Hardware Simulation of Embedded Software Fault Attacks:
How to SimpliFI Processor Fault Vulnerability Evaluation

by

Jacob T. Grycel

A Thesis Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Master of Science
in
Electrical and Computer Engineering

May 2021

APPROVED:

Dr. Patrick Schaumont, Major Thesis Advisor

Dr. Berk Sunar, Committee Member

Dr. Shahin Tajik, Committee Member

Abstract

Physical attacks on hardware are increasingly becoming a major consideration in the
design of embedded and digital systems. Although side-channel analysis attacks are generally
understood, even in complex embedded processors, embedded software vulnerabilities to fault
attacks are hard to predict. Despite knowing general behaviors that may be caused by fault
attacks, the multiple levels of abstraction between software and the physical hardware make it
challenging to predict precisely how a piece of software will respond to fault injection attacks.
Current fault evaluation methodologies are split along the hardware/software divide, with
hardware fault analysis techniques focusing on simulating all possible faults with no ties to
the software, and software simulation methods trading physical accuracy for software state
tracking. As a result, the burden of collecting realistic data on software fault vulnerabilities
falls on physical device tests, missing the goal of performing fault evaluation during the
hardware design cycle. This thesis presents SimpliFI, a methodology for evaluating software
fault vulnerabilities and exploring their root causes with realistic fault behavior captured at
the hardware level. SimpliFI captures software-level fault effects by simulating instructions
being executed by the processor, and hardware-level fault propagation by observing gate-
level hardware simulation data. This simulation framework is first defined using broad
requirements in order to be applicable to a wide range of devices, and then implemented for
a RISC-V embedded processor. The results collected using SimpliFI provide insight into the
root cause of software instruction fault responses, and determine realistic faulty outputs of
attacks on larger applications.

Acknowledgments

I would like to express my deepest gratitude to my advisor Professor Patrick Schaumont
for his guidance, insight, and support throughout my research and additional projects this
year. Beyond his role as my research advisor, he was extremely supportive as a person and
made a challenging year more manageable; I am truly grateful for this.

I would also like to thank my committee members for their time and support reviewing
my thesis. I am grateful for Professor Berk Sunar’s support as my undergraduate Major
Qualifying Project advisor, and for the enlightening discussions with Professor Shahin Tajik
during group meetings this year.

My sincerest thanks go to Dan Walters, Joe Chapman, and Rachel Bainbridge, my men-
tors at The MITRE Corporation, who have challenged me to develop new skills and ways
of thinking about embedded security and engineering over the last four years. My project
experiences with them added an entire second dimension to my academic experience I would
have not found elsewhere.

I thank Professor Robert Walls for his support and generosity as my research advisor
throughout my undergraduate studies. I would not be where I am today without the oppor-
tunities and encouragement he graciously offered me.

Finally, I would like to thank my family and friends for their unending love, support,
and compassion throughout my entire life. I have been lucky to have such wonderful people
around me, and I make sure to never lose sight of that.

Contents

List of Figures
List of Tables« . .

1 Introduction

2 Background and Current Techniques

2.1 Digital Circuits
2.1.1 Circuit Timing
2.1.2 Metastability

2.2 Embedded Software Fundamentals L.
2.2.1 Instruction Set Architecture
2.2.2 Processor Microarchitecture and Implementation

2.3 Fault Injection Attacks
2.3.1 Fault Injection Mechanisms
2.3.2 Systemic Fault Injection Impacts oo

2.4 Fault Vulnerability Evaluation Methods
2.4.1 Physical Hardware Fault Modeling
2.4.2 Physical Software Fault Testing
2.4.3 ISA-Level Fault Vulnerability Simulation
2.4.4 Software Fault Simulation o

2.5 Discussion of State-of-the-Art

3 Fault Attack Simulation Framework

3.1 Design Principles e
3.2 Framework Design and Features
3.2.1 Outer Framework: Software-Centric Control
3.2.2 Inner Framework: Hardware Simulation Core
3.3 Summaryo e e e

4 BRISC-V Framework Implementation

4.1 BRISC-V Platform Overview
4.2 SimpliFI Implementation
4.2.1 Top-Level Control
4.2.2 Building Test Cases e
4.2.3 Simulation Snapshot Compilation.
4.2.4 Simulation Fault Script Generation,

23
23
24
25
29
33

4.2.5 Testbench and Control 42

4.2.6 Metastability Modeling 42

5 Framework Capabilities and Outcomes 44
5.1 Inmstruction Sequence Analysis L 44
5.1.1 Experiment Design 44

5.1.2 Test Results Exploration. 47

5.1.3 Test Results Summary 61

5.2 Full Application Analysis e 63
5.2.1 Experiment Design 63

5.2.2 Test Results Exploration. 64

5.3 Effects of the Metastability Model 67
B4 SUMMATY . . . o o o e e 71

6 Conclusion 72

i

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4

4.1
4.2

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10
5.11

5.12

RISC-V 32-bit integer ISA instruction formats [1]. 8
A pipelined MIPS processor. 9
The impact of a fault injection attack through all of the main layers of hardware and
software abstraction. L L L 13
High-level depiction of the SimpliFI framework. 25
SimpliFI hardware simulation core diagram. 30
Timing violations at different sampling points. 31
Clock and voltage glitch timing effects. L. 33
BRISC-V 7-stage pipeline. 35
Dataflow diagram of the BRISC-V SimpliFI framework implementation. 38
Final register corruption and state error propagation for glitch attacks on the ADD
destination component. e e 49
Final register corruption and state error propagation for glitch attacks on the ADD
source 1 and source 2 components.o e e e e o1
Final register corruption and state error propagation for glitch attacks on the ADDI
destination component. L e e 53
Final register corruption and state error propagation for glitch attacks on the ADDI
source component. oL L L Lo e e 54
Final register corruption and state error propagation for stage 2 (fetch receive) glitch
attacks on the ADDI immediate component. 55
Final register corruption and state error propagation for glitch attacks on the LW
destination component. 56
Final register corruption and state error propagation for stage 5 (memory receive)
glitch attacks on the LW memory value. 57
Final register corruption and state error propagation for glitch attacks on the LW
address component. L Lo 59
Final register corruption and state error propagation for glitch attacks on the LW
immediate component. 60
Program impacts of glitch attacks on the starting instructions of different AES rounds. 66

Final register corruption and state error propagation with and without the metasta-
bility model for stage 3 (execute) glitch attacks on the ADD second source register. . 68
Final register corruption and state error propagation with and without the metasta-
bility model for stage 1 (fetch receive) glitch attacks on the LW destination register. . 69

il

5.13 Difference in program impacts of glitch attacks between standard simulation and
metastability simulation for fault injection on the starting instructions of AES round

v

List of Tables

2.1

4.1

5.1
5.2
5.3
5.4

Summary of fault evaluation method capabilities. 22
Mapping of BRISC-V memory sizes to Xilinx Block RAMs. 39
Organization of RV32I by operation type and address/value mode. 45
List of evaluated instruction and their component tests. 46
Breakdown of AES fault simulation results by outcome category. 65
Change in Breakdown of AES fault simulation results after adding the simulated

metastability model.o 70

Chapter 1

Introduction

Cybersecurity has risen as a major focus area in computing since “The Creeper”, the first
known computer virus, was released on the ARPANET in 1971 [2]. Though major techno-
logical advances in computer technology are driven by government and consumer product
development, society’s widespread adoption of computers has pushed cybersecurity into the
spotlight as a critical area of concern. With nearly every aspect of modern life tied to
some sort of computer system, whether it be a device or server, the protection of peoples’
information and privacy is continually being seen as a larger priority.

The sheer volume of network-enabled, daily-use software pushes focus onto software and
network security in order to prevent remote attackers from gaining access to a computing
system. The resulting countermeasures and attack knowledge has led to numerous, widely-
adopted security standards for applications and network protocols. However, these are not
the only fronts for malicious cyber activity.

Cybersecurity at the software and network level is extremely visible because we interact
with it every day. Yet, none of our modern software and connectivity would be possible
without sophisticated hardware. The underlying hardware is responsible for performing real
computations, rendering graphics, and managing network connections. All of these critical
operations make hardware an appealing target for knowledgeable adversaries that want to
strike at the heart of a system. Obtaining physical devices to perform hardware attacks was
traditionally more difficult due to the devices of interest residing in facilities with limited
access. But now, many small devices out in the world are connected to larger information
systems, making hardware attacks more feasible than ever.

Two well-studied forms of physical attacks on hardware are side-channel analysis (SCA)
and fault injection attacks. Side-channel attacks leverage information leakages from opera-

tions on sensitive data, often in the form of power consumption or electromagnetic emanation
analysis. Fault attacks instead involve physical interference with the device to disrupt crit-
ical execution steps and induce unintended behavior. In 1996, the Bellcore attack, the first
published form of cryptographic fault attack, demonstrated that an RSA encryption key
could be recovered with differential analysis (DFA) applied to corrupted outputs caused by
naturally-occurring hardware faults [3]. A year later, Biham and Shamir expanded the ca-
pabilities of DFA to apply to secret-key algorithms [4]. Since then, there has been extensive
research conducted to develop our understanding of fault attacks and develop countermea-
sures to prevent or mitigate them. With fault attacks having been demonstrated on both
embedded software and pure hardware designs, tools for evaluating fault vulnerabilities be-
fore production could be an integral part of the embedded systems development cycle.

Evaluating a system of hardware and software components for fault vulnerabilities re-
quires analysis at many levels ranging from device-level physics to software-level error prop-
agation. At the hardware level, faults can be injected into a system by violating assumed
operating parameters, such as electrical signal timing. Evaluating the effects of fault injec-
tion techniques on hardware requires a precise understanding of how clock glitches, voltage
manipulations, electromagnetic field pulses, and other injection mechanisms induce faulty
bits in the digital circuitry. Meanwhile, software-level evaluation is concerned with analyzing
how faults caused by hardware level injection techniques impact the program as a whole.
The effects on software can be anything from instruction skips to corrupted program outputs.

However, these distinct goals of evaluating hardware vs software have led to disjointed
evaluation methodologies. Evaluation methodologies for hardware-level fault effects focus on
determining the precise behavior of a fault propagating through the digital circuitry [5]. The
difficulty of accurately modeling how a fault affects device physics has led to few method-
ologies actually considering realistic fault manifestation [6]. Meanwhile, evaluation method-
ologies for software-level fault effects forfeit physical accuracy in return for more efficient
software data and control flow analysis [7]. The only current methodology for evaluating
physically accurate fault attacks at the software level involves performing attacks on real
devices. Since fault responses are highly device-dependent, the results from physical testing
on one device will not hold entirely true for engineers developing new platforms and software.

To split the gap between hardware and software fault evaluation, this thesis introduces the
SImulation Methodology for embedded Processors to Learn the Impacts of Fault Injection
(SimpliFI) and demonstrates how hardware simulation can be used to obtain physically-
accurate software fault evaluation results. This approach uses physical attributes of an
actual device, such as gate layout and signal propagation, to predict realistic responses to
fault injection attacks. By encapsulating hardware fault propagation and software execution
in one simulation, SimpliFI supports root cause analysis of software fault impacts for both
short instruction sequences and full applications. To the best of our knowledge, SimpliFI
is the first design-time methodology in the public domain that enables automated fault

evaluation and explains software-level fault effects through their manifestation in the device
microarchitecture.

This thesis presents SimpliFI as a high-level generic framework for automatic evaluation
of embedded software fault vulnerabilities, and presents an implementation of the frame-
work for the open-source BRISC-V embedded processor [8, 9, 10]. The results collected by
the framework are able to show how different fault injection parameters affect the processor
state, which faults propagate to program outputs, and which subsets of the processor mi-
croarchitecture are more susceptible to fault injection. Through developing the framework,
building its implementation, and analyzing its results, this thesis presents the additional
following contributions:

e Scripting methods of duplicating a post-layout netlist to obtain identical device images
with different programs loaded.

e Techniques for instrumenting C code with unique identifiers for targeting simulated
fault injection points.

e Programmatic methods for automating multiple hardware simulations with different
runtime parameters within one invocation of the simulator.

e A scripting method for recompiling standard Xilinx simulation libraries to simulate a
simple metastability model.

e A custom file format that allows a user to plan multiple fault injection tests automated
in the SimpliFI simulation framework.

e Expanded categories for organizing embedded software fault attack outcomes.

e Visualizations of hardware fault propagation for multiple fault injections and target
points.

The remainder of this thesis is structured as follows. Chapter 2 discusses background
topics in fault injection techniques, digital circuit timing and signal propagation, and current
fault injection analysis methods. Chapter 3 presents SimpliFI as a generic framework that
supports specific functional requirements. Chapter 4 discusses a practical implementation
of the framework using the Xilinx Vivado Design Suite to analyze a BRISC-V FPGA core.
Chapter 5 discusses how results from SimpliFI provide insight into the fault vulnerabilities
of embedded software running on BRISC-V. Finally, Chapter 6 concludes the thesis by
discussing SimpliFI’s place in the security electronic design automation tool landscape and
proposing useful extensions for future work.

Chapter 2

Background and Current Techniques

A fault vulnerability framework, such as the one presented in this thesis, is only now possi-
ble after years of industry and academic research in fault injection attacks. In contrast to
their sibling subject area, side-channel analysis, practical fault injection attacks are highly
dependent on physical properties of a target device. The success of embedded software fault
injection attacks is impacted by the following details: type of fault injection; fault injection
parameters; device microarchitecture; target application; physical circuit characteristics; op-
erating conditions.

This chapter builds an understanding of how these different attack aspects are relevant for
designing an accurate fault vulnerability evaluation tool. The first part discusses pertinent
information about digital circuit design necessary for analyzing fault behavior. The second
part provides both an overview of embedded processors and instruction set architectures.
The third part provides an introduction to fault injection, an overview of different fault
injection techniques, and a discussion of challenges in fault vulnerability evaluation. The
fourth part discusses current knowledge and methods for understanding how fault attacks
affect embedded software and hardware.

2.1 Digital Circuits

2.1.1 Circuit Timing

Digital circuits, whether fabricated as an Application Specific Integrated Circuit (ASIC), or
programmed in a Field-Programmable Gate Array (FPGA), comprise a network of combina-

torial gates and sequential elements. Combinatorial gates implement a logic function, such
as AND, OR, or XOR. These types of gates do not store any value, and instead constantly
update their output to represent the correct function of the input signals. On the other
hand, sequential elements store and transfer binary values, but do not perform any logic
functions on the data. The transfer of data from one sequential element (register) to an-
other is synchronized to a time-keeping signal called the clock. The clock is typically a 50%
duty-cycle square wave oscillating between high and low logic levels. Registers are designed
so that when the clock has a transition from logic 0 to logic 1 (rising edge), the data on the
input is stored and transmitted on the output. This data transfer happens on every rising
edge of the clock to perform sequential computing.

While it is easy to think of combinatorial gates as immediately computing the result
of the inputs, the reality is that all data transfers and updates take a non-zero amount
of time. All digital circuit elements are built from some type of transistor circuit, usually
complementary metal-oxide-semiconductor (CMOS) devices, which themselves have signal
propagation delays from when an input changes to when the output updates. Because of
these physical delays, signal timing is a critical aspect of correct digital circuit operation.

When a large network of combinatorial gates are connected together, the amount of time
it takes for first-level input to propagate to the final output increases. Furthermore, this
propagation delay may vary in time depending on the input combination and which input
values have changed. Much like the propagation delay through a single gate, electrical signals
in the circuit also take time to travel along the connecting circuit wires. As the circuit is
being designed and physically laid out, any changes made to the connecting wire lengths will
result in timing changes. In a combinatorial network in between a set of destination and
source registers, the time in between two clock edges must be long enough for the longest
possible propagation delay to occur. Therefore, the period of the clock signal is restricted
by longest combinatorial path in the entire circuit. The longest delay path between two
registers is called the critical path.

In addition to the gate and routing delay, registers, such as flip-flops, have further timing
requirements. Registers have “clock to Q7 delays due to the time it takes for the sampled
input value to propagate to the register output. Registers also have timing parameters called
the setup and hold times. The setup time defines the amount of time before the incoming
clock edge where the input data must be stable and not change. The hold time defines the
amount of time after the clock edge for which the input data must still remain stable. Hold
violations usually appear in the form of paths that have such short delay that a new value
propagates to the register before the hold time passes. Finally, since the clock signal itself
has transmission delays across a circuit, the clock edge arrives with a small but non-zero time
offset from the intended transition point, called the clock skew. Equation 2.1 incorporates
all of the circuit timing components into two inequalities that must hold to ensure correct
circuit operation.

T > tCQ + tlogic + tsetup + tskew (21&)
thold < tcq + Liogic (2.1b)

where

T is the clock period

tcq is the register clock-to-Q delay
tiogic 1s the critical path of the circuit
tsetup 15 the register setup time

tskew 18 the clock skew

thoa 18 the register hold time

2.1.2 Metastability

When the data input to a register violates the setup time, the register can be forced into a
metastable state where the output does not settle to a 1 or 0 within the normal propagation
time. The resolution of a setup time violation is a function of the initial state of the data
input, the transition time of the data input, and the exact placement of the sampling point
within the register sample window [11, 12]. According to the models and experiments by
Horstmann et al., the final register value is high-dependent on the amplitude of the data
signal and the switching time of the flip-flop bistability circuit [13].

If the data voltage is close to its initial or final state when the register input switches
off, the output value will resolve to a logic 0 or 1. However, if the voltage is close to the
middle of the positive and negative supplies, the register is likely to end up in an invalid
logic state in between 0 and 1. When this happens, signal noise in low-level components
can either push the register to a valid state, or keep it in the metastable state. If the
register successfully resolves during a setup time violation the output propagation time of
the register can take significantly longer than during normal operation [13]. If the register
does not resolve due to environmental noise, the metastable state behavior is dependent on
the underlying technology. Flip-flops built from CMOS technology that frequently appear in
ASICs hold at an intermediate voltage between logic 0 and logic 1, while other logic families
can demonstrate oscillatory behavior [13].

These types of metastable behavior can be observed using analog circuit simulations, but
are impossible to model in digital simulation due to the signal and device physics involved.

The best current method for handling metastability in digital simulations is to assign a
random value to the flip-flop output following a setup time violation [14]. As demonstrated
in Chapter 4, this basic model is supported by gate-level hardware simulators.

2.2 Embedded Software Fundamentals

2.2.1 Instruction Set Architecture

The instruction set architecture (ISA) of an embedded processor defines the set of instruc-
tions that the processor can perform. Instructions are the most basic unit of software ex-
ecution and are designed to perform specific functions. Common examples found in most
[SAs include add, load, store, and jump instructions. Instructions are encoded using spe-
cific formats that specify the type of operation, where the data comes from and where the
result is stored. In general, instructions read and write data in the processor’s register file,
which is a collection of data storage elements. Beyond obtaining data from the registers,
many instructions also support immediate fields, which are values hard-coded into the in-
struction format that can be used as input to processor operations. Despite having similar
logical functionality, comparable instructions from different ISAs can differ greatly in their
practical functionality.

First, ISAs often support multiple addressing modes, where the same register and im-
mediate values can be combined in different ways to access memory. For example, the
ARMv7-M ISA supports both pre-indexed and post-indexed addressing modes that allow a
stored memory address to be automatically increased or decreased for iteratively accessing a
block of memory [15]. The Atmel 8-bit ISA only supports pre-decrement and post-increment
addressing modes, but not post-decrement and pre-increment modes [16]. The RISC-V 32-bit
base integer ISA (RV32I) does not support any type of pre- or post-indexing mode [1].

Second, each ISA has its own instruction format that encodes the operation, data source
and destination registers, and immediate values. For example, the instruction opcode and
source/destination register fields in the RV32I ISA are in different locations compared to
similar instructions in the ARMv7-M ISA. Even within one ISA, different addressing modes
use the same bit locations in the instruction encoding in different ways. An example of this
from RV32I is shown in Figure 2.1.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

\ funct? \ 182 [sl] funct3 | rd | opcode | R-type
\ imm[11:0] [sl | funct3 | rd [opcode | I-type
\ imm[11:5] \ 132 [sl [funct3 | imm{[4:0] [opcode | S-type
[fmm[12] | imm[10:3] | rs2 [sl [funct3 | imm[4:1] [imm[11] [opcode | B-type
\ imm[31:12] \ rd [‘opcode | U-type
[Emm{20] | imm[10:1] [imm[I1][imm[19:12] | rd [opcode | J-type

Figure 2.1: RISC-V 32-bit integer ISA instruction formats [1].
2.2.2 Processor Microarchitecture and Implementation

The ISA is only a specification of what computational functions an embedded processor can
perform, and has few requirements for how processors are designed to accomplish them.
While some ISAs define the number of cycles that each instruction takes, or expect certain
memory hierarchy features, there are no requirements on how a digital circuit is designed to
implement the processor.

The implementation of a processor can vary in two significant ways: in its microarchi-
tecture and in its physical design. A processor’s microarchitecture refers to the structure of
components that make up the processor, including pipelining, memory hierarchy, and control
structures. Beyond microarchitectural differences, two digital circuits that implement the
same processor can be physically laid out on a chip in different ways, where different physical
designs have different timing and parasitic characteristics.

Pipelining

The core unit of a processor is responsible for interpreting an instruction, fetching the
necessary operands, performing any needed logic or arithmetic functions, and storing the
result in the correct location. A simple single-cycle processor performs all of these actions
within one clock cycle, by allowing the current instruction address to propagate through the
datapath. However, most modern processors split instruction execution into a sequence of
registered stages, called a pipeline.

In a pipelined datapath, the output of each functional step is stored in a pipeline register,
allowing multiple instructions to be executed at the same time. In the example pipeline in
Figure 2.2, instruction 0 will enter the pipeline in the fetch stage, and proceed to the decode
stage on the next cycle. During the second cycle, instruction 1 will enter the pipeline
in the fetch stage. The result of this clock cycle will have performed the fetch operation

on instruction 0 and the decode operation on instruction 1. This process continues, and,
eventually, each pipeline stage is working on a different instruction.

. Instruction Decode Execute i
Instruction Fetch Register Fetch Address Calc. Memory Access Write Back
IF ID EX MEM WB
— — _ Next PC —
z Next SEQ PC Next SEQ PC
Q
: g
RS1 S
RS2 Branch
Register taken
=
m——
™ =
I 3 < z
5 o = =
PC L g = E 2 E :::157
—
Sign |Imm

WB Data

Figure 2.2: A pipelined MIPS processor.

Memory Hierarchy

While the processor core contains all functional units for processing an instruction and
the entire processor register state, external memories are an integral part to any embedded
computing system. The goal of the memory subsystem in any processor is to provide enough
program memory and long term storage, while minimizing the time required to access a
value. The most generic memory system may consist of a read-only memory (ROM) that
stores the program code, and a random-access memory (RAM) for holding runtime vari-
ables. However, systems often have much more complicated memory hierarchies consisting
of virtual addresses, translation lookaside buffers, caches, and memory management units.
Complicated memory hierarchies with components like these vary from one device to another
and greatly impact software execution.

2.3 Fault Injection Attacks

The basic idea of fault attack is that a system is presented with invalid inputs or environ-
mental conditions that violate required operating parameters. The fault attack concept is
applicable to any system, such as a factory machine that can only support certain power
sources or loads. In these types of examples we think of an environmental violation less

as a fault attack, and more as a sabotage or blatant disregard of requirements. But just
like mechanical systems, digital and embedded systems are susceptible to fault injection
techniques that violate the environment operating parameters required for correct behavior.
The fault injection methods discussed in this thesis are defined in the following section. The
modeling study by Richter-Brockmann et al. provides further in-depth explanations of the
device physics in these injection techniques [17]

2.3.1 Fault Injection Mechanisms

Clock Glitch Faults

Clock glitch attacks are achieved through modifying a system or local clock signal to
violate timing requirements in the digital circuit. In such an attack, one or more periods of
the clock signal are shortened to be less than the critical path delay defined in Equation 2.1.
The width of the glitch pulse is chosen by the attacker, and can be made as short as desired.
Clock glitches are a simple mechanism to inject faults, although they are less accurate than
other methods. A modified clock signal affects all registers synchronized to it, so any register
in the clock’s domain is amenable to faults.

Voltage-Based Faults

Voltage-based attacks are achieved by either lowering the device supply voltage overall
or causing a sudden significant drop in the supply voltage for a short amount of time. Both
voltage underpowering and glitch attacks have been demonstrated to induce faults in the
digital circuit state [17]. The mechanism by which voltage attacks result in circuit faults
relates back to timing properties as well.

The time for NMOS and PMOS transistors to switch output values is inversely dependent
on supply voltage. Therefore, a decrease in the device supply voltage results in an increased
propagation delay for individual transistors in the circuitry. As a result, combinatorial gates
together exhibit higher propagation delays for their digital values, which will likely extend
beyond the width of the clock period. This effectively results in similar timing violations to
those that occur in clock glitch attacks [17].

Electromagnetic Faults
Electromagnetic (EM) faults are performed by inducing current in the target device with

an EM probe, which can lead to drops or overshoots in the voltage supply network. When
an EM pulse forces a drop in the supply voltage, all signals currently at the positive supply

10

value drop to the negative supply value and only recover once the supply voltage drop is
released by a second EM pulse.

In the case of a register near a clock edge, both the clock and data inputs may drop due
to EM fault injection (EMFI). Upon returning to a regular state, the relative timing between
when the clock and data signals recover is uncertain. If the rising edge of the clock signal
recovers before the data signal, an incorrect value may be latched into the register [18]. In
effect, EMFI creates sampling uncertainty, with potential violation of the register setup time.
Compared to clock and voltage glitches, EMFI attacks are more precise in that a smaller
subset of the device can be targeted. This gives the attacker more control over which bits
in the device state may be affected by a fault attack.

2.3.2 Systemic Fault Injection Impacts

While fault injection techniques have been used to exploit both digital systems and embedded
software [19, 20], a physical fault usually manifests as a 0 or 1 bit in the digital hardware
state. The fault injection technique always causes a change at the hardware level, but
whether faulty data will be stored in the registered hardware state is not always predictable.
As shown in Section 2.4.1, there are few circuit fault evaluation methods that can distinguish
a fault injection attempt from faulty bits that are induced in the hardware state. For the
purposes of this thesis, the following definitions will apply:

e Fault Injection / Attack — The act of tampering with the system parameters/envi-
ronment to cause faults in the hardware.

e Fault Manifestation — The process by which injected faults affect the circuitry and
are either successfully incorporated into the hardware state or otherwise lost.

e Hardware Faults / Faulty Bits — The bits in the hardware state that are successfully
affected by an injected fault.

e Hardware Fault Propagation — The process by which faulty bits propagate through
the hardware, creating erroneous bits different parts of the circuitry.

e Software Fault — Bits in the software-level state that have been changed by hardware
faults. Not every faulty bit in the hardware will have an impact on the correctness of
software execution.

e Software Fault Impact / Response — The general changes in software behavior
caused by software faults. This may be described quantitatively or qualitatively in
terms of instruction execution.

11

For successful hardware faults, the following common models are used to describe fault
impacts on state bits [17]:

e Stuck At 0 — The hardware bit is forced to a 0 value
e Stuck At 1 — The hardware bit is forced to a 1 value

e Bit Flip — The hardware bit is toggled from its current value

Even when a fault injection successfully induces faulty bits in the hardware state, there
is a large abstraction stack that separates the hardware fault from software-level behavior.
This long distance through technology physics, digital circuitry, microarchitecture, and ISA
shown in Figure 2.3 is what makes design-time evaluation of software fault impacts challeng-
ing. Performing detailed analysis of physically-accurate hardware fault propagation makes it
harder to track software running at the higher level of abstraction. Between different ISAs,
microarchitectures, and physical implementations any two given embedded processors may
respond differently to the same fault injection attacks. At the hardware level, differences in
the physical circuitry and layout can lead to different impacts on the hardware state from
the same fault. For example, the program counter in two different physical implementations
of the same processor may produce different faulty states for the same clock glitch attack due
to differences in the critical paths. At the architecture level, microarchitectural differences of
the same ISA can lead to very different fault propagation behavior simply due to the nature
of the microarchitecture having unique impacts on data flow.

2.4 Fault Vulnerability Evaluation Methods

The general goal of embedded software fault vulnerability evaluation is to know in which
ways a given piece of software can be exploited by fault attacks. The vulnerability analysis
can then be used to add countermeasures in software to protect the program, or in hardware
to mitigate fault attacks in general. However, the heterogeneity of embedded processors in
architecture, physical design, and ISA makes evaluation of processor fault vulnerability a
hard problem to solve using any one solution.

Ideal vulnerability evaluation would cover as many fault injection techniques and param-
eters as possible, and be applicable to an entire software program while maintaining accuracy
as to what is physically realistic for the target device. Unfortunately, these goals are not
naturally compatible. Obtaining physically-accurate results requires device-specific details
that are difficult to maintain at a higher level of abstraction, where full program analysis is
much more feasible. As a result, current techniques in fault vulnerability evaluation are split

12

if (x == 5){ A
Software func();
Execution changes affect
bne x1,x2,8 software behavior
ISA jal x2,func
y-architecture Faulty bit affects

processor execution

Digital Circuitry

D_ Fault manifests

as 0 or 1 bit

Circuit Technology
— Fault injected
in circuitry

Device Physics

.

Figure 2.3: The impact of a fault injection attack through all of the main layers of hardware
and software abstraction.

into four categories relating to one or both of the two goals of ideal vulnerability evaluation:
physical accuracy and software coverage. The rest of this chapter presents publicly-available,
state-of-the-art fault vulnerability evaluation solutions for these different focus areas.

2.4.1 Physical Hardware Fault Modeling

While the focus of this thesis is on software evaluation, hardware fault evaluation methods
are of interest because they consider realistic fault manifestation and propagation. In pure
hardware designs, fault attacks impact the internal state of the circuit and the faulty bits
may propagate to the final outputs. Successful faults are determined by whether the fault
propagates to the output, causing corrupted outputs that can then be used in differential
fault analysis (DFA) attacks on cryptographic algorithms [19]. Understanding the underlying
fault propagation is necessary for uncovering the root cause of software-level fault impacts.

13

Architecture Vulnerability Factor

The architecture vulnerability factor (AVF) is one of earliest methods introduced for
evaluating the severity of a system’s response to hardware faults [21]. AVF was created for
non-adversarial contexts, considering only randomly occurring faults that are of interest for
general fault tolerance testing. The method requires significant hand analysis, where the
evaluator identifies all bits at the software level that affect the program output, called ACE
bits. The AVF metric is then determined by calculating the amount of time the ACE bits
spend in each hardware structure. Therefore, the AVF is unique to each hardware structure
and is dependent on the particular software workload during analysis. Different software
benchmarks result in different AVF values [21].

AVF is an example of heuristic fault vulnerability evaluation since specific ACE bits are
identified based on an assumption that they are the only bits that can affect the output.
Since this technique does not consider malicious faults, the final AVF is a risk metric that
estimates an answer to the question: “How detrimental would it be for system operation if
this hardware structure randomly had an error?” Furthermore, this method does not explore
fault propagation or manifestation and instead treats all random faults as though they are
guaranteed to cause failures. While this is an appropriate technique for estimating how
critical each part of the hardware is for correct operation, it is not appropriate for malicious
fault evaluation.

Timing Violation Vulnerability Factor

A more physically-accurate metric for fault vulnerability analysis is provided by the Tim-
ing Violation Vulnerability Factor (TVVF) [6]. TVVF is a metric for evaluating timing fault
vulnerabilities in digital circuits using actual timing properties from the physical implemen-
tation. Determination of the TVVF for a circuit and set of faults is split into two phases:
analyzing the scope of vulnerability (SoV), and analyzing the scope of propagation (SoP) [6].

Analyzing the SoV determines the likelihood that a given clock glitch results in a faulty
register state. This is accomplished by performing static timing analysis on the combinato-
rial networks leading to register inputs and calculating the number of violated paths. This
process considers the minimum clock period defined by the attacker model, and computes
the probability of a successfully inducing faulty bits for different glitch widths starting with
the critical path delay and decreasing down to the model minimum. Analyzing the SoP
determines the likelihood that a successful glitch from the SoV propagates through down-
stream circuitry to reach a circuit output. This stage uses observability analysis, although
the authors state that other techniques can be used as well [6].

TVVF was demonstrated on ripple-carry adder and AES S-box test circuits and is gener-
ally targeted for cryptographic hardware. While this technique was shown to be effective for

14

accurately determining hardware vulnerability to clock glitches, it is unknown how calculat-
ing TVVF would apply to processor hardware and how the computational intensity scales as
the circuit grows. However, this is still an effective technique for achieving physically-realistic
fault vulnerability analysis for critical pieces of hardware.

Verification Tool for Fault Injection

Arribas et al. introduced their verification tool for fault injection (VerFI), the first tool
dedicated to evaluating adversarial fault vulnerabilities in hardware designs [5]. VerFI is a
framework intended for testing hardware fault countermeasure coverage, and was designed
to support user-specified fault models. The tool accepts an RTL description of the hardware
and a fault configuration from the user, and automates the testing of multiple faults on a
synthesized netlist.

VerFI synthesizes the RTL design into a netlist of logic cells, and builds a software
representation of the circuit with additional properties at each node that allow for simulated
fault injection. The fault configuration file controls the following properties of the injected
faults: how many faulty bits to inject during the simulation; the maximum number of faults
to inject during any clock cycle; the locations where the faults should be injected; the type
of fault to inject. VerFI currently supports injecting faults at the inputs to submodules in
the design hierarchy, and the authors state that in the future this could be extended to inject
faults at the inputs of individual gates. The framework supports both bit flip and stuck-at
fault models. VerFI also supports advanced groupings of target fault bits in the event that
the user wants to evaluate the circuit’s response to faults induced on an entire multi-bit
register or bus.

These three main fault configuration features allow a range of faults to be simulated,
including voltage and clock glitches, EM faults, and optical faults. Particularly, by injecting
faults at the inputs to submodules, VerFI supports regional attacks where one part of a
device is affected, but not another. This is necessary behavior for being able to cover EM
faults. The simulation part of VerFI writes the fault configuration into the fault properties of
the software copy of the netlist and uses event-based simulation to analyze fault propagation.
Arribas et al. used VerFI to analyze the coverage of hardware designs protected with fault
countermeasures and were able to find examples of faults that were properly mitigated, and
faults that were not stopped by the countermeasures. One of the designs was a full protected
AES accelerator, which demonstrates that VerFI is practical for use on non-trivial designs [5].

While VerFI is able to track fault propagation through a circuit, and allows the user
to test resistance to a wide and flexible range of fault attacks, it does not inherently take
into account which faults are more realistic to occur. Furthermore, VerFI starts with an
RTL description of the hardware and runs synthesis as part of its flow. While this may
be convenient in some situations, there may be designs that have specific physical layouts,

15

to achieve timing closure or insert fault countermeasures, for example. Therefore, it may
be more practical for the user to provide a pre-synthesized netlist. This would also ensure
that the fault simulation results are accurate with respect the final production version of the
hardware, which may be different from the auto-synthesized netlist created in VerFlI.

VerFI is an effective tool for exhaustively evaluating fault coverage of hardware coun-
termeasures. Even without having knowledge of which faults are realistic, the ability to
determine the number of logically possible faults that a countermeasure covers is valuable.

Adversarial Fault Modeling

Richter-Brockman et al. presented a method for modeling different types of fault injec-
tion mechanisms in terms of faulty bit behavior and circuit injection location [17]. Their
adversarial fault injection modeling technique draws a distinction between a fault (attacker
injection) and a fault event (the adoption of corrupted values into the circuit state). The
modeling technique views the circuit as a directed graph of sequential and combinatorial
elements, where a fault event may propagate through downstream nodes from the output
of a sequential node. This view of the fault and circuit relationship is similar to the one
used by TVVF, but allows for injection mechanisms beyond clock timing violations at the
expense of losing physically-accurate fault manifestation information.

Modeling the actual fault event behavior is done in accordance to a list of fault mani-
festation models: Set/reset faults, bit flip faults, and a user-specified model for extension
purposes. This allows any scenario that is achievable with real fault injection techniques
to be represented by the model. For example, clock glitches can be modeled by placing a
set/reset fault type on all combinatorial gates, since the faulty bits latched into the state
come directly from early gate outputs. EM faults are modeled using set /reset faults as well,
but with faults applied to sequential gates since EM pulses cause sampling errors [17]. The
study also defines a ”fault coverage” metric that measures how many fault events propagate
to an output across the combination of all attacker faults and circuit inputs. They pro-
vide a trivial example of a XOR-with-parallel-inverter circuit that has been duplicated as a
countermeasure. The metric determined that the fault coverage of the example circuit was
93.75%, meaning the duplication countermeasure prevented 93% of faults from propagating
to the output.

The authors implemented their model using VerFI, where using a specific fault injection
mechanism limits the number of fault configuration parameters. Since the adversarial model
supports application of faults to combinatorial gates, sequential gates, or both, the full model
may not yet be supported by VerFI. While this more formal look at fault modeling provides
guidelines for how to represent the manifestation of different injection techniques, it still
does not take into account the device physics. Therefore, this model still involves testing
all logically possible hardware faults and does not evaluate which faults could realistically

16

occur. For example, in an EM fault there is non-deterministic sampling of register data
inputs since the timing with which the data and clock signals recover is unknown. However,
being able to restrict the total number of possible faults with a model like this is beneficial,
as it allows evaluation of specific types of fault injection techniques.

2.4.2 Physical Software Fault Testing

While this thesis explores capabilities for evaluating fault vulnerability before obtaining a
physical device, knowledge can still be gained from from studies on real physical attacks.
Particularly, the results from physical attacks inform what types of behavior should be
achievable from a physically-accurate, pre-production software fault vulnerability framework.

Fault Characterization

In the past decade, multiple studies have focused on characterizing the effects of embed-
ded software fault attacks on various platforms. While the results vary by platform, each
study confirms that most results can be explained by replacing the original instruction with
a different one [22] [23, 24]. Each of the following studies aimed to describe how EM faults
on a given target platform are likely to impact the program state and outputs.

A 2013 study by Moro et al. tested EM faults on an ARM Cortex-M3, focusing heavily
on applying faults to a single load instruction while fetching it from flash memory [22].
The authors concluded that all faults that are explained by single-instruction-replacement
must be faults on the instruction fetch, and that all unexplained outcomes are faults on
the data fetch. These observations culminate in a simple model where the time of the fault
corresponds to the number of 1s that will be read from the memory data line. This result
was deemed device-dependent because the bus precharge value is responsible for whether a
stuck at 0 or stuck at 1 fault manifests.

A study by Proy et al. in 2016 provided more insight into fault behavior on an ARM
Cortex-A9, compared to the single instruction analysis from the prior study [23]. The first
set of experiments aimed only to determine how the final results of a simple data-copying
loop changed in response to various EM faults. The results were split into 4 levels of sever-
ity: no effect, program crash, output corruption, program flow corruption. A program flow
corruption indicated that both faulty outputs were observed and the loop took an incor-
rect number of cycles to complete [23]. These types of outcomes relate back to the general
goals of cryptographic fault attacks, where the attacker wants to obtain faulty outputs while
maintaining correct program flow.

17

The second set of experiments focused on different simple instruction sequences to build
up a set of heuristics describing how single faults can affect instruction execution. The
following is a list of observable behavior that explained most faulted instruction outputs [23]:

Instruction Skip (includes instruction replacement via a NOP)

Register upper half-word reset

Full register corruption

Source operand substitution

Instruction replay

Repeated fault effects

Beyond characterizing effects on simple instruction sequences, Proy et al. also applied
this type of characterization to multiple versions of the data-copying loops with various coun-
termeasures applied. The results showed that traditional software-level countermeasures may
work against simple instruction skip models, but are ineffective against more complex fault
effects [23]. Similar studies were performed by Trouchkine on multiple embedded platforms,
finding similar instruction level replacements and effects [24]. Beyond explaining fault re-
sponses with an ISA-level model, Trouchkine designed specific instruction test sequences to
exercise different parts of the microarchitecture. For example, a memory store and load
test was able to distinguish between the caches and memory management unit being faulted
during the attack.

Attacks Exploiting the Microarchitecture

The previous discussion focused on using EM fault attacks to characterize how differ-
ent faults affect instruction execution using ISA-level and microarchitectural explanations.
However, malicious attacks that use microarchitectural information to their advantage also
demonstrate how device specifics have a great impact on fault attack outcomes. Yuce et al.
demonstrated successful single clock glitch attacks against instruction level countermeasures
in the LED block cipher [25]. These attacks leveraged the fact that the target device used a
7-stage pipeline to determine when a fault could be placed to bypass duplication, triplication,
and parity countermeasures.

Furthermore, the attacks considered when different microarchitectural blocks would be in
use. Even without knowing the exact physical layout and timing of the circuit components,
sufficient assumptions could be made about which pipeline stages would have the shortest
path. For example, a branch currently in the execute stage would not require the ALU,

18

resulting in a short critical path. Therefore, faults could be injected on instructions in other
stages without interfering with the execute stage [25].

These observations on the impact of both microarchitecture and circuit parameters on
fault attacks are critical for evaluating software fault vulnerability in the future. Effective
fault vulnerability evaluation techniques should consider both the explainable results found
in the characterization studies, as well as these hardware-specific effects that enable successful
attacks on protected software.

2.4.3 1ISA-Level Fault Vulnerability Simulation

A study by Yuce et al. investigated using fault responses of embedded processor instructions
to improve the success of fault injection attacks [26]. Microarchitecture-Aware Fault Injection
Attacks (MAFIA) were accomplished by first profiling the target device in simulation to
learn how clock glitch attacks affect the execution of different instructions. The resulting
information was then used to craft clock glitch fault attacks that target specific instructions
and minimize the effect on other instructions in the processor pipeline.

To determine the fault sensitivity of different instructions in each pipeline stage, the
first phase of MAFIA involves running gate-level timing simulations of the target platform
as it executes the target instruction. When the instruction is in the target stage, a clock
glitch is injected through the simulation testbench and the instruction output is compared
to the expected value. This process is repeated with increasingly shorter clock glitch widths
until a faulty value is observed in the instruction output. While this technique is effective
for simulating realistic fault manifestation of the clock glitch mechanism, the only metric
measured is the exact glitch width that causes the first output corruption. Furthermore, the
simulation method for MAFTA is only applied in the context of building more powerful fault
attacks. The results of profiling only explain which faults cause errors in the software, but
not how the software or hardware is affected by fault attacks. However, a similar simulated
injection mechanism is used as the basis for the SimpliFI framework presented in Chapter 3
and is shown to be an effective technique for capturing both hardware and software fault
propagation in Chapter 5.

2.4.4 Software Fault Simulation

The fault evaluation methods discussed so far have either applied to hardware accelerators,
or involve testing a real physical device. Physical device testing is effective for characterizing
an existing, produced device, but has challenges of instrumentation and restricted data

19

collection. Hardware-level evaluation and modeling techniques are effective for tracking fault
propagation through circuitry, but have limited context of what happens at the software level.
When analyzing software-level fault vulnerabilities, the attack surface expands; output data
corruption may only be one attack vector that can give the adversary a favorable outcome.
For example, an attack that induces a fault in the program and bypasses cryptographic
operations entirely may require less work on the adversary’s part, relative to performing
DFA on faulty outputs. These potential “bypass” attacks have been known since the early
days of fault injection, particularly in the form of faults that force a processor to skip an
instruction [20]. Software-level fault impacts such as this are easiest to identify and track
with ISA-level simulation.

One ISA simulation tool designed to evaluate software fault attack vulnerabilities is
Riscure FiSim [7]. FiSim currently supports evaluating software for ARM architectures,
allowing the user to input a platform model defining the address space, memory regions,
and stack information. The tool runs an ISA-level simulation of the program using this
information, and allows emulates fault injections on arbitrary instructions using either an
instruction skip or instruction encoding bit flip model. However, users are able to add their
own software-level fault models to the simulator.

This type of fault evaluation is important since it can exhaustively evaluate fault prop-
agation through software in response to different instruction-level fault models at different
points in the program. This is much easier than having to instrument a device and track the
program’s progress to correctly inject the fault, as is necessary with physical testing. How-
ever, a significant downside to ISA-level simulation is the lack of hardware-specific results,
both in terms of microarchitectural effects and realistic fault manifestation. Still, in situa-
tions where common faults, such as instruction skips, need to be evaluated, ISA simulation
provides an easy method for performing a high-level first pass.

2.5 Discussion of State-of-the-Art

The previous section introduced four methods for evaluating fault attack vulnerability. First,
physical modeling techniques such as TVVF and VerFI provide ways to evaluate fault prop-
agation and manifestation through hardware. TVVF supports both realistic fault mani-
festation analysis and fault propagation through downstream circuitry [6]. VerFI supports
arbitrary fault propagation simulation through hardware accelerators with a focus on evalu-
ating coverage of hardware fault countermeasures [5]. By itself, VerFI does not incorporate
hardware-specific fault models, but an adversarial fault model can be used to restrict the fault
space to represent faults that are logically possible with a specific injection technique [17].

20

Next, early fault injection attacks on embedded software established that instructions can
be skipped, enabling both cryptographic attacks (DFA) and control flow attacks on embed-
ded software [20, 19]. Next generation analysis extended this understanding to include single
instruction replacement [22]. Since then, the instruction replacement model has expanded
to include instruction replays, register data corruption, and operand substitution [23]. Fur-
thermore, using these instruction-level observations in conjunction with carefully-crafted test
sequences enables some level of microarchitectural analysis through physical fault testing,
without detailed knowledge of the microarchitecture [24]. However, simple glitch attacks
that leverage knowledge of the microarchitecture to bypass software countermeasures show
that having knowledge of the hardware greatly improves insight into fault vulnerability [25].

Third, attacks that use knowledge of microarchitecture were improved further by pro-
filing fault sensitivity of different instructions on the target device. This was achieved by
using timing simulations to detect the first clock glitch width that causes instruction output
corruption at various instruction stages [26]. However, this type of analysis was only used
to improve the accuracy of attacks and only determines which faults affect instructions and
not how they affect the instruction execution. Finally, ISA-level simulators that support
arbitrary fault injection provide rapid evaluation of software fault vulnerability. Despite the
ability to cover a wide range of faults and simulate simple fault models, ISA simulation does
not inherently support targeted testing of realistic fault events.

VerFI, and ISA-level simulators like FiSim seem to achieve similar capabilities. They both
simulate fault propagation in their respective domains (hardware and software) and support
arbitrary fault injection, regardless of whether the faults are realistic. However, FiSim is
targeted towards single instruction faulting, and does not consider how the microarchitecture
may cause multiple instructions to be faulted at once. The observations made by Yuce et
al. during the single glitch attack study hints that this type of modeling may be possible in
FiSim. The challenge would be adding microarchitectural awareness that correctly handles
complex situations such as out-of-order and speculative execution.

A summary of the benefits and tradeoffs between these types of fault evaluation methods
is given in Table 2.1. Physical device testing covers all functional categories, but due to the
challenge of instrumentation, only limited information is available on hardware and software
internals. What is currently missing from this collection is a pre-production method that can
consider physical manifestation like TVVF, physical device testing, and MAFIA, complex
circuit propagation like VerFI, and program-level analysis like FiSim.

21

Table 2.1: Summary of fault evaluation method capabilities.

&
) &
& ‘b@o&‘ > 2 & °
5 2 > 20 & N
Method < o ?;9’ o o o
ST & Sl
) < @" /\&e

TVVF O O ° ° ° ©
VerFI+Modeling ©) ®) [] [] @) [
MAFIA © o) ©) © ° ©
Device Testing ® © © © [) [)
FiSim [] [] O O O O

O = No Support (© = Limited Support ® = Full Support

22

Chapter 3

Fault Attack Simulation Framework

The current fault evaluation methodologies summarized in Section 2.5 each highlight the
important aspects of effective fault injection analysis. This chapter presents the SImulation
Methodology for embedded Processors to Learn the Impacts of Fault Injection (SimpliFI),
a general framework that supports the best capabilities from other current methods. By
combining physically-accurate fault manifestation and hardware-level propagation analysis
with a focus on software-level evaluation, SimpliFI is the first methodology for realistic
pre-production software fault vulnerability analysis. Before the implementation described
in Chapter 4, SimpliFI is first introduced as a collection of design principles, functional
requirements, and additional features that can be applied to different tools and platforms.

3.1 Design Principles

SimpliF1 is defined by tool- and device-agnostic requirements to ensure that implementations
which follow the guidelines achieve all of the primary features of current evaluation methods.
Furthermore, the framework describes only the necessary features of an implementation,
leaving room for extra analysis features that may be helpful for a given set of tools and
devices.

Simulate Realistic Fault Manifestation Using a post-layout netlist makes physical
circuit properties available for simulating fault manifestation. For example, approximate
power-consumption and signal timing can be obtained from an SDF file that is unique to
the processor implementation. While VerFI uses a synthesized netlist of device components,
the benefit of having hardware-level information is lost by using a software representation of

23

the circuit. A SimpliFI implementation should use a simulation method that can leverage
physical circuit properties to emulate different fault injection techniques.

Capture Hardware Fault Propagation In order to determine how the simulated faults
impact the processor state, hardware-level signals should be tracked so that faulty software-
level outcomes can be traced back to corrupted hardware state bits. While physical circuit
properties are already required by the fault manifestation design principle, this fault propa-
gation principle requires that the hardware state be actively tracked during execution, and
not just during fault injection.

Support Software-Level Analysis The final results should be tailored towards evalu-
ating software-level behavior. Therefore, SimpliFI implementations must be able to collect
software-relevant state at the end of a test, including processor registers, the program counter,
and the final processor hardware state. These results should contain at least as much in-
formation than was shown being collected during physical testing [23, 24]. Furthermore,
in conjunction with tracking the hardware state through execution, software-level data col-
lected by SimpliFT gives users more information than is possible with physical fault testing
methods, where the microarchitectural state is inaccessible.

3.2 Framework Design and Features

Figure 3.1 depicts the full SimpliFI framework, supporting the design principles described
in the previous section. The gate-level hardware simulation core achieves hardware-specific
results, while the outer layer supports software-level analysis and test management. Sim-
pliFT mimics the nature of the hardware/software relationship; in reality, software is just an
advanced configuration of the hardware, and the hardware is the entity that actually does
computational work.

The inner and outer layers of the framework can be implemented to support analysis of
both simple instruction sequences and full programs. Testing short instruction sequences can
aid the user in evaluating general fault vulnerabilities in the embedded processor. This is akin
to studies that use physical testing to characterize a device’s fault response behavior [24],
except SimpliFI can also detect how faulty bits propagate through the hardware. Testing
full programs aids the user in evaluating realistic vulnerabilities in critical security software.
Section 3.2.1 discusses the benefits of full program analysis, and Chapter 6 discusses how
processor characterization with SimpliFI can potentially build a model for use in ISA-level
simulation. For the purposes of this thesis, SimpliFI is only tested and implemented for

24

evaluating clock glitch faults. However, Section 3.2.2 discusses how additional injection
techniques can be modeled in the same framework.

To clarify the difference between user-designed tests and fault injection attacks simulated
in the framework, the following terminology applies:

e Test — A user-defined program and configuration pair that instructs the simulator to
apply faults at different points in the program. A test may involve multiple subtests.

e Subtest — A subtest is one part of a larger test case which specifies a start point,
target point, and multiple fault injection trial parameters.

e Fault Injection Trial — A singular execution of the test program with one fault
applied at a specific point.

- [o N

= = Program = =
- o= Integration - <> =-
LI 'y T
Device Netlist Programmed
Netlist
< /> o Program ;;rglvav{ai;?\ p— Log Parsing / M
> mpilati — |= ;
Compilation Core = Analysis |“
Target Program Hardware Fault Evaluation
State Log Results

D Y .
N Fault Test
“| Generation
[(
User Fault \ Slmulaﬂqn J
Configuration Fault Script

Figure 3.1: High-level depiction of the SimpliFI framework.

3.2.1 Outer Framework: Software-Centric Control

The outer layer of SimpliFI is responsible for building the device simulation environment for
a specific program, generating a complete set of fault test cases, and analyzing data collected
during simulation. The following sections discuss the main phases of the outer framework,
and define the functional requirements a SimpliFI implementation must achieve.

25

Program Compilation

The first step of the outer framework compiles user test programs into binaries that can
run on the embedded processor. To support both sequence and application testing, SimpliFI
accepts either a main assembly file or main C program file. The exact compilation process is
highly device- and program-dependent, so the framework does not have further restrictions
other than requiring a binary.

Program Integration

The purpose of the program integration step is to optionally create a copy of the device
netlist with the program included. Since many embedded processors rely on external mem-
ories to store the program, this may not be a practical step for some platforms. However,
for any platform where the program cannot be included in the netlist, the program must be
fed into the processor as part of the simulation testbench (Section 3.2.2).

An example where the integration step is necessary is when an FPGA-based processor
stores a program in an internal memory primitive, such as Xilinx Block RAM [27]. In this
case, the program can be stored in component configuration parameters, as the implemen-
tation in Chapter 4 does. Regardless of whether an explicit program integration step is used
or not, the main functional goal that must be supported by an implementation is making
the embedded processor run the target program during simulation.

Fault Test Generation

One of the key features of SimpliF1 is its ability to automate evaluation of multiple test
cases with a range of fault injection trials. The outer layer of the framework creates a fault
simulation script for the simulation core which specifies all of the fault injection trials that
will run. The simulation core expects a full specification of all parameters for each subtest:

Program Type

Start Point

Target

Observe Point

Starting Glitch Period

Ending Glitch Period

Glitch Period Step

26

The three parameters related to the clock glitch width hold the same meaning for in-
struction and application tests, while the other parameters vary in purpose for the two test
types. In an instruction test, the start point parameter indicates the memory address of
the instruction being evaluated, and the target parameter specifies the instruction execution
cycle that should be faulted. This allows the user to create multiple subtests to test the
fault response of different processor pipeline stages. In these tests, the observation point
specifies the number of clock cycles after the start point when the instruction output should
be recorded. For most instructions, this is the number of clock cycles required to process
the instruction. However, since the full device memory is not recorded by the simulation
core, the observation point could be set to a later time in the case of memory store instruc-
tions, where the value written into the memory can be read back into a processor register
for observation.

Since applications have significantly more complicated program flow than a short se-
quence of instructions, the address of an instruction is not a unique-enough identifier for
when the simulator should inject a fault. Instead, the test program can be instrumented
using a unique macro or function that is called when the simulator should prepare to inject
the fault. In this case, the start point parameter identifies the memory address of the macro,
and the target identifies where the target instruction is following the macro. The observa-
tion point is determined in a similar method to the start point. An example of this style of
instrumentation is provided in Chapter 4.

To simplify user configuration of the simulation tool, SimpliFI defines a custom and
flexible file format for the user to specify test configurations. Instead of fully specifying
all parameters for every subtest, the user can set global parameters that apply to every
subtest, and then create shorthand entries for different instruction and cycle subtests. Before
SimpliF1 starts up the simulation core, it converts the user configuration file into a fully-
specified fault simulation script that the simulation controller can understand. An example
user configuration file and its corresponding fault simulation script are shown in Listings 3.1
and 3.2, respectively. In the example user configuration file, the GStep, GStart, GEnd,
Observe Point, and test type are set for all following subtests. With the “Q@” characters as
subtest delimiters, this configuration file will create subtests for the instruction at address
2C for stages 0 through 7, and the same for the instruction at address 4C.

27

Listing 3.1: Sample user fault configura- Listing 3.2: Sample simulation fault

tion file. script produced by the test generation
1 SEQ step.
2 1 SEQ
3 GStep: 0.5 2 StartPoint: 2c
4 GStart: 12 3 Target: 0,1,2,3,4,5,6
5 GEnd: 4 4 ObservePoint: 7
6 ObservePoint: 7 5 GStep: 0.5
7 6 GStart: 12.0
8 StartPoint: 2c 7 GEnd: 4.0
9 Target: 0,1,2,3,4,5,6 8 Q@
10 @@ 9
11 10 SEQ

StartPoint: 4c
Target: 0,1,2,3,4,5,6
@@

—_
[\

StartPoint: 4c
Target: 0,1,2,3,4,5,6
ObservePoint: 7
GStep: 0.5

GStart: 12.0

GEnd: 4.0

@@

—
w

_= =
NN =

—_
=~
—_
w

e
SRS RS N

Output Processing

SimpliFT is able to analyze both hardware fault propagation and software-level outcomes
by leveraging the hardware state information recorded by the simulation core. The post-
processing performed on the data supports the same types of analyses as physical device
testing, where program and instruction outputs are inspected for errors. The output pro-
cessing stage handles analysis of instruction sequence and full application tests differently.

For instruction sequences, the goal of post-processing is to determine how the instruction
output and hardware state are impacted by different fault parameters, with faults being in-
jected at different stages across multiple subtests. SimpliFl computes the hamming distance
(HD) between actual execution outputs, and the expected values observed during a clean
run of the same program. The HD analysis identifies all registers that were corrupted in at
least one subtest and calculates how the final value is affected by each fault injection trial.

The goal of post-processing for full program tests is to determine which faults affected the
final program outputs, which faults crashed the program, and which faults had no effect on
the final output. The same final output data is collected as in the instruction tests, but with a
focus on program-level behavior. Since the instruction tests are intended to explore the fault
responses of microarchitectural components and only run for a few cycles, processor failures
are unlikely. On the other hand, full applications may run for hundreds or thousands of

28

clock cycles, so analysis focuses more on program-level and less on the hardware. Chapter 5
discusses how tests can be written to evaluate specific aspects of the hardware or software.

Although the focus is on program-level effects, SimpliFI can analyze how fault propa-
gation through the hardware state corresponds to different program outcomes. While some
software-level corruption may primarily be the outcome of software-level error propagation,
it is possible that some software outcomes consistently correspond to the same types of
hardware-level fault propagation. These main analysis features are only a starting point
for the output processing stage, and users can implement their own metrics and analytic
methods to extend the results of the SimpliFI framework.

3.2.2 Inner Framework: Hardware Simulation Core

The inner layer of the SimpliF'I framework is responsible for injecting faults into the simulated
hardware and tracking the hardware state immediately after the fault and at the end of the
test. A functional diagram of the simulation core is shown in Figure 3.2.

Simulation Functionality

SimpliF'T uses post-layout gate-level timing simulation, which automatically incorporates
timing properties of the entire netlist into simulated fault manifestation. There are numer-
ous hardware simulation tools that support physical netlist timing simulations, which are
developed to efficiently evaluate hardware [28, 29]. While it is possible to write a custom sim-
ulator that has built-in fault support, such as VerFI, simulating with a dedicated hardware
tool is likely faster and more efficient [5].

The simulation core control level is responsible for reading each subtest configuration,
such as the ones in Listing 3.2, and loading the parameters into the hardware testbench.
In addition to the fault injection trials, the controller runs an initial clean test for each
configuration to gather the expected values and runtime. This baseline data is necessary for
effective fault response analysis during output processing.

The testbench functionality shown in Figure 3.2 can be achieved with a SystemVerilog
module. SystemVerilog supports high level modules, such as a testbench, reading values
from lower levels of the simulated hardware. This feature allows the internal state to be
recorded at arbitrary time points during simulation. Additionally, hardware simulators allow
the simulation control script to write/read values in the testbench [28, 29]. This is one
mechanism for loading the test parameters into the testbench, and is the method used in
the implementation in Chapter 4.

29

Simulation
Control

[
Parse Test
|

Target Program
Target Cycle
Observation Point
Fault Parameters

Simulation
Fault Script
Testbench
Run to Target
Instr.+Cycle
. /
———
Record Record Final
Inject Fault Immediate Run to End
State
Propagation
Hardware
e
= Nis - ” Register Micro-Arch
TTIT File Status State
Programmed
Netlist

Figure 3.2: SimpliFI hardware simulation core diagram.

Clock Glitch Injection Mechanism

A critical part of SimpliFI is its ability to inject realistic faults into the hardware. As
stated earlier, this thesis focuses on simulating clock glitch fault attacks, although other
injection mechanisms can be simulated as well. By using post-layout gate-level simulation,
the timing information required to emulate clock glitch attacks is automatically included in
the simulated netlist behavior. During timing simulation, gate outputs are updated according
to their propagation delays defined in an SDF file.

30

With signal propagation time enforced by the simulator, the testbench can emulate a
clock glitch by manually shortening the clock period for one cycle and then returning to the
correct clock frequency. If the period is not short enough to violate signal timing, no faulty
bits are latched into the registers and the simulation will continue to run as if no fault was
injected. However, if the clock period does cause timing violations, then faulty bits may
manifest in the hardware state and propagate through the program. While any violation
of the critical path constitutes a successful clock glitch event, the resulting faulty bits are
caused by two distinct timing events.

a d
b e
D Q—
C
(a) Example circuit.
s2 sl sO

(b) Signal propagation with sampling windows covering the
register setup time.

Figure 3.3: Timing violations at different sampling points.

To demonstrate the two event types, consider the circuit shown in Figure 3.3a. The X0OR
and OR gates both have propagation delays from input to output, which for the purposes
of this example are just considered to be greater than 0 nanoseconds. The timing diagram
in Figure 3.3b shows signal propagation in response to the input {a,b,c} changing from
{0,1,0} to {1,1, 1}, with a transitioning before c. If the clock edge occurs at the end of the
s0 window in Figure 3.3b, the correct e value is latched into the register. If the clock edge
occurs at the end of the s1 window, a setup time violation occurs due to e transitioning
during the setup windows. In this case, the register state is unpredictable and may even
become metastable. Finally, if the clock edge occurs in s2, there is no setup time violation
since the data does not change in the sampling window. However, the temporary 0 value on

31

e will be latched into the register. While both of these events count as timing violations,
one of them violates the setup time, and the other causes an early incorrect sample.

Hardware simulators naturally handle incorrect sampling events, since the propagation
delays are modeled correctly so that signal e appears as a 0 at sampling point. However, the
setup time violation event is more complicated since setup time violations in a real circuit can
lead to register metastability. As discussed in Section 2.1.2, current metastability models rely
on analog characteristics of the register and data signal to characterize metastable flip-flop
outputs with some level of accuracy. Since digital gate-level simulation abstracts away the
underlying device physics, there is not enough information to simulate potential metastable
behavior using the existing models.

However, SimpliFI supports a random metastability model as a best effort to simulate
setup time violations. Instead of latching the data signal value at the exact time of the clock
edge, a random value is assigned to the register state. While metastability is not a fully ran-
dom phenomena, this technique acknowledges that unpredictable values may be introduced
into the hardware state as a result of clock glitches that cause setup time violations.

Injection Mechanism Extensions

The underlying physical effect SimpliFI leverages for fault injection is timing violations,
with the injection technique being a clock glitch. Therefore, other timing-based faults could
be added to the framework for future extensions, including voltage-based faults and even
EM faults. As discussed in Section 2.3.1, voltage-based faults also disrupt circuit timing to
inject errors into the state. Figure 3.4 shows example clock and voltage glitch fault effects on
a register. A voltage glitch attack increases the propagation delay of data signals, leading to
longer critical paths. Figure 3.4c shows this, with the normal data transitions from the clean
sample taking a longer amount of time to update in the faulted version. In this example,
the clock and voltage glitches can lead to setup time violations or critical path violations. In
both cases, the rising clock edge occurs closer to the data transition times; the clock glitch
moves the clock edge closer to the data, while the voltage glitch moves data transitions closer
to the clock edge.

These shared properties are one potential way to achieve voltage glitch simulation in the
SimpliFT framework. The clock glitch mechanism already moves the clock edge closer to the
data transitions, and could be used in the same way to simulate voltage glitches. The key
challenge that needs to be addressed is calculating how the clock glitch width maps to a par-
ticular voltage glitch. More work would be required to determine this relationship, but this is
a potential starting point for supporting more injection techniques. Voltage underpowering
attacks have similar effects as voltage glitch attacks, so the mechanism for voltage glitches
could be applied for a longer period of time to simulate voltage underpowering. While EM
faults are more complicated than clock and voltage attacks, the underlying fault manifesta-

32

data | | | a

clock ‘ ‘ | : ‘ \7
\
L

output

(a) Clean data sampling.

data | |

|
faulted clock | |

\
T
b

output

(b) Data sampling with clock glitch

voltage glitch data a

clock | I

output b

(c¢) Data sampling with voltage glitch

Figure 3.4: Clock and voltage glitch timing effects.

tion is caused by setup time violations with data signals at the positive supply voltage [18].
Since SimpliFT already supports basic metastability modeling in setup violations, EM faults
could be integrated into the framework by modifying data signals in the device that would
realistically be affected by EM pulses. This is one extension for future work on SimpliFI
that would greatly increase the versatility of the framework beyond its current abilities.

3.3 Summary

This section introduced the SimpliFI framework for evaluating software fault vulnerabilities.
SimpliFT simulates realistic fault manifestation by using gate-level simulation and injecting
faults that cause timing violations. The outer layer of the framework facilitates test control
and separates the user from the lower level simulation core while still giving them control over
program targets and fault injection parameters. The framework supports both short instruc-
tion sequence and full application testing, with different analysis techniques applied to each
evaluation type. The low-level simulation core handles fault injection and hardware state
tracking. By recording the hardware state, SimpliFI can track fault propagation through the
hardware during execution, while still supporting software level analysis to determine how
faults affect software execution.

33

Chapter 4

BRISC-V Framework Implementation

The SimpliFI framework outlined in Chapter 3 was implemented for the BRISC-V platform
created by the Boston University Adaptive and Secure Computing Systems Lab [8, 9, 10].
This Chapter discusses how each of the framework components was implemented to support
automated testing and analysis of instruction sequences and applications. This implemen-
tation of SimpliFT targets a Xilinx FPGA implementation of BRISC-V processors, so the
code and tool features are vendor-dependent. However, other hardware design tools such as
ModelSim, Cadence, and Synopsys support similar features.

4.1 BRISC-V Platform Overview

BRISC-V is an open-source RISC-V processor platform hosted by Boston University that
allows users to customize a processor implementation with different pipeline lengths, memory
hierarchies, and memory sizes. The customization used in this thesis had a 7-stage pipeline
and a single memory that stores both the program code and data. Figure 4.1 depicts the
selected processor pipeline.

34

© 0 N O U s W N

e e e e e T
N O Ot s W N = O

Memory

. Receive
Instruction

Decode Execute

Memory

Writeback
Access

Figure 4.1: BRISC-V T7-stage pipeline.

When implementing the BRISC-V processor in Xilinx Vivado, the original netlist did
not utilize Block RAM due to an incompatible memory access process in the Verilog code.
To bypass this and achieve a netlist that uses Block RAM for memory, the original memory
access code (Listing 4.1) was modified (Listing 4.2). The main functional difference between
these two versions is that when the memory is written to, the write value propagates to the
output bus. This did not cause any execution errors when testing large applications to verify
validity. Otherwise, the changes in enable logic preserve the original enable logic, but with
only one if statement per port as is required by Vivado Block RAM inference.

Listing 4.1: Original BRISC-V memory access code.

// Port 1
always@(posedge clock) begin
if (writeEnable_1)
// Blocking Write to read new data on read during write
ram[address_1] = writeData_1;
if (readEnable_1)
readData_1 <= ram[address_1];
end
// port 2

always@(posedge clock)begin
if (valid_writeEnable_2)
// Blocking Write to read new data on read during write
ram[address_2] = writeData_2;
if (readEnable_2)
readData_2 <= ram[address_2];
end

35

Listing 4.2: Modified BRISC-V memory access code to support Vivado Block RAM inference.

wire enl;
wire en2;
assign enl = writeEnable_1 | readEnable_1;
assign en2 = valid_writeEnable_2 | readEnable_2;
// Write before read Vivado synthesis model
// Port 1
always@(posedge clock) begin
if (enl)

if (writeEnable_1) begin
ram[address_1] <= writeData_1;
readData_1 <= writeData_1;

end else
readData_1 <= ram[address_1];
end
// port 2
always@(posedge clock)begin
if (en2)
if (valid_writeEnable_2) begin
ram[address_2] <= writeData_2;
readData_2 <= writeData_2;
end else
readData_2 <= ram[address_2];
end

4.2 SimpliFI Implementation

This section discusses the tool-specific aspects of implementing SimpliFI for BRISC-V, as
well as some of the high-level automation for running tests. The tool was implemented
using a combination of Python3, TCL, and shell scripts. A brief overview of each file is
given below, and with further discussions in the subsequent sections. Figure 4.2 provides a
dataflow diagram for all components of the SimpliFT implementation. Although all inputs
are given to simplifi.sh, the diagram depicts when the inputs are actually used.

e simplifi.sh — Top level script that controls all functionality.
e build_tests.sh — Build all necessary files for a list of tests.

e build_pgm.sh — Compile an instruction sequence or application test for the RISC-V
ISA.

36

convert_mem.py — Convert a compiled program into memory initialization data for

BRISC-V.

build_images.tcl — Create copies of the device netlist, with a different test program
integrated into each one.

build_sim.sh — Build a timing simulation snapshot for a specific test program.
gen_config.py — Generate a fault simulation script from a user configuration file.
run_sim.sh — Simulate all requested fault injection trials for a specific test.

sim_ctrl.tcl — Simulation control script that reads test configurations and configures
the testbench.

build_lib.sh — Create a custom copy of the Xilinx simulation libraries that support
the metastability model.

comp_lib.tcl — Vivado command to compile the simulation libraries from a custom
source.

parse_log.py — Parse the fault simulation log data into a CSV file for future processing
with Python3.

analyze.py — Analyze the differences between faulty program data and clean program
data to evaluate hardware and software fault responses.

37

=T

test list config
build_lib.sh simplifi.sh gen_config.py
Y
Metastable . .
FDRE model build_tests.sh Simulation
(v) fault script
Y
|
comp_lib.tcl </> build_pgm.sh run_sim.sh —> sim_ctrl.tcl
.c/.asm Verilog memory file l
(.mem)
L parse_log.py
{ } convert_mem.py
BRISC-V Block RAM Fault
config initialization Simulation evaluation
properties (.tcl) snapshot data (.csv)
1 (xsim)
Compiled = N = build_images.tcl analyze.py
metastability = T =
library
(simprims_ver) -dcp pr:gt:ias?w(n:gd
' Fault Evaulation
Results
build_sim.sh

Figure 4.2: Dataflow diagram of the BRISC-V SimpliFI framework implementation.

4.2.1 Top-Level Control

All of the functional steps in the framework implementation are controlled from the top-
level simplifi.sh script that allows each component to be run individually. This script
allows the user to specify the platform they want to use in the case of having multiple
devices to test, and specify a file that includes all of the tests that should be evaluated. To
improve the organization of tests, the tool supports test folder hierarchies. For example,
multiple ADD instruction tests that target different instruction components could be located
at tests/add/dst and tests/add/srcl. This allows clean test hierarchies. To improve
run-time, both the simulation snapshot compilation and simulation execution steps can be
parallelized, with multiple tests being built and run at the same time. The practicality of
these options is dependent on system resources.

38

4.2.2 Building Test Cases

To create different test cases the user places programs in a test directory, where the main file
for instruction sequences is called seq.asm, and the main file for application tests is called
main.c. The tool will look for an optional accompanying data.c file for instruction tests
to populate the device memory. This allows the user to initialize the memory for memory
instruction tests. For an application, all other .c and .h files in the test folder are compiled
along with the main program. At the end of compilation, the program binary is exported
as an ASCII file that contains one instruction encoding per-line, which is used as a Verilog
memory specification file for future steps.

To load each test program into the device, the user provides a Xilinx design checkpoint
file (.dcp) of the post-layout netlist to the tool. For each program, the tool splits the Verilog
memory file into separate memory initialization files for all of the Block RAMs present in
the BRISC-V processor. BRISC-V splits the entire program and data memory into four
memory “modules”, where each module provides one byte of a 4-byte instruction word. The
number of Block RAMs in each memory byte module is dependent on the memory size. The
convert_mem.py script does this conversion using the Verilog memory file and a BRISC-V
platform configuration file that gives the memory size.

Table 4.1 shows how the memory size affects the number of Block RAMs. The values
show the number of 36 Kb Block RAM primitives that are included in each module. The
0.5 values indicate that a single 18 Kb Block RAM is used instead of a full 36 Kb primitive.
When a memory module comprises a single Block RAM, each Block RAM contributes one
byte to the full memory word. However, in modules comprising two Block RAMs, each
Block RAM contributes one nibble (4 bits) to the overall memory word. Finally, in modules
comprising one half of a Block RAM, every other byte of the Block RAM contributes to the
memory value.

Table 4.1: Mapping of BRISC-V memory sizes to Xilinx Block RAMs.

Memory Bytes per Bits per RAMs per
Size (B) RAM RAM Module
32768 8192 65536 2

16384 4096 32768
8192 2048 16384
4096 1024 8192 0.5

39

In a netlist that contains initialized Block RAMs, the initial values are specified in ini-
tialization parameters of the Block RAM primitive. The tool uses the observed mappings
of memory data to Block RAMs to construct appropriate initialization parameters, which
are applied to the platform netlist through set_property TCL commands. The original
Verilog memory file parsing and Block RAM initialization parameter writing is performed
by a Python3 script for every test program. A subsequent TCL script is sourced in Vivado
to create copies of the device netlist with the various test programs integrated. Each pro-
grammed device image is saved both as a new .dcp file, and a timing-annotated Verilog
netlist.

4.2.3 Simulation Snapshot Compilation

After building a netlist image for each test program, the testbench is compiled into a Xilinx
simulation snapshot for each program image. A simulation snapshot is an optimized simula-
tion program that is compiled with all of the design and test files. The tool builds simulation
snapshots using a shell script that compiles the netlist Verilog and testbench SystemVerilog
files with Xilinx xvlog, and elaborates the intermediate result into a simulation snapshot
with xelab. Since the programmed device netlist is exported with timing information, the
xvlog commands are not instructed to use further timing information. However, to cre-
ate to create a timing simulation snapshot with realistic delay times, the following xelab
arguments are specified:

Listing 4.3: xelab command line arguments for accurate timing simulation.

--relax --maxdelay -timescale 1ns/1ps -03 -L xil_defaultlib -L
secureip -L simprims_ver -transport_int_delays --pulse_r 0 --
pulse_int_r O --pulse_e 0O --pulse_int_e O

4.2.4 Simulation Fault Script Generation

As discussed in Section 3.2.1, the user creates a file for each test that specifies the fault
parameters and program target locations. For application tests, the user specifies the starting
and observation points for fault attacks by calling different macros in the code. The macros
shown in Listing 4.4 are designed to create unique execution points in the compiled binary
that can be easily identified. For example, when __SimpliFI Start is called in a program,
the function will be compiled to the assembly shown in Listing 4.5. The final instruction
of this function can only be executed when the function was intentionally entered, and not
tentatively entered when executing a branch instruction. The address of the last instruction

40

is used as the unique identifier for the hardware simulation core, which will begin waiting
for the fault target points when this address is seen in the program counter.

Listing 4.4: Macro and corresponding function used to identify the fault injection start point

1 void __attribute__((optimize("00"))) FiSimStart(void)
2 1

3 return;

4}

5 #define __FiSimStart FiSimStart();asm("nop;");

Listing 4.5: Compiled assembly code for the macro in Listing 4.4

1 00000264 <SimpliFI_Start>:

2 264: £f010113 addi sp,sp,-16

3 268: 00812623 sw s0,12(sp)

4 26c: 01010413 addi sO,sp,16

5 270: 00000013 addi zero,zero,O
6
7
8

274: 00c12403 1w s0,12(sp)
278: 01010113 addi sp,sp,16
27c: 00008067 jalr zero,0(ra)

As discussed in Section 3.2.1, the user config file is transformed into a fully-specified
simulation fault script, where all options for every test are given values. The user config-
uration file for an application test would include SimpliFI Start as the start point, and
the enumerated instructions following the start point that should be tested as the targets.
For example, the two instructions immediately following the start point would be selected
by adding 0,1 to the target point list. When the tool transforms the user config file into
the fault script, it searches for the place that the SimpliFI Start function is called from,
and uses the instruction two addresses later to expand the target points. If the function is
called at address 0000013C, then the target point corresponding to the 0 in the target list
would expand to 00000144. This is necessary because the testbench needs a buffer cycle in
between when the function exits and a fault is injected. This buffer is provided in code by
the NOP instruction at the end of the function in Listing 4.4.

As a high-level summary, the user specifies the region of the program that should be
evaluated by including the macro, and then counts the specific instructions that should be
evaluated following the start point. The tool then translates these identifiers into conditions
that can be identified with hardware-level simulation.

41

4.2.5 Testbench and Control

The hardware simulation core testbench discussed in Section 3.2.2 was written in System Ver-
ilog to allow access to internal device signals, as required by the simulation framework. To
support both instruction sequence and full application simulation, the testbench file includes
two code bodies which are selected by a TEST_TYPE parameter. This parameter is specified
during simulation snapshot elaboration. During simulation, the testbench relies on variables
that specify the start instruction, target point, and observation points, which are specified
by the converted user configuration file. These variables are set from outside the simulation
by a TCL control script that reads the simulation fault script. For each test in the script,
the TCL control program writes the start and target points into the testbench variables, and
repeatedly runs and restarts the simulation with different clock glitch periods. This allows
the testbench to fully reset to a clean state for every glitch trial.

While testbenches for system verification usually have a dedicated clock generation pro-
cess, the SimpliFI simulation clock is manually toggled throughout simulation. While it
would be possible to create a clock generation process that is affected by a variable set in
the main loop, having one testbench process which handles the clock and program tracking
leads to fewer complicated timing events in the testbench.

4.2.6 Metastability Modeling

The metastability model was implemented by modifying the unisims library source code to
randomize a flip flop’s state following a setup/hold violation. The unisims flip flop primitives
are implemented with timing checks on all of the simulated internal signals to detect when
different gate wires have timing violations. The code includes an unused notifier variable
which raises as a flag when a timing violation occurs. To simulate metastability, the code in
Listing 4.6 was added to the unisims FDRE (D flip-flop with reset and enable) Verilog file.

Listing 4.6: Code added to the unisims library FDRE.v file to simulate metastability upon
timing violations.

‘ifdef XIL_TIMING
reg notifier;
wire notifieril;
reg rval;
always @(notifier) begin
rval = $urandom();
Q_out <= rval;
end
‘endif

42

1

In order to use the modified library in Xilinx simulation, the libraries were recompiled
with Vivado. This is accomplished from within Vivado using the TCL command shown in
Listing 4.7. The output_path field specifies the folder where the new compiled libraries
are stored, and the src_path field specifies where the library source is located. In or-
der for this command to work, the entire Vivado data directory needs to be copied from
Vivado_install dir/data, where the location of the copy is given as the source path.
Within the library, the modification from Listing 4.6 is applied to the FDRE.v file in the
data/verilog/src/unisims directory . When running simulations with the metastability
model included, the xelab command line arguments from Listing 4.3 are modified to specify
the metastability library by providing the path to modified _library/simprims_ver.

Listing 4.7: Vivado TCL command to re-compile the simulation libraries

compile_simlib -directory <output_path> -family all -language
verilog -library all -simulator xsim -source_library_path <
src_path> -no_ip_compile -verbose

43

Chapter 5

Framework Capabilities and
Outcomes

This chapter demonstrates SimpliFI’s hardware and software fault vulnerability analysis
capabilities. The experiments discussed here were performed on the 7-stage pipeline BRISC-
V processor using the framework implementation presented in Chapter 4. Both the design
and outcomes of the experiments are pertinent. In particular, experiment design is critical
for collecting results that maximize insight into hardware fault behavior, which aids the
evaluator in understanding the root cause of software-level faults. The chapter first presents
the results of instruction sequence experiments, followed by full application results.

5.1 Instruction Sequence Analysis

5.1.1 Experiment Design

Using simple instruction sequences to characterize an embedded processor’s fault response
has been shown to be an effective technique during physical device testing [22, 23, 24]. Sim-
pliFI supports this technique, and provides benefits over physical testing by enabling rapid
evaluation through simulation and collecting hardware state information during execution.
The goal of this type of evaluation is to build a knowledge base or model of how any type of
instruction may be vulnerable to fault attacks. Therefore, all aspects of an instruction are
of interest: opcode, addressing mode, operands, data, etc. An evaluator generally wants to
know how each of these instruction components contribute to overall fault response. Acquir-
ing this information essentially provides insight into how the hardware that implements each

44

component is vulnerable to fault attacks. To fully characterize a device, tests are designed to
isolate microarchitectural components to evaluate their fault responses, and to generalize the
common fault vulnerabilities and behavior exhibited by instructions with similar parameters.

While this evaluation does not do a characterization of the entire ISA, we divide RISC-V
32-bit integer ISA (RV32I) according to Table 5.1. This organization separates data in-
structions that use the arithmetic logic unit (ALU), memory access instructions, compare
instructions, and branch/jump instructions. Furthermore, each of these categories has in-
struction variants that use immediate values or direct register values.

Table 5.1: Organization of RV32I by operation type and address/value mode.

Category Direct Variants Immediate Variants
ALU SLL, SRL, SRA, ADD, SUB, XOR, SLLI, SRLI, SRAI, ADDI, LUI,
XOR OR, AND AUIPC, XORI, ORI, ANDI
Memory LB, LH, Lw, LBU,LHU, SB, SH, SW
Compare SLT, SLTU SLTI, SLTIU
Branch JALR BEQ, BNE, BLT, BGE, BLTU, BGEU,
JAL

Within each category, the effect of different destination registers, source registers, source
orderings, register values, and immediate values are evaluated. To do this, a separate test
is created for each instruction component that isolates the behavior for the component of
interest. To test fault effects on the destination register, multiple instructions of the same
type are faulted with equivalent values but varying destinations. The same approach is used
for the other components of interest. For the purposes of this evaluation, the following terms

apply:

e Instruction Component — A portion of the specification for an instruction executed
by the processor. Examples of instruction components include the destination register,
source registers, and immediate values.

e Instruction Test — A collection of SimpliFT tests that help characterize the behavior
of a specific instruction in response to different fault attacks.

e Instruction Component Test — A specific SimpliFI test that is designed to iso-
late the impact that different microarachitectural blocks have on the instruction fault
response by changing one component of the instruction.

e Fault Response — The behavior of faulty bits in the processor in response to different
fault attacks. The results may refer to the fault response of the hardware state as a

45

whole, or of the test outputs. For the test outputs, response is usually qualitatively
defined in terms of how the number of faulty output bits changes as a function of the
fault injection parameter. For example, a monotonic output response means that, in
general, the number of faulty bits in the outputs consistently increases or decreases. An
oscillatory output response means that the number of faulty bits alternates between
high and low counts as the clock glitch width changes.

e Fault Sensitivity — The range of clock glitch widths which induce erroneous bits in
the fault response. This term can apply to both the hardware state fault propagation
and the test outputs.

e Fault Intensity — The number of errors induced in the fault response by a fault
injection attack. This term can apply to both the hardware state fault propagation
and the test outputs.

The next section gives an in-depth exploration of a subset of the tested instructions to
demonstrate how results from SimpliFI can be interpreted. Due to the extensive amount of
information collected for each instruction, the rest of the instruction evaluations are sum-
marized briefly. Table 5.2 shows the instructions that are explored in detail. For each
instruction component test (eg. destination, source 1, etc.), 4 instances of the same instruc-
tion with varying selections of the target component were evaluated. To evaluate each of
these components using SimpliFI, a unique test program was written for each instruction
component. Listings 5.1 and 5.2 give the specific test programs for two of the ADD component
tests. The target instructions are padded with NOPs to ensure previous and future test setup
instructions do not interact with the target instruction execution. Furthermore, each subtest
was conducted with faults being applied at each execution stage, with clock glitch widths
ranging from 12 to 2 nanoseconds in 250 picosecond increments.

Table 5.2: List of evaluated instruction and their component tests.

Instruction Components

ADD dst, srcl, src2, src order, vall, val2, previous dst val
ADDI dst, src, imm., val, val order, previous dst val

LW dst, src, register addr, imm., previous dst val

46

Listing 5.1: An example instruction se- Listing 5.2: An example instruction se-

quence test program that focuses onevalu- quence test program that focuses oneval-
ation of the ADD source 1 instruction com- uation of the ADD value instruction com-
ponent. ponent.

1 1i x23,0x12345678 1 1i x7,0x12345678

2 1i x31,0x12345678 2 1i x8,0xDEADBEEF

3 1i x17,0x12345678 3 (7 nops)

4 1i x2,0x12345678 4 add xb5,x7,x8 # Target 1

5 1i x8,0x12345678 5 (7 nops)

6 (7 nops) 6 1i x7 ,0xFFFFFFFF # Next value

7 add x5,x23,x8 # Target 1 7 add x5,x0,x0 # Clear

8 (7 nops) 8 (7 nops)

9 add x5,x0,x0 # Clear 9 add xb5,x7,x8 # Target 2

10 (7 nops) 10 (7 nops)

11 add x5,x31,x8 # Target 2 11 1i x7,0xCBDB8576

12 (7 nops) 12 add x5,x0,x0

13 add x5,x0,x0 13 (7 nops)

14 (7 nops) 14 add x5,x7,x8 # Target 3

15 add x5,x17,x8 # Target 3 15 (7 nops)

16 (7 nops) 16 1i x7,0x23EF89AD

17 add x5,x0,x0 17 add x5,x0,x0

18 (7 nops) 18 (7 nops)

19 add x5,x2,x8 # Target 4 19 add x5,x7,x8 # Target 4

20 (7 nops) 20 (7 nops)

5.1.2 Test Results Exploration

ADD Destination Component Analysis

Figure 5.1 shows the results from injecting clock glitches on four ADD instructions, each
with different destination registers. The fault evaluation analysis calculates the number of
erroneous bits in register values at the end of execution and in the entire hardware register
state throughout execution. The error count is determined by the Hamming distance (HD)
between the expected clean results, and the fault injection results. The final instruction out-
puts and hardware state together offer significant insight into how faults impact instruction
execution.

First, the results from each individual stage show that the impact of identical faults on
the register outputs vary depending on when the fault is injected. When faults are injected

47

at the beginning of execution in stage 0, only clock glitch widths between 7.25 and 5.5 ns
result in corrupted output data. However, faults injected in stage 2 affect instruction output
as long as their glitch widths are shorter than 10.5 ns. In most of the tests, only the targeted
destination register and the program counter are affected by fault injection. However, clock
glitches with 4.25 ns widths applied in stage 1 not only affect the target destination register,
but other registers as well. The instruction targeting register R15 also modifies R11, and
the instruction target R5 modifies R1. This behavior is only observed in the stage 1 results
in Figure 5.1b.

Furthermore, the final erroneous bits in the destination registers vary slightly from one
instruction to another. For 4.25 ns glitches injected in stage 1, instructions targeting destina-
tions R2 and R25 result in slightly more erroneous bits. These anomalous behaviors for stage
1 faults call attention to the underlying circuitry for the pipeline stage. It may or may not
be a coincidence that targeting registers R5 and R15 results in corrupted values in registers
R(5-4=1) and R(15-4=11), while targeting R2 and R25 results in additional corruption in
the intended destinations for the exact same fault attack. The important observations here
are that (i) data can be written to the wrong destination register, and (7i) that the selected
destination register has a minimal but non-zero impact on the faulty bits that propagate to
the end of execution.

48

Register PC_REG Register R1 Register R2 Register R5 Register R11 Register R15 Register R25

o 35 Instr. Addr.|
S 30 —— 002c
P —— 004c
©
¥i) 2 —— 006¢c
@ 20 —— 008c
k-l
L 15
[=%
g 10
o
o
#* ,_M
0
12 10 8 6 4 212 10 8 6 4 212 10 8 6 4 212 10 8 6 4 212 10 8 6 4 212 10 8 6 4 212 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 002¢ Instr. Addr. 004c Instr. Addr. 006¢ Instr. Addr. 008c @
Finished{ 1002
o o
£ oo im b
z Cycle 5 °
k=] 60 L
g Cycle 4 S
40 5
% Cycle 3 8
8 Cycle 2 20 #
Cycle 1 %
12 10 8 6 4 212 10 8 6 4 212 10 8 6 4 2 100 7.5 5.0 s 0 F
Glitch Period (ns)
(a) Results from faults on stage 0 (instruction fetch).
35 Register PC_REG Register R1 Register R2 Register R5 Register R11 Register R15 Register R25 .
° Instr. Addr.
S 30 —— 002c
< —— 004c
w ® — o006¢
@ 20 —— 008c
o
g 15
2 10
S
(]
#
210 8 & 4 312710 6 & 4 31210 6 6 4 31210 6 6 4 31210 8 6 4 31210 8 & 4 31210 8 & 4 3
Glitch Period (ns)
Instr. Addr. 002c Instr. Addr. 004c Instr. Addr. 006c Instr. Addr. 008c "
Finished1 1008
£ %
E Cycle 6 80 &
S Cycles 2
B 60 §_
5 Cycle 4 40 g
.1":1' Cycle 3 o
o 20 *
Cycle 2 g
0o F
12 10 8 6 4 212 10 8 6 4 212
Glitch Period (ns)
(b) Results from faults on stage 1 (fetch receive).
35 Register PC_REG Register R1 Register R2 Register R5 Register R11 Register R15 Register R25 .
° Instr. Addr.
& 30 — o002¢
= —— 004c
9 s —— 006c
@ 20 —— 008c
-l
L 15
Q
2 10
o
O s
#
210 8 6 4 31210 6 6 4 31210 6 6 4 31210 6 6 4 31210 8 6 4 31210 8 6 4 31210 8 & & 3
Glitch Period (ns)
Instr. Addr. 002¢ Instr. Addr. 004c Instr. Addr. 006c Instr. Addr. 008c P
Finished< 1008
= 3
3 (80 &
& Cycle6 n
S K
o 60 +
'E Cycle 5 g-
2
c 40 5
2 Cycle 4 o
8 20 ¥
Cycle 3 g
12 10 8 6 4 212 10 8 6 4 212 10 8 6 4 2 100 7.5 5.0 s 0 F

Glitch Period (ns)

(c) Results from faults on stage 2 (instruction decode).

Figure 5.1: Final register corruption and state error propagation for glitch attacks on the

ADD destination component. 19

Beyond analyzing the data output behavior, the results from SimpliFT also give us insight
into hidden behavior in the hardware. The hardware state fault propagation plots in Fig-
ure 5.1 always exhibit erroneous bits remaining in the circuitry up until the end of execution
where corrupted output data appears in the registers. For example, a high volume of state
corruption can be seen throughout execution in Figure 5.1a in response to faults that cause
corrupted outputs. Glitches in the range of 7.75 to 5.75 ns induce hardware state errors
that propagate through to the output, although only glitches shorter than 7.25 ns affect the
data registers and glitches longer than 7.25 ns only affect the program counter. There is also
significant error propagation from glitches shorter than 3 ns, which only affect the program
counter by the end of execution.

However, attacks during stages 1 and 2 have significantly different effects on the hardware.
Figures 5.1b and 5.1c show that every tested glitch width resulted in at least 50 corrupted
state bits within the third subsequent execution cycle, but that the glitches applied in stage
1 result in up to 85 state errors. However, none of these errors propagate to the data outputs,
and only 7.75 to 5.25 ns glitches in stage 2 resulted in program counter errors.

Another fault behavior in these results is that certain faults induce few errors during
injection, while others induce significantly many errors. One trend shown by all of the
propagation data is that glitches resulting in few errors at the start tend to cause amplified
state corruption a few cycles later. These gradually amplifying faults seem to have the
greatest impact on instruction outputs. Conversely, faults that immediately cause significant
state error suddenly disappear two clock cycles before the end of execution.

ADD Source Components Analysis

Figure 5.2 shows a selection of results from injecting clock glitches on four ADD instruc-
tions, each with different source registers but identical data. Aside from the data included
here, the full results for testing different source registers showed that register R1 is corrupted
by 4 ns glitches applied in stage 1. This was similar to the behavior of the stage 1 destination
tests. However, the intent of the source operand test is to expose source-dependent fault
behavior.

In Figure 5.2, instruction numbers 44, 84, C4, and 104 correspond to testing source
operands R23, R31, R17, and R2, respectively. When only varying the first source operand
(Figure 5.2a), the final faulty output bits change significantly as the source changes. Al-
though the change in fault response is generally monotonic for all register sources, the pat-
terns exhibited during each source test vary for glitch widths between 9 and 4 ns. On the
other hand, the different source register tests exhibit nearly identical corruptions in the
program counter, except for a few outliers with source R2.

50

35 Register PC_REG Register R1 Register R5

o Instr. Addr.|
S 30 —— 0044
i — 0084
©
§i) 2 —— 00c4
@ 20 —— 0104
k-l
g 15
Q
2 10
o
O 5
#* /_h\
0
12 10 8 6 4 2 12 10 8 6 4 2 12 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 0044 Instr. Addr. 0084 Instr. Addr. 00c4 Instr. Addr. 0104
Finished{
Cycle 6

Cycle 5

Cycle 4

Observation Point

Cycle 3

Total # Corrupted State bits

4 212 10 8 6 4 2

100
80
60
40
20
10.0 7.5 5.0 25 °

(a) Source 1 target results from faults on stage 2 (instruction decode).

Glitch Period (ns)

35 Register PC_REG Register R1 Register R5 .
o Instr. Addr.
& 30 —— 0044
% — 0084
¥ 2 —— 00c4
@ 20 —— 0104
o
L 15
s
E 10
S
O s
#

o /_b\

12 10 8 6 4 2 12 10 8 6 4 2 12 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 0044 Instr. Addr. 0084 Instr. Addr. 00c4 Instr. Addr. 0104

Observation Point
Total # Corrupted State bits

Finished{ I I I 100
Cycle 6 80
60
"] 40
. b S T
8 6 4 212 10 8 6 4 2 12 10 8 6 4 2 10.0 7.5 5.0 25 °

12 10
Glitch Period (ns)

(b) Source 2 target results from faults on stage 2 (instruction decode).

Figure 5.2: Final register corruption and state error propagation for glitch attacks on the
ADD source 1 and source 2 components.

The behavior observed when testing source operand 2 is similar, but with some variance,
as shown in Figure 5.2a. The faulty outputs from testing instructions with second source
operands R23, R31, and R17 have a similar fault response to the source 1 tests, however, the
R2 test outputs begin to have errors in response to glitches that are nearly 2 ns shorter than
the other source tests. Furthermore, the faulty responses begin to diverge when glitch widths
of 3 ns or shorter are applied. The different fault responses observed when testing different
source 1 and source 2 operands indicate that the hardware that either pipelines the source
selections or that propagates values from the source register to the ALU is unbalanced. The
hardware for source 2 appears to be more sensitive since fault responses fluctuate significantly
more when targeting the second source operand compared to the first.

51

ADDI Destination Component Analysis

The ADDI instruction tests use the same data and subtest organization as the ADD instruc-
tion tests, but with the second addend coming from an immediate instruction encoding. The
results of the destination component tests in Figure 5.3 show one behavior that is significantly
different from the ADD destination subtests. Glitches during stages 1 and 2 cause significantly
fewer state errors during execution compared to the ADD destination tests. However, despite
the 20-bit state error decrease in the ADDI results, there is no difference in final output
corruption.

ADDI Source and Immediate Component Analysis

The stage 0 injection results in Figure 5.4a for the ADDI source register tests show extra
hardware fault sensitivities compared to the destination tests. For all previously discussed
tests, faults that propagated to the output were induced in the hardware state by glitch
widths from 7.5 to 5.75 ns, or 2 to 3.25 ns. However, the left sides of these regions are
extended by 0.25 ns in Figure 5.4a for the instructions corresponding to sources R23 and
R31, and cause the highest state fault intensity at the end of instruction execution. Despite
the significant increase, these faults still only induce errors in the program counter, with
no effect on the data registers. Even though this is a marginal increase in the number of
faults that actually affect software-level system components, it is significant from a hardware
perspective that this extra sensitivity exists for ADDI instructions but not ADD instructions

The second important result of the ADDI source tests is the behavior of faults injected
during stage 2. In the ADD source tests, both the source 1 and source 2 register fault responses
exhibited generally monotonic behavior, with different source 1 registers resulting in varying
detailed behavior for glitches less than 4 ns wide. Using different source 2 registers resulted
in far less response variance, except for the instruction targeting R2 becoming sensitive to
glitches at 8.25 ns instead of 10.25 ns. The stage 2 results of testing different source registers
in ADDI instructions, shown in Figure 5.4b are similar to the those of the ADD instruction
source 1 results. On the other hand, the results of using different immediate values in the
ADDI instructions are somewhat similar to the ADD instruction source 2 results. Aside from
the ADD source 2 response being more chaotic between 5.25 and 6.75 ns, the two component
test fault responses share multiple features.

92

35

Register PC_REG Register R1 Register R5 Register R10 Register R11 Register R15 Register R25

Glitch Period (ns)
Instr. Addr. 0024 Instr. Addr. 0044 Instr. Addr. 0064 Instr. Addr. 0084

° Instr. Addr.|
S 30 —— 0024
= —— 0044
©
gzs —— 0064
o 20 —— 0084
-l
2 15
Q
2 10
o
O s
#*

0

12 10 8 6 4 212 10 8 6 4 212 10 8 6 4 212 10 8 6 4 212 10 8 6 4 212 10 8 6 4 212 10 8 6 4 2

Observation Point

Finished{ 100
Cycle 6 80
Cycle 5 60
Cycle 4

, 11 il | w
Cycle 3
20
Cycle 2
0
2 10.0 7.5 5.0 25

Total # Corrupted State bits

12 10 8 6 4 212 10 8 6 4 212 10 8 6 4
Glitch Period (ns)

(a) Results from faults on stage 1 (fetch receive).

35 Register PC_REG Register R1 Register R5 Register R10 Register R11 Register R15 Register R25 .
° Instr. Addr.
S 30 —— 0024
] —— 0044
©
9 5 —— 0064
@ 20 —— 0084
T
L 15
Q
2 10
o
O s
#*
T 10 6 6 4 31210 8 6 4 312 10 6 & 4 31210 8 6 4 51210 8 6 4 31210 6 6 4 31210 8 6 4 3
Glitch Period (ns)
Instr. Addr. 0024 Instr. Addr. 0044 Instr. Addr. 0064 Instr. Addr. 0084 "
b
Finished 1002
o 3
£ k]
S cycle6 80 &
< K
8 60 £
B Cycles 2
g 40 &
» Cycle4d o
8 #*
o 20 2
- | 11l ;
o R
12 10 8 6 4 212 10 8 6 4 212 10 8 6 4 2 100 7.5 5.0 25

Glitch Period (ns)

(b) Results from faults on stage 2 (instruction decode).

Figure 5.3: Final register corruption and state error propagation for glitch attacks on

ADDI destination component.

the

The ADDI immediate test results in Figure 5.5 show that only glitch widths shorter than
8.25 ns affect the outputs. This is the same behavior exhibited by the ADD source 2 results
from Figure 5.2b for the instruction targeting R2. Since only one source 2 register resulted
in these fault results, no assumption can be made about the similarities to the immediate
test results. However, it is likely that the hardware that handles the second operand in ALU
operations is responsible for, or related to, the selection between a second source register or
an immediate data source. Furthermore, the fault responses for each trial in both of these
tests diverge in response to glitches with widths of 3ns or shorter. This behavior was not
observed with other instruction components, and is further evidence that the hardware may

be shared between direct source 2 registers and immediate values.

53

35 Register PC_REG Register R1 Register R5

o Instr. Addr.
S 30 —— 003c
o — 007¢
©
¥ 25 —— 00bc
@® 20 —— 00fc
e
g 15
[=3
2 10
S ’ \
5
. N A
12 10 8 6 4 2 12 10 8 6 4 2 12 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 003¢c Instr. Addr. 007¢ Instr. Addr. 00bc Instr. Addr. 00fc "
)
Finished+ I 100 2
3
o 2
£ cyes 1] [] []] 0 8
a
S oes i [i i "3
§ oroes | m I.I | IW] l.l s
Cycle 3 40 5
ﬁ ycle 8
O Cycle2 20 f
Cycle 1 g
12 10 8 6 4 212 10 8 6 4 212 10 8 6 4 2 100 75 5.0 s 0 F
Glitch Period (ns)
(a) Results from faults on stage 0 (instruction fetch).
35 Register PC_REG Register R1 Register R5 i
o Instr. Addr.
S 30 —— 003c
o — 007¢c
©
w B — oobe
@© 20 —— 00fc
°
g 15
o
2 10
o
O s
._/G‘
0
12 10 8 6 4 2 12 10 8 6 4 2 12 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 003c Instr. Addr. 007c Instr. Addr. 00bc Instr. Addr. 00fc »
2
Finished+ 1009
= 2
S 80 &
& Cycleé "
S 3
o 60 =
‘g Cycle 5 g—
2
< 40 5
w Cycle4 o
-3
5 20 *
Cycle 3 g
10 8 6 4 212 10 8 6 4 212 10 8 6 4 2 100 75 5.0 s 0 F

Glitch Period (ns)

(b) Results from faults on stage 2 (instruction decode).

Figure 5.4: Final register corruption and state error propagation for glitch attacks on the
ADDI source component.

54

. Register PC_REG Register R1 Register R5

Instr. Addr.|
30 —— 0024
—— 0064
25 —— 00a4
20 —— 00e4

15

10

; R\ J _/
8 6 4 2

12 10 12 10 8 6 4 2 12 10 8 6 4 2

«n

Corrupted Bits at End

Glitch Period (ns)
Instr. Addr. 0024 Instr. Addr. 0064 Instr. Addr. 00a4 Instr. Addr. 00e4

Finished 100

Cycle 6 I 80

CycIeS_IIIIII IIIIIIIIIIIIIII III {IIIIIIIII"III ||II| ®
40

Cycle 4 ‘

20
Cycle 3 “I
0

12 10 8 6 4 212 10 8 6 4 212 10 8 6 4 2 100 75 5.0 2.5
Glitch Period (ns)

Observation Point

Total # Corrupted State bits

Figure 5.5: Final register corruption and state error propagation for stage 2 (fetch receive)
glitch attacks on the ADDI immediate component.

LW Destination Component Analysis

Figure 5.6 depicts the results of fault attacks on the load word (LW) destination compo-
nent. Since no data registers were affected by the clock glitches, they have been left out
of Figure 5.6a. The state error propagation due to stage 0 faults only exhibits corruption
for glitch widths less then 3.25 ns; compared to the arithmetic instructions’ responses, the
fault sensitivity region for 6 to 8 ns glitches that causes output errors is missing for the LW
destination experiment. This difference in stage 0 fault sensitivity was the first significant
difference encountered between the two categories, demonstrating that different instruction
opcodes influence the hardware fault response. Meanwhile, the stage 1 (Figure 5.6b) error
propagation behaves similarly to that of the arithmetic instruction tests. However, each des-
tination test instruction results in a slightly different fault response. In this component test,
instructions 20, 40, 60, and 80 targeted destinations R5, R2, R15, and R25, respectively.
The responses for R5 and R15 destinations are nearly identical, with both causing errors in
two additional registers other than the intended destination. The one exception is the R15
instruction inducing an extra error in register R7. On the other hand, the R2 and R25 tests
result in fewer extra corrupted registers and exhibit non-constant bit errors in the expected
destination registers.

%)

Register

PC_REG
o 35 Instr. Addr.
S 30 —— 0020
o —— 0040
w % — 0060
@ 20 —— 0080
e
g 15
Q
2 10
o
O s
#* A
0
12 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 0020 Instr. Addr. 0040 Instr. Addr. 0060 Instr. Addr. 0080 "
s
Finished 1002
o s
< cCyces ©
S 80 {»
2 cycles °
o 60 3
% Cycle 4 %
[2
g Cycle 3 40 é
‘8 Cycle 2 20 #
Cycle 1 2
0
12 10 8 6 4 212 10 8 6 4 212 10 8 6 4 2 100 75 5.0 25 =
Glitch Period (ns)
(a) Results from faults on stage 0 (instruction fetch).
Register Register Register Register Register Register Register Register Register Register = Register Register Register
PC_REG R1 R2 R4 R5 R7 R8 R10 R11 R14 R15 R24 R25
o Instr. Addr.
S 30 —— 0020
s —— 0040
©
9 % —— 0060
@ 20 —— 0080
o
8 15
Q
2 10
* 0 J\ L | 1 A
12108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 2
Glitch Period (ns)
Instr. Addr. 0020 Instr. Addr. 0040 Instr. Addr. 0060 Instr. Addr. 0080 "
2
Finished1 1009
£ &
§ cres 80 &
S Cycles 60 E
2 s
le 4
E Cycle 40 E
8 cycle3 I
[S] 20 *
Cycle 2 o g
12 10 8 6 4 212 10 8 6 4 212 10 8 6 4 2 100 7.5 5.0 25
Glitch Period (ns)
(b) Results from faults on stage 1 (fetch receive).
Register Register ~ Register Register Register Register Register Register Register Register Register Register Register
35 C_REG R1 R2 R4 R5 R7 R8 R10 R11 R14 R15 R24 R25
o Instr. Addr.
S 30 —— 0020
< —— 0040
©
a 2 —— 0060
=
@ 20 —— 0080
o
L 15
Q
2 10
S
5
* L AL L |
A
12108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 2
Glitch Period (ns)
Instr. Addr. 0020 Instr. Addr. 0040 Instr. Addr. 0060 Instr. Addr. 0080 "
2
1009
o 2
c ..
'é Finished{ 80 %
5 Q
“ 5
H 20 5
B cycles I
[20 #
£
o ©
12 10 8 6 4 212 10 8 6 4 212 10 8 6 4 2 100 75 5.0 2.5

Glitch Period (ns)

(c) Results from faults on stage 5 (memory receive).

Figure 5.6: Final register corruption and state error propagation for glitch attacks on the LW
destination component. 56

The LW destination test also produced the first faulty outputs induced by a stage 5 glitch,
as shown in Figure 5.6c. Furthermore, the destination register fault response exhibits the first
oscillatory response seen across all the tests, in contrast to the previous monotonic behavior.
However, the R5 test output response does not exhibit the oscillatory behavior, a significant
difference in fault response even though the same type of instruction is being tested. While
the exact reason is unknown, a possible cause could be registers in the memory subsystem
retaining their previous values. Since the R5 test is the first one performed, the memory
output transitions from 0 to the stored value, while in subsequent target instructions, the
memory output may already be populated with the correct value. Furthermore, the R5
output errors still ripple in the same spots where the other test responses drop close to 0, so
the same paths are likely being violated.

When testing different values being loaded from the memory using the same address,
source, and destination, all instruction responses exhibit the oscillatory behavior (Figure 5.7).
One significant difference between the instruction sequences used for the value and destina-
tion tests, is that in the value test, a new value is stored in between the target LW instructions,
but in the destination test no stores are performed. With this information, another guess
that can be made about the memory subsystem is that store instructions clear the state that
was responsible for the first instruction having different behavior in the destination tests.
Once again, targeting multiple components of the instruction uncovers unexpected behavior
in the device microarchitecture.

35 Register PC_REG Register R1 Register R4 Register R5
R} Instr. Addr.
& 30 0044
= — 0088
Jul 2 —— 00cc
@ 20 —— 0110
e
2 15
[=%
2 10
o
O s
* RO R
2 10 8 6 4 2 12 10 8 6 4 2 12 10 8 6 4 2 12 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 0044 Instr. Addr. 0088 Instr. Addr. 00cc Instr. Addr. 0110

-
o
=3

Total # Corrupted State bits

Finished

o ®
o o

Observation Point
e
o

Cycle 6

N
o

o

12 10 8 6 4 212 10 8 6 4 2 12 10 8 6 4 2 100 7.5 5.0 2.5
Glitch Period (ns)

Figure 5.7: Final register corruption and state error propagation for stage 5 (memory receive)
glitch attacks on the LW memory value.

57

LW Address and Immediate Component Analysis

The last set of tests target the address and immediate components of the LW instruction.
The memory address is read from a source register and has an offset added to it which is
specified by the immediate field. The address tests accessed different memory locations by
changing the value in the source register and keeping the immediate value at 0. When testing
the immediate field, the value in the source register was fixed to point to the start of RAM
and the immediate field was changed for each target instruction to access different addresses.
All of the memory addresses accessed in these component tests held the same values.

The first notable behavior is that faults during stage 0 always result in the same hardware
fault propagation when varying the immediate field (Figure 5.9a), but cause different hard-
ware propagation depending on the address (Figure 5.8a). The hardware fault intensity of
the immediate tests matches that of the destination component tests in stage 0, which is not
surprising since the same type of load instruction is being used. However, it is unknown why
using different address values in the same source register would have an impact on fault man-
ifestation during the instruction fetch, since the source register value is not in the pipeline
during the fetch. When using SimpliFI to evaluate a processor for production, anomalies
like these may indicate unintended microarchitectural impacts that should be addressed.

The outcomes of stage 2 faults for the immediate tests in Figure 5.9b show that the
hardware fault sensitivity regions are dependent on the immediate value being used. For
instructions 20 and 60, the sensitivity region for faults that propagate to the output extends
out to 6.25 ns, while the other instruction outputs are only affected starting with 3.75 ns
glitches. In contrast, changing the address for memory access has no impact on the output
fault response, as shown in Figure 5.8b. Although the hardware error intensity varies, the
output sensitivity does not change significantly. The only change in fault response caused by
these faults appears in the program counter, whose error variance is partially caused by the
instruction address increasing as later LW instructions are tested. The difference in behavior
for targeting the address versus the immediate value indicates that, for LW instructions,
the instruction decode stage circuitry dedicated to the immediate field is more sensitive to
glitches than the circuitry that holds the source register value.

Finally, both the address and immediate results exhibit the same fault responses for stage
5 faults, shown respectively in Figures 5.8c and 5.9c. At this point in the execution, the
memory access address has been fully computed using the source register and the immediate
field. Whether the address was mostly determined by the source or immediate has no effect
on the execution beyond this point. This aspect of the processor is demonstrated by the fault
propagation plots having identical behavior for both the address and immediate component
tests. The only variance seen in these trials is in the program counter, whose behavior is
dependent on the instruction address. Since the target instructions for both component tests
are stored at different addresses, the program counter variance is expected.

58

35 Register PC_REG Register R1 Register R4 Register R5)
o Instr. Addr.
S 30 0020
2 —— 0064
i) 25 —— 00a8
@ 20 —— 00ec
e
g 15
[=%
2 10
o
O s
* v A
Y] 10 8 6 4 2 12 10 8 6 12 10 8 6 12 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 0020 Instr. Addr. 0064 Instr. Addr. 00a8 Instr. Addr. 00ec "
2
Finished1 1002
o 2
£ Cycle6 ©
S 80 &
t Cycle 5 °
S 60 2
'g Cycle 4 %
> =
S Cycle3 40
§ ovce 8
S Cycle2 20 ¥
Cycle 1 ‘g
12 10 8 6 4 12 10 8 6 12 10 8 6 100 75 5.0 2.5 o F
Glitch Period (ns)
(a) Results from faults on stage 0 (instruction fetch).
35 Register PC_REG Register R1 Register R4 Register R5 .
o Instr. Addr.
S 30 0020
2 —— 0064
i) 25 —— 00a8
@ 20 00ec
o
I3
g s __
2 10
o
O s
= P AA
Y] 10 8 6 4 2 12 10 8 6 2 12 10 8 6 12 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 0020 Instr. Addr. 0064 Instr. Addr. 00a8 Instr. Addr. 00ec "
2
Finished1 I 100 ﬁ
= ©
& Cycle6 H “ 80 {»
S 3
(=3 60 =
% Cycle 5 %
2
< 40 5
w Cycle4 O
s #
o 20 2
Cycle 3 g
12 10 8 6 4 212 10 8 6 12 10 8 6 100 75 5.0 2.5 o F
Glitch Period (ns)
(b) Results from faults on stage 2 (instruction decode).
35 Register PC_REG Register R1 Register R4 Register R5)
o Instr. Addr.
S 30 0020
® —— 0064
w 2 —— 00a8
=
o 20 00ec
e
2 15
Q
2 10
o
O s
* WLVAE
Y] 10 8 6 4 2 12 10 8 6 2 12 10 8 6 12 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 0020 Instr. Addr. 0064 Instr. Addr. 00a8 Instr. Addr. 00ec .
2
100$
g .. ®
-é—_.f Finished 80 z
s Q
_f:? 60 ‘é
©
8 cycles b
[20 *
8
o 2
12 10 8 6 4 212 10 8 6 4 212 10 8 6 4 2 100 75 5.0 2.5

Glitch Period (ns)

(c) Results from faults on stage 5 (memory receive).

Figure 5.8: Final register corruption and state error propagation for glitch attacks on the LW
address component.

59

35 Register PC_REG Register R1 Register R4 Register R5)
o Instr. Addr.
S 30 —— 0020
= —— 0060
i) 25 —— 00a0
@ 20 —— 00e0
e
g 15
[=%
2 10
o
O s
A
Y] 10 8 6 4 2 12 10 8 6 4 12 10 8 6 12 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 0020 Instr. Addr. 0060 Instr. Addr. 00a0 Instr. Addr. 00e0 "
2
Finished1 1002
o 2
£ Cycle6 ©
S 80 &
a
c Cycle 5 °
S 60 2
'g Cycle 4 %
2 =
S Cycle3 40
§ ovce 8
8 cycle2 20 *
Cycle 1 ‘g
12 10 8 6 4 12 10 8 6 4 12 10 8 6 100 75 5.0 2.5 o F
Glitch Period (ns)
(a) Results from faults on stage 0 (instruction fetch).
35 Register PC_REG Register R1 Register R4 Register R5 .
o Instr. Addr.
S 30 —— 0020
® —— 0060
i) 25 —— 00a0
@© 20 —— 00e0
o
g 15
Q
2 10
o
O s
#*
Y] 10 8 6 4 2 12 10 8 6 4 2 12 10 8 6 12 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 0020 Instr. Addr. 0060 Instr. Addr. 00a0 Instr. Addr. 00e0 "
2
Finished1 100 ﬁ
£ ®
S Cycle6 II H 80 {n
< ki
(=3 60 =
% Cycle 5 I %
2
g a0 5
w Cycle4 O
-3
5 20 *
Cycle 3 g
12 10 8 6 4 212 10 8 6 4 12 10 8 6 100 75 5.0 2.5 o F
Glitch Period (ns)
(b) Results from faults on stage 2 (instruction decode).
35 Register PC_REG Register R1 Register R4 Register R5)
o Instr. Addr.
S 30 —— 0020
= —— 0060
w 2 —— 00a0
=
o 20 —— 00e0
e
2 15
[
2 10
o
O s
* m A_
Y] 10 8 6 4 2 12 10 8 6 4 2 12 10 8 6 12 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 0020 Instr. Addr. 0060 Instr. Addr. 00a0 Instr. Addr. 00e0 .
2
100$
g .. ®
-é—_.f Finished 80 z
s Q
_f:? 60 ‘é
©
8 cycles b
[20 *
8
0o B
12 10 8 6 4 212 10 8 6 4 12 10 8 6 100 75 5.0 2.5

Figure 5.9: Final register corruption and state error propagation for glitch attacks on the LW

Glitch Period (ns)

(c) Results from faults on stage 5 (memory receive).

immediate component.

60

5.1.3 Test Results Summary

Testing individual instructions with SimpliFI can reveal many microarchitectural intricacies
that contribute to software-level fault responses. Based on processor design principles, differ-
ent classes of instructions are expected to have different fault responses due to using different
subsets of the hardware or using the same hardware in different ways. While the final reg-
ister values give sufficient information for exploring fault effects on instruction results, the
information collected on hardware fault propagation reveals further processor intricacies that
may be unexpected. The following is an overview of the software and hardware behavior of
fault attacks on the ADD, ADDI, and LW instructions.

ADD Instruction

The destination register has a minimal effect on the output fault response.
Faults in stage 1 can corrupt unexpected registers when certain destinations are used.

Faults in stage 1 cause significantly more errors during execution compared to other
stages, but few faults affect the output.

The source 1 register has a significant impact on faulty outputs for [9,4] ns glitches in
stage 2.

The source 2 register has minimal impact on faulty outputs for [9.75,3] ns glitches in
stage 2.

— Source R2 exhibits a different response than other registers for [9.75,6.5] ns glitches.

The source 2 register has significant impact on faulty outputs for [3,2] ns glitches in
stage 2.

The number of errors in the output register changes monotonically with the change in
glitch width.

ADDI Instruction

The destination register has a minimal effect on the output fault response.
Faults in stage 1 can corrupt unexpected registers when certain destinations are used.

Some destination registers cause higher hardware fault intensity for stage 1 faults,
although they do not propagate to the output.

The source register has no impact on the output fault response for stage 2 faults.

61

Some source registers cause increased hardware fault propagation for 7.76 and 3.5 ns
glitches in stage 1, but no change in the output response.

The immediate value has minimal impact on the output fault response for [8.25,3] ns
glitches in stage 2.

The number of errors in the output register changes monotonically with the change in
glitch width.

LW Instruction

The first instruction tested exhibits a different fault response potentially due to the
memory subsystem design.

If a value is written to the memory before the first load instruction, the fault response
of the first instruction more closely resembles the responses of the other instructions

Faults in stage 1 can corrupt unexpected registers when certain destinations are used
— Targeting R15 can result in up to 3 unrelated registers being corrupted.

The value in the memory address source register appears to affect the fault response
for stage 0 faults.

The immediate field has no effect on the fault response for stage 0 faults.

The immediate field and address components have different effects on the fault response
for stage 2 faults.

— The immediate value causes different glitch width sensitivities in the hardware.

By stage 5, the immediate field and address affect the fault response equally because
they are combined into a single lookup address.

The number of errors in the output register oscillates as the glitch width changes.

Cross-Category Observations

Changes in the immediate value for ADDI have similar impacts on fault response as the
source 2 register in ADD.

The program counter is generally affected by [8,6] and [3.25,2] ns glitches, but not
other glitch widths.

The output fault responses to stage 6 faults are similar for all tested instructions.

Attacks on LW instructions cause fewer state errors than ADD and ADDI instructions.

62

5.2 Full Application Analysis

5.2.1 Experiment Design

While analyzing the fault response of individual instructions is an effective method for eval-
uating microarchitectural fault vulnerabilities, the goal for software-level analysis is to deter-
mine the program outcomes from realistic faults. Evaluating application-level fault responses
can be done directly with SimpliFI by simulating full program execution, as opposed to just
a few instructions. Instead of observing the behavior of individual registers across multiple
fault injections, the final program output values and runtime are measured and compared
to the expected results from a clean execution. The faulty program behavior is placed into
one of six categories:

1. Silent Fault — The hardware state was not affected by the fault.

2. Unsuccessful Fault — The hardware state was affected, but caused no change in
program behavior.

3. Fatal Error — The program did not complete within 500 clock cycles beyond the
expected execution time.

4. Output Corruption — The program produced faulty outputs.

5. Time Difference — The program execution time was different than expected, but no
outputs were affected.

6. Output and Time Corruption — The program both produced faulty outputs and
executed in an unexpected number of cycles.

The results presented in this section are from the evaluation of an Advanced Encryption
Standard (AES) program running on the BRISC-V processor. Differential Fault Analysis
(DFA) attacks on AES have been shown to be effective for a number of points in the algo-
rithm. Two possible points are after the first add round key operation, and during the last
round of encryption before the mix columns operation [30, 31]. The implementation tested
is an unprotected, t-table-based version of the MbedTLS library. The implementation was
obtained from the NIST lightweight cryptography benchmarking suite, which uses this AES
implementation as a baseline for evaluating cipher performance [32].

As discussed in Chapter 4, the code was instrumented for SimpliFI fault simulation by

calling the __SimpliFI_Start and __SimpliFI Observe macros to mark the start of the in-
jection point region and final output observation point, respectively. Two points in the

63

algorithm were targeted: the input of the first round following the round 0 add key trans-
formation, and at the start of the 9th round. The instructions around these points heavily
consist of arithmetic and logic instructions and only 1 or 2 memory instructions, as shown
in Listings 5.3 and 5.4. Both points in the program have a control flow instruction, where
round 1 has a branch-on-greater-than instruction and round 9 has a jump-and-link instruc-
tion. Clock glitches were injected at the start of each instruction, with glitch widths ranging
from 12 to 2 ns.

Listing 5.3: Targeted instructions for Listing 5.4: Targeted instructions for
AES round 1 fault attacks. AES round 9 fault attacks.

eed: 1w s11,0(s2) 12e4: jal zero ,f04
ee8: srai s11,s11,0x1 12e8: 1w ab,12(sp)
eec: addi ab,s11,-1 12ec: slli a5,ab,0x5
ef0: sw ab,12(sp) 12f0: add s7,s7,ab
efd: bge zero ,ab,16cc 12f4: srli t2,s9,0x18
ef8: addi sb5,ab,0 12f8: srli al1l,s10,0x18
efc: 1lui ab5,0x1 12fc: slli ab5,t2,0x2
f00: addi a6,s7,0 1300: slli al1,al1,0x2
f04: addi ab,ab,1992 1304: add t2,s1,ab
£08: andi s8,s10,255 1308: srli a2,s10,0x6
fOc: srli t4,s4,0x6 130c: add al,sl,al
f10: srli t3,s4,0x18 1310: srli a4,s11,0x18

© 00 N O Utk W N
© 00 N O Utk W N

—_
[e=]
—_
[e=]

—
=
=
=

—_
[\
—_
[\

5.2.2 Test Results Exploration

A simple breakdown of the test outcomes for attacks on rounds 1 and 9 of the AES imple-
mentation is given in Table 5.3. In general, round 1 attacks caused more fatal errors than
round 9 attacks, while round 9 attacks caused more output corruption with and without time
differences. This is intuitive from an algorithmic point of view, since faults injected earlier in
the program have a longer amount of time to cause more errors throughout execution. The
plots in Figure 5.10 show much more detail about which exact faults caused these outcomes.
Comparing the vertical patterns to the horizontal ones reveals that different glitch widths
tend to have similar effects on program execution no matter which instruction they were
applied to. Conversely, the impact of different faults applied to the same instruction varies
significantly as the glitch width changes.

The results in Figure 5.10 also show how the same glitches have different effects on rounds
1 and 9. While the instructions executed during each point are slightly different, there is

64

Table 5.3: Breakdown of AES fault simulation results by outcome category.

% of Total Test Outcomes

Location Silent Unsuccessful Fatal Time Output Output+Time
Difference Corrup- Corruption
tion
Round 1 4.27 45.12 25.40 2.44 10.98 11.79
Round 9 4.27 49.19 11.38 1.63 18.90 14.63

enough similarity to compare the results. For example, the [12,10] ns range has nearly the
same effect when applied both rounds, except for a few extra execution time inconsistencies
and fatal errors at 11.75 and 10.5 ns. Some interesting features of how the results differ are
seen at [9.75,9.5] ns and [8.5,8] ns. A two-column region of fatal errors at 9.75 and 9.5 ns in
Figure 5.10a turns into mostly output—+time corruption outcomes in Figure 5.10b. However,
next to this at 9.25 and 9.0 ns, another region of fatal errors turns into mostly unsuccessful
faults. Similar to the first region, the unsuccessful faults from 8.5 to 8.0 ns in the round 1
tests turns into mostly output+time corruptions with a few fatal errors.

The behavior when faulting round 9 is ideal for an attacker compared to round 1. Since
the adversary wants to collect faulty outputs, the round 1 fatal errors are undesirable. In
round 9 the attacker would have a greater chance of obtaining faulty outputs and less of a
chance of crashing the device. This insight into the program behavior is valuable for software
engineers since it can inform them about which points in the program are more vulnerable.
With these results, the software engineer would likely focus more time securing the round 9
operations, and focus less on round 1 due to the high number of fatal errors. Of course, this
is dependent on the application; it may still be important for a particular system to prevent
fatal errors from occurring even in round 1.

65

Output+Time Corruption
Output Corruption

Time Difference
Unsuccessful

Fatal
Silent

j2]
=
>
[l
)
[+4
o
>
o
S
=]
(]
£
I
S
o
a
]
Q
=
>
©
w

00000f10
00000f0c
00000f08
00000f04
00000f00
00000efc
00000ef8
00000ef4
00000ef0
00000eec
00000ee8
00000ee4

juiod 32bue]

Glitch Period (ns)

(a) Results from faults on round 1.

Output+Time Corruption
Output Corruption

Time Difference
Unsuccessful

Fatal
Silent

ps—
2
[ON
| —
S50
sl
S |m—
O [mm
gl
© |m—
o
Sl
O [
o |m—
S | —
S|
O (—
—

00001310
0000130c
00001308
00001304
00001300
000012fc
000012f8
000012f4
000012f0
000012ec
000012e8
000012e4

Julod 39b.ue]

Glitch Period (ns)

(b) Results from faults on round 9.

Figure 5.10: Program impacts of glitch attacks on the starting instructions of different AES

rounds.

66

5.3 Effects of the Metastability Model

Each of the experiments explored in this chapter were also conducted using the random
bit assignment metastability model implemented in SimpliFI. The results collected with the
model in use do not vary significantly for either the instruction or application tests, however
they demonstrate that low-level physical effects are not easy to capture in simulation. The
clock glitch fault mechanism leveraged in SimpliFI does simulate realistic timing-violation-
based fault manifestation, however there are still underlying physical effects that are difficult
to capture, such as clock skew and noise. The metastability model is one way to include
the effects of physical phenomena that cannot be achieved in gate-level simulation with high
accuracy. The goal of SimpliFI is to integrate hardware and software fault evaluation using
the most realistic faults that can be reasonably simulated while still having access to software-
level activity. The metastability results emphasize that physical phenomena can be taken
into consideration with digital simulation if there is some sort of mechanism to emulate it.
The metastability model demonstrates that fault results do depend on unpredictable physical
events, and acts as a first step towards building even more-accurate simulations.

Instruction Test Effects

The metastability model had varying effects on the instruction sequence tests, with arith-
metic instructions having minimal differences in outcomes, and memory instructions having
significant differences. The ADD instruction tests on the source 2 component during stage
3, shown in Figure 5.11, are a good representation of the behavior of the ADD and ADDI
instructions tested. In the standard tests, the number of output errors is nearly identical
for all the second source registers tested. However, the output errors for each second source
register with the metastability model active exhibit more linear segments and sharper peaks.

The results for stage 1 of the LW destination tests exhibit much more extreme differ-
ences from applying the metastability model. First, the sudden spikes in the instruction
40 (green) destination register in Figure 5.12 have greater amplitude with the metastability
model. While this is the main difference for that particular instruction which used R2 as
the destination register, instructions 20, 40, and 80, respectively targeting registers R5, R15,
and R25 were impacted more significantly. Without the metastability model, faults on in-
struction 60 only corrupted 3 extra data registers, while the metastability tests corrupted 4
extra data registers. The original instruction 60 trials did not corrupt R8 in this stage, while
the metastability trials induced nearly 30 bit errors in the final R8 value. The error counts in
some registers during instructions 20 and 80 were around this as well. These drastic results
from the LW test further stress the importance of taking hardware-level fault manifestation
into consideration for software fault evaluation. Adding the metastability model revealed
additional fault responses caused by feasible random phenomena that were not discovered
during the original tests.

67

Register PC_REG Register R1 Register RS

o 35 Instr. Addr.
& 30 —— 0044
® — 0084
b 2 —— 00c4
@ 20 —— 0104
e
L 15
[=%
2 10
S s
/&1

0

12 10 8 6 4 2 12 10 8 6 4 2 12 10 8 6 4 2
Glitch Period (ns)
Instr. Addr. 0044 Instr. Addr. 0084 Instr. Addr. 00c4 Instr. Addr. 0104

Observation Point
Total # Corrupted State bits

Finished ‘ I 100
80
Cycle 6
60
Cycle 5 40
20
Cycle 4
0
12 10 8 6 4 212 10 8 6 4 212 10 8 6 4 2 10.0 7.5 5.0 2.5

Glitch Period (ns)

(a) Results without metastability model.

35 Register PC_REG Register R1 Register R5
o Instr. Addr.
S 30 —— 0044
® —— 0084
) 2 —— 00c4
@ 20 —— 0104
e
g 15
Q
2 10
o
O s
#* /\/'

R 10 8 6 4 2 12 10 8 6 4 2 12 10 8 6 4 2

Glitch Period (ns)
Instr. Addr. 0044 Instr. Addr. 0084 Instr. Addr. 00c4 Instr. Addr. 0104

Observation Point
Total # Corrupted State bits

Finished 100
80
Cycle 6
60
Cycle 5 40
20
Cycle 4
0
12 10 8 6 4 212 10 8 6 4 212 10 8 6 4 2 10.0 7.5 5.0 2.5

Glitch Period (ns)

(b) Results with metastability model.

Figure 5.11: Final register corruption and state error propagation with and without the
metastability model for stage 3 (execute) glitch attacks on the ADD second source register.

68

Observation Point

Observation Point

Register Register Register Register Register Register Register Register Register Register Register Register Register

PC_REG R1 R2 R4 R5 R7 R8 R10 R11 R14 R15 R24 . R25
- Instr. Addr.
g 30 0020
® 25 —— 0040
@ — 0060
@ 20 —— 0080
el
g 15
Q
2 10 \
5} | ‘
O s |
* A I \ A L
12108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 2
Glitch Period (ns)
Instr. Addr. 0020 Instr. Addr. 0040 Instr. Addr. 0060 Instr. Addr. 0080 "
=
Finished 1002
g
Cycle 6 80 g
Cycle 5 g
60 8
Cycle 4]
40 o
Cycle 3 O
20 *
Cycle 2 g
12 10 8 6 4 2 12 10 8 6 4 2 12 10 8 6 4 2 10.0 7.5 5.0 2.5 o
Glitch Period (ns)
(a) Results without metastability model.
Register Register Register Register Register Register Register Register Register Register Register Register
PC_REG R2 R4 R5 R7 R10 R14 R15 R16 R24 R R25 .
Ee] Instr. Addr.
S 30 0020
< —— 0040
©
w —— 0060
=
o 20 —— 0080
ki I
2 15 ‘
3 \
£ 10 ‘
3 \ A
5
= N | \ A | A
12108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 212108 6 4 2
Glitch Period (ns)
Instr. Addr. 0020 Instr. Addr. 0040 Instr. Addr. 0060 Instr. Addr. 0080 "
=
Finished 1002
3
Cycle 6 80 g
o
Cycle 5 60 }1;.).
Cycle 4 40 E
Cycle 3 o
20 *
Cycle 2 ag
12 10 8 6 4 2 12 10 8 6 4 2 12 10 8 6 4 2 10.0 7.5 5.0 2.5 o F

Glitch Period (ns)

(b) Results with metastability model.

Figure 5.12: Final register corruption and state error propagation with and without the
metastability model for stage 1 (fetch receive) glitch attacks on the LW destination register.

Application Test Effects

Table 5.4 shows the change make-up of the faulty AES program outcomes. These percent-

ages were calculated by taking the difference between percentages of the total outcomes for
the standard experiments and the experiments using the metastability model. The locations
of the round 1 metastability test outcomes that differ from the original results are shown in
Figure 5.13. Surprisingly, applying the metastability model to the round 9 faults did not

69

affect any of the program outputs. Fault outcomes that did not change from the original
results are blanked out, leaving on the outcomes that changed between tests. According
to the table, the occurrences of output+time corruption outcomes when targeting round
1 decreased more than any other outcomes increased. Since new output+time corruption
outcomes can be seen in the Figure 5.13, many of the other changed outcomes must have
originally been output-+time corruptions in order to achieve the -1.22% decrease.

Table 5.4: Change in Breakdown of AES fault simulation results after adding the simulated
metastability model.

Change in % of Total Test Outcomes

Location Silent Unsuccessful Fatal Time Output Output+Time
Difference Corrup- Corruption
tion
Round 1 0 0.21 0.82 0.20 0.00 -1.22
Round 9 0 0 0 0 0 0

Faulted Program Output Results with Metastability Model

Output+Time Corruption
00000f10 -
00000f0c A I I
Output Corruption
0000008
00000f04 I
Time Difference
00000f00 - I
€
'S 00000efc A
a
= Fatal
o
& 00000ef8 -
i
00000ef4 1 I
Unsuccessful
00000ef0 4
00000eec - I
Silent
00000ee8
00000ee4
T T T T T T No Change
12 10 8 6 4 2

Glitch Period (ns)

Figure 5.13: Difference in program impacts of glitch attacks between standard simulation
and metastability simulation for fault injection on the starting instructions of AES round 1.

70

5.4 Summary

The two types of tests discussed in this chapter serve different important purposes. First,
instruction-level fault response characterization can aid both hardware and software design-
ers. The characterization results reveal how the hardware is vulnerable to fault attacks,
and if there are any unbalances in which components experience more severe fault-induced
errors. For example, the results explored in Section 5.1.2 showed that various source regis-
ters contribute differently to overall fault response, and even that the source 1 and source
2 operand datapaths are faulted in different ways. These results inform software designers
whether certain processor components are more prone to successful fault injection so they
can take preventative measures when developing critical code.

Second, application-wide fault evaluation aids software designers by analyzing which
fault /instruction pairs result in various negative program outcomes. This detailed informa-
tion provides a method for deeply exploring the impacts of fault injection on critical points
in an application. As discussed in Section 5.2.2, this type of testing can reveal which points
of interest for fault attacks are more vulnerable to glitches, and informs the developer where
to focus countermeasure efforts. Although it is not explored in the results discussed here, the
hardware fault propagation is captured for each fault trial. This information could be used
to further analyze if certain parts of the hardware are more likely to contribute to faulty
program outputs. The high-level data explored in Section 5.2.2 shows that certain faults
always lead to corrupted program outputs. These injection locations and parameters can be
used as starting points to run deeper analysis on the collected hardware data.

Finally, adding the metastability model to SimpliFI evaluation yielded extra information
about the processor’s fault response not uncovered by the original tests. While the metasta-
bility model is not perfectly accurate to real-world flip flop behavior, randomness is present in
noise and real-world metastability and adds to the circuitry’s fault response. By including a
basic approximation of random behavior occurring at a realistic time (ie. setup violations),
additional unforeseen fault vulnerabilities can be addressed. When adding metastability
modeling to instruction sequence tests, further microarchitectural fault responses are re-
vealed, such as increased bit errors in data registers. When added to application-level tests,
the metastability model provides a first-level approximation to how much the faulty program
outputs will vary due to randomized physical phenomena.

71

Chapter 6

Conclusion

With extensive research into fault attacks over the years, embedded security researchers and
analysts have a strong collective knowledge of what fault attacks are capable of, and how
they occur. We are at a point where this vast amount of knowledge can be integrated into
automated techniques for hardware and software fault evaluation, and this thesis demon-
strates that with the introduction of SimpliFI. Even with a simple injection mechanism,
SimpliFT reveals device-specific microarchitectural effects on software fault vulnerabilities.
Careful design at the hardware level may be able to mitigate these instruction-dependent
vulnerabilities for clock glitch faults; such changes may also consequentially dampen the
effects of other fault injection mechanisms as well. As discussed earlier, voltage faults can be
emulated with the SimpliFI framework due to timing violation similarities between voltage
and clock attacks. While integrating voltage faults into the framework would be an improve-
ment, adding the ability to simulate EM faults would greatly increase the power of SimpliF1.
Since EM faults can be considered as sampling faults, the metastability simulation feature
of SimpliFI could be a key component for implementing simulated EM faults.

With regard to software-level analysis, the BRISC-V processor evaluation presented in
this thesis contains an overwhelming amount of data that could be synthesized into insightful
information about the software and processor itself. While this was outside the scope of the
thesis, developing advanced analytic extensions for data collected with SimpliFI would be
another strong improvement. This would enable near-fully-automated characterization of
processor and software fault responses. Taking this one step further, the information obtained
from such methods could be used to build a highly-detailed, device-specific fault model that
plugs into ISA-level simulators like FiSim. With access to so many fault evaluation methods,
the embedded security community would benefit from studies that integrate tools together
into powerful, full-stack fault analysis toolchains.

72

Bibliography

1]

The RISC-V Instruction Set Manual, Volume I: User-Level ISA, 20191213, RISC-V
Foundation, December 2019.

“The History of Cybersecurity,” CompTIA. [Online]. Available:
https://www.futureoftech.org/cybersecurity /2-history-of-cybersecurity /

Boneh, Dan and Demillo, Richard A. and Lipton, Richard J., “On the Importance of
Checking Cryptographic Protocols for Faults,” in Advances in Cryptology —
EUROCRYPT ’97, vol. 14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp.
37-51.

Biham, Eli and Shamir, Adi, “Differential Fault Analysis of Secret Key
Cryptosystems,” in Advances in Cryptology — CRYPTO ’97. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997, pp. 513-525.

V. Arribas, F. Wegener, A. Moradi, and S. Nikova, “Cryptographic Fault Diagnosis
using VerF1,” in 2020 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), 2020, pp. 229-240.

B. Yuce, N. F. Ghalaty, and P. Schaumont, “TVVF: Estimating the Vulnerability of
Hardware Cryptosystems against Timing Violation Attacks,” in 2015 IEEFE

International Symposium on Hardware Oriented Security and Trust (HOST), 2015, pp.
72-77.

Riscure, “Riscure FiSim,” GitHub, 2020. [Online|. Available:
https://github.com/Riscure/FiSim

S. Bandara, A. Ehret, D. Kava, and M. Kinsy, “BRISC-V: An Open-Source
Architecture Design Space Exploration Toolbox,” in The 27th ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA), ser. FPGA
'19. New York, NY, USA: ACM, 2019.

R. Agrawal, S. Bandara, M. Isakov, M. Mark, and M. Kinsy, “The BRISC-V Platform:
A Practical Teaching Approach for Computer Architecture,” in Workshop on
Computer Architecture Education (WCAE), 2019.

73

[10]

[11]

[19]

[20]

[21]

[22]

S. Bandara, A. Ehret, D. Kava, and M. A. Kinsy, “BRISC-V: Open Source
Architectural Design Space Exploration Toolbox,” Tech. Rep. 0V1, October 2018.

T. J. Gabara, G. J. Cyr, and C. E. Stroud, “Metastability of CMOS master/slave
flip-flops,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 39, no. 10, pp. 734-740, 1992.

L. Kleeman and A. Cantoni, “Metastable Behavior in Digital Systems,” IEEFE Design
& Test of Computers, vol. 4, no. 6, pp. 4-19, 1987.

J. U. Horstmann, H. W. Eichel, and R. L. Coates, “Metastability Behavior of CMOS
ASIC flip-flops in Theory and Test,” IEEE Journal of Solid-State Circuits, vol. 24,
no. 1, pp. 146-157, 1989.

G. F. Chard, O. Koyuncu, T.-P. R. Koh, and S. Dondershine, “Modeling metastability
in circuit design,” U.S. Patent US7 139 988B2, 2004.

ARMuv7-M Architecture Reference Manual, 0402E.e, ARM, Cambridge, England, 2021.
Atmel AVR 8-bit Instruction Set, 0856J, Atmel Corporation, July 2014.

J. Richter-Brockmann, P. Sasdrich, and T. Giineysu, “Revisiting Fault Adversary
Models - Hardware Faults in Theory and Practice,” Cryptology ePrint Archive,
Report 2021/296, 2021, https://eprint.iacr.org/2021/296.

M. Dumont, M. Lisart, and P. Maurine, “Modeling and Simulating Electromagnetic
Fault Injection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 40, no. 4, pp. 680-693, 2021.

H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The Sorcerer’s
Apprentice Guide to Fault Attacks,” Proceedings of the IEEE, vol. 94, no. 2, pp.
370-382, 2006.

A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault Injection Attacks on
Cryptographic Devices: Theory, Practice, and Countermeasures,” Proceedings of the
IEEE, vol. 100, no. 11, pp. 3056-3076, 2012.

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A Systematic
Methodology to Compute the Architectural Vulnerability Factors for a
High-Performance Microprocessor,” in Proceedings. 36th Annual IEEE/ACM
International Symposium on Microarchitecture, 2003. MICRO-36., 2003, pp. 29-40.

N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic Fault Injection: Towards a Fault Model on a 32-bit Microcontroller,”
in 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, 2013, pp. 77-88.

74

[23] J. Proy, K. Heydemann, A. Berzati, F. Majéric, and A. Cohen, “A First ISA-Level
Characterization of EM Pulse Effects on Superscalar Microarchitectures: A Secure
Software Perspective,” in Proceedings of the 14th International Conference on
Awvailability, Reliability and Security, ser. ARES ’19. New York, NY, USA:
Association for Computing Machinery, 2019.

[24] T. Trouchkine, “SoC Physical Security Evaluation,” Ph.D. dissertation, Université
Grenobles Alpes, 2016.

[25] B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and P. Schaumont,
“Software Fault Resistance is Futile: Effective Single-Glitch Attacks,” in 2016
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), 2016, pp.
47-58.

[26] B. Yuce, N. F. Ghalaty, C. Deshpande, H. Santapuri, C. Patrick, L. Nazhandali, and
P. Schaumont, “Analyzing the Fault Injection Sensitivity of Secure Embedded
Software,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 4, July 2017.

[27] 7 Series FPGAs Memory Resources, 1.14, Xilinx, 2019.
28] ModelSim User’s Manual, 10.1c, Mentor Graphics, 2012.
[29] Vivado Design Suite UserGuide: Logic Simulation, 2020.2, Xilinx, 2020.

[30] J. Blomer and J.-P. Seifert, “Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES),” in Financial Cryptography, R. N. Wright, Ed. Berlin, Heidelberg;:
Springer Berlin Heidelberg, 2003, pp. 162-181.

[31] A. Moradi, M. T. M. Shalmani, and M. Salmasizadeh, “A Generalized Method of
Differential Fault Attack Against AES Cryptosystem,” in Cryptographic Hardware and
Embedded Systems - CHES 2006, L. Goubin and M. Matsui, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 91-100.

[32] NIST, “Lightweight Cryptography Benchmarking,” GitHub, 2021. [Online|. Available:
https://github.com/usnistgov /Lightweight-Cryptography-Benchmarking

5

