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Abstract 
The next-generation sequencing technologies are pouring big data and pushing the 

frontier of life sciences toward new territories that were never imagined before. 

However, such big data impose great computational challenges to statistical analysis 

of these data. It is important to utilize Graphics Processing Unit (GPU)’s large 

throughput and massive parallelism to process large data with extremely high 

efficiency. In this project we develop GPU based tools to address the statistical 

computation challenges in analyzing the next-generation sequencing data. Our work 

contains three components. First, we accelerate general statistical analysis in R, a 

generic environment for statistical computation, which is often limited to using 

Central Processing Unit (CPU) for computations. After studying various approaches 

of using GPU in R, we adopted the best solution to combine R with GPU. An R 

package is created to shift a set of critical R functions onto GPU computation. It 

allows users to run R code with GPU extensions that enable much faster large-data 

computation. Second, we address a set of specific computation-intensive problems in 

simulating genetic variants in whole-genome sequencing data. A GPU-based R 

package is created to facilitate some typical simulations in genetic association studies. 

Third, we break the CPU limitation of Variant Tools, a popular toolkit for the 

next-gen sequencing analysis, by extending its functionality to more the powerful 

parallel computation of GPU. For this purpose an R-function interface is created so 

that we can connect Variant Tools’ sophisticated data processing and annotation to the 

powerful GPU-accelerated data analysis. The work of this project is valuable to 

whole-genome sequencing studies, as well as to general statistical computational need. 

It is part of the research funded to the WPI Department of Mathematical Sciences by 

Major Research Instrumentation Program of National Science Foundation. The R 

packages and the interfacing code as well as their documentation will be available to 

view and download at users.wpi.edu/~zheyangwu/.   
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1 Background 

1.1 Graphics Processing Unit (GPU) 

First introduced in 1991 with the technical definition of "a single chip processor with 

integrated transform, lighting, triangle setup/clipping, and rendering engines that is 

capable of processing a minimum of 10 million polygons per second" [1], GPU has 

greatly changed how we interact and experience with modern computers. Before GPU 

was invented, transformation from numbers in computer to pixels on screen is done 

on Central Processing Unit (CPU), and CPU computed each pixel in series, which was 

very inefficient. GPU, though similar to CPU, is designed specifically for performing 

the complex mathematical and geometric calculations that are necessary for graphics 

rendering. [2] 

Though GPUs were originally used for and still are most commonly seen in 2D/3D 

graphics rendering, now their capabilities are being utilized more broadly to 

accelerate computational workloads in areas such as financial modeling, cutting-edge 

scientific research, and oil and gas exploration [3]. 

 

1.2 General-Purpose Computing on Graphics Processing Units (GPGPU) 

In 2006, NVIDIA GeForce 8800 mapped separate graphics stage to a unified array of 

processors. The logical graphics pipeline for GeForce 8800 is a recirculating path that 

visits the processors three times, and there was much fixed-function graphics logic 

between visits [7]. This design is illustrated in Figure 1. It allowed dynamic 

partitioning of the array to vertex shading, geometry processing, and pixel processing, 

which enabled massive parallelism. This marked the birth of GPGPU [4]. GPGPU 

refers to the use of GPU for general purpose such as mathematical and scientific 

computing, instead of simply for graphics rendering. 
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Figure 1. Unified Array of Processors for NVIDIA GeForce 8800 [4] 

After GeForce 8800 marked the beginning of GPGPU, GPGPU still faced many 

constraints, such as working with the corner cases of the graphics API, limited texture 

size/dimension, limited outputs, etc. Many steps have taken to reduce the constraints: 

Designing high-efficiency floating-point and integer processors; Exploiting data 

parallelism by having large number of processors; Introducing shader processors fully 

programmable with large instruction cache, instruction memory, and instruction 

control logic; Reducing the cost of hardware by having multiple shader processors to 

share their cache and control logic; Adding memory load/store instructions with 

random byte addressing capability; Developing CUDA C/C++ compiler, libraries, and 

runtime software models [4]. After these steps were taken, more benefits of GPGPU 

have shown when compared with CPU computing and GPGPU has then become a 

popular topic of research. GPGPU takes great advantage of GPU’s data-parallelism 

and large throughput, and is most commonly used in fields that benefit from large 

data-parallelism, such as data mining, statistics and financial analytics. 

 

1.3 CUDA (Compute Unified Device Architecture) 

CUDA is the software development platform developed by NVIDIA for general 

purpose computing on NVIDIA GPUs. It is a parallel computing extensions to many 
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popular languages and a powerful drop-in accelerated libraries to turn key 

applications and cloud based compute appliances. It is widely used by researchers 

since its introduction in 2006 [5]. It is used across many domains: Bioinformatics, 

computational chemistry, computational fluid dynamics, computational structural 

mechanics, data science, defense, etc [6]. It has shown great success in demonstrating 

its massive computing power in those fields. As we can see from Figure 2 and Figure 

3, there is a large performance benefit by using a CUDA-enabled GPU in 

Bioinformatics and Life Sciences. 

 

Figure 2. Accelerating HMMER using GPUs Scalable Informatics [6] 
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Figure 3. MUMmerGPU: High-through DNA Sequence Alignment Using GPUs [6] 

 

1.4 Big Data from the Next Generation Sequencing 

The next-generation deep-sequencing technology has led to exponentially increasing 

genetic data with a significantly reduced cost. Such data provide unprecedentedly rich 

information on complex genetic system, but also impose great challenges on data 

processing and analysis. We are confronting the issue of one-thousand-dollar genome 

but hundred-thousand-dollar interpretation [30]. To address this issue, both 

methodology innovation and computational power are highly demanded, especially in 

genome-wide association studies (GWAS) that aim to detect causative genetic factors 

for common human diseases from millions of genetic variations, such as the single 

nucleoid polymorphisms (SNPs). The power of the GPU computation is a key to 

address the heavy computational need. Computation for many analyses of the 

next-generation sequencing data is highly parallel in nature because the huge amount 

of genetic association tests can be independently calculated by an identical procedure. 

Literature have shown that the similar problems can be implemented to exploit GPU 

computation that increases the speed 10 to 100 times faster than a comparable CPU 

[31].  
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1.5 R 

R is a software environment and language for statistical computations. It is free 

and highly extensible. The R software contains a base program to provide basic 

program functionality, and smaller specialized program modules called packages can 

be added on top of it. The R environment includes [11]: 

• “An effective data handling and storage facility”, 

• “A suite of operators for calculations on arrays, in particular 

matrices”, 

• “A large, coherent, integrated collection of intermediate tools for 

data analysis”, 

• “Graphical facilities for data analysis and display either on-screen or 

on hardcopy”, and 

• “A well-developed, simple and effective programming language 

which includes conditionals, loops, user-defined recursive functions and input 

and output facilities”.  

R is the most popular open source statistical environment in the biomedical research 

community at the moment [16]. 

 

1.6 Variant Tools 

Variant Tools is an open-source software tool for the manipulation, annotation, 

selection, and analysis of variants in the context of next-gen sequencing analysis [29]. 

It is project-based with a flexible command line interface. With more than 20 

commands and more than 200 registered users, it is certainly one of the most powerful 

and widely used toolkit in genome sequencing analysis [8]. 

Variant Tools contains commands to call variants, import variants, export variants, 
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annotate variants, reference genome, conduct association analysis, etc. It is a platform 

under which we can analyze our data using methods, compare and analyze results, 

and re-compare and re-analyze using different methods or annotation sources, based 

on the information obtained from previous analyses [29]. 
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2 Problem Statement 

R, the core of Variant Tools’ association analysis framework to support customized 

testing, is widely used in statistics and it is playing a very important role in managing 

biological big data. Most of R functions and libraries run on CPU. However, the 

performance benefit in using GPU for computing started to shine in recent years. R, as 

a tool that relies heavily on computation, has hardly benefited from the emerging of 

GPGPU since it is not highly extensible with GPGPU. CUDA, the most widely used 

development kit for GPGPU, as well as other common development platforms for 

GPGPU, are not highly compatible with R. In order to benefit from both the 

tremendous computing power of GPU and the massive statistical analysis power 

presented by R, it is necessary to come up with a solution to run R conveniently 

together with C/C++, the main development language for GPGPU programming 

platforms such as CUDA. 

In order to run R with C/C++ conveniently while maximizing the performance 

advantage, a simple integration between R and C/C++ will not be enough. Our 

integration needs to fit the parallelism design concept of GPU while enabling users to 

keep as much code in R as possible since we rely extensively on R libraries for 

statistical analysis. Therefore, the ultimate solution needs to be both R-friendly and 

parallelism-friendly. This requires us to dive deep and study the basic concepts of 

GPGPU, learn how to program using CUDA, how to write R code, how to 

communicate between R and C/C++ and how to create a product that is user-friendly 

for R and Variant Tools users. 
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3 Design Considerations 

3.1 Perspective from GPGPU Standpoint 

GPU is the master of parallel programing, since it was originally designed for highly 

parallel tasks like image rendering. As we can see in Figure 4, GPU possesses much 

more processing units than CPU. It possesses independent vertices and fragments. 

Temporary registers are zeroed; there are no shared or static data among registers and 

there are no read-modify-write buffers. In short, there is no communication between 

vertices or fragments [9]. Each GPU's processing unit is based on the traditional core 

design, can do integer/floating point arithmetic, logical operations and many other 

operations. From hardware design point of view, GPU is a complete multi-threaded 

processing design, with complex pipeline platform and full power to process tasks in 

each thread. 

 

Figure 4. GPU Design vs. CPU Design [9] 

By the design concept of GPU, GPU is more suitable for data-parallel processing. 

GPU can handle lots of data on which the same computation is being executed, with 

no dependencies between data elements in each step in the computation. 

Therefore, our extension between C/C++ and R must be dividing large data into 

smaller, independent chunks to process in parallel instead of dividing a huge task into 

smaller, dependent subtasks. For instance, wrapping our R core in a thread and 

dividing it into sub-processes won’t benefit from GPU’s large throughput; 
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pre-processing our data into smaller parts and running a CUDA call separately on 

each segment of data will. 

 

3.2 Perspective from CUDA Standpoint 

CUDA is a parallel computing platform and programming model for using NVIDIA 

GPUs for general purpose computing. The organization of GPU explains the structure 

of CUDA programs. The main function is executed by a single thread on the CPU. 

Kernels, which consist of many lightweight threads, are executed by functions on the 

host. Kernel launches change control of the program from CPU to GPU, and the CPU 

pauses while the GPU is running. After the kernel finishes executing, the CPU 

resumes running the program [10]. 

NVCC is both a preprocessor and a compiler for CUDA. When it encounters CUDA 

code, NVCC automatically compiles the code into GPU executable code, which 

means generating code to call the CUDA Driver. If it encounters Host C/C++ code, it 

will call the platform’s C/C++ compiler to compile, for example Visual Studio’s own 

Microsoft C/C++ Compiler. Then it will call Linker to put together all compiled 

modules, along with CUDA libraries and standard C/C++ libraries to become the 

ultimate CUDA Application. Therefore, NVCC mimics the behavior of the GCC/G++ 

compiler. This process is demonstrated in Figure 5. 

 

Figure 5. Design of CUDA [32] 
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As shown in Figure 6, while executing programs, CUDA lets each kernel in the host 

to be executed in a grid in the GPU. Every grid contains multiple blocks, and every 

block can contain multiple threads. 

 

Figure 6. How CUDA Executes Programs [32] 

The nature of CUDA limits our main coding languages for GPGPU computation to be 

C/C++. Also, the design of CUDA made it not possible for dividing an R thread into 

several sub-processes. Dividing data into smaller chucks and process them in parallel 

has to happen at a low level, and at an early stage. A wrapper around R core does not 

fit into CUDA’s design concept. 

 

3.3 Perspective from R and Variant Tools 

R is a powerful language and environment for statistical analysis, including both 

computing and graphics. With many built-in and download packages and libraries, R 

provides a wide variety of statistical (linear and nonlinear modeling, classical 

statistical tests, time-series analysis, classification, clustering, etc.) and graphical 

techniques, and is highly extensible [11]. We certainly want to utilize the benefits of 

using R in our statistical analysis. In other words, we want to write code in R as much 

as possible when the tradeoff in performance does not go beyond a threshold. 
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Although the CUDA programming interface is vector oriented and fits perfectly with 

the R language paradigm [19], R, as a standalone integrated suite, cannot be 

integrated with CUDA unless we replace some existing R methods with methods 

partly written for CUDA computations. 

As for Variant Tools, we only concern about its R Testing interface. Its interface to R 

on the R core, and it is highly extensible and flexible. Therefore, as long as our 

extension runs with R, it will run on Variant Tools. 
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4 Procedure 

During the course of this project, I first familiarized myself with CUDA environment 

and practiced programing in CUDA. Then I studied the source code of Variant Tools 

to see from where I can build the extension. Next, I did research on interfacing 

between R and C/C++ as well as how to write CUDA code for R functions. Then I 

dived deep into studying and testing existing CUDA related packages for R. After I 

finished studying CUDA R package written by others, I tried to come up with my own 

CUDA package for R, along with tests to show their performance. 

 

4.1 CUDA Programming 

4.1.1 How CUDA Program Works 

CUDA programs execute on two different processing units: the host (CPU) and the 

device (GPU). The host relies on traditional random access memory (RAM) and the 

device typically uses Graphical Double Data Rate (GDDR) RAM, which is designed 

for use on graphics cards. Since the device can only access GDDR RAM and the host 

can only access the traditional RAM, we need to call “special” functions in CUDA 

that transfers data between the two. These functions must be launched on the host. 

Examples of such functions include cudaMalloc, very is similar to malloc in C, and 

cudaMemcpy, which transfers data between the host and the device [14]. 

Typically a CUDA program begins with initializing variables and allocating memory, 

followed by inputting data on the host. Then, these data are copied to the device using 

the cudaMemcpyHostToDevice function. Next, kernels, which are the functions that run 

on the device, will be launched. Kernels contain all the code to do the 

computations/calculations that we want to run on the device. Information stored in 

memory on the device will remain for the duration of the program; it is preserved 

between kernel launches. After kernels have run, data are copied back from the device 

to the host using cudaMemcpyDeviceToHost [14]. 
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4.1.2 An Example of CUDA Program 

Here is an example for using CUDA to compute sum of cubes. 

First, we start with writing sum_cubes1.cu.  

#include <stdio.h> 
#include <stdlib.h> 
#include <cuda_runtime.h> 
 
#define MAX_SIZE 1048576 
 
int data[MAX_SIZE]; 
 
// Generates random numbers from 0-9 
void generateNumbers(int *number, int size) { 
    for(int i = 0; i < size; i++) { 
        number[i] = rand() % 10; 
    } 
} 
 
// Kernel function to compute the sum of cubes 
__global__ static void sumOfCubes(int *num, int *result, 
                                    clock_t *time) 
{ 
    int sum = 0; 
    clock_t start = clock(); 
    for(int i = 0; i < MAX_SIZE; i++) { 
        sum += num[i] * num[i] * num[i]; 
    } 
     
    *result = sum; 
    *time = clock() - start; 
} 
 
int main(int argc, char **argv) { 
    int *gpudata, *result; 
    clock_t *time; 
     
    // generate the input array on the host 
    generateNumbers(data, MAX_SIZE); 
     
    // allocate GPU memory 
    cudaMalloc((void**) &gpudata, sizeof(int) * MAX_SIZE); 
    cudaMalloc((void**) &result, sizeof(int)); 
    cudaMalloc((void**) &time, sizeof(clock_t)); 
     
 // transfer the input array to the GPU 
    cudaMemcpy(gpudata, data, sizeof(int) * MAX_SIZE, 
               cudaMemcpyHostToDevice); 
     
    // launch the kernel 
    sumOfCubes<<<1, 1, 0>>>(gpudata, result, time); 
     
    int sum; 
    clock_t time_used; 
     
    // copy back the result to the CPU 
    cudaMemcpy(&sum, result, sizeof(int), cudaMemcpyDeviceToHost); 
    cudaMemcpy(&time_used, time, sizeof(clock_t), 
            cudaMemcpyDeviceToHost); 
     
    // free memory on GPU 



	   14	  

    cudaFree(gpudata); 
    cudaFree(result); 
    cudaFree(time); 
     
    printf("The sum of squares is %d. Total execution time: %d\n", sum, time_used); 
    return 0; 
} 

In the above code, sumOfCubes() is the simple kernel function to calculate the sum of 

cubes. main() is the function for the host to do all the pre-process and post-process for 

CUDA. cudaMalloc is the function for allocating bytes of linear memory on the device 

and returns in a pointer to the allocated memory, like malloc in C. cudaMemcpy copies 

bytes from source to destination, where kind is one of cudaMemcpyHostToHost, 

cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice, 

which specifies the direction of the copy [14]. 

However, this is rather inefficient since we only have one thread in total, and the total 

elapsed GPU clock time is 108079606. So we can make improvements by adding 

#define THREAD_NUM 256. We want to have 256 threads to process the data in parallel. Then 

we change the kernel function to be: 

__global__ static void sumOfCubes(int *num, int* result, 
                                    clock_t *time) 
{ 
    const int tid = threadIdx.x; 
    const int size = MAX_SIZE / THREAD_NUM; 
    int sum = 0; 
    clock_t start; 
    if(tid == 0) start = clock(); 
    for(int i = tid * size; i < (tid + 1) * size; i++) { 
        sum += num[i] * num[i] * num[i]; 
    } 
     
    result[tid] = sum; 
    if(tid == 0) *time = clock() - start; 
} 

In the above code, threadIdx is the CUDA built-in parameter representing the thread 

number of the current thread. The total number of threads is 256, so there are 256 

threads processing in parallel, each represented by its thread number. In the main 

function, we change sumOfCubes<<<1, 1, 0>>>(gpudata, result, time); to 

sumOfCubes<<<1, THREAD_NUM, 0>>>(gpudata, result, time);. This ran more 

efficiently than the previous program with a total elapsed GPU clock time of 4476286, 

which is a lot less than 108079606. 
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To achieve even better parallelism, we can define multiple blocks in each grid. Doing 

so we are fully utilizing the design of CUDA, by diving our data into grids, then into 

blocks, and then into threads [13]. Instead we have sumOfCubes<<<1, THREAD_NUM, 

BLOCK_NUM>>>(gpudata, result, time); in the main function to launch the kernels. It 

will be even more efficient than the second version shown above. 

 

4.2 Variant Tools Source Code 

After carefully studying the source code of Variant Tools, I found out most of its 

R-Testing related content is written in Python, and the main Python classes for 

parsing R-Testing related arguments and running R tests are called RTest and SKAT. 

Both of them are in RTester.py. Variant Tools simply parses the arguments that we 

have passed in, helps generating the .R source file, and then as we can see in Figure 7, 

sends it as a command using runCommand() function in Python. This suggests that 

Variant Tools’ R-Testing related content solely depends on the R environment 

installed, so as long as we write our own package and extend R with it, we will be 

able to utilize it in Variant Tools. This R interfacing mechanism is flexible because 

the RTest method of vtools associate will have no control over what are 

implemented inside the R program or what packages we have installed on top of R. 
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Figure 7. Code from RTest class in RTester.py 

 

4.3 Interfacing between R and C/C++ 

There are two simplest ways of interfacing between C/C++ and R: Wrapping C/C++ 

code in an R wrapper, or running R code as a command in C/C++. 

The following is one of the most straightforward approaches to wrap C code in R. All 

we need to do is to use .C(), .Call() or .External() function provided by R to extend R 

with compiled C code. First we write our C code, then we compile the C code by 

typing R CMD SHLIB <file_name.c> in the command prompt. A .so object file will then 

be generated, and we will use dyn.load(<file_name.so>) in R to load the object file. 

After loading the .so shared object file in R, we call the C function that we have 

written using .C(), .Call() or .External(). If we use .C(), the C function we are calling 

should be of return type void, which means the compiled code should not return 

anything except through its arguments [15]. 

The following code, as shown in Figure 8 and Figure 9, is an example to do simple 

addition. add.c is the C file we use to do a simple addition of two numbers. Then we 
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use R CMD SHLIB add.c to generate add.so. After add.so is generated, all we need to do 

is to source add.r in R and type add(<number1>, <number2>), and their sum will be 

returned. The result in shown in Figure 10. 

 

Figure 8. Source Code of add.c [33] 

 

Figure 9. Source code of add.r [33] 

 

Figure 10. Result Shown in R terminal 

To run R script in C, we can use the system() call in C to run the R script as a 

command. For example, if we have a .R source file called “calculate.R”, then we can 

use system("R CMD BATCH calculate.R"); in C to run it. 

In addition to the two straightforward approaches mentioned above, we may also use 

the many power libraries for interfacing between R and C/C++. One of them is Rcpp, 

it provides a powerful API on top of R, allowing direct interchange of rich R objects 

between R and C++. Rcpp modules provide easy extensibility using declarations and 

Rcpp attributes greatly facilitates code integration. It utilizes .Call() interface provided 

by R and build the whole package on top of it [16]. 
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Another library is RInside. RInside wraps the existing R embedding API in an 

easy-to-use C++ class, thus makes it much easier to embed R in C++ code on Linux, 

OS X, or Windows [17]. The code in Figure 11 demonstrates how to display “Hello, 

word!” in R from C++. 

 

Figure 11. An RInside Example Code [17] 

 

4.4 Interfacing between R and CUDA 

In order to communicate and exchange data between R and CUDA, the simplest way 

is to link CUDA code with C or C++ code, then use C/C++ to interface with R. 

Simply convert the C functions which does the computation to CUDA functions, then 

use nvcc to compile it instead of using R CMD SHLIB. nvcc will generate the .so file, and 

you can use the same approach mentioned in Section 4.3 to wrap the .so file in R. 

However, most of the popular R function implementations involve no parallelism and 

they can only be executed as separate instances on multicore or cluster hardware for 

large data-parallel analysis tasks. I have failed to find a way to simply wrap the R core 

in C and divide the process into parallel. Therefore, it is necessary to replace existing 

R functions with ones specifically written for CUDA in order to use CUDA for 
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computation. Rewriting functions in R and using CUDA to do the parts that can 

benefit from parallelism is unavoidable. 

While we can always write our own R wrapper and CUDA code, there are R libraries 

that have already been developed using CUDA. They contain many useful R routines. 

A list of these libraries can be seen on 

http://cran.r-project.org/web/views/HighPerformanceComputing.html under section 

“Parallel computing: GPUs”. 

One of the most popular packages among them is gputools, developed by Josh 

Buckner, Mark Seligman and Justin Wilson at the University of Michigan [18]. It 

moves frequently used R functions in our work to run on GPU by using CUDA. It 

contains functions such as gpuCor, gpuCrossprod, gpuDist, gpuGlm, gpuGranger, 

gpuLm, etc. Its performance versus CPU is extremely impressive, as we can see in 

Figure 12. Figure 12 shows the correlation between R’s granger.test in package 

'MSBVAR' and gputools’ gpuGranger function, while the granger.test is running on a 

single CPU thread on Intel Core i7 920 and gputools is running on a GTX 260 GPU. 

As we can see, as the number of total points tested increases, the runtime of 

granger.test grows exponentially but gpuGranger does not. 

 

Figure 12. Granger Times Performance Comparison [18] 
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5 Results 

After conducting an extensive amount of research and experiments, I found eight 

good R libraries for CUDA. I installed them successfully and used timed tests to 

analyze their performance. I have also developed my own CUDA extension for R 

focusing on simulations, called GRRNG (GPU-R Random Number Generator). A 

series of performance tests were also conducted to show the time efficiency of 

functions in my package. On the other hand, I developed an interface package called 

GpuRInterface to make calling functions in CUDA extensions easier. I used both of 

my packages to improve the performance of certain functions in the R Genetic Data 

Simulation library provided by Professor Wu, as well as to reduce the total runtime of 

R Testing commands in Variant Tools. 

 

5.1 CUDA Extensions for R 

Here we provide a list of R-CUDA libraries and functions as a reference for R users to 

adapt the GPU power into their own R script, after carefully selecting from all 

available R libraries for CUDA. They are: 

l gputools [20] 
l HiPLARM [21] 
l Rpud [22] 
l Magma [23] 
l gcbd [24] 
l WideLM [25] 
l cudaBayesreg [26] 
l permGPU [27] 

Methods contained in these packages are documented in Appendix I. They can 

replace existing R functions that use CPU for computation. 

 

5.2 Performance Advantage of Using CUDA Extensions for R 
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In order to show the efficiency of GPGPU, I tested several functions provided by the 

libraries listed in Section 5.1 using a personal computer, with Intel Core i7 4770k as 

its CPU and NVIDIA GeForce GTX770 as its GPU. 

 

5.2.1 gpuMatMult() versus %*% 

I used a sample program, as shown below in Figure 13, to test the performance of 

gpuMatMult() in gputools with %*% in R. 

 

Figure 13. Code in R to compare the performance of gpuMatMult() and %*% [28] 

Add the result is the following:  

 

Figure 14. Runtime Comparison between %*% (CPU) and gpuMatMult() (GPU) 
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As we can see from Figure 14, when our data size is relatively small, gpuMatMult() 

runs slightly slower than %*%, but both take a very short time to complete the task. 

This has to do with the mechanism of having to copy data between the host and the 

device both before and after the computation. When data size is small, it takes more 

time to do memory copying than to do the actual computation. However, when the 

matrix lets larger, the advantage of GPGPU begins to show. Eventually, when the 

matrix size is very big, gpuMatMult() runs much faster than %*%. 

 

5.2.2 rpuDist() versus dist() 

rpuDist() is the function for calculating matrix distance in the package rpud. In order 

to compare its performance with dist() in R, I ran the following code in R: 

library(rpud) 
test.data <- function(dim, num, seed = 17) { 
    set.seed(seed) 
    matrix(rnorm(dim * num), nrow = num) 
} 
system.time(dist(m)) 
system.time(rpuDist(m)) 

And the runtime comparison is shown below in Figure 15. 

 

Figure 15. Runtime Comparison between dist() and rpuDist() 
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As we can see from Figure 15, rpuDist(), which uses CUDA to calculate distance 

matrix, performs much better than R’s built-in function dist(), which uses CPU. It is 

especially noticeable that the performance of rpuDist() is more than 100 times better 

than the performance of dist() when the dimension of the matrix became as large as 

18000. 

 

5.3 GRRNG (GPU-R Random Number Generator) Package 

In addition to installing and testing CUDA extensions developed by others, I also 

implemented my own CUDA extension for R. GRRNG is developed based on 

libraries cuRAND and THRUST. cuRAND is a C library that uses CUDA for 

generating high-quality pseudorandom and quasirandom numbers efficiently [35]. 

THRUST is a C++ library that provides a rich collection of data parallel algorithms 

such as scan, sort, and some useful data structure for parallelism [34]. 

GRRNG contains the following R functions: 

l gpuRnorm – GPU accelerated rnorm() function, for generating random numbers 
from normal distribution 

l gpuRlnorm – GPU accelerated rlnorm() function, for generating random 
numbers from log-normal distribution 

l gpuRpois – GPU accelerated rpois() function, for generating random numbers 
from Poisson distribution 

l gpuRunif – GPU accelerated runif() function, for generating random numbers 
from uniform distribution 

l gpuRbinom – GPU accelerated rbinom() function, for generating a sequence of 
random integers from a binomial distribution 

l gpuRsample – GPU accelerated sample() function for uniformly distributed 
probability 

l gpuRsort – GPU accelerated sort() function 
l gpuSetSeed – Set the random seed for GPU 

The package GRRNG contains the source code for making CUDA calls in C/C++, the 

wrapper functions in R and a Makefile for generating the .so shared library. My code 
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for gpuRnorm() is shown in Appendix II as an example. 

In statistics, we often need massive amount of randomly generated data for us to 

conduct test on, and simulation is almost always necessary. In 2006 September issue 

of the Journal of the American Statistical Association, there are 25 theory and 

methods articles, 16 of them used simulation [36]. The functions provided by 

GRRNG are essential for using CUDA in R simulation, and we’ll discuss their 

advantage in performance when compared to their CPU version in Section 5.4. 

Installation for GRRNG is easy. If you have a CUDA supported GPU with CUDA 

properly installed on your machine, simply download GRRNG_<version>.tar.gz from 

http://users.wpi.edu/~zheyangwu/, set the basic environment variables, and run R CMD 

INSTALL GRRNG_<version>.tar.gz. Afterwards, all you need to do is to include 

library(GRRNG) in your R scripts. 

 

5.4 Performance Advantage of Using GRRNG 

I tested a few functions in my GRRNG package with different size of data and 

compared the performance with their corresponding CPU-based R functions. Here I 

chose three of them as examples to demonstrate their performance. 

 

5.4.1 gpuRnorm() versus rnorm() 

rnorm(n, mean = 0, sd = 1) is the function for generating n random numbers from a 

normal distribution with the given mean and standard deviation. gpuRnorm() is the 

version of rnorm() in my GRRNG, which uses C library cuRAND to make CUDA 

calls to  accelerate the random number generation process. I called both rnorm() and 

gpuRnorm() with an increasing n, and the result is shown in Figure 16. 
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Figure 16. Runtime Comparison between rnorm() and gpuRnorm() 
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Figure 17. Runtime Comparison between runif() and gpuRunif() 

 

5.4.3 gpuRsort() and sort() 

gpuRsort() is the GPU accelerated version of sort() in R. It is build based on the sort() 

call in the THRUST library. I ran both functions on different sets of random numbers 
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Figure 18. We can see that gpuSort() also outperforms sort() on a large data set. 

 

 

Figure 18. Runtime Comparison between sort() and gpurRsort() 
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5.5 GpuRInterface Package 

I also wrote a simple interface package in R to make calling functions in CUDA 

extensions easier. This interface is essentially a parser that parses function name as an 

argument, and calls the GPU version of that function as long as the related CUDA 

extension is installed. For example, if we want to call the GPU version of the rnorm() 

function with n=10000, all you need to do is to import GpuRInterface using 

library(GpuRInterface) and call gpuCallFunc(“rnorm”, 10000), then GpuRInterface 

will call gpuRnorm(10000) in the GRRNG package for you and return the result. This 

interface helps users call functions in the installed CUDA extensions easily without 

having to remember the corresponding functions names in those extensions. This 

package will also be available to download on http://users.wpi.edu/~zheyangwu/. 

 

5.6 GRGDS (GPU-R Genetic Data Simulator) Package 

I adapted some functions in the R Genetic Data Simulation library provided by 

Professor Wu using functions in GRRNG. These functions are wrapped up to build a 

new R package GRGDS (GPU-R Genetic Data Simulator). For example, in 

Simulation_Quanti_BinaryTraits.R, I improved the function genYMarks() by 

changing the line epsilon <- rnorm(numb, sd=errorStd) to epsilon <- 

gpuCallFunc(“rnorm”, numb, sd=errorStd), which calls gpuRnorm(numb, sd=errorStd). 

Then I tested genYMark() on a 100000000*10 matrix and the result is shown below: 

> system.time(genYMarks(A, B)) 
   user  system elapsed  
  0.992   0.476   1.468  
> system.time(genYMarks2(A, B)) 
   user  system elapsed  
  6.705   0.358   7.058 

genYMarks() uses gpuRnorm() and genYMarks2() is the original version. As we can 

see, the improved version of genYMarks() runs almost seven times faster than the 

original version. This implies that the Simulations Package can be largely benefited 

from GRRNG as well as other CUDA based R extensions. The R package is built up 
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following the standard procedure at http://cran.r-project.org/doc/manuals/R-exts.html. 

 

5.7 Interface between Variant Tools and GPU-based R function 

We want an interface that connects the functionality of Variant Tools (e.g., data 

management and annotation) to the GPU-powered R functions for realizing the 

computational needs in genetic data analysis (e.g., the association tests). We call this 

interface R function gpuCallRFunc, for which we demonstrate the coding idea as 

below: 

library(GpuRInterface) 
# BEGINCONF 
# [sample.size] 
# [result] 
# n=2 
# columns=2 
# name=beta0, beta1 
# column_name=estimate, p.value 
# ENDCONF 
gpuCallRFunc = function (dat, phenotype.name, family = "gaussian", 
funcName=”glm”, ...) { 
  y = dat@Y[, phenotype.name] 
  x = apply(dat@X, 1, function(i) sum(i, na.rm=T)) 
  ... 
  m = call(funcName, y~x, family=family) 
  ... 
  return (list(sample.size=length(y), result=summary(m)$coef[,c(1,4)])) 
} 

The corresponding Variant Tools command calling this R interface is something like 

vtools associate rare status -m 'RTest gpuCallRFunc.R --name demo --phenotype.name 

"age" --family "binomial"' --... -j8 -g variant.chr --to_db demo > demo.txt. Here ... 

represents the options required by the specific engine function that drives the specific 

data analysis procedure.  

The interface is to be further complete and tested. And the final version will be 

available online at users.wpi.edu/~zheyangwu/. We have tested some examples (not 

provided here) and did significantly improve the computation performance for Variant 

Tools by replacing CPU based R function by the corresponding GPU accelerated R 

function. 
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5.8 Analysis of performance of GPGPU 

As we can see from the runtime comparison between functions implemented using 

GPGPU and functions that do not, GPGPU’s parallel data processing is very efficient 

especially when is data set is large. However, many times we count on libraries 

written by others and most of these libraries are not GPGPU oriented. So, it is hard to 

convert our code to use GPGPU as much as we can. But the advantages of fully 

utilizing the power of GPGPU are rather obvious. Therefore, even though the shifting 

from using CPU for computing large data to using GPU for these computations will 

be not an easy process, it is still worth our effort. 
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6 Future Work 

The GRRNG library contains eight functions in total at the moment, but there are 

many more that can be added to it. Here is a short list of R functions that are related to 

simulation that can be converted to their GPU version [36]: 

• rbeta (for the beta random variable) 
• rexp (for the exponential random variable) 
• rf (for the F random variable) 
• rgamma (for the gamma random variable) 
• rgeom (for the geometric random variable) 
• rhyper (for the hypergeometric random variable) 
• rlogis (for the logistic random variable) 
• rmvbin (for the multivariate binary random variable) 
• rnbinom (for the negative binomial random variable) 
• rweibull (for the weibull random variable) 

Also, we can submit both the GRRNG package and the GpuRInterface package to 

CRAN so that we can make them open to more users and more developers. Opening 

its source can attract more contributors and granting more people with access to them 

can help more users benefit from GPGPU.	  

In the future, we can write even more R functions using CUDA to replace as many 

commonly used functions as we can. We know in our own field of research what are 

the most commonly used functions, so simply convert these functions using CUDA 

and create their wrappers in R, then we can always reference them in the future. Also, 

we can help write open source R libraries for CUDA by adding other useful routines 

to the packages. 

On the other hand, we can start to replace some old code in the existing R source with 

calls to the new functions in the CUDA extensions. Although this process is tedious, 

the improvement in runtime performance will be unimaginable. Also, while writing R 

code, we need to keep in mind that we should always call functions in the CUDA 

extensions as opposed to their CPU version, when possible. 
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Last but not the least, testing of functions that are fully or partly rewritten with CUDA 

extensions can be done at a larger scale. We should not only test more functions, but 

also test them with real data – Find some existing R code of ours, replace as many 

functions with their CUDA version as we can, and then run the R code on a large 

biological data set and compare the performances. 
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Appendix I: List of Functions in CUDA Extensions for R	  

l gputools [20] 
gpuCor()：Calculate correlation coefficient 

gpuDist()：Calculate distance matrix 

gpuDistClust()：Hierarchical clustering 

gpuFastICA()：Independent Component Analysis 

gpuGlm()：GPU accelerated glm() 

gpuGranger()：Perform Granger Causality Tests for Vectors on a GPU 

gpuHclust()：GPU accelerated hclust() 

gpuLm()：GPU accelerated lm() 

gpuLsfit()：GPU accelerated lsfit() 

gpuMatMult()：Matrix multiplication 

gpuMi()：B spline based mutual information 

gpuQr()：Estimate the QR decomposition for a matrix 

gpuSolve()：GPU accelerated solve() 

gpuSvd()：GPU accelerated svd() 

gpuSvmPredict()：A support vector machine style binary classifier 

gpuSvmTrain()：Train a support vector machine on a data set 

gpuTtest()：T-Test Estimator with a GPU 
 

l HiPLARM [21] 

checkFile: Startup function that reads in the optimised crossover points 

chol: Cholesky Decomposition using GPU or multi-core CPU 

chol2inv-methods: Inverse from Cholesky 

crossprod: Crossproduct using GPU or multi-core CPU 

determinant: Calculate the determinant using GPU and multi-core CPU 

hiplarSet: Methods for Function hiplarSet in Package HiPLARM 

hiplarShow: Shows the crossover points for all functions 

lu: (Generalized) Triangular Decomposition of a Matrix 

norm: Matrix Norms 

OptimiseAll: Optimise all given routines 
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OptimiseChol: Optimise the chol routine for dpo Matrices 

OptimisecrossprodDge: Optimise the crossprod routine for a single dge matrix 

OptimisecrossprodDgeDge: Optimise the crossprod routine for two dge matrices 

OptimisecrossprodDgemat: Optimise the crossprod routine for a dge matrix and an R 

base matrix 

OptimisematmulDtrDtr: Optimise the matmul routine for two dtr matrices 

OptimisematmulDtrmat: Optimise the matmul routine for a dtr matrix and an R base 

matrix 

OptimisenormDge: Optimise the norm routine for a dge matrix 

OptimisercondDge: Optimise the rcond routine for a dge matrix 

OptimisercondDpo: Optimise the rcond routine for a dpo matrix 

OptimiseSolveDge: Optimise the solve routine for a dge matrix 

OptimiseSolveDgemat: Optimise the solve routine for a dge matrix and an R base 

matrix 

OptimiseSolveDpo: Optimise the solve routine for a dpo matrix 

OptimiseSolveDpomat: Optimise the solve routine for a dpo matrix and an R base 

matrix 

OptimiseSolveDtr: Optimise the solve routine for a dtr matrix 

OptimiseSolveDtrmat: Optimise the solve routine for a dtr matrix and an R base 

matrix 

rcond: Estimate the Reciprocal Condition Number using GPU and multi-core CPU 

solve: Solve a linear system Ax=b using GPU or multi-core architectures 

tcrossprod: tcrossproduct using GPU or multi-core CPU 

%*% : Matrix Multiplication of two matrices using GPU or multi-core architectures 

 

l Rpud [22] 

rpuDist: Compute the distance matrix with GPU 

plot.rpusvm: Plot an SVM Model Trained by rpusvm 

plot.rvbm: Diagnostics Plots for Variational Bayesian Multiclass Probit Regression 

predict.rpusvm: Predict Method for Support Vector Machines 
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predict.rvbm: Predict Method for Variational Bayesian Multiclass Probit Regression 

read.svm.data: Reading SVM Training Data from a File 

rhierLinearModel: Gibbs Sampler for Hierarchical Linear Model 

rhierMnlRwMixture: MCMC Algorithm for Hierarchical Multinomial Logit with 

Mixture of Normals Heterogeneity 

rmultireg: Draw from the Posterior of a Multivariate Regression 

rpuchol: GPU Accelerated Cholesky Decomposition 

rpucor: Kendall’s Tau-b Correlation Coefficient on GPU 

rpucor.test: Compute the p-values of the correlation matrix 

rpuDist: Compute the Distance Matrix on GPU 

rpuGetDevice: Id of the GPU device in use by the active host thread 

rpuHclust: Hierarchical Clustering 

rpuScale: Scaling SVM Training Data 

rpuSetDevice: Select GPU for use by the current thread 

rpusvm Support: Vector Machines on GPU 

rvbm: GPU Accelerated Variational Bayesian Multiclass Probit Regression 

rvbm.sample.train: Example Data Sets for Variational Bayesian Multiclass Probit 

Regression 

summary.rvbm: Summary Statistics of Variational Bayesian Multiclass Probit 

Regression 

 

l Magma [23] 

Backsolve: Solve an Upper or Lower Triangular System 

Lu: The LU Decomposition 

Magma: Matrix Class "magma" Constructor 

magma-class: Matrix Class "magma", including a sets of methods 

magmaQR-class: Class "magmaQR", including a set of methods 

magmaLU-class: Class "magmaLU", including a set of methods 

 

l gcbd [24] 
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analysis: Analysis functions for GPU/CPU Benchmarking 

benchmark: Benchmarking functions for GPU/CPU Benchmarking 

figures: Figures from the corresponding vignette 

utilities: Utility functions for GPU/CPU Benchmarking 

 

l WideLM [25] 

wideLM: Fitting Multiple Models of Modest Size 

 

l cudaBayesreg [26] 

buildzstat.volume: Build a Posterior Probability Map (PPM) NIFTI volume 

cudaMultireg.slice: CUDA Parallel Implementation of a Bayesian Multilevel Model 

for fMRI Data Analysis on a fMRI slice 

cudaMultireg.volume: CUDA Parallel Implementation of a Bayesian Multilevel 

Model for fMRI Data Analysis on a fMRI NIFTI volume 

plot.bayesm.mat: Plot Method for Arrays of MCMC Draws 

plot.hcoef.post Plot Method for Hierarchical Model Coefficients 

pmeans.hcoef: Posterior mean for each regression variable 

post.overlay: Rendering a Posterior Probability Map (PPM) volume 

post.ppm: Posterior Probability Map (PPM) image 

post.randeff: Plots of the random effects distribution 

post.shrinkage.mean: Computes shrinkage of fitted estimates over regressions 

post.shrinkage.minmax: Computes shrinkage of fitted estimates over regressions 

post.simul.betadraw: Postprocessing of MCMC simulation 

post.simul.hist: Histogram of the posterior distribution of a regression coefficient 

post.tseries: Show fitted time series of active voxel 

premask: Mask out voxels with constant time-series 

read.fmrislice: Read fMRI data 

read.Zsegslice Read brain segmented data based on structural regions for CSF, gray, 

and white matter. 

Regpostsim: Estimation of voxel activations 
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l permGPU [27] 

permgpu: Conduct permutation resampling analysis using permGPU 

scoregpu: Computes score test statistic using permGPU 

test.permgpu: Conduct permutation resampling analysis using permGPU 

test.scoregpu: Conduct permutation resampling analysis using permGPU 
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Appendix II: Source Code for gpuRnorm() 

Code in rnorm.cu: 

#include <R.h> 
#include <cuda.h> 
#include <curand.h> 
 
extern "C" void gpuRnorm (double *nums, int *seed, double *mu, double *sd, double 
*hostData) { 
    size_t num = (size_t) (*nums); 
    size_t n; 
    curandGenerator_t gen; 
    double *devData; 
 
    // TODO Change this hardcoded 100000000 to be MAX_SIZE_T/sizeof(double) 
    while (1) { 
        if (num > 100000000) { 
            n = 100000000; 
        } else { 
            n = num; 
        } 
        cudaMalloc((void **)&devData, n * sizeof(double)); 
        curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_DEFAULT); 
        curandSetPseudoRandomGeneratorSeed(gen, *seed); 
        curandGenerateNormalDouble(gen, devData, n, *mu, *sd); 
        cudaMemcpy(hostData, devData, n * sizeof(double), 
cudaMemcpyDeviceToHost); 
        curandDestroyGenerator(gen); 
        cudaFree(devData); 
        if (num > 100000000) { 
            num = num - 100000000; 
            hostData = hostData + 100000000; 
        } else { 
            break; 
        } 
    } 
} 

Code in rnorm.R: 

gpuRnorm <- function(n, mu, sd){ 
    if(! is.loaded("gpuRnorm")) 
        dyn.load("rnorm.so") 
 
    a <- 1:n 
 
    if (! exists("gpuSeed")) 
        gpuSeed <- 0 
 
    if (missing(mu) || missing(sd)) { 
        mu <- 0 
        sd <- 1 
    } 
 
    out <- .C("gpuRnorm", as.double(n), as.integer(gpuSeed), as.double(mu), 
as.double(sd), hData = as.double(a)) 
 
    return(out$hData) 
} 


