to this problem. In order to decrease interference 
between different users of the spectrum, the FCC has a policy of assigning different frequency 
bands for different services. Unfortunately, this is not very efficient, with usage not spread 
evenly across the spectrum. Cognitive radio, along with software defined radio, offers the 
solution of spectrum sensing, where a smart radio can change a device’s frequency and mode of 
operation to provide efficient use of the spectrum and more effective communication between 
users. 

2.3 RF Spectrum 
Methods for accessing the RF spectrum have evolved greatly over time. Since its accidental 
discovery by Heinrich Hertz in 1887, the overall application for the spectrum has been to relay 
information over distances too long or inconvenient for wires [14].  There has always been a 
need to move information between two points. However, an increasing amount of information is 
transmitted every day since it is becoming easier to do. With many people all transmitting at the 
same time, using noisy transmitters, the spectrum soon became very crowded. As an answer to 
this issue, a new technology was developed. By making use of a previously invented piece of 
technology, the bandpass filter, the FCC began dividing up the spectrum because the new filter 
allowed people to transmit and receive on isolated parts of the spectrum. It does this by removing 
all frequencies except the desired one before the signal is amplified and transmitted. The filter 
removes all frequencies above a certain limit and all frequencies below a certain limit, leaving a 
gap in the middle. This basically makes it a high pass and a low pass filter that have been stuck 
together. The gap in the middle is the desired frequencies, called the pass band. 

The FCC has carefully divided the spectrum by application. Since there are already so many 
different applications for radio, the spectrum has quickly become extremely crowded. As a 
result, the spectrum has been divided to the point where certain parts of cannot be divided again 
to allow new applications to have their own frequency allocations. Figure 6 shows a small part of 
the spectrum. This portion includes 2.4 GHz Wi-Fi, Bluetooth, cordless phones and even 
microwave ovens.  
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Figure 6 - 1.7 GHz to 2.7 GHz on the frequency allocation chart 
 

The FCC is a U.S. Federal Agency, which means that their frequency allocations are defined by 
law. In 2005, the Federal Government authorized the FCC to fine stations up to $325,000 for 
misuse of their licenses [15]. Since there are strict rules about what can be transmitted on which 
frequency, the FCC has created a set of frequencies that anyone can use.  Examples of services 
operating on these frequencies are citizens band (CB) radio, the family radio service (FRS) and 
the industrial, scientific and medical (ISM) bands. All of these services may be used by any 
person in the United States without a license. These services are very limited, both in the amount 
of power they are allowed to use and the number of available channels. According to Part 18 of 
the FCC rules, the ISM band is open for non-licensed use in the United States. However, 
communications devices must accept any interference they receive from other ISM equipment 
and may not intentionally cause such interference. 

On the other hand, amateur radio is an option available to people who want to get licensed. 
Anyone interested is allowed to pay a fee to take a certification exam. This allows them to 
transmit with more power than the other services and on many more frequencies. However, the 
station operators are still limited in what they are allowed to transmit on the bands. [16]. 

In a different light, since cognitive radios are much less limited in what they can transmit and 
what band they are allow to transmit on, there are now people trying to encourage the use of 
cognitive radios. These are radios which are aware of their surrounds. They know which 
frequencies are being used and which ones are open. This allows them to make the best use of 
the available spectrum at a given time. The problem is that this model violates the current FCC 
rules by operating on unauthorized or private frequencies. Cognitive radios, along with a 
spectrally agile band plan would allow the general public to use any part of the RF spectrum for 
any purpose. The difference from the current model is that a cognitive radio would keep things 
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organized automatically, opposed to the fence-out model currently being employed by the FCC, 
where access to portions of the spectrum depends on license or ownership. [17] 

2.4 RF Hardware 
Typical RF frontend hardware is tuned for a narrow range of frequencies. The various filters and 
components used thus will only operate correctly over that narrow range of frequencies that they 
are designed to operate on. If a certain application needs to operate on several different radio 
frequencies, the typical approach is to use multiple RF frontends and switch between them. 
However, this approach is not ideal, especially for cognitive radio, because it requires an entire 
RF frontend for each desired narrow range of frequencies. Ideally, a cognitive radio should be 
able to tune itself to any frequency over a wide range, to facilitate the most efficient 
communications based on channel conditions [18][19]. 

Most narrowband RF frontends today use a heterodyne receiver design. This converts the RF 
signal to an IF (intermediate frequency) signal. This is useful because this uses a process called 
heterodyning, which mixes the incoming signal with a local oscillator to easily step it down to a 
more manageable frequency. However, the problem with this design is that it actually shifts two 
signals to the IF signal: the desired RF signal as well as another frequency called the image 
frequency. Because of this it requires an image rejection filter to remove the image frequency. 
For a receiver that must be tunable over a wide range of frequencies, this design would require 
the image rejection filter to be tunable over that range. [20] 

Another design is called a direct conversion receiver. This receiver does not require a local 
oscillator and mixer to help reduce the frequency of the signal. Rather than converting the RF 
signal to an IF signal, it converts the RF signal directly to baseband. The approach does not shift 
an image frequency to baseband, and thus does not require an image rejection filter. Therefore 
this design is more attractive for wideband RF frontend. [20] [18] 

To convert the RF signal to baseband, a LO (local oscillator) is required at the frequency of the 
desired RF signal. If the RF frontend is to be tunable over a wide range, its LO must also be 
tunable over this wide range. There are a several ways to create a tunable LO. Typically a VCO 
and PLL are used.  A VCO is an a Voltage Controlled Oscillator, which works exactly as one 
would think; raising the voltage increases the frequency of the oscillator and lowering the 
voltage decreases the frequency of the oscillator. A PLL is used to keep an oscillator from 
drifting out of phase by locking it to the set frequency. Numerically (sometimes called digitally) 
controlled oscillators also exist. While a single tunable oscillator may not cover the entire 
frequency range, it is possible to combine a few together followed by a programmable frequency 
division stage to cover the entire desired range. This is the approach taken in RFMDs RF2051 
IC, which is what will be used in the design. [18][19] 
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3 Simulation and Prototyping 
The application of simulations in the design of this project was limited because of the complexity 
of the overall design. Simulations of the amplifier and antenna switching stage were utilized to 
gain a better understanding of the design, but due to sensitivities in component values, the 
application of these simulations was limited.  Instead, evaluation boards were used to create a 
prototype of the final design to better understand how various components would work in the 
overall system.  

Once the prototype was tested and functional, the final design was laid out in PCB design 
software. Since every element of the design was not included in the prototype, it was expected 
that most of the testing and debugging would occur after completion of the PCBs, with an 
expected revision of the PCB design. Due to budget and time constraints, the second PCB was 
also the last. 

3.1 Amplifier Design Simulation 
Since the overall design of the project could not realistically be prototyped, for example, on a 
breadboard, simulation software had to be utilized wherever possible in order to ensure the 
design would match the specifications. Agilent’s Advanced Design System (ADS) software was 
used for the simulation of the amplifier circuits in the design. 

To simulate the amplifier design, simulation data for the integrated circuits had to be imported 
into ADS. The antenna switch, the low noise amplifier, and the power amplifier all had 
simulation data that could be imported into ADS. A design kit was included for the low noise 
amplifier, MGA82563, so it could be directly imported as a component in ADS. The antenna 
switch, HMC174M58, and the power amplifier, GVA-84+, both came with .snp files, which is 
essentially a text file that can be imported into ADS that contains measured s-parameter 
information for a range of frequencies. The antenna switch came with an .s3p file, which 
indicated that there are measurements for 3 ports, while the power amplifier came with a .s2p 
file, which indicates that there are 2 ports. After importing the files for the integrated circuits, the 
other discrete components in the circuit had to be added. It was a simple matter to simulate the 
receiver once the transmitter was simulated, since they have the same low noise amplifier.  

After implementing the simulation files in ADS, other components, such as resistors and 
capacitors, needed to be added as well. ADS has these components in its library, but they are 
ideal. Regardless, substituting these components with design kit models from Coilcraft did not 
significantly change the results of the simulation. After all of the design was laid out in ADS, the 
s-parameter simulation simply had to be run to determine what is essentially the frequency 
response of the system, S21. 

Once the frequency response was determined, the simulation results were used to tweak the 
values of the discrete components surrounding the ICs to achieve the best frequency response. 
To do this, information in the datasheets for the power amplifier, linear amplifier, and antenna 
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switch were taken into account, along with comparisons to the design of other daughterboards 
for the USRP. It seemed that the slightest change in capacitance or inductance in the surrounding 
circuit had a great impact on the forward voltage gain of the entire system, so the usefulness of 
these simulations had to be taken into account, given that the capacitive effects of PCB traces 
could not be simulated. Regardless of the shortcomings of the simulations, components were 
chosen that matched the simulation circuit as closely as possible. The following figures show the 
final version of the amplifier circuit, along with the simulation results. 
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Figure 7 - MMP9000 amplifier stage simulation schematic for both transmit and receive amplifier sections of the design. The transmit side includes the 
MGA82563 low noise amplifier and the GVA-84+ 5 V power amplifier, while the receive side incorporates only the low noise amplifier. Also included 
are the DC biasing circuits to power the amplifiers and the antenna switch. The input and output of the amplifier section are both connected to 50 Ω 

terminators to match the impedance of the rest of the circuit. 
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3.2 Basic Prototype - RFMD RF2051 Evaluation Board and GVA-84+ Amplifier 
RFMD was generous enough to donate an RF2051 evaluation board to the MQP. The RF2051 
chip is capable of synthesizing a local oscillator frequency between 300 MHz and 2500 MHz. 
[21] Two RF mixers are also integrated into the chip that can mix an RF signal between 50 MHz 
and 2.5 GHz with the local oscillator. The RF2052 is almost identical to the RF2051 except that 
it has only one mixer. The RF2052 is what was used in the final design. Its exact function in the 
design is discussed later. Figure 8 shows the evaluation board used in prototype testing and 
experiments, while Figure 9 shows the evaluation board for the power amplifier. 

 
Figure 8 – RF2051 evaluation board. 

 

 
Figure 9 - GVA-84+ power amplifier evaluation 

board. 

 

3.2.1 Experimentation with RF2051 Evaluation Board 
When the RF2051 evaluation board arrived, experiments were performed to test how well it 
worked with receiving and transmitting RF signals over the air with the USRPs. The first test 
setup used the RF2052 evaluation board to transmit a signal that the RFX2400 daughterboard 
could receive. The second test setup used the RF2052 evaluation board to receive a signal that 
the RFX2400 daughterboard sent. 

3.2.2 Upconversion of Basic TX Board Output from 30 MHz to 2.4 GHz 
For the first setup the output from the Basic TX board was connected to an RF input on the 
RF2052. The associated RF output on the RF2052 was then connected to the GVA-84+ 
amplifier, which was in turn connected to an antenna. The local oscillator in the RF2052 was set 
to 2.47 GHz. GNU Radio on the transmitting computer was then programmed to transmit the 
Mario 2 Overworld theme in FM at 30 MHz with the Basic TX board. The receiving computer 
was setup to receive FM audio at 2.5 GHz with the RFX2400 board. It successfully received the 
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Mario 2 theme song. When the local oscillator was tuned to 2.37 GHz, the receiving computer 
had to be tuned to receive at 2.4 GHz, as expected, proving that the RF2052 could be used to set 
the transmit frequency. Due to the way mixers work, the receiving computer could also be tuned 
to 2.44 GHz and 2.34 GHz for the local oscillator frequencies of 2.47 GHz and 2.37 GHz 
respectively. 

3.2.3 Downconversion of Basic RX Board Input from 2.4 GHz to 30 MHz 
For the second setup an antenna was connected directly to the RF input of the RF2052 and the 
RF output was connected to the input of the Basic RX board. The local oscillator frequency in 
the RF2052 was set to 2.4 GHz. Then again the Mario 2 Overworld theme was transmitted, this 
time at 2.43 GHz with the RFX2400 daughterboard on one computer. It was received 
successfully at 30 MHz with the Basic RX board on the other. 

3.2.4 Upconversion and Downconversion on the Two Evaluation Board Mixers 
The final test involved mixing the signal up to a certain frequency on one mixer on the 
evaluation board, then mixing this higher frequency signal back down on the other mixer, to 
connect two USRPs over the air using the evaluation board. USRP 1 was connected to the first 
mixer, which mixed the signal to 900 and 960 MHz. The signal then passes through the amplifier 
and is transmitted over the air to an antenna connected to the second mixer input, which mixes 
the signal back down to baseband for reception on the second USRP’s Basic RX board. This test 
especially demonstrates that the RF2051 and RF2052’s usefulness for over the air transmission 
over a wide frequency range.  

 
Figure 10 - Mixing a signal up and then back down using the RF2051 evaluation board. 
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3.2.5 Evaluation Board Test Results 
Figure 11 through Figure 13 show a 30 MHz signal from the USRP being mixed with a local 
oscillator at 930 MHz. In Figure 11 the output is connected directly to the spectrum analyzer. 
The local oscillator frequency leaks through a bit and can be seen at about -45 dBm. The 
expected up and down converted signals at 960 MHz and 900 MHz are both seen at about -12 
dBm. The local oscillator frequency is seen at about -45 dBm, while the transmitted frequencies 
at 930 MHz ±30 MHz are at about -12 dBm. 

 

Figure 11 – Transmitted signal directly out of the RF2051 mixer.  
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Figure 12 illustrates the same setup as Figure 11, but this time utilizes the GVA-84+ amplifier 
after the evaluation board. The local oscillator frequency is seen at about -24 dBm, while the 
transmitted frequencies at 930 MHz ±30 MHz are at about 8 dBm. As can be seen in the figure, 
there is a slight amount of spectral leakage next to the two signals. 

 

Figure 12 - Transmitted signal directly out of the GVA-84+ amplifier.  
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Figure 13 again shows the same signal, but after being transmitted over the air with the GVA-
84+. The local oscillator frequency is not visible, while the transmitted frequencies at 930 MHz 
±30 MHz are at about -42 dBm. 

 

Figure 13 - Transmitted signal amplified by the GVA-84+ and transmitted over the air.  
 

Figure 13 is significant because it shows that the desired signals at 900 MHz and 960 MHz are 
visible at the receiver, while the unwanted local oscillator frequency is not. This means that it 
should not cause any significant amount of interference at the local oscillator frequency, but 
successfully transmit the signal at the desired frequency. However, since there are two copies of 
the signal, both above and below the local oscillator frequency, the undesired one should be 
filtered out before the antenna. 

3.3 Interfacing the RF2051 with GNU Radio 
The next objective was to figure out how to program the RF2051 with GNU Radio. In the 
experiments documented above, setting the frequency of the local oscillator in the RF2051 was 
done by programming it over a USB connection to the evaluation board with software provided 
by RFMD. For the chip to be useful in the design, it would have to be able to be programmed by 
GNU Radio while connected to a USRP. 
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The datasheet for the RF2051 describes the serial programming interface as a “Three-wire Serial 
Control Interface.” Initially it was thought that this would be compatible with Serial Peripheral 
Interface (SPI). Since the USRP has a SPI bus available to the daughterboards which is easily 
programmable in GNU Radio, it was thought that it would be no problem to program the chip. 
Unfortunately, upon further inspection of the protocol described in the datasheet, it was 
discovered that it was in fact not compatible with SPI. The physical layer is closer to the I2C 
protocol (in that they both only use a single data line) which the USRP also has available to the 
daughterboards, but it is not exactly the same. In the end it was decided that the serial interface 
should just be connected to the general purpose digital I/O (GPIO), of which plenty is available, 
and then simply bit-banged by GNU Radio in a Python program. While it is very likely possible 
to do this much more intelligently in either a lower level C++ module of GNU Radio or even in 
the FPGA itself, the Python solution worked and is fast enough. 

The first thing that had to be done to begin the testing of programming the RF2051 with GNU 
Radio was to connect the evaluation board to the USRP. A connector was made to connect the 
serial interface and other digital control pins to the GPIO on the Basic TX board, and also to 
connect power to a power supply. Figure 4 shows the evaluation board connected to the USRP 
and power supply. 
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Figure 14 - RF2051 evaluation board connected to the USRP 
 

After carefully going over the read and write timing diagrams in the RF2051 datasheet (shown 
below in Figure 16 and Figure 15 respectively), two Python functions were written: one to write 
a word to a register in the RF2051, and one to read a word from a register in the RF2051. These 
timing diagrams show the voltages on the three serial pins on the RF2051 chip (either high or 
low) over time for one read or write operation. The ENX input enables the serial interface (active 
low), SCLK is the clock for the data (driven by the host), and SDATA is the data line (driven by 
either the host or the RF2051 depending on the operation). The slightly tricky part was making 
sure that the read function was written correctly before testing it. This is because the data line is 
used as both an input and an output. The host (USRP) first writes the address of the register on 
the data line. After a short delay the RF2051 then writes the data in the register to the same data 
line. During the delay it is important that the direction USRP’s serial data pin be changed from 
an output to an input. If both the USRP and RF2051 try to drive the line at the same time, it 
could potentially cause damage to the RF2051, USRP’s FPGA, or both. 
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Figure 15 - RF2051 serial read timing diagram 
 

 

Figure 16 - RF2051 serial write timing diagram 
 

Once it was confirmed that the read and write functions did indeed work (by successfully reading 
back data that was written) the next thing to do was to write a function to actually tune the local 
oscillator to any frequency in the range 300 MHz to 2500 MHz. The RF205x Frequency 
Synthesizer User Guide gave a very nice detailed example on how to program which registers to 
set the frequency of the local oscillator. Following this information, a function was written that 
could successfully tune the RF2051’s local oscillator to any frequency between 300 MHz and 
2500 MHz, which was confirmed by checking the local oscillator leakage on the RF output port 
on a spectrum analyzer. All the source code of the functions mentioned above can be found in 
Appendix A  - Source Code. 

3.4 Chapter Summary 
The final design described here is the result of many different contributions.  First the simulation 
data that was previously discussed was taken into account to verify the part selection.  The parts 
were then put together in a schematic layout software and verified against the datasheets and 
what the manufacturers suggest.  Finally, the design was compared against the design of similar 
daughterboards for the USRP to check for any large inconsistencies.  From this final design, the 
actual assembly of all the components can begin to take place. 
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4 Transceiver Design 
Once the requirements for the design were identified, much research had to be done before the 
design process could begin.  For starters, the board would have to be compatible with the USRP, 
and the only way to determine what this required was to read through the USRP documentation 
and any other related resources.  After doing some research into this it was discovered that the 
USRP hardware is entirely open source and released under the GNU General Public License 
(GPL).  Thanks to this, all existing daughterboard schematics, parts lists, and PCB layouts are 
freely available on the Internet.  This information by far provided the most help for the design, as 
it not only showed exactly how the existing daughterboards work, but also how they interface 
with the USRP.  Of course it still took quite a bit of time and research to fully understand the 
schematics.  Since the Wireless Innovation Laboratory already had a couple of the RFX2400 
daughterboards available for experimenting with, it was decided that it would be the schematics 
for this board that would be analyzed.  After many days of reviewing every part of the 
schematics for it, reading through the datasheets for all its parts, and reading up on general RF 
receiver and transmitter theory and design, a detailed working knowledge of its operation was 
gained.  It was decided that it would be helpful for future reference to create a block diagram 
showing the operation of the RFX2400 board.  This diagram appears below in Figure 17 through 
Figure 19. 

Once this existing daughterboard design was understood, it was time to begin researching ways 
to increase its frequency tuning range.  First the schematics for the other daughterboards in the 
RFX series were examined because they all operate over different small frequency ranges.  It 
was found that they all had very similar designs, mainly only differing in some of the ICs used, 
which even still were ICs in the same families, just covering different frequency ranges.  Since 
none of the ICs in any of the existing daughterboards were sufficiently wideband enough in order 
to operate over the desired frequency range of 100 MHz to 1.3 GHz, the search began for ICs 
with similar functions, namely the local oscillator and quadrature modulator and demodulator. 

Almost immediately a quadrature modulator and quadrature demodulator, both from Analog 
Devices, were found that could cover the frequency range from 50 MHz to 2200 MHz for 
receiving, and 50 MHz to 2000 MHz for transmitting.  They were the ADL5385 and ADL5387 
respectively.  However, it was a much harder task to find a solution for a local oscillator that 
could be digitally tunable over the 100 MHz to 1.3 GHz range.  After conducting more research, 
it was found that the most common way to implement a tunable local oscillator is with a phase 
locked loop (PLL) and a voltage controlled oscillator (VCO).  In fact this is what is used in the 
RFX series of daughterboards.  Typically the two components (PLL and VCO) are integrated 
into a single IC.  Unfortunately none were found that operated over the desired frequency range.  
In fact, the vast majority have to be tuned to a center frequency using discrete components which 
limits the tunable range to a small subset of the advertised range. 
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Figure 17 shows a block diagram of the initial design of the transmitter side. The two quadrature 
signals leave the USRP from the digital to analog converters and pass through anti-aliasing low 
pass filters to smooth out the DAC transitions. The quadrature modulator then will mix and 
modulate this signal with the local oscillator, which is controlled by the USRP. After being 
mixed and modulated to a higher frequency, it will then pass through a low noise amplifier and 
then a power amplifier. The RF signal then travels to the antenna switching block, shown in 
Figure 18. 
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Figure 17 - Block diagram of the RFX daughterboard series transmit path 
 

Once the signal has been modulated, it is passed to the antenna switch and antenna logic block, 
which are essentially two analog switches that control the antenna connections and signal path. 
In this stage, the software can control whether the board is operating in full duplex mode, 
transmitting and receiving at the same time, or half duplex mode, either transmitting or 
receiving.  
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Figure 18 - Block diagram of the RFX daughterboard series transmit/receive switch configuration 
 

The receive path is also connected to the antenna switch and logic block. Once again the USRP 
GPIO will control which antenna is connected to the receive blocks based on what mode the 
transceiver is in. 
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Figure 19 - Block diagram of the RFX daughterboard series receive path 
 

Once the received signal passes through the antenna switches, it is amplified before being mixed 
down to the correct frequency to be sampled by the analog to digital converter on the USRP. In a 
similar setup as the transmitter, a local oscillator will be controlled by the USRP SPI bus, which 
will allow software control over the frequency that the received signal is mixed down to. After 
exiting the quadrature demodulator, the signal is low pass filtered to remove any noise before it 
enters the analog to digital converters on the USRP. 

One idea to achieve the local oscillator was to combine several VCO/PLL chips and multiplex 
them, selecting them based on the required frequency. This approach is often used in truly 
wideband applications where failure or poor operation is not an option.  Figure 20 illustrates this 
initial design idea. Unfortunately this would have required many chips and lots of extra circuitry.  
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In the real world this uses up precious board real estate, increases power consumption, and drives 
up costs.  Therefore this potential design only ever existed as a vague idea, and never made it to 
a more complex schematic.  

 
Figure 20 - Initial design idea with switchable, narrowly tunable transceiver frontends. 

 

Eventually RFMD’s RF205x series of chips was discovered.  The RF2052 in particular includes 
a VCO/PLL local oscillator block, and one RF mixer.  However it was the VCO/PLL block that 
was of interest, since it is digitally tunable and able to generate any frequency between 300 MHz 
and 2500 MHz.  After reading about it, it was found that by grounding the input to the RF mixer, 
its output would be the local oscillator signal, which was exactly what was needed.  Furthermore, 
both the quadrature modulator and demodulator require an input of twice the effective local 
oscillator frequency, meaning that by tuning the external local oscillator to 2000 MHz, the 
baseband or RF signal is effectively mixed with a 1000 MHz local oscillator signal.  Therefore a 
tunable local oscillator range of 300 MHz to 2500 MHz meant that the design would be able to 
transmit and receive RF signals between 150 MHz and 1250 MHz, only 50 MHz off from each 
end of the desired frequency range. 



 

27 
 

Sometime during working out the details of the design using the RF2052 solely as the local 
oscillator, some potential problems came to light.  The power output from the RF2052’s mixer 
output port with the mixer input grounded could potentially exceed the maximum power input 
allowed on both the modulator’s and demodulator’s LOIN ports.  While this could be fixed by 
using resistors to reduce the power between the chips, it would also require additional impedance 
matching.  Another potential problem was the fact that tuning the board to transmit or receive at 
1000 MHz would require tuning the RF2052 to 2000 MHz.  While at first this may not seem to 
be a problem, since the RF2052 is easily tuned to 2000 MHz, in reality it very well could be.  
Designing a PCB to operate correctly at such high frequencies is very difficult, and requires very 
close attention to correct impedance matching of traces as well as the placement of both traces 
and components.  Otherwise the signal can be reflected back to the source, can be greatly 
attenuated, and can interfere with other signal and power lines on the board.  It would be rather 
unfortunate then if the board failed to operate at 2000 MHz, but succeeded at 1000 MHz, since 
the only thing that would stop it from operating at 1000 MHz would be that it did not operate at 
2000 MHz. 

Aside from these potential issues, the frequency range would be still slightly narrower than what 
had initially been decided on.  While brainstorming about what to do about all of this, a new 
design was thought up.  It required an additional PLL/VCO IC operating at a fixed frequency, or 
at least only a very narrow range or tunable frequencies, a new quadrature 
modulator/demodulator pair, and also took advantage of the mixer in the RF2051. An 
intermediate frequency stage would be added to the transmit and receive paths to fully utilize the 
capabilities of the RF2052 chip. 

  



 

28 
 

4.1 Final Design Overview 
The final design is similar to the design of the RFX daughterboard series, but uses an additional 
intermediate frequency stage and the RF2052 wideband mixer and frequency synthesizer.  Figure 
21 through Figure 23 below show a functional block diagram of the design.  Figure 24 through 
Figure 26 show the design with the actual components chosen for each block. 

On the transmit side of the design, a low IF (intermediate frequency) signal in quadrature (Q) 
and in-phase (I) components is sent out of two high speed DACs on the USRP.  Before anything 
else, these signals are put through low pass filters to remove aliases and other noise generated by 
the DACs.  These two filtered signal components are then fed into a quadrature modulator.  The 
quadrature modulator takes as inputs the two low IF signal I and Q components and a local 
oscillator (LO) signal.  These inputs are mixed and combined into a single RF output at the 
frequency fIF + fLO.  The fIF - fLO frequency is suppressed by the quadrature modulator’s 
circuitry. 
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Figure 21 - Block diagram of the final design transmit path 
 
The RF output from the quadrature modulator is used as an IF signal at around 300 MHz in the 
design, however the exact frequency is digitally tunable over a narrow range from about 
280 MHz to 320 MHz.  This signal is then fed into a wideband mixer.  For this the RF2052 is 
used.  As previously stated, this mixer is capable of mixing the IF signal with a LO frequency at 
anywhere between 50 MHz and 2500 MHz.  The local oscillator itself, which is digitally tunable, 
is also contained within the RF2052 and is capable of synthesizing frequencies between 
300 MHz and 2500 MHz.  The output from this mixer is the signal to be transmitted at the 
desired RF frequency.  Before it is sent to an antenna for transmission however, it is first 
amplified by a power amplifier.  

The receive side is very similar to the transmit side, only in reverse.  First the RF signal is 
captured by an antenna and then goes into a low-noise amplifier (LNA).  The output from the 
LNA goes into the RF2052’s mixer to mix the signal down (or up) to the IF.  The mixer’s output 
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at the IF is then fed into a variable gain amplifier (VGA) which is adjustable via the USRP’s low 
speed DAC.  This is to allow the user to adjust the gain of the receiver.  After the VGA the signal 
is fed into a quadrature demodulator, which breaks the signal down into its I and Q components 
and mixes them down to the low IF signal.  Before going into the USRP’s high speed ADCs, 
these signal components are low pass filtered to prevent aliasing of higher frequencies. The 
design of the antenna switching blocks remains essentially the same as described earlier. 
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Figure 22 - Block diagram of the final design transmit/receive switch configuration 
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Figure 23 - Block diagram of the final design receive path 
 
Figure 24 through Figure 26 shows the final block diagram design of the entire daughterboard, 
with chosen components and their functions. A complete schematic of the design can be found in 
Appendix B – Schematic. 
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Figure 24 - Block diagram of the final design transmit path with actual components 
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Figure 25 - Block diagram of the final design transmit/receive switch configuration with actual components 
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Figure 26 - Block diagram of the final design receive path with actual components 
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4.2 Final Design Details 
This section expands upon the ideas and block diagrams presented in the previous section while 
going into more detail of the interconnections between various ICs and components of the final 
design. 

4.2.1 Transmit Path 

4.2.1.1 Quadrature Modulator 
The quadrature modulator is the first step in the transmit path of the design. It is the circuit that 
upconverts the baseband signal from the USRP that is to be transmitted to a 300 MHz 
intermediate frequency (IF) signal. The reason a quadrature modulator is used is because the 
USRP provides each transmit daughterboard with both in phase (I) and quadrature (Q) 
components of the baseband signal. The I component is created by mixing the baseband signal 
from the computer with a low frequency (no more than about 30 MHz) cosine wave, and the Q 
component is created by mixing the baseband signal with a sine wave at the same low frequency. 
The quadrature modulator on the daughterboard takes these I and Q components, mixes them 
with a local oscillator frequency provided by another circuit (described in the next section) and 
combines them into a single IF signal at 300 MHz. 

The heart of the quadrature modulator circuit in the design is Analog Devices’ AD8345 
quadrature modulator. It is capable of operating at frequencies between 140 MHz and 
1000 MHz. Implementing this IC into the design was rather straightforward. The I and Q inputs 
are both differential inputs. This is convenient because the I and Q outputs from the USRP’s 
DACs are also differential. To remove aliasing to higher frequencies, low pass filters were fitted 
between the DAC outputs and the modulator inputs. The datasheet for the USRP’s DACs 
indicates that they output up to 18 mA full scale current (the difference between the differential 
output pair), and that they are 64 megasamples per second (MSPS). This means that they can 
output frequencies up to 32 MHz. The datasheet for the AD8345 says that the I and Q inputs 
should have a peak to peak voltage of 1.2 V, and have a 0.7 V bias. After referring to the 
schematic for the RFX400 board (which also uses the AD8345) it was found that the low pass 
filter shown in Figure 27 below was used. After doing a simulation on this circuit, it was 
determined that it had a 3dB bandwidth of about 25 MHz, which makes sense for the DACs in 
the USRP. This AC analysis is shown below in F2. It also converts an output current of 18 mA to 
1.2 V, which agrees with the datasheets. Finally, the two 49.9 Ω resistors and the 10 Ω resistor 
create a DC bias of about 0.7 V on each pin, assuming an average current output of 10 mA. Since 
this particular low pass filter circuit seemed to agree so well with the information in the 
datasheets, and also since it was what was used for the RFX400 board, it is what is included in 
the final design. 

The AD8345 is powered with 5 V on two pins, and the final circuit in the design includes two 
decoupling capacitors (a 1000 pF and a 0.01 uF) per pin. 
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Figure 27 - 25 MHz Low pass filter between DACs and the AD8345 quadrature modulator 
 

 

Figure 28 - AC analysis of the low pass filter between the DACs and AD8345 quadrature modulator. The 3dB 
bandwidth is about 25 MHz. The passband magnitude is about 600 mV, which corresponds to 1.2 Vp-p. 

 

4.2.1.2 Local Oscillator 
As mentioned in the previous section, the quadrature modulator needs a local oscillator (LO) 
signal to mix the baseband I and Q signals with. The central component used for this circuit is 
Analog Devices’ ADF4360-8. This is an “Integrated Integer-N Synthesizer and VCO” with an 
output frequency between 65 MHz and 400 MHz. The exact output frequency is programmed 
over a Serial Peripheral Interface (SPI) bus by the USRP and GNU Radio. A center frequency 
must be chosen and set, however, by external inductors, and an external loop filter must be fitted 
for the desired output frequency range and reference frequency. Thus the actual output frequency 
range in any given design is not actually 65 MHz to 400 MHz. To help pick the values for the 
external inductors and the loop filter design, Analog Devices provides a free program called 
ADIsimPLL. Given a desired output frequency range, step interval, reference frequency, and 
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loop filter type, the program generates a schematic with the correct component values. Since a 
center frequency of 300 MHz is desired, and not much divergence from this is necessary, the 
software was given the range 280 MHz to 320 MHz at 1 MHz intervals using a 64 MHz 
reference frequency, which is taken from a crystal on the USRP motherboard. The schematic it 
generated is shown below in Figure 29. Unfortunately, none of the component values that it 
calculated are standard values. Thus the closest standard values had to be chosen. 

Since the LO outputs of the ADF4360-8 and the LO inputs of the AD8345 are both differential, 
they can be connected together directly with no matching circuitry other than that shown below 
in Figure 28. The ADF4360-8 is powered with 3.3 V on three pins, and the final circuit in the 
design includes two decoupling capacitors (a 1000 pF and a 0.01 uF) per pin. 

 

Figure 29 - Schematic for the local oscillator using the ADF4360-8 IC, tuned for 280 MHz to 320 MHz at 
1 MHz intervals. Generated by ADIsimPLL. 
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4.2.1.3 RF Mixer 
The output from the quadrature modulator stage is an RF signal at 300 MHz. The final design, 
however, should be able to transmit an RF signal at any desired frequency between 100 MHz and 
1.3 GHz, and potentially beyond this range. To accomplish this, the 300 MHz IF signal is mixed 
with a LO signal that can be programmed to be any frequency between 300 MHz and 2500 MHz. 
For this, the RFMD RF2052 IC is used. Since the mixer in the RF2052 mixes the input signal 
both up and down, the 300 MHz IF signal can be mixed to any frequency between DC and 
2800 MHz. However, the mixer ports are rated to operate between 50 MHz and 2500 MHz 
which limits the range. 

The actual circuitry around the RF2052 is a little more complicated than the previous two stages. 
Both the input and output ports of the mixer are differential. However, the RF output from the 
AD8345 is single ended with an output impedance of 50 Ω, and the input to the next stage (the 
amplifier) is also single ended with an input impedance of 50 Ω. Therefore both the mixer input 
and output ports require external matching circuitry to convert them to single ended 50 Ω lines. 
The RFMD document “An RF205x Family Application Note Matching Circuits and Baluns” 
helped while figuring out how to do this. To get the best performance out of the RF2052 mixer, 
the matching circuits for the input and output ports should be tuned for the specific frequency 
ranges required for a particular application. Since the widest range possible is desired for the 
final design, the simplest wideband matching circuits for the output port was chosen. While its 
performance (in terms of output power over the desired frequency range) does not match the 
performance of the narrowband matching circuits, it still should show generally good 
performance over the desired range of 100 MHz to 1.3 GHz. In addition, it was decided to 
include spots on the PCB for additional resistors, capacitors, and inductors to better match the 
port for specific frequency ranges if desired. Initially these will not be used by either not filling 
them, or by filling them with 0 Ω jumpers. For the input port, since the input frequency should 
always be about 300 MHz, the matching circuit will be tuned to work well at 300 MHz. 

The circuits chosen for the input and output mixer ports are shown below in Figure 30 and 
Figure 31. These were taken from RFMD’s application note mentioned above, and include space 
for components to better match them for specific frequencies later on. They both convert the 
differential ports to 50 Ω single ended ports. 



 

35 
 

 

Figure 30 - Matching circuit for the RF2052's RF mixer input port. It converts the differential inputs to a 50 
Ω single ended input. Initially the board will be tested with C2 and C3 equal to 1000 pF, and L1 a 0 Ω 

jumper, and C1 not fitted. The 1:1 Balun is an M/A-COM ETC1-1-13. 

 

Figure 31 – Matching circuit for the RF2052’s RF mixer output port. It converts the differential outputs to a 
50 Ω single ended output. Initially the board will be tested with C1, C2, and C3 equal to 100 pF, and L1 and 

R1 not fitted. The 4:1 Balun is Minicircuits’ TC4-19+. 
 

As with the ADF4360-8, the RF2052 also required a loop filter. Similar to the ADF4360-8, the 
RFMD also supplies software to help pick the values for the loop filter components, based on the 
loop bandwidth, VCO frequency, charge pump current, VCO gain, and phase detector frequency. 
Unfortunately it was not clear what values to use here to obtain a good loop filter for a wideband 
design. Fortunately, the RF2051 evaluation board was designed to be as wideband as possible, so 
it was decided that the same loop filter used on the evaluation board would be used in the final 
design, as well as the reference crystal frequency. And of course, this filter can always be 
tweaked later on if need be, since only the component values would have to be changed. The 
loop filter schematic is shown below in Figure 32. 
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Figure 32 - The loop filter for the RF2052, configured for a wideband design. This is the same loop filter as 
used for the RF2051 evaluation board. 

 

The last tricky part about the RF2052 is that its low frequency VCO, which is tunable between 
1200 MHz and 1556 MHz, requires two external inductors to set its center frequency (the other 
two VCOs have internal inductors). According to the datasheet, these two inductors must each be 
about 2 nH. However, 2 nH is a very low inductance, and the combined inductance of the 
bondwire (IC pin, PCB pad, and solder joint) and the via to ground after the inductor is estimated 
to be about 1 nH, also according to the datasheet. Therefore the inductors used should only be 
1 nH. Hi-Q 1 nH inductors are available from Coilcraft, however this would introduce more 
bondwire inductance, along with the inductances of the traces connecting the inductor to IC and 
ground. While these parasitic inductances are small, and normally not a problem, in this case 
they are large enough to increase the desired inductance by potentially up to 100%. For this 
reason, microstrip inductors were used, which consist only of a PCB trace going from the IC pin 
to a ground via. This is also the recommended method in the RF2052 datasheet. The inductance 
of the microstrip is calculated from its length, height above the ground plane, thickness of the 
copper, and the dielectric constant of the PCB material. An online microstrip calculator 
(http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=util_pcb_imp_microstrip) was 
used to determine the length and width of the microstrips based on various properties of the PCB 
material and stackup used, which can be found in Chapter 0.  

Finally, the serial interface had to be connected to the USRP. As discussed previously in Section 
3.3, the interface was connected directly to free digital I/O lines. The RF2052 is powered with 
3.3 V on three pins, and the final circuit in the design includes two decoupling capacitors (a 
33 pF and a 0.01 uF) per pin. 
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4.2.1.4 Power Amplifier 
The RF signal from the output of the RF mixer (RF2052) the signal that needs to be transmitted, 
as this is the signal that both contains the data sent from GNU Radio to the USRP, and is at the 
desired frequency. However before it can go an antenna, it first should be amplified if it is to 
travel any significant distance over the air.  The amplifier chosen was Minicircuits' GVA-84+. It 
has a gain ranging from about 24 dB to 18 dB over the range 50 MHz to 2 GHz, and a maximum 
power output of 20 dBm (100 mW) at 1 dB compression. Considering that the RFX2400 board 
transmits 20+ mW, a maximum of 100 mW is more than enough. 

The power amplifier is powered at the output through an RF choke, as shown below in Figure 
33. Cblock must be chosen to have a low impedance at the lowest frequency, while the RF choke 
(RFC) must be chosen to have a high impedance at the lowest frequency. This is so the RF signal 
can pass unattenuated from the output of the amplifier to the next stage, but be blocked from 
passing from the output of the amplifier to VCC, which in the case of the GVA-84+ is 5 V. 

 

Figure 33 - Schematic for the recommended power amplifier circuit. The amplifier is powered with VCC 
through the RF choke at the output. This DC power is blocked by Cblock, while the AC output is allowed 

through. 
 

It was decided to use Minicircuits' ADCH-80+ RF choke for the RF choke, rather than a simple 
inductor, since it is designed specifically for this purpose. It has an impedance of 50 Ω, as does 
the amplifier, and is rated to operate between 50 MHz and 10 GHz. The value of Cblock was 
chosen to be 1 nF since the reactance of 1 nF at 50 MHz is only about 3 Ω. 

4.2.1.5 Voltage Regulators 
The circuits detailed in the previous sections all require either 5 V or 3.3 V. However, the USRP 
only provides 6 V to the motherboard (as well as 3.3 V meant specifically for the EEPROM). To 
generate these voltages, two voltage regulators are used. In addition, these voltage regulators are 
daisy chained, meaning that the 5 V regulator is powered from the 6 V, and the 3.3 V regulator is 
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powered from the 5 V. This was done so that the 3.3 V regulator could be placed far away from 
the 6 V pin on the motherboard connector, without requiring a long 6 V trace. As long as the 
maximum current output of the 5 V regulator is not exceeded, this approach works well. 

The voltage regulator chosen was Analog Devices' ADP3336. It is a low dropout linear 
regulator. This was a good choice, because the low dropout voltage translates to high efficiency, 
and because it is linear it does not introduce high frequency noise into the power rails, as 
opposed to a switching regulator, which could potentially interfere with the RF operation. It also 
has a maximum current output of 500 mA, which is sufficient (see Section 4.3 for a power 
analysis). The regulator requires two external resistors to set the output voltage, and the datasheet 
provides values for these resistors for both a 5 V and 3.3 V output. The final 5 V regulator circuit 
is shown below in Figure 34, and the 3.3 V regulator circuit is shown below in Figure 35. 

 

Figure 34 - Voltage regulator circuit using the ADP3336. The input voltage is 6 V and the output voltage is 
5 V. R21 and R22 set the output voltage. L16 and all the capacitors clean the input and output voltages by 

removing any ripple present. 
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Figure 35 - Voltage regulator circuit using the ADP3336. The input voltage is 5 V and the output voltage is 
3.3 V. R17 and R18 set the output voltage. L14 and all the capacitors clean the input and output voltages by 

removing any ripple present. 

4.2.2 Receive Path 

4.2.2.1 Low Noise Amplifier 
The first step in the receive path is the low noise amplifier.  It is responsible for amplifying the 
RF signal captured by the antenna while introducing as little noise as possible.  The device 
chosen for this task was the MGA82563, which is the same amplifier used by the RFX2400 
board.  Its bandwidth is very wide, between 100 MHz and 6 GHz.  Unfortunately this sets the 
lower end of the receive frequency range for the board to about 100 MHz.  It has a gain ranging 
from about 14.5 dB to 13.5 dB over the range 100 MHz to 2 GHz, a maximum power output of 
17.5 dBm (100 mW) at 1 dB compression, and a noise figure of only about 2.2 dB in a 50 Ω 
system. 

The external circuitry required to power and interface this amplifier to the rest of the circuit is 
the same as that required by the GVA-84+ power amplifier detailed previously, so the circuit 
shown in Figure 33 was used for this amplifier as well. 

4.2.2.2 RF Mixer 
The next stage in the receive path is the RF mixer.  The function of this stage is to convert the 
input RF signal frequency to an IF of about 300 MHz, either by up or down conversion.  This 
stage is almost identical to the RF mixer stage in the transmit path detailed in section 4.2.1.3.  
The only difference is that the next stage (Quadrature Demodulator) has a differential input with 
an input impedance of about 200 Ω.  Since the output port of the RF2052 is differential and 
should drive a load between 200 and 500 Ω, the output is connected directly to the input of the 
next stage with no matching circuitry. 
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4.2.2.3 Quadrature Demodulator 
This stage in the receive path performs the exact opposite function of the Quadrature Modulator 
in the transmit path.  It takes as input an RF signal at the IF (300 MHz) and converts it into I and 
Q components at a low frequency (between about 5 and 20 MHz).  These two signals are fed into 
the high speed ADCs on the USRP motherboard, which get digitally downconverted to baseband 
before going to the PC. 

The quadrature demodulator IC chosen for this stage was Analog Devices' AD8348, which 
complements the AD8345 chosen for the modulator in the transmit path.  The IF input to the 
AD8348 is driven differentially, and as described in the previous section, the mixer output from 
the RF2052 is connected directly to this input without any matching circuitry.  The I and Q 
outputs are connected to the ADC inputs on the USRP motherboard through 200 ohm resistors, 
since this is what is done on the RFX2400 board. 

An antialiasing lowpass filter for the ADC is included, but it is connected to certain pins on the 
chip provided for this purpose.  The datasheet gives a schematic of a 100 Ω, fourth-order elliptic 
low-pass filter with a 3 dB cutoff frequency of 20 MHz.  Since the sampling frequency of the 
high speed ADCs in the USRP is 32 MSPS, a 20 MHz lowpass filter is appropriate, so it was 
included in the final design.  Figure 36 below shows the lowpass filter from the datasheet. 

 

Figure 36 - Antialiasing filter used for the ADCs on the USRP. This filter is a 100 Ω, fourth-order elliptic low-
pass filter with a 3 dB cutoff frequency of 20 MHz. 

 

Figure 37 below shows the frequency response of this lowpass filter. 
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Figure 37 - Frequency response of the antialiasing filter. Note that the cutoff frequency is 20 MHz 

4.2.2.4 Local Oscillator 
The local oscillator used for the quadrature demodulator, as well as its configuration and 
integration is exactly the same as the local oscillator used for the transmit path detailed in 
4.2.1.2. 

4.2.2.5 Voltage Regulators 
The voltage regulators used for the receive path, as well as their configuration and integration is 
exactly the same as for the transmit path detailed in 4.2.1.5. 

4.2.3 Transmit/Receive Switches 
One of the objectives for this project is to have the daughterboard be able to operate in either 
half-duplex or full-duplex modes.  Full-duplex mode is simple, as the transmitter and receiver 
can be completely separated, each with its own antenna.  This, however, poses problems if both 
the receiver and transmitter need to operate at the same frequency.  Half-duplex mode not only 
allows both the transmitter and receiver to operate on the same frequency, but also allows them 
to share a single antenna. 

To accomplish this goal, two transmit/receive (T/R) switches and a little bit of glue logic was 
used in a specific configuration.  The particular T/R switch chosen was the Hittite HMC174MS8.  
The schematic of this configuration is shown below in Figure 38. 
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Figure 38 - T/R switch circuit allowing both half and full-duplex operation. 
 

When B on the T/R switch is high and A is low, the RFC pin is internally connected to the RF1 
pin.  When B is low and A is high, RFC is internally connected to the RF2 pin.  If the logic of 
this circuit is followed through, the behavior in the truth table shown below in Table 1 is found. 

Table 1 - T/R Switch truth table for antenna functions. 
IO_TX_06 IO_RX_06 Antenna J1 Antenna J4 Mode 

0 0 RFTX No connection Half-Duplex (transmit) 
0 1 RFTX RFRX Full Duplex 
1 0 RFRX No Connection Half-Duplex (receive) 
1 1 No Connection RFRX Receive only on J4 

 

4.3 Power Analysis of Final Design 
Once the major components for the final design were chosen, it was deemed necessary to do a 
power analysis, to ensure its power consumption would not exceed what the USRP is able to 
supply to its daughterboards.  The power analysis was split into two parts: the transmit side and 
the receive side.  This way it was easier to do the calculations since each side is powered by its 
own pair of voltage regulators.  It also makes it easier to see what the power consumption will be 
when only one path is powered on. 

First, only the components that contribute significantly to the power consumption were 
identified.  It was decided that the components that draw current on the order of microamps 
would not impact the analysis in any significant way, and so were not included. After going 
through the datasheets and identifying each component’s maximum current draw, the following 
components were chosen to be included in the analysis: 
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• ADP3336 (Adjustable Low Dropout Regulator) 

• AD8345 (Quadrature Modulator) 

• AD8348 (Quadrature Demodulator) 

• RF2052 (Wideband RF Synthesizer/VCO and RF Mixer) 

• ADF4360-8 (Integrated Synthesizer and VCO) 

• GVA-84+ (Wideband Monolithic Amplifier) 

• MGA-82563 (Wideband Low Noise Amplifier) 

Since each path (transmit and receive) is powered by its own pair of voltage regulators, care was 
taken to account for this.  The power hierarchy for the transmit path and receive path is shown 
below in Figure 39 and Figure 40 respectively. 

ADP3336
6.0V to 5.0V

GVA-84+
Wideband Power Amp

ADP3336
5.0V to 3.3V

AD8345
Quadrature Modulator

ADF4360—8
Integrated Synthesizer and 

VCO

RF2052
Wideband RF Synthesizer 

and Mixer

 

Figure 39 - Transmit path power hierarchy.  The top row is the first voltage regulator powered with 6V by 
the USRP.  The second row is powered with 5V provided by the first voltage regulator. The third row is 

powered with 3.3V provided by the second voltage regulator. 
 

ADP3336
6.0V to 5.0V

ADP3336
5.0V to 3.3V

AD8348
Quadrature Demodulator

ADF4360—8
Integrated Synthesizer and 

VCO

MGA82563
Wideband LNA

RF2052
Wideband RF Synthesizer 

and Mixer

 

Figure 40 - Receive path power hierarchy.  The top row is the first voltage regulator powered with 6V by the 
USRP.  The second row is powered with 5V provided by the first voltage regulator. The third row is powered 

with 3.3V provided by the second voltage regulator. 
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Since the voltage regulators are not 100% efficient, the total power consumed by them plus their 
loads is greater than the total power consumed by their loads.  Unfortunately the datasheet for the 
ADP3336 does not once mention its efficiency.  It does, however, provide graphs of Ground 
Current vs. Load Current, and Dropout Voltage vs. Output Current.  These two graphs are shown 
below in Figure 41 and Figure 42 respectively. 

 

Figure 41 - Ground Current vs. Load Current 

 

Figure 42 - Dropout Voltage vs. Load Current 
 

These two graphs were approximated with the following equations: 

   Equation 1 

  Equation 2 

Note that the equation for the dropout voltage is only a valid approximation for a load current 
greater than about 50 mA.  The power consumption of the regulator itself can be calculated with 
the following equation: 

  Equation 3 

By manipulating this equation, the efficiency of the regulator is found to be 
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  Equation 4 

Using these equations, a spreadsheet was created using the maximum current drawn by each 
device according to their datasheets.  This final data from the spreadsheet is shown below in 
Table 2.  Note that the calculated current drawn and power consumed by the regulators is the 
sum of the regulators own consumption and its load.  Thus the calculated power consumption of 
the top 5 V regulator for the transmit side is the entire power consumption of the transmit side, 
and the same applies for the receive side. 

Table 2 - Power Analysis of Entire Design 
 Part Voltage (V) Current (A) Power (W) 
TX: ADP3336 6 0.23131553 1.387893182 
 AD8345 5 0.075 0.375 
 GVA-84+ 5 0.13 0.65 
 ADP3336 5 0.062649135 0.313245675 
 RF2052 3.3 0.072 0.2376 
 ADF4360-8 3.3 0.0195 0.06435 
RX: ADP3336 6 0.1617035 0.970220999 
 AD8348 5 0.055 0.275 
 ADP3336 5 0.132969375 0.664846875 
 RF2052 3.3 0.072 0.2376 
 ADF4360-8 3.3 0.0195 0.06435 
 MGA82563 3.3 0.101 0.3333 
Total Max:   0.39301903 2.358114181 

 
From the analysis it can be seen that the maximum power consumption of the board in full 
duplex mode is 2.36 W, or 393 mA from the 6 V supply.  In transmit only mode it draws 231 mA 
from the 6 V supply, and in receive only mode it draws 162 mA from the 6 V supply.  The USRP 
can supply up to 1 A from its 6 V supply to the daughterboards.  According to this analysis a 
single USRP could potentially run two of these boards simultaneously with both in full duplex 
mode.  It is also worth noting that the maximum allowed load current of the ADP3336 regulator 
is 500 mA.  Since the most current drawn from any of the four regulators is 231 mA, all are 
running within specification. 
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5 PCB Design 
The PCB design is a key aspect for this project.  This is because the high frequencies used in this 
project the design cannot be tested on a breadboard or on a perfboard.  The PCB design needed 
to be very precise and follow strict guidelines to come in under budget and with the uniform 
impedance required by the design.  The following sections cover the design of the PCB from 
which software was chosen and why to component placement on the actual PCB. 

5.1 Tools 
There are a wide variety of tools available to lay out a PCB.  At the start of the PCB design 
process there was no specific piece of software which was clearly the best choice for this project.  
As a result, it made more sense to use a free layout tool over a licensed one because it allowed 
for the software to be installed on personal computers.  This added a degree of flexibility to the 
project as design was not constrained to the lab computers.  

PCB Artist is a free PCB layout program which is distributed by Advanced Circuits.  Unlike 
other programs, PCB Artist has no minimum board size and is able to produce Gerber-formatted 
files, which are the industry standard format for PCB designs.  PCB artist also has the ability to 
create a schematic for the design and then link it to the actual layout, thus making it much easier 
to check for errors in the layout. 

The PCB was eventually created using PADS from Mentor Graphics.  Although PCB Artist 
offered a wide range of features, PADS was ultimately a better choice for a couple of reasons.  A 
large number of the parts used in this project are also used in the RFX2400 board from Matt 
Ettus, for which the PCB files were created using PADS.  Copying footprints from that PCB 
layout saved a large amount of time since this meant that the footprints did not have to be 
recreated from scratch, and also guaranteed that the footprints would be the right size. 

PADS also offers the ability to fill in the open space on the board with stitching vias to the 
ground plane.  This is extremely important to this project for a number of reasons.  Common 
practice when designing a PCB is to put all extremely high speed nets on internal layers and 
surround those layers with ground planes.  This prevents those nets from picking up outside 
interference and also reduces their ability to couple with other nets.  The problem is that internal 
routing is only available on production PCBs, which cost more than the entire budget for this 
project.  As a result, it is necessary to put all the RF traces, together with all the other traces, on 
the outside layers to keep from going over budget.  The best way to protect these traces from 
outside signals and coupling with each other is to fill all the empty area on the layer with copper 
and connect this plane back to the ground plane in as many places as possible.  PADS is capable 
of doing both of these tasks automatically and is smart enough to make sure that all of the vias it 
places do not cause problems with other nets. 

The time that was needed to figure out how to use these advanced features in PADS was much 
less than the time saved over trying to do all of this manually in PCB Artist.  With the design in 
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PADS, it also made it much easier to compare with Matt Ettus’ design to try to keep it as similar 
as possible, as his design was already proven to work. 

5.2 Layout 
The layout of the board had to be very carefully planned so that everything would fit without 
having long traces.  In order for the board to work with the USRP, it was essential that the PMC 
connectors on the bottom were in the correction positions.  Consequently, these connectors were 
the first parts placed on the board.  They were then locked into place so they wouldn’t accidently 
be moved while other parts were being placed.  Also critical for the daughterboard to physically 
interface with the USRP are the drill holes, which also needed to be placed in exactly the same 
places as on Matt Ettus’ board. 

The PCB has 4 copper layers, 2 on the outside and 2 in the middle.  All traces are on the 2 
outside layers while the ground planes and multiple power planes make up the 2 internal layers. 
Figure 43 below is a cutaway of what the layers in the PCB look like. 

 

Figure 43 - Internal stack-up of PCB 
 
Assuming the top layer to be layer 1 and the bottom layer to be layer 4, layer 2 would be the 
ground plane. This entire layer is a solid copper plane which is connected to the ground planes 
on the top and bottom layers. As mentioned above, the top and bottom layers were both flooded 
with copper to help reduce interference between the nets and from outside sources. This solid 
ground planes runs between all of that, thus keeping it all at a uniform voltage. 

Layer 3 contains 5 different power planes. There is a 3.3 volt and a 5 volt power plane for each 
side of the board and a 3.3 volt power plane for the T/R switches in the middle of the board. The 
main reason for creating 5 different planes for 2 different voltage levels is that there are large 
areas between some of these planes. For example, there is only a very small area in the transmit 
side that needs 3.3 volts, the rest of the side is 5 volts. The T/R switches are located in the middle 
of the board, which happens to be between two areas that require 5 volts, which meant that 
another power plane was required. The power planes on the receive side are set up very similarly 
to those on the transmit side.  
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The PCB layout has been specifically designed to keep all RF traces as short as possible. The 
first step was to segregate the two major sides of the board, transmit and receive so that they 
would have the majority of their components on opposite end of the board and then come 
together in the middle near the T/R switches. Both sides of the board were placed by following 
the signal path on the schematics. This meant that all the components that handled the signal 
were place on the board first. They were placed in the order which the signal travels through 
them. On the transmit side, this meant starting with the baseband signal from the PMC connector 
and ending with the amplifier. Once all of the components that are a part of the signal path were 
placed and had the signal traces routed, the other components and non-signal traces were added. 

The top layer of the PCB contains the majority of the traces and components on the board. This 
is because using vias between layers can degrade high speed signals. The bottom layer of the 
PCB contains some of the non-signal traces that could not be routed on the top layer, as well as 
some of the resistors and capacitors that could not be placed on the top layer. 

5.3 Production 
There are a number of factors to consider when making a multiple layer PCB under a tight 
budget. Before the process had even gotten very far underway, the team was aware of the $66 
each deal for a 4-layer board from Advanced Circuits. There were a couple of constraints on this 
deal which were a problem that went unnoticed until it became time to actually order the board. 

When working with high speed signals, it is important to remember that the impedance of each 
part of the circuit needs to be matched. When the impedance of a circuit changes part of the 
signal is reflected back and part is able to pass, proportional to how much the impedance 
changes. This reflected signal can cause a vast number of problems in a complex circuit, such as 
dissipating energy in traces, lowering the gain or creating noise. All of these can lead to the 
circuit failing, which is why it is important to keep impedance uniform throughout a signal path. 
In a PCB, this is done by keeping traces a uniform width and by making sure the thickness of the 
board material is uniform, called the dielectric constant. 

Initially the board was designed to use the same dielectric properties as Matt Ettus had with his 
board. Advanced Circuits considers specifying dielectric properties or requiring a controlled 
impedance to be priced as a production board. This meant that it would end up costing around 
$2000 to have 5 boards made, which is way over budged. This problem was overcome by 
looking up what the default dielectric properties were for the boards Advanced Circuits uses for 
their $66 each deal. This information could then be put into a trace width calculator to figure out 
how wide the traces on this PCB needed to be made in order to achieve a uniform impedance of 
50 ohms, which turns out to be 15 mils. 

There are a few areas on the board, particularly around the RF2052 ICs that are extremely busy. 
As a result, it became very difficult to try to fit all the traces in on only two layers. There were a 
few traces that were placed on the power plane for short distances to keep them from having to 
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go long distances around the chips. The $66 each deal does not allow traces on internal planes, 
which meant that these traces, and several other traces near the ICs, had to be routed again to fit 
on only the outside layers. 

5.4 Initial Tests 
Upon arrival, the PCBs were tested using a continuity check on a multimeter. This was done to 
look for any shorts between the power planes and the ground plane as well as to check some of 
the more important nets which could damage an IC if incorrect. This check was necessary 
because the $66 each deal does not include electric testing on the boards. Electric testing would 
have guaranteed that all of the nets on all of the boards were exactly what there were supposed to 
be and were not shorted to any other nets. 

5.5 Board Renderings 
The pictures below were generated using the layer information from the PCB. They were created 
using GIMP and renderings of the Gerber-files exported by PADS. 

 

Figure 44 - The top layer of the PCB 
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Figure 45 - The bottom layer of the PCB 
 

5.6 Chapter Summary 
PADS absolutely made the design of the PCB much easier than other freely available software 
suites.  This is because it helped us check our layout to ensure that it could feasibly be produced.  
It also generates the correct industry standard files needed by the company to actually produce 
the boards and was able to keep the parts list on the PCB updated with any changes that were 
made in the schematic. The level of complexity seen in the above pictured PCB means that it 
cannot be produced by any equipment on campus and therefore had to be sent out to a third party 
company to be produced., which is why the industry standard files produced by PADS were so 
important.  This company also guaranteed a uniform impedance, which is essential for the design 
to function properly. 

  



 

51 
 

6 Construction, Debugging, and Testing 
There are several hundred surface mount components on this PCB, all of which need to be hand 
soldered.  Normally, a board of this complexity, would be put together by machines, but that 
option was not available due to budget constraints.  This also meant that all debugging due to 
damaged or incorrectly placed parts also had to be done by hand and that the testing had to be 
done incrementally throughout the construction. This section chronicles the process of 
assembling the first version and second version of the PCB for the transceiver. 

6.1 Soldering and Component Placement 
After the design of the PCB was complete and the boards were received, the next step towards 
building the transceiver was soldering down components. This was quite a technical problem in 
itself because of the extremely small package sizes of components on ICs required in the design. 
Some of the ICs had QFN type packages, such as the RF2052, with 32 pins in a 5mm by 5mm 
area. In addition to the small pin spacing, the pins were also partially under the IC, with a copper 
ground plane covering the remaining surface area under the IC. Figure 46 shows the package 
drawing for the RF2052 IC, taken from the data sheet. Since the ICs needed were only available 
in this type of package, and the team does not have experience soldering such small package 
sizes, expert help was needed by someone in order to fully populate the PCB. Thankfully, Bob 
Boisse was able to solder the ICs by hand after heating up a piece of solder under the chip to 
connect it to the ground pad. Once the chip was soldered in place and connected to the ground 
plane, he was able to heat the pins up enough so solder was wicked under them to make a good 
connection between the pins and the pad. Using this technique he was able to solder the RF2052 
on each side of the board, along with the ADF chips. 

 

 

Figure 46 - QFN Package Drawing for the RF2052 
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After the ICs were soldered to the board, the individual components and other ICs that were not 
soldered down by Bob needed to be soldered as well. There were two options for soldering down 
the rest of the components, by using solder paste or by hand soldering them using tweezers and a 
microscope. Solder paste is a pasty mix of powdered metal solder and flux that can be applied to 
the pads using a pump. Heating the paste causes the solder to flow onto the pins and pads it is in 
contact with, making an electrical connection. Figure 47 shows a typical view through the lens of 
the soldering microscope, with 0603 and 1206 sized components. After Bob’s recommendation, 
it was decided that the components would be placed by hand soldering them to the PCB, using 
tweezers, a microscope, and a fine tipped soldering iron. Since the design has over 300 
components, this step was quite a task. Most of the capacitors and resistors in the design had an 
0603 sized package, which initially made soldering them down difficult, but after a little practice 
the process became a lot easier. A good technique is to melt a little solder on the pad and then re-
melt it before putting the component down, just to keep it in place when the other side is 
soldered. After completely soldering the opposite side, more solder can be added where the 
component was initially tacked down. Figure 48 shows a microscope view of solder joints for 
some components on the board. 

 
Figure 47 - Microscope view of the PCB while soldering down components. 
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This was the basic technique for soldering down the rest of the components to the board. Various 
connection tests were made throughout the progress, in order to make sure the components were 
placed correctly and there were no shorts. Once enough components put down to test the transmit 
side, the PMC connectors were soldered to the underside, so the functionality could be verified 
by connecting it to the USRP. In the case that it was not functional the components on the other 
half of the board would not have been wasted. Once the transmit side was completely soldered, it 
was time to test and debug the PCB by connecting it to the USRP. 

 

 
Figure 48 - Microscope view of solder joints for three capacitors and an inductor. 

 

6.1.1 Second Soldered PCB (rev. A) 
The figures below show the final soldered version of the PCB used for testing and the results 
section. All components shown were soldered by hand by either Bob Boisse or the MQP team. 
PCBs were fabricated by Advanced Circuits. 
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Figure 49 -The top layer of the PCB 

 

Figure 50 - The bottom layer of the PCB. 
 

6.2 Testing and Debugging the first PCB 
When all the components were placed on the transmit side of the board, it was time to debug any 
problems that occurred when connecting it to the USRP. The initial test of the USRP’s I/O was 
done by plugging in the PCB when only the voltage regulators and the components associated 
with them were soldered down. This test was a success; the voltage regulators were able to be 
controlled through GNU Radio. This test also indicated the daughterboard was correctly 
connected to the USRP, in terms of power and I/O. 
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After this initial connection test, the rest of the transmit side was ready to be soldered. Pins and 
connections were tested with a multimeter occasionally for shorts, and all the pins on the PMC 
connector were tested for shorts after they were soldered. Once all the components on the 
transmit side were soldered to the PCB, and all connections between planes were checked for 
shorts, it was time to test the board by connecting it to the USRP. 

The first connection of the daughterboard to the USRP had a mysterious result. The I/O on the 
USRP was no longer working, so there was no way the voltage regulators for the daughterboard 
could be turned on to power it. It was initially thought that there had to be a short somewhere on 
the daughterboard. Oddly enough, the problem affected both sides of the USRP; I/O would no 
longer work even on daughterboards connected to the other daughterboard slot. After not finding 
a short or any logical reason behind this behavior, it was decided that another device would need 
to be made to power the daughterboard outside the USRP. This device simply needed to connect 
a 6 V supply to the correct pins on the PMC connector, along with the enable pin on the voltage 
regulators. 

After making this connector, it was found that the daughterboard was able to power up and 
supply the correct voltages as expected. This made the problem even more perplexing. It was 
suspected that it may have been the result of another problem, like too much noise being 
introduced to the amplifier stage or a missing EEPROM on the other side of the board, but none 
of these hypotheses turned out to affect the underlying problem. When a week of debugging 
went by without any results, it was decided that the best course of action would be to contact 
Matt Ettus, creator of the USRP and its daughterboards, to see if he has ever run into the same 
problem. Thankfully, his reply was prompt, asking for the schematic and the process used to 
debug the problem. After some short correspondences, Ettus determined that the problem was 
caused by the static protection diodes on the input to the ADF4360 PLL chips. Apparently, when 
the regulators power down, these static protection diodes on the SPI enable, clock, and data pins 
conduct and pull the inputs down when they are being driven high. This voltage drop and current 
sink made the FPGA unable to power any of the other IO on the board, thus shutting off the 
voltage regulators. 

The simple solution to this problem was to tie the voltage regulators high, so they could never 
shut off as long as they were plugged into the USRP. This modification was easily made to the 
board by cutting the I/O trace to the enable pin on the regulators and adding a jumper to 6 V that 
would make the enable pin on the regulator always high. This solution worked and the 
daughterboard was able to be powered up and tested. 

With the board able to be powered, the same basic code that was used to program the evaluation 
prototype was used to program the frequency on the RF2052 chip on the PCB. However, no 
leakage from the local oscillator could be observed on the output of the mixer. Many different 
frequencies were tested between the full range of frequencies between 300 and 2500 MHz, but 
none were observed on the output of the mixer. Thinking it may be a hardware problem, the 
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schematic of the evaluation board was more thoroughly reviewed, and it was found that the PLL 
loop, which had been omitted from the first PCB design, was actually required. Without this PLL 
loop, the frequency could not be synthesized in the RF2052, and the board was not functional. 
Due to the number and small size of the components needed to implement the PLL loop filters 
for both RF2052 chips on the transmit and receive sides of the PCB, it was not possible to 
incorporate them onto the board without doing a second revision of the PCB. 

6.3 Second PCB 
Since two major problems were identified in the first version of the PCB, the fixes for each were 
incorporated into a second version of the PCB. This included removing the digital I/O control 
lines to the 5V voltage regulators, and instead tying their enable pins high so they are always on. 
This also included adding the PLL loop filters for the two RF2052 chips on the PCB. Due to the 
tight placement of components around the RF2052 chips this was a somewhat difficult task, but 
was managed after several hours of work. The components and configuration of the PLL loop 
filter used are detailed in Section 4.2.1.3. Figure 51and Figure 52 highlight the differences 
between the two PCBs; the first version of the PCB do not have the PLL loop filter, while it was 
included in the second version of the PCBs. 

 
Figure 51 - Segment of the PCB with and without the PLL loop filter for the RF2052 on the transmit side on 

the first and second PCBs. 

 

Figure 52 - Segment of the PCB with and without the PLL loop filter for the RF2052 on the receive side on 
the first and second PCBs. 

6.4 Chapter Summary 
After many long hours of looking into a microscope and two different revisions of the PCB, the 
board was finally fully assembled and ready to operate within the USRP.  Once connected to the 
USRP, the team was able to start gathering results and data that will be analyzed in later sections. 
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7 Results 
Once all the hardware design and debugging was complete, the board was connected to the 
USRP and tested using GNU radio.  The results from the tests are documented and analyzed in 
the following sections.  This data is the result of the simulation, design, testing and construction 
discussed in all the previous sections of this document.  Based on the data from these tests, the 
overall design is evaluated according to the objectives set forth in the beginning of this paper. 

7.1 Transmitter 
The transmitter was successfully tested with the Mario II Overworld theme being broadcast 
across Atwater Kent at 94.1 MHz to a portable FM radio receiver.  This test was conducted using 
an additional amplifier, which added the additional power that was needed to broadcast the 
signal across that distance.  This amplifier was the GVA-84+ evaluation board connected in 
between the output of the board and the antenna. 

This test was later verified without the additional amplifier.  This was by broadcasting on open 
frequencies in the commercial FM radio bands to a clock radio that was less than a meter away 
from the USRP which had the board in it.  The tests were able to show that there were no 
frequencies within those bands that the radio could not hear the board transmitting on. 

These lower frequency tests were able to prove that the board was capable of transmitting a 
signal successfully, but they did not prove that the board was a wideband transceiver, capable of 
transmitting between 50 MHz and 2500 MHz.  The next step was simply to have the board 
transmit to the RFX2400 in another USRP at 2.5 GHz and see if the song could be heard exactly 
as it had at the lower frequency.  This would confirm the absolute upper end of the transmitting 
capabilities of the board, however, the absolute lower end still needed to be tested.  The 50 MHz 
test was also completed using two USRPs.  For this, the receiving USRP was set up to use the 
basic RX board, as the ADCs on the USRP motherboard are fast enough to directly decode a 
50 MHz transmission. 

As expected, both the 2.5 GHz and the 50 MHz transmissions were successful as the receiving 
boards received both transmissions.  However, as part of routine procedure, the signals were also 
watched using the spectrum analyzer connected directly to the SMA connector on the board, 
which actually caught some interesting data. The waveform that was previously produced during 
the 94.1 MHz experiment was much more ideal than the waveform that was produced at 
2.5 GHz.  These waveforms are shown as spectrograms below with the 94.1 MHz transmission 
in Figure 53 and the 2.5 GHz transmission in Figure 54. 
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Figure 53 - Spectrogram of FM transmission test at 94.1 MHz. 
 

Figure 53 shows a spectrogram of the transmission at 94.1 MHz, which is the frequency that was 
used to transmit the Mario song across the building to a portable FM radio receiver.  The 
waveform seen here on the spectrum analyzer is very high quality since its peak is over 40 dB 
greater than any of the surrounding noise.  The peak itself is a very clean shape, which falls off 
neatly at the edges of its bandwidth. The power level of the signal shown in the spectrogram in 
Figure 53 is -2.0 dBm, which is equal to 0.6 mW. 

The 2.5 GHz transmission yielded much less favorable results, which are shown in Figure 54. It 
can be seen that the peak power in the waveform is -27.5 dBm, or 1.78 µW.  This is roughly 354 
times less power than when transmitting at 94.1 MHz. A frequency dependent loss of this 
magnitude is most likely due to imperfect impedance matching across the design and power 
losses in the PCB traces. 
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Figure 54 - Spectrogram of FM transmission test at 2.5 GHz. 
 

When comparing Figure 53 to Figure 54, it is very important to note the overall shape and height 
of the peaks.  In Figure 53, the peak is distinctly higher and more cleanly shaped than the peak in 
Figure 54.  This clearly defined peak makes it much easier for the receiver to separate the desired 
signal from the accompanying noise by giving it a much higher signal to noise ratio (SNR). 

The board was evaluated logarithmically across the entire range of frequencies that it was 
designed to operate across.  The results from this evaluation can be seen in Table 3. 
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Table 3 - Transmitter experimental results 

Transmit 
Frequency 
(MHz) 

Image 
Frequency 
(MHz) 

Power 
(dBm) 

Next 
Peak 
(dBm) 

Delta 
(dBm) 

Image 
Power 
(dBm) 

Next 
Peak 
(dBm) 

RF2052 
VCO 

5.0 605.0 -9.3 -21.8 -12.5 -4.8 -14.0 3 
6.9 606.9 -6.0 -22.0 -16.0 -4.7 -14.6 3 
9.6 609.6 -4.2 -29.0 -24.8 -4.6 -15.2 3 
13.3 613.3 -2.6 -28.0 -25.4 -4.5 -16.0 3 
18.5 618.5 -2.3 -28.1 -25.8 -4.6 -15.6 3 
25.7 625.7 -2.3 -30.0 -27.7 -5.0 -26.2 3 
35.6 635.6 -2.4 -28.3 -25.9 -5.6 -23.9 3 
49.4 649.4 -2.4 -28.9 -26.5 -6.0 -31.1 3 
68.5 668.5 -2.3 -28.3 -26.0 -5.3 -31.6 3 
94.9 694.9 -2.2 -28.0 -25.8 -5.2 -30.3 2 
131.7 731.7 -2.5 -27.9 -25.4 -6.5 -30.3 2 
182.6 782.6 -2.5 -21.8 -19.3 -7.2 -30.8 1 
351.3 951.3 -3.1 -28.7 -25.6 -9.7 -35.1 3 
487.2 1087.2 -4.5 -29.7 -25.2 -10.0 -34.7 2 
675.7 75.7 -5.1 -30.8 -25.7 -2.6 -28.4 2 
937.1 337.1 -9.1 -33.6 -24.5 -3.1 -28.8 3 
1299.7 699.7 -12.5 -28.4 -15.9 -5.7 -19.5 1 
1802.6 1202.6 -16.9 -42.6 -25.7 -13.6 -37.9 2 
2500.0 1900.0 -27.6 -34.8 -7.2 -19.6 -25.5 1 

 

The first column in Table 3 is the frequency which the transmitter was set to using GNU radio.  
The second column is the image frequency that is created by the RF2052 mixer and transmitted 
along with the desired frequency.  The third column, marked as "Power" is the power level of the 
signal at the desired transmit frequency.  The column marked "next peak" is the power level of 
the highest power spurious emission within 50 MHz of either side of the desired signal, which is 
then compared to the power of the desired signal in the delta column.  An example of how this 
measurement was made can be seen in Figure 55. 
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Figure 55 - Marker designates what was considered to be the next peak when making the measurements 
found in Table 3 

 

Table 3 also has a column labeled "image power," which is the power of the image frequency.  
The next column is analogous to the first "next peak" column but for the image frequency. The 
final column notes which VCO in the RF2052 is used to generate the desired transmit frequency. 

Plotting the data in Table 3 reveals the transmit power over the expected frequency range and is 
thus an effective tool to determine whether or not the transmitter met the design objectives 
outlined in the beginning of this report. Figure 56 shows the measured signal output power 
versus frequency from 5 to 2500 MHz, as measured by the spectrum analyzer connected directly 
to the SMA connector on the transmitter. As is evident in the image, the transmitter is effective 
over the range initially proposed; from 100 to 1300 MHz. Between 10 and 250 MHz the board 
performs extremely well, with an output power of roughly 1 mW, with the desired transmit 
signal around 25 dB higher than all spurious emissions around the signal. From about 350 MHz 
to 2500 MHz the output power decreases all the way down to about -28 dBm. Despite this 
decrease, the signal is still well above the greatest spurious emission in a ±50 MHz range around 
the signal, and thus still usable in many situations. Figure 58 shows the differences between 
signal power and spurious emission power over the same frequency range. 
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Figure 56 - Signal frequency versus power from 5 MHz to 2500 MHz. 
 

 

Figure 57 - Signal image frequency versus power for signals ranging from 5 to 2500 MHz. 
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Figure 58 - Difference between signal power and spurious emission power for signals ranging from 5 MHz to 
2500 MHz. 

 

The reason for the VCO column in Table 3 is that during the testing, it was noted that a few of 
the frequencies produced many spurious emissions around the desired transmission frequency. 
These frequencies can be seen in Figure 58 as 182.6 MHz, 1299.7 MHz, and 2500 MHz. When 
the VCO that was used for each transmission was noted, it was found that the transmissions that 
had the numerous spurious emissions used VCO1 in the RF2052. To test the theory that VCO1 
creates numerous spurious emissions while the other two do not, two transmissions at the same 
frequency were examined, one using VCO1 and one using VCO2. The frequency for the LO in 
the RF2052 that was chosen was 1972 MHz divided by 4, or 493 MHz. This frequency was 
chosen because according to the datasheet, 1972 MHz can be generated by both VCO1 and 
VCO2, and the divide by 4 is used to bring the frequency lower to rule out the possibility of the 
cause of the spurious emissions being that the frequency is too high. Figure 59 shows this 
transmission using VCO2, and Figure 60 shows it using VCO1. 
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Figure 59 - Transmission with RF2052 LO frequency set to 493 MHz using VCO2. 
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Figure 60 - Transmission with RF2052 LO frequency set to 493 MHz using VCO1. 
 

It can be seen from these figures that while both VCOs are capable of generating the same 
desired frequency, and both transmissions show the desired signal at the same power level, when 
VCO1 is used there are many more spurious emissions surrounding the desired frequency, and 
they are at higher power levels as well. Initially it was thought that this behavior was solely the 
result of VCO1. However, after doing some more testing into the matter, it was found that VCO2 
could generate the exact same spectrogram as seen in Figure 60 by increasing its mixer current 
above 5 mA. 

Unfortunately it was never determined what really causes these many spurious emissions, why 
they occur with VCO2 and VCO3 with a mixer current above 5 mA and at all mixer current 
levels with VCO1, and if it is even actually a problem or not. Further investigation into the 
hardware and all the RF2052 register settings would have to be done, but due to time constraints 
no further investigation was possible. 

7.2 Receiver 
Tuning the receive side in software was almost identical to tuning the transmit side. The only 
difference was the addition of code to set the low speed DAC to control the variable gain 
amplifier (VGA) control pin on the AD8348 (quadrature demodulator). All initial tests of the 
receive side, however, were unsuccessful. FM transmissions were sent with a second USRP over 
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a coax cable using at both low frequencies using a Basic TX board and high frequencies using an 
RFX2400 board.  Since the receive functionality did not appear to work, the output from the two 
local oscillators were checked using a spectrum analyzer to make sure they were functioning 
properly. The output from the ADF4360-8 was confirmed to be working, as the frequency of its 
output matched the frequency programmed to it in GNU Radio. Next, the output of the RF2052 
was checked to make sure the leakage from the local oscillator was there. Again, the 
programmed frequency could be seen. 

These results showed that while indeed both the local oscillators were functioning correctly, the 
signal from the other USRP was not successfully being mixed, since it was not being received in 
GNU Radio. It was next decided to check the output of the RF2052 while sending a signal from 
the other USRP to see if it was being mixed at all after the first mixer. A 100 MHz FM signal 
was sent from the other USRP, and the RF2052 LO frequency was programmed to 400 MHz to 
mix the signal to 300 MHz. The second LO (ADF4360-8) was set to 295 MHz and the USRP's 
digital downconverter LO was set to 5 MHz to ultimately bring the 100 MHz FM signal to DC. 
When this test was first run, as before, the signal was not received by GNU Radio. However, as 
soon as the spectrum analyzer probe was attached to the output of the RF2052 mixer to see if the 
signal could be seen at 300 MHz, the audio encoded in the FM signal started being received by 
GNU Radio! The signal, however, could not be seen at 300 MHz as expected. This led to a 
detailed investigation into the details of the interfacing requirements of both the RF2052 and 
AD8348 ICs. 

It was eventually found after reading the mixer section in the datasheet in detail that the RF 
mixer in the RF2052 receives its DC operating current through its output port in a similar fashion 
to that of the amplifiers used in the design. The reason that this was missed during the design of 
the circuit was because the differential output of the mixer is typically converted to a single 
ended 50 Ω output via a center tapped balun, which happens to provide this DC current. Because 
the differential output of this mixer goes into a differential input on the AD8348, each with a 
differential impedance of 200 Ω, it appeared to be a perfect match and not require any 
interfacing circuitry other than AC coupling capacitors, and thus the DC current supply 
requirement was overlooked. 

To correct this problem, both lines of the differential output of the RF2052 mixer were connected 
to 3.3 V through the ADCH-80A RF chokes before the AC coupling capacitors, as done with the 
amplifiers. A photo of this modification is shown below in Figure 61. 
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Figure 61 - Addition of RF chokes to the output of the RF2052 mixer. 
 

The same 100 MHz transmission test described above was run again once the RF chokes were 
added. Figure 62 below shows the 100 MHz FM signal generated by the second USRP after the 
MGA−82563 LNA. 
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Figure 62 - 100 MHz signal from Basic TX board generated for testing the receiver. 
 

After the LNA, the single ended 100 MHz signal is converted to a differential signal and fed into 
the mixer input of the RF2052. With the RF2052 LO programmed to 400 MHz, this signal is 
expected to be found at 300 MHz at the mixer output as described above. This time, with the RF 
chokes in place, that is exactly what happens, and can be seen below in Figure 63. 
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Figure 63 - 100 MHz signal mixed to 300 MHz. This shows that the LO and mixer in the receive side RF2052 
are both working. 

 

This result shows the RF2052 mixer now working. Unfortunately, the signal still would not be 
received by GNU Radio. The LO input to the AD8348 demodulator was again checked to make 
sure it was 295 MHz as programmed. Figure 64 below shows the spectrum analyzer confirming 
that it indeed was. 
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Figure 64 - Local oscillator signal for the AD8348 quadrature demodulator at 295 MHz. This shows that the 
ADF4360-8 frequency synthesizer is working correctly. 

 

The IF signal of 300 MHz along with the LO signal of 295 MHz both going into the demodulator 
should result in a 5 MHz signal at the output. However, when the output was checked, no such 
signal could be found as shown below in Figure 65. 
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Figure 65 - Output from the AD8348 quadrature demodulator. The input signal is at 300 MHz, and the LO is 
at 295 MHz. The output should be a signal at 5 MHz.  The fact that it is not indicates that the IC is damaged. 
 

As the AD8348 is receiving the correct voltage of 5 V at its power pins, and its enable pins are 
set correctly, and because everything else appears to be correct, the most likely explanation for it 
not functioning correctly is that the chip itself is damaged. Unfortunately, due to time constraints 
it was not possible to replace the chip with another one to find out for sure, and thus further 
testing of the receive side was not possible. 

 

7.3 Chapter Summary 
It is clear that there are still a few minor issues with the design that need to be ironed out in a 
final revision of the board.  The issues with the VCOs in the mixer in the transmit side can be 
proven to be either a faulty chip or just how the design functions after another PCB is assembled.  
The extra components can easily be fit into the design for future boards.  Some of the 
possibilities for problems with the demodulator can be eliminated by simply replacing it with a 
new chip, in case the current one was damaged before or during assembly. 
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Overall, the results point to a successful design since it was able to transmit a usable signal over 
the entire desired range without changing any hardware on the board.  The few remaining issues 
with the receive side will most likely be ironed out within the next week and final 
recommendations for a working product will be made. 
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8 Conclusion 
Despite the progress made in testing and demonstrating the functionality of the transmitter and 
receiver, there are still some pressing issues that should be addressed if someone else is 
interested in continuing this project.  These issues include the following:  

• Filter design 

• Fully integrate daughterboard control in GNU Radio 

• Better board design, matching circuits, power output 

• Standalone unit design 

Since the final design of the daughterboard has no image rejection filters, there is a lot of 
spurious emissions on the output of the transmitter. Figure 66 shows the emissions associated 
with a transmitted signal of 9 MHz. Unfortunately, the frequency range of the daughterboard 
makes it rather difficult to design any type of filter to cover the entire range of the transmitter. 
One questionably feasible approach to this problem would be to design a software controlled 
bank of filters that would change the signal path according the transmitted signal. The 
complexity of this design and costs associated with creating it may outweigh the benefit of 
having such a filter bank, since communications can be established without such filtering, but 
operation of such a device at higher power outputs would be prohibited by the FCC. 

 
Figure 66 - Image frequency and spurious emissions on the output of the transmitter. 
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The hardware design was a major focus throughout this project and as a result, there is still a lot 
of work that can be done to fully integrate the board into GNU Radio.  A separate entry would 
need to be created in GNU Radio that contains all of the appropriate registers and functions to 
control the daughterboard. In addition, the code for the daughterboard would need to be included 
in future releases of GNU Radio. Unless the MMP9000 goes into production, further code 
incorporation is not entirely necessary. 

The next point for improvement is the overall PCB design in regards to parasitic effects of the 
PCB traces.  At higher frequencies the gain is attenuated and thus transmits at lower power.  
Improved design could take a serious look at trace impedance calculations and optimize the PCB 
for maximum efficiency.  

Finally, there are many more possible applications for this design should it be made into a stand 
alone unit.  Although this task is largely unnecessary because the transceiver was designed to 
operate with GNU Radio and the USRP, the components used in the design could be adapted to 
other applications or software radio platforms. A standalone unit could help reduce cost while 
still providing a large frequency range for cognitive radio applications.  

The final version of the PCB could not have been possible to obtain without the careful planning 
and methodical work described throughout this report.  This began with the initial design, and 
led to the need to test as many parts as possible using simulation software.  From there a few 
changes were made to the schematics before importing them into a PCB layout program.  Quite a 
lot of information was learned from the existing daughterboards, whose designs were taken into 
consideration throughout the design of this PCB. 

The first version of the PCB was not without errors.  After all the parts had been soldered down, 
a long debugging process began to try to correct the errors.  This process included comparing the 
PCB layout against the final design schematics as well as verifying all decisions that were made 
in the schematics against what was recommended in the datasheets.  This process eventually led 
to the team requesting the help of Matt Ettus, the lead designer of the USRP and its 
daughterboards, who was able to offer suggestions that were later incorporated into a second 
version of the PCB. 

The second version of the PCB is what was used to obtain the data for the results section, as its 
transmit side works better than expected.  The board was able to transmit a clearly audible FM 
signal across an entire building and then switch to a frequency almost 30 times higher without 
any kind of hardware modifications. 

There were three objectives that were put forth at the beginning of this project.  The first of these 
was to design and implement an RF frontend that is tunable between 100 MHz and 1.3 GHz. 
However, due to the particular component choices and topology chosen for the design, the final 
working frequency range for the board is between 50 MHz and 2.5 GHz, which clearly exceeds 
the first objective. 
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The second objective was to design the RF frontend described in the first objective as a 
daughterboard for the USRP and thus to work with GNU Radio.  This meant that less hardware 
and software would have to be designed and implemented to test the frontend, since it would 
allow it to work with an existing software radio testbed. Also, the USRP is a strong platform to 
develop for because of its open nature. This means that all documentation for the USRP is freely 
available online, which made this project much easier to develop. This objective is very close to 
being met, since the board is a fully compatible daughterboard for the USRP, and there is already 
some code written for it to allow it to be controlled by GNU Radio, although it is not fully 
integrated into the GNU Radio software as other daughterboards are. 

The third objective was to have the device capable of both full and half duplex operation.  This 
functionality was desired because there are already daughterboards made for the USRP that have 
this functionality.  This is possible because there are DACs and ADCs on the USRP motherboard 
that have been designed to transmit and receive simultaneously.  The two SMA connectors and 
antenna switch configuration in our design give it the ability to route either the receive or 
transmit path to one antenna, or to route both paths to their own antennas at the same time. This 
allows it to switch between full and half-duplex modes. The antenna switch configuration has 
been confirmed to work and be controllable from within GNU Radio, and thus the third and final 
objective has been met. 

There will always be a need for radios smaller radios with greater capabilities, suggesting that 
the analog hardware must become simpler while the software becomes more complex.  This 
project sought to anticipate this trend in radio design, opening up more frequencies for use in 
software radio and cognitive radio applications.  The goal of a wideband transceiver is to reduce 
the number of RF frontends that are required to cover a large range of frequencies.  Having 
several different frontends can be very costly, since it requires more components, board real 
estate, and power. This project is important because it demonstrates the feasibility, versatility, 
and affordability of a widely tunable RF frontend. 
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10 Appendix A  - Source Code 

10.1  fmtx_mmp.py 
#!/usr/bin/env python 
# 
# Copyright 2005,2007 Free Software Foundation, Inc. 
#  
# This file is part of GNU Radio 
#  
# GNU Radio is free software; you can redistribute it and/or modify 
# it under the terms of the GNU General Public License as published by 
# the Free Software Foundation; either version 3, or (at your option) 
# any later version. 
#  
# GNU Radio is distributed in the hope that it will be useful, 
# but WITHOUT ANY WARRANTY; without even the implied warranty of 
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
# GNU General Public License for more details. 
#  
# You should have received a copy of the GNU General Public License 
# along with GNU Radio; see the file COPYING.  If not, write to 
# the Free Software Foundation, Inc., 51 Franklin Street, 
# Boston, MA 02110-1301, USA. 
#  
 
from gnuradio import gr, eng_notation 
from gnuradio import usrp 
from gnuradio import audio 
from gnuradio import blks2 
from gnuradio.eng_option import eng_option 
from optparse import OptionParser 
from usrpm import usrp_dbid 
import time 
import math 
import sys 
 
from gnuradio.wxgui import stdgui2, fftsink2 
#from gnuradio import tx_debug_gui 
import wx 
 
SPI_ENABLE_TX_A  = usrp.SPI_ENABLE_TX_A 
SPI_ENABLE_RX_A  = usrp.SPI_ENABLE_RX_A 
SPI_ENABLE_TX_B  = usrp.SPI_ENABLE_TX_B 
SPI_ENABLE_RX_B  = usrp.SPI_ENABLE_RX_B 
SPI_FMT_LSB      = usrp.SPI_FMT_LSB 
SPI_FMT_MSB      = usrp.SPI_FMT_MSB 
SPI_FMT_HDR_MASK = usrp.SPI_FMT_HDR_MASK 
SPI_FMT_HDR_0    = usrp.SPI_FMT_HDR_0 
SPI_FMT_HDR_1    = usrp.SPI_FMT_HDR_1 
SPI_FMT_HDR_2    = usrp.SPI_FMT_HDR_2 
 
 
RFMD_ENX_BIT = 4 
RFMD_SCLK_BIT = 3 
RFMD_SDATA_BIT = 2 
RFMD_ENABLE_BIT = 5 
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RFMD_MODE_BIT = 0 
 
TR_SWITCH_BIT = 6 
 
RFMD_ENX = (1 << RFMD_ENX_BIT) 
RFMD_SCLK = (1 << RFMD_SCLK_BIT) 
RFMD_SDATA = (1 << RFMD_SDATA_BIT) 
RFMD_ENABLE = (1 << RFMD_ENABLE_BIT) 
RFMD_MODE = (1 << RFMD_MODE_BIT) 
 
TR_SWITCH = (1 << TR_SWITCH_BIT) 
 
 
def _write_all(u, side, R, control, N): 
 """ 
 Write R counter latch, control latch and N counter latch to VCO. 
 
 Adds 10ms delay between writing control and N 
 
 @param R: 24-bit R counter latch 
 @type R: int 
 @param control: 24-bit control latch 
 @type control: int 
 @param N: 24-bit N counter latch 
 @type N: int 
 """ 
 _write_R(u, side, R) 
 _write_control(u, side, control) 
 time.sleep(0.010) 
 _write_N(u, side, N) 
  
def _write_control(u, side, control): 
 _write_it(u, side, (control & ~0x3) | 0) 
  
def _write_R(u, side, R): 
 _write_it(u, side, (R & ~0x3) | 1) 
  
def _write_N(u, side, N): 
 _write_it(u, side, (N & ~0x3) | 2) 
  
def _write_it(u, side, v): 
 s = ''.join((chr((v >> 16) & 0xff), chr((v >>  8) & 0xff), chr(v & 
0xff))) 
 # fix to write to A or B, not just B 
 u._write_spi(0, SPI_ENABLE_TX_B, SPI_FMT_MSB | SPI_FMT_HDR_0, s) 
 
 
def set_adf4360(u, side, target_freq): 
 
 if target_freq < 280 or target_freq > 320: 
  return -1 
 
 # R-Register Common Values 
 d_BSC   = 3  # bits 21,20 Div by 8 to be safe 
 d_TEST  = 0  # bit 19 
 d_LDP   = 1  # bit 18 
 d_ABP   = 0  # bit 17,16   3ns 
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 d_R_DIV = 64 # bits 15:2 
 
 # N-Register Common Values 
 d_CPG   = 0  # bit 21  CP current setting 1 is permanently used 
 d_B_DIV = int(target_freq) # bits 20:8 (300/64*16)=75 
 
 # Control Register Common Values 
 d_PD    = 0  # bits 21,20   Normal operation (3 powers down, 0 powers 
up) 
 d_CP2   = 7  # bits 19:17   2.5mA 
 d_CP1   = 7  # bits 16:14   2.5mA 
 d_PL    = 0  # bits 13,12   3.5mA 
 d_MTLD  = 1  # bit 11       enabled 
 d_CPG   = 0  # bit 10       CP setting 1 
 d_CP3S  = 0  # bit 9        Normal 
 d_PDP   = 1  # bit 8        Positive 
 d_MUXOUT= 1  # bits 7:5     Digital Lock Detect 
 d_CR    = 0  # bit 4        Normal 
 d_PC    = 1  # bits 3,2     Core power 5mA 
 
 control = (d_PD<<20) | (d_CP2<<17) | (d_CP1<<14) | (d_PL<<12) | 
(d_MTLD<<11) | (d_CPG<<10) | \ 
  (d_CP3S<<9) | (d_PDP<<8) | (d_MUXOUT<<5) | (d_CR<<4) | (d_PC<<2) 
 
 N = (d_CPG<<21) | (d_B_DIV<<8) 
 
 R = (d_BSC<<20) | (d_TEST<<19) | (d_LDP<<18) | (d_ABP<<16) | 
(d_R_DIV<<2) 
 
 _write_all(u, side, R, control, N) 
 
 return 0 
 
def write_rfmd_reg(u, side, addr, data, mode): 
 if mode: 
  u.write_io(side, RFMD_MODE, RFMD_MODE) 
 else: 
  u.write_io(side, 0, RFMD_MODE) 
 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u._write_oe(side, RFMD_SDATA, RFMD_SDATA) # set sdata as output 
 u.write_io(side, 0, RFMD_ENX|RFMD_SCLK|RFMD_SDATA) 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u.write_io(side, 0, RFMD_SCLK|RFMD_SDATA) # set write 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
     
 for i in range(7): 
  databit = ((addr>>(6-i)) & 1) << RFMD_SDATA_BIT 
  u.write_io(side, databit, RFMD_SDATA|RFMD_SCLK) 
  u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 
 for i in range(16): 
  databit = ((data>>(15-i)) & 1) << RFMD_SDATA_BIT 
  u.write_io(side, databit, RFMD_SDATA|RFMD_SCLK) 
  u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 
 u.write_io(side, RFMD_ENX, RFMD_SCLK|RFMD_ENX) 
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 u._write_oe(side, 0, RFMD_SDATA) # set sdata as input 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u.write_io(side, 0, RFMD_SCLK) 
 
 
def read_rfmd_reg(u, side, addr, mode): 
 if mode: 
  u.write_io(side, RFMD_MODE, RFMD_MODE) 
 else: 
  u.write_io(side, 0, RFMD_MODE) 
 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u._write_oe(side, RFMD_SDATA, RFMD_SDATA) # set sdata as output 
 u.write_io(side, 0, RFMD_ENX|RFMD_SCLK|RFMD_SDATA) 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u.write_io(side, RFMD_SDATA, RFMD_SCLK|RFMD_SDATA) # set read 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
     
 for i in range(7): 
  databit = ((addr>>(6-i)) & 1) << RFMD_SDATA_BIT 
  u.write_io(side, databit, RFMD_SDATA|RFMD_SCLK) 
  u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 
 u._write_oe(side, 0, RFMD_SDATA) # set sdata as input 
 u.write_io(side, 0, RFMD_SCLK) 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u.write_io(side, 0, RFMD_SCLK) 
 
 data = 0x0000 
 for i in range(16): 
  u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
  data = data << 1 
  data = data | ((u.read_io(side) >> RFMD_SDATA_BIT) & 1) 
  u.write_io(side, 0, RFMD_SCLK) 
 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u.write_io(side, RFMD_ENX, RFMD_SCLK|RFMD_ENX) 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u.write_io(side, 0, RFMD_SCLK) 
 
 return data 
 
def set_rfmd_freq(u, side, freq): 
 
 if freq > 2500e6: 
  return -1 
 elif freq >= 1200e6: 
  lodiv = 0 
 elif freq >= 600e6: 
  lodiv = 1 
 elif freq >= 200e6: 
  lodiv = 2 
 else: 
  return -1 
 
 vco_freq = freq*(2**lodiv) 
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 if vco_freq >= 1972e6: 
  print "VCO 1" 
  vcosel = 0 
 elif vco_freq >= 1556e6: 
  print "VCO 2" 
  vcosel = 1 
 else: 
  print "VCO 3" 
  vcosel = 2 
 
 R = 1 
 N = vco_freq * R / 26.0e6 
 _N = int(math.floor(N)) 
 _NUM = int(round((N - _N) * 2**24)) 
 _NUM_MSB = int(math.floor(_NUM / 2**8)) 
 _NUM_LSB = int(_NUM - (2**8 * _NUM_MSB)) 
 
 print vco_freq 
 print _N 
 print _NUM_MSB 
 print _NUM_LSB 
 
 data = read_rfmd_reg(u, side, 0x10, True) 
 #data = data & 0x3CFF 
 #data = data | ((vcosel<<14) | (lodiv<<8))  # P2_VCOSEL = VCO2, 
P2_LODIV = 2 
 data = data & 0x003F 
 # enable only frequency calibration 
 data = data | ((vcosel<<14) | (lodiv<<8) | (0<<10) | (3<<12))  # 
P2_VCOSEL = VCO2, P2_LODIV = 2 
 print bin(data) 
 write_rfmd_reg(u, side, 0x10, data, True) 
 
 data = read_rfmd_reg(u, side, 0x03, True) 
 data = data & 0x0FFF 
 data = data | 0x1000  # CLK_DIV = 1 
 print bin(data) 
 write_rfmd_reg(u, side, 0x03, data, True) 
 
 # 69.69230076923 
 # _N = 69 
 # _NUM = 11614996 
 # _NUM_MSB = 45371 
 # _NUM_LSB = 20 
 
 # P2_NUM_MSB = 45371 
 write_rfmd_reg(u, side, 0x11, _NUM_MSB, True) 
 
 data = read_rfmd_reg(u, side, 0x12, True) 
 data = data & 0x00FF 
 data = data | (_NUM_LSB<<8)  # P2_NUM_LSB = 20 
 print bin(data) 
 write_rfmd_reg(u, side, 0x12, data, True) 
 
 data = read_rfmd_reg(u, side, 0x13, True) 
 data = data & 0x007F 
 data = data | (_N<<7)  # P2_N = 69 
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 print bin(data) 
 write_rfmd_reg(u, side, 0x13, data, True) 
 
 return 0 
 
def bin(x): 
 return ''.join(x & (1 << i) and '1' or '0' for i in range(15,-1,-1)) 
 
def setup_mmp9000(u, side, freq): 
 lo1 = 295e6 
 lo2 = freq - 300e6 
 if lo2 < 300e6: 
  lo2 = freq+300e6 
 
 print (300e6+lo2) / 1e6 
 print (300e6-lo2) / 1e6 
 
 # setup the digital I/O 
 u._write_oe(side, RFMD_ENX|RFMD_SCLK|RFMD_ENABLE|RFMD_MODE|TR_SWITCH, 
0xffff) 
 u.write_io(side, RFMD_ENX, 
RFMD_ENX|RFMD_SCLK|RFMD_ENABLE|RFMD_MODE|TR_SWITCH) 
 
 #time.sleep(1) 
 
 # set polarity negative and enable active loop filter 
 data = read_rfmd_reg(u, side, 0x00, True) 
 data = data & 0xfe7f 
 data = data | 0x0180 
 write_rfmd_reg(u, side, 0x00, data, True) 
 
 # set mixer output current 
 data = read_rfmd_reg(u, side, 0x01, True) 
 data = data & 0xf8ff 
 data = data | 0x0100  # 5mA 
 write_rfmd_reg(u, side, 0x01, data, True) 
 
 # set charge pump current 
 data = read_rfmd_reg(u, side, 0x10, True) 
 data = data & 0xffc0 
 data = data | 31 # 31 is default 
 write_rfmd_reg(u, side, 0x10, data, True) 
 
 # tune the RF2052 frequency 
 if set_rfmd_freq(u, side, lo2) == -1: 
  return -1 
 
 # enable the ADF4360 and RF2052 
 u.write_io(side, RFMD_ENABLE, RFMD_ENABLE) 
 
 
 # configure and tune the ADF4360 
 if set_adf4360(u, side, lo1/1e6) == -1: 
  return -1 
 
 return 0 
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######################################################## 
# instantiate one transmit chain for each call 
 
class pipeline(gr.hier_block2): 
    def __init__(self, filename, lo_freq, audio_rate, if_rate): 
 
        gr.hier_block2.__init__(self, "pipeline", 
                                gr.io_signature(0, 0, 0),                    
# Input signature 
                                gr.io_signature(1, 1, gr.sizeof_gr_complex)) 
# Output signature 
 
        src = gr.file_source (gr.sizeof_float, filename, True) 
        fmtx = blks2.nbfm_tx (audio_rate, if_rate, max_dev=5e3, tau=75e-6) 
         
        # Local oscillator 
        lo = gr.sig_source_c (if_rate,        # sample rate 
                              gr.GR_SIN_WAVE, # waveform type 
                              lo_freq,        #frequency 
                              1.0,            # amplitude (orig 1.0) 
                              0)              # DC Offset 
        mixer = gr.multiply_cc () 
   
        self.connect (src, fmtx, (mixer, 0)) 
        self.connect (lo, (mixer, 1)) 
        self.connect (mixer, self) 
 
class fm_tx_block(stdgui2.std_top_block): 
    def __init__(self, frame, panel, vbox, argv): 
        MAX_CHANNELS = 7 
        stdgui2.std_top_block.__init__ (self, frame, panel, vbox, argv) 
 
        parser = OptionParser (option_class=eng_option) 
        parser.add_option("-T", "--tx-subdev-spec", type="subdev", 
default=None, 
                          help="select USRP Tx side A or B") 
        parser.add_option("-f", "--freq", type="eng_float", default=None, 
                           help="set Tx frequency to FREQ [required]", 
metavar="FREQ") 
        parser.add_option("-n", "--nchannels", type="int", default=4, 
                           help="number of Tx channels [1,4]") 
        #parser.add_option("","--debug", action="store_true", default=False, 
        #                  help="Launch Tx debugger") 
        (options, args) = parser.parse_args () 
 
        if len(args) != 0: 
            parser.print_help() 
            sys.exit(1) 
 
        if options.nchannels < 1 or options.nchannels > MAX_CHANNELS: 
            sys.stderr.write ("fm_tx4: nchannels out of range.  Must be in 
[1,%d]\n" % MAX_CHANNELS) 
            sys.exit(1) 
         
        if options.freq is None: 
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            sys.stderr.write("fm_tx4: must specify frequency with -f FREQ\n") 
            parser.print_help() 
            sys.exit(1) 
 
        # ---------------------------------------------------------------- 
        # Set up constants and parameters 
 
        self.u = usrp.sink_c ()       # the USRP sink (consumes samples) 
 
        self.dac_rate = self.u.dac_rate()                    # 128 MS/s 
        self.usrp_interp = 400 
        self.u.set_interp_rate(self.usrp_interp) 
        self.usrp_rate = self.dac_rate / self.usrp_interp    # 320 kS/s 
        self.sw_interp = 10 
        self.audio_rate = self.usrp_rate / self.sw_interp    # 32 kS/s 
 
        # determine the daughterboard subdevice we're using 
        if options.tx_subdev_spec is None: 
            options.tx_subdev_spec = usrp.pick_tx_subdevice(self.u) 
 
        m = usrp.determine_tx_mux_value(self.u, options.tx_subdev_spec) 
        #print "mux = %#04x" % (m,) 
        self.u.set_mux(m) 
        self.subdev = usrp.selected_subdev(self.u, options.tx_subdev_spec) 
 
        ################ MMP9000 DB CODE ################## 
        if setup_mmp9000(self.u, self.subdev.which(), options.freq) == -1: 
            print "frequency out of range" 
            raise SystemExit 
        ################################################### 
 
        print "Using TX d'board %s" % (self.subdev.side_and_name(),) 
 
        self.subdev.set_gain(self.subdev.gain_range()[1])    # set max Tx 
gain 
        #if not self.set_freq(options.freq): 
        if not self.set_freq(5e6): 
            freq_range = self.subdev.freq_range() 
            print "Failed to set frequency to %s.  Daughterboard supports %s 
to %s" % ( 
                eng_notation.num_to_str(options.freq), 
                eng_notation.num_to_str(freq_range[0]), 
                eng_notation.num_to_str(freq_range[1])) 
            raise SystemExit 
        self.subdev.set_enable(True)                         # enable 
transmitter 
 
        sum = gr.add_cc () 
 
        # Instantiate N NBFM channels 
        step = 25e3 
        offset = (0 * step, 1 * step, -1 * step, 2 * step, -2 * step, 3 * 
step, -3 * step) 
        for i in range (options.nchannels): 
            t = pipeline("audio-%d.dat" % (i % 4), offset[i], 
                         self.audio_rate, self.usrp_rate) 
            self.connect(t, (sum, i)) 
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  #orig gain = 4000 / channel count 
        gain = gr.multiply_const_cc (4000.0 / options.nchannels) 
 
        # connect it all 
        self.connect (sum, gain) 
        self.connect (gain, self.u) 
 
        # plot an FFT to verify we are sending what we want 
        if 1: 
            post_mod = fftsink2.fft_sink_c(panel, title="Post Modulation", 
                                           fft_size=512, 
sample_rate=self.usrp_rate, 
                                           y_per_div=20, ref_level=40) 
            self.connect (sum, post_mod) 
            vbox.Add (post_mod.win, 1, wx.EXPAND) 
             
 
        #if options.debug: 
        #    self.debugger = tx_debug_gui.tx_debug_gui(self.subdev) 
        #    self.debugger.Show(True) 
 
 
    def set_freq(self, target_freq): 
        """ 
        Set the center frequency we're interested in. 
 
        @param target_freq: frequency in Hz 
        @rypte: bool 
 
        Tuning is a two step process.  First we ask the front-end to 
        tune as close to the desired frequency as it can.  Then we use 
        the result of that operation and our target_frequency to 
        determine the value for the digital up converter.  Finally, we feed 
        any residual_freq to the s/w freq translater. 
        """ 
 
        r = self.u.tune(self.subdev.which(), self.subdev, target_freq) 
        if r: 
            print "r.baseband_freq =", 
eng_notation.num_to_str(r.baseband_freq) 
            print "r.dxc_freq      =", eng_notation.num_to_str(r.dxc_freq) 
            print "r.residual_freq =", 
eng_notation.num_to_str(r.residual_freq) 
            print "r.inverted      =", r.inverted 
             
            # Could use residual_freq in s/w freq translator 
            return True 
 
        return False 
 
def main (): 
    app = stdgui2.stdapp(fm_tx_block, "Multichannel FM Tx", nstatus=1) 
    app.MainLoop () 
 
if __name__ == "__main__": 
 main () 
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10.2 fmrx_mmp.py 
#!/usr/bin/env python 
# 
# Copyright 2005,2006,2007,2009 Free Software Foundation, Inc. 
#  
# This file is part of GNU Radio 
#  
# GNU Radio is free software; you can redistribute it and/or modify 
# it under the terms of the GNU General Public License as published by 
# the Free Software Foundation; either version 3, or (at your option) 
# any later version. 
#  
# GNU Radio is distributed in the hope that it will be useful, 
# but WITHOUT ANY WARRANTY; without even the implied warranty of 
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
# GNU General Public License for more details. 
#  
# You should have received a copy of the GNU General Public License 
# along with GNU Radio; see the file COPYING.  If not, write to 
# the Free Software Foundation, Inc., 51 Franklin Street, 
# Boston, MA 02110-1301, USA. 
#  
 
from gnuradio import gr, gru, eng_notation, optfir 
from gnuradio import audio 
from gnuradio import usrp 
from gnuradio import blks2 
from gnuradio.eng_option import eng_option 
from gnuradio.wxgui import slider, powermate 
from gnuradio.wxgui import stdgui2, fftsink2, form 
from optparse import OptionParser 
from usrpm import usrp_dbid 
import sys 
import time 
import math 
import wx 
 
SPI_ENABLE_TX_A  = usrp.SPI_ENABLE_TX_A 
SPI_ENABLE_RX_A  = usrp.SPI_ENABLE_RX_A 
SPI_ENABLE_TX_B  = usrp.SPI_ENABLE_TX_B 
SPI_ENABLE_RX_B  = usrp.SPI_ENABLE_RX_B 
SPI_FMT_LSB      = usrp.SPI_FMT_LSB 
SPI_FMT_MSB      = usrp.SPI_FMT_MSB 
SPI_FMT_HDR_MASK = usrp.SPI_FMT_HDR_MASK 
SPI_FMT_HDR_0    = usrp.SPI_FMT_HDR_0 
SPI_FMT_HDR_1    = usrp.SPI_FMT_HDR_1 
SPI_FMT_HDR_2    = usrp.SPI_FMT_HDR_2 
 
 
RFMD_ENX_BIT = 4 
RFMD_SCLK_BIT = 3 
RFMD_SDATA_BIT = 2 
RFMD_ENABLE_BIT = 5 
RFMD_MODE_BIT = 0 
 
TR_SWITCH_BIT = 6 
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RFMD_ENX = (1 << RFMD_ENX_BIT) 
RFMD_SCLK = (1 << RFMD_SCLK_BIT) 
RFMD_SDATA = (1 << RFMD_SDATA_BIT) 
RFMD_ENABLE = (1 << RFMD_ENABLE_BIT) 
RFMD_MODE = (1 << RFMD_MODE_BIT) 
 
TR_SWITCH = (1 << TR_SWITCH_BIT) 
 
 
def _write_all(u, side, R, control, N): 
 """ 
 Write R counter latch, control latch and N counter latch to VCO. 
 
 Adds 10ms delay between writing control and N 
 
 @param R: 24-bit R counter latch 
 @type R: int 
 @param control: 24-bit control latch 
 @type control: int 
 @param N: 24-bit N counter latch 
 @type N: int 
 """ 
 _write_R(u, side, R) 
 _write_control(u, side, control) 
 time.sleep(0.010) 
 _write_N(u, side, N) 
  
def _write_control(u, side, control): 
 _write_it(u, side, (control & ~0x3) | 0) 
  
def _write_R(u, side, R): 
 _write_it(u, side, (R & ~0x3) | 1) 
  
def _write_N(u, side, N): 
 _write_it(u, side, (N & ~0x3) | 2) 
  
def _write_it(u, side, v): 
 s = ''.join((chr((v >> 16) & 0xff), chr((v >>  8) & 0xff), chr(v & 
0xff))) 
 # fix to write to A or B, not just B 
 u._write_spi(0, SPI_ENABLE_RX_B, SPI_FMT_MSB | SPI_FMT_HDR_0, s) 
 
 
def set_adf4360(u, side, target_freq): 
 
 if target_freq < 280 or target_freq > 320: 
  return -1 
 
 # R-Register Common Values 
 d_BSC   = 3  # bits 21,20 Div by 8 to be safe 
 d_TEST  = 0  # bit 19 
 d_LDP   = 1  # bit 18 
 d_ABP   = 0  # bit 17,16   3ns 
 d_R_DIV = 64 # bits 15:2 
 
 # N-Register Common Values 
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 d_CPG   = 0  # bit 21  CP current setting 1 is permanently used 
 d_B_DIV = int(target_freq) # bits 20:8 (300/64*16)=75 
 
 # Control Register Common Values 
 d_PD    = 0  # bits 21,20   Normal operation (3 powers down, 0 powers 
up) 
 d_CP2   = 7  # bits 19:17   2.5mA 
 d_CP1   = 7  # bits 16:14   2.5mA 
 d_PL    = 0  # bits 13,12   3.5mA 
 d_MTLD  = 1  # bit 11       enabled 
 d_CPG   = 0  # bit 10       CP setting 1 
 d_CP3S  = 0  # bit 9        Normal 
 d_PDP   = 1  # bit 8        Positive 
 d_MUXOUT= 1  # bits 7:5     Digital Lock Detect 
 d_CR    = 0  # bit 4        Normal 
 d_PC    = 1  # bits 3,2     Core power 5mA 
 
 control = (d_PD<<20) | (d_CP2<<17) | (d_CP1<<14) | (d_PL<<12) | 
(d_MTLD<<11) | (d_CPG<<10) | \ 
  (d_CP3S<<9) | (d_PDP<<8) | (d_MUXOUT<<5) | (d_CR<<4) | (d_PC<<2) 
 
 N = (d_CPG<<21) | (d_B_DIV<<8) 
 
 R = (d_BSC<<20) | (d_TEST<<19) | (d_LDP<<18) | (d_ABP<<16) | 
(d_R_DIV<<2) 
 
 _write_all(u, side, R, control, N) 
 
 return 0 
 
def write_rfmd_reg(u, side, addr, data, mode): 
 if mode: 
  u.write_io(side, RFMD_MODE, RFMD_MODE) 
 else: 
  u.write_io(side, 0, RFMD_MODE) 
 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u._write_oe(side, RFMD_SDATA, RFMD_SDATA) # set sdata as output 
 u.write_io(side, 0, RFMD_ENX|RFMD_SCLK|RFMD_SDATA) 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u.write_io(side, 0, RFMD_SCLK|RFMD_SDATA) # set write 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
     
 for i in range(7): 
  databit = ((addr>>(6-i)) & 1) << RFMD_SDATA_BIT 
  u.write_io(side, databit, RFMD_SDATA|RFMD_SCLK) 
  u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 
 for i in range(16): 
  databit = ((data>>(15-i)) & 1) << RFMD_SDATA_BIT 
  u.write_io(side, databit, RFMD_SDATA|RFMD_SCLK) 
  u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 
 u.write_io(side, RFMD_ENX, RFMD_SCLK|RFMD_ENX) 
 u._write_oe(side, 0, RFMD_SDATA) # set sdata as input 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u.write_io(side, 0, RFMD_SCLK) 
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def read_rfmd_reg(u, side, addr, mode): 
 if mode: 
  u.write_io(side, RFMD_MODE, RFMD_MODE) 
 else: 
  u.write_io(side, 0, RFMD_MODE) 
 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u._write_oe(side, RFMD_SDATA, RFMD_SDATA) # set sdata as output 
 u.write_io(side, 0, RFMD_ENX|RFMD_SCLK|RFMD_SDATA) 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u.write_io(side, RFMD_SDATA, RFMD_SCLK|RFMD_SDATA) # set read 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
     
 for i in range(7): 
  databit = ((addr>>(6-i)) & 1) << RFMD_SDATA_BIT 
  u.write_io(side, databit, RFMD_SDATA|RFMD_SCLK) 
  u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 
 u._write_oe(side, 0, RFMD_SDATA) # set sdata as input 
 u.write_io(side, 0, RFMD_SCLK) 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u.write_io(side, 0, RFMD_SCLK) 
 
 data = 0x0000 
 for i in range(16): 
  u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
  data = data << 1 
  data = data | ((u.read_io(side) >> RFMD_SDATA_BIT) & 1) 
  u.write_io(side, 0, RFMD_SCLK) 
 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u.write_io(side, RFMD_ENX, RFMD_SCLK|RFMD_ENX) 
 u.write_io(side, RFMD_SCLK, RFMD_SCLK) 
 u.write_io(side, 0, RFMD_SCLK) 
 
 return data 
         
 
def set_rfmd_freq(u, side, freq): 
 
 if freq > 2500e6: 
  return -1 
 elif freq >= 1200e6: 
  lodiv = 0 
 elif freq >= 600e6: 
  lodiv = 1 
 elif freq >= 200e6: 
  lodiv = 2 
 else: 
  return -1 
 
 vco_freq = freq*(2**lodiv) 
 
 if vco_freq >= 1972e6: 
  print "VCO 1" 
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  vcosel = 0 
 elif vco_freq >= 1556e6: 
  print "VCO 2" 
  vcosel = 1 
 else: 
  print "VCO 3" 
  vcosel = 2 
 
 R = 1 
 N = vco_freq * R / 26.0e6 
 _N = int(math.floor(N)) 
 _NUM = int(round((N - _N) * 2**24)) 
 _NUM_MSB = int(math.floor(_NUM / 2**8)) 
 _NUM_LSB = int(_NUM - (2**8 * _NUM_MSB)) 
 
 print vco_freq 
 print _N 
 print _NUM_MSB 
 print _NUM_LSB 
 
 data = read_rfmd_reg(u, side, 0x10, True) 
 #data = data & 0x3CFF 
 #data = data | ((vcosel<<14) | (lodiv<<8))  # P2_VCOSEL = VCO2, 
P2_LODIV = 2 
 data = data & 0x003F 
 # enable only frequency calibration 
 data = data | ((vcosel<<14) | (lodiv<<8) | (0<<10) | (3<<12))  # 
P2_VCOSEL = VCO2, P2_LODIV = 2 
 print bin(data) 
 write_rfmd_reg(u, side, 0x10, data, True) 
 
 data = read_rfmd_reg(u, side, 0x03, True) 
 data = data & 0x0FFF 
 data = data | 0x1000  # CLK_DIV = 1 
 print bin(data) 
 write_rfmd_reg(u, side, 0x03, data, True) 
 
 # 69.69230076923 
 # _N = 69 
 # _NUM = 11614996 
 # _NUM_MSB = 45371 
 # _NUM_LSB = 20 
 
 # P2_NUM_MSB = 45371 
 write_rfmd_reg(u, side, 0x11, _NUM_MSB, True) 
 
 data = read_rfmd_reg(u, side, 0x12, True) 
 data = data & 0x00FF 
 data = data | (_NUM_LSB<<8)  # P2_NUM_LSB = 20 
 print bin(data) 
 write_rfmd_reg(u, side, 0x12, data, True) 
 
 data = read_rfmd_reg(u, side, 0x13, True) 
 data = data & 0x007F 
 data = data | (_N<<7)  # P2_N = 69 
 print bin(data) 
 write_rfmd_reg(u, side, 0x13, data, True) 



 

92 
 

 
 return 0 
 
def bin(x): 
 return ''.join(x & (1 << i) and '1' or '0' for i in range(15,-1,-1)) 
 
def setup_mmp9000(u, side, freq): 
 lo1 = 295e6 
 lo2 = freq - 300e6 
 if lo2 < 300e6: 
  lo2 = freq+300e6 
 
 print (300e6+lo2) / 1e6 
 print (300e6-lo2) / 1e6 
 
 # setup the digital I/O 
 u._write_oe(side, RFMD_ENX|RFMD_SCLK|RFMD_ENABLE|RFMD_MODE|TR_SWITCH, 
0xffff) 
 u.write_io(side, RFMD_ENX, 
RFMD_ENX|RFMD_SCLK|RFMD_ENABLE|RFMD_MODE|TR_SWITCH) 
 
 #time.sleep(1) 
 
 # set polarity negative and enable active loop filter 
 data = read_rfmd_reg(u, side, 0x00, True) 
 data = data & 0xfe7f 
 data = data | 0x0180 
 write_rfmd_reg(u, side, 0x00, data, True) 
 
 # set mixer output current 
 data = read_rfmd_reg(u, side, 0x01, True) 
 data = data & 0xf8ff 
 data = data | 0x0100  # 5mA 
 write_rfmd_reg(u, side, 0x01, data, True) 
 
 # set charge pump current 
 data = read_rfmd_reg(u, side, 0x10, True) 
 data = data & 0xffc0 
 data = data | 31 # 31 is default 
 write_rfmd_reg(u, side, 0x10, data, True) 
 
 # tune the RF2052 frequency 
 if set_rfmd_freq(u, side, lo2) == -1: 
  return -1 
 
 # enable the ADF4360 and RF2052 
 u.write_io(side, RFMD_ENABLE, RFMD_ENABLE) 
 
 
 # configure and tune the ADF4360 
 if set_adf4360(u, side, lo1/1e6) == -1: 
  return -1 
 
 # set vga gain 
 u.write_aux_dac(side, 0, int(300)) 
 
 return 0 
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def pick_subdevice(u): 
    """ 
    The user didn't specify a subdevice on the command line. 
    Try for one of these, in order: TV_RX, BASIC_RX, whatever is on side A. 
 
    @return a subdev_spec 
    """ 
    return usrp.pick_subdev(u, (usrp_dbid.TV_RX, 
                                usrp_dbid.TV_RX_REV_2, 
    usrp_dbid.TV_RX_REV_3, 
                                usrp_dbid.BASIC_RX)) 
 
 
class wfm_rx_block (stdgui2.std_top_block): 
    def __init__(self,frame,panel,vbox,argv): 
        stdgui2.std_top_block.__init__ (self,frame,panel,vbox,argv) 
 
        parser=OptionParser(option_class=eng_option) 
        parser.add_option("-R", "--rx-subdev-spec", type="subdev", 
default=None, 
                          help="select USRP Rx side A or B (default=A)") 
        parser.add_option("-f", "--freq", type="eng_float", default=100.1e6, 
                          help="set frequency to FREQ", metavar="FREQ") 
        parser.add_option("-g", "--gain", type="eng_float", default=40, 
                          help="set gain in dB (default is midpoint)") 
        parser.add_option("-V", "--volume", type="eng_float", default=None, 
                          help="set volume (default is midpoint)") 
        parser.add_option("-O", "--audio-output", type="string", default="", 
                          help="pcm device name.  E.g., hw:0,0 or surround51 
or /dev/dsp") 
 
        (options, args) = parser.parse_args() 
        if len(args) != 0: 
            parser.print_help() 
            sys.exit(1) 
         
        self.frame = frame 
        self.panel = panel 
         
        self.vol = 0 
        self.state = "FREQ" 
        self.freq = 0 
 
        # build graph 
         
        self.u = usrp.source_c()                    # usrp is data source 
 
        adc_rate = self.u.adc_rate()                # 64 MS/s 
        usrp_decim = 200 
        self.u.set_decim_rate(usrp_decim) 
        usrp_rate = adc_rate / usrp_decim           # 320 kS/s 
        chanfilt_decim = 1 
        demod_rate = usrp_rate / chanfilt_decim 
        audio_decimation = 10 
        audio_rate = demod_rate / audio_decimation  # 32 kHz 
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        if options.rx_subdev_spec is None: 
            options.rx_subdev_spec = pick_subdevice(self.u) 
 
        self.u.set_mux(usrp.determine_rx_mux_value(self.u, 
options.rx_subdev_spec)) 
        self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec) 
 
 
        ################ MMP9000 DB CODE ################## 
        if setup_mmp9000(self.u, self.subdev.which(), options.freq) == -1: 
            print "frequency out of range" 
            raise SystemExit 
        ################################################### 
 
 
        print "Using RX d'board %s" % (self.subdev.side_and_name(),) 
        dbid = self.subdev.dbid() 
        if not (dbid == usrp_dbid.BASIC_RX or 
                dbid == usrp_dbid.TV_RX or 
                dbid == usrp_dbid.TV_RX_REV_2 or 
                dbid == usrp_dbid.TV_RX_REV_3): 
            print "This daughterboard does not cover the required frequency 
range" 
            print "for this application.  Please use a BasicRX or TVRX 
daughterboard." 
            raw_input("Press ENTER to continue anyway, or Ctrl-C to exit.") 
 
        chan_filt_coeffs = optfir.low_pass (1,           # gain 
                                            usrp_rate,   # sampling rate 
                                            80e3,        # passband cutoff 
                                            115e3,       # stopband cutoff 
                                            0.1,         # passband ripple 
                                            60)          # stopband 
attenuation 
        #print len(chan_filt_coeffs) 
        chan_filt = gr.fir_filter_ccf (chanfilt_decim, chan_filt_coeffs) 
 
        self.guts = blks2.wfm_rcv (demod_rate, audio_decimation) 
 
        self.volume_control = gr.multiply_const_ff(self.vol) 
 
        # sound card as final sink 
        audio_sink = audio.sink (int (audio_rate), 
                                 options.audio_output, 
                                 False)  # ok_to_block 
         
        # now wire it all together 
        self.connect (self.u, chan_filt, self.guts, self.volume_control, 
audio_sink) 
 
        self._build_gui(vbox, usrp_rate, demod_rate, audio_rate) 
 
        if options.gain is None: 
            # if no gain was specified, use the mid-point in dB 
            g = self.subdev.gain_range() 
            options.gain = float(g[0]+g[1])/2 
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        if options.volume is None: 
            g = self.volume_range() 
            options.volume = float(g[0]+g[1])/2 
             
        if abs(options.freq) < 1e6: 
            options.freq *= 1e6 
 
        # set initial values 
 
        self.set_gain(options.gain) 
        self.set_vol(options.volume) 
        if not(self.set_freq(5e6)): 
            self._set_status_msg("Failed to set initial frequency") 
 
 
    def _set_status_msg(self, msg, which=0): 
        self.frame.GetStatusBar().SetStatusText(msg, which) 
 
 
    def _build_gui(self, vbox, usrp_rate, demod_rate, audio_rate): 
 
        def _form_set_freq(kv): 
            return self.set_freq(kv['freq']) 
 
 
        if 1: 
            self.src_fft = fftsink2.fft_sink_c(self.panel, title="Data from 
USRP", 
                                               fft_size=512, 
sample_rate=usrp_rate, 
            ref_scale=32768.0, ref_level=0, 
y_divs=12) 
            self.connect (self.u, self.src_fft) 
            vbox.Add (self.src_fft.win, 4, wx.EXPAND) 
 
        if 1: 
            post_filt_fft = fftsink2.fft_sink_f(self.panel, title="Post 
Demod",  
                                                fft_size=1024, 
sample_rate=usrp_rate, 
                                                y_per_div=10, ref_level=0) 
            self.connect (self.guts.fm_demod, post_filt_fft) 
            vbox.Add (post_filt_fft.win, 4, wx.EXPAND) 
 
        if 0: 
            post_deemph_fft = fftsink2.fft_sink_f(self.panel, title="Post 
Deemph", 
                                                  fft_size=512, 
sample_rate=audio_rate, 
                                                  y_per_div=10, ref_level=-
20) 
            self.connect (self.guts.deemph, post_deemph_fft) 
            vbox.Add (post_deemph_fft.win, 4, wx.EXPAND) 
 
         
        # control area form at bottom 
        self.myform = myform = form.form() 
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        hbox = wx.BoxSizer(wx.HORIZONTAL) 
        hbox.Add((5,0), 0) 
        myform['freq'] = form.float_field( 
            parent=self.panel, sizer=hbox, label="Freq", weight=1, 
            callback=myform.check_input_and_call(_form_set_freq, 
self._set_status_msg)) 
 
        hbox.Add((5,0), 0) 
        myform['freq_slider'] = \ 
            form.quantized_slider_field(parent=self.panel, sizer=hbox, 
weight=3, 
                                        range=(87.9e6, 108.1e6, 0.1e6), 
                                        callback=self.set_freq) 
        hbox.Add((5,0), 0) 
        vbox.Add(hbox, 0, wx.EXPAND) 
 
        hbox = wx.BoxSizer(wx.HORIZONTAL) 
        hbox.Add((5,0), 0) 
 
        myform['volume'] = \ 
            form.quantized_slider_field(parent=self.panel, sizer=hbox, 
label="Volume", 
                                        weight=3, range=self.volume_range(), 
                                        callback=self.set_vol) 
        hbox.Add((5,0), 1) 
 
        myform['gain'] = \ 
            form.quantized_slider_field(parent=self.panel, sizer=hbox, 
label="Gain", 
                                        weight=3, 
range=self.subdev.gain_range(), 
                                        callback=self.set_gain) 
        hbox.Add((5,0), 0) 
        vbox.Add(hbox, 0, wx.EXPAND) 
 
        try: 
            self.knob = powermate.powermate(self.frame) 
            self.rot = 0 
            powermate.EVT_POWERMATE_ROTATE (self.frame, self.on_rotate) 
            powermate.EVT_POWERMATE_BUTTON (self.frame, self.on_button) 
        except: 
            print "FYI: No Powermate or Contour Knob found" 
 
 
    def on_rotate (self, event): 
        self.rot += event.delta 
        if (self.state == "FREQ"): 
            if self.rot >= 3: 
                self.set_freq(self.freq + .1e6) 
                self.rot -= 3 
            elif self.rot <=-3: 
                self.set_freq(self.freq - .1e6) 
                self.rot += 3 
        else: 
            step = self.volume_range()[2] 
            if self.rot >= 3: 
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                self.set_vol(self.vol + step) 
                self.rot -= 3 
            elif self.rot <=-3: 
                self.set_vol(self.vol - step) 
                self.rot += 3 
             
    def on_button (self, event): 
        if event.value == 0:        # button up 
            return 
        self.rot = 0 
        if self.state == "FREQ": 
            self.state = "VOL" 
        else: 
            self.state = "FREQ" 
        self.update_status_bar () 
         
 
    def set_vol (self, vol): 
        g = self.volume_range() 
        self.vol = max(g[0], min(g[1], vol)) 
        self.volume_control.set_k(10**(self.vol/10)) 
        self.myform['volume'].set_value(self.vol) 
        self.update_status_bar () 
                                         
    def set_freq(self, target_freq): 
        """ 
        Set the center frequency we're interested in. 
 
        @param target_freq: frequency in Hz 
        @rypte: bool 
 
        Tuning is a two step process.  First we ask the front-end to 
        tune as close to the desired frequency as it can.  Then we use 
        the result of that operation and our target_frequency to 
        determine the value for the digital down converter. 
        """ 
        r = usrp.tune(self.u, 0, self.subdev, target_freq) 
         
        if r: 
            self.freq = target_freq 
            self.myform['freq'].set_value(target_freq)         # update 
displayed value 
            self.myform['freq_slider'].set_value(target_freq)  # update 
displayed value 
            self.update_status_bar() 
            self._set_status_msg("OK", 0) 
            return True 
 
        self._set_status_msg("Failed", 0) 
        return False 
 
    def set_gain(self, gain): 
        self.myform['gain'].set_value(gain)     # update displayed value 
        self.subdev.set_gain(gain) 
 
    def update_status_bar (self): 
        msg = "Volume:%r  Setting:%s" % (self.vol, self.state) 
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        self._set_status_msg(msg, 1) 
        self.src_fft.set_baseband_freq(self.freq) 
 
    def volume_range(self): 
        return (-20.0, 0.0, 0.5) 
         
 
if __name__ == '__main__': 
    app = stdgui2.stdapp (wfm_rx_block, "USRP WFM RX") 
    app.MainLoop () 
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11 Appendix B – Schematic 
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12 Appendix C – Parts List 

Qty Reference Part Name 
Cost 
Ea 

Tot 
Cost 

2 U4 U10 24LC024 $0.55 $1.10 
1 U19 74AC04 $0.42 $0.42 
1 U7 AD8345 $8.78 $8.78 
1 U3 AD8348 $9.26 $9.26 
2 L1 L4 ADCH-80A+ $2.75 $5.50 
2 U17-18 ADF4360 $7.28 $14.56 
5 U11-15 ADP3336 $2.30 $11.50 

21 
C17 C19 C40 C48 C52 C58 C63-64 C74 C79-80 C115-116 C122 C124 C126 C136-137 C143 C145 
C147 CAP0603,0.01uF $0.04 $0.88 

15 C6 C8 C21 C23 C28 C30 C35 C67-68 C88 C93 C95 C100 C102 C107 CAP0603,0.1uF $0.04 $0.63 
13 C3 C7 C41 C81-84 C86 C106 C110-111 C131-132 CAP0603,100pF $0.05 $0.59 

2 C114 C135 CAP0603,12pF $0.10 $0.19 
2 C11 C15 CAP0603,150pF $0.07 $0.13 

21 C1-2 C4-5 C18 C51 C65-66 C85 C118-119 C123 C125 C127 C139-142 C144 C146 C148 CAP0603,1nF $0.05 $0.99 
9 C22 C25 C29 C42 C87 C94 C97 C101 C104 CAP0603,1uF $0.32 $2.89 
5 C20 C27 C34 C92 C99 CAP0603,220pF $0.10 $0.48 
4 C32 C90 C112 C133 CAP0603,22pF $0.10 $0.38 
6 C54 C70 C109 C113 C128 C134 CAP0603,330pF $0.08 $0.45 

16 C53 C55-57 C59-62 C69 C71-73 C75-78 CAP0603,33pF $0.06 $0.99 
2 C9 C13 CAP0603,4.7pF $0.05 $0.09 
7 C26 C33 C36 C91 C98 C105 C108 CAP0603,470pF $0.06 $0.43 
4 C46-47 C49-50 CAP0603,68pF $0.10 $0.38 
2 C10 C14 CAP0603,8.2pF $0.07 $0.14 
2 C12 C16 CAP0603,82pF $0.04 $0.09 
1 C45 CAP0603,??? 

 
$0.00 
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2 C120-121 CAP0603,none 
 

$0.00 
2 C117 C138 CAP1206,10uF $0.48 $0.96 
5 C24 C31 C89 C96 C103 CAP1206,4.7uF $0.35 $1.74 
2 J5-6 CONNECTOR16 $1.48 $2.95 
2 T1-2 ETC1-1-13 $1.28 $2.56 
1 U6 GVA-84+ $3.60 $3.60 
2 U1 U16 HMC174 $2.87 $5.74 
7 L11-17 INDUCTOR $0.10 $0.69 
2 L20 L26 INDUCTOR,0 $0.07 $0.14 
2 L2 L18 INDUCTOR,0.68uH $0.27 $0.54 
2 L3 L19 INDUCTOR,1.2uH $0.27 $0.54 
4 L24-25 L31-32 INDUCTOR,30nH $1.00 $4.00 
4 L21-22 L28-29 INDUCTOR,51nH $1.00 $4.00 
4 L7-10 INDUCTOR,620nH $1.00 $4.00 
1 L6 INDUCTOR,??? 

 
$0.00 

1 L23 INDUCTOR,none 
 

$0.00 
1 U2 MGA-82563 $3.20 $3.20 
2 J2-3 PMC-REVERSE $7.45 $14.90 
2 R6 R13 RES0603,10 $0.07 $0.15 
2 R2 R4 RES0603,100 $0.07 $0.15 
2 R45-46 RES0603,10K $0.07 $0.15 
2 R30 R49 RES0603,12K $0.07 $0.15 
2 R35 R41 RES0603,13.3K $0.07 $0.15 
3 R5 R17 R19 RES0603,140K $0.07 $0.22 
4 R25-28 RES0603,200 $0.07 $0.29 
2 R21 R23 RES0603,210K $0.07 $0.15 
2 R10 R12 RES0603,232 $0.07 $0.15 
2 R34 R40 RES0603,27.4K $0.07 $0.15 
2 R36 R42 RES0603,4.7K $0.07 $0.15 
4 R32-33 R38-39 RES0603,470 $0.07 $0.29 
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6 R7-9 R11 R37 R43 RES0603,49.9 $0.07 $0.44 
2 R14-15 RES0603,51K $0.07 $0.15 
2 R1 R3 RES0603,60.4 $0.07 $0.15 
2 R22 R24 RES0603,64.9K $0.07 $0.15 
3 R16 R18 R20 RES0603,78.7K $0.07 $0.22 
4 R44 R48 R50-51 RES0603,820 $0.07 $0.29 
1 R47 RES0603,none 

 
$0.00 

2 U8-9 RF2052 $11.37 $22.74 
2 J1 J4 SMA_VERT $9.79 $19.58 
1 T4 TC4-19+ $2.09 $2.09 
2 Y2,Y3 XTAL-4,26MHz $0.92 $1.84 
1 PCB 

 
$66.00 $66.00 

     
   

Total: $226.15 
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