
1

VE20-COMM: Technical Addendum
Developer’s Guide and technical details for the development of project

deliverables

Authors
Lucas Fernandes

Taylor Ostrum
Nathan Morin

Kavim Bhatnagar

2

Table of Contents
Table of Contents 2

Developer’s Guide 3
Project Dependencies 3
Installation & Setup 3
Project Structure 5

Shops Directory 5
Shops Directory Files 5

Public Directory 5
Public Files 5

Src Directory 6
Subdirectories of Src 6
Component Hierarchy 6

Data Cleaning Methodologies 7

Recommendations 10

3

Developer’s Guide

VE20-COMM GitHub Code Repository -​ https://github.com/srdpt/shops/tree/bTerm20Dev

This project was developed using React 17.0.1, written in JavaScript

Project Dependencies
Git - Use most recent version
React - Use most recent version
Material-UI - 4.11.1
Leaflet - 1.7.1
React-leaflet - 3.0.0
React-burger-menu - 2.9.0
React-router-dom - 5.2.0
React-select - 3.1.1
React-scripts - 4.0.0

Installation & Setup
These steps will walk you through cloning the repository, installing dependencies, as well as
running the application locally

1) Clone the Repository

If you don’t already, please install Git

Once inside of your desired directory

Use either cmd or powershell on windows to run
git clone ​https://github.com/srdpt/shops.git

cd shops

You have now cloned the repository into this new directory which can be accessed using
your preferred text-editor or IDE.

https://github.com/srdpt/shops/tree/bTerm20Dev
https://github.com/srdpt/shops.git

4

2) Installing project dependencies

While still in the shops directory, you will now have to install
npm(Node Package Manager).

Once that is complete you can run

npm install

Inside of the shops directory in order to automatically install all of the necessary project
dependencies

3) Starting the application

You are now able to develop and test the application locally!

In order to start the application based on the current branch you are on run

npm start

This script will now launch the local application
Using your preferred web browser direct it to

http://localhost:3000/

The application will load and can be used!

For development purposes as you save changes to your local branch and this locally
served application will immediately update with your changes!

You are now all set to begin working on and using the application!

http://localhost:3000/

5

Project Structure
This application follows the React application project structure as seen in the figure below. This
following section will outline the project structure and define all subdirectories of the project.
Many of the individual files not listed here explicitly are commented in their respective files.

Shops Directory

Base directory for the Venice Shops source code. It contains two sub directories, ​public​ and
src​, and contains additional files

Shops Directory Files
● .gitignore: Tells Git which files and directories shouldn’t be pushed to the Git repository
● README.md: Introductory page displayed on the GitHub repository
● ReactReadMe.md: Introductory file to introduce React and essential scripts that come

packaged with React App
● debug.log: Logs launch errors from React-scripts
● package.json: Houses all project dependencies as well as all project metadata
● yarn.lock: Similarly helps handle project dependencies when using the Yarn package

manager(A substitute to npm based on user preference)

Public Directory

Directory for all publicly accessible files when application is launched. All components are fed
through index.js found inside the src directory. The application is then rendered using HTML
and CSS.

Public Files

● CNAME: holds domain name that directs to application when deployed
● favicon.ico: Small site icon to display on tabs inside of web browsers
● index.css: Basic CSS file declaring sizing of site content to take up the entire viewport
● Index.html: HTML page that renders whole application in browser
● manifest.json: Declarative file to be used in application deployment
● robots.txt: text file to instruct web robots (typically search engine robots) how to crawl

pages on the website

6

Src Directory
Directory contains all of the site's content and functionality throughout the subfolders. The files
included at this directory level are default files that come with React App.

Subdirectories of Src
● components: Directory for all developed application UI components. Files serve as both

controllers and views for their respective components.
● css: Directory for all project styling written in CSS
● data: Directory for all team’s JSON data that is locally queried when running the

application
● pages: Component Directory for each unique page the application displays
● static: Directory contains all image resources and fonts used throughout the application

Component Hierarchy
This hierarchy will define the structure of the components used in the application.

● Index.js
● App.js

● SiteHeader.js
○ Sidebar.js

{Components below loaded independently using React Router}
● MapPage.js

○ MapView.js
■ MapMarker.js

○ MapFilter.js
■ ShopTypeSelect.js

● NotFoundPage.js

7

Data Cleaning Methodologies
As referenced by page 19 of our report, our team identified the essential

attributes needed in order to define a single business and track that as well it’s address

over time. All of these attributes were included in every prior survey year. In this section

we will be describing our dataset in far greater detail and how we arrived with our final
product that can be found in our project files. To start, please review the Entity

Relationship Diagram (ERD) our team designed to understand the relationship of our
datasets.

As you can see above, Store Locations has only the parent_id as it’s primary key as this
ID is the unique identifier for each unique address ever surveyed in Venice. We

generated this simply using a simple incrementing sequence by one through the set to

ID every record. Then we also have Venice Shops, where the birth_id, parent_id, and
year_collected are the primary keys. Additionally the parent_id in Venice Shops is a

foreign key and references parent_id in Store Locations. Venice Shops has a one to
many relationship with Store Locations, meaning that every shop record in Venice

Shops has one location, but locations can have many shops. Having this relationship

allows the same shop to be tracked over time as well as the list of shops that have
inhabited a single location over time. Mentioned prior was our birth_id attribute, which is

the ID we use to identify every unique business in Venice. Finally an important attribute

8

to note in Venice Shops is images, which is stored as an array list of references to the
images associated with a shop record.

By sorting Venice Shops records by their parent_id in ascending order, in cases
of the same parent_id as well as other shop attributes being the same, particularly the

store_name, then we sequenced that shop to have it’s unique birth_id. This ID process

is far harder to generate using a simple sequence expression and required our team to
process manually as we worked with records having missing attributes. The problem

also arises from handling shops that were collected in the same year but had different
parent_id’s as there are cases of stores having multiple addresses and entrances that

were recorded. Processing the birth_id cannot be understated as it’s a far more

laborative process due to the many edge cases. Most of this is alleviated though by the
accuracy and completion of shop records data.

Our team worked to alleviate some of this work while processing the data
because in most cases past teams recorded incomplete records. The varying

inconsistency of records required more work on our team’s part. One case in particular

were records missing longitudinal data. To work through this we worked with SerenDPT
to acquire the dataset used in their iZioleti application which helps users navigate

through Venice using it’s unique addressing system to provide navigation. Our team
was provided a dataset that contained the longitudinal data for a myriad of addresses in

the city. This helped us complete these records and informed us when designing our

Store Locations dataset as we structured it similarly so that it has more applications
outside of our project.

9

While these methodologies aided us in completing Venice Shops and Store
Locations, our team also compiled the media data of all eight project teams collected in

their surveys. Since images couldn’t be directly stored with our sets due to their
structure and later implementation as JSON files. We have designed a naming scheme

for these images as seen below.

This scheme can easily identify the associate record to reference and allows for records

to hold multiple images if necessary. The files themselves are stored within the team’s
project files hosted on Google Drive but they should ultimately be hosted using another

provider in order to be served to the team’s application deliverable.

10

Recommendations
As referenced by page 32 of our report, our project and it’s deliverables are only

the beginning. Concluding development of the initial application, the groundwork for

future features and optimizations has been set. This section covers the optimizations

and features our team believes should be the focus of future teams.

Before beginning to add new features, looking at the status of the application at
the conclusion of our project, we first feel that the map marker generation function

should be optimized and leverage using pre-stored arrays of values rather than

rebuilding the same array on every change of the filter options. This will exponentially
increase site performance which is incredibly important on the live production site.

Additionally, updating the datasets to handle the image references from our media
folders will be incredibly important when looking towards future feature implementations.

Looking at new innovations to the application, we firstly suggest team’s
implement displaying the images for the selected marker in the popup. Our team

unfortunately was unable to implement this feature but we were able to conduct
research on fantastic libraries that would help us. We found react widget’s image

carousel component to be the perfect container for displaying images for each shop

record as it can handle one or many images linked to a record.

An important aspect of the application is validating the accuracy of the data being
presented. In many cases records are incomplete or even inaccurate. Giving users a

means to directly impact our database is incredibly useful by providing them the tools to

provide feedback and more importantly their stories. We believe the inclusion of a form
feature to request the application to add or modify attributes of a specific record would

be incredibly useful when reevaluating the data. Submitting these changes would
absolutely need to be approved and surveyed manually by the application admins

before permanently being included. An extension to this is reviving a feature some past

teams have attempted to capture in their surveys are oral histories from users.

11

Gathering anecdotes on specific shops, locations, or streets can be incredibly insightful
and serve as a means to cross reference more archival data through comparison.

While data validation is a key feature to focus on in order to further increase the

accuracy of the team’s existing datasets, it’s more important now than ever to ensure

the data collection methodologies are strong so that once team’s can physically survey
Venice they can gather as much data as possible on the impact of COVID-19 and

establish the start of studying the trends of data over the next few years. Accomplishing
this requires improving the Input App developed by SerenDPT. To give some context

the datasets we have produced are hosted on the CKData site that serenDPT also

hosts. This is the application that our platform fetches data from. Doing this means the
application pulls from the live, modifiable database. Within the CKData app every

dataset hosted has access to an internal application called Input App. Users with
access to this application can upload and write data to the desired dataset, but in its

current state it lacks any adaptability to be able to write to our newly uploaded dataset.

We strongly encourage following teams to prioritize developing this application further
so that when surveys are able to be conducted in person again it can be a far more

efficient process. Additionally investigating the potential for the application to be publicly
accessible and have an approval process similar to the data validation feature

mentioned prior can enable crowdsourcing data collection which can prove to be a

powerful tool when looking to conduct analysis.

While these features are focused on improving the methods for working with data
collected by the Venice Project Center, the opportunity to expand the sources of data is

now available through our team’s application. We encourage teams to work towards

getting in contact with the Venice Chamber of Commerce in hopes to receive the
datasets they track of the city. Their structures and attributes may vary but it would be

an incredible supplement to the data validation features by allowing users to compare
Venice Project Center data with that from the Chamber of Commerce. Further sources

can utilize Leaflet’s map layer features to include ways to visualize data in the city by

looking to incorporate data from census tracts of the city in order to visualize the state of

12

the population and find how that relates to shop data collected by the Venice Project
Center. Similarly displaying Airbnb data in the application can prove to be useful in

similar contexts to census tracts, both ways help visualize the areas most residents and
tourists inhabit.

We also want to discuss a feature our team originally wanted to incorporate but
unfortunately was out of the scope of our project and that was generating dynamic

statistical graphs for the data sets in order to conduct data analysis. We encourage
teams to utilize the D3.js library when fetching data from our database server on the

CKData application so that they can conduct dynamic analysis over time in order to

generate visuals based on hypotheses the team generates. These can be investigated
at later points in time as more data is added to the database and is thus updating these

graphics.

