
A Numerical Approach to Calculating Population

Spreading Speed

by

Angela Leo

A Thesis

submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science in

Applied Mathematics

May 2007

APPROVED:

Roger Lui, Major Advisor

Darko Volkov, Advisor

Abstract

A population density, un(x), is recursively defined by the formula

un+1(x) =

∫

K(x − y)
(

1 − g
(

un(y)
)

)

f
(

un(y)
)

dy + g
(

un(x)
)

f
(

un(x)
)

.

Here, K is a probability density function, g(u) represents the fraction of the
population that does not migrate, and f is a monotonically decreasing func-
tion that behaves like the Beverton-Holt function. In this paper, I examine
and modify the population genetics model found in [17] to include the case
where a density-dependent fraction of the population does not migrate af-
ter the selection process.Using the expanded model, I developed a numerical
application to simulate the spreading of a species and estimate the spread-
ing speed of the population. The application is tested under various model
conditions which include both density-dependent and density-independent
dispersal rates. For the density-dependent case, I analyzed the fixed points
of the model and their relationship to whether a given species will spread.

Contents

1 Introduction 4

2 Mathematical Model 6

2.1 Model 1: The density-independent case 6
2.2 Model 2: The density-dependent case 7

3 Numerical Methods 13

3.1 Pseudocode . 14
3.2 Computing convolution . 15
3.3 Calculating spreading speed 16

4 Numerical Results 18

4.1 Density-independent Case . 19
4.2 Density-dependent Case . 21

5 Conclusions 25

References 27

A Matlab M-files 29

1

List of Tables

3.1 Numerical computation of speed for different values of dx with
g = 0, r = 2, and B = 6 14

4.1 Numerical computation of speed using different methods . . . 18
4.2 Numerical computation of speed for the density-independent

case . 20
4.3 Computation of speed as a → 0 for the density-dependent case 21
4.4 Computation of speed as a → ∞ for the density-dependent case 21
4.5 Investigations of the fixed points 24

2

List of Figures

2.1 Illustrations of fixed points for h(u). 12

3.1 Illustration of γ and u−1
n (γ). 17

4.1 Population spread where u0(x) has non-compact support. . . . 19
4.2 Population spread where u0(x) has compact support. 20
4.3 Example of Case A with a = 0.01 and u0(x) in red. 22
4.4 Example of Case C with a = 0.04 and u0(x) < M1 in red. . . . 22
4.5 Example of Case C with a = 0.04 and u0(x) > M1 ∀x ∈

[−20, 1] in red. 23
4.6 Example of Case C with a = 0.04 and u0(x) > M1 ∀x ∈ [−7, 1]

in red. 23

3

Chapter 1

Introduction

Since the invasion of an exotic species can become a major threat to the
biodiversity of an area, scientists are concerned with studying the migration
and spread of a population. As a result, mathematicians are becoming in-
creasingly involved with modeling the spreading speed of a species in a given
habitat. An ability to predict the rate of spread, as well as the biological
factors that can alter that rate would be very useful [15]. Most models thus
far have considered a population with a density-independent dispersal rate.
However, a large amount of empirical evidence suggests that the dispersal
rate of a given species depends partially on the population density. Density-
dependent dispersal rates have been observed in a range of species including
spiders, insects, echinoderms, mammals, birds, and fish [5].

Using the model found in [17], a numerical application is created to sim-
ulate the spread of a species in a given habitat and calculate the spreading
speed. The spreading speed of a population is a constant c∗ such that

lim
n→∞

max
x∈[−nc,nc]

un(x) = 0 ∀c > c∗

and
lim

n→∞
min

x∈[−nc,nc]
un(x) = M ∀c < c∗.

where M > 0 is the carrying capacity of the population. The application is
then tested using a number of different scenarios involving populations with
density-independent disperal rates. The spreading speed estimates are then
compared to results of the analytical formula for spreading speed found in
[17]. Next, the model is modified to include a density-dependent dispersal

4

rate. Thus, the fraction of the population that remained in an area after the
selection process would now depend on the local population density.

The model considers a population living in a homogenous infinite habitat
Rd. The population density,

un+1(x) = Qg[un(x)]

=

∫

K(x − y)
(

1 − g
(

un(y)
)

)

f
(

un(y)
)

dy + g
(

un(x)
)

f
(

un(x)
)

is in the n+1-generation at location x. The growth law, f(u), is a monoton-
ically increasing function, and K(x) is a probability density function. If the
dispersal rate is density-independent, g(u) is a constant function that lies be-
tween 0 and 1. In our study, when the dispersal rate is density-dependent, the
fraction of the population that does not migrate is chosen to be g(u) = e−au,
where a > 0.

For the density-independent case, the density-independent selection mi-
gration operator, Qg, is order-preserving, i.e. if u ≤ v, then Qg[u] ≤ Qg[v].
In addition, [17] derives an analytical formula for the spreading speed, c∗, of
a population with a Gaussian probability function, and for c ≥ c∗, proves
the existence of traveling wave solutions for Qg. In order to expand the work
done in [17], this paper shows that the density-dependent operator, Qg, is
also order-preserving, under certain conditions. The numerical application
is used to estimate c∗ for a population with a density-dependent dispersal
rate. Also, the paper investigates the relationship between the model’s fixed
points and the chance that a species will spread.

5

Chapter 2

Mathematical Model

2.1 Model 1: The density-independent case

Qg[u] denotes the selection migration operator

Qg[u] =

∫

K(x − y)
(

1 − g
(

u(y)
)

)

f
(

u(y)
)

dy + g
(

u(x)
)

f
(

u(x)
)

(2.1)

where the growth law f(u) is a concave increasing function defined on [0, M]
with f(0) = 0 and f(M) = M where M is the carrying capacity of the
popultaion. In the density-independent case, the fraction of the population
that does not migrate, g(u), is constant. Let CM be the set of all bounded
functions defined on Rd with values in [0, M] and define Qg(0) = 0 and
Qg(M) = M . Then, since f(u) is increasing, Qg is order-preserving, i.e. if
u, v ∈ CM and u ≤ v, then Qg[u] ≤ Qg[v]. Another important observation
is that Qg[α] > α for α ∈ (0, M). This implies that 0 is an unstable fixed
point and M is a stable fixed point for the operator Qg since Qn

g [α] → M as
n → ∞. Therefore, with the initial population density u0(x) > 0, a density-
independent species will always grow to its carrying capacity and spread.
However, when the dispersal rate is density-dependent, this is not the case
as is discussed in Section 2.2.

Aronson and Weinberger define the spreading speed of a population, c∗,
as the speed such that if one moves faster than c∗, the population density,
un, is near 0 for large n. On the other hand, if one runs at a speed smaller
than c∗, then un is near the carrying capacity M . He provides the analytical

6

formula for spreading speed

c∗g(ζ) = inf
µ>0

1

µ
log[(1 − g)r

∫

Rd

eµxζK(x)dx + rg].

This formula is for a general kernel K and a function f as described later in
this section. If K(x) = (σ

π
)

n

2 e−σ|x|2 , then

c∗g = inf
µ>0

1

µ
log[r(1 − g)eµ2/4σ + rg], (2.2)

where r > 1 is the intrinsic growth rate and g is constant ∈ [0, 1]. This
equation will be used in Section 4 in order to calculate the accuracy of the
numerical program.

2.2 Model 2: The density-dependent case

Let Qg[u] denote the density-dependent selection migration operator with

Q1[u] =

∫

K(x − y)
(

1 − g
(

u(y)
)

)

f
(

u(y)
)

dy

Q2[u] = g
(

u(x)
)

f
(

u(x)
)

Qg[u] = Q1[u] + Q2[u]

where g(u) = e−au with a > 0, K(x) is a probability function, and f(u) is
an increasing bounded function in [0, M], where M is the carrying capacity
of the population. Then, the following three lemmas hold true.

Lemma 2.2.1. Q1[u] is order-preserving; i.e. if u, v ∈ CM and u ≤ v, then

Q1[u] ≤ Q1[v].

Proof. For any u ≤ v, we have f
(

u(y)
)

≤ f
(

v(y)
)

since f is an increasing

function. Also, (1 − e−au(y)) ≤ (1 − e−av(y)). Therefore, because K(x − y) is
positive and independent of u and v,

Q1[u] =

∫

K(x − y)
(

1 − g
(

u(y)
)

)

f
(

u(y)
)

dy

≤
∫

K(x − y)
(

1 − g
(

v(y)
)

)

f
(

v(y)
)

dy = Q1[v].

Thus, Q1[u] is order-preserving.

7

Lemma 2.2.2. Assuming that f(u) is a concave function with values on

[0, M], Q2[u] is order-preserving if and only if f ′(M) ≥ aM with a > 0.

Proof. (⇒) Assume Q2[u] is order-preserving. Then, for any u ≤ v, Q2[u] ≤
Q2[v]. Thus,

e−auf(u) ≤ e−avf(v).

Let h1(u) = e−auf(u). Since Q2[u] is order-preserving,

h′
1(u) = e−au

(

− af(u) + f ′(u)
)

≥ 0.

Due to the fact that f is increasing and concave, −af(u)+f ′(u) is decreasing
on [0, M]. Thus, the sum −af(u) + f ′(u) attains its minimum at u = M .
Knowing e−au ≥ 0 for all u, substitute u = M to get

−af(M) + f ′(M) ≥ 0

f ′(M) ≥ aM.

(⇐) Let f ′(M) ≥ aM . Then,

f ′(M) ≥ af(M)

−af(M) + f ′(M) ≥ 0.

Because the sum of two decreasing functions is decreasing, we know −af(u)+
f ′(u) decreases on [0, M]. Since the inequality holds at u = M , −af(u) +
f ′(u) ≥ 0 for all u in [0, M]. Thus, for u ≤ v, Q2[u] ≤ Q2[v], and Q2[u] is
order-preserving.

Lemma 2.2.3. If Q1[u] and Q2[u] are order-preserving, then (Q1 + Q2)[u]
is also order preserving.

Proof. Assume Q1[u] and Q2[u] are order-preserving. Then, for any u ≤ v,
Q1[u] ≤ Q1[v], and Q2[u] ≤ Q2[v]. We then have

(Q1 + Q2)[u] = Q1[u] + Q2[u] ≤ Q1[v] + Q2[v] = (Q1 + Q2)[v]

Therefore, (Q1 + Q2)[u] is order-preserving.

8

Lemma 2.2.4. Let X, Y be two metric spaces and let f be a continuous

function from X × Y into R. Assume Y is compact and define

F (x) = sup
y∈Y

f(x, y).

Then, F is continuous on X.

Proof. Fix x∗ in X. Let xn be a sequence in X converging to x∗. As Y is
compact there is a yn in Y such that F (xn) = f(xn, yn). Again by compact-
ness, yn has a subsequence y′

n converging to some y∗ in Y .
As (x′

n, y′
n) converges to (x∗, y∗) in X × Y and by continuity of f , we infer

that f(x′
n, y′

n) converges to f(x∗, y∗). It follows that

F (x′
n) = f(x′

n, y′
n) → f(x∗, y∗) ≤ F (x∗)

Arguing by contradiction assume that F (x∗) > f(x∗, y∗). Set ε = F (x∗) −
f(x∗, y∗) and let y∗

2 in Y be such that F (x∗) = f(x∗, y∗
2). By continuity of f ,

as x′
n converges to x∗, there is a p such that for n > p

f(x′
n, y∗

2) > f(x∗, y∗
2) − ε/2.

But as f(x′
n, y′

n) ≥ f(x′
n, y∗

2) we find that lim f(x′
n, y′

n) ≥ f(x∗, y∗
2) − ε/2,

contradiction.
We showed that for any convergent sequence xn in X of limit x∗, there is a
subsequence x′

n such that F (x′
n) converges to F (x∗): this shows that F is

continuous at x∗.

Remark 2.2.5. If we only assume that f is continuous on X×Y and bounded

then F may not be continuous as shown by setting X = [0, 1], Y = [1,∞),
f(x, y) = 1 − xy.

With the density-dependent case, since g(u) is not constant, the model
equation becomes more complex. Since the dispersal rate is now density-
dependent, the fixed points of the system will be different. Define a fixed
point of the system u∗ such that h(u∗) = u∗. In this study, we assume the
growth law f(u) has the following properties:

1. f ∈ C1[0, M].
2. f(0) = 0 and f(M) = M .
3. f(u) > u for u ∈ (0, M).

9

4. f ′(u) ≥ 0, and f ′(0) = r > 1.
5. f(u) ≤ ru for u ∈ [0, M].

With h(u) = (1 − e−au)f(u) where a > 0 the following lemma is valid.

Lemma 2.2.6. In the density-dependent case, h(u) has the following prop-

erties:

1. h(u) is increasing.

2. h(u) is convex near 0.
3. u = 0 is a fixed point of h(u).
4. Let f be the Beverton-Holt function, that is,

f(u) =
rMu

M + (r − 1)u

There exists ā > 0 such that

(i) if 0 < a < ā, h has one fixed point, u = 0.
(ii) if a = ā, h has two fixed points, u = 0 and M1 such that

0 < M1 < M .

(iii) if a > ā, h has three fixed points, u = 0, M1, and M2 such that

0 < M1, M2 < M .

Proof. 1. 2. and 3. are clear. To show 4., we remark that

h(u) − u =
rMu

M + (r − 1)u
h2(u, a)

where

h2(u, a) =

(

1 − 1

r

)

(

1 − u

M

)

− e−au.

Define H(a) = maxu∈[0,M] h2(u, a). H is continuous on [0,∞) due to the
previous lemma.

It is clear that H(0) = − 1
r

< 0. Furthermore,

h2(u,
M

2
) =

1

2
(1 − 1

r
) − e−a M

2

is clearly positive if a is large enough, thus H(a) > 0 if a is large enough. By
continuity of H, there exists ā in (0,∞) such that H(ā) = 0.

10

We proceed to show that ā is unique. Let a1 and a2 be such that 0 ≤ a1 < a2.
There exists u1 in [0, M] such that H(a1) = h2(u1, a1). If u1 6= 0,

H(a1) = h2(u1, a1) < h2(u1, a2) ≤ H(a2).

If u1 = 0, we can only conclude that H(a1) ≤ H(a2), and H(a1) = −1
r

< 0.
Thus if we denote ã the smallest a in [0,∞) such that H(a) = 0, H is strictly
increasing on [ã,∞), proving that ā is unique.
If 0 < a < ā, it is clear that h2(u, a) < 0 for all u in [0, M], thus proving h
has one fixed point exactly, u = 0.
Assume a = ā. As h2(0, a) < 0, h2(M, a) < 0, and maxu∈[0,M] h2(u, ā) = 0,
then if a point v in (0, M) satisfies h2(v, ā) = 0, we must have ∂h2

∂u
(v, ā) = 0.

As

∂h2(u, a)

∂u
=

(

1 − 1

r

) (

−1

M

)

+ ae−au

and

∂2h2(u, a)

∂u2
= −a2e−au < 0, for a > 0,

by Rolle’s theorem there is only one point M1 in (0, M) such that h2(M1, ā) =
0. h has the two fixed points 0 and M1.
If a > ā, then as h2(0, a) < 0, h2(M, a) < 0, and maxu∈[0,M] h2(u, a) > 0 there
are by continuity of h2 two numbers M1 and M2 such that 0 < M1 < M2 < M
and h2(M1, a) = h2(M2, a) = 0. There is no third point v in (0, M) such that

h2(v, a) = 0: that would contradict Rolle’s theorem as ∂2h2(u,a)
∂u2 < 0. We

conclude that h has three fixed points, 0, M1, and M2.
Illustrations of the three cases can be seen in Figure 2.1.

During Case A, the population density will approach 0 and the population
will die out over time. If the conditions for Case C are satisfied, one of
two things may occur. In order for a population with a density dependent
dispersal rate to spread, the initial population density, u0(x) must be greater
than or equal to M1 for x on a sufficiently large interval. With such an initial
population density, the population will grow towards its carrying capacity
and spread. However, if u0(x) > M1 on a not large enough interval, the
population will behave as in Case A and die out. Section 4.2 investigates
these claims using the numerical program.

11

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

u(x)

h(
u)

=
(1

−
g(

u)
)f

(u
)

Case A

(a) Case A - 1 fixed point.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

u(x)

h(
u)

=
(1

−
g(

u)
)f

(u
)

Case B

(b) Case B - 2 fixed points.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

u(x)

Case C

h(
u)

=
(1

−
g(

u)
)f

(u
)

(c) Case C - 3 fixed points.

Figure 2.1: Illustrations of fixed points for h(u).

12

Chapter 3

Numerical Methods

In order to simulate the spread of a species and estimate the spreading
speed, c∗, I develop a program in Matlab to model

un+1(x) = Qg[un] (3.1)

=

∫

K(x − y)
(

1 − g
(

un(y)
)

)

f
(

un(y)
)

dy + g
(

un(x)
)

f
(

un(x)
)

where

K(x) =
e−(x−µ)2/2σ2

√
2πσ2

f(u) =
rMu

M + (r − 1)u

u(x) ∈ [0, M].

For the density-independent case, g(u) = g where g is a constant ∈ [0, 1].
The density-dependent case has g(u) = e−au(x) with a > 0 in our study. To
define a given model, the following population specific parameters must be
defined:

M - carrying capacity of the population

r - intrinsic growth rate, (r > 1)

g - fraction of the population that does not migrate1

1density-independent case

13

a - influential variable for g(u)2, a > 0

µ - mean for K(x)

σ - standard deviation for K(x)

B - integer such that K(x) is zero outside of [−B, B], B = 6 for the algorithm

The step variable, dx, defines how the interval will be divided. Explo-
rations into various values of dx showed that dx = 1 is the optimal choice
for run time and error (See Table 3.1).

Table 3.1: Numerical computation of speed for different values of dx with
g = 0, r = 2, and B = 6
dx Numerical Speed Error(percent) Run time

0.1 1.1753563 0.18 15 minutes
1 1.1758002 0.14 5 minutes
2 1.1648973 1.06 2 minutes

3.1 Pseudocode

Below is the pseudocode to compute Equation 3.1 in Matlab. The initial
population density is assumed to have non compact support. Let ε > 0 be a
small number.

• Let u0(x) be the initial population density. In the algorithm,

u0(x) = M for x ≤ 0

= Me−x2

for x > 0.

• Find x∗ such that u0(x
∗) < ε.

• Let B be defined as above and set [a0, b0] = [−4B, x∗ + B].

• Assume an, bn are defined and un is known.

2density-dependent case only

14

• Find the smallest a and the largest b such that f has the following
properties:

f(un(a)) ≥ M − ε

f(un(b) ≤ ε.

• Let [an+1, bn+1] = [a − B, b + B].

• For x < an, replace un(x) by M , and for x > bn, replace un(x) by 0.
Denote this new function as u∗

n(x).

• Use convolution as described in Section 3.2 to evaluate the integral in
Equation (3.1) and obtain the new population density un+1(x).

If one wishes to model a population with compact support, a modifica-
tion to the pseudocode is necessary. While searching for the new interval
[an+1, bn+1], find the smallest a such that f(un(a)) < ε.

3.2 Computing convolution

The convolution of two functions is defined as

K ∗ h(x) =

∫ ∞

−∞

K(x − y)h(y)dy

= lim
δx→0

∞
∑

n=−∞

K(x − yn)h(yn)δx

where yn = nδx.
Matlab’s built-in function, conv, takes in two vectors h and K and returns

a vector w where
w(k) =

∑

j

h(j)K(k + 1 − j).

Since conv only computes the summation, one must multiple h and K by√
δx before calling conv to complete the riemann sum.

15

3.3 Calculating spreading speed

In the case of Fisher’s equation, a well studied PDE having to do with
population growth, the numerical equation for the spreading speed of a pop-
ulation, c∗, is

u−1
n (γ) = nc∗ + k ln n + C

where C depends on the initial condition u0(x), [7]. We assume the equation
holds for out model as well. Then, solving for c∗, we obtain

c∗ =
u−1

n (γ)

n
+

k ln(n)

n
+

C

n
(3.2)

as n → ∞, where γ ∈ (0, M) and k and C are constants. Originally, the
constants k and C are assumed to be 0 so that Equation (3.2) is reduced to

c∗ =
u−1

n (γ)

n
. (3.3)

Although we can use this formula to estimate c∗, the assumption that k and
C are 0 may introduce error into the calculation. Equation (3.2) should
therefore be modified so that a more accurate numerical formula for the
spreading speed can be developed. Using Equation (3.2), we know that

u−1
n (γ) = nc∗ + k ln(n) + C

u−1
2n (γ) = 2nc∗ + k ln(2n) + C

u−1
4n (γ) = 4nc∗ + k ln(4n) + C.

Subtracting u−1
n (γ) from u−1

2n (γ) leaves

u−1
2n (γ) − u−1

n (γ) = nc∗ + k ln 2

so that

c∗ =
u−1

2n (γ) − u−1
n (γ)

n
=

k ln 2

n
. (3.4)

Now, as n → ∞ the formula converges to the solution faster since the con-
stant C has been eliminated and ln 2 has replaced ln n. Since we want to
develop an accurate program, further modifications of Equation (3.2) are

16

needed to eliminate k. Taking a linear combination of the above equations
and solving for c∗ yields

c∗ =
u−1

4n (γ) − 2u−1
2n (γ) + u−1

n (γ)

n
. (3.5)

Because this equation does not contain k, it provides the most accurate
estimation of the spreading speed of a population out of the three methods.
Section 4 compares the accuracy of the three formulas with the analytical
formula for spreading speed given in Equation (2.2).

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

x

un
(x

)

Calculating spreading speed

gamma

distance from
0 to x*

Figure 3.1: Illustration of γ and u−1
n (γ).

Once a population density is found, the program must calculate the
spreading speed of the population. For each un(x), since un is decreasing, use
cubic interpolation to choose x∗

n such that un(x
∗
n) = γ for some user defined

γ ∈ [0, M]. Let u−1
n (γ) be uniquely defined as the distance from 0 to x∗

n (See
Figure 3.1). Using Equation (3.5), the numerical speed of the population can
now be found and is displayed in the command window of Matlab. Lastly,
the population density un(x) is plotted versus the location, x, for all n.

17

Chapter 4

Numerical Results

In order to determine the best numerical formula to use in calculating
the spreading speed, data from all three formulas is examined at different
numbers of iterations and can be seen in Table 4.1. All tests have B = 6and
dx = 1. For the simulation, g = 2

3
, r = 5 and the actual spreading speed of

the population is 1.36782334. Since Equation (3.5) has the lowest error, this
formula will be used to estimate the spreading speed in the program.

Table 4.1: Numerical computation of speed using different methods
Eq. 400 iter. Error (%) 800 iter. Error(%) 1200 iter. Error(%)

(3.3) 1.3578948 0.72 1.3607321 0.52 1.3616819 0.45
(3.4) 1.3634974 0.32 1.3635694 0.31 1.363575 0.31
(3.5) 1.36351024 0.32 1.3635715 0.31 1.3635872 0.31

For the less complex, density-independent case, the accuracy of the results
is determined using the analytical formula for c∗ found in Equation (2.2) (see
Section 4.1). Simulations are then run for the population with a density-
dependent dispersal rate (see Section 4.2). In both cases, B = 6 and the step
dx = 1.

18

4.1 Density-independent Case

In order to simulate the spread of a population, one must define the initial
population density, u0(x). Three different types of initial population densities
were tested. First, u0(x) was defined as a monotonically decreasing function
with non-compact support. A second function that is not monotonically
decreasing was also tested. Figure 4.1 shows the initial population density
(red line) as well as the population densities at n = 1, 5, 10, 20 for each of
the initial conditions.

−5 0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

x

un
(x

)

Monotonically decreasing

(a) Monotonically decreasing.

−5 0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

x

un
(x

)

Oscillating

(b) Oscillating.

Figure 4.1: Population spread where u0(x) has non-compact support.

To further test the robustness of the program, u0(x) was also defined
as a function with compact support. From this example, one can see that
even if u0(x) < M , the population density un(x) will increase to M as n
grows. Figure 4.2 shows the initial conditions (red line) and the results of
the simulation for n = 1−5, 10, 20. In this case, more values of n were shown
to illustrate how un(x) grows to M . Regardless of the initial conditions, the
spreading speed of the given population is the same to a certain degree of
accuracy.

In order to test the accuracy of the program, nine simulations with popu-
lations having different growth rates and migratory properties are performed.
The intrinsic growth rate, r, and the fraction of the population that does not
migrate, g, are the variables chosen to vary. The program estimates the

19

numerical spreading speed for each population using Equation (3.5). The ac-
tual spreading speeds for the populations are then calculated with Equation
(2.2). The results of these simulations and calculations as well as the relative
error in each case can be seen in Table 4.2.

−20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

x

un
(x

)

Compact support

Figure 4.2: Population spread where u0(x) has compact support.

Table 4.2: Numerical computation of speed for the density-independent case
g r Actual Speed Numerical Speed Error(percent)

0 1.5 0.90051663 0.89995208 0.06
0 2 1.17741002 1.1758002 0.14
0 5 1.79412257 1.7910344 0.17

0.3333 1.5 0.76486977 0.7641128 0.10
0.3333 2 1.0200489 1.0180643 0.19
0.3333 5 1.62122706 1.6176532 0.22
0.6666 1.5 0.58870501 0.58768531 0.17
0.6666 2 0.81032342 0.80794862 0.29
0.6666 5 1.36782334 1.3635872 0.30

One can see that as the intrinsic growth rate, r, increases, the relative
error increases. A similar situation is seen as the fraction of the population

20

that does not migrate, g, increases. Analyzing these observations, one would
expect the largest error to occur when g is close to 1 and r is large. In other
words, as a population’s migration declines and the growth rate expands, it
is harder to numerically predict the spreading speed of the population.

4.2 Density-dependent Case

Currently, no known analytical formula for the spreading speed in the
density-dependent case has been derived. We assume the accuracy that our
numerical methods demonstrated in the density-independent case will carry
over to the dependent case. As a population’s migration declines, g ap-
proaches 1, and the spreading speed of that population nears 0. On the
other hand, as migration increases, g approaches 0, and the spreading speed
of the population increases.

Table 4.3: Computation of speed as a → 0 for the density-dependent case
a Numerical Speed

10−16 0.087140386
0.01 0.59398919
1 0.91579325

For the density-dependent case, let g(u) = e−au. As a approaches 0,
g(u) becomes closer to 1. Therefore, the spreading speed, c∗, should be
approaching 0. Simulations for r = 2 with decreasing values of a can be seen
in Table 4.3. One can see that as a decreases, the numerical speed approaches
0.

Table 4.4: Computation of speed as a → ∞ for the density-dependent case
a Numerical Speed

10 1.101166
1000 1.1523489
1016 1.1748878

Second, as a increases to ∞, g(u) approaches 0. Thus, c∗ should be
approaching c∗g=0, the spreading speed with complete migration. With r = 2,

21

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

x

un
(x

)

a=0.01

Figure 4.3: Example of Case A with a = 0.01 and u0(x) in red.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

x

u(
x)

a=0.04 and u(x) < 30

Figure 4.4: Example of Case C with a = 0.04 and u0(x) < M1 in red.

22

−10 −5 0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

x

un
(x

)

a=0.04 and u(x) > M1

Figure 4.5: Example of Case C with a = 0.04 and u0(x) > M1 ∀x ∈ [−20, 1]
in red.

−5 0 5 10
0

10

20

30

40

50

60

70

80

90

100

x

un
(x

)

a=0.04 and u(x) > M1 for x in [−7,1]

Figure 4.6: Example of Case C with a = 0.04 and u0(x) > M1 ∀x ∈ [−7, 1]
in red.

23

c∗0 = 1.17741002. Table 4.4 displays the spreading speed, c∗a, as a increases.
It is seen that c∗a is approaching c∗0 as a grows.

Now that we have seen the program accurately predict the spreading
speed in a density-dependent case, let us examine the fixed points of the
density-dependent model. Section 2.2 defines h(u) = (1 − e−au)f(u) with
a > 0. Recall Case A is the scenario with h(u) < u for all u and contains
only one fixed point, u = 0. Case B includes the addition of a second fixed
point, M1, and Case C has a third fixed point, M2 such that M1 < M2 < M .
In Case C for M1 < u < M2, h(u) > u. It is believed that for Case A,
the population will not spread. Instead, after some number of generations,
the density of the population approaches zero. In Case C, in order for a
population with a density dependent dispersal rate to spread, the initial
population density, u0(x) must be greater than or equal to M1 for x lying in
a sufficiently large interval. If this condition is not satisfied, the population
dies out as in Case A.

In order to check this hypothesis, various populations are simulated using
the numerical program. The program simulates a population with g(u) =
e−au for a specific a value. For all figures, the initial population data is
graphed in red and all other population densities are blue. The results of
the simulation with a = 0.01 can be seen in Figure 4.3 where the population
dies out after about 5 iterations. When a = 0.04, the fixed points of the
system were found to be M1 = 40.40 and M2 = 92.61. With u0(x) < M1∀x,
it takes about 7 iterations for the population to die out as can be seen in
Figure 4.4. Choosing u0(x) > M1 for x ∈ [−20, 1] allows the population to
spread in Figure 4.5. However, if u0(x) > M1 only for x ∈ [−7, 1], Figure 4.6
shows that the population density approaches 0 after about 10 iterations. A
summary of the tests can been seen in Table 4.5. Many different a values
were tested but all yielded results like those seen above. It was observed
that if a is small, the population will die out, yet if a is large enough, the
population will spread under the correct initial conditions.

Table 4.5: Investigations of the fixed points
a u0(x) Case Outcome Figure

0.001 - A Population dies out (4.3)
1 ≥ M1∀x ∈ [−10, 1] C Population spreads (4.5)
1 ≤ M1∀x C Population dies out (4.4)
1 ≥ M1∀x ∈ [−7, 1] C Population dies out (4.6)

24

Chapter 5

Conclusions

The aim of this project was to study the population model found in
[17] and then to develop an algorithm to simulate the spread of a species
and estimate the spreading speed of the population. Once the program was
developed, the application was used to predict the speed of populations with a
density-independent dispersal rates. The numerical speed from the program
was then compared to the analytical spreading speed found using Equation
(2.2). After the accuracy of the application was estimated, the simulations
were expanded to also include populations with a density-dependent dispersal
rate. In this case, the fraction of the population that does not disperse now
depends on the local population density, and as a result the fixed points
of the model are altered. An investigation into the effects of the new fixed
points was also performed.

For the density-independent case, the numerical program was used to sim-
ulate populations with various intrinsic growth rates and migratory habits.
It was observed that as the population’s migration declined or the growth
rate expanded, it become harder to numerically estimate the spreading speed
of the population. However, even with the aforementioned conditions, the
program was able to predict the speed with less than a 1% relative error.

After, the dispersal rate was assumed to be density-dependent and new
simulations were run. With g(u) = e−au, as a was decreased the numerical
spreading speed approached 0. This coincided with predictions since as a de-
creases, g(u) → 1, and thus there is no migration. Alternatively, simulations
for a specific growth rate with increasing values of a showed the numerical
speed approaching the spreading speed in the density-independent case with
full migration. Since the program produced expected results in the density-

25

dependent case, the accuracy displayed in predicting the spreading speed
for density-independent dispersal rates carries over to the density-dependent
case.

Because the fixed points of the model change when the dispersal rate
becomes density-dependent, this paper also studied the effects these points
have on the spread of a given population. Although 0 remains a fixed point
in the density-dependent case, there may be one or two more other fixed
points. The numerical program illustrates that if a is too small, the popu-
lation cannot spread and will eventually die out. Similar results were seen
if the initial population density was not greater than the new fixed point or
at least not on a sufficiently large enough interval. However, if a was chosen
such that there exists three fixed points, 0, M1, M2, and u0(x) > M1 for
x ∈ [−L, L] with L sufficiently large, then the population spread.

Because of the overwhelming effect an invading species can have on an
area, it is important to be able to predict the spread of the species in or-
der to begin controlling the problem. Although this project worked to ex-
pand the ability to make these predictions, there is still much work to be
done. A study to derive an analytical formula for the spreading speed in
the density-dependent case would help to verify the accuracy of the numer-
ical program. Since it has been shown that many species actually do have
density-dependent dispersal rates, a program that accurately predicts popu-
lation spread in the density-dependent case could be a useful way to simulate
possible ways to reduce or stop the spread of a broader range of species. Fur-
thermore, it is also recommended that effort be put into deriving an analytical
formula for the fixed points of the model in order to more accurately describe
the system.

26

Bibliography

[1] Al-Omari, J.; Gourley, S. (2002) Monotone travelling fronts in an age-
structured reaction-diffusion model of a single species. Journal of Math-

ematical Biology. Vol. 45, 294-312.

[2] Andow, D.; Kareiva, P.; Levin, S.; Okubo, A. (1990) Spread of invading
organisms. Landscape Ecology. Vol. 4, 177-188.

[3] Aronson, D.G.; Weinberger, H.F. (1975) Nonlinear diffusion in popula-
tion genetics, combustion, and nerve propagation. Partial Differential

Equations and Related Topics, Lecture Notes in Mathematics. Vol. 446.

[4] Caswell, H,; Neubert, M. (2000) Demography and Dispersal: Calcula-
tions and Sensitivity Analysis of Invasion Speed for Structured Popula-
tions. Ecology. Vol. 81, 1613-1628.

[5] Dytham, C.; Murrell, D.; Travis, J. (1999) The Evolution of Denisty-
Dependent Dispersal. Proceedings: Biological Sciences. Vol. 266, 1837-
1842.

[6] Engen, S.; Lande, R.; Saether, B. (1999) Finite Metapopulation Mod-
els with Density-Dependent Migration and Stochastic Local Dynamics.
Proceeding: Biological Sciences. Vol. 266, 113-118.

[7] Fisher, R.A. (1937) The advance of advantageous genes. Ann. of Eugen-

ics. Vol. 37, 355-369.

[8] Hastings, A.; et. al. (2005) The spatial spread of invasions: new devel-
opments in theory and evidence. Ecology Letters. Vol. 8, 91-101.

[9] Kerstre, H.; Levin, D. (1969) Density-Dependent Gene Dispersal in Li-
atris. The American Naturalist. Vol. 103, 61-74.

27

[10] Kot, M.; Lewis, M.; Neubert, M. (2000) Invasion Speeds in Fluctuationg
Environments. Proceedings: Biological Sciences. Vol. 267, 1603-1610.

[11] Kot, M.; Neubert, M.; Wang, M. (2002) Integrodifference equations,
Allee effects, and invasions. Journal of Mathematical Biology. Vol. 44,
150-168.

[12] Lewis, M.; Li, B.; Weinberger, H. (2002) Spreading speed and linear de-
terminacy for two-species competition models. Journal of Mathematical

Biology. Vol. 45, 219-233.

[13] Lewis, M.; Li, B.; Weinberger, H. (2005) Spreading speeds as slow-
est wave speeds for cooperative systems. Mathematical Biosciences. Vol.
196, 82-98.

[14] Lewis, M.; Veit, R. (1996) Dispersal, Populations Grwoth, and the Allee
Effect: Dynamics of the House Finch Invasion of Eastern North America.
The American Naturalist. Vol. 148, 255-274.

[15] Li, B.; Petrovskii, S. (2003) An exactly solvable model of population
dynamics with density-dependent migrations and the Allee effect. Math-

ematical Biosciences. Vol. 186, 79-91.

[16] Liang, X.; Zhao, X.-Q. (2007) Asymptotic Speeds of Spread and Travel-
ing Waves for Monotone Semiflows with Applications. Communications

on Pure and Applied Mathematics. Vol. LX, 0001-0040.

[17] Lui, R.; Volkov, D. (2006) Spreading Speed and Traveling Wave Solu-
tions of a Partially Sedentary Population. Unknown.

[18] Weinberger, H. (2002) On spreading speeds and traveling waves for
growth and migration models in a periodic habitat. Journal of Math-

ematical Biology. Vol. 45, 511-548.

[19] Xiao, D.; Zhao, X. (2006) The Asymptotic Speed of Spread and Trav-
elling Waves for a Vector Disease Model. Journal of Dynamics and Dif-

ferential Equations. Vol. 18, 1001-1019.

28

Appendix A

Matlab M-files

function thesis_numerics = thesis_numerics(numit, testpt);

% VARIABLES

global mu % Mean

global sigma % Standard deviation

global r % Intrinsic growth rate, must be greater than one

global M % Carrying capacity of population

global gamma % Value between 0 and M where horizontal distance is measured

global dx % Delta x

global a % Right endpoint of interval

global x % Interval

global lx % Length of the vector x

global B % K is defined on [-B, B]

global ga % Part of gconv

g = (0);

mu = 0;

sigma = 1;

r = 1.5;

M = 100;

gamma = testpt;

ga =0.04;

a = -24; % initial beginning of interval

29

b = 24; % initial end of interval

dx = 1; % delta x

x = a:dx:b; %initial set of points

lx = length(x);

B = 6; % bound of K s.t. integral of K from -B to B is 1

epsilon = 10e-20; % small number vey close to zero

% CREATE INITIAL DATA %

% K is the probability density function %

% u is the population density function %

for i=1:lx

unext(i)= uinitial(x(i)); % u values on [a, b]

end

for i=1:(2*B/dx+1)

K(i) = Kconv(-B+(i-1)*dx); % K values on [-B, B]

end

hold on;

%For each iteration:

% 1. Find an interval [a,b] s.t f(u(x))<=epsilon for all x>=b+B.

% 2. Calculate f using the u values on the new interval [a, b].

% 3. Convolve (1-g)*f with K.

% 4. Add your convolution and g*f to find your new u values.

% 4. Plot u versus x and calculate spreading speed

for j=1:numit

% Non-compact support

k=0;

while (fconv(unext(lx-k))<=epsilon) % find newb

newb=lx-k;

k=k+1;

if(k==lx)

newb=lx;

30

break;

end

end

b = a+newb*dx+B; % new right endpoint

x=a:dx:b; % new interval x

lx=length(x); % length of x

%finds u on new interval [a,b]

for i=1:lx

if(j==1)

unext(i)= uinitial(x(i)); % initial u values on [a, b]

elseif (i) > length(unext)

unext(i) = 0; % Assume u=0 for all x>=b

end

end

% End non-compact support

% Compact support

n=0;

while(unext(lx-n)<=epsilon)

ansB=lx-n;

n=n+1;

end

b=a+ansB*dx+B;

x=a:dx:b;

lx=length(x);

tempu=unext;

% finds u on new interval [a,b]

for i=1:lx

if(j==1)

unext(i)= uinitial(x(i)); % initial u values on [a, b]

elseif (i) > length(unext)

unext(i) = 0; % Assume u=0 for all x>=b

end

31

end

% End compact support

% finds f and g values on [a,b]

for i=1:lx

f1(i) = fconv(unext(i)); % f values on [a, b]

%g1(i) = gconv(f1(i)); % g values on [a, b]

end

% finds f and g values on [a+B, b-B] so that convolution is on [a,b]

for i=1:(lx-2*(B/dx))

f(i) = fconv(unext(i+B/dx)); % f values on [a+B,b-B]

%g(i) = gconv(f(i));

end

% find convolution of (1-g)*f with K

first = sqrt(dx)*(1-g)*(f(1:lx-2*(B/dx))); % on [a+B,b-B]

second = K*sqrt(dx); % on [-B, B]

ansconv = conv(first, second);% on [a, b]

unext = ansconv + g*f1(1:lx); % on [a, b]

plot(x,unext(1:lx));

xdist(j)= distance(unext);

end

xlabel(’x’);

ylabel(’un(x)’);

title(’Population density’);

n=1:1:length(xdist);

limit=xdist./n

hold off;

figure;

plot(limit);

title(’Horizontal distance divided by iteration number’);

xlabel(’iteration number’);

ylabel(’distance/iteration number’);

32

limit=limit’;

save filename.out limit -ASCII;

function u = uinitial(x);

global M

if (x<=0)

u=M;

else

u=M*exp(-x^2); % monotone decreasing

u=M*exp(-7*x/8)*(abs(cos(3*x)) + 1)*.5; % oscillating

end

function K = Kconv(x);

global mu

global sigma

tmp1 = ((x-mu)^2)/(2*sigma^2);

tmp2 = sqrt(2*pi*sigma^2);

K = (exp(-tmp1))/tmp2;

function f = fconv(u);

global r

global M

f=(r*M*u)/(M+(r-1)*u);

function gconv = gconv(fu)

global ga

gconv = exp(-ga*fu);

function dist = distance(unext);

33

global gamma

global dx

global a

global lx

for i=1:lx

if(unext(i)>=gamma)&&(unext(i+1)<=gamma)

point1=i;

point2=i+1;

break

end

end

x0=a+(i-2)*dx;

x1=a+(i-1)*dx;

x2=a+(i)*dx;

x3=a+(i+1)*dx;

dist=interp1([unext(point1-1), unext(point1), unext(point2), unext(point2+1)],

...[x0, x1, x2, x3] ,gamma,’cubic’);

34

