

Benchmarking Big Data Cloud-Based Infrastructures

A Major Qualifying Project report to be submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the Degree of Bachelor of Science

Submitted By:

Kurt Bugbee

Jeffrey Chaves

Daniel Seaman

Advisor(s):

Mohamed Eltabakh

03/03/17

Abstract 2

Introduction 3
Hadoop 3
CouchDB 8
MongoDB 13
Apache Spark 20

Methodology 23
YCSB 23
Dataset 25
Queries 27

CouchDB Implementation 29
MongoDB Implementation 31
Spark Implementation 33

Testing Environment 34
Metrics 35

Results & Analysis 36
Installation 36
Overall Procedure 39
Syntax 40
Lines of Code 42
Latency 44

Conclusions 48

Acknowledgements 50

References 51

Appendix 54

1

Abstract

As software applications demand more complicated schemas from the storage platforms

they utilize, many developers have migrated from the use of rigid relational columnar data sets to

more flexible document-oriented datasets. Non-relational databases and processing platforms

have evolved to tackle the task of operating on these new data structures. Three commonly used

platforms were chosen for this project to be benchmarked against each other: CouchDB,

MongoDB, and Apache Spark. Each platform was used to execute a series of queries involving

both nested and unnested aggregation, projection, and filtering of a specific JSON dataset. The

benchmarking was performed on Amazon Web Services EC2 instances, ensuring hardware

resource consistency. Query latency, the total duration needed to query the data subset, was the

quantitative performance metric used to analyze relative benchmarking. Each platform was also

evaluated using a number of ease-of-use metrics. This report introduces the reader to each of the

platforms mentioned and provides appropriate background information to help explain the

purpose of this evaluation. The motives behind the queries and performance metrics are then

explained to help provide a foundation for the project’s methodology. Finally, the metrics are

used to analyze testing results and draw conclusions from the performance of each platform.

2

Introduction

Hadoop

Named after one of the developer’s toy elephants which now serves as its logo, Apache

Hadoop is a massive open source project for distributed storage and processing. It’s purpose is to

allow for the processing of very large data sets of any type using low-end hardware.

The project began when the Google File System paper was published in October of

2003[1], leading to another significant research paper from Google in 2004 titled MapReduce:

Simplified Data Processing on Large Clusters. What started as the Apache Nutch project was

moved to the first official instance of the Hadoop project in January of 2006. The first official

commit was made by Owen O’Malley in March of the same year [2]. Hadoop’s first release,

0.1.0 was made available in April of 2006, and has since been used for a myriad of data

processing functions, and is also the underlying data platform for a large number of other Apache

projects. The official Apache website lists the official branches of the project as Hadoop

Common, Hadoop Distributed File System (HDFS), Hadoop Yarn, and Hadoop MapReduce.

The following are members of the Hadoop project community[3]:

● Ambari™

● Avro™

● Cassandra™

● Chukwa™

● HBase™

● Hive™

● Mahout™

● Pig™

● Spark™

● Tez™

● Zookeeper™

3

Hadoop is currently used by hundreds of companies such as Facebook, Hulu, Google,

Ebay, IBM, LinkedIn, the New York Times, and Spotify[4]. In 2011, developer Rob Bearden

formed a partnership with Yahoo! and 24 engineers from the original Hadoop team to establish

Hortonworks, the current leading resource on Apache Hadoop[2].

By design Hadoop is prepared to handle data of any size or type, having the motto that

“Any Data Will Fit”. Users need to define Input Formats in Java code for Hadoop to be able to

manage data, but many common data types have pre-existing interfaces available for free online

or natively through Hadoop. It is scalable from a single server up to thousands of machines and

handles failures at the application layer, a unique feature that allows it to be run on low-end

machines that are prone to failures. Hadoop has four primary pieces:

1. Hadoop Common: Common data utilities.

2. Hadoop Distributed File System: Commonly referred to as HDFS, the storage component

of Hadoop.

3. Hadoop Yarn: The scheduling component of Hadoop, a framework for job scheduling

and cluster management.

4. Hadoop MapReduce: The original Hadoop execution engine, the processing component

of Hadoop.

This overview will focus on the two defining aspects of Hadoop, HDFS and MapReduce.

Hadoop is designed with a master-slave architecture, with every node having a layer of HDFS

storage and a processing layer of MapReduce. A master node defines these two layers as

NameNode (HDFS) and JobTracker (MapReduce) while all slave nodes define their layers as

DataNode and TaskTracker. See the following figure for an illustration[5]:

4

The central NameNode holds metadata on the files in the system, while the potentially

infinite DataNodes store files that have been divided into blocks and then replicated across the

clusters. Hadoop differs from traditional relational databases in that it is a black-box model.

Rather than containing data tables and SQL queries that run quickly, Hadoop manages large

amounts of data with data structures and longer-term jobs that are unseen by the user and

provided in Java code.

HDFS, the storage backbone of Hadoop, can be distributed across hundreds or thousands

of server machines. The current version of Hadoop still uses HDFS, though other Apache

alternatives still exist such as Cassandra, HBase, or Accumulo. In order to handle server failures,

files on HDFS systems are split into blocks and the blocks are replicated onto numerous

instances. Hadoop defaults to having 3 replications of data blocks, but users can increase that

number if they wish. This replication is crucial to Hadoop’s fault tolerance, which will be

covered shortly.

MapReduce, like HDFS, now has other Apache alternatives such as Spark, but continues

to be a powerful execution engine that many other data processing platforms have implemented.

MapReduce works in two parts: Mapper jobs are given a key and return a value. Mappers tend to

hold the majority of the logic in a query of a Hadoop database. Reducer jobs then reduce the

5

values on the given keys, consolidating the values. Reducer jobs commonly happen across the

cluster, but users are also able to specify local reducer jobs that occur on each individual

machine to partially aggregate the mapper’s output. These jobs are called Combiners, and in

certain cases can improve processing time.

A popular MapReduce example is a word count: given a large passage of text, say 10-15

years of World Book Encyclopedia, HDFS would distribute the data into manageable sized

blocks. Mapper jobs would split it into words, assigning them as keys and giving each a count

value of “1” while stripping things like punctuation and ignoring case, assuming the user coded

those functions. Hadoop then makes use of a shuffling/sorting algorithm that won’t be covered

here, but that would sort the key-value pairs according to the keys. Reducer jobs would then

consolidate on the given keys: instances of the word “what” would be combined, and the end

result would be key-value pairs in which the keys were unique words from the encyclopedias and

the values were the total number of times each word occurred. The following graphic displays

this nicely with a smaller example[6]:

MapReduce is highly scalable, and meant for massive data sets. More manageable data

sizes with simple structures will almost always be faster to use with relational databases, but for

the truly massive data sets, typical MapReduce computations can utilize parallel processing to

6

query many terabytes of data across thousands of nodes[7]. The current version of Hadoop is

able to scale to petabytes of data.

Hadoop is optimized in a number of ways. The Combiners mentioned above are one way

to optimize processing, as is concise code in the Mapper Class. Hadoop also makes use of

speculative execution, meaning tasks are automatically run multiple times in parallel on different

nodes. Since the NameNode is receiving constant feedback from the DataNodes, when one of the

jobs finishes the others are immediately killed. Hadoop also focuses on locality, always trying to

run mapper jobs on the MapReduce layer of TaskTrackers on the same machines as DataNodes

that have relevant data in their HDFS layer. Both the localization and speculative execution

efforts serve to reduce overall job time.

Finally, Hadoop has an incredible fault tolerance system. Failures are normal and in fact

expected since Hadoop is optimized for running on mid-tier hardware. Since tasks are run in

duplicate or triplicate and in parallel, if a task fails the responsible TaskTracker detects the

failure and notifies the JobTracker. The JobTracker then reschedules the job to a new slave

machine. Throughout jobs, the NameNode is constantly checking DataNodes. Therefore, if a

DataNode fails, the NameNode and JobTracker recognize the failure almost immediately.

Thanks to data block replication, the NameNode triggers a recovery from replicas as the

JobTracker reschedules all tasks from the failed node, allowing processing jobs to continue

virtually unhindered. The NameNode replicates the data to a new node to maintain the proper

number of backups while the system continues running. Issues arise if the Master goes down,

causing the NameNode and JobTracker to fail. This can only happen if the entire cluster has

crashed, in which case the system has suffered a larger systemic issue than Hadoop can be

responsible for.

Hadoop was originally one of the three platforms we were going to benchmark as part of

this project, alongside MongoDB and Apache Spark. Our work gravitated towards using what

could be defined as day-to-day realistically sized data. This decision is covered further in our

data section, but amounts to the fact that while traditional MapReduce is incredibly powerful for

massive data sets as an execution engine, it is outclassed when it comes to smaller sets by newer

engines.

7

Newer platforms have made use of HDFS while finding more intuitive ways to write

queries and handle input. Our eventual dataset consists of thousands of nested JSON records, and

writing the Input Format with vanilla Hadoop was an arduous process, as was writing

MapReduce queries in Java from scratch. The newest version of Hadoop includes Hadoop Yarn,

which allows for newer data processing tools like Spark to be used; in other words, basic

MapReduce is often phased out of Hadoop systems. After research of our problems repeatedly

resulted in recommendations to use different wrappers for traditional Hadoop such as Spark

(which we were already implementing), it was decided that continuing with Hadoop would not

be a valuable contribution to the project. We chose instead to add CouchDB, which is covered in

the next section.

CouchDB

An acronym for “Cluster of Unreliable Commodity Hardware”[8], the CouchDB project

was created in April of 2005 by Damien Katz, a former IBM developer. Katz funded the project

himself for almost two years before releasing it as open source, originally under the GNU

General Public License. In February of 2008 it became an Apache Incubator project and was

moved to the Apache License. It soon graduated to a top-level project and the first stable version

was released in July of 2010. This release had phenomenal read and write times according to

Couchio, CouchDB’s corporate sponsor at the time[9]. It was also lauded for running not only on

Linux and MacOS machines but Microsoft Windows as well.

Katz left the project in 2012 to work on CouchDB’s successor, CouchBase Server, but

the CouchDB effort continued, releasing v1.2 in 2012 and v1.3 a year later. In July of 2013, the

CouchDB open source community merged the codebase for Cloudant’s clustered version of the

the database named BigCouch, giving CouchDB a native clustering framework[10]. The current

version, 2.0.0, was released in September of 2016 with a number of GUI upgrades, a streamlined

installation process, and the new Mango Query Server that allows for queries to be written

without JavaScript or MapReduce, should a user wish to do so.

CouchDB’s features made it a logical choice for us when we were looking to replace

Apache Hadoop in our project. It holds many of the same attractions, but the similarities have

received a facelift and the platform is optimized for the types of technology and data that are

8

now more common. It is a NoSQL database made for the modern developer who needs to work

with multiple platforms such as PCs, mobile devices, and unreliable networks. It’s also designed

with simplicity in mind as shown by its one-word motto, appearing in the logs after installation:

“Relax”.

CouchDB is written in Erlang, an open source functional programming language that was

released in 1998 after about 12 years of proprietary use. It is well-suited for systems with the

following characteristics[11]:

● Distributed

● Fault-tolerant

● Soft real-time

● Highly available, non-stop applications

● Hot swapping (changing code without stopping the system)

Common configurations for most users include launching CouchDB as a single-node

database, but any single-node project can be upgraded to a cluster for more computing power.

An important feature of its development is that although a cluster provides high capacity, there

are no API changes whatsoever.

An incredibly impressive feature, and one that has some roots in Hadoop’s data block

structure, is CouchDB’s bidirectional replication. It replicates incrementally, meaning that if

something interrupts the replication, it will simply stop and wait to start up again where it left

off. It also only replicates data that isn’t already backed-up, decreasing replication time

noticeably. Replication is either done continuously or ad-hoc at the behest of a user, and has full

conflict detection at both end points, making master-master replication easy[12]. In other words,

there is no authoritative node, and every node in a cluster can act independently of all the others

if desired. This makes CouchDB very reliable simply due to redundancies, since any multi-node

cluster replicates data automatically to all nodes. Used as the backbone of websites it can load

balance by distributing jobs into subsets across the cluster, replicate data to distant locations to

allow for lower latency access, and even work offline on mobile devices or devices with

similarly poor network connectivity.

9

CouchDB holds its data in JavaScript Object Notation (JSON) documents. This is

different from Hadoop, which was made for any type of data and allowed for unique input

formats, but the reasoning behind it will become clear later in this section. In the meantime, it

was convenient for us that CouchDB’s integral data structure matched the format that our testing

data was already in. Dealing with nested JSON documents was an issue that required some

additional work with the other two infrastructures used in this project, but required no extra

add-ons to the CouchDB database or edits to the data. It stores these documents in an

append-only Binary-Tree structure. Leaf nodes of the tree are written via appends when revisions

are made to documents, and the parent node is rewritten, also via append, to reference the new

leaf. This process continues until the root node is updated in the same way, which is essentially

when the new revision is fully committed.

This data structure can get confusing, and even more so when factoring in CouchDB’s

Multi-Version Concurrency Control (MVCC). A relational database, under heavy load from

users, can run into locking issues and spend lots of processing power deciding who has

permission to edit what, and when. With CouchDB, MVCC means no locking[13]. Writes don’t

block reads, so CouchDB can run at full speed at all times, even under heavy loads. To cope with

this, the appends mentioned above allow the database to version its documents. A read request

made for a document will be sent the document as it is. If a write is made while that document is

being viewed, CouchDB will simply append the revision to the database without waiting for the

read to finish. Any future read requests will get the new version of the document that was

appended. This goes hand-in-hand with CouchDB’s “Eventual-Consistency” feature. Because

revised documents may not exist on other replications of the database that are actively used,

they’re flagged for replication at the next time it occurs. The whole process resembles a

slow-moving but automatic variant of a version-control system like GitHub. This insures that

during the next replication the outdated documents existing anywhere else will be replicated and

all instances of the database with eventually be consistent. The following graphic shows how this

process could work with a fictional music application when a playlist is edited[13]:

10

The way that users interact with CouchDB is unique among the three infrastructures used

in this project because it fully embraces the environment a modern server is likely to find itself

in. To go along with data stored in JSON documents, MapReduce queries are written in

JavaScript. In addition, HTTP serves as the RESTful API interacting with the database. This

made uploading our data to CouchDB possible through a simple cURL command:

The MapReduce logic is significantly simplified when compared to Hadoop’s Java code.

Users only need to write the Mapper logic and can either choose from a small selection of

built-in Reducers or specify a custom one. The MapReduce code is used to create new Views of

the document that can be accessed by HTTP requests to the server. We implemented these in the

form of additional cURL commands, which is further mentioned in the Queries section of the

report.

Through cURL commands (or similar utilities) CouchDB can be fully accessed using the

REST API. This makes it incredibly easy to add data, create views, query the views, and check

11

on the overall health of the server. Replication is also controlled through the same REST API,

and as mentioned above, the API doesn’t change when moving from a single-instance setup to a

cluster of computing nodes. CouchDB also shipped with a Web GUI called Futon in all primary

versions, updated to Fauxton with version 2.0.0. Fauxton allows for visual traversal of

documents in the overall database and in any Views. Users can also create new views and write

new query logic in Fauxton, and live-track CouchDB’s processing as it gathers the appropriate

data. Fauxton also provides some ease-of-life administrative tools like database and user creation

and management. Perhaps the best thing about Fauxton, for those who prefer to avoid command

line interfaces, is that it is entirely a web application. This means it is exactly the same whether

you’re working on a Windows, MacOS, or Linux machine. Also, when writing HTTP requests

that must be executed outside of the application, the relevant RESTful API call can be seen right

in the browser's address field.

With all of CouchDB’s significant features explained at a high level it is useful to see a

simple graphic of CouchDB’s architecture for visual explanation[14]:

CouchDB has definitive weaknesses in that every single query that a user wants to write

requires a hard-coded view to go with it. It’s speed in data retrieval can be partially attributed to

the fact that it has these views saved, so pulling data from them is faster than querying the entire

database of original documents. Instead, a new set of documents is created with only the desired

12

information that can be returned on request. This makes CouchDB a very good option for an

application that accumulates data which isn’t altered too often, where most of the queries that

will be run can be pre-defined, and where versioning is important[14]. It’s much, much slower

out of the box (read: impromptu queries) than infrastructures like MongoDB might be, and

limited by design to single-server capacity models due to its append and replicate structure, but

for the same reasons it’s also safer in terms of data security[15].

Unlike Hadoop MapReduce, CouchDB was on the same modern playing field as

MongoDB and Apache Spark. It’s optimized for use-cases that aren’t applicable to every

implementation of a database, but no data platform is or can be. Given CouchDB’s promises of

speed and ease of use, and it’s convenient compatibility with the data type our project uses, it

seemed an appropriate choice for our benchmarking comparison.

MongoDB

MongoDB is a flexible NoSQL database tool which stores data in binary JSON (BSON)

format, allowing documents to contain many fields composed of different data types such as

arrays, sub-documents, and binary data. MongoDB has drivers which make it easy to use in the

popular language of your choice and is designed to be easy to deploy, provision, and scale. It is

easily scaled horizontally through MongoDB auto-sharding and automatic leader election,

supporting high availability across racks and data centers. MongoDB’s speed comes from its

extensive use of RAM and, unlike most NoSQL databases, it provides comprehensive secondary

indexes. MongoDB also has multimodal capabilities including in-database analytics, graph,

cross-document relations, search, faceted navigation, and more. MongoDB’s design is focused

around combining the critical capabilities of relational databases with the innovations of NoSQL

technology to address the requirements of modern applications[16].

The relational database features offered by MongoDB include expressive query language

and secondary indexes, strong consistency, and Enterprise management and integrations. The

expressive query language and secondary indexes allow users to easily and efficiently access and

manipulate their data, supported natively by the database rather than being maintained in

application code. Available secondary indexes include geospatial and text search as well as

extensive security and aggregation capabilities. MongoDB’s strong consistency allows

13

applications to immediately read what has been written to the database. This makes it much

easier on the developer as it is very challenging to build applications around an eventually

consistent model. MongoDB also lends itself to Enterprise integration as it can be secured,

monitored, automated, and integrated with existing technology infrastructure, processes, and

staff.

Relational databases, however, do not address many of the requirements that are imposed

by modern applications. NoSQL databases address many of these requirements through their

flexible data model, scalability, performance, and always-on global deployments. NoSQL

databases emerged to adapt to the evolving requirements of modern applications. By offering a

flexible data model, MongoDB makes it easy to store and combine data of any structure

including documents, graphs, key-value pairs, and more. This flexibility also makes it easy to

dynamically modify the schema without downtime or performance impact.

Another focus of NoSQL databases is scalability in the form of sharding or or

partitioning. This allows the database to scale out on commodity hardware, or in the cloud,

enabling almost unlimited growth with higher throughput and lower latency than relational

databases. The always-on global deployment of NoSQL databases allows for highly available

data, distributed across many nodes with automatic replication across servers, racks, and data

centers.

This scalability is not just about speed, it is measured using three different metrics:

cluster scale, performance scale, and data scale. MongoDB’s cluster scalability is used by EA

Sports FIFA and Russia’s largest search engine, Yandex, which both utilize the

high-performance auto-sharding to support gameplay servers and the billions of objects and

terabytes of data which grow at 10 million file uploads a day. The performance scale of

MongoDB lends itself well to applications like Foursquare, which boasts a user base of over 50

million people, and Comcast, which supports 100,000 operations per second with 99.999%

availability. MongoDB has also provided high data availability to companies such as McAfee

Global Threat Intelligence (GTI), a cloud based intelligence service which correlates data from

millions of sensors around the globe, and Craigslist, which hosts 80 million classified ads per

month[17].

14

Most NoSQL databases sacrifice the key properties of relational database transactions,

described by the ACID acronym (atomicity, consistency, isolation and durability). However,

with its Nexus architecture, MongoDB is the only NoSQL database that harnesses the

capabilities of NoSQL without sacrificing the foundation of relational databases[18].

MongoDB can be used to easily create single-view applications, making it possible to

aggregate data from multiple sources into a central repository. This is extremely useful to

companies dealing with financial services, government, high tech ventures, and retail providers

which benefit from having a single view for their respective asset classes, military assets,

cross-product use, and customer behavior. This type of application lends itself better to

MongoDB than a relational database because of its ability to consolidate data in different formats

from different systems. MongoDB’s dynamic schemas and expressive query language also saves

time and money by making it easy to adjust the schema and access the data in whatever format is

needed[19].

MongoDB is also very useful for Internet of Things (IoT) applications. The internet of

things describes the interconnectivity of devices, mainly allowing them to share data and make

life easier in some way. Financial services use it to monitor vehicle performance and driver

behavior, government organizations use biometric sensor data from patients to alert doctors

early, high-tech companies provide wearable tech to analyze diet, exercise and sleep, and

retailers can present enticing offers to shoppers using in-store beacons and purchase history data

as they walk through the store. As new types of sensors emerge, they provide new forms of data,

which can easily be handled by the flexible schema of MongoDB. These billions of sensors

provide volumes of data that relational databases cannot handle, yet MongoDB is designed to

scale out and handle these extreme amounts.

15

MongoDB makes it easy to make significant progress on each iteration of your

application development, making it easier to roll out consistent mobile application updates.

Examples include payroll service ADP, which hosts over 1 million end-users, and the Weather

Channel, which uses MongoDB to handle 2 million requests per minute and provide real-time

weather alerts for 40 million users. Financial services use smartphone apps for users to submit

insurance claims with geo tags and pictures taken on their phones. Government organizations use

mobile apps for healthcare appointment scheduling, check-ins and prescription refills. MongoDB

also allows retailers to produce apps with a product catalog, barcode scanner, advertisements for

local deals, loyalty programs, and a store locator. The datasets evolving in mobile applications

benefit from MongoDB’s flexible schema and their large user bases benefit from the scalability

of the database.

16

MongoDB is also used for real-time analytics which require low latency (sub-second) and

high availability (e.g., 99.99%). Examples include financial services’ analysis of satellite

imagery and weather trends, government identification of social program fraud, identifying

unique individuals across different devices, and retailers’ generation of in-store incentives to

shoppers in real time.

MongoDB makes it very easy to personalize the experiences of your customers based on

previous online interactions they have made with your business. Knowing a customer’s likes,

dislikes, and previous history allows you to predict their wants and needs. MongoDB can be used

on top of legacy systems, or replace them altogether. Financial services can relevant lending

offers based on transaction history and credit score, government organizations can create portals

for users to interact with based on location and status, high tech companies can stay compliant by

identifying customer location and keeping data within geographic borders, and retailers can

recognize returning digital customers and match their preferences and history to products that

can be provided. The flexible schema of MongoDB allows for personal tracking in any data form

needed while providing real-time personalization capability because of its real-time analytics

capabilities.

17

While using a relational database it is very hard to handle catalog changes since you

cannot easily add new items, attributes, or features without impacting database performance or

taking the database offline. This is why Otto, Europe’s second-largest e-commerce company,

uses MongoDB to continually update its catalog of over two million products which attracts its

thirty million shoppers and drives in its yearly 2.3 billion Euro revenue. Financial services use

MongoDB as a central repository of trades across multiple asset classes for aggregated analysis,

government organizations are able to keep a single data store for thousands of assets under an

organization’s purview, high tech companies are able to match customers with the right products

at the right time by keeping metadata on user activity, and retailers’ omni-channel product

catalog and inventory management allows the ability to make informed recommendations.

18

MongoDB also makes it easier to manage, store, and serve any type of content, new or

old, from a single database. This ability to build any feature and incorporate any data faster and

for less money has allowed companies like Forbes, who created a custom content management

system (CMS) in two months and a new mobile site in one month, to greatly benefit from

MongoDB’s content management ability and flexibility. Financial services are able to replace

expensive software like Sharepoint to aggregate, store, and serve equity research, government

organizations are able to publish government archives online, high tech companies are able to

consolidate services and app backends into a single database for clean integration and simple

operations, and retailers are able to get visitors to click, interact, and shop online by pairing

product listings with YouTube videos, live demos, and Twitter feeds to get customers closer to

the product.

19

The decision to use MongoDB for this project stemmed from the widespread use of the

infrastructure in the software community. As a well established platform that continues to be

implemented in many different types of applications we felt it was important to compare it to

some of the newer infrastructures available today.

Apache Spark

Apache Spark is an open-source cluster-computing framework. The Spark codebase was

donated to the Apache Software Foundation after being developed by the University of

California, Berkeley’s AMPLab. Apache Spark provides programmers with an application

programming interface build around a resilient distributed dataset, a data structure consisting of a

read-only multiset of data items distributed over a cluster of machines, that is maintained in a

20

fault-tolerant way. [20] This platform was developed in response to limitations in the

MapReduce cluster computing paradigm, which forces a particular linear dataflow structure on

distributed programs: MapReduce programs read input data from disk, map a function across the

data, reduce the results of the map, and store reduction results on disk. Spark's RDDs function as

a working set for distributed programs that offers a (deliberately) restricted form of distributed

shared memory. [21]

Apache Spark contains a library for to compute SQL queries on datasets. Spark SQL was

released in May 2014, and is now one of the most actively developed components in Spark. As

of this writing, Apache Spark is the most active open source project for big data processing, with

over 400 contributors in the past year. Spark SQL provides a DataFrame API that can perform

relational operations on both external data sources and Spark’s built-in distributed collections.

This API is similar to the widely used data frame concept in R, but evaluates operations lazily so

that it can perform relational optimizations. In addition, to support the wide range of data sources

and algorithms in big data, Spark SQL introduces a novel extensible optimizer called Catalyst.

Catalyst makes it easy to add data sources, optimization rules, and data types for domains such as

machine learning. Spark SQL has already been deployed in very large scale environments. For

example, a large Internet company uses Spark SQL to build data pipelines and run queries on an

8000-node cluster with over 100 PB of data. Each individual query regularly operates on tens of

terabytes. In addition, many users adopt Spark SQL not just for SQL queries, but in programs

that combine it with procedural processing. For example, 2/3 of customers of Databricks Cloud,

a hosted service running Spark, use Spark SQL within other programming languages.

Performance-wise, we find that Spark SQL is competitive with SQL-only systems on Hadoop for

relational queries. It is also up to 10x faster and more memory-efficient than naive Spark code in

computations expressible in SQL. [22]

The DataFrame API mentioned above offers rich relational/procedural integration within

Spark programs. DataFrames are collections of structured records that can be manipulated using

Spark’s procedural API, or using new relational APIs that allow richer optimizations. They can

be created directly from Spark’s built-in distributed collections of Java/Python objects, enabling

relational processing in existing Spark programs. Other Spark components, such as the machine

21

https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Dataflow
https://en.wikipedia.org/wiki/Map_(parallel_pattern)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Working_set

learning library, take and produce DataFrames as well. DataFrames are more convenient and

more efficient than Spark’s procedural API in many common situations. For example, they make

it easy to compute multiple aggregates in one pass using an SQL statement, something that is

difficult to express in traditional functional APIs. They also automatically store data in a

columnar format that is significantly more compact than Java/Python objects. Finally, unlike

existing data frame APIs in R and Python, DataFrame operations in Spark SQL go through a

relational optimizer, Catalyst.

Regarding the development for Apache Spark, Spark is powerful and expressive in terms

of how a user orders operations to be executed. The ability to use additional functions like Filter,

Join, and Group-By enables an intuitive development process. Apache Spark promotes focus

towards higher abstraction instructions, and away from lower level MapReduce implementation.

For example, a preconfigured program that is included with the Apache Spark install is a sample

wordcount example. This program is roughly 100 lines of code when done with MapReduce, but

the equivalent in Apache Spark is executed in 4 lines of code. This intuitive design allows for

more efficient execution and query design.

Apache Spark swears by their speed, ease of use, generality, and ability to run

everywhere. Statistics on spark.apache.org claim that Apache Spark runs programs up to 100x

faster than Hadoop MapReduce in memory, or 10x faster on disk. Mentioned in the previous

section, Apache Spark offers efficient program creation and execution, requiring fewer lines of

code to execute similar programs. It’s apparent Apache Spark is a modern staple in cluster

computing, and continues to dominate data processing.

22

Methodology

YCSB

The Yahoo! Cloud Serving Benchmark (YCSB) was released in 2010 by the research

division of Yahoo!. It was developed with the goal of “facilitating performance comparisons of

the new generation of cloud data serving systems”[23]. YCSB competes with the TPC-H

benchmark created by the Transaction Processing Performance Council, though YCSB is more

focused on benchmarking big data platforms. YCSB is now a standing open-source project.

YCSB provides users with two parts: the YCSB client itself, which is an extensible

workload generator, and a set of core workloads that can be executed immediately[24]. The core

workloads are designed to provide a well-rounded summary of a platform’s performance metrics

and users are able to define their own workloads to cover additional system aspects. By default

YCSB workloads will provide latency and throughput statistics as they finish running. The

following graphic displays the YCSB system architecture.

Since its deployment, YCSB has been used to benchmark a number of products for both

marketing and scholarly comparisons. To date, YCSB has built-in interfaces for the following

data platforms[25]:

23

● Apache Accumulo

● Apache Cassandra

● Apache Geode

● Apache HBase

● Apache Kudu

● Apache Solr

● Aerospike

● Amazon S3

● Async HBase

● ArangoDB

● Couchbase

● DynamoDB

● ElasticSearch

● Google Bigtable

● Google Data Storage

● Hypertable

● Infinispan

● JDBC

● Mapkeeper

● Memcached

● MongoDB

● NoSQL DB

● OrientDB

● Redis

● Riak

● Tarantool

● Voldemort

Because this project originally required benchmarking Apache Hadoop (later replaced by

CouchDB), Apache Spark, and MongoDB, we were able to utilize the built-in interface for

24

MongoDB only. Our original goal with the project was to implement our own interfaces for

Hadoop and Spark. This would have allowed us to complete the comparison and possibly

contribute to the open source project as well.

A shortcoming of YCSB was discovered while we were using the MongoDB interface:

the format of the data produced for and queried from MongoDB. One of the conveniences of the

JSON document format, which is what we eventually decided to use, is the ability to store

documents within documents as data is stored in the format of key-value pairs, with the title of

the sub-document as the key and the embedded document as the value. One of the requirements

of the project was to evaluate the performance of queries that handle data within these embedded

documents, yet YCSB failed to do so. Within the dataset produced by YCSB the documents are

composed of a single field containing a string of randomly generated characters; there are no

embedded documents. This was the first factor in our eventual decision to abandon using YCSB

as our benchmarking tool and develop our own custom benchmarking process.

After a period of time trying to implement YCSB with Hadoop and Spark, we concretely

concluded that it was not going to be an effective way to complete our project, despite YCSB

being the current standard for measuring NoSQL database metrics. Our first issue with this task

arose when trying to create an interface for Hadoop. It’s a well-documented shortcoming of

YCSB that it does not support MapReduce functions [26]. Although it’s able to effectively

benchmark other processing engines built on top of Hadoop HDFS like HBase, our project

originally specified using vanilla Hadoop, which made using YCSB impossible within our time

constraints. The eventual move to CouchDB, another MapReduce database, and the fact that

there was also no pre-existing interface for Spark solidified our decision to benchmark the

platforms in a different way.

Dataset

Moving away from YCSB meant benchmarking the databases with our own metrics, and

in order to do that we needed data to query. We decided on a 76MB data set that contained

18001 records on companies in JSON format. Each company record contains 38 top-level

attributes, 17 of which can contain additional nested documents. Here is a screenshot of a single

record, split into new lines for readability. The entire record is not visible:

25

We chose this data set for a number of reasons. First, JSON is a very popular data format

that any modern database, as of the writing of this report, should be able to support. Second, we

thought that a size of around 100MB seemed appropriate for initial testing, and as we

implemented AWS (see the subsection on our Testing Environment) it turned out to be a good

size for final testing as well. Finally, a large part of our assessment is whether or not the data

26

platforms could handle embedded documents, and how well. JSON is well-equipped to create

embedded documents, and this particular data set had many to choose from, some nested to 3 or

4 levels.

Queries

In order to obtain a more complete evaluation of our big data tools we benchmarked them

using different query types. These queries included projection, filtering, and single purpose

aggregations which used sum, group, and distinct operations. The dataset we used was in JSON

format and was composed of a collection of data from worldwide startup companies. Since we

were using a JSON dataset we also felt it was necessary to implement queries that retrieve

embedded documents. To do this we implemented all of the same query types previously

described, but to deeper levels of the document hierarchy.

Aggregation is, by dictionary definition, a collection or gathering of things together. In

the case of our big data tools, aggregation is implemented by executing a collection of query

operations, combined to retrieve and format data into the form that is needed by your application.

We used three types of single-purpose aggregation queries which we felt were basic and

commonly needed. We summed the num_employees field to return the total number of 1

employees across all companies in the dataset. We grouped companies by the year they were

founded in (founded_year), returning each existing year in the dataset and the total number of

companies founded in the corresponding year. We also used the distinct operation to return each

distinct category_code.

Projection can be explained through this example: Let ρ be a relation and let A, B, ..., C

be attributes of ρ . Then the projection of ρ on (or over) those attributes, ρ {A,B,...,C}, is a relation

with:

 a.) heading: {A,B,...,C} and

 b.) body: the set of all tuples x

1 All mentions of actual fields from our documents will be bolded throughout this section.

27

such that there exists some tuple θ in ρ with A value equal to the A value in x , B value equal to

the B value in x , ..., and C value equal to the C value in x . In terms of this project, our projection

queries returned a list for each company containing their four URLs (crunchbase_url,

homepage_url, blog_url and blog_feed_url).

Filtering involves scanning all documents and returning a smaller percentage of them

based on a qualification metric. Filtering queries can be very useful for measuring query

processing time, since it’s relatively easy to tailor them to return certain percentages of the data.

In our case, we queried the documents for a founded_year of 2010 or later. This could easily be

changed to any other year by simply changing a couple characters in the code; querying for 2000

or later would return a larger percentage of the data, while querying for 2016 or later would

return a smaller percentage.

We have so far covered the following 5 query decisions:

● Aggregation

○ Summing number of employees across all companies

○ Grouping companies by their founded year

○ Returning distinct category codes

● Projection

○ Returning the four URLs for each company

● Filtering

○ Returning companies founded on or after a given year

The next step was to implement similar queries, but to access embedded (or nested)

documents in our data. In order to implement aggregation of embedded documents we used the

same types of single purpose operations, just at a deeper level in the document hierarchy. We

returned each company name, accompanied by the sum indicating the total amount of funding

that the company has raised, summing the raised_amount nested within each of the

funding_rounds. We grouped the documents by the cities they have offices in, accompanied by

the count of total offices in each corresponding city. We also implemented the distinct operation

by returning each distinct price_currency_code from the acquisition document. By

implementing these three single-purpose aggregations to various levels in the JSON document

28

hierarchy we ensured that our tool has a complete evaluation of simple aggregation performance

in each of our big data tools.

For projection we again returned the name of each company, but this time projected an

attribute from within the embedded image document. The image document includes an

available_sizes attribute containing a list of dimensions; we returned the smallest available

image size. Projection is also used in the embedded document filter query. We project all

company records with a high enough price_amount from the nested acquisition document.

Specifying an acquisition price of $2,000,000,000 for example returned only a small handful of

the companies, while lower prices returned much more.

In summary, our embedded documents queries were:

● Aggregation

○ Summing the funding amount raised by each company from all funding rounds

○ Counting the number of offices in each distinct city across all companies

○ Returning each distinct currency code used for company acquisitions

● Projection

○ Returning the smallest available company image size

● Filtering

○ Returning only the companies acquired at or above a specific price point

We did not include “write” actions in our queries; while MongoDB and CouchDB both

support writes, Apache Spark does not and therefore it did not make sense to implement them on

only two of our databases. See the conclusions section for more discussion on this topic

.

CouchDB Implementation

CouchDB utilizes MapReduce in JavaScript. Because of JavaScript’s relatively lax

coding conventions, the code snippets for Mapper functions are very short, and the Reduce

functions don’t even have to be user-written; CouchDB has built-in reducers that can be used.

We did decide to write our own Reducers for the sake of the project, so an example of our

CouchDB grouping by founded year query looks like this:

29

Accessing embedded documents is very, very simple in CouchDB, since JSON is the

built-in data structure. Our distinct currency code query Mapper is just:

These queries, shown in CouchDB’s Fauxton interface, create Views which are addressed

in the CouchDB section. In order to access the actual output of the queries, we used simple

cURL commands. The cURL command for the year founded query is:

Which provides output that looks something like this:

30

MongoDB Implementation

Queries can be implemented in MongoDB either by using their NoSQL commands from

the Mongo shell or by using one of the many languages supported by MongoDB drivers. In the

case of our project we first constructed the queries in NoSQL, but completed all testing using the

MongoDB Java drivers for ease of collecting performance statistics. An example of our

MongoDB NoSQL grouping by founded year query looks like this:

Similarly, an example of our MongoDB Java grouping by founded year query, including

variables for latency calculation, looks like this:

31

As can be seen in the two previous figures, there is a great similarity between the NoSQL

and Java Driver implementations of MongoDB queries. Within the NoSQL command there are

key-value pairs that are referenced in order to query the data from the JSON dataset. When

translated to Java Driver syntax, the key-value pairs must be constructed using the Document

object (from the org.bson.Document package). Once you have formed the components needed to

implement the query, you pass them as an ArrayList to the aggregate() function which utilizes

the MongoDB aggregation pipeline.

Not all queries must utilize the aggregation pipeline however, as there are much simpler

commands that can be used to perform single purpose aggregation. For example, if you wanted

to return each distinct value existing in a certain field (in this case the price currency code of the

company acquisition) it would be as simple as this in MongoDB NoSQL and Java Drivers,

respectively:

We found that using queries with MongoDB had very simple syntax and once one learns

how to implement them in NoSQL they are easily converted into Java Driver syntax.

32

Spark Implementation

Spark SQL is Apache Spark’s module for working with structured data. This module

allows for a seamless integration of SQL queries with Spark programs. Each query is a mixture

of Scala and SQL. Here is an example of what our Apache Spark grouping by founded year

query looks like:

Querying nested documents is also supported. Our distinct currency code query is shown as:

Nested queries are extremely easy in Apache Spark due to the ability to print the database

schema straight to the shell terminal:

33

 This allows the user to see what queries are necessary to reach the desired view.

Testing Environment

In order to test our platforms properly, we needed to make sure that they’d be running on

the exact same hardware. We toyed with the idea of using a virtual machine that had all three

platforms installed, but ultimately decided to use Amazon Web Services’ free tier as our testing

environment. This had two major benefits for us: we could use identical cloud computers for

consistency, and AWS’s imaging process made it easy to back up our work and revert to

previous versions of our machines if we made any errors.

Using AWS EC2, we initialized three identical instances(virtual machines) that we could

access with ssh keys. The instances are “t2.micro” tier, and have the following specifications:

● 1 Intel Xeon vCPU

34

● 1GB RAM

● 8GB SSD

● 64-bit Ubuntu 16.04 LTS

● US-West-2 availability region (Oregon, US)

● Low to Moderate Network Performance rating[27]

Each platform was installed on its own instance, and latency testing took place on the instances

to ensure uniformity across processing environments.

Metrics

The platforms were evaluated by both the latency of each query and their ease of use.

For latency, each query was run 20 times and the average of the query times was used as the

official measurement. Ease of use (EoU) was measured categorically, and each platform was

ranked against the others with 1 being the best in that category and 3 being the worst, relatively

speaking. Evaluated categories included installation of the tool, the overall procedure of using

the tool, and the syntax of the queries written for the tool.

35

Results & Analysis

Data Tool Installation Operating

Procedure

Syntax Lines of

Code

Average

Latency

CouchDB 1 Even 2 2 3

MongoDB 1 Even 1 3 2

Spark 3 Even 3 1 1

The preceding table shows the rankings of each of our data platforms in the five

categories described in the Metrics section. The following sections address each category in

more detail by platform, and includes our analysis and comparisons.

Installation

CouchDB

Installing CouchDB from the command line on Linux machines is not the easiest thing,

but isn’t too bad if you’re using a version prior to 2.0. Throughout most of the project, to

familiarize ourselves with CouchDb, we were using version 2.0.0 on a 64-bit Windows 10

machine. For final testing we installed version 1.6.1 on the virtual instance. This decision was

made because version 2 of CouchDB was optimized for ease-of-use, primarily through its

graphical user interface and explorer-style installation. Installing it through the command line

resulted in numerous errors that couldn't be easily resolved, whereas previous versions were

designed with terminal installation more in mind. While version 2.0.0 made significant advances

in user interaction, the processing time of the database itself was largely left unchanged, so this

decision doesn’t affect latency results. All EoU observations were made with respect to version

2.0.0.

Using version 1.6.1, installation was simply adding the proper PPA repository and then

using an apt-get command to install CouchDB[28]. (Installing version 2.0.0 was so difficult due

36

to the requirement to manually install all dependencies, since the stable CouchDB PPA

repository contains version 1.6.1.):

sudo apt-get install software-properties-common

sudo add-apt-repository ppa:couchdb/stable

sudo apt-get install couchdb

CouchDB’s new users are automatically set up during this process, so some quick

permissions changes are recommended so as to move a few files and directories away from

root-only access:

sudo chown -R couchdb:couchdb /usr/bin/couchdb /etc/couchdb

/usr/share/couchdb

sudo chmod -R 0770 /usr/bin/couchdb /etc/couchdb /usr/share/couchdb

This took care of CouchDB’s numerous dependencies in in just a couple steps, and the

database could then immediately be restarted and accessed through localhost port 5984:

sudo systemctl restart couchdb

curl localhost:5984

MongoDB

Installing MongoDB on Ubuntu was extremely simple and only took four commands

from the terminal to complete. The first step is to import the public GNU Privacy Guard (GPG)

key used by the MongoDB package management system[29]:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv

0C49F3730359A14518585931BC711F9BA15703C6

This allows the Ubuntu package management system (ie. dpkg and apt) to ensure package

consistency and authenticity. The next steps include creating a list file for MongoDB:

echo "deb [arch=amd64,arm64] http://repo.mongodb.org/apt/ubuntu

xenial/mongodb-org/3.4 multiverse" | sudo tee

/etc/apt/sources.list.d/mongodb-org-3.4.list

and reloading the local package database:

sudo apt-get update

The last step in the installation process is to install the MongoDB packages for the latest

stable version:

37

sudo apt-get install -y mongodb-org

Given that this process requires zero prerequisites and can be completed with four

commands ran from the terminal, MongoDB was awarded an EoU score of 3 for installation of

the infrastructure. However, this only provides the ability to use the mongo shell. In order to use

MongoDB with your application you must use one of its many available driver packages.

The Java drivers for MongoDB were also very simple to find and install, the only

challenge being that multiple drivers are needed for basic use (mongodb-driver,

mongodb-driver-core, and bson). Using an IDE such as Eclipse or IntelliJ makes it easy to add

these jar files to the build path of your project, after which you should be ready to use the

MongoDB Java drivers for your application.

Spark

Installing Spark on Ubuntu was a multi-step procedure and required the additional

installations of Java and Scala. To first install Java, the following commands were used:

sudo apt-add-repository ppa:wedupd8team/java

sudo apt-get update

sudo apt-get install oracle-java7-installer

To install Scala, the following commands were used:

wget http://www.scala-lang.org/files/archive/scala-2.10.4.tgz

sudo mkdir /usr/local/src/scala

sudo tar xvf scala-2.10.4.tgz -C /usr/local/src/scala/

Next the .bashrc files needed to be updated to set the SCALA_HOME variable and path.

vi .bashrc

export SCALA_HOME=/usr/local/src/scala/scala-2.10.4

export PATH=$SCALA_HOME/bin”$PATH

The .bashrc file was then restarted by using the command:

. .bashrc

Since the building of Apache Spark depends on git, the following command was used to

install git:

sudo apt-get install git

38

http://www.scala-lang.org/files/archive/scala-2.10.4.tgz

The next step is to download and install the preconfigured Apache Spark and Hadoop .tar

file itself. For this project, Spark 2.0.1 was downloaded and extracted along with Hadoop 2.7.

wget http://d3kbcqa49mib13.cloudfront.net/spark-2.0.1-bin-hadoop2.7.tgz

tar xvf spark-2.0.1-bin-hadoop2.7.tgz

Due to large amount of commands for installation, Apache Spark was rated the most

complex of the three in the metrics.

Overall Procedure

CouchDB

CouchDB, once installed on a machine, runs on startup unless specified otherwise, and a

simple terminal command will get it running if it isn’t already:

couchdb start

The only difficulty in procedure comes with learning to use cURL commands, if the user

is not familiar with them to begin with. Simple cURL commands using the HTTP API can

provide the user with all the data they need, from version to query syntax to advanced usage

statistics. Data and views can be added using POST commands. For example, the JSON data set

we used was added to the database with this one-line command:

curl -H “Content-Type:application/json” -d @MYFILE.json -v POST

“http://localhost:5984/mqp/_bulk_docs”

From there on out, we utilized a combination of JSON files, cURL commands, bash

scripts and a python script to do all testing. Because CouchDB saves views as design documents,

the map and reduce code was put into JSON object format and loaded using a cURL command.

To avoid excess typing, we bash scripted the the view creation, as well as the cURL command

that then queried the view. Likewise, we bash scripted the “delete view” process, making use of

a simple python script that parsed the output string from a GET call in order to delete the current

revision number of a document, since delete calls require both the document ID and revision

number.

39

http://d3kbcqa49mib13.cloudfront.net/spark-2.0.1-bin-hadoop2.7.tgz

MongoDB

A single command is needed to start MongoDB services, enabling a user to locally enter

the mongo shell or connect to the database using one of the driver languages:

sudo service mongod start

Once the mongo services were started it was very straightforward to enter the mongo

shell and create a database, as well as a collection which are the MongoDB equivalent to an

RDBMS database and table, respectively. With the services started it is also possible to query

from the hosted databases, locally or remotely.

Spark

The spark-shell can be launched by navigating to the appropriate directory and entering

the command:

./spark-shell

Once the spark-shell is open, commands can be entered to load data files and execute queries

interactively. This allows for immediate feedback regarding syntax and results.

Syntax

CouchDB

The query syntax for CouchDB itself is incredibly simple, as long as the user is familiar

with MapReduce practices. As shown in the Queries section, they’re written in JavaScript code

and and can easily include CouchDB’s built in reducers. When actually loaded as JSON objects

through cURL commands, our queries looked like this:

40

These JSON docs could then be loaded directly into /_design/VIEWNAME as binary

data.

Users who are less familiar with the MapReduce key-value process would likely take a

little more time to understand how to use CouchDB’s query structure. In that particular case,

MongoDB’s NoSQL syntax might be more intuitive.

MongoDB

Using MongoDB requires a good understanding of JSON data format, as it uses a

binary-encoded serialization of JSON documents. The built-in NoSQL functions of the mongo

shell are very intuitive to the structure of JSON documents, and also make it very easy to

perform complex combinations of aggregation functions. Using the Java driver language is also

very straightforward as you can connect to the local database on the default port by using a

function that takes no arguments.

Some of the queries were simple enough to pass a specific key within the JSON dataset

as an argument, such as the distinct operation, but more complicated queries needed to be

constructed using multiple key-value pairs. Just as you construct the MongoDB NoSQL queries

by using key-value pairs encapsulated in curled brackets, the Java queries are constructed by

using Document objects in which the key-value pair is defined in the constructor. Combinations

of these Document objects are then passed to query functions such as projection and aggregation.

Spark

The JSON data file is then loaded and a temporary view is created through these

commands:

Val df = spark.read.json(“filename.json”)

df.createOrReplaceTempView("View")

Spark SQL makes it extremely convenient to query as SQL is used within a Scala

command. For example, selecting the sum of Employees from the data set can be done like

shown:

41

Val q1 = spark.sql(SELECT SUM(number_of_employees) AS EmpSum FROM View”)

The command q1.show() is used to show the outcome of the q1 query.

For nested queries, nested data can be accessed by traversing the schema in the SQL

“SELECT” statement. For example, if we want to access the “raised_amount” field that is nested

within the “funding_rounds” field, the command is executed like so:

val q1 = spark.sql("SELECT name, funding_rounds.raised_amount FROM View")

If a column contained an array that needed to be aggregated, the explode() function

which creates a new row for each element in the given array or map column. To explode the

raised_amount column, the following command is used:

val q2 = q1.withColumn("tag",

org.apache.spark.sql.functions.explode(q1.col("raised_amount")));

The above command will create an additional column named “tag” and a new row for

each element with the raised_amount array. To sum all the values within the raised_amount array

would be the same as summing all the values in the “tag” column and group by “name”. This

command can be executed like so:

val q3 = spark.sql("SELECT name, SUM(tag) as Sum FROM newT GROUP BY name")

Lines of Code

CouchDB

CouchDB queries are short. Even in the full JSON format, creating a view would require

at most 5 classifiers: the ID, view classifier and chosen view name, the required map code and

then the reduce code if any is required. This can all even be written in one line if desired as long

as everything is bracketed properly. The final line then required is the GET request needed to

query the view.

MongoDB

The lines of code needed to use MongoDB differed between the NoSQL and Java driver

implementations. MongoDB NoSQL queries are run using a single command, but this command

is sometimes composed of multiple key-value pairs which perform sub-operations. This

42

sometimes complicated query type is still considered a single line, as it is a single command, but

it is good practice to construct the query in a text editor organized hierarchically as you would

with blocks of code.

The Java drivers, however, require these sometimes complicated combinations of

key-value pairs to be constructed using Document objects, as mentioned in the syntax section.

This increases the number of lines needed for the query by the number of Document objects that

need to be created. Given the similarity in syntax between MongoDB NoSQL and Java drivers,

the additional lines of code are very intuitive and should not be viewed as a negative aspect of

the tool.

Spark

When using the spark-shell, queries can be executed in a line by line basis. Assuming an

additional view does not need to be created, Spark SQL can query a JSON data file in one line.

This allows for very efficient efficient query creation. An additional line of code is required for

creating additional views and queries. For the ten queries performed in this study, the shortest

was one line, and the longest was five lines (not including the line for loading the JSON file and

the line for creating the view).

43

Latency

 2

CouchDB

Measuring latency for CouchDB is a unique process. Queries are actually run on views,

which were explained earlier as being design documents that store essentially pre-queried data to

make it quick and easy to run the same queries very often. This is one of the main functionalities

of CouchDB that make it very useful if you're running a website that always has to retrieve the

same data sets.

Views are posted to the database but not actually created until the first time they’re

queried. The very first time a query is run on a new view, it’s very slow. For our testing

environment and 80MB dataset, first-time queries took an average of 12.6 seconds. For larger

datasets, say 10+GB, first-time queries could take multiple hours. After the first run queries

become much faster. We originally thought that it would be more accurate to create the view, run

the query, delete the view, and then repeat in order to run latency measurements. However,

because CouchDB is a revision-only databased, deleted design documents that define views

aren’t truly deleted, only marked as deleted, unless the database is purged. Purging is an arduous

process, so it was decided that the most accurate way to measure latency was to leave the views

intact and simply make a note of the first-time query run being significantly longer.

2 For full-verbosity latency measurements, see the Appendix.

44

Because cURL queries were run on the terminal line, either by hand or by bash script, the

built-in Linux system time command was used to measure latency. It’s also important to mention

that CouchDB is actually not very fast query-wise. This is because it depends on HTTP, which is

not a very low-latency protocol, and is the reason CouchDB appears to be so outperformed by

MongoDB and Spark.

MongoDB

The time taken to run each of our queries using MongoDB was much lower than that of

CouchDB, and in most cases lower Spark’s, mainly due to the infrastructure’s extensive use of

RAM. MongoDB maps all data into RAM and leaves the task of memory management to the

operating system. In the case of a very large dataset, MongoDB has to at least have the indexes

for each of the databases in RAM to prevent I/O performance bottlenecks[30]. Using the distinct

operation, however, caused MongoDB to have a significantly greater query latency, to the point

that the average latency of MongoDB queries became greater than that of Spark.

Given the fact that we only used a single database and collection with 76 MB of data,

most of the data, if not all, was likely able to be mapped into RAM. This further explains the

difference in latency between the big data infrastructures in use, as MongoDB was able to access

all the needed data from RAM. The table below shows the latency statistics, measured in

microseconds, for each of our queries run on MongoDB. The last row shows the average runtime

for the specified query in bold.

The reason why MongoDB was evaluated using microseconds rather than seconds or

milliseconds is that many of the queries consistently ran in under a single millisecond. These

latency measurements don’t account for the time needed to connect to the database from the Java

driver code. Connecting to the database adds a slight overhead to overall latency, but is only

done when accessing data using a driver language. Since the pre-query processes for each

infrastructure differed, the time to complete such operations was not measured or compared.

Given the fact that the dataset used in this project is smaller than the amount of RAM on

most systems, MongoDB would be better evaluated with an amount of data that exceeds the

available RAM on the system being used. I/O operations are the most common performance

45

bottleneck because MongoDB, when there is more data than available RAM, has to push

memory to disk rather than keeping it all available in RAM.

Spark

Apache Spark had the lowest overall average query time and an average data-load time of

1.02 seconds, which was expected due to the fact the platform uses in-memory computation. To

calculate latency, a time function written in scala was utilized within the shell. For example, to

measure the latency of the count_employees query, this script was entered within the

Spark-shell:

This function recorded the latency of all executions with the time brackets; in this case, all

SparkSQL commands. When the execution was completed, the latency value was returned within

the shell. The query executing the selecting of the four urls for each company had the lowest

latency for Apache with an average latency of 1.9 milliseconds:

The Apache Spark query with the highest latency, with an average value of 14.7 milliseconds,

was the selection of each company name with their smallest available image size. This query

required multiple view creations and multiple sub-queries resulting in a longer latency, as shown:

46

Apache Spark did not have the lowest query time in our study, however it did have the

lowest average query time. Apache Spark had a difference in query times of 12.8 milliseconds,

whereas MongoDB has a difference of 44.46 milliseconds, and CouchDB at 996.55 milliseconds.

In regards to data-load time, Apache Spark loaded all 75MB of data in an average of 1.02

seconds which is faster than CouchDB by 10.98 seconds. This load time is very useful when

loading large datasets, as our study concluded datasets can be loaded over 10x faster than

CouchDB.

47

Conclusions

CouchDB is definitely more targeted towards ease of use for web application developers

than pure speed. The static data views make it very effective for providing data in predetermined

formats, and the HTTP API makes those formats quick and simple to access. When using the

Futon or Fauxton user interfaces, creating queries and managing the infrastructure is remarkably

intuitive. However because we did our testing purely through command-line arguments, we

didn’t benefit from that intuitiveness. Additionally, CouchDB falls behind when evaluated

quantitatively. The HTTP protocol is simply not fast, and CouchDB specifically has trouble with

queries that require a larger amount of data be returned. In our case, that was clearly evident

from the latency measurements of our projection queries.

MongoDB was very simple to install and get running on Ubuntu machines. The syntax

was also very intuitive to the structure of JSON documents and the type of query being

performed. This simplicity paired with MongoDB’s ultra-low latency makes it a top competitor

among data storage and processing engines. However, a major shortcoming of MongoDB comes

when performing the distinct operation, as it performs a full scan of the dataset and can cause I/O

performance bottlenecks due to its extensive use of RAM.

Apache Spark is an efficient platform in terms of writing and executing queries.

In-memory data processing allowed for the avoidance of costly disk access, and for queries to be

performed at memory speeds. Despite the positive performance remarks, Apache Spark has

several required dependencies, which made the installation process relatively complex. Overall,

the combination of the Spark-shell and Spark SQL enable concise query creation and

low-latency execution.

Although there is no clear cut best platform, each of them has strengths and weaknesses

that lend themselves to different areas of use. CouchDB uses HTTP connections to transfer data,

therefore making it most useful in web applications. MongoDB has many use cases and ultra-low

latency, making it a top choice for any application that requires a flexible data schema. Apache

Spark excels in its abilities to process and analyze data with ultra-low latency, making it a top

choice for any application that needs to provide real-time statistics and machine learning

capabilities. Future directions of this study would involve:

48

● An increase in data size, moving into the range of multiple gigabytes. This would be

more representative of enterprise-level datasets and further distinguish performance

differences between the platforms.

● Cluster analysis, as opposed to the single-instance performance measured on AWS EC2

instances.

● A greater number of queries, including variations in filtering percentages, different levels

of nesting, and both read and write queries where applicable.

Given the timeline of this study, our research acts as a starting point for a more detailed

benchmarking of these three platforms.

49

Acknowledgements

We would like to thank our advisor, Mohamed Eltabakh, for his guidance and support

throughout the duration of the project.

50

References

[1] Ghemawat, S., Gobioff, H., & Leung, S. (n.d.). The Google File System (Rep.). Retrieved
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp200
3.pdf

[2] What is Apache Hadoop? (n.d.). Retrieved January 13, 2017, from
https://hortonworks.com/apache/hadoop/

[3] Apache Software Foundation. (2017, January 26). Welcome to Apache™ Hadoop®!
Retrieved from http://hadoop.apache.org/

[4] Ting, D. (2017, January 24). PoweredBy - Hadoop Wiki. Retrieved January 17, 2017, from
https://wiki.apache.org/hadoop/PoweredBy#N

[5]Rose Technologies. (2012, November 26). Hadoop Architecture and Deployment - Rose
Technologies. Retrieved from
http://www.rosebt.com/blog/hadooparchitecture-and-deployment

[6]MacLean, D. (2011). A Very Brief Introduction to MapReduce. Retrieved from Stanford
University website:
http://hci.stanford.edu/courses/cs448g/a2/files/map_reduce_tutorial.pdf

[7] Dean, J., & Ghemawat, S. (n.d.). MapReduce: Simplified Data Processing on Large Clusters.
Retrieved from Google, Inc. website:
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-
osdi04.pdf

[8] Exploring CouchDB. (2009, March 31). Retrieved February 28, 2017, from
http://www.ibm.com/developerworks/opensource/library/os-couchdb/index.html

[9] Jackson, J. (2010, July 14). CouchDB NoSQL Database Ready for Production Use.
Retrieved February 28, 2017, from http://www.pcworld.com/article/201046/article.html

[10] The Apache Software FoundationBlogging in Action. (n.d.). Retrieved February 28, 2017,
from https://blogs.apache.org/couchdb/entry/welcome_bigcouch

[11] Erlang whitepaper. (n.d.). Retrieved February 28, 2017, from
https://web.archive.org/web/20111025022940/http://ftp.sunet.se/pub/lang/erlang/white_p
aper.html

[12] Cassandra vs MongoDB vs CouchDB vs Redis vs Riak vs HBase vs Couchbase vs OrientDB
vs Aerospike vs Neo4j vs Hypertable vs ElasticSearch vs Accumulo vs VoltDB vs Scalaris
vs RethinkDB comparison. (n.d.). Retrieved February 28, 2017, from
https://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis

[13] Eventual Consistency. (n.d.). Retrieved February 28, 2017, from
http://guide.couchdb.org/draft/consistency.html

[14] Hadoop Tool: CouchDB Assignment Help. (n.d.). Retrieved February 28, 2017, from
http://www.myassignmenthelp.net/couchdb-assignment-help

51

[15] Kalla, R. (2012, February 21). How does MongoDB compare to CouchDB? What are the
advantages and disadvantages of each? - Quora. Retrieved from
https://www.quora.com/How-does-MongoDB-compare-to-CouchDB-What-are-the-advan
tages-and-disadvantages-of-each

[16] MongoDB, Inc. (2017). Do What You Could Never Do Before | MongoDB. Retrieved from
https://www.mongodb.com/what-is-mongodb

[17] MongoDB, Inc. (2017). MongoDB at Scale | MongoDB. Retrieved from
https://www.mongodb.com/mongodb-scale

[18] MongoDB, Inc. (2017). MongoDB Architecture | MongoDB. Retrieved from
https://www.mongodb.com/mongodb-architecture

[19] MongoDB, Inc. (2017). Use Cases | MongoDB. Retrieved from
https://www.mongodb.com/use-cases

[20] Zaharia, Matei; Chowdhury, Mosharaf; Franklin, Michael J.; Shenker, Scott; Stoica, Ion.
Spark: Cluster Computing with Working Sets (PDF). USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud).

[21] Zaharia, Matei; Chowdhury, Mosharaf; Das, Tathagata; Dave, Ankur; Ma, Justin;
McCauley, Murphy; J., Michael; Shenker, Scott; Stoica, Ion. Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing (PDF).
USENIX Symp. Networked Systems Design and Implementation.

[22] Armbrust, M., Ghodsi, A., Zaharia, M., Xin, R. S., Lian, C., Huai, Y., . . . Franklin, M. J.
(2015). Spark SQL. Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data - SIGMOD '15. doi:10.1145/2723372.2742797

[23] “Cooper, Brian F; et al. "Benchmarking cloud serving systems with YCSB" (PDF). Yahoo
Research.

[24] Kamat, G. (2015, August 31). YCSB, the Open Standard for NoSQL Benchmarking, Joins
Cloudera Labs - Cloudera Engineering Blog. Retrieved November 27, 2016, from
http://blog.cloudera.com/blog/2015/08/ycsb-the-open-standard-for-nosql-benchmarking-j
oins-cloudera-labs/

[25] Cooper, B. F. (2016, September 19). Brianfrankcooper/YCSB. Retrieved November 27,
2016, from https://github.com/brianfrankcooper/YCSB/releases/tag/0.11.0

[26] JudCON 2013. (2013). JudCON: JBoss Users & Developers Conference. Retrieved
November 27, 2016, from
https://www.jboss.org/dms/judcon/2013india/presentations/day1track2session2.pdf

[27] Amazon. (n.d.). EC2 Instance Types – Amazon Web Services (AWS). Retrieved from
https://aws.amazon.com/ec2/instance-types/

[28] Pyasi, A. (2016, June 3). How To Install CouchDB and Futon on Ubuntu 16.04. Retrieved
from http://linoxide.com/linux-how-to/install-couchdb-futon-ubuntu-1604/

52

https://www.mongodb.com/use-cases
https://amplab.cs.berkeley.edu/wp-content/uploads/2011/06/Spark-Cluster-Computing-with-Working-Sets.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

[29] MongoDB, Inc. (2016). Install MongoDB Community Edition on Ubuntu — MongoDB
Manual 3.4. Retrieved from
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/

[30] Farrugia, C. (2012, November 5). MongoDB Performance Pitfalls - Behind The Scenes.
Retrieved from
https://www.revulytics.com/blog/mongodb-performance-pitfalls-behind-the-scenes

53

Appendix

54

55

56

