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Abstract

P-values combination procedure for multiple statistical tests is a common data analysis

method in many applications including bioinformatics. However, this procedure is non-

trivial when input P-values are dependent. For the Fisher’s combination procedure, a classic

method is the Brown’s Strategy [1, Brown,1975], which is based empirical moment-matching

of gamma distribution. In this project, we address a more general family of weighting-and-

truncation p-value combination procedures called TFisher. We first study how to extend

Brown’s Strategy to this problem. Then we make further development in two directions.

First, instead of using the empirical polynomial model-fitting strategy to find moments, we

developed an analytical calculation strategy based on asymptotic approximation. Second,

instead of using the gamma distribution to approximate the null distribution of TFisher, we

propose to use a mixed gamma distribution or a shifted-mixed gamma distribution. We focus

on calculating the one-sided p-value for TFisher, especially the soft-thresholding version of

TFisher. Simulations show that our methods much improve the accuracy than the traditional

strategy.

Key Words: p-value combination test, one-sided p-value, TFisher, correlated data anal-

ysis
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Chapter 1

Introduction

In order to integrate the large and diverse datasets found in systems biology, it is common to

combine P-values from multiple statistical tests. The earliest method to combine independent

P-values is seen in the work of [Fisher, 1948]. [Brown, 1975] extended Fisher’s Method to

the case where P-values are assumed to be drawn from a multivariate normal distribution

with a known covariance matrix. [Kost and McDermott, 2002] further extended Brown’s

Method analytically for unknown covariance matrices.

Combining a group of hypothesis tests Xi, i = 1, ..., n, we usually focus on the corre-

sponding p-values Pi, i = 1, ..., n,to form a single statistic for testing the property of the

whole group. For example, in the scenario of meta-analysis each test corresponds to one

study, and a group of similar studies and their p-values are combined to exam the evidence

of a common scientific hypothesis of these studies. In the scenario of signal detection, each

test is for one factor. The p-values of a group of factors are combined to exam whether

some of those factors are associated with a common response variable. Because each p-

value provides information of one source (i.e., a study or a factor), p-value combination

method can be considered as combining evidences to make a reliable conclusion for the

whole group. The classic Fisher’s combination test [1, Brown,1975] can be equivalently writ-

ten as T = ∏n
i=1 Pi ⇔ T

′ = −2∑n
i=1 log(Pi). In Brown’s result, it has been proved that
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W
′ ∼ χ2

2n. Fisher’s test has many good properties. In terms the functional for transforming

the p-values, log transformation is superior than other transformations [3, Hong,2017]. Now

we extend to the soft-thresholding which is given by T = ∑n
i=1−2 log

(
Pi

τ

)
I(Pi < τ) and

TFisher which is given by T = ∑n
i=1−2 log

(
Pi

τ2

)
I(Pi < τ1) with constraint τ1 ≤ τ2, τ2 ≤ 1

In order to study on optimality of these methods from theoretical perspective, the argu-

ments for those choices varies from τ, τ1, τ2 we would like to propose a way to simulate the

distribution of test statistic T.
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Chapter 2

Polynomial Fitting

We aim to figure out the distribution or the approximate distribution of the following where

soft-thresholding is added to the original data pattern

W =
n∑
i=1
−2 log

(
Pi
τ

)
I(Pi < τ)

where I is the indicator function. So the main concern is whether we can still apply Brown’s

result to find out W ′ ∼ cχ2
2n. In order to get an approximation of the distribution of W ′ ,

we still use moments’ method since it have been proved to have general good results for

distribution approximation.

Follow the idea of Brown (1975), we can use a two-parameter scaled chi-square distribu-

tion (this is equivalent to use Gamma distribution) to approximate the null distribution of

W . That is P (W ≤ w) ≈ Fχ2
d
(w
c
) where c and d are determined by matching the first two

moments, i.e.


µ = cd

σ2 = 2c2d

=⇒


c = σ2

2µ

d = 2(µ)2

σ2

3



2.1 Variance estimation of soft thresholding with cor-

related input: polynomial fitting approach

Since we have already determined which type of distribution we would choose, the next

problem is to find out the parameters of proposed distribution. Consider soft-thresholding

with one-sided p-values coming from standard normal, Pi = (1− Φ(Zi)), i = 1, ..., n,

W =
n∑
i=1
−2 log

(
Pi
τ

)
I(Pi < τ).

We further assume Zi’s are multivariate normal and cov(Zi, Zj) = ρij. The general idea

of approximation is to match the moments of W with some known distribution.

2.1.1 Calculate the moments of W

For simplicity, write Yi = −2 log
(
Pi

τ

)
I(Pi < τ). Regardless the correlation structure, EYi =

2τ , therefore, EW = 2nτ . For the second moment V arW = ∑
i,j cov(Yi, Yj), it is important

to note that cov(Yi, Yj) is a function of τ and ρij, denote by h(τ, ρ).

One straightfoward idea is to find each cov(Yi, Yj) by simulation, compare with numerical

integration the simulation method saves plenty time as well as storage. Comparing with

numerical method we need n2 numerical integrations can be computationally burdensome

and will face numerical problems when deal with extreme values. On the other side, we

usually deal with the data which n is pretty large. The followings are the basic steps for

finding out a reasonable polynomial to calculate the covariance.

1. For τi from 0.001 to 1 and ρj from −0.99 to 0.99, simulate (z1k, z2k), k = 1, ..., 105,

from bivariate normal (Z1, Z2) with correlation ρj.

2. For each of these replicates, calculate the p-values and pair value of (y1k, y2k) after the

log transformation, .

4



3. Find the sample covariance covij between (y1k) and (y2k).

4. Build a polynomial regression model lm(cov ∼ poly(τ + ρ)).

Note that when ρij = 1, i.e. Yi = Yj, then cov(Yi, Yj) = V ar(Yi) = 4τ(2− τ)

We actually can find out some important properties for this certain polynomial: 1) Since

our Yis are non-negative, the fitting should have constraints such that the resulting estimates

are non-negative. 2) Even if we have very large R2, meaning the individual term’s error might

be small, but when calculating the variance estimate, we have to sum them all (n2 terms)

up, thus the final error could be large.

2.2 One side case of W

In order to randomly generate multi-dimensional Gaussian variables, we can either choose to

use cholesky decomposition to get covariance matrix or MASS package to directly generate

random variable with given correlation matrix.

The previous result for TFISHER is not satisfied in two parameters’ cases, We try to

figure out the relationship between covariance and τ1, ρ given one of them fixed.

For the one side p-value case, the covariance pattern given τ1 τ2 fixed with respect to ρ

is vary from a quadratic function to a strict line as Figure 2.1 shows when τ1 increase from

-0.99 to 0.

5



Figure 2.1: Polynomial Relationship between negative ρ and covariance

(a) τ1 = τ2 = 0.01 (b) τ1 = τ2 = 0.1

(c) τ1 = τ2 = 0.5 (d) τ1 = τ2 = 0.9

Also the intercept is increasing due to the truncation effect dies away since the formula

has an identity function part which is explainable. We also try to combine the positive part

of rho and given the range of rho from -0.99 to 0.5 from Figure2.2. The relationship remains

the same.
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Figure 2.2: Polynomial Relationship between wider range of ρ and covariance

(a) τ1 = τ2 = 0.01 (b) τ1 = τ2 = 0.1 (c) τ1 = τ2 = 0.5

When we drop out the τ1, τ2 part since τ1 = τ2 = 1, then the relationship between

covariance and rho has approximate line pattern as shown in Figure 2.2.

For the one side p-value case, the covariance pattern given ρ fixed with respect to τ1τ2

is vary from a quadratic function to a strict line when τ1, τ2 increase from 0.001 to 1. From

Figure 2.3, it appears to be quite different patterns when ρ increases from negative to positive.

7



Figure 2.3: Polynomial Relationship between τ and covariance, here we assume τ1 = τ2

(a) ρ = −0.9 (b) ρ = −0.5

(c) ρ = 0.5 (d) ρ = 0.9

If adding all the possible parameters under 4th order polynomial setting, R2 and R2
a

remain the same and most of the parameters still will be significant. This indicates adding

more parameter terms cannot simply improve the fitting result.

We first try whether it can be shown as a symmetric case. However, the R2 will decrease

3% when we use the model fit with the negative ρ value and apply to the positive part. So

we give formula for negative and positive part separately.

8



We give three candidate models which ρ would always be first order term. And the R2

for those two models have increased more than 1% from those model given ρ2 terms.

For ρ from -0.99 to 0.99

1. 2.78τρ+ 4.1466ρτ 2 + 3.452τρ2 − 2.9187ρ2τ 2 − 3.648ρτ 3 with R2 97.59%.

2. −0.187τ1 − 0.728ρτ1 + 8.538ρτ1
2 − 5.314ρτ1

3 with R2 96.42%.

3. (8τ − 4τ 2)ρ2 with R2 equals 92.51%.

Notice adding τ1 term seems do not affect the parameters of ρτ1
2 and ρτ1

3 terms which

simply change the parameter of ρτ1.

Even we can simplify the model to case 3 which only contains two terms, it is interesting

to notice the R2 does not decrease much which is actually more competitive. The model

parameters change a lot is mainly caused by the negative sign of ρ. This could be a main

problem when we choose models.

Actually, when ρ is positive, the quadratic model also can be applied. The R2 for those

two models are very close. Even we can simplify the model to case 3 which only contains

two terms, it is interesting to notice the R2 does not decrease much which is actually more

competitive. For one side case, it seems to be robust within the range of ρ between -0.99 to

1. The certain pattern remains the same.

2.2.1 Comparison result of One-sided case

The other thing which we cannot neglect is that we need to test model stability for different

truncation value τ1 and small correlation ρ.

We have tried different candidate models from what we get. If we include τ 3 and only

first term of ρ, the model becomes unstable in high negative correlated cases. The p-value

of χ2 will give error which due to the negative variance calculated.

Also the result of those including third order is not satisfying.
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We try different models with both fourth order terms and high order intersection terms.

When we including fourth order terms of τ1 and ρ. The parameter of those high order

terms is small comparing to those second order terms. Taking the range of τ1 and ρ in to

consideration, it should always belong to (0,1). We suggest the model below for the one-sided

case. 2.78τρ+ 4.1466ρτ 2 + 3.452τρ2 − 2.9187ρ2τ 2 − 3.648ρτ 3 . Results are shown below:

Figure 2.4: P-Value graphs of different settings of ρ and τ of suggested model

From Figure 2.4, the model works much better in high correlated cases with moderate

truncation and small truncation of τ1 compare to the independent case. However for small

value of τ1, the independent case works better. If we let τ = 1 and small correlated cases,

10



the model also works well.

Figure 2.5: Comparison between two candidate models

(a) (8τ − 4τ2)ρ2

(b) 2.78τρ + 4.1466ρτ2 + 3.452τρ2 − 2.9187ρ2τ2 −

3.648ρτ3

From Figure 2.5 when τ ≤ 0.1, (8τ − 4τ 2)ρ2 model works better than suggested one.

When for those τ ≥ 0.2 and ρ ≤ 0, 2.78τρ + 4.1466ρτ 2 + 3.452τρ2 − 2.9187ρ2τ 2 − 3.648ρτ 3

works better. More important is in this case, the suggested model works much better than

independent case.

2.2.2 Conclusion

1. Since the statistic W we consider is a function of τ1, τ2, ρ. So We consider the intercept

term can be explained by a function of τ1, τ2,ρ. However in the model fitting, the

intercept term will always be significant.

2. For one side case, what we get is different with Brown’s paper [1, Brown,1975] since

he included quadratic term to function of covariance and we explain the quadratic in

τ1,τ2 part. Actually, we can notice for Brown’s formula, the ρ2 term has less effect

11



in independent cases and for the high correlated cases the curvature pattern does not

significant in truncated cases.

3. For those τ1 between (0.2,1) the truncated gamma works well for rho between (-0.99,-

0.2) and (0.2,0.99). For those τ1 between (0,0.2) the independent case works well.

4. It seems we cannot find a global optimal model for the two moments fit. Including

high order term would significantly reduce the effectiveness for τ1 between (0,0.2). On

the other hand, the independent case has advantages when τ1 and rho is small.

2.3 Comparison for gamma distribution and mixed-

gamma distribution under polynomial fitting

Original two-parameter chi-square distribution is used to approximate the null distribution

of W . The parameter estimates given below

P (W ≤ w) ≈ Fχ2
d
(w
c

)

Using first and second memonts, we can find out the expression of c and d


µ = cd

σ2 = 2c2d

=⇒


c = σ2

2µ

d = 2(µ)2

σ2

Motivated by the truncation property of TFisher, we proposed a type of three-parameter

mixed Gamma distribution: W is a random variable such that it has probability p0 to be 0

and probability 1− p0 to be a Gamma distribution. The Cumulative Distribution Function

of this kind of distribution is P (W ≤ w) ≈ p0 + (1 − p0)FΓ(k,θ)(w), w ≥ 0 [3, Hong,2017]

where p0 is the point mass probability at w = 0, k and θ are he shape and scale parameter

12



of Gamma distribution. p0 can be estimated by p0 = P (Pi > τ, i = 1, ..., n) which can be

calculated by a multivariate normal distribution. k and θ are determined by matching the

first two moments, i.e.


µ = (1− p0)kθ

σ2 = (1− p0)kθ2(kp0 + 1)
=⇒


k = µ2/σ2

1−p0−p0µ2/σ2

θ = σ2(1−p0)−µ2p0
(1−p0)µ

Actually when the correlation is small, mixed Gamma approximation result is close to

independence case, which is much better than we simply assume Gamma approximation.

When the correlation is big, the proposed approximation is also decent.

In reality there are certain cases that both k and θ can be negative which would no longer

be a Gamma distribution. One way to solve is to find out a nonnegative estimate for both

k and θ. Or we may adjust p0 instead of directly using the value let k, θ in the domain

(0,+∞). In reality, that case does not appear throughout the whole simulation process.

Figure 2.6 are the graphs for comparison between original gamma distribution and trun-

cated gamma distribution. The results follow what we discuss above.

13



Figure 2.6: Comparison between different distribution settings with suggested model
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Chapter 3

Analytical Calculation for Soft

Thresholding

Comparing with polynomial fitting method, we aim at finding a more general way to get

correct variance which guarantees the correct moment estimation.

3.1 General Framework

Consider one-sided p-values coming from standard normal, Pi = 1− Φ(Zi), i = 1, ..., n, Zi’s

are multivariate standard normal with correlation Cov(Zi, Zj) = ρij. The soft-thresholding

statistic is defined as

W =
n∑
i=1
−2 log

(
Pi
τ

)
I(Pi < τ) =

n∑
i=1

Yi

where Yi = −2 log
(
Pi

τ

)
I(Pi < τ). The variance of W :

Var(W ) =
∑
i,j

Cov(Yi, Yj) =
∑
i,j

Cor(Yi, Yj)Var(Y ) = Var(Y )
∑

i,j

Cor(Yi, Yj)
 .

We already know exactly Var(Y ) = 4τ(2 − τ) thus no need to estimate it, so the only

15



thing left are those covariance terms, by substituting in: Var(W ) = 4nτ(2 − τ) + 4τ(2 −

τ)∑i 6=j Cor(Yi, Yj)

In order to calculating the variance part, we need to introduce several lemma with respect

to asymptotic theory.

Lemma 1. Given τ → 0, Y = −2 log
(
P
τ

)
≈ Z2 + logZ2 + log 2τ 2π

Proof. By Mill’s ratio 1− Φ(z) z→∞→ φ(z)
z

,

P = 1− Φ(Z) ≈ 1√
2π

exp(−Z2/2)
Z

Lemma 1 shows that we may approximate Y by Z2. Notice when Z goes to infinity, Z2

gets dominated in above equation.

The next is a conjecture that supported by empirical evidences based on simulation

results.

Conjecture 1. Notice that P < τ ⇐⇒ Z > Φ−1(1 − τ), write b = Φ−1(1 − τ), we believe

that

Cor(Yi, Yj) ≈ Cor
(
Z2
i I(Zi > b), Z2

j I(Zj > b)
)

Then we can deduce analytical formula for the calculation of Cor(Yi, Yj). The formula

will involve univariate integrals only which is feasible in reality even for large number of n.
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3.1.1 Theoretical Deduction of Cor
(
Z2
i I(Zi > b), Z2

j I(Zj > b)
)

Since Zi, Zj are bivariate standard normal random variables with correlation ρij, they have

the same distribution as (U, V ):

U ∼ N(0, 1)

V = ρU +
√

1− ρ2Z, ρ = ρij

where Z is a standard normal random variable independent with U . Thus Cor
(
Z2
i I(Zi > b), Z2

j I(Zj > b)
)

=

Cor (U2I(U > b), V 2I(V > b)). Under such transform, the underlying random variable U and

Z are independent. [2, Casella,2002]

Next we will focus on the calculation of

E(U2I(U > b)V 2I(V > b)

=E
[
U2(ρU +

√
1− ρ2Z)2I(U > b)I(ρU +

√
1− ρ2Z > b)

]
=E

[(
ρ2U4 + 2ρ

√
1− ρ2U3Z + (1− ρ2)U2Z2

)
I(U > b)I(ρU +

√
1− ρ2Z > b)

]
.

(1)

The integration region is {b < u < +∞}⋃{f(U) < z < +∞}, where f(u) = −ρu+b√
1−ρ2

. Denote

S =
(
ρ2U4 + 2ρ

√
1− ρ2U3Z + (1− ρ2)U2Z2

)
.

Lemma 2. Consider Z ∼ N(0, 1). Let Mn = EZnI(c < Z < a). Then with M0 =

Φ(a)− Φ(c), M1 = φ(c)− φ(a),

Mn = (n− 1)Mn−2 −
(
an−1φ(a)− cn−1φ(c)

)
.

17



Proof.

Mn =
∫ a

c
znφ(z)dz =

∫ a

c
−zn−1dφ(z)

= −zn−1dφ(z)|ca − (n− 1)
∫ a

c
−zn−2φ(z)dz

= (n− 1)Mn−2 −
(
an−1φ(a)− cn−1φ(c)

)

We write the lemma 2 explicitly for the first four terms that we will infer later.

Corollary 1. Let Mn(b) = EZnI(b < Z < +∞).

M0(b) = Φ(+∞)− Φ(b) = τ

M1(b) = φ(b)

M2(b) = M0 + bφ(b)

M3(b) = 2φ(b) + b2φ(b)

M4(b) = 3M2 + b3φ(b)

Corollary 2. Let Mn(u) = EZnI(f(u) < Z < +∞). Then

M0(u) = Φ(+∞)− Φ(f(u)) = 1− Φ(f(u))

M1(u) = φ(f(u))

M2(u) = M0(u) + f(u)φ(f(u))− f(+∞)φ(f(+∞)) = M0(u) + f(u)φ(f(u))

By above moment deduction, we are able to get all the terms needed for covariance

18



calculation. Following are the terms needed in covariance calculation.

ESI (b < U < +∞)I(f(U) < Z < +∞)

=
∫ +∞

b

∫ +∞

f(u)

(
ρ2u4 + 2ρ

√
1− ρ2u3z + (1− ρ2)u2z2

)
φ(z)φ(u)dzdu

=
∫ +∞

b

(
ρ2u4M0(u) + 2ρ

√
1− ρ2u3M1(u) + (1− ρ2)u2M2(u)

)
φ(u)du

=
∫ +∞

b
u2h(u)du

(2)

where h(u) def=
(
ρ2u2M0(u) + 2ρ

√
1− ρ2uM1(u) + (1− ρ2)M2(u)

)
φ(u). we conclude that

E(U2I(U > b)V 2I(V > b))

=
∫ +∞

b
u2h(u)du

(3)

EV 2I(V > b) = EU2I(U > b)

= M2(b) = τ + bφ(b).
(4)

Therefore the covariance

Cov(U2I(U > b), V 2I(V > b))

=
∫ +∞

b
u2h(u)du− (τ + bφ(b))2.

(5)

To find the correlation, we need to calculate the variance,

Var(U2I(U > b)) = EU4I(U > b)− (EU2I(U > b))2

= M4(b)− (M2(b))2.

(6)
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Finally, with VarY = 4τ(2− τ), we have

Cov(Yi, Yj)

=Cor(Yi, Yj)Var(Y )

≈Cor(U2I(U > b), V 2I(V > b))Var(Y )

=Cov(U2I(U > b), V 2I(V > b)) Var(Y )
Var(U2I(U > b))

=
[∫ +∞

b
u2h(u)du− (τ + bφ(b))2

] 4τ(2− τ)
M4(b)− (M2(b))2 .

(7)

Equation (7) is the formula for variance calculation under soft-thresholding case.

3.1.2 Variance Calculation for under theoretical method

Following are the graphs for variance calculation under variety setting of τ and ρ. We fix τ

value and let ρ varies from 0 to 1. For those ρ is less than 0, we use polynomial decaying

covariance matrix.

From Figure 3.1 and 3.2, we can find out one-sided variance calculation is significantly

proved compared with polynomial case when τ is relative small, i.e. in reality, most of time

we would focus on small τ which is similar as significant level.

As τ gets larger, polynomial fitting gets better and closer to theoretical method. However,

no overwhelming situation occurs since theoretical method perform consistently well under

wide range of τ values. For the polynomial decaying situations, the results remain the same.

As the green lines shown in Figure 3.1 and 3.2, we can find direct extension to twoside

case is not acceptable. We need to reconsider the integral domain1.
1This part has been down by Hong
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Figure 3.1: Variance Calculation under equal correlation case

(a) τ = 0.001 (b) τ = 0.05

(c) τ = 0.3 (d) τ = 0.5
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Figure 3.2: Variance under polynomial decaying correlation.
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3.2 Extension formula for variance calculation of soft

thresholding

The above calculation are under the assumption that we may approximate Y by Z2. But

in reality, the residual term will have influence for Z ≈ M where M is relatively small.

Notice the second term logZ2We can find different function form or adding special term to

compensate the residual effect. One direct way is that we choose Z2 +A instead of Z2, where

A = F (τ, E(logZ2|Z > Φ−1(1− τ))).

Lemma 3. Given τ → 0, then Y = −2 log
(
P
τ

)
≈ Z2 + logZ2 + log 2τ 2π

Proof. For general asymptotic expansion [5, Ober,2011], we have

P = 1− Φ(Z) ≈ 1√
2π

exp(−Z2/2)
Z

(1− 1
Z2 + 3

Z4 + · · ·+ (−1)n−1(2n− 3)!!
Z2n−2 )

With the following conjecture:

Conjecture 2. Since P < τ ⇐⇒ Z > Φ−1(1− τ), write b = Φ−1(1− τ), we believe that

Cor(Yi, Yj) ≈ Cor
(
(Z2

i + A)I(Zi > b), (Z2
j + A)I(Zj > b)

)

Similarly we can deduce analytical formula for the calculation of Cor(Yi, Yj).
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3.2.1 Theoretical Deduction of Cor
(
(Z2

i + A)I(Zi > b), (Z2
j + A)I(Zj > b)

)
Since Zi, Zj are bivariate standard normal random variables with correlation ρij, and A is

only a function of τ they have the same distribution as (U, V ):

U ∼ N(0, 1)

V = ρU +
√

1− ρ2Z, ρ = ρij

where Z is a standard normal random variable independent with U . Thus

Cor
(
(Z2

i + A)I(Zi > b), (Z2
j + A)I(Zj > b)

)
= Cor ((U2 + A)I(U > b), (V 2 + A)I(V > b)).

Under such transform, the underlying r.v. U and Z are independent.

Next we will focus on the calculation of

E[(U2 + A)I(U > b)(V 2 + A)I(V > b)]

=E
[
(U2 + A)((ρU +

√
1− ρ2Z)2 + A)I(U > b)I(ρU +

√
1− ρ2Z > b)

]
=E

[(
ρ2U4 + 2ρ

√
1− ρ2U3Z + (1− ρ2)U2Z2 + A(ρU +

√
1− ρ2Z)2 + AU2 + A2

)
I(U > b)I(ρU +

√
1− ρ2Z > b)

]
.

(8)

The integration region is {b < U < +∞}⋃{f(U) < z < +∞}, where f(U) = −ρU+b√
1−ρ2

.

Denote S =
(
ρ2U4 + 2ρ

√
1− ρ2U3Z + (1− ρ2)U2Z2

)
.

Corollary 1 and Corollary 2 are used in deduction.

Then the covariance calculation is different from previous cases, we write out each term
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explicitly:

ESI (b < U < +∞)I(f(U) < Z < +∞)

=
∫ +∞

b

∫ +∞

f(u)

(
ρ2u4 + 2ρ

√
1− ρ2u3z + (1− ρ2)u2z2

)
φ(z)φ(u)dzdu

=
∫ +∞

b

(
ρ2u4M0(u) + 2ρ

√
1− ρ2u3M1(u) + (1− ρ2)u2M2(u)

)
φ(u)du

=
∫ +∞

b
u2h(u)du

(9)

where h(u) def=
(
ρ2u2M0(u) + 2ρ

√
1− ρ2uM1(u) + (1− ρ2)M2(u)

)
φ(u).

E[AS
U2 I (b < U < +∞)I(f(U) < Z < +∞)]

=
∫ +∞

b

∫ +∞

f(u)

(
ρ2u2 + 2ρ

√
1− ρ2uz + (1− ρ2)z2

)
Aφ(z)φ(u)dzdu

=
∫ +∞

b

(
ρ2u2M0(u) + 2ρ

√
1− ρ2uM1(u) + (1− ρ2)M2(u)

)
Aφ(u)du

=
∫ +∞

b
Ah(u)du.

(10)

EAU2I (b < U < +∞)I(f(U) < Z < +∞)

=
∫ +∞

b

∫ +∞

f(u)
AU2φ(z)φ(u)dzdu

=
∫ +∞

b
AU2M0(u)φ(u)du.

(11)

EA2I (b < U < +∞)I(f(U) < Z < +∞)

=
∫ +∞

b

∫ +∞

f(u)
A2φ(z)φ(u)dzdu

=
∫ +∞

b
A2M0(u)φ(u)du.

(12)
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we conclude that

E[(U2 + A)I(U > b)(V 2 + A)I(V > b)]

=
∫ +∞

b
[u2h(u) + Ah(u) + AU2M0(u) + A2M0(u)]du

(13)

E(V 2 + A)I(V > b) = E(U2I + A)I(U > b)

= M2(b) + AM0(b) = τ + bφ(b) + Aτ.

(14)

Therefore the covariance

Cov((U2 + A)I(U > b), (V 2 + A)I(V > b))

=
∫ +∞

b
[u2h(u) + Ah(u) + AU2M0(u) + A2M0(u)]du− (τ + bφ(b) + Aτ)2.

(15)

To find the correlation, we need to calculate the variance,

Var((U2 + A)I(U > b)) = E[U4 + 2AU2 + A2]I(U > b)− (E(U2I + A)I(U > b))2

= M4(b) + 2AM2(b) + A2M0(b)− (M2(b) + AM0(b))2.

(16)

Finally, with VarY = 4τ(2− τ)2 [4, Kost,2002], we have

Cov(Yi, Yj)

=Cor(Yi, Yj)Var(Y )

≈Cor((U2 + A)I(U > b), (V 2 + A)I(V > b))Var(Y )

=Cov((U2 + A)I(U > b), (V 2 + A)I(V > b)) Var(Y )
Var((U2I + A)I(U > b))

=
[∫ +∞

b
[u2h(u) + Ah(u) + AU2M0(u) + A2M0(u)]du− (τ + bφ(b) + Aτ)2

]
4τ(2− τ)

M4(b) + 2AM2(b) + A2M0(b)− (M2(b) + AM0(b))2 .

(17)

2Theoretical value
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3.2.2 Comparison for original method and extended method

Figure 3.3: Variance calculation with correction term by changing ρ

Here we give the variance calculation comparison graphs. The green line is denoted as

oneside-v2 is under the extended method.

From Figure 3.3, we can find adding additional terms would improve the variance approx-

imation especially when the correlation is large. The result are consistent with the graphs in

section 3.1.2 when ρ increases the theoretical calculation of variance underestimate the true

variance which is the simulation line.

By adding an additional term in theoretical calculation can be more flexible and adjust
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the variance calculation between only containing Z2 term and oracle ones. The extended

form improves the accuracy of variance estimation as well as p-value calculation. Though

finding a reasonable term A would be still a further research topic.

3.3 P-value calculation of soft-thresholding statistic

The following graphs 3.4 and 3.5 show the distribution of Fisher statistic W. We assume

the empirical distribution which is the simulation one would always show reality case. The

tgamma-oracle stands for those we already know the true variance and fit the truncated

gamma distribution. The tgamma-poly stands for the polynomial fitting under the truncated

gamma distribution. The tgamma-onesided stands for the extended theoretical method

under the truncated gamma distribution. The independent line is based on the model without

correlation.

We can find out the one-sided line is close to the oracle line (red one) in most cases. This

result is consistent with the variance calculation results. Actually the truncated gamma

distribution can be only determined by the first two moments which in this case is the mean

and variance. Since the variance calculation is pretty well in theoretical methods so as the

p-value calculation.

The polynomial fitting has large departure from the oracle one when τ is small which

means we have small truncated value. In that case, polynomial is no longer accurate. This

disadvantage disappears when τ increases and finally it gets closer to the simulation one.

This drawback is mainly caused by fitting strategy. Since the model only consider polynomial

terms and fit a wide range of τ and ρ. Actually when τ is small the variance is very small

compare to those τs close to 1. So actually for small τ , polynomial fitting cannot tell what

model it is.

However, we could get close fitting to oracle line. One thing we cannot neglect is oracle

line itself still has departure from the simulation line, especially in the cases when τ is
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small. We cast doubt on the truncated gamma distribution for small τ and probably can be

improved by considering high order moments.

Figure 3.4: P-value calculation of soft-thresholding statistic under equal correlation. The ρ
parameter is chosen such that the theoretical calculation has large deviation from the sample
variance.
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Figure 3.5: P-value calculation of soft-thresholding statistic under polynomial decaying cor-
relation.
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Chapter 4

Analytical Calculation for omnibus

TFisher

4.1 Correlated TFisher: P-value and Omnibus Test

4.1.1 Shifted-Mixed Gamma

Since TFisher test statistic is based on truncated sum1. The nature way to deal with this

problem is introduce a similar mixed gamma distribution but adding truncation property.

One candidate model is (four-parameter) shifted-mixed Gamma distribution [7, Za-

ykin,2002]: W is a random variable such that it has probability p0 to be 0 and probability

1− p0 to be a s-shifted Gamma random variable. The CDF of this kind of distribution is

P (W ≤ w) ≈ p0 + (1− p0)FΓ(k,θ)(w − s), w ≥ 0

where p0 is the point mass probability at w = 0, k and θ are the shape and scale parameter

of Gamma distribution.

Shift parameter s is the gap of discontinuity of a general TFisher statistic. It can be
1Here the statistic is actually discontinuous
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estimated by

s = −2 log(fracτ1τ2)

p0 can be estimated by

p0 = P (Pi > τ, i = 1, ..., n)

which can be calculated by a multivariate normal distribution. k and θ are determined by

matching the first two moments, i.e.


µ = (1− p0)kθ + (1− p0)s

σ2 = (1− p0)(kθ2 + p0(kθ + s)2)
=⇒


k = (µ−s(1−p0))2

(1−p0)σ2−p0µ2

θ = (1−p0)σ2−p0µ2

(1−p0)(µ−s(1−p0))

4.1.2 Variance Estimation for omnibus TFisher

Consider one-sided p-values coming from standard normal, Pi = 1− Φ(Zi), i = 1, ..., n, Zi’s

are multivariate standard normal with correlation Cov(Zi, Zj) = ρij. Define

Yi = −2 log
(
Pi
τ2

)
I(Pi < τ1)

The Tfisher statistic is defined as

W =
n∑
i=1
−2 log

(
Pi
τ2

)
I(Pi < τ1) =

n∑
i=1

Yi

We are interested in the variance of W :

Var(W ) =
∑
i,j

Cov(Yi, Yj) =
∑
i,j

Cor(Yi, Yj)Var(Y ) = Var(Y )
∑

i,j

Cor(Yi, Yj)

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The reasons for this transformation are 1) we know exactly

Var(Y ) = 4τ1(1 + (1− τ1)(1− log τ1 + log τ2)2)

and 2) Cor(Yi, Yj) is easier to approximate.

Instead of calculating variance of TFisher statistic, we make a general extension to om-

nibus TFisher statistic. TFisher statistic can be easily calculated by specify certain param-

eters such that all τ1ks are equal and all τ2ks are equal.

Consider multiple TFisher statistics

Wk =
n∑
i=1
−2 log

(
Pi
τ2k

)
I(Pi < τ1k) =

n∑
i=1

Yik k = 1, ..., K

where

Yik = −2 log
(
Pi
τ2k

)
I(Pi < τ1k) i = 1, ..., n

We want model (W1, ...,WK) as multivariate normal. Thus we are interested in the covariance

between W ’s:

Cov(Wl,Wk) =
∑
i,j

Cov(Yil, Yjk) =
∑
i,j

Cor(Yil, Yjk)
√

Var(Yil)Var(Yjk)

where

Var(Yil) = 4τ1l(1 + (1− τ1l)(1− log τ1l + log τ2l)2)

Var(Yik) = 4τ1k(1 + (1− τ1k)(1− log τ1k + log τ2k)2)
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Conjecture 3. Let bk = Φ−1(1− τ1k), bl = Φ−1(1− τ1l), we believe

Cor(Yil, Yjk) ≈ Cor
(
Z2
i I(Zi > bl), Z2

j I(Zj > bk)
)

Conjecture 3 is a more general case of Conjecture 1. Next we will focus on the calculation

of Conjecture 3.

The theoretical deduction of Cor
(
Z2
i I(Zi > bl), Z2

j I(Zj > bk)
)

is a natural extension of

the soft thresholding case where bl = bk.

Similarly since Zi, Zj are bivariate standard normal random variables with correlation

ρij, they have the same distribution as (U, V ):

U ∼ N(0, 1)

V = ρU +
√

1− ρ2Z, ρ = ρij

where Z is a standard normal random variable independent with U . Thus Cor
(
Z2
i I(Zi > bl), Z2

j I(Zj > bk)
)

=

Cor (U2I(U > bl), V 2I(V > bk)). Under such transform, the underlying r.v. U and Z are

independent.

Next we will focus on the calculation of

E(U2I(U > bl)V 2I(V > bk)

=E
[
U2(ρU +

√
1− ρ2Z)2I(U > bl)I(ρU +

√
1− ρ2Z > bk)

]
=E

[(
ρ2U4 + 2ρ

√
1− ρ2U3Z + (1− ρ2)U2Z2

)
I(U > bl)I(ρU +

√
1− ρ2Z > bk)

]
.

(1)

The integration region is {bl < u < +∞}⋃{fk(U) < z < +∞}, where fk(u) = −ρu+bk√
1−ρ2

.

Denote S =
(
ρ2U4 + 2ρ

√
1− ρ2U3Z + (1− ρ2)U2Z2

)
.

Using Corollary 1 and 2 given in previous, we can calculate covariance term step by step.
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ESI (bl < U < +∞)I(fk(U) < Z < +∞)

=
∫ +∞

bl

∫ +∞

fk(u)

(
ρ2u4 + 2ρ

√
1− ρ2u3z + (1− ρ2)u2z2

)
φ(z)φ(u)dzdu

=
∫ +∞

bl

(
ρ2u4M0(u; k) + 2ρ

√
1− ρ2u3M1(u; k) + (1− ρ2)u2M2(u; k)

)
φ(u)du

=
∫ +∞

bl

u2h(u; k)du

(2)

where h(u; k) def=
(
ρ2u2M0(u; k) + 2ρ

√
1− ρ2uM1(u; k) + (1− ρ2)M2(u; k)

)
φ(u), Mn(u; k) =

EZnI(fk(u) < Z < +∞).

We conclude that

E(U2I(U > bl)V 2I(V > bk))

=
∫ +∞

bl

u2h(u; k)du
(3)

EU2I(U > bl) = τ1l + blφ(bl)

EV 2I(V > bk) = τ1k + bkφ(bk).
(4)

Therefore the covariance

Cov(U2I(U > bl), V 2I(V > bk))

=
∫ +∞

bl

u2h(u; k)du− (τ1l + blφ(bl))(τ1k + bkφ(bk)).
(5)

To find the correlation, we need to calculate the variance,

Var(U2I(U > bl)) = EU4I(U > bl)− (EU2I(U > bl))2

= M4(bl)− (M2(bl))2

Var(V 2I(V > bk)) = M4(bk)− (M2(bk))2.

(6)
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Finally, with

Var(Yil) = 4τ1l(1 + (1− τ1l)(1− log τ1l + log τ2l)2)

Var(Yik) = 4τ1k(1 + (1− τ1k)(1− log τ1k + log τ2k)2)

, we have

Cov(Yil, Yjk)

=Cor(Yil, Yjk)
√

Var(Yil)Var(Yjk)

≈Cor(U2I(U > bl), V 2I(V > bk))
√

Var(Yil)Var(Yjk)

=Cov(U2I(U > bl), V 2I(V > bk))

√√√√ Var(Yil)Var(Yjk)
Var(U2I(U > bl))Var(V 2I(V > bk))

=
[∫ +∞

bl

u2h(u; k)du− (τ1l + blφ(bl))(τ1k + bkφ(bk))
]
∗

4

√√√√τ1l(1 + (1− τ1l)(1− log τ1l + log τ2l)2)τ1k(1 + (1− τ1k)(1− log τ1k + log τ2k)2)
(M4(bl)− (M2(bl))2)(M4(bk)− (M2(bk))2) .

(7)

4.2 Graphs of Variance calculation of TFisher statistic

In TFisher case, we only compare the simulation result with the theoretical one. We fix τ2

since τ2 is actually a scale parameter which does not affect the shape of the fitting line.

Figure 4.1 are τ1 vs variance with correlation fixed. We can find out the theoretical

method works fine when τ1 is small, but it tend to underestimate variance when τ1 approaches

to 1. This can be explained that we only take Z2 terms as approximation for Y.

When we fix τ1 and τ2 in Figure 4.2 and let polynomial decaying coefficient λ varies, we

would find the main departure is caused by τ1, especially when τ1 gets larger.
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Figure 4.1: Variance calculation of TFisher statistic under equal correlation. The τ1 pa-
rameter is chosen such that the theoretical calculation has large deviation from the sample
variance.
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Figure 4.2: Variance calculation of TFisher statistic under polynomial decaying correlation
with alternative. The τ1 parameter is chosen such that the theoretical calculation has large
deviation from the sample variance.

4.3 P-value calculation of TFisher statistic

Based on the shifted-mixed Gamma distribution in section 4.1.1, we can calculate p-value

by calculating parameters of p0, θ, k and s.

Shift parameter s is the gap of discontinuity of a general TFisher statistic. It can be
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estimated by

s = −2 log(fracτ1τ2)

p0 can be estimated by

p0 = P (Pi > τ, i = 1, ..., n)

which can be calculated by a multivariate normal distribution. k and θ are determined by

matching the first two moments, i.e.


µ = (1− p0)kθ + (1− p0)s

σ2 = (1− p0)(kθ2 + p0(kθ + s)2)
=⇒


k = (µ−s(1−p0))2

(1−p0)σ2−p0µ2

θ = (1−p0)σ2−p0µ2

(1−p0)(µ−s(1−p0))

For P-value calculation of TFisher statistic, the first horizontal part explain the p0 under

shifted-mix gamma distribution. An interesting pattern occurs when τ1
τ2

is relatively small(≤

0.1) also with high correlation.

This phenomenon can be explained by the construction of TFisher test statistic W. Recall

W =
n∑
i=1
−2 log

(
Pi
τ2

)
I(Pi < τ1) =

n∑
i=1

Yi

Assume τ1 is small, then if we want Pj ≤ τ1, since−2log( τ1
τ2

) ≤ −2log(Pj

τ2
), W would

increase at leat −2log( τ1
τ2

). Regarding to the Figure 4.3 and 4.4, if τ1 = 0.001, τ2 = 1, then

for one Pj satisfies Pj < τ1, W would have to increase gap = −2log( τ1
τ2

) = 13.8. When those

Pjs are highly correlated, then the gap would tend to occur at the value which is close to

n ∗ gap, n = 1, 2, 3, . . . .
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Figure 4.3: P-value calculation of TFisher statistic under equal correlation.
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Figure 4.4: P-value calculation of TFisher statistic under polynomial decaying correlation.

41



Chapter 5

Discussion and Further Improvement

Polynomial fitting would be always an efficient way to find the variance for TFisher statistic,

however it cannot guarantee the accuracy when τ(The truncation) is relatively small. An-

other concern is polynomial has its own shortcoming, especially for the order of correlation

part which would cause negative variance by inappropriately chosen.

For the theoretical method of variance calculation, it has been proved to be an improve-

ment comparing to the others. The problem for the theoretical method remain to be the

approximation form of Yi. How we determine the A such that we can get better estimate of

variance.

The theoretical method for TFisher statistic seems do not work well in variance calcula-

tion and the shift-mixed gamma distribution actually cannot be apply to find out the p-value

when there exists high correlation.

The shift-mixed gamma distribution is decent in three parameters cases. One way can

possibly improve the performance is add high order moments. Then we would have more

information to estimate the variance and further get more precise distribution of W.
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