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Abstract

This thesis presents a 6 degree of freedom (DOF) position and orientation tracking solution

suitable for pedestrian motion tracking based on 6DOF low cost MEMS inertial measure-

ment units. This thesis was conducted as an extension of the ongoing efforts of the Precision

Personnel Location (PPL) project at WPI. Prior to this work most of the PPL research

focus has been on Radio Frequency (RF) location estimation. The newly developed inertial

based system supports data fusion with the aforementioned RF system in a system currently

under development.

This work introduces a methodology for the implementation of a position estimation

system based upon a Kalman filter structure, constructed from industry standard inertial

sensor specifications and analytic noise models. This methodology is important because

it allows for both rapid filter construction derived solely from specified values and flexible

system definitions. In the course of the project, three different sensors were accommodated

using the automatic design tools that were constructed.

This thesis will present the mathematical basis of the new inertial tracking system fol-

lowed by the stages of filter design and implementation, and finally the results of several

trials with actual inertial data captures, using both public reference data and inertial cap-

tures from a foot mounted sensor that was developed as part of this work.
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Chapter 1

Introduction

This thesis develops a framework for the construction of an estimator for the motion of

a body observed by a 6 degree of freedom inertial measurement unit (IMU), comprising 3

gyroscopes and 3 accelerometers. The purpose of this work is to support the work being

done by the Precision Personal Location (PPL) project at Worcester Polytechnic Institute

(WPI). The project and thesis have been supported by grants from the U.S. Army Natick

Soldier Systems Center and the Department of Homeland Security. The overarching goal

of the project is to create an indoor tracking and navigation system for first responders

with the capability to locate their personnel in the case of injury and prevent them from

becoming disoriented. This thesis takes the project in a new direction by implementing an

inertial tracking element and the means to obtain a Kalman Filter estimator design directly

from IMU specifications.

1.1 Current PPL Radio Frequency System and Path Forward

The previous PPL radio frequency (RF) location system, which has been developed, is

described in [2]. For a discussion of the current progress on the project see [3, 5]. For an

example of how information from different location systems can be merged for improved

results see [7, 6].

Results typical of the RF based location system developed in the previous work can

be seen in Figure 1.1. The figure is captures the outcomes of a trial of the RF location

system, which utilizes σART [2]. In the test depicted, the mobile transmitter was moved

in a closed path inside a single family dwelling, crossing three rooms, with internal and
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external walls, shown as thick black lines. In the figure the blue squares indicate truth

points and the blue line, an approximate truth path. RF measurements were made by a set

of antennas surrounding the building and a set of synchronized receivers. Notice that the

errors, which may appear to be large at first, do not grow in time. This is because the errors

in the RF data set are largely caused by effects in the channel, either multipath or path

delays, and simple noise on the received signal, either due to external sources or receiver

front end electronics. The location estimates are only dependent on received signals at that

instance in time and hence position estimate errors are not cumulative. That is, the errors

are largely dependent on the position of the RF mobile unit and not the duration of time

that has passed since the beginning of the test, or distance traveled.

A similar test was performed with an inertial unit and the linear accelerations and rota-

tional velocity measurements were simply integrated (i.e. a strict application of Newtonian

Physics) obtaining results shown in Fig. 1.2. Notice that although the system starts with a

small error it grows rapidly throughout the test. This problem, the accumulation of error,

will be partially alleviated with additional information indicating moments of zero veloc-

ity which can be obtained by strapping the IMU to a foot and observing the moments of

the foot’s contact with the ground. These zero velocity updates (ZUPTS) allow a more

sophisticated estimator to track and correct for accumulated errors. In spite of this use of

ZUPTS, error residuals will still accumulate, eventually leading to path divergence. It is

our hope that with the addition of the RF based estimates, whose error does not grow with

time or distance traveled, this issue can be resolved.

The goal of the work documented in this thesis is to formulate a design process for inte-

grating navigation systems such that an Inertial Measurement Unit (IMU) based tracking

capability can be explored as a complement to our current RF based location tracking to

improve tracking performance. The two systems would appear to be very complementary,

as the RF systems error does not grow in the long term whereas an IMU based system’s

performance, though accurate in the short term, declines in the long term due to the ac-

cumulation of error. In this thesis we will be discussing primarily the implementation of a

Kalman structure estimation/filtering system capable of processing the inertial data pro-

vided by the IMU to obtain a navigation solution. Many of the previous works in this

field have been focused on designing systems and rely on tweaking them until they achieve

acceptable results. In this work we attempt to develop all system parameters from models

for the inertial sensor units that employ only published performance data, such as Allan
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Figure 1.1: Religious Center Radio Frequency System Results

variance curves, and eschew the manual adjustment of parameters.

1.1.1 The Flow of the Thesis

This thesis outlines the steps necessary to realize our concept of tracking an object

with the IMU from design to testing with actual data set examples. The IMUs chosen for

implementation of the system will be low cost Microelectromechanical systems (MEMS) in

a strap-down configuration, attached to the body we wish to track. We will achieve our

objective of tracking the body by creating a state space model of the entire system; the
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model’s framework is detailed in Chapter 2. We begin by defining the system movement in

Section 1.2 and how to represent its rotation in Chapter 3. This definition of motion will be

transformed into a linear discrete state space model in Chapter 4 through linearization and

discretization. Additionally we will create state space models for the IMU’s sensors from

their specified Allan Deviations in Chapter 5. We will discuss the processing technique we

will be using, the Kalman Filter, in Chapter 6. The method of combining our models for

motion and IMU measurements will be done in Chapter 7. Finally, results of this method

of modeling and processing will be shown in Chapters 8 and 10. A visual representation of

this flow can be seen in Figure 1.3

1.1.2 Motivation for the Flow of the Thesis

As previously stated, our goal is to design a system capable of taking an IMU’s mea-

surements and providing position estimates, which can be seen in Fig. 1.4.

For our work we will be specifically considering the group of IMUs commonly referred

to as six degree of freedom low-cost MEMS, like the ADIS16375 shown in Fig. 1.5.

The unit is said to have six degrees of freedom because it measures the three orthogonal

linear accelerations and the three orthogonal rotational velocities, which are shown in Figs.

1.6 and 1.7 respectively.

This unit will be implemented in a strap down configuration, attached to the body we

wish to track. In order to be able to cancel many of the errors the system accumulates we

will be mounting the unit to the individual’s foot so that the unit experiences well defined

periods of zero motion, when the foot is planted on the floor. We call these periods Zero

Velocity Updates (ZUPTs) and they have been shown to greatly increase tracking accuracy

[9]. An example unit in a strap down configuration on the foot can be seen in Fig. 1.8.

The system we will be implementing in order to process the measurements made by the

IMU is a Kalman Filter. The Kalman Filter uses an algorithm for finding the Minimum

Mean Squared Error estimator of a state space based signal in White Gaussian Noise. The

state space model is shown in Fig. 1.9 and discussed at length in Chapter 2.

Once a system a has been described by a discrete, linear, state space model the Kalman

Filter can simply be implemented to process data. The majority of this work, therefore,

will be in modeling our system as a discrete, linear, state space model. This will take

place in two major developments. The first is to describe the motions of the object with
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a set of continuous time nonlinear differential equations, which arises almost directly from

the definitions of motion. This comprises both the physical position of the object and the

rotation of its own, local, coordinate frame. Some focus will be needed on the description

of rotation because, as we shall see, it is not readily moved into a state space model. At

the end of this process we will have a model in the following form,

ẋxx = fff(t,xxx,yyy)

xxx is state of the system and

yyy is forcing function on the system.

By making a series of approximations we are going to be able to first linearize and then

discretize this nonlinear continuous time model into a linear discrete time model. The final

system model form will be that of the Kalman Filter’s state space system,

xxx[i+ 1] = ΦΦΦ[i]xxx[i] + ΓΓΓ[i]uuu[i] + ΛΛΛ[i]www[i].

The make up of this equation can be seen in Fig. 1.10.

The other half of the problem is building a model for the measurements made by sensors

such as the IMU. In this regard there are two general issues that we need to deal with.

Starting with a generic measurement model of the following form,

ζ[i] = g[i, x[i]] + µ[i]

g is some, potentially nonlinear function, that ‘observes’ current state and

µ is some measurement error/noise.

We are going to have to reformulate this into the expected state space form of,

z[i] = HHH[i]xxx[i] + n[i].

To achieve this formulation we will need to first linearize the function g and then build a

model for the noise µ, noting that the noise may not, and most likely will not, be the White

Gaussian Noise required of n. The linearization process is carried out much like it was for

the motion describing system, using an estimated point x̃xx. To formulate the noise model

however we will be using a technique based on the observation that most IMU based sensors

have similar noise characteristics that we can identify from their Allan deviation/variance

plots. From these characteristics we will be able to identify a sequence of linear discrete
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time models that will allow our system to track the non-Gaussian portions of the noise, an

example characterization can be seen in Fig. 1.11.

The result will be a noise model composed of three basic types; bias walk, β, flicker

noise, κ, and WGN, n. The entire observation process is shown in Fig. 1.12.

Our final system can be visualized as comprising all the components shown in Fig.

1.13.

1.2 System Description

The core of this thesis is dedicated to the development and implementation of a strap-

down inertial tracking system. That is the Inertial Measurement Unit (IMU) is physically

strapped onto the object of interest, a first responder in our case. So by tracking the motion

of the IMU we also track the motion of the first responder. Because the unit moves with

first responder we must track its current coordinate frame C` in reference to our own C so

we can properly relate its measurements.

We are interested in tracking the motion of the object, who’s path is taken to be ppp(t),

through a coordinate frame C, attached to a house for instance. This body will be observed

by accelerometers so its motions are expanded through Newtonian physics to include a

differential description of acceleration, the process is listed in (1.1).

ṗ̇ṗp(t) = vvv(t) (1.1a)

v̇̇v̇v(t) = aaa(t) (1.1b)

ȧ̇ȧa(t) = jjj(t) (1.1c)

In these equations ppp(t) denotes position, vvv(t), velocity, aaa(t), acceleration, and jjj(t), jerk.

Attached and moving with the body is the sensor package in a local coordinate frame, C`,
which is characterized by its current position, ppp(t), and rotation, SSS(t), in relation to the

global coordinate system C. The two coordinate frames can be seen in Fig. 1.14, with the

x̂, ŷ, ẑ being used to denote the axes with respect to the coordinates x(t), y(t), z(t) are

measured. An example IMU sensor can be seen in Fig. 1.15.

Observations of the local coordinate frame, denoted by their ` subscript, can be converted

to their global coordinate frame equivalents, with no subscript, by the following equations.
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SSS(t)(v`v`v`(t)) = vvv(t) (1.2a)

SSS(t)(a`a`a`(t)) = aaa(t) (1.2b)

SSS(t)(j`j`j`(t)) = jjj(t) (1.2c)

(1.2d)

The IMU in the local coordinate frame makes measurements of the local acceleration and

rate of rotational change or angular velocity. From the IMU’s measurements we hope to be

able to track the body’s position through the integration of these measured quantities.

The sensor inherently measures physical effects from the Earth’s rotation and gravita-

tional potential gradient along with unknowable errors, referred to as noise. Acceleration

due to gravity is expected from the equivalence principal of physics and is also dependent

on the local variations in gravity. The effects of the rotation of the Earth and by extension

our coordinate frames C and C`, the Coriolis effect, causes a constant rotation to be mea-

sured by the gyroscopes. These effects are described on page 99 of [1]. The effect of gravity

will need to be tracked but on the scale of time, velocity, and distance with which we will

be dealing, the effects of Earth’s rotation can and will be ignored in order to simplify the

system. The resulting sensor dynamics of our system will be described in Eq. (1.3).

1.2.1 IMU Measurements

The IMU takes measurements of the current acceleration in the local frame, ζ̃ζζ(t), and

the current rotation rate,
˜̇
SSS`(t).

ζζζ(t) = a`a`a`(t) +SSS(t)−1
(

0
0
g

)
+ µ̆µµ (1.3a)

˜̇S`
˜̇S`
˜̇S`(t) = Ṡ`Ṡ`Ṡ`(t) + µ̆µµ (1.3b)

The noise, µµµ, is discussed in Chapter 5.

The rotational dynamics are described by

Ṡ̇ṠS(t) = SSS(t)
(
Ṡ`Ṡ`Ṡ`(t)

)
.

We will instead track the inverse rotation SSS(t)−1, which when written in matrix form is the

matrix transpose as we will see in Chapter 3.

Ṡ̇ṠS(t)
t

= Ṡ`Ṡ`Ṡ`(t)
t
SSS(t)t (1.4)
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The dynamics and conversions between coordinates for the system can be found in Eq.

(1.1) and Eq. (1.2) with the additional identity Eq. (1.4).

1.3 Conventions

Throughout the thesis we will be following a static set of conventions. Acronyms will

be defined as they come up and additionally a complete list is provided in Table 1.1. Math-

ematical conventions are listed in Table 1.2 and Table 1.3 with the following notes and

exceptions:

1. Vectors will be represented as bold lowercase letters and will be represented by column

matrices.

2. Matrices will be represented by bold capital letters.

3. Functions will be defined so as to indicate their range and domain: their name implying

their range and their input variables defining their domain, see the table for examples.

4. Fraktur lettering, A, B, a, b, will be used to emphasize that one or more of the

parameters is a function, as without their prior definitions the function f and the real

variable f would look identical.

5. After a function f(t) is defined it will be referred to as f when the function itself is

implied and f(t) when an evaluation is implied. For example, g(f(t)) is the function g

evaluated at the evaluation of f at t, whereas G(f) is the evaluation of the functional,

G, at the function f . The exception to this rule is in the taking of partial derivatives;

if a function is given by FFF (r(t)) = r(t)2 then in the expression ∂FFF
∂r it is clear that

the derivative is in terms evaluated function r(t) not the function itself, r, so in our

case ∂FFF
∂r (a) = 2a. The partial may also be shortened to a subscript FFF r(a), which is

different from the notation for indexing only in the variable used. Variable overlap is

avoided to mitigate this potential confusion.

6. A fully indexed vector, matrix, or function may drop its bold typeface in order to

emphasize that it is a singleton.

7. In order to reduce the number of variables various ‘decorations’ are used, their form

and description can be found in Table 1.3.
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8. In particular the use of the breve accent, x̆xx, needs mention attention. This is used

whenever a particular variable has been reduced to a set of indices which are relevant.

For example if a vector xxx contains a set of subindices, aaa, having to do with a particular

subsystem in discussions, relating to that subsystem, x̆xx may be used to indicate only

those portions of xxx, x̆xx = xxxaaa.

9. Decorations may be stacked with meaning derived from the bottom up. So ˜̇xxx is an

estimate of the derivative of xxx whereas ˙̃xxx is the derivative of the estimate.

10. The script variant ` of l will be used as a subscript at some points to indicate a local

coordinate system version of a variable and is not meant as index into a vector or a

matrix.

11. The subscript 0 will be used to describe a unique variable and should not be confused

with an index subscript and in many cases an initial value is implied, as in xxx0. Also

t, used always as ‘time’, possess the special property that whenever it has a subscript

it is a new variable and never a vector, so t1 and t2 are two different times and never

in reference to a vector ttt.

3D 3 Dimensions

IMU Inertial Measurement Unit

MEMS Microelectromechanical systems

pdf Probability Density Function

PPL Precision Personal Location

RF Radio Frequency

WGN White Gaussian Noise

WPI Worcester Polytechnic Institute

ZUPT Zero Velocity Update

Table 1.1: Table of Acronyms

We will now begin by describing the general state space model we will be using.
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Real Numbers R

n-dimensional Real Space Rn

n×m Matrix Space Rn×m

Vector xxx, yyy, λλλ

Matrix AAA, QQQ, ΞΞΞ

Identity Matrix III

Zero Matrix 000

Transpose ·t

Column Indexed AAAj , AAAj,:

Row Indexed AAA:,k, xxxk, xk

Column and Row Indexed AAAj,k, Aj,k

Function f(t) implies f : R→ R

Vector Valued Function fff(t) implies f : R→ Rn

Matrix Valued Function ΞΞΞ(t) implies f : R→ Rn×m

Function of Vectors f(xxx) implies f : Rn → R

Expected Value E(X) is the Expected Value of X

Functionals J(f) implies J : (R→ R)→ R

where f : R→ R

Time Derivative df
dt (t) = ḟ(t)

Partial Derivative ∂f
∂a (t) = fa(t)

Indexed Vector Function fff(t)k

Vector Derivative ∂fff
∂xxx (xxx) =


∂fff
∂x1

(xxx)1
∂fff
∂x2

(xxx)1 ···
∂fff
∂x1

(xxx)2
∂fff
∂x2

(xxx)2 ···

...


Discrete Functions f [n], fff [n], FFF [n]

Table 1.2: Table of Math Conventions
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Figure 1.2: Religious Center Simple Inertial System Results
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Figure 1.3: Flow of the Thesis

Figure 1.4: Basic Design Goal

Figure 1.5: The Analog Devices ADIS16375 Inertial Measurement Unit
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Figure 1.6: Local Accelerations

Figure 1.7: Local Rotational Velocities
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Figure 1.8: Example of MEMS IMU in Foot Mounted Strap Down Configuration Shown
here Attached to the RF Location Unit
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Figure 1.9: State Space Model

Ordinary Variable x

Estimate x̃

Mean x̄

Time Derivative ẋ

Subindexed x̆

Unit Axis x̂

Table 1.3: Table of Variable Decorations
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Figure 1.10: Physical System’s State Space Model Breakup

Figure 1.11: Components of IMU Sensor Noise Base on Allan Variance from ieeestd
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Figure 1.12: Observation Model
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Figure 1.13: Visualization of Total System
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Figure 1.14: Coordinate Frames

Figure 1.15: The Navchip sensor
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Chapter 2

State Space Model

In order to process the data provided by the IMU we will need to use some sort of tech-

nique for the integration of the navigation equations and estimation of position, orientation,

and sensor errors. Data processing is an incredibly large field with an almost innumerable

number of such techniques. For our discussion we will be using the Kalman Filter, one of

the most commonly employed methods implemented within the area of IMU based local-

ization. For an example of such a system see [9]. The Kalman Filter uses a linear discrete

state space model which can be written in the following form:
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i = 0, · · · , η (2.1a)

xxx[i+ 1] = ΦΦΦ[i]xxx[i] + ΓΓΓ[i]uuu[i] + ΛΛΛ[i]www[i] (2.1b)

zzz[i+ 1] = HHH[i+ 1]xxx[i+ 1] +nnn[i+ 1] (2.1c)

xxx[0] ∈ Rk (2.1d)

xxx[i+ 1] ∈ Rk (2.1e)

ΦΦΦ[i] ∈ Rk×k (2.1f)

ΓΓΓ[i] ∈ Rk×j (2.1g)

uuu[i] ∈ Rj (2.1h)

ΛΛΛ[i] ∈ Rk×l (2.1i)

www[i] ∈ Rl (2.1j)

zzz[i+ 1] ∈ Rm (2.1k)

HHH[i+ 1] ∈ Rm×k (2.1l)

nnn[i+ 1] ∈ Rm (2.1m)

E(xxx[0]) = x̄xx[0] (2.1n)

E
(
(xxx[0]− x̄xx[0]) (xxx[0]− x̄xx[0])t

)
= PPP 0 (2.1o)

E(www[i]) = 000 (2.1p)

E
(
www[i]www[i]t

)
= QQQ[i] (2.1q)

E(nnn[i+ 1]) = 000 (2.1r)

E
(
nnn[i+ 1]nnn[i+ 1]t

)
= RRR[i+ 1] (2.1s)

Where xxx[0], www[i], and nnn[i+ 1] are unknown White Gaussian Noise (WGN) processes while

the functions zzz, uuu, ΦΦΦ, ΓΓΓ, ΛΛΛ,HHH,QQQ,RRR, along with the mean initial state x̄xx[0] and its covariance

matrix PPP 0, are all known.
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2.1 Two Dimensional Example

To capture the general idea of what is being suggested by this model we can start with

a two dimensional system. The matrices for this example will be as follows,

x̄xx[0] =

 1

−1


PPP 0 =

2 1

1 3


ΦΦΦ =

1 1
2

0 1


ΓΓΓuuu =

−1

−1


ΛΛΛ = III

QQQ =

1 0

0 1
2

 .

As the different components of the system come into play both the probability density

function, what is known about the system, and an example realization, that is, a single

point associated with the density function, will be shown. For this example the initial

state of the system is estimated to be x̄xx[0] with the covariance matrix PPP 0, but the actual

realization is at the point [1.5,−0.5]. The example’s xxx[0] probability density function, shown

as a sequence of three contours of equal probability, and true value, a single realization of

this random variable, are shown in Figure 2.1.

The system then goes through an update step, from Eq. (2.1b), which is made up of three

parts. They are, a homogeneous update, ΦΦΦxxx, and two inhomogeneous displacements, one

due to the known forcing function, ΓΓΓuuu, and the other due to an unknown forcing function,

ΛΛΛwww. The first, the homogeneous update, expresses how the system naturally evolves and

can be seen in Figure 2.2. While the actual system is moved to a new point both the mean

and the shape of the covariance of our knowledge about the system change through this
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Figure 2.1: Initial Value of xxx at time 0

part of the update. The new values are,

x̄xx[1] =

 1
2

−1


E
(
(xxx[1]− x̄xx[1]) (xxx[1]− x̄xx[1])t

)
=

33
4 21

2

21
2 3


xxx[1] =

11
4

−1
2

 .

This update can also be seen in the following diagram.
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Figure 2.2: Value of xxx at time 1 with no forcing (Homogeneous)

Figure 2.3: Homogeneous Update

The next part of the update is the addition of a known forcing term ΓΓΓuuu, here [−1,−1].

This force is known so it changes both the mean and the actual state by the same amount

and as there is no uncertainty, it therefore does not effect the covariance. The results of our
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update can be seen in Figure 2.4. The new values are,

x̄xx[1] =

−1
2

−2


E
(
(xxx[1]− x̄xx[1]) (xxx[1]− x̄xx[1])t

)
=

33
4 21

2

21
2 3


xxx[1] =

 1
4

−11
2

 .

Figure 2.4: Value of xxx at time 1 with known forcing

This update is included in the following diagram.
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Figure 2.5: Update with Known Forcing

The system is also moved by another forcing function, this time the unknown forcing

term ΛΛΛwww. As shown in Figure 2.6 we know it to have zero mean and the covariance matrix

of QQQ but it has a realization, here
[
0, 1

2

]
. This pushes the state of the system in some

direction, but with only its covariance known we can only add it to the current uncertainty.

This can be seen in Figure 2.7.

x̄xx[1] =

−1
2

−2


E
(
(xxx[1]− x̄xx[1]) (xxx[1]− x̄xx[1])t

)
=

43
4 21

2

21
2 31

2


xxx[1] =

 1
4

−11
2

 .

This update is included in the following diagram.

Figure 2.8: Update with Forcing
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Figure 2.6: Unknown Forcing

After the system has been updated we make a measurement, from Eq. (2.1c), of the

actual state of the system, here both x1 and x2. This measurement is corrupted by some

unknown noise taken here to have a covariance matrix

1 0

0 8

 . This is shown in Figure

2.9.

This update and the observation model are shown in the following diagram.
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Figure 2.7: Value of xxx at time 1 (all forcing)

Figure 2.10: Update and Observation Model
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Figure 2.9: Observation, zzz at time 1
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Chapter 3

Quaternions and their applications

to the rotation tracking problem

Our description of the motions of the body from Section 1.2 included a rotation operator.

In order to construct a state space system we will need to represent this rotation as a vector.

To do this it will be necessary to take a short look at rotations to understand why this is

perhaps one of the most important adaptations we will have to make to accomodate our

system to the linear vector space structure of the state space model needed for Kalman filter

processing. This problem, of representing a group with elements of Rn is called charting.

3.1 Rotations

A rotation in 3 dimensions (3D) is a 3D linear transform and, therefore, has a 3 × 3

matrix associated with it. These matrices form what is called the Special Orthogonal

Group, SO(3), a subgroup of all orthogonal 3 × 3 matrices, the Orthogonal Group, O(3).

An orthogonal matrix is one which possesses an inverse given by its transposes.

AAA−1 = AAAt

O(3) is a group closed under matrix multiplication.

If AAA,BBB ∈ O(3)

Then AAA ·BBB ∈ O(3)
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Additionally, O(3) is a Lie Group within which we can find a connected subgroup, the

matrices with determinant 1, SO(3). SO(3) is also a Lie Group with an associated Lie

Algebra, so(3), related to the group through exponentiation. so(3) can be represented by

the set of all 3 × 3 matrices which are skew symmetric, that is their transpose is their

additive inverse.

AAAt = −AAA

The exponential map is the standard matrix one.

exp (AAA) = I +

∞∑
n=1

AAAn

n!

The Lie Algebra is a group under the bracket product,

AAA ∈ so(3),BBB ∈ so(3)

[AAA,BBB] ∈ so(3),

where the bracket product is uniquely defined to be,

[AAA,BBB] = AAA ·BBB −BBB ·AAA.

If SSS(t) is a differentiable rotation function then its derivative, Ṡ̇ṠS(t), is an element of so(3).

In this work we will be using Rotation Quaternions to solve the problem of charting the

rotations in such a way as to achieve simplest implementation.

3.2 Quaternions

Quaternions are elements of R4, Rotational Quaternions, which we will be using, are

those which are on the unit sphere, that is they have length 1 [12]. Quaternions form a

double cover for SO(3) and are what is called the Spin Group, S3. They are a double cover

because for every rotation in SO(3) there is a ‘positive’ and ‘negative’ rotation quaternion.

Quaternions have additional properties which we will not be using. For their use in our

problem we will need a way to rotate a 3-space vector as implied by an element of the

Rotation Quaternions and a differential relationship similar to Eq. (1.4).

Though not expressly needed, it will also be useful to be able to transform a 3 × 3

matrix representation of a rotation into a quaternion. So given a rotation matrix, SSS =



32

(
S11 S12 S13
S21 S22 S23
S31 S32 S33

)
, one of the two quaternions in the double cover, qqq = (q0, q1, q2, q3), can be

found by the following equation from [12].

q0 =
1

2

√
S11 + S22 + S33 + 1 (3.1a)

q1 =
S23 − S32

4q0
(3.1b)

q2 =
S31 − S13

4q0
(3.1c)

q3 =
S12 − S21

4q0
(3.1d)

Given a quaternion qqq = (q0, q1, q2, q3) we can transform it back into the rotation matrix

with the following formula, also from [12].

SSS(qqq) = 2


q2

0 + q2
1 − 1

2 q1q2 + q0q3 q1q3 − q0q2

q1q2 − q0q3 q2
0 + q2

2 − 1
2 q2q3 + q0q1

q1q3 + q0q2 q2q3 − q0q1 q2
0 + q2

3 − 1
2

 (3.2)

If SSS(t) is given by the differential form Ṡ̇ṠS(t) =

(
0 x −y
−x 0 z
y −z 0

)
SSS(t) then the following is the

quaternion differential form from [12].

q̇̇q̇q(t) =


0 −x −y −z
x 0 z −y
y −z 0 x

z y −x 0

qqq(t) (3.3)

3.3 Advantages of the Quaternion Rotation Representation

Along with Quaternions a few other common choices for charting SO(3) were examined

during the early stages of this research. Amongst them Quaternions were chosen as a com-

promise between the problems associated with the various charting options. The charting

methods originally examined were:

‘Vectorizing’: That is to simply treat the 9 elements of the matrix as elements of a vector

in R9.

Quaternions: Using Rotation Quaternions as already discussed

Euler Angles: Using one of the many different Euler angle representations.
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‘Vectorizing’ Quaternions Euler Angles

Closure rrr +www = S̃̃S̃S = UUUΣΣΣVVV ∗ rrr +www = qqq Closed

→ UUUVVV ∗ → qqq
|qqq|

Differential Form

(
0 x −y
−x 0 z
y −z 0

)
SSS

(
0 −x −y −z
x 0 z −y
y −z 0 x
z y −x 0

)
qqq

(
1 sin (φ) tan (θ) cos (φ) tan (θ)
0 cos (φ) − sin (φ)
0 sin (φ) sec (θ) cos (φ) sec (θ)

)(
x
y
z

)
Table 3.1: Comparison of Different Charts

With these three methods there are two major difficulties.

Closure: The filter will be taking the originally charted value, rrr, and adding updates, www.

The result of this, rrr+www, should also lie within the chart. That is the chart should be

closed under the addition of elements from the vector space it lies in.

Differential Form: Converting the derivative of the rotation matrix to the derivative of

the chart with the least complexity.

It is clear that adding updates to the ‘Vectorization’ based representation may not result in

an orthogonal and unit determinant matrix, so the ‘Vectorization’ method will not lead to

closure. In order to find the ‘closest’ rotation matrix to rrr+www we will need to perform, what

is called, the polar decomposition, requiring a singular value decomposition. Quaternions

have the same issue, as only quaternions of unit length are rotation quaternions. But in

order to find the closest rotation quaternion will only require dividing by the quaternion’s

length. Thus there is a computational benefit to using the quaternion approach over ‘Vec-

torization’. Euler Angles are closed under the additive operator and thus have the greatest

computational benefit for this situation.

We have seen the differential form for a rotation matrix and quaternions. The differential

form for an example Euler angle representation can be found in [12] and is significantly more

complicated due to the nonlinear functions involved in the execution.

The difficulties of the various charting methods, closure and differential form, are shown

in 3.1. We will be using quaternions because, as it has been seen, although they are not

always the simplest to manipulate, they are never the most difficult.
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Chapter 4

Physical System Model

We have defined our physical system enough to formulate it as a state space system as

defined in Eq. (2.1), with the block diagram shown in Fig. 4.1

Figure 4.1: Update and Observation Model

In order to perform the various mathematical manipulations in this section we made
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extensive use of the tool MapleTM from MapleSoftTM in order to generate both the formulas

seen in this chapter and those used in other segments of the implementation code.

The breve accent, x̆, is used here to denote that all the states defined here are only in

reference to the physical system, as described in Eqs. (1.1) and (1.4), and there will be

additional states defined later. Additional states used for tracking various sensor effects will

be added in Chapter 5.

4.1 Nonlinear Continuous System

The current system model is a combination of equations from previous chapters.

ṗ1(t) =v1(t) (4.1a)

ṗ2(t) =v2(t) (4.1b)

ṗ3(t) =v3(t) (4.1c)

v̇1(t) =a1(t) (4.1d)

v̇2(t) =a2(t) (4.1e)

v̇3(t) =a3(t) (4.1f)

ȧ1(t) =j1(t) (4.1g)

ȧ2(t) =j2(t) (4.1h)

ȧ3(t) =j3(t) (4.1i)

ġ(t) =0 (4.1j)

q̇0(t) =− 1/2ω1(t)q1(t) +−1/2ω2(t)q2(t) +−1/2ω3(t)q3(t) (4.1k)

q̇1(t) =1/2ω1(t)q0(t) + 1/2ω3(t)q2(t) +−1/2ω2(t)q3(t) (4.1l)

q̇2(t) =1/2ω2(t)q0(t) +−1/2ω3(t)q1(t) + 1/2ω1(t)q3(t) (4.1m)

q̇3(t) =1/2ω3(t)q0(t) + 1/2ω2(t)q1(t) +−1/2ω1(t)q2(t) (4.1n)

ω̇1(t) =α1(t) (4.1o)

ω̇2(t) =α2(t) (4.1p)

ω̇3(t) =α3(t) (4.1q)

(4.1r)
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Here ωωω is the local rotational velocity, ṠSS`(t) =

(
0 ω1(t) −ω2(t)

−ω1(t) 0 ω3(t)
ω2(t) −ω3(t) 0

)
, and ααα is the local

rotational acceleration ω̇ωω(t) = ααα(t). The system of equations in Eq. (4.1) can be reduced

to a single vector system of differential equations.

˙̆ẋ̆ẋ̆x(t) = fff(t, x̆̆x̆x(t), yyy(t)),

where the states are

x̆̆x̆x = [p1, p2, p3, v1, v2, v3, a1, a2, a3, g, q0, q1, q2, q3, ω1, ω2, ω3] (4.2)

and the forcing functions are

yyy = [j1, j2, j3, α1, α2, α3]. (4.3)

The system is defined with these states with the IMU’s measurement capabilities in mind.

The IMU measures local acceleration and local rotational velocity so acceleration and ro-

tational velocity must appear as states in the filter. Global acceleration, instead of local

acceleration, is defined because the goal of the filter is track the system in the global coor-

dinate frame.

The rotational velocities ωωω(t) are defined in relation to the local coordinate frame as

shown in Fig. 4.2.

4.2 Linearization

The first step in putting this problem in the form of a state space system model is to

linearize it about an assumed operating point. That is, given the estimate [˜̆xxx, ỹyy], we make

the approximation

˙̆ẋ̆ẋ̆x(t) = fff
(
t, ˜̆x̃̆x̃̆x(t), ỹ̃ỹy(t)

)
+FFF ·

(
x̆̆x̆x(t)− ˜̆x̃̆x̃̆x(t)

)
+LLL ·

(
yyy(t)− ỹ̃ỹy(t)

)
FFF =

∂fff

∂xxx

(
t, ˜̆x̃̆x̃̆x(t), ỹ̃ỹy(t)

)
LLL =

∂fff

∂yyy

(
t, ˜̆x̃̆x̃̆x(t), ỹ̃ỹy(t)

)
,

where FFF and LLL are the partial derivative matrices of fff(t) relative to the operating point

values.
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Figure 4.2: Rotational Velocities

The partial derivative matrices for our system relative to the state and forcing function
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variables are given as,

FFF =



0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1/2ω1 −1/2ω2 −1/2ω3 −1/2 q1 −1/2 q2 −1/2 q3

0 0 0 0 0 0 0 0 0 0 1/2ω1 0 1/2ω3 −1/2ω2 1/2 q0 −1/2 q3 1/2 q2

0 0 0 0 0 0 0 0 0 0 1/2ω2 −1/2ω3 0 1/2ω1 1/2 q3 1/2 q0 −1/2 q1

0 0 0 0 0 0 0 0 0 0 1/2ω3 1/2ω2 −1/2ω1 0 −1/2 q2 1/2 q1 1/2 q0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


,

(4.4)

LLL =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

(4.5)
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4.3 Discretization

The system is now prepared to be discretized on the intervals [ti, ti+1]. For simplicity

we will assume that the matrices FFF , LLL, and the vectors fff
(
t, ˜̆x̃̆x̃̆x(t), ỹ̃ỹy(t)

)
, ˜̆x̃̆x̃̆x(t), ỹ̃ỹy(t), yyy(t) are

constant on the interval. This continuous system will be discetized to obtain a sampled-time

representation given by FFF [i], LLL[i], fff [i], ˜̆x̃̆x̃̆x[i], ỹ̃ỹy[i], yyy[i] respectively. The discrete values of xxx[i]

will evolve according to the difference function

x̆̆x̆x[i+ 1] = Φ̆̆Φ̆Φ[i]x̆̆x̆x[i] + ΞΞΞ[i]
(
fff [i]−FFF [i]˜̆x̃̆x̃̆x[i]

)
+ ΞΞΞ[i]LLL[i](yyy[i]− ỹ̃ỹy[i]).

From pages 79-85 of [16] we have the following formula for calculating the matrices Φ̆̆Φ̆Φ[i] and

ΞΞΞ[i], assuming the forcing functions are constant across the time increment.

ε[i] = ti+1 − ti

Φ̆̆Φ̆Φ[i] = exp (FFF [i]ε[i])

ΞΞΞ[i] = Φ̆̆Φ̆Φ[i]

∫ ε[i]

0
exp (−FFF [i]τ)dτ

For numerical reasons we will be approximating these matrices with their Taylor series of

order 1. For our system ε ∼ 1
100 so ε2 ∼ 1

10000 and the tracked object will never be moving

fast enough for this or future terms to have a substantial impact.

Φ̆̆Φ̆Φ[i] ≈ III +FFF [i]ε[i]

ΞΞΞ[i] ≈ IIIε[i]
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In our case

Φ̆̆Φ̆Φ =



1 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 ε 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 ε 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 ε 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 ε 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 ε 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1/2 ε ω1 −1/2 ε ω2 −1/2 ε ω3 −1/2 ε q1 −1/2 ε q2 −1/2 ε q3

0 0 0 0 0 0 0 0 0 0 1/2 ε ω1 1 1/2 ε ω3 −1/2 ε ω2 1/2 ε q0 −1/2 ε q3 1/2 ε q2

0 0 0 0 0 0 0 0 0 0 1/2 ε ω2 −1/2 ε ω3 1 1/2 ε ω1 1/2 ε q3 1/2 ε q0 −1/2 ε q1

0 0 0 0 0 0 0 0 0 0 1/2 ε ω3 1/2 ε ω2 −1/2 ε ω1 1 −1/2 ε q2 1/2 ε q1 1/2 ε q0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


.

(4.6)

4.4 Gaussian Uncertainty

If we assume that x̆̆x̆x[0] is a multivariate Gaussian random vector and that

E(x̆̆x̆x[0]) = ¯̆x̄̆x̄̆x[0]

E
((
x̆̆x̆x[0]− ¯̆x̄̆x̄̆x[0]

) (
x̆̆x̆x[0]− ¯̆x̄̆x̄̆x[0]

)t)
= P̆̆P̆P 0

and that yyy[i] is also a multivariate Gaussian random vector

E(yyy[i]) = ỹ̃ỹy[i]

w̆̆w̆w[i] = yyy[i]− ỹ̃ỹy[i] (4.7)

E
(
w̆̆w̆w[i]w̆̆w̆w[i]t

)
= Q̆̆Q̆Q[i]

Then we may rewrite our system as

x̆̆x̆x[i+ 1] = Φ̆̆Φ̆Φ[i]x̆̆x̆x[i] + Γ̆̆Γ̆Γ[i]ŭ̆ŭu[i] + Λ̆̆Λ̆Λ[i]w̆̆w̆w[i], (4.8)

where the new matrices are defined

Γ̆̆Γ̆Γ[i] =

ΞΞΞ[i] 000

000 ΞΞΞ[i]FFF [i]

 (4.9)
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Λ̆̆Λ̆Λ[i] = ΞΞΞ[i]LLL[i] (4.10)

and the forcing function ŭ̆ŭu[i] is defined

ŭ̆ŭu[i] =
[
fff [i],−˜̆x̃̆x̃̆x[i]

]
. (4.11)

We have the beginnings of a state space system as described in (2.1).

4.5 Nonlinear Observations

Any observations of global frame’s variables made within the local coordinate frame,

specifically those made by the IMU, will be nonlinear, as they observe the product of the

current rotation and global frame’s variables. In general we have a nonlinear observation

corrupted by WGN nnn[i],

ζζζ[i] = ggg[i,xxx[i]] +nnn[i].

Using our approximate value for xxx, x̃xx, we can make the linear approximation,

ζζζ[i] = ggg[i,xxx[i]] +HHH[i] ·
(
xxx[i]− x̃xx[i]

)
+nnn[i],

where

HHH[i] =
∂ggg

∂xxx
[i, x̃̃x̃x[i]] (4.12)

Reorganizing this to become

ζζζ[i]− ggg[i, x̃̃x̃x[i]] +HHH[i]x̃̃x̃x[i] = HHH[i]xxx[i] +nnn[i].

we can recognize the form for zzz[i] from Eq. (2.1c) and define it to be

zzz[i] = ζζζ[i]− ggg[i, x̃̃x̃x[i]] +HHH[i]x̃̃x̃x[i] (4.13)

We now have the Linear Observation equation from (2.1c)

The result of the Chapter can be seen in the following block diagram.
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Figure 4.3: Linearized and Discritized System with Nonlinear Observation
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Chapter 5

Modeling Sensor Noise

Up until this point we have been discussing the physical system we wish to model. Recall,

from (1.3), that the IMU measures the physical properties of the system with additional

noise. It is the goal of this chapter to discuss noise found on each of the signals from the

3 accelerometers and 3 gyroscopes of the IMU and a strategy of how to model it. The

strategy for constructing a noise model is taken from Section 19.6 of [1].

5.1 Allan Variance

The statistic of interest for the IMU’s sensors, usually provided by the manufactures’

data sheets, is Allan Variance. The Allan Variance of a signal x(t) for a given averaging

interval ε is given by (5.1)

σ2(x, ε) =
1

2ε2
E

((∫ ε

0
x(s)ds−

∫ 2ε

ε
x(s)ds

)2
)

(5.1)

When the square root of this quantity, the Allan Deviation, is plotted on a log-log scale

various types of noise can be isolated and estimated. These types are determined by their

slope in the log-log Allan Deviation plot, per the recommendations of [1], and are named in

Table 5.1 along with a set of estimated values for an inertial sensor unit from the Intersense

company, the Navchip isnc01-000.
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5.2 Our Sensor

The specific IMU we used in this work, the Navchip isnc01-000 made by InterSense Inc.

[10], has 3 accelerometers and 3 gyroscopes. For each of these we will construct a noise

model.

5.2.1 Gyroscope Noise

From the data sheet we can find the specified Allan Deviation plot, shown in Figure

5.11. From this plot we can estimate the three dominant noise sources in the sensor using

a straight edge.

Figure 5.1: Navchip isnc01-000 gyroscope Allan Deviation

Our model for the noise is three distinct stochastic processes,

z̆[i] = χ[i] + β[i] + κ[i] + n̆[i], (5.2)

1This and other information about the Navchip isnc01-000 used with the permission of the Intersense
company
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Gaussian Noise Flicker Noise Bias Walk

log-log Allan Deviation Slope −1
2 0 1

2

Estimated 1s Value rad
s .5e− 4 .5e− 4 .12e− 5

Table 5.1: Table of Gyroscope Allan Deviation Values and estimated values for a Navchip
isnc01-000

where n̆ is the Gaussian noise, β is the bias walk, κ is the flicker noise, χ is the desired

quantity, and z is the measurement returned by the sensor.

Starting with the Gaussian noise we can identify the specific models for each of these

processes and their associated WGN variances. The Gaussian noise will be a WGN process

defined in (5.3).

E(n̆[i]) = 0 (5.3a)

E
(
n̆[i]2

)
=
q2

ε
(5.3b)

σ(n̆, ε) =
q√
2ε

(5.3c)

Here σ is the square root of the Allan variance, the Allan deviation, found in Table 5.1. We

can plug in ε = 1 s and solving for q, the deviation of the WGN process, q = .7071067810e−
4.

This noise is purely Gaussian and will be the n̆ term of observation equation (2.1c).

Similarly we may model the bias walk.

β̆[i+ 1] = β̆[i] + y[i] (5.4a)

E(y[i]) = 0 y[i] GWN (5.4b)

E
(
y[i]2

)
= b2ε (5.4c)

σ
(
β̆, ε
)

=
b
√
ε√
2

(5.4d)

Again by plugging in ε = 1 we can solve for b, the deviation of the WGN process which

is driving the bias walk, b = .1697056274e− 5. This noise source, β̆, will have to be tracked

as an additional state in our system.

The final noise source, flicker noise, is more complicated. For this particular noise we

will not be formulating it as a single noise source, but as the combination of multiple colored
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Figure 5.2: Sample Colored Noise Allan Deviation

noise sources. A colored noise source is defined in Eq. (5.5) in accord with the development

on page 123 of [11].

ṁ(t) = −c1m(t) + c1c2p(t) (5.5a)

p is WGN autocovariance δ(t) (5.5b)

E(m(t)m(τ)) =
c1c

2
2

2
exp (−c1 |t− τ |) (5.5c)

σ(m, ε) = 1/2
√

2

√
c2

2 (−3 + 4 e−c1ε + 2 c1ε− e−2 c1ε)

c1
ε−1 (5.5d)

An example of the Allan deviation log-log plot for colored noise with values c1 = 6E − 2,

c2 = 5E − 4 is shown in Fig. 5.2.

For the Gyros we will be approximating the flicker region, from 1 s to 1000 s as estimated

with a straight edge, with a colored noise processes placed evenly in the region. Like the

bias walk noise, each colored noise processes will need its own state in the system. The final
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system repesenting the gyroscope measurements is

x̆xx[i+ 1] =

 1 0

0 e−0.05984800888 ε

 x̆xx[i] + w̆ww[i] (5.6a)

E(w̆ww[i]w̆ww[i]) =

[
2.879999997 × 10−12 ε−1 0

0 0.0000000007851212103 ε

]
(5.6b)

z̆[i] = ω +
[

1 1
]
x̆xx[i] + n̆ (5.6c)

E
(
n̆[i]2

)
= 0.000000002499999998 ε−1 (5.6d)

Figure 5.3: Simulation model for gyroscope derived in Section 5.2.1 shown in the form of a
Noise Allan Deviation Plot

All of the noise processes can be seen plotted together in Figure 5.3 with the resulting

combined process Allan Deviation Plot.



48

Gaussian Noise Flicker Noise Bias Walk Colored Noise

log-log Allan Deviation Slope −1
2 0 1

2

X Estimated 1s Value m/s2

s .49e− 3 .22e− 3 .39e− 4 0

Y Estimated 1s Value m/s2

s .49e− 3 .22e− 3 .78e− 4 0

Z Estimated 1s Value m/s2

s .49e− 3 .22e− 3 .11e− 4 1

Table 5.2: Table of Accelerometer Allan Deviation Values

5.2.2 Accelerometer Noise

In the same way as the gyroscope sensor’s noise model was developed in the last section,

we may generate a noise model for the accelerometers.

Figure 5.4: Navchip isnc01-000 accelerometer Allan Deviation

As can be seen in Figure 5.4 each of the accelerometers is significantly different and each

is going to need its own specific model. These models may designed just as the gyroscope
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noise model was with the values specified in Table 5.2. The models for the X and Y

accelerometers can be approximated without the addition of colored noise models because

there is a sufficiently small flat region in their characteristic curves.

The resulting models are shown in equations (5.7), (5.8), and (5.9)

x̆xx[i+ 1] =
[

1
]
x̆xx[i] + w̆ww[i] (5.7a)

E(w̆ww[i]w̆ww[i]) =
[

0.000000003079555198 ε−1
]

(5.7b)

z̆[i] = a+
[

1
]
x̆xx[i] + n̆ (5.7c)

E
(
n̆[i]2

)
= 0.0000002405902499 ε−1 (5.7d)

x̆xx[i+ 1] =
[

1
]
x̆xx[i] + w̆ww[i] (5.8a)

E(w̆ww[i]w̆ww[i]) =
[

0.00000001231822078 ε−1
]

(5.8b)

z̆[i] = a+
[

1
]
x̆xx[i] + n̆ (5.8c)

E
(
n̆[i]2

)
= 0.0000002405902499 ε−1 (5.8d)

x̆xx[i+ 1] =

 1 0

0 e−0.04886703347 ε

 x̆xx[i] + w̆ww[i] (5.9a)

E(w̆ww[i]w̆ww[i]) =

 0.0000000002328913620 ε−1 0

0 0.00000001194390519 ε

 (5.9b)

z̆[i] = a+
[

1 1
]
x̆xx[i] + n̆ (5.9c)

E
(
n̆[i]2

)
= 0.0000002405902499 ε−1 (5.9d)

The resulting model’s Allan Deviations can be seen in Figure 5.5
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Figure 5.5: Simulation Model for Accelerometer Derived in Section 5.2.2 shown in the form
of a Noise Allan Deviation Plot
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Chapter 6

Kalman Filter

We will work here to present a discussion of the Kalman Filter from an understanding of

Optimal Control Theory. This work, though self standing can be a little oblique at times;

for reference see Appendix A for a very similar construction in continuous time, where

some concepts are more readily available. This development is believed to present a novel

perspective of the Kalman Filter Derivation.

6.1 Problem Description

Consider a state space system as described in (2.1) with the additional requirement that

ΦΦΦ[i] be invertible, that is that the system is reversible. Given an initial condition, xxx[0],

and the pair of inputs, (www,nnn), the system is fully determined with xxx defined, leaving the

identity nnn[i+ 1] = zzz[i+ 1] −HHH[i+ 1]xxx[i+ 1]. Consider the probability densities of each of

the variables defined as follows.

p(xxx[0]) =
1

(2π)
k
2 |PPP 0|

1
2

exp

(
−1

2
(xxx[0]− x̄xx[0])tPPP−1

0 (xxx[0]− x̄xx[0])

)

w(www) =

η∏
i=0

1

(2π)
l
2 |QQQ[i]|

1
2

exp

(
−1

2
www[i]tQQQ[i]−1www[i]

)

n(nnn) =

η∏
i=0

1

(2π)
m
2 |RRR[i+ 1]|

1
2

exp

(
−1

2
nnn[i+ 1]tRRR[i+ 1]−1nnn[i+ 1]

)
These random variables are independent so the joint probability density is simply the prod-

uct of the marginal densities.

p(xxx[0],www,nnn) = p(xxx[0])w(www)n(nnn)
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Our goal, then, is to maximize this joint probability, to find the most likely series of events.

By making the substitution nnn[i+ 1] = zzz[i+ 1] −HHH[i+ 1]xxx[i+ 1] we may reformulate our

problem of maximizing p into a problem of minimizing (6.1) by applying a logarithmic

transformation of the joint probability and eliminating constants which do not contribute

to the minimization.

c(www,xxx) = (xxx[0]− x̄xx[0])tPPP−1
0 (xxx[0]− x̄̄x̄x0)

+

η∑
i=0

www[i]tQQQ[i]−1www[i]

+

η+1∑
s=1

(zzz[s]−HHH[s]xxx[s])tRRR[s]−1 (zzz[s]−HHH[s]xxx[s])

(6.1)

The system’s dynamics from (2.1b) can be written as constraints in the form

F (www,xxx)y,i+1 = −x[i+ 1]y + ΦΦΦ[i]yxxx[i] + ΓΓΓ[i]yuuu[i] + ΛΛΛ[n]ywww[i] = 0 (6.2)

We have now phrased our problem in the context of Convex Analysis and can use the

conditions for an optimal solution of an ordinary convex program from Theorem 28.3 on

page 281 of [15].

000 ∈ {∂c + Υ1,1∂F1,1 + · · ·+ Υy,i+1∂Fy,i+1 + · · ·Υk,η+1∂Fk,η+1} (6.3)

Here ∂ indicates the subdifferential, an extension of the concept of differentiation for convex

functions. The subdifferential is a set valued, function but here, because our functions are

continuous, it is simply the partial derivative in terms of all inputs.

ΥΥΥ ∈ Rk×η+1 is called a Kuhn-Tucker vector, though in this context, where constraints are all

equalities, is is also more commonly known as the vector of Lagrangian multipliers. Instead

of finding a solution which minimizes c and meets the constraints of FFF , we must find a

solution which meets both the constraints of FFF , Eq. (6.2), and a Kuhn-Tucker vector, ΥΥΥ,

that meets the condition of Eq. (6.3).

6.2 Solution

To find the solution to the problem we begin by expanding the partial derivatives of c

so we can illuminate the structure of the result,

∂c =

[
∂c

∂xxx[0]
,
∂c

∂xxx[1]
, · · · , ∂c

∂xxx[i]
, · · · , ∂c

∂xxx[η + 1]
,
∂c

∂www[1]
, · · · , ∂c

∂www[i]
, · · · , ∂c

∂www[η]

]
.
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This is a vector in Rk(η+1)+lη. Each component is expanded below.

∂c

∂xxx[0]
= −2x̄xx[0]tPPP−1

0 + 2xxx[0]tPPP−1
0

∂c

∂xxx[s]
= −2zzz[s]tRRR[s]−1HHH[s] + 2xxx[s]tHHH[s]tRRR[s]−1HHH[s] s = 1, 2, · · · , η + 1

∂c

∂www[i]
= 2www[i]tQQQ[i]−1 i = 0, 1, · · · , η

Similarly we may expand the constraint functions, inserting zeros where no dependence is

found.

∂Fy,i+1 =

[
· · · , 0, ∂Fy,i+1

∂xxx[i]
,
∂Fy,i+1

∂xxx[i+ 1]
, 0, · · · , 0, ∂Fy,i+1

∂www[i]
, 0, · · ·

]
The partial derivative of the FFF function in terms of xxx[i+ 1] is a vector of zeros except at

the kth position, where it is −1.

∂Fy,i+1

∂xxx[i+ 1]
= (0, 0, · · · , 0,−1, 0, · · · 0)

∂Fy,i+1

∂xxx[i]
=ΦΦΦ[i]y

∂Fy,i+1

∂www[i]
=ΛΛΛ[i]y

Multiplying everything from Eq. (6.3) by −1
2 , absorbing it into ΥΥΥ where possible, will

simplify the result, a very similar step can be found in Appendix A.

The partial derivatives are all the same length and so they sum term-wise. For example,

∂c + Υ1,1∂F1,1 =

[
∂c

∂xxx[0]
+ Υ1,1

∂F1,1

∂xxx[0]
, · · · , ∂c

∂www[η]
+ Υ1,1

∂F1,1

∂www[η]

]
Partial derivatives taken in terms of xxx[0] are

from c, (x̄xx[0]− xxx[0])tPPP−1
0

from Fy,1, −Υy,1ΦΦΦ[1]y

otherwise, 0.

Partials taken in terms of xxx[r], r = 1, 2, · · · , η are

from c, (zzz[r]−HHH[r]xxx[r])tRRR[r]−1HHH[r]

from Fy,r, Υy,r (0, 0, · · · , 0,−1, 0, · · · , 0)

from Fy,r+1, Υy,r+1ΦΦΦ[r]y.



54

Partials taken in terms of www[i], i = 0, 1, · · · , η are

from c, −www[i]tQQQ[i]−1

from Fy,i+1, Υy,i+1ΛΛΛ[i]y.

From this we can solve for an optimal estimate of www[i], w̃ww[i], in terms of an optimal estimate

of ΥΥΥ, Υ̃ΥΥ, by examining elements of the combined vector which are dependant on www[i].

In order to satisfy Eq. (6.3)

−w̃ww[i]tQQQ[i]−1 +

k∑
y=1

Υ̃y,i+1ΛΛΛ[i]y = 000.

This simplifies to

w̃ww[i] = QQQ[i]ΛΛΛ[i]tλ̃λλ[i+ 1],

where

λ̃λλ[s] =
(

Υ̃1,s, Υ̃2,s, · · · , Υ̃y,s, · · · , Υ̃k,s

)
.

The same logic can be applied to solving for the parts created by the partial derivatives in

terms of xxx[r], r = 1, 2 · · · , η to find the optimal estimate of x̃xx[r].

(zzz[r]−HHH[r]x̃xx[r])tRRR[r]−1HHH[r]− λ̃λλ[r] + λ̃λλ[r + 1]
t
ΦΦΦ[r] = 0

So λ̃λλ[r] is governed by the difference equation

λ̃λλ[r + 1] = ΦΦΦ[r]−1t
(
λ̃λλ[r]−HHH[r]tRRR[i]−1 (zzz[r]−HHH[r]x̃xx[r])

)
. (6.4)

From the partial in xxx[0] we get the initial condition for the optimal estimates

λ̃λλ[0] = PPP−1
0 (x̃xx[0]− x̄xx[0]) . (6.5)

From the partial in xxx[η + 1] we get the final state condition

λ̃λλ[η + 1] = HHH[η + 1]tRRR[η + 1]−1 (zzz[η + 1]−HHH[η + 1]x̃xx[η + 1]) . (6.6)

We will define the special matrices which relate how a different initial condition x̃xx[0] would

change the current final states of x̃xx[s] and λ̃λλ[s],

ΞΞΞ[s] =
∂λ̃λλ[s]

∂x̃xx[0]
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ΨΨΨ[s] =
∂x̃xx[s]

∂x̃xx[0]
.

These matrices obey the update equations

ΞΞΞ[i+ 1] = ΦΦΦ[i]−1t
(
ΞΞΞ[i] +HHH[i]tRRR[i]−1HHH[i]ΨΨΨ[i]

)
(6.7)

ΨΨΨ[i+ 1] = ΦΦΦ[i]ΨΨΨ[i] + ΛΛΛ[i]QQQ[i]ΛΛΛ[i]tΞΞΞ[i+ 1], (6.8)

with the initial conditions

ΞΞΞ[0] = PPP−1
0 (6.9)

ΨΨΨ[0] = III. (6.10)

Let
˜
xxx,

˜
λλλ be the optimal solution to the above equations up at the time s−1 (the decoration

under the variable is used here to differentiate it from the optimal estimate at time s). That

is, the final state is, from Eq. (6.6),

˜
λλλ[s− 1] = HHH[s− 1]tRRR[s− 1]−1 (zzz[s− 1]−HHH[s− 1]

˜
xxx[s− 1]) ,

the next step of the system will be

˜
λλλ[s] = 0.

At time s, however, when we receive a new observation we will need to change the control

so that it is an optimal estimate for the time s. That is

λ̃λλ[s] = HHH[s]tRRR[s]−1 (zzz[s]−HHH[s]x̃xx[s]) (6.11)

We will achieve this by making an adjustment to
˜
xxx[0] of x́xx0 and carrying its impact through

to the end states.

x̃xx[0] =
˜
xxx[0] + x́xx0

ΞΞΞ[s]x́xx0 = HHH[s]tRRR[s]−1 (zzz[s]−HHH[s]
˜
xxx[s]−HHH[s]ΨΨΨ[s]x́xx0)

x́xx0 =
(
ΞΞΞ[s] +HHH[s]tRRR[s]−1HHH[s]ΨΨΨ[s]

)−1
HHH[s]RRR[s]−1

· (zzz[s]−HHH[s]
˜
xxx[s])

Given this correction to x̃xx[0] we will need to adjust the previous value for
˜
xxx[s] to its corrected

form x̃xx[s].

x̃xx[s] =
˜
xxx[s] + ΨΨΨ[s]x́xx0
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We can extract the Kalman Filter’s equations by defining some additional matrices. The

notation here is partially borrowed from [16].

The covariance estimate update is given by

PPP (+)[i] = ΨΨΨ[i]
(
ΞΞΞ[i] +HHH[i]tRRR[i]−1HHH[i]ΨΨΨ[i]

)−1
. (6.12)

The covariance estimate extrapolation is given by

PPP (−)[i+ 1] = ΦΦΦ[i+ 1]tPPP (+)[i]ΦΦΦ[i+ 1] + ΛΛΛ[i+ 1]QQQ[i+ 1]ΛΛΛ[i+ 1]t. (6.13)

Notice this can be expressed as

PPP (−)[i+ 1] = ΨΨΨ[i+ 1]ΞΞΞ[i+ 1]−1. (6.14)

And the covariance estimate update can also be expressed by

PPP (+)[i+ 1] =
(
PPP (−)[i+ 1]−1 +HHH[i+ 1]tRRR[i+ 1]−1HHH[i+ 1]

)−1
. (6.15)

So then

ΨΨΨ[s]
(
ΞΞΞ[s] +HHH[s]tRRR[s]−1HHH[s]ΨΨΨ[s]

)−1
HHH[s]RRR[s]−1

can be written as (
PPP (−)[s]−1 +HHH[s]tRRR[s]−1HHH[s]

)−1
HHH[s]RRR[s]−1.

Using the binomial matrix inversion theorem, specifically a block matrix inversion property,

this simplifies to the Kalman gain equation,

KKK[s] = PPP (−)[s]HHH[s]t
(
HHH[s]PPP (−)[s]HHH[s]t +RRR[s]

)−1
(6.16)

which simplifies our update step to

x̃xx[s] =
˜
xxx[s] +KKK[s]

(
zzz[s]−HHH[s]

˜
xxx[s]

)
. (6.17)

6.3 Advantage of Our Derivation

The above derivation gives us a definition for the matrix PPP [s] which is not based on the

notion of covariance but instead based on the relationship between the problem and its dual.

This means we can track PPP [s] with the equations (6.13) and (6.15) even in the event where

we use non-optimal Kalman gain matrix, or perform non-optimal updates. Also tracking
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the entire system (λλλ[s],xxx[s]) can allow one to perform more infrequent updates as all the

observation information is contained in λλλ. By applying an update at the end of the interval

that fixes λλλ to its optimal estimate we can correct for all the stored measurements in the

interval.

The primary advantage that we will be trying to exploit is its potential to correct

linearization errors in the past with future data. To see an example of how this methodology

could achieve this see Appendix B.
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Chapter 7

Total System Framework

It is now possible to bring the ideas discussed in the previous chapters into one frame-

work. We have defined the components of the system from the Newtonian physical system

model in Chapter 4 and the various noise models in Chapter 5. These subsystems will be

merged into one total system with additional discussion provided where needed.

7.1 Total System

We define the state variables of the total system,

[p1, p2, p3, v1, v2, v3, a1, a2, a3, g, q1, q2, q3, q4, ω1, ω2, ω3, b1, c1, b2, c2, b3, c3, b4, b5, b6, c6]t ,

where [p1, · · · , ω3] comprises from the physical system model Eq. (4.2), [b1, c1] comprises

the noise states for the x-gyroscope, [b2, c2] comprises the noise states for the y-gyroscope,

and [b3, c3] comprises the noise states for the z-gyroscope, all from Eq. (5.6), [b4] is the

noise state for the x-accelerometer described in Eq. (5.7), [b5] comprises the noise state

for the y-accelerometer described in Eq. (5.8), [b6, c6] comprises the noise states for the

z-accelerometer described in Eq. (5.9). The x-gyroscope, y-gyroscope, and z-gyroscope

measure the rotational velocities ω1, ω2, and ω3 respectively. The x-accelerometer, y-

accelerometer, and z-accelerometer measure the acceleration in the directions x̂`, ŷ`, and ẑ`

respectively.

In total the system has 27 states, 17 for the Newtonian physics portions and 10 for the

various noise models. These subsystems are not connected so when we combine them ΦΦΦ has
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a block diagonal form.

ΦΦΦ =



ΦΦΦ1···17,1···17 000 000 000 000 000 000

000 ΦΦΦ18···19,18···19 000 000 000 000 000

000 000 ΦΦΦ20···21,20···21 000 000 000 000

000 000 000 ΦΦΦ22···23,22···23 000 000 000

000 000 000 000 Φ24,24 0 000

000 000 000 000 0 Φ25,25 000

000 000 000 000 000 000 ΦΦΦ26···27,26···27


,

where the submatrices are defined

ΦΦΦ1···17,1···17 = Φ̆ΦΦ from Eq. (4.6) (7.1a)

ΦΦΦ18···19,18···19 = ΦΦΦ20···21,20···21

= ΦΦΦ22···23,22···23

= Φ̆ΦΦ seen in Eq. (5.6a)

(7.1b)

Φ24,24 = Φ̆ΦΦ seen in Eq. (5.7a) (7.1c)

Φ25,25 = Φ̆ΦΦ see in Eq. (5.8a) (7.1d)

ΦΦΦ26···27,26···27 = Φ̆ΦΦ seen in Eq. (5.9a). (7.1e)

The forcing function ΓΓΓuuu is completely defined in Eqs. (4.9) and (4.11) as there are no

additional components needed from the discussion of the noise states discussed in Chapter

5.

ΓΓΓ =

Γ̆ΓΓ

000

 from Eq. (4.9) (7.2a)

uuu = ŭuu from Eq. (4.11) (7.2b)

Just as for the sensor noise states, shown in the Allan Deviation plots, the model for the

Newtonian systems ‘innovation’ noise may be sample rate dependent. We will first define

the sample rate and use a simple WGN process to model the innovation.

7.2 Sample Rate

When choosing a sample rate for the filter we must consider a couple of things. Choosing

a sample rate which is too small, that is, samples are too infrequent, will result in inaccu-

racies from the assumptions made during the discretizations of the continuous system in
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Chapter 4. On the other hand increasing the sample rate increases the amount of compu-

tation we need to do. For our filter we will be using the IMU’s sample rate, for example

200Hz in some of the cases we treated. Typically greater than 100Hz will be fast enough to

keep the discretization errors small according to the assumptions in Chapter 4.

7.3 System Innovation

With the sample rate defined we are ready to define the system’s ‘innovation’ noise,

ΛΛΛwww. From Eq. (4.10) and Eq. (4.7) we find definitions of Λ̆ΛΛw̆ww but we will need to discusses

what their physical meaning is and what appropriate values for the covariance matrix Q̆QQ

are. Recall from the definition of yyy from Eq. (4.3) that the physical quantities that we must

model are jerk and rotation acceleration, jjj and ααα respectively. Based on some knowledge

about the types of objects we intend on tracking we can develop the following rudimentary

model.

The system’s jerk we assume to be a zero mean WGN, with a 1σ value of 6 m
s3

. That is

to say that approximately 68% of the time we expect the system to be staying within one

half the jerk of going from not accelerating to free fall. For rotational acceleration we will

again apply a simple WGN model, zero mean with a 1σ value of π rad
s . These numbers are

chosen based on observations of both real data and filter performance.

With these models and Eqs. (5.6b), (5.7b), (5.8b), and (5.9b) we are ready define the

matrices ΛΛΛ and QQQ.

ΛΛΛ =



000 000 000 000 000 000 000 000 000

000 ΛΛΛ7···9,1···3 000 000 000 000 000 000 000 000

000 000 000 000 000 000 000 000 000

000 000 000 ΛΛΛ15···17,4···6 000 000 000 000 000 000

000 000 000 000 ΛΛΛ18···19,7···8 000 000 000 000 000

000 000 000 000 000 ΛΛΛ20···21,9···10 000 000 000 000

000 000 000 000 000 000 ΛΛΛ22···23,11···12 000 000 000

000 000 000 000 000 000 000 Λ24,13 0 000

000 000 000 000 000 000 000 0 Λ25,14 000

000 000 000 000 000 000 000 000 000 ΛΛΛ26···27,15



(7.3)
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ΛΛΛ7···9,1···3 = ΛΛΛ15···17,4···6

= III
(7.4a)

ΛΛΛ18···19,7···8 = ΛΛΛ20···21,9···10

= ΛΛΛ22···23,11···12

= III

(7.4b)

Λ24,13 = Λ25,14

= 1
(7.4c)

ΛΛΛ26···27,15 = III (7.4d)

QQQ =



QQQ1···3,1···3 000 000 000 000 000 000 000

000 QQQ4···6,4···6 000 000 000 000 000 000

000 000 QQQ7···8,7···8 000 000 000 000 000

000 000 000 QQQ9···10,9···10 000 000 000 000

000 000 000 000 QQQ11···12,11···12 000 000 000

000 000 000 000 000 Q13,13 0 000

000 000 000 000 000 0 Q14,14 000

000 000 000 000 000 000 000 QQQ15···16,15···16


(7.5)

QQQ1···3,1···3 = 100 · III (7.6a)

QQQ4···6,4···6 = π2 · III (7.6b)

QQQ7···8,7···8 = QQQ9···10,9···10

= QQQ11···12,11···12

= E(w̆wwtw̆ww) from Eq. (5.6b)

(7.6c)

Q13,13 = E(w̆tw̆) from Eq. (5.7b) (7.6d)

Q14,14 = E(w̆tw̆) from Eq. (5.8b) (7.6e)

QQQ15···16,15···16 = E(w̆wwtw̆ww) from Eq. (5.9b) (7.6f)

7.4 Observation/Measurement Stacking

At each time index i there is often many different observations/measurements being

made so it will be helpful to discuss them each individually and then, later, combine them

together. For instance the IMU measures certain quantities at contiguous discrete moments

but the idea of a Zero Velocity Update (ZUPT), discussed later in Section 8.2, extends for
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an entire time interval, while we may only get infrequent position updates. We can stack

two sub measurements at a time i by combining their respective matrices/vectors.

Consider two observations,

uuu =AAAxxx+ n̆nn,E(n̆nnn̆nnt) = PPP

vvv = BBBxxx+ n̆nn,E(n̆nnn̆nnt) =QQQ.

These two can be combined into one observation

zzz = [uuu,vvv]

HHH =

AAA
BBB


RRR =

PPP 000

000 QQQ

 .

Given more observations this process can be repeated.

When we define an observation it is with this understanding that we will later be able

to combine it with others to form a single measurement at each time i. That is we could

define gyroscope measurements, accelerometer measurements, and position measurements,

with the understanding that at time i we may make make one combined measurement of

accelerometers and gyroscopes but not position, and then at time i + 1 we may combine

accelerometers and position but not gyroscopes, without needing to define a separate H

matrix for each of these 7 combinations.

7.5 Gyroscope Measurements

The gyroscopes each measure one of the angular velocities directly and its noise states

with a simple linear equation. The x-gyroscope, for example, measures ω1 with the following

form

z̆ = ω1 + b1 + c1 + n̆,
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which can be represented in the following form,

HHH1···14 = 000

H15 = 1

HHH16···17 = 000

HHH18···19 = [1, 1] seen in Eq. (5.6c)

HHH20···27 = 000

RRR = R̆RR = E
(
n̆2
)

from Eq. (5.6d).

We may construct a similar sets of equations for all the gyroscopes and combine them all

into one larger gyroscope measurement.

HHH =
(

000 HHH15···17,1···3 HHH18···23,1···3 000
)

(7.7)

HHH15···17,1···3 = III (7.8a)

HHH18···23,1···3 =


1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

 (7.8b)

RRR =


R1,1 0 0

0 R2,2 0

0 0 R3,3

 (7.9)

R1,1 = R2,2

= R3,3

= E
(
n̆2
)

from Eq. (5.6d)

(7.10)

These two matrices define how we observe local rotational velocity with the gyroscopes.

7.6 Accelerometer Measurements

The three accelerometer’s measurements are more complicated as they measure the local

acceleration, as opposed to the tracked, global ones, in addition to gravity and their own
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noise states. Their observations, ζ1 for the x-accelerometer, ζ2 for the y-accelerometer, and

ζ3 for the z-accelerometer from Eq. (1.3a) are as follows,

ζζζ = aaa` +SSS ·
(

0
0
g

)
+ µ̆µµ,

From Eq. (1.2b) we can replace aaa` with the global, tracked, acceleration.

ζζζ = SSS · aaa+SSS ·
(

0
0
g

)
+ µ̆µµ

Recalling that the matrix SSS is represented by SSS(qqq)t, recalling that we track the inverse

rotation, from Eq. (3.2)

ζζζ = SSS(qqq)t ·
(
aaa+

(
0
0
g

))
+ µ̆µµ.

We have a model of the noise states for each individual accelerometer from Section 5.2.2

which we will use to replace µ̆µµ.

ζζζ =RRR(qqq) ·
(
aaa+

(
0
0
g

))
+

(
b4
b5

b6+c6

)
+nnn (7.11)

This is a nonlinear observation and is linearized through Eq. (4.13) using the current esti-

mates of the states.

zzz = ζζζ −RRR(q̃qq) ·
(
ãaa+

(
0
0
g̃

))
+

(
b̃4
b̃5

b̃6+c̃6

)
+HHHx̃xx+nnn, (7.12)
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where

HHHt =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

2 x̃11
2 − 1 + 2 x̃12

2 2 x̃12x̃13 − 2 x̃11x̃14 2 x̃12x̃14 + 2 x̃11x̃13

2 x̃12x̃13 + 2 x̃11x̃14 2 x̃11
2 − 1 + 2 x̃13

2 2 x̃13x̃14 − 2 x̃11x̃12

2 x̃12x̃14 − 2 x̃11x̃13 2 x̃13x̃14 + 2 x̃11x̃12 2 x̃11
2 − 1 + 2 x̃14

2

2 x̃12x̃14 − 2 x̃11x̃13 2 x̃13x̃14 + 2 x̃11x̃12 2 x̃11
2 − 1 + 2 x̃14

2

4 x̃11x̃7 + 2 x̃14x̃8 − 2 x̃13 (x̃9 + x̃10) −2 x̃14x̃7 + 4 x̃11x̃8 + 2 x̃12 (x̃9 + x̃10) 2 x̃13x̃7 − 2 x̃12x̃8 + 4 x̃11 (x̃9 + x̃10)

4 x̃12x̃7 + 2 x̃13x̃8 + 2 x̃14 (x̃9 + x̃10) 2 x̃13x̃7 + 2 x̃11 (x̃9 + x̃10) 2 x̃14x̃7 − 2 x̃11x̃8

2 x̃12x̃8 − 2 x̃11 (x̃9 + x̃10) 2 x̃12x̃7 + 4 x̃13x̃8 + 2 x̃14 (x̃9 + x̃10) 2 x̃11x̃7 + 2 x̃14x̃8

2 x̃11x̃8 + 2 x̃12 (x̃9 + x̃10) −2 x̃11x̃7 + 2 x̃13 (x̃9 + x̃10) 2 x̃12x̃7 + 2 x̃13x̃8 + 4 x̃14 (x̃9 + x̃10)

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 1



. (7.13)

This observation has the additional WGN, nnn, with a covariance matrix,

RRR =


R1,1 0 0

0 R2,2 0

0 0 R3,3

 (7.14)

R1,1 = E
(
n̆2
)

from Eq. (5.7d) (7.15a)

R2,2 = E
(
n̆2
)

from Eq. (5.8d) (7.15b)

R3,3 = E
(
n̆2
)

from Eq. (5.9d). (7.15c)

This defines how the accelerometer observes the global accelerations and associated noise

states.
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7.7 Other Observations

We’ve seen an example of both a linear observation, in the gyroscopes’ measurements,

and nonlinear ones, in the accelerometers. Any other observations, usually specific to the

test or some devices not discussed, will be handled the same way. Additional instruments

may be added with any additional states ‘added’ in the same way the as the continuous

time model had states ‘added’ for the noise models of the gyroscopes and accelerometers.

7.8 Initial Value

We also need to formulate an initial value for the filter, the pair x̄xx[0], PPP 0. It is important

to get this value close to the correct value in order to get good linearizations going forward.

In order to initialze the filter we will be using three pieces of information, an estimate of the

units position, a set of samples of IMU data from the initial still period, and an estimate

of what we will call the ‘yaw’ angle. We assume that the initial point is known with an

uncorrelated WGN with a 2 cm standard deviation. The unit is initially sitting still for

the purpose of calibration so both its velocity and acceleration are zero with associated

covariance matrix of 1E−4 m2III. Gravity has been calculated for our location to have an

acceleration of approximately 9.8033 m
s2

, with a variance of
(
0.01m

s2

)2
.

To choose initial estimate for the rest of the states we will use the two additional pieces of

information, the mean of the samples from the IMU and the approximate direction the unit

is pointing in, ‘yaw’. The mean of the gyroscope measurements is assigned as all gyroscope

error with the variance taking into account the number of samples averaged, we tend to

overestimate the number as a ZUPT immediately follows the initialization the filter, has

enough time to come to its own asymptote, a typical value would be 8E − 10. To form

an estimate of the system’s orientation and accelerometer biases we will be borrowing a

concept from σ-point methods.

7.8.1 Short Introduction to σ-point Methodology

In order to approximate a variable yyy that is related to some WGN vector vvv, PPP =

E
(
(vvv − v̄vv) (vvv − v̄vv)t

)
, through a function fff , yyy = fff(vvv), as WGN we can take two approaches.

Throughout the thesis we use a linear approximation for fff to update the covariance matrix,

so ȳyy = fff(v̄vv) and E
(
(yyy − ȳyy) (yyy − ȳyy)t

)
= FFF tPPPFFF where FFF = ∂fff

∂vvv (v̄vv). This works well as when
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the function fff is linear in a region large enough to transform the bulk of the probability

density of vvv. In cases where it is not but we still wish to estimate the result as a WGN

vector a better approximation can be made by using σ-point methods.

We will define the σ-points to the WGN vector vvv as,

ΩΩΩ:,1 = v̄vv

ΩΩΩ:,1+i = v̄vv +
√
PPP :,i

ΩΩΩ:,1+k+i = v̄vv −
√
PPP :,i.

Notice that all the information of the WGN vector is contained in these points. Their mean

is v̄vv and we can reconstruct the covariance matrix PPP with the following formula

PPP =
1

2

2k+1∑
i=1

(Υ:,i − v̄vv) (Υ:,i − v̄vv)t

With this in mind consider passing these σ-points through the function fff and then recon-

stituting the WGN model with their result. The effects of the nonlinearities of the function

have been better approximated by evaluating it at points one standard deviation away from

the mean.

ȳyy =
1

2k + 1

2k+1∑
i=1

fff(Υ:,i)

E(yyy − ȳyy) (yyy − ȳyy)t =
1

2

2k+1∑
i=1

(fff(ΩΩΩ:,i)− ȳyy) (fff(ΩΩΩ:,i)− ȳyy)t

7.8.2 Rotation and Bias Estimation

The nonlinear function fff from the previous method is realized here as a process. Starting

with an initial guess for the accelerometer errors we subtract them from the accelerometer

measurements, ζζζ. The result ζζζ − µ̆µµ is then taken to be completely due to gravity and is

normalized to form the estimate, −˜̂z`. The estimated y-axis, ˜̂y` must lie in the plane per-

pendicular to this and so is completely characterized by a single angle, which we are calling

‘yaw’. With this angle given we have fully specified the local coordinate frame’s rotation

and thus have an estimate for the current orientation quaternion, q̃qq. Once the rotation is

solved for we can go back and estimate the errors associated with this by subtracting the

rotated gravity from the accelerometer measurements,

˜̆
bbb = ζζζ −SSS(q̃qq)t

(
0
0
g

)



68

We make the initial assumption that the accelerometer biases are 0 with a standard deviation

of .2 and that the initial measurement for the yaw has a standard deviation of π
8 , values

found in practice. Using these as σ-points for the initial guesses we calculated the estimated

mean and covariance for the initial point of the filter.

The process is a little complicated so an example follows.

Consider an initial yaw estimate of 0 and an accelerometer measurement of

ζζζ = [−0.0234,−0.0938, 9.7656] .

We combine these into a vector

vvv = [0,−0.0234,−0.0938, 9.7656]

and assign it a covariance matrix,

PPP =


(
π
8

)2
0 0 0

0 (.2)2 0 0

0 0 (.2)2 0

0 0 0 (.2)2

 .

This gives us the σ-points

ΩΩΩ =


0 π

8 −π
8 0 0 0 0 0 0

0 0 0 0.2 −0.2 0 0 0 0

0 0 0 0 0 0.2 −0.2 0 0

0 0 0 0 0 0 0 0.2 −0.2


Taking the 5th point by way of example we will step through the process.

First we subtract the initial estimate of the error from the measurement

[−0.0234,−0.0938, 9.765]− [−.2, 0, 0] = [−0.2234,−0.0938, 9.765] .

We then normalize this to

[−0.0229,−0.0096, 0.9997] .

Assuming that this corresponds to the −ẑ direction along with the current estimate for the

yaw 0 we find the rotation matrix to be,

RRRt =


0.9997 0.0000 −0.0229

−0.0002 1.0000 −0.0096

0.0229 0.0096 0.9997


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This is turned into a estimate of the quaternion (if this quaternion is more than 1 unit away

from the first one we pick the ‘negative’, equivalent quaternion instead),

[q̃1, q̃2, q̃3, q̃4] = [0.9999,−0.0048, 0.0114, 0.0001]

Finally we subtract the rotation of gravity from the measurements to formulate an estimate

of the sensors’ errors. [
b̃4, b̃5, b̃6

]
= [0.2008, 0.0003,−0.0346]

We repeat the process for all the original σ-points and construct the mean and covariance

between the current rotation estimate and accelerometer error.

7.8.3 Error Estimates to Noise State Estimates

The gyroscope and accelerometer noise states are assumed to start at 0 and have had

infinite time to settle to their current value. This makes all the bias walks zero mean WGN

with infinite variance. The colored noise states are also zero mean WGN noise but have

finite variance, c1c
2
2, found by letting ε = 0 in Eq. (5.5c). The estimate of error is treated

as a pseudo measurement of the sum of these quantities and some additional WGN; the

infinite variance of the bias walk results in all the error being assigned to it.
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Chapter 8

Small Scale Test and Zero Velocity

Updates

In order to demonstrate the performance of the filter we performed a small scale test,

capturing the data of a relatively simple set of motions.

8.1 Test Plan

The test was set up in two distinct parts. First is a sequence of motions designed to

aid the filter in estimating the various noise effects and initial states. This is an attempt

to reduce the covariance of various terms from the initialization as described in Section 7.8.

Immediately after these movements we begin a sequence that is designed to test the filter’s

ability to track motions.

For the test set up a desk was divided up into a grid of points with the addition of

a box at one point to provide height diversity. The desk with an overlay of the labeled

points is shown in Figure 8.1. The points’ measured coordinate values can be seen in Table

8.1. All the motions during the test are referenced to this grid. At the beginning and end

of each motion the unit is placed at one of these points. Each motion/step, therefore, is

characterized by the point at which it ends (the start point is implied from the previous

motion), the unit’s orientation it ends at, and how long the unit was left motionless before

the next movement was started. All the movements between points were performed as to

take as direct a path as possible with the notable exception of Step 20 in Table 8.3 wherein

the laptop used for data recording blocked the direct path and the unit had to travel around
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the screen. The unit was picked up and placed by hand and approximate timing was kept

through the use of a metronome.

Point X (m) Y (m) Z (m)

1 0.70 0.20 0.00

2 0.40 0.20 0.00

3 0.10 0.20 0.00

4 0.70 0.80 0.00

5 0.40 0.80 0.10

6 0.10 0.80 0.00

7 0.70 1.40 0.00

8 0.40 1.40 0.00

9 0.10 1.40 0.00

Table 8.1: Truth Points

8.1.1 System Calibration

The first part of the test is the sequence of movements designed to aid the system in

calibrating itself. These motions are enumerated in Table 8.2. Steps 1-4 are designed with

the intent of isolating accelerometer noise from gravity. Steps 5-8 are intended to aid in the

determination of the initial ‘yaw’ orientation, the direction the unit is facing. During each

of these steps the filter is provided with Zero Velocity Update (ZUPT) information when

the unit is not moving, and position observations as soon as the unit is set at rest.

8.1.2 Tracked Movements

Immediately after the calibration steps the system is carried through a sequence of

movements we wish to track. The path of movements can be seen in Figure 8.2 and each

step is enumerated in Table 8.3. During the 5 seconds of non-motion at each point the

filter is improved with Zero Velocity Update information but no position observations are

provided. In total the unit travels over 6.18 m and has a 0 m displacement from its original

point.
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Step Point Face Time (apprx)

1 1 1 30s

2 1 2 30s

3 1 3 30s

4 1 1 30s

5 2 1 5s

6 1 1 5s

7 4 1 5s

8 1 1 5s

Table 8.2: Calibration Sequence

Step Point Face Time (apprx)

9 2 1 5s

10 3 1 5s

11 6 1 5s

12 9 1 5s

13 8 1 5s

14 5 1 5s

15 7 1 5s

16 4 1 5s

17 5 1 5s

18 7 1 5s

19 4 1 5s

20 1 1 5s

Table 8.3: Tracked Sequence
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Figure 8.1: Table Layout with Point Labels Overlayed
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Figure 8.2: Tracked Movements
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8.2 Zero Velocity Updates

In order to aid the filters performance we will be providing it with information about the

periods of non-motion. This information is referred to as a Zero Velocity Update (ZUPT).

We have determined these periods of time by observing the original data collected by the

sensor and judging when the periods of rest occurred. An example of a ZUPTing period

can be seen in Figure 8.3.

Figure 8.3: Example ZUPT

During periods of ZUPTing the actual motion of the device is much more complicated

than what we can model simply and to mitigate this we have broken it into two parts. The

first part is a set of observations indicating that the system is not moving; we expect the

velocities, accelerations, and rotational velocities to be 0 with small variances. This is only

true, however, on the timescale of an entire ZUPT. In the small intervals of time that we are

sampling at we cannot expect the device to have such small motions. In Figure 8.4 we can

easily see a decaying sinusoidal response associated with a spring-mass system with friction,

which in this case is probably due to the swaying of the table on its legs. This second set of

observations will be made in lieu of the inertial observations discussed in Sections 7.5 and

7.6, these are shown in Eq. (8.4) and (8.5).

During each time increment during these intervals the filter is provided with a series of
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Figure 8.4: Small Movements during ZUPT

‘no motion’ observations. First the velocity of the system is observed to be 000,

zzz = [0, 0, 0] (8.1a)

HHH =
(
000 HHH4···6,1···3 000

)
HHH4···6,1···3 = III

(8.1b)

RRR = (0.0001)III. (8.1c)

Additionally the system is observed to be not accelerating,

zzz = [0, 0, 0] (8.2a)

HHH =
(
000 HHH7···9,1···3 000

)
HHH7···9,1···3 = III

(8.2b)

RRR = (0.00025)III. (8.2c)
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The system is also not rotating,

zzz = [0, 0, 0] (8.3a)

HHH =
(
000 HHH15···17,1···3 000

)
HHH15···17,1···3 = III

(8.3b)

RRR = (1E − 6)III. (8.3c)

The motions of the accelerometers and gyroscopes actually experienced is modeled as

WGN with a larger variance, to take into account the actual small time scale movements.

ζζζ = Acceleromter Measurements

ζζζ =RRR(qqq) ·
(

0
0
g

)
+

(
b4
b5

b6+c6

)
+nnn

(8.4a)

RRR = (0.01)III, (8.4b)

and

zzz = Gyroscope Measurements (8.5a)

HHH =
(
000 HHH18···23,1···3 000

)

HHH18···23,1···3 =


1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

 (8.5b)

RRR = (0.0025)III. (8.5c)

The idea here is similar to that encountered with respect to the systems described by an

Allan Variance; on the timescale of 2 − 5 seconds the variance for the ZUPT is different

from the variance seen on the 1
100 −

1
200 second scale.

8.2.1 Additional Adjustments

In the processing of the data there were some additional steps needed. During the Steps

1-4 as the sensor was rotated but not actually moved, the system estimated ‘phantom’

movements, see Figure 8.5 for an example of such a movement during Step 4. These are

caused by incorrect initial estimates of states. From the filter’s perspective however the

movements are real and it makes some incorrect judgments from them. These movements,



78

if real, when followed by a position estimate would allow one to estimate the ‘yaw’ angle. At

the end of the movement the filter does receive estimates of its current position and attempts

to uses them to estimate its ‘yaw’. The system has not actually moved so this measurement

is actually impossible which causes the filters attempt to be incorrect. To compound things

this also provides the filter with a phantom confidence in its ‘yaw’ estimate, limiting a

future measurement’s impact. To fix this at the end of Step 4 we add a ‘burst’ of variance

to the covariance matrix PPP . We take the current rotation quaternion estimate, perturb it by

±π
4 radians, a value effectively found through experimentation, and construct a covariance

matrix for these perturbations as discussed in Section 7.8. This covariance is added directly

to the current covariance matrix as a way to reassert the uncertainty in the ‘yaw’ that has

been erroneously removed by the ‘phantom’ movements. Additionally a measurement is

made of the current rotation quaternion with the initially estimated ‘yaw’, 0, to prevent

further linearization errors.

Figure 8.5: Phantom Movement in Step 4

8.3 Percent Error per unit Distance Traveled

As a metric for evaluating how well the filter performs we will be using the percent error

per unit distance traveled. This is often used as the figure of merit for tracking systems in
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the field[9].

8.4 Filter Performance

The filter designed in this thesis has its performance evaluated in Table 8.4. The filter’s

estimated x, y, and z values can be seen verses time in Figures 8.6, 8.7, 8.8 respectively. Ad-

ditionally x vs. y track can be seen 8.9. The error at the last point was [2, 3, 10] cm which

is encouraging because the 1σ value tracked by the filter for both the x and y estimates,

2.09 cm and 2.07 cm respectively, indicate that the final point was within 2 standard devi-

ations of our estimate. This will be important in the future as other systems are integrated

into the filter so the current estimates will be properly weighted against their measurements.

The larger error in the z direction is expected because of the large gravitation acceleration

in this direction, its tracked 1σ value, however, appears to be unusually small at 1.26 cm,

indicating our error was more than 7σ.

Step Distance Traveled True Position Estimated Position Error % Error

9 0.30 [0.40, 0.20, 0.00] [0.40, 0.20, 0.01] 0.01 3.14

10 0.60 [0.10, 0.20, 0.00] [0.10, 0.20, 0.01] 0.01 2.17

11 1.20 [0.10, 0.80, 0.00] [0.09, 0.80, 0.03] 0.04 2.92

12 1.80 [0.10, 1.40, 0.00] [0.09, 1.41, 0.05] 0.05 2.56

13 2.10 [0.40, 1.40, 0.00] [0.40, 1.40, 0.03] 0.03 1.45

14 2.70 [0.40, 0.80, 0.10] [0.41, 0.80, 0.13] 0.03 1.21

15 3.37 [0.70, 1.40, 0.00] [0.74, 1.40, 0.04] 0.06 1.67

16 3.39 [0.70, 0.80, 0.00] [0.72, 0.80, 0.05] 0.05 1.38

17 4.27 [0.40, 0.80, 0.10] [0.43, 0.81, 0.15] 0.06 1.47

18 4.94 [0.70, 1.40, 0.00] [0.74, 1.41, 0.06] 0.07 1.45

19 5.54 [0.70, 0.80, 0.00] [0.74, 0.81, 0.06] 0.07 1.29

20 6.14 [0.70, 0.20, 0.00] [0.68, 0.23, 0.10] 0.10 1.63

Table 8.4: New Filter’s Track Estimates



80

Figure 8.6: New Filter’s Estimated X

Figure 8.7: New Filter’s Estimated Y



81

Figure 8.8: New Filter’s Estimated Z

Figure 8.9: New Filter’s Estimated XY
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Chapter 9

Maple
TM

Implementation of

Discussed Methods

At this point it should be noticed that the work of the previous chapters can be repre-

sented as a set of 4 ‘variables’ and a process we apply to those variables. The ‘variables’

are sample rate, the continuous time system, the noise specifications, and the observation

equations. Once these variables are defined we can generate our filter by performing the

same series of steps; linearization, discretization, model building, and combination. As we

look forward to implementing systems using more and different sensor packages it will be

beneficial to automate the formulaic manipulations of these variables. This serves two pur-

poses, first it greatly reduces the amount of work needed to realize an implementation and

second it reduces the chance of an error being suffered in one of the necessary steps.

The formulas in this chapter should be taken as mimicking Maple
TM

code and will not

have typical mathematical notation. When Maple
TM

code is listed it will be listed in the

following format.

f := (x) -> x^2;

g := (x) -> x^2; #Comment

9.1 Maple
TM

Maple
TM

is a computer algebra system distributed by Maplesoft
TM

. This software was

chosen because of its inbuilt functions, including a linear algebra library, simultaneous equa-

tion solver, symbolic differentiation/integration, and its functional programming inspired
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scripting language. It also is capable of generating Matlab code which can be used directly

in data processing.

9.2 Variables

The first variable related to the system we will treat is the sample rate of the system,

as this will impact our models for the continuous time system and noise specifications.

As previously discussed, the sample rate needs to be fast enough that the approximations

that we make will be valid. The sample rate is defined as its inverse, sample period,

epsilon=1/117 for example in a system with a sample rate of 117 Hz, the sample rate used

in our implementation of the ADIS16375, the device used in this example.

With the sample period defined we can move on to defining the continuous time system.

It will be an list of array variables, c model = [x,Dx,y,Q], where x is the state of the

system, Dx is its derivative, y is the forcing function, and Q is the covariance matrix of the

forcing function, y, on the sample period epsilon. For example,

x := [p[1],p[2],p[3],

v[1],v[2],v[3],

a[1],a[2],a[3],

g,

q[1],q[2],q[3],q[4],

ot[1],ot[2],ot[3]];

Dx := map((var) -> D || var,x); #Build the list [Dp[1],Dp[2], ... ect.

Dp[1] := v[1]:

Dp[2] := v[2]:

Dp[3] := v[3]:

Dv[1] := a[1]:

Dv[2] := a[2]:

Dv[3] := a[3]:

Da[1] := j[1]:

Da[2] := j[2]:

Da[3] := j[3]:

Dg := 0:

#Define the rotational quaternion derivative matrix

Omega := -1/2*Matrix([[0,ot[1],ot[2],ot[3]],
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[-ot[1],0,-ot[3],ot[2]],

[-ot[2],ot[3],0,-ot[1]],

[-ot[3],-ot[2],ot[1],0]]):

Dq[1] := Omega[1,1]*q[1] + Omega[1,2]*q[2] + Omega[1,3]*q[3] + Omega[1,4]*q[4]:

Dq[2] := Omega[2,1]*q[1] + Omega[2,2]*q[2] + Omega[2,3]*q[3] + Omega[2,4]*q[4]:

Dq[3] := Omega[3,1]*q[1] + Omega[3,2]*q[2] + Omega[3,3]*q[3] + Omega[3,4]*q[4]:

Dq[4] := Omega[4,1]*q[1] + Omega[4,2]*q[2] + Omega[4,3]*q[3] + Omega[4,4]*q[4]:

Dot[1] := tt[1]:

Dot[2] := tt[2]:

Dot[3] := tt[3]:

y := [j[1],j[2],j[3],tt[1],tt[2],tt[3]];

Q := DiagonalMatrix([50^2,50^2,50^2,(5*Pi)^2,(5*Pi)^2,(5*Pi)^2]);

c_model := [x,Dx,y,Q];

This represents our continuous time model and could be expanded easily to include any

additional states which can be defined in this way or could be changed to use a different

rotation charting.

We can now define the noise specifications for the various noise sources. The final

variable noise will be a list of these noise sources. Each noise variable will be defined

as a name,[specification],sample period. The name is the variable name for the noise

sources, so for instance gyn[1] for the first gyroscope’s noise. The list [specification] can

be one of two different things, either the list of Allan deviation 1 second crossing points and

the number of colored noise variables to use to model the flicker region [wgn,[flicker,#c],bias walk]

or as simply the WGN variance [wgn]. The last, the sample period, defines the sample

period of the sensor. Recall that it is from the sensor sample rate that the WGN variance

is determined not the system’s (use a value of 1 when a simple WGN specification is used).

For example,

#All the gyros have the same basic gyro noise specification (using 1 colored noise)

bgn := [2.9E-4,[4.8E-5,1],1E-6]:

#Same with the accelerometers (using 2 colored noise)

ban := [4.9E-4,[10E-4,2],2E-5]:

#But each gyro and accelerometer has its own noise variable
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#Sample rate of the filter is the same as the IMU

gyro_noise := [gyn[1],bgn,epsilon],[gyn[2],bgn,epsilon],[gyn[3],bgn,epsilon];

accel_noise := [an[4],ban,epsilon],[an[5],ban,epsilon],[an[6],ban,epsilon];

#Some additional noise variables, such as the noise on a good position update or ZUPT

good_position := [gm[1],[0.01^2],1],[gm[2],[0.01^2],1],[gm[3],[0.01^2],1];

zupt_velocity := [zv[1],[0.01^2],1],[zv[2],[0.01^2],1],[zv[3],[0.01^2],1];

#Leaving our noise variable

noise := [gyro_noise,accel_noise,good_position,zupt_velocity]:

The last variable we will be defining is that containing the observation equations. This

definition will be broken up into two parts, linear observation equations and nonlinear obser-

vation equations. Both variables will be defined in the same way, ["Matlab Name",[m1,m2,...]],

where "Matlab Name" is the function in Matlab we will be able to call with our observation

and m1,m2,... are the observation equations. For example,

#gyros measure rotation velocity, ot, and their noise, gyn

#zupt is a measurement of velocity, v, and some small velocity noise, zv

#good position measurement the position, p, and some small measurement noise, gm

l_observations := [["Gyro_Measurement",[ot[1]+gyn[1],ot[2]+gyn[2],ot[3]+gyn[3]]],

["Zupt_Velocity",[v[1]+zv[1],v[2]+zv[2],v[3]+zv[3]]]

["Good_Position",[p[1]+gm[1],p[2]+gm[2],p[3]+gm[3]]]]:

#Make a rotation matrix from our quaternion

Rot := quat2rotm([q[1],q[2],q[3],q[4]]);

#The nonlinear observation of accelration R(a+g)+an

nl_observations := [["Accel_Measurement",convert(

Transpose(Rot).Matrix([[a[1]],[a[2]],[a[3]+g]])+Matrix([[an[4]],[an[5]],[an[6]]])

,’list’)]]:

Notice that in the example we defined our continuous time system’s variable names and our

noise specification names to be used in later processing.

9.2.1 Filter Creation

The full process of filter creation is described here with a basic flow chart shown in Fig.

9.1.
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Figure 9.1: Maple Script Flow Chart

The first step is the creation of the noise models from the noise specifications.

noise_models := build_noise_models(noise,epsilon);

The function build noise models creates the necessary noise models from the specified

values as we did in Chapter 5. It creates a list of all the WGN, colored noise, and bias walks

needed to model the various noise specifications along with the equivalency that relates each

‘specified noise’, such at gyn[1], with its associated parts, gyn[1]=gn[1]+cn[1]+bw[1].

These parts of the models which need to have state representations are made into their

appropriate state space models with the function build n system

n_system := build_n_system(noise_models);

This creates a state space system, x,Phi,Gamma,u,Lambda,Q,y.

The continuous time model c model can also be made into a state space model with the

function build c system
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c_system := build_c_system(c_model,epsilon,n);

where n is the order of the Taylor series approximation in time of Phi=exp(F*epsilon) and

Xi. The output of this function is also a state space system, x,Phi,Gamma,u,Lambda,Q,y.

The two systems, n system and c system, are combined into one complete system,

s system, with the function System Mash.

With the complete system and noise models defined we can ‘fix’ the observation models

to be of the complete systems states, formulating the matrices H and R.

fixed_l_obs := fix_l_observation(l_observations,s_system,noise_models);

fixed_nl_obs := fix_nl_observation(nl_observations,s_system,noise_models);

We define one additional variable ostates which contains the states we measure as part

of our initialization at the beginning of a test. These should include all the states of the

c model and any noise variables that were specified from Allan Deviation. The starting

covariance for the noise model components are computed as they were in Section 7.8.3.

Additionally we will need to know what parts of the forcing function y have known, non-

zero, mean, which for our case is none so ybar=[]. With all of this done we can call the

function which creates the Matlab class file that we can use to process data with the function

make matlab filter class.

make_matlab_filter_class(Filter_Name,s_system,noise_models,fixed_l_obs,fixed_nl_obs,ybar,ostates);

9.3 Matlab Class

The resulting Matlab Class extends a generic Kalman Filter class created for this project.

It is simply instantiated and initialized with the name specified in the make matlab filter class,

filter = Xsens Filter(), for example. The filter is indexed forward with the function

filter.next step() and we can make observations by calling the observation function han-

dles by the names we specified in the Maple
TM

script, filter.Zupt Velocity([0,0,0]’).

After all the observations are made, the function filter.make observation() can be called

to perform the correction step. We can simply repeat this process for the duration of the

test.

In this way we can create filters for any IMU/system we need, allowing us to test the

filter creation method on a new pair of units in the following chapter.
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Chapter 10

Pedestrian Motion Tests

In order to demonstrate our filter generation technique we acquired a reference data set

made publically available by the German Aerospace Center [4]. To process this data set

we formulated our own ZUPT detection algorithm, and with this detection algorithm and

our generated filter we were able to achieve results that we could compare against similar

published results and the ‘truth’ data. Incorporating the lessons learned from this data set

we moved on to create our own foot mounted inertial navigation solution and performed

our own in lab test.

10.1 Reference Data

For this evaluation we used a data set collected by the German Aerospace Center [4].

In the tests a subject wearing an instrumented shoe traversed a test room using several

paths. The worn shoe was equipped with an IMU sensor, Xsens MTx-28A53G25, and a set

of infrared reflectors, see Fig. 10.1. The room contained an optical tracking system which

was used to track the shoe’s progress. The optical tracking system’s error is assumed to be

small enough so as to allow the data to be used as a truth data set against which different

algorithms can be compared.

Of the data sets captured we will be focusing on the first two, ID1 “Walk 2D - rectangle”

and ID2 “Walk 2D - rectangle other direction”. The first, ID1, has an incomplete inertial

capture and will be used to to develop the system’s ZUPT detection algorithm. The second,

ID2, will be processed and our results will be compared with the truth data.
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Figure 10.1: German Aerospace Center Instrumented Shoe, from DLR

10.2 Test Configuration

Both data sets are collected with a subject walking similar paths in a rectangular path

through the room. In ID1 the subject walked the path in the counterclockwise direction and

in ID2, clockwise, see Fig. 10.5 for the path of ID2. Before each test the subject walks to the

start point and stamps his/her foot to provide a synchronization event between the optical

tracking system’s data and the IMU’s. There are brief segments where the subject leaves

the optical system’s field of vision and the shoe becomes untracked. They are infrequent

and short enough to not affect the results at all.

10.3 Xsens IMU

The IMU chosen by German Aerospace Center was the Xsens MTx-28A53G25. The

specification sheet does not include an Allan Deviation plot and where values are listed

which can be used to compute values of interest they are specified for the entire temperature

range and are an order of magnitude larger than expected. Though we do not have access

to our own unit to perform our own noise analysis we were able to find a resource which did

[18]. From their Allan Deviation plots shown in Figs. 10.2 and 10.3 we were able to derive

the necessary values for a system model design, shown in Table 10.1. The noise models

were derived using the same process as was described in Chapter 5.
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Gaussian Noise Flicker Noise Bias Walk

Gyroscopes 1.4E − 3 rads 1.7E − 4 rads 1.7E − 6 rads

Accelerometers 2E − 3m
s2

4E − 4m
s2

4E − 6m
s2

Table 10.1: Table of Allan Deviation 1s Values for Xsens MTx-28A53G25

Figure 10.2: Xsens MTx Gyroscope Allan Deviation from woodman

10.4 ZUPT Detection

To fairly compare our results against the similar results in the report we implemented

our own automatic ZUPT detection algorithm. The underlying theoretical idea behind

our detector is that the sensor is moved by a noise process with non-zero variance, so the

variance of the measurements should be larger when the sensor is moving. We use the

sample variance of a small window of data around the point of interest and compare it

against a threshold. If the variance is under the threshold we assume that the only noise

process at work is that of the sensor. If the variance is above the threshold we assume that

the sensor is being acted upon by another noise process, motion.

To find good window size and threshold values we used the first data set ID1. We
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Figure 10.3: Xsens MTx Accelerometer Allan Deviation from woodman

calculated velocity by differentiating the position data from the optical tracking system and

found instances of small, ‘zero’, velocity which we used as truth ZUPT data. Using our

technique we plotted the percentage of false positives vs. detection for various window sizes

in Fig. 10.4. From this data we selected the window size of ±6 samples and a threshold of

.0165, chosen to keep the percentage of false positives below 1%.

10.5 Results

There are no reference points provided with which to compute an absolute initial yaw

estimate so the filter’s values have been rotated to minimize error in the early stages of

the walk. Using our method for computing ZUPTs and the filter designed through the

processes in this thesis we were able to achieve the path result seen in Fig. 10.5. This

result is encouraging because it is based on a real data set of a sensor mounted to a foot,

as opposed to one sitting on a desk and moved by hand. Judging from the fact that the

filter achieves a track, it also uses a ZUPT detection algorithm that appears to be detecting

ZUPTs reliably. It is worth noticing how the filter tracks the movements of the foot while it
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Figure 10.4: ZUPT Detection Operation Curve for Different Window Sizes

is transitioning between ZUPTs, noting that its track of the motion includes fluid rotations

of the direction of motion especially in the corners.

At the end of the walk the system accumulated 0.0695 m error in the XY-plane and

0.5436 m error in the Z for a percent error per unit distance traveled of 0.23% XY, 1.84%

XYZ. For our filter both the individual errors and the XY error can be seen in Fig. 10.6.

In the original paper, [4], typical % XY error per unit distance traveled was approximately

1% to 2% using their own implementation of a Kalman Filter.
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Figure 10.5: Results for the Walked Loop
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Figure 10.6: Errors for the Walked Loop
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10.6 Our Pedestrian Motion Foot Mounted System Test

To further test our filter creation methodology we conducted a walking test with the

Analog Devices ADIS16375 in our own lab. Instead of an infrared camera set up or surveyed

ground points we simply returned to the starting point and all accumulated displacement

is assumed to be error. The inertial unit was fitted with an enclosure and mounted to our

RF data acquisition system and the pair were attached to the boot through a metal bracket

and straps. The entire setup can be seen in Figures 10.7 and 10.8. The shoe was worn while

the subject being tracked executed maneuvers through a short initialization stage where

the foot was lifted and placed down a few times, and then walked in a loop around our lab.

The ZUPT detection algorithm previously discussed was modified to use the small time

variance of the gyroscopes but otherwise remains theoretically identical.

Figure 10.7: Our Sensor Boot Setup
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Figure 10.8: Our Sensor Boot in Action

The resulting estimated track can be seen in Figure 10.9, the path starts at the origin in

light teal and moves to dark blue. The final displacement and hence accumulated error for

the track was [−0.606, 0.014, 0.535] m. The entire path length is estimated at 25 m giving

the test an approximate percent error of 2.42% in XY and 3.23% XYZ. For short walks of

systems of this type an error of an approximately of 2% XY error per unit distance traveled

a further 2% Z error per unit distance traveled is expected [13].
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The large excursions one can see just before a ZUPT are due to accumulated error

that are suddenly corrected right as the unit enters the ZUPT. For more details on this

phenomenon see [9]. These can be made smooth with a fixed interval smoothing filter or

by only displaying position during ZUPT intervals.
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Figure 10.9: PPL Closed Loop Lab Walk with ADIS16375
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Chapter 11

Conclusion

This thesis sets out to construct an inertial based tracking solution that is appropriate for

potential use with technologies being developed by PPL project at WPI. In accomplishing

this goal this work seeks to provide a working Kalman filter based implementation and

a specification driven method for constructing such filters. This will be important as the

project moves forward in order to integrate new and different sensors into the current

implementation. We also strive to present, in one unabridged work, a set of steps for

navigation and tracking systems from theory to implementation.

11.1 Contributions

In total this thesis develops a complete and self-contained method for creating Kalman

filters appropriate for inertial tracking. This includes an explanation of how to construct

models of the physical motion of the sensor and how to chart the rotation involved. Also

examined is a method of constructing noise models for the various sensor noise effects based

on values derived from specifications. The assembly of these various models is detailed, and

automated through the use of Maple scripts. This is unique from the many implementations

which “design” filters based on values that were tweaked in order to achieve results.

These methods were tested against actual captured data sets. The outcomes demon-

strate the validity of the filter and the flexibility of the system to develop and implement

models for a multitude of sensors. In the first data examined, we set captured motion

data atop a table in a lab environment, where motions are kept small and simple; the filter

achieved a XYZ % error per unit distance traveled of 1.63%. The second data set was a
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reference data set captured by another researcher [4] in which very accurate truth data was

collected through the use of an infrared video tracking setup. In this test we demonstrated

a ZUPT detection system not detailed in the original reference and were able to achieve a

XYZ % error per unit distance traveled of 1.84%. We then created our own instrumented

boot and performed a simple walk around our own lab with a closed loop XYZ % error per

unit distance traveled of 3.23%. These results achieved the state of the art in performance

for similar academic and commercial systems.

This thesis creates an extendable framework which allows additional sensors to be in-

tegrated into the system with ease. We hope to be able to extend this system and use

additional information from our RF system, which is under development. At its simplest

this additional information would come in the form of RF position estimates, but could also

include velocity or heading measurements. Additional sensors, such as barometric pressure

and acoustic range, are also being explored as very natural additions to the current system.

11.2 Future Research

As was demonstrated in Appendix B, duality principles should allow the reduction of

linearization errors by carrying back information from the future. This reduction of lin-

earization errors could greatly improve the filters performance with sparse high quality

information.

Not discussed in this work, but also being explored, is the potential for the filter to aid

our other location system. This would be accomplished by either tracking various quantities

as additional state variables that have not historically been tracked or by providing accurate

short term path information to other systems. An example would be tracking the clock drift

of the various RF systems to provide more robust clock alignment, or to provide accurate

path estimates between RF position updates.

Not explored by this thesis in any depth but never-the-less an important and fruitful

avenue of research is the construction of better models for the motion of the object being

tracked. This includes, but is not limited to, the modeling of how people move as seen in

[13]. Implementation of such a system may require defining additional states and better

defining the innovation noise or something as simple as defining additional observations,

the ZUPT being a very simple form of this modeling.

It is the hope that this work will provide a foundation for a fruitful avenue for improving
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the performance of our indoor tracking systems.
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Appendix A

Kalman-Bucy Filter Discussion

As an effort to cast the Kalman filter in a new light, from the perspective of control

theory, we may rederive its results with different principles. The effort was aided greatly

by the solution to the Linear Quadratic Regulator Problem as developed in [8] and many

of the notations and ideas remain the same.

A.1 Problem Description

Consider the following system for t ∈ [t0, t1] which is defined in the most part from the

treatment in [16].

ẋ̇ẋx(t) = FFF (t)xxx(t) +GGG(t)uuu(t) +LLL(t)www(t) (A.1)

Here xxx(t) ∈ Rk is the current state of the system. The matrix FFF (t) ∈ Rk×k is called

the state transition matrix. The system is driven with an input uuu(t) ∈ Rj and its input

matrix GGG(t) ∈ Rk×j which are the known, and www(t) ∈ Rl, an unknown noise input while

its associated matrix LLL(t) ∈ Rk×l is known. The observations of the system, zzz(t), are as

described by the following equation.

zzz(t) = HHH(t)xxx(t) +nnn(t) (A.2)

Here zzz(t) ∈ Rm so HHH(t) ∈ Rm×k and nnn(t) ∈ Rm. The functions uuu and zzz are assumed to be

known on the interval. The functions www and nnn are assumed to be zero mean Gaussian White

Noise (GWN) processes. www is sometimes called the ‘innovation’ noise and it represents how

the system is moved by unknowable forces. nnn is sometimes called ‘sensor’ noise and it
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represents how our observation of the system is corrupted.

E(www(t)) = 0 (A.3a)

E
(
www(t)www(τ)t

)
= QQQ(t)δ(t− τ) (A.3b)

E(nnn(t)) = 0 (A.3c)

E
(
nnn(t)nnn(τ)t

)
= RRR(t)δ(t− τ) (A.3d)

The system’s initial state is also an unknown Gaussian random variable.

E(xxx(t0)) = x̂xx0 (A.4a)

E
(
xxx(t0)xxx(t0)t

)
= PPP 0 (A.4b)

The probability density function (pdf) for any given initial condition, xxx(t0) = x̃xx0 is given

by Equation (A.5). ‘J’ is chosen here to foreshadow its use in a maximization problem.

J(xxx(t0)) = 1

(2π)
k
2 |PPP 0|

1
2

exp
(
−1

2 (xxx(t0)− x̂xx0)tPPP−1
0 (xxx(t0)− x̂xx0)

)
(A.5)

It is also necessary to define a pdf for both www and nnn. They are both Gaussian White Noise

so the cost at any instant is given by the pdf of a Gaussian random variable using the QQQ(t)

and RRR(t) matrices. That is to say we expect that the time ‘derivative’ of our final functional

to be the pdf of a Gaussian random variable. We also expect the property, that given the

probability on a pair of intervals [a, b) and [b, c] are C1 and C2 respectively, the probability

for the total interval [a, c] should be C1C2.

Given a noise function yyy(t) whose pdf at any instant, t, is given by f(yyy, t), the following

definition will meet the previous conditions on an interval [a, c].

Y (ỹ̃ỹy) =
c∏
a

f(ỹ̃ỹy, t)dt

Here
b∏
a

f(s)ds is the ‘product integral’ defined by lim
∆s→0

∏
f(si)

∆s.

In our case the pdfs become as follows.

W(w̃̃w̃w) =

t1∏
t0

[
1

(2π)
l
2 |QQQ(t)|

1
2

exp
(
−1

2w̃̃w̃w(t)tQQQ(t)−1w̃̃w̃w(t)
)]dt

(A.6)

N(ñ̃ñn) =

t1∏
t0

[
1

(2π)
m
2 |RRR(t)|

1
2

exp
(
−1

2 ñ̃ñn(t)tRRR(t)−1ñ̃ñn(t)
)]dt

(A.7)
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All the noise variables are assumed to be independent so the joint pdf for a given point

(x̃̃x̃x0, w̃̃w̃w, ñ̃ñn) is simply the product of the individual pdfs.

J(x̃̃x̃x0)W(w̃̃w̃w)N(ñ̃ñn)

For a set of data we wish to pick a path which maximize the joint pdf. Examining the

first term, J , and considering that we only wish to find the location of a maximum we may

remove the leading scalar multiple.

J(xxx(t0)) ∼ exp
(
−1

2 (xxx(t0)− x̂̂x̂x0)tPPP−1
0 (xxx(t0)− x̂̂x̂x0)

)
Expanding the second term, W, and using the property of the product integral, removing

constant multipliers, we find.

b∏
a

f(s)ds = exp

(∫ b

a
ln (f(s))ds

)

exp

(∫ t1

t0

ln

(
1

(2π)
l
2 |QQQ(t)|

1
2

)
− 1

2w̃̃w̃w(t)tQQQ(t)−1w̃̃w̃w(t)dt

)

W(w̃̃w̃w) ∼ exp

(∫ t1

t0

−1

2
w̃̃w̃w(t)tQQQ(t)−1w̃̃w̃w(t)dt

)
The third term, N, is handled in the same fashion as the second.

N(ñ̃ñn) ∼ exp

(∫ t1

t0

−1

2
ñ̃ñn(t)tRRR(t)−1ñ̃ñn(t)dt

)
Recombined the formula becomes

exp

(
−1

2

(
(xxx(t0)− x̂̂x̂x0)tPPP−1

0 (xxx(t0)− x̂̂x̂x0) +

∫ t1

t0

w̃̃w̃w(t)tQQQ(t)−1w̃̃w̃w(t) + ñ̃ñn(t)tRRR(t)−1ñ̃ñn(t)dt

))
A point maximizing this, the one that is most likely, will also maximize the natural log of

this, because the natural log is a purely increasing.

−1

2

(
(xxx(t0)− x̂̂x̂x0)tPPP−1

0 (xxx(t0)− x̂̂x̂x0) +

∫ t1

t0

w̃̃w̃w(t)tQQQ(t)−1w̃̃w̃w(t) + ñ̃ñn(t)tRRR(t)−1ñ̃ñn(t)dt

)
Finally we may remove the negative sign and change the problem from maximization to

minimization and define the function K which we wish to minimize

K(xxx(t0), w̃̃w̃w, ñ̃ñn) = (xxx(t0)− x̂̂x̂x0)tPPP−1
0 (xxx(t0)− x̂̂x̂x0)

+

∫ t1

t0

w̃̃w̃w(t)tQQQ(t)−1w̃̃w̃w(t) + ñ̃ñn(t)tRRR(t)−1ñ̃ñn(t)dt
(A.8)
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A.2 Control Problem

From the pair (xxx(t0), w̃̃w̃w) we may solve equation (A.1) to find a solution x̃̃x̃x for the given

uuu,GGG,LLL. With this solution, x̃̃x̃x(t), a trivial manipulation of (A.2) results in an expression

for ñ̃ñn(t) = zzz(t) −HHH(t)x̃̃x̃x(t). This simplifies the formula in (A.8) to be a minimization of a

function of (xxx(t0), w̃̃w̃w), which we will call J.

J(xxx(t0), w̃̃w̃w) = K(xxx(t0), w̃̃w̃w, ñ̃ñn) (A.9)

A.2.1 The Optimal Control Problem as stated in [8]

Given a system, rrr(t) ∈ Rq, whose the dynamics are contained in a function fff ,

ṙ̇ṙr(t) = fff(t, rrr(t),uuu(t))

and a function ϕϕϕ(t) which contains the performance index and end conditions.

ϕ1

(
t̆0, t̆1, rrr

(
t̆0
)
, rrr
(
t̆1
))

ϕj
(
t̆0, t̆1, rrr

(
t̆0
)
, rrr
(
t̆1
))

= 0 j = 2, · · · , n

Where ϕ1 is the performance index which we wish to minimize and while ϕ2, · · · , ϕn are

end conditions.

We say that
(
t̆0, t̆1, r̆̆r̆r

(
t̆0
)
, ŭ̆ŭu
)

is the solution to the optimal control problem defined above

if it minimizes ϕ1 while maintaining the equalities ϕ2 = 0, · · · , ϕn = 0.

A.2.2 Our Control Problem

The performance index defined in (A.9) does not meet the criteria for the performance

index as it is defined in terms of the function w̃̃w̃w. The original problem we defined is a Bolza

problem and we will need to reformulate it to a Mayer problem, as done in [8].

We define the first k states of rrr as being equivalent to the original system given in (A.1)

and introduce an additional state rrrk+1 to contain dynamics of the integral term in equation

(A.9). The definition for fff can be found in (A.10)

ṙ̇ṙr(t)1···k = FFF (t)rrr(t)1···k +GGG(t)uuu(t) +LLL(t)www(t) (A.10a)

ṙ̇ṙr(t)k+1 = w̃̃w̃w(t)tQQQ(t)−1w̃̃w̃w(t) + ñ̃ñn(t)tRRR(t)−1ñ̃ñn(t) (A.10b)
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From this we may rewrite our J function as one only dependant on the start and end states

of rrr(t) and use it as the cost function ϕ1.

ϕ1

(
t̆0, t̆1, rrr

(
t̆0
)
, rrr
(
t̆1
))

=
(
rrr
(
t̆0
)

1···k − x̂̂x̂x0

)t
PPP−1

0

(
rrr
(
t̆0
)

1···k − x̂̂x̂x0

)
+ rrr
(
t̆1
)
k+1

(A.11)

The end conditions are simply that the system start at time t0 and end at time t1.

ϕ2

(
t̆0, t̆1, rrr

(
t̆0
)
, rrr
(
t̆1
))

= t̆0 − t0 (A.12a)

ϕ3

(
t̆0, t̆1, rrr

(
t̆0
)
, rrr
(
t̆1
))

= t̆1 − t1 (A.12b)

With the additional requirement that the integration term, rk+1 starts at zero.

ϕ4

(
t̆0, t̆1, rrr

(
t̆0
)
, rrr
(
t̆1
))

= rrr
(
t̆0
)
k+1

(A.13)

From here we can apply the Pontryagin’s Principle, a necessary condition for an optimal

solution, as demonstrated in [8].

A.2.3 Pontragin’s Principle as stated in [8]

There exists a non zero vector λλλ ∈ Rn with λ1 ≤ 0 and a vector function ppp(t) with values

in Rq which meet the following conditions. For simplification the point eee =
(
t̆0, t̆1, r̆̆r̆r

(
t̆0
)
, r̆̆r̆r
(
t̆1
))

is used and ga is taken to be the partial derivative, ga(x) = ∂
∂ag(x).

ṗ̇ṗp(t)t = ppp(t)tfffrrr(t, r̆̆r̆r(t), ŭ̆ŭu(t)) (A.14a)

max
vvv
{H(t, r̆̆r̆r(t), vvv)} = H(t, r̆̆r̆r(t), ŭ̆ŭu(t)) (A.14b)

ppp
(
t̆1
)t

= λλλtϕϕϕrrr(t̆1)(e) (A.14c)

ppp
(
t̆0
)t

= −λλλtϕϕϕrrr(t̆0)(e) (A.14d)

ppp
(
t̆1
)t
fff
(
t̆1, r̆̆r̆r

(
t̆1
)
, ŭ̆ŭu
(
t̆1
))

= −λλλtϕϕϕt1(e) (A.14e)

ppp
(
t̆0
)t
f
(
t̆0, r̆̆r̆r

(
t̆0
)
, ŭ̆ŭu
(
t̆0
))

= λλλtϕϕϕt0(e) (A.14f)

ppp(t)tfff(t, r̆̆r̆r(t), ŭ̆ŭu(t)) = λλλtϕt̆0(e) +

∫ t

t0

ppp(s)tfff t(s, r̆̆r̆r(s), ŭ̆ŭu(s))ds (A.14g)

Where H, the Hamiltonian, is defined as follows

H(t,aaa,bbb) = ppp(t)tf(t,aaa,bbb) (A.15)
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A.2.4 Application of Pontragin’s Principle

In the application of Pontragin’s Principle it will be useful to observe the following

identity for a symmetric matrix KKK.

∂

∂aaa
(aaa+ bbb)tKKK (aaa+ bbb) = 2aaatKKK + 2bbbtKKK

Plugging in our case and simplifying (A.14a). All of the following equations are simplified

by the substitution of p̃̃p̃p = ppp1···k

˙̃ṗ̃ṗ̃p(t)
t

= −p̃̃p̃p(t)tFFF (t)− 2ppp(t)k+1

(
xxx(t)tHHH(t)tRRR(t)−1HHH(t)− zzz(t)tRRR(t)−1HHH(t)

)
ṗ̇ṗp(t)k+1 = 0

Condition (A.14c) becomes

p̃̃p̃p
(
t̆1
)

1···k = 0

ppp
(
t̆1
)
k+1

= λ1

Condition (A.14d) becomes

p̃̃p̃p
(
t̆0
)t

= −2λ1

(
xxx(t0)tPPP−1

0 − x̂̂x̂x
t
0PPP
−1
0

)
ppp
(
t̆0
)
k+1

= −λ4

Condition (A.14e) becomes

ppp
(
t̆1
)t
fff
(
t̆1, rrr

(
t̆1
)
,www
(
t̆1
))

= −λ3

Condition (A.14f) becomes

ppp
(
t̆0
)t
fff
(
t̆0, rrr

(
t̆0
)
,www
(
t̆0
))

= λ2

Using the same logic as page 33 of [8] we may restrict λ1 to λ1 = −1
2 , forcing ppp(t)k+1 = −1

2 .

Condition (A.14b) becomes

max
vvv∈Rl
{p̃̃p̃p(t)t (FFF (t)xxx(t) +GGG(t)uuu(t) +LLL(t)vvv) +

ppp(t)k+1

(
vvvtQQQ(t)−1vvv + (zzz(t)−HHH(t)xxx(t))tRRR(t)−1 (zzz(t)−HHH(t)xxx(t))

)
} =

p̃̃p̃p(t)t (FFF (t)xxx(t) +GGG(t)uuu(t) +LLL(t)www(t)) +

ppp(t)k+1

(
www(t)tQQQ(t)−1www(t) + (zzz(t)−HHH(t)xxx(t))tRRR(t)−1 (zzz(t)−HHH(t)xxx(t))

)
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Which simplifies to

max
vvv∈Rl
{p̃̃p̃p(t)t1···kLLL(t)vvv + ppp(t)k+1vvv

tQQQ(t)−1vvv} =

p̃̃p̃p(t)t1···kLLL(t)www(t) + ppp(t)k+1www(t)tQQQ(t)−1www(t)

We may take a derivative and set it equal to zero to find the unique solution.

vvv = QQQ(t)LLL(t)tp̃̃p̃p(t) = www(t) (A.16)

Plugging the optimal control from equation (A.16) into the original system description in

equation (A.1) results in

ẋ̇ẋx(t) = FFF (t)xxx(t) +GGG(t)uuu(t) +LLL(t)QQQ(t)LLL(t)tp̃̃p̃p(t) (A.17)

With the pair of conditions

p̃̃p̃p(t1) = 0 (A.18a)

p̃̃p̃p(t0) = PPP−1
0 (xxx0 − x̂̂x̂x0) (A.18b)

The dynamics of p̃̃p̃p(t) can be found to be take the form of the equation

˙̃ṗ̃ṗ̃p(t) = −FFF (t)tp̃̃p̃p(t) +HHH(t)tRRR(t)−1HHH(t)xxx(t)−HHH(t)tRRR(t)−1zzz(t)

= −
(
FFF (t)tp̃̃p̃p(t) +HHH(t)tRRR(t)−1

(
zzz(t)−HHH(t)xxx(t)

)) (A.19)

This becomes the composite system ˙̃ṗ̃ṗ̃p(t)

ẋ̇ẋx(t)

 = AAA(t)

p̃̃p̃p(t)
xxx(t)

+BBB(t)

zzz(t)
uuu(t)

 (A.20)

With

AAA(t) =

 −FFF (t)t HHH(t)tRRR(t)−1HHH(t)

LLL(t)QQQ(t)LLL(t)t FFF (t)

 (A.21a)

BBB(t) =

−HHH(t)tRRR(t)−1 000

000 GGG(t)

 (A.21b)

From [17] we know if ΦΦΦ(t) is a fundamental matrix then the solution to Equation (A.20)

can be written as follows.p̃̃p̃p(t)
xxx(t)

 = ΦΦΦ(t)ΦΦΦ(t0)−1

p̃̃p̃p0

xxx0

+ ΦΦΦ(t)

∫ t

t0

ΦΦΦ(s)−1BBB(s)

zzz(s)
uuu(s)

 ds
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Given the final result of an optimal solution xxx(t1) it will be useful to simply correct it as

future data comes in. In order to preserve the optimality we require that p̃̃p̃p(t) remains 0,

that ˙̃ṗ̃ṗ̃p(t) = 0. From (A.20) we can see that the derivative as it stands will not meet this

criterion, so we consider varying/correcting the initial condition xxx(t0) with time.

The dynamics becomes ˙̃ṗ̃ṗ̃p(t)

ẋ̇ẋx(t)

 = AAA(t)

p̃̃p̃p(t)
xxx(t)

+BBB(t)

zzz(t)
uuu(t)

+ ΦΦΦ(t)ΦΦΦ(t0)−1

PPP−1
0

III

 ˙xxx(t0)(t)

If we are at an optimal solution p̃̃p̃p(t) = 0 and this simplifies to ˙̃ṗ̃ṗ̃p(t)

ẋ̇ẋx(t)

 =

−HHH(t)tRRR(t)−1 (zzz(t)−HHH(t)xxx(t))

FFF (t)xxx(t) +GGG(t)uuu(t)

+ ΦΦΦ(t)ΦΦΦ(t0)−1

PPP−1
0

III

 ˙xxx(t0)(t)

Writing ΦΦΦ(t)ΦΦΦ(t0)−1 in a block form

ΦΦΦ(t)ΦΦΦ(t0)−1 =

AAA(t) BBB(t)

CCC(t) DDD(t)


Our system becomes ˙̃ṗ̃ṗ̃p(t)

ẋ̇ẋx(t)

 =

−HHH(t)tRRR(t)−1 (zzz(t)−HHH(t)xxx(t))

FFF (t)xxx(t) +GGG(t)uuu(t)

+

AAA(t)PPP−1
0 +BBB(t)

CCC(t)PPP−1
0 +DDD(t)

 ˙xxx(t0)(t)

The requirement ˙̃ṗ̃ṗ̃p(t) = 0 can be written as,

HHH(t)tRRR(t)−1 (zzz(t)−HHH(t)xxx(t)) =
(
AAA(t)PPP−1

0 +BBB(t)
)
ẋ̇ẋx0(t)

So,

˙xxx(t0)(t) =
(
AAA(t)PPP−1

0 +BBB(t)
)−1

HHH(t)tRRR(t)−1 (zzz(t)−HHH(t)xxx(t))

If we restrict ourselves to only the current value of xxx(t) we can plug this back in

ẋ̇ẋx(t) = FFF (t)xxx(t) +GGG(t)uuu(t) +KKK(t) (zzz(t)−HHH(t)xxx(t)) (A.22)

where

PPP (t) =
(
CCC(t)PPP−1

0 +DDD(t)
) (
AAA(t)PPP−1

0 +BBB(t)
)−1

KKK(t) = PPP (t)HHH(t)tRRR(t)−1 (A.23)
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We’ll need to track the quantity PPP (t) so we set up a differential equation for this purpose,

recalling identities for the derivative of the matrix inverse,

ṖeṖeṖe(t) =
(
Ċ̇ĊC(t)PPP−1

0 + Ḋ̇ḊD(t)
) (
AAA(t)PPP−1

0 +BBB(t)
)−1

−
(
CCC(t)PPP−1

0 +DDD(t)
) (
AAA(t)PPP−1

0 +BBB(t)
)−1

(
Ȧ̇ȦA(t)PPP−1

0 + Ḃ̇ḂB(t)
) (
AAA(t)PPP−1

0 +BBB(t)
)−1

Using the condition on ΦΦΦ(t) from the original differential equation we can solve for the

derivative terms

Φ̇̇Φ̇Φ(t) =

Ȧ̇ȦA(t) Ḃ̇ḂB(t)

Ċ̇ĊC(t) Ḋ̇ḊD(t)

 =

 −FFF (t)t HHH(t)tRRR(t)−1HHH(t)

LLL(t)QQQ(t)LLL(t)t FFF (t)

AAA(t) BBB(t)

CCC(t) DDD(t)


Plugging these identities in we get

Ṗ̇ṖP (t) =FFF (t)PPP (t) +PPP (t)FFF (t)t +LLL(t)QQQ(t)LLL(t)t

−PPP (t)HHH(t)tRRR(t)−1HHH(t)PPP (t)
(A.24)

By the identity ΦΦΦ(t0)ΦΦΦ(t0) = III we find the following initial condition

PPP (t0) = PPP 0 (A.25)

This result is the Kalman-Bucy filter.

A.2.5 Duality

From the fact that Pontragin’s Principle based duality we can find the dual problem,

the Linear Quadratic Regulator, in the vector p̃̃p̃p(t1 − τ). Page 236-237 of [16] has additional

discussion of this relationship.

A.3 Demonstration

It is worth noting that there is a significant difference between the estimates of the filter

during the interval and final optimal path that would have resulted in the final solution. In

order to demonstrate this consider the following scenario.

A feather is falling at its terminal velocity, v = 1, and at time t = 0 the feather is at

height h(0) = 1. Additionally the fall velocity is disturbed by wind noise.

ṗ(t) = 1− v + w(t)
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Where w(t) is a GWN with variance 1. For the demonstration we will be estimating the

noise processes as Fourier series with M = 150

a0 +
M∑
i=1

(ai cos (2πit) + bi sin (2πit))

At time t = 0 we make a measurement the feather’s height with variance 1 as ĥ(0) = .686

and its velocity with variance 1/4 as v̂ = .4505000000.

Figure A.1: Measured Feather Height

We then point a sensor at the feather which can measure its height with a Gaussian

error of variance 1/25. The measurement and truth height can be seen in Figure A.1.

This information is fed into a Kalman-Bucy filter and at the end of the interval we can

construct the optimal solution, both the Kalman-Bucy’s estimates and the optimal track

can be seen in Figure A.2.

A.4 Advantages

It should become immediately obvious that this form of the filter gives us a new meaning

for PPP (t) which is different from its roll as a covariance matrix in the typical filter, here it

represents how the dual problems are connected as opposed to the uncertainty of the current



114

Figure A.2: Estimated Feather Height

estimate. Additionally this new filter has the ability to track non-optimal corrections in

such a way as to allow them to be corrected later. This could have a host of applications,

including running the filter with infrequent correction steps without any long term effects.

Also, many of the advantages found in the similar realization of discrete version of the filter

shown in Chapter 6 can be redeveloped for use in the continuous time filter.
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Appendix B

Kalman Filtering of Nonlinear

Systems

As we have seen in Chapter 6 it is possible to run the Kalman filter while making

corrections to an initial state and then re-run the data with the corrected initial state in

order to get a rectroactively optimal solution. In the case of a linearized system filter when

we re-run the filter the result should be closer to the truth data and we should be able to

pick better linearization points. With this in mind we can demonstrate the majority of this

process with a linear system to illustrate this process.

B.1 Linear Filter Example

Consider the following system (similar to the one demonstrated in Appendix A)
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Figure B.1: Linear System’s Measured Height

ΦΦΦ =

1 − 1
100

0 1


ΛΛΛ =

1

0


ΓΓΓ =0

HHH =
(

1 0
)

QQQ =
(

0.0001
)

RRR =
(

0.2
)

PPP 0 =

1 0

0 0.125


xxx[0] =

1

1


A simulation of its behaviour is shown in Figure B.1 with noise drawn from appropriate

Gaussian distributions
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Figure B.2: Linear System’s uncorrected Height Estimate

Initializing the filter at the measured initial state of x̃xx[0] = (0.708, 0.48558) and letting

it run with measurements but without performing the correction from Eq. (6.11) we can

see the resulting track of xxx1 in Figure B.2. This can be taken as an example of what would

happen if the filter was given a non-optimal initial condition and simply left to run. The

system simply accumulates errors to be corrected at the end. The accumulating of errors

in the values for λλλ shown in Figure B.3, recalling that the process noise was estimated as

w̃ww[i] = QQQ[i]ΛΛΛ[i]λ̃λλ[i] and we expect this to be WGN.

This behaviour of simply accumulation the errors and correcting for them at the end

is not desirable for a linearized system as the errors compound in ways the system cannot

correct.

Re-running the data after using Eq. (6.11) to update the initial state of the filter for the

accumulated error results in an optimal solution. From this run-through of the data we can

learn what to expect when using the same linearization points as the run where the current

optimal initial condition was calculated.

Notice we have a much better estimate for what λλλ should look like as seen in Figure

B.4. So when we re-run the filter picking new linearization points we can correct λλλ to these

values instead of letting it accumulate as in Figure B.3 while picking new linearization

points. Performing this on a linearized system results in the optimal solution again, as the
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Figure B.3: Linear System’s uncorrected Dual Estimate

Figure B.4: Linear System’s Optimal Dual Estimate

linear system is not dependant on linearization points, but on a nonlinear system can result

in a better solution as we will see.
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B.2 Nonlinear Filter Example

Consider the nonlinear system defined below.

Figure B.5: Nonlinear System’s Measured Height



120

xxx[i+ 1]1 =xxx[i]1 −
1

100
xxx[i]1xxx[i]2xxx[i]3xxx[i]3

xxx[i+ 1]2 =xxx[i]2

xxx[i+ 1]3 =xxx[i]3

ΛΛΛ =


1

0

0


ΓΓΓ =0

HHH =
(

1 0 0
)

QQQ =
(

1e− 08
)

RRR =
(

0.04
)

PPP 0 =


1 0 0

0 0.125 0

0 0 0.125



xxx[0] =


1

2

0.70711


With the additional observation at the end, i = 100, to demonstrate how information gained

at the end can impact how we estimate the other states through the relinearization process.

HHH =
(

0 0 1
)

RRR =
(

0.0001
)

The initial state is measured as (0.708, 1.4856, 0.1941), the additional observation at the

end is 0.72203, and the observed height is shown in Figure B.5.

The output of a standard Kalman filter and its companion optimal solution can be seen

in Figure B.6.

Running the system again relinearizing and correcting to the λλλ generated in the previous

optimal solution we generate a new result also shown in Figure B.6. With this we can
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Figure B.6: Nonlinear System’s First Pass Estimated Height

generate a new linear optimal solution/relinearization pair which can be seen in Figure B.7.

Continuing this process on this particular system yields very marginal gains.

Figure B.7: Nonlinear System’s Second Pass Estimated Height


