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Abstract

Investors often update their portfolios at regular time intervals by trad-

ing stocks, but there are costs associated with these trades. This project seeks

to limit these transaction costs by controlling the portfolio turnover (absolute

change as a fraction of book size) between time periods. The result is a multi-

period optimization problem with quadratic objective function and non-smooth

constraints. The resulting portfolios outperformed benchmark portfolios in both

expected utility and actual portfolio value.
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Chapter 1

Introduction

Investors often update their stock portfolios at regular time intervals, buy-

ing and selling stocks to maximize expected return while also minimizing risk.

One standard approach is minimize a utility function incorporating both risk

and return, typically with a parameter to measure risk tolerance and additional

constraints.[3] In traditional portfolio optimization, the sum of the fraction in-

vested in each stock is constrained. If short-selling is allowed, then it is useful

to instead constrain the booksize, the sum of the absolute values of the weights.

This mathematical framework allows investors to select an optimal (or at least

efficient) portfolio at any given time.

In practice, portfolios are held for long time periods and are adjusted, or

re-optimized at specific intervals. While Markowitz [3] showed how to find the

best portfolio at a given time, the basic formulation does not include the costs

associated with changing the weights in the portfolio. Each transaction has an

associated cost and these costs must be included in the decision process.

It is difficult to model these costs, because they can depend on many factors
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including the size of the trade and the type of asset being traded. One way to

limit transaction costs is by introducing a constraint on turnover, the sum of

the absolute differences in weights between adjacent time periods. The goals

of this project were to implement a portfolio optimization algorithm with both

booksize and turnover constraints and to explore the effects of the turnover

constraint on portfolio value and utility in a multi-period setting.

The objective function of the portfolio optimization problem is quadratic;

however, the constraints on booksize and turnover are nonlinear and non-smooth.

Since standard quadratic programming packages require linear constraints, the

constraints were linearized by splitting the variables.

The optimization algorithm was tested on a set of four stocks over eleven

time periods. Both the expected utility and actual performance of the result-

ing portfolios were compared to those of unconstrained and equally weighted

portfolios. The optimal portfolios typically outperformed the equally weighted

portfolios. Comparisons were also made of the performance of portfolios with

different allowances of booksize and turnover.

With turnover constraints in place, the ideas of turnover budgeting and

threshold trading were developed and tested. Turnover budgeting allows dy-

namic allocation of turnover across multiple time periods. Threshold trading

limits trading subject to criteria on the expected change in utility. These and

other extensions of the turnover constraint can be used to model and limit

transaction costs in more realistic ways.
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Chapter 2

Background

2.1 Basic Portfolio Analysis

There are two main problems in portfolio analysis: estimation and optimiza-

tion. The estimation problem is basically the problem of forecasting investment

return. In a sense this, is a statistical or econometric problem and it is the most

difficult of the two problems. If a manager has very good forecasts for stock

behavior, investment decisions are very easy.

The focus of this project is almost entirely on the optimization problem.

Given a set of data and some basic statistics computed from that data, what

is the optimal portfolio choice? How can the investor balance the goal of high

return against the challenge of large risks? This view, the idea that investors

balance return and risk, was the insight of Harry Markowitz and his view is the

foundation for Mean–Variance analysis in portfolio management.

This project considers the situation where an investor is choosing among

a set of n stocks in which to invest. This set of stocks can be represented as an

n× 1 vector. Let this vector be denoted as ~x. Then, xi is the number of shares
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invested in asset i.

Notice that the entries in ~x can be positive, 0, or negative. If xi > 0,

then the investor owns a positive number of shares in asset i. If xi < 0, then

the investor has a short position in asset i. This means that the investor has

borrowed shares of stock from someone else, sold them, and kept the proceeds

from the sale. At some point in the future, the investor will have to buy the

shares of stock back and give them to the original owner. This is called closing

the short position. Clearly, short selling is done with the hope that the stock

will drop in price. If xi = 0, the investor owns no shares of stock i.

To further illustrate the idea of short selling, consider investor A and

investor B. Assume that Microsoft stock is worth $30 per share today. Investor

A thinks that Microsoft will go down in the next week, so he borrows 10 shares

of Microsoft stock from investor B and sells them immediately, collecting $300.

If Microsoft stock drops to $20 per share next week, investor A can buy the 10

shares back for $200 and close his short position with B by giving the shares

back. Investor A would make a profit of $100 from this transaction. However,

if Micosoft stock goes up, A will lose money. For instance, if Microsoft is worth

$60 next week, it will cost A $600 to buy the stocks back and close the position,

earning him a net loss of $300. For this reason, short selling is riskier than only

buying stocks because the possible amount of loss is unbounded. Stock prices

cannot drop below $0 per share, but they can go up almost indefinitely.
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2.2 Portfolio Optimization

2.2.1 Risk versus Return

Investors want to choose their portfolio to minimize risk while simultaneously

obtaining the maximum amount of return. These two objectives can sometimes

oppose each other. For instance, consider the portfolio where all of the investor’s

money is invested in the stock that he thinks will perform the best. Although

this portfolio has a high amount of expected return, it also is very risky, because

if that one stock drops, the investor does not have any other assets that could

make up for it. On the other hand, if an investor invests equally in all possible

stocks, he is not taking advantage of any stocks that will probably perform

better than others.

Economists have long studied the ways that investors attempt to balance

risk versus return, but it was Harry Markowitz [3] who first defined risk as

variance in portfolio return.

Risk = ~xT Ω~x =
∑
i,j

xiσijxj (2.1)

Return = ~µT ~x =
∑

i

µixi (2.2)

where Ω is the (n × n) covariance matrix for the assets and ~µ is the ((n × 1)

vector of returns. These are estimated from historical data for stock prices.
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2.2.2 Efficient Portfolios

There is not a single portfolio which is “optimal” for all investors. Different

investors have different levels of risk tolerance and are willing to carry more

risk for the chance of obtaining more return. It is, however, possible to identify

portfolios which an investor should consider.

An efficient portfolio has the lowest risk for a given return, as well as the

highest return for that amount of risk [3].

Efficient portfolios are found by solving the optimization problem

Minimize ~xT Ω~x− 1
λ

~µT ~x (2.3)

where λ is a parameter representing the investor’s risk tolerance. If λ is large,

then 1
λ will be close to zero, meaning that the investor does not have much risk

tolerance (most of the emphasis in the optimization problem is placed on risk).

Conversely, if λ is small, then 1
λ will be large, placing more emphasis on return.

The efficient frontier is the curve made up of all efficient portfolios. It

is calculated by running the above optimization over many values of λ, and

visualized by plotting all of the efficient frontiers in risk-return space, as in

figure 2.1 [3].

The efficient frontier can be interpreted as the collection of all portfolios

that have the highest risk for a given amount of return, as well as the highest

return for that amount of risk. In figure 2.1, notice that portfolio a is not on the

efficient frontier because one can achieve a higher amount of return for the same

amount of risk with portfolio b, and a lower amount of risk for the same amount

6



Figure 2.1: Sample Efficient Frontier

of return with portfolio c. Also notice that in order to get a large amount of

return, one must be willing to take on a lot of risk, and to get a very small

amount of risk, one must be able to accept low expected return.

2.2.3 Fully Invested Constraint

A constraint that is commonly placed on the classical portfolio optimization

problem is called the Fully Invested constraint, which requires that the amount

of money invested in the portfolio is equal to some number F. This can be viewed

as a requirement that the investor buys only the number of stocks he wants to,

while not exceeding that number of stocks. With the fully invested constraint

added, the optimization problem becomes:

Minimize ~xT Ω~x− 1
λ

~µT ~x (2.4)
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s.t.
n∑

i=1

xi = F (2.5)

The fully invested constraint is typically used for problems where short sell-

ing is not allowed. As is shown in the next section, the fully invested constraint

is not very meaningful when applied to portfolios where short selling is allowed.
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Chapter 3

Constraints

3.1 Booksize

In classic portfolio optimization, there typically exists a fully invested con-

straint, which sets the sum of the porfolio weights equal to a constant. As our

model allows for short-selling, xi < 0, this constraint is not very meaningful.

Instead, this approach limits the sum of the absolute value of portfolio weights,

or the booksize.

Booksize =
n∑

i=1

|xi| ≤M (3.1)

Here’s a simple two-stock example to illustrate the importance of booksize

when short-selling is allowed:

At time 0, there are two stocks, each priced at $10 per share. Say someone

buys ten shares of Stock 1 and sells-short ten shares of Stock 2. To purchase the

ten shares of Stock 1, the person withdrew $100 from a bank account. However,

when selling-short in Stock 2, he received that $100 back. Therefore, his net

change in wealth is 0. The position vector becomes ~x =
[

10
−10

]
. Notice the

9



sum of the weights equals 0. Also the booksize is 20.

At time 1, things go bad for the investor. Stock 1 drops in price to $5

per share while Stock 2 increases to $15 per share. The investor decides to sell

his shares in Stock 1 and close his position in Stock 2. By selling Stock 1, the

investor gains $50. However, to close his position in Stock 2, the investor must

withdraw $150. The investor now has a net change in wealth of -$100. This

loss could not have been predicted by examining only the net weight in shares,

which equalled 0. This shows the importance of booksize with regards to the

amount of money at risk for loss.

3.2 Turnover and Transaction Costs

There are three types of transaction costs associated with every trade: com-

mission, the bid/ask spread, and market impact. Commission is the amount a

broker charges for performing a trade, which can be a set price or depend on

the size of the trade. The bid/ask spread is the difference in price at which one

can buy a share of stock and then immediately sell it. The market impact is the

cost associated with trading several shares of a stock, i.e. changing the price

of the stock. There is also a fourth type of transaction cost called opportunity

cost which measures the amount lost for not trading a particular stock. [2]

An investor may want to limit the amount that the portfolio changes

over time, because of the transaction costs associated with changing the portfolio

(buying and selling assets). The turnover constraint is introduced to accomplish

this.
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The turnover is the sum of the absolute values of the difference between each

position at time t and time t + 1.

Turnover(t) =
n∑

i=1

|xi(t)− xi(t− 1)| (3.2)

where xi(t) refers to the position in asset i at time t and xi(t− 1) refers to

the position in asset i at time t− 1.

The turnover is constrained by requiring that it is less than or equal to some

constant, typically between 0 and 1, multiplied by the booksize of the portfolio

at time t− 1.

n∑
i=1

|xi(t)− xi(t− 1)| ≤ L
n∑

i=1

|xi(t− 1)| (3.3)

The optimization problem is then:

Minimize ~xT Ω~x− 1
λ~µT ~x

s.t.
n∑

i=1

|xi| ≤M

n∑
i=1

|xi − xold
i | ≤ L

n∑
i=1

|xold
i |

(3.4)
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Chapter 4

Implementation of Portfolio
Optimization

4.1 Constraint Linearization

Notice that the optimization has a quadratic objective function, so it would

be efficient and effective to use a standard quadratic programming tool (such as

MatLab’s quadprog); however, standard quadratic programming tools require

linear constraints. The booksize and turnover constraints are nonlinear because

the sums of absolute values are being calculated. The constraints were there-

fore linearized by splitting each xi into two new variables, b+
i and b−i for the

booksize constraint, and y+
i and y−i for the turnover constraint. Introducing

split variables transforms the problem into the following standard quadratic

programming problem:

Minimize ~xT Ω~x− 1
λ

~µT ~x

12



s.t. xi = b+
i − b−i

b+
i ≥ 0

b−i ≥ 0
n∑

i=1

b+
i + b−i ≤M

xi = y+
i − y−i

y+
i ≥ 0

y−i ≥ 0
n∑

i=1

y+
i + y−i ≤ L

n∑
i=1

|xold
i |

An interpretation of the booksize split variables (b+
i and b−i ) is that

b+
i =

{
xi + c, if xi ≥ 0

d, if xi < 0

b−i =
{

c, if xi ≥ 0
−xi + d, if xi < 0

where c and d are constants. This interpretation says that the split variables

are the positive and negative components of each xi, respectively, shifted by

a constant. The interpretation is the same for the turnover constraint’s split

variables.

4.2 Proof of Validity of Linearization

Let ~x = (x1, . . . , xn), ~b+ = (b+
1 , . . . , b+

n ), ~b+ = (b−1 , . . . , b−n ).

Define two sets. Let

A :=



(~x,~b+,~b−)s.t.
xi = b+

i − b−i , (for each i)
b+
i ≥ 0,

b−i ≥ 0,
n∑

i=1

b+
i + b−i ≤M


(4.1)
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Let

B := {~x s.t.
n∑

i=1

|xi| ≤M} (4.2)

We want to show that minimizing utility for A is the same as minimizing

utility for B. To do this, we show that ∀~x ∈ B,∃( ~b+, ~b−) such that (~x, ~b+, ~b−) ∈

A, and that ∀(~x, ~b+, ~b−) ∈ A, ~x ∈ B.

Let ~x ∈ B be given. Then
n∑

i=1

|xi| ≤ M . We need to show that we can find

~b+,~b− such that (~x,~b+,~b−) ∈ A.

For each i, let

b+
i :=

{
xi, if xi ≥ 0
0, if xi < 0

b−i :=
{

0, if xi ≥ 0
−xi, if xi < 0

Then, xi = b+
i − b−i , b+

i ≥ 0, b−i ≥ 0, and b+
i + b−i = |xi| ≤ M and so

n∑
i=1

b+
i + b−i ≤ M and this implies that if ~x ∈ B, then there exists ~b+,~b− such

that (~x, ~b+, ~b−) ∈ A.

Next, let A (~x,~b+,~b−) ∈ A be given. Then xi = b+
i − b−i , b+

i ≥ 0, b−i ≥

0,
n∑

i=1

b+
i + b−i ≤M . Notice:

n∑
i=1

xi =
n∑

i=1

b+
i − b−i ≤

n∑
i=1

b+
i + b−i ≤M

Because for each i, b+
i ≥ 0, b−i ≥ 0. There are two cases: xi ≥ 0, and xi < 0.

14



Case (i):

xi ≥ 0⇒ xi = |xi| = b−i b−i

Case (ii):

xi ≤ 0⇒ −x = |x| = b−i − b+
i ≤ b+

i + b−i

which implies that
n∑

i=1

xi ≤
n∑

i=1

b+
i + b−i ≤M.

Hence

if (~x, ~b+, ~b−) ∈ A, ~x ∈ B.

Therefore, the set of feasible x is the same for each set, so minimizing the

objective function over one set will yield the same result as minimizing over the

other.

4.3 Standard Constraint Formulation

MatLab’s QuadProg package minimizes the function ~xT H~x − ~fT ~x, subject

to the constraints A~x ≤ ~b, and Aeq~x = −→beq, where H, A, and Aeq are k × k

square matrices, and ~f , ~b and −→beq are k× 1 vectors (k is the number of decision

variables). In this project, QuadProg is run on the optimization problem:

Minimize ~xT Ω~x− 1
λ

~µT ~x

s.t. xi = b+
i − b−i

b+
i ≥ 0

b−i ≥ 0
n∑

i=1

b+
i + b−i ≤M

15



xi = y+
i − y−i

y+
i ≥ 0

y−i ≥ 0
n∑

i=1

y+
i + y−i ≤ L

n∑
i=1

|xold
i |

First, the matrices H, A, and Aeq need to be augmented to allow for the

split constraint variables. These variables will be in the objective function, but

they should not have any impact on the objective function value. Therefore, if n

is the number of stocks in the portfolio, then augment H with 4n zeros in each

row and column, so that it will be a square matrix with dimensions 5n × 5n.

Similarly, augment ~f with 4n zeros, so that it is a vector with dimensions 5n×1.

The inequality and equality constraints need to be translated into matrix

and vector form. The constraints are rearranged so that all decision variables are

on the left side, and all inequalities are “less than or equal to”. The (rearranged)

list of inequality constraints is: −b+
i ≤ 0, −b−i ≤ 0,

n∑
i=1

b+
i + b−i ≤ M, −y+

i ≤

0, −y−i ≤,
n∑

i=1

y+
i + y−i ≤ L

n∑
i=1

|xold
i |. The list of equality constraints is: −xi +

b+
i − b−i = 0, −xi +y+

i −y−i = 0. Now, the matrices A and Aeq, and the vectors

~b and −→beq can be defined. Let 0 denote an n × n matrix of zeros, I denote an

n× n identity matrix, ~0 denote an n× 1 matrix of zeros, and ~1 denote an n× 1

matrix of ones.

A =



0 −I 0 0 0
0 0 −I 0 0
0 0 0 −I 0
0 0 0 0 −I
−→
0T

−→
1T

−→
1T

−→
0T

−→
0T

−→
0T

−→
0T

−→
0T

−→
1T

−→
1T


,~b =



~0
~0
~0
~0
M

L
n∑

i=1

|xold
i |
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Aeq =
[
−I I −I 0 0
−I 0 0 I −I

]
,
−→
beq =

[
~0
−−−→
xOld

]

Each column of A and Aeq corresponds to a vector of decision variables. The

first corresponds to ~x, the second to ~b+, the third to ~b−, the fourth to ~y+,

and the fifth to ~y−. Also, every row corresponds to a constraint. With the

constraints in a standard linear form, QuadProg can be used in the following

way to perform portfolio optimization.

4.4 Description of Algorithm

Inputs:

λ = risk tolerance

L = turnover constraint parameter

M = booksize constraint

Choose which constraints to use (none, booksize only, turnover only, book-

size and turnover)

Choose what to plot (portfolio weights, portfolio utility, portfolio value)

• Obtain the data (get risk matrices and return vectors for each time step).

• numStocks← the number of stocks in the portfolio

• numTimePeriods← the number of time periods for which to optimize

• xOld← equally weighted portfolio of numStocks stocks

17



• for i = 1 to numTimePeriods

– select appropriate µ and ω

– run quadprog with linearized constraints to find x

– xOld← x

• Plot portfolio weights, utility, and value as requested

18



Chapter 5

Results

5.1 Data Management

5.1.1 Source of Data

The data used in this project was downloaded from Yahoo Finance. It

consists of daily closing prices of stocks over an 80-day period. Four stocks

were selected that are known to have low volatility: Gap, Lucent Technologies,

Verizon Communications, and Disney. Also four stocks that are known for their

high volatility were selected: DayStar Technologies, Salesforce.com, BriteSmile,

and iMergent. For each sets of stocks, the daily returns were used to compute

the ~µ (average return) and Ω (risk) matrices.

5.1.2 Definition of Time Periods

The turnover constraint is implemented over several time periods. Therefore,

to test the constraint several time periods worth of data were generated. Eleven

~µ and eleven Ω matrices were calculated using 30 days worth of data for each

period shifted five days. The optimization problem was solved across all of the

time periods.

19



5.1.3 Verifying Validity of Optimization

To further verify the linearization of the constraints, the unconstrained prob-

lem was solved with a set of four stocks and compared to a loosely constrained

problem on the same set of stocks. Constraints were chosen that would be satis-

fied by the solution to the unconstrained problem, i.e., allowing large booksizes

and amounts of turnover between time periods. On each set of stocks, the so-

lution to the unconstrained problem was identical to the solution of the loosely

constrained problem. This provided further verification that the linearization

of the constraints was valid.

5.2 Evolution of Portfolios

Figure 5.1 shows the evolution a portfolio over 11 time periods with con-

straints on booksize and turnover. The algorithm defaulted to an equally-

weighted portfolio in the first time period. In this example, the booksize is

10.

There are several important features about the dynamics of the portfolio

shown by Figure 5.1. The constraint on booksize limits portfolio booksize less

than or equal to a particular value. Between the first two time period the

booksize actually decreases in value. By the final time step our booksize has

decreased in value from 10 to 7. Between each time step, there is a certain

amount turnover conducted by the algorithm. As the portfolio evolves through

time steps, the distribution in weights of the portfolio becomes increasingly

different from the original portfolio. Finally, the weight of dark blue stock in

20
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Figure 5.1: Evolution of Portfolio Weights

the middle time periods become negative values, reiterating the allowance of

short-selling.

5.3 Portfolio Value Calculations

Portfolio value is defined as the amount of money an investor would have if

he sold all his stocks and closed all his short positions plus all of his earnings.

Let wi(t) represent the price of stock i at time t, wixi be the current wealth of

stock i, MMA equal the amount of money in bank, ∆MMAi(t) symbolize the
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change in balance from time t−1 to time t, and Value(t) be the portfolio value.

At time t, the change in balance caused by stock i is going to equal the

change in weights from time t − 1 to time t multiplied by the price of stock i

at time t. More generally, the overall change will equal the dot product of the

vector of prices and the vector of change in weights.

∆MMA(t) = ~wT (t)
[
~x(t)− ~x(t− 1)

]
(5.1)

The current balance MMA will equal the sum of all changes in balance. Portfo-

lio value will equal the current balance plus the present wealth of the portfolio.

V alue(t) = ~wT (t)~x(t) + MMA =
n∑

i=1

(
wi(t)xi(t)

)
+ MMA (5.2)

5.4 Comparing Value and Utility Plots

5.4.1 Efficient vs. Equally Weighted Plots

To evaluate the performance of our portfolio, it was compared to a port-

folio that was equally weighted at each time step. In Figure 5.2 the efficient

portfolio either matched or exceeded the equally-weighted portfolio in actual

performance. As shown in Figure 5.3, the efficient portfolio easily outperformed

the equally-weighted portfolio in expected utility.

The next set of graphs are explorations of the effects of different allowances

of booksize and turnover.

5.4.2 Booksize Plots

First, the algorithm was run for different allowances of booksize. Figure 5.4

illustrates the principle that generally relaxing the booksize allows for greater

22
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Figure 5.2: Portfolio Value: Efficient vs. Equally Weighted

return (and as a result portfolio value).

Figure 5.5 shows the expected utility of the same portfolios. The results are

counterintuitive. A portfolio with a loosely constrained booksize has a greater

set of feasible portfolios than a portfolio with a tightly constrained booksize.

Actually, the smaller set is a subset of the larger set. However, since there is a

constraint on turnover, these sets no longer necessarily intersect. As a result, it

is possible to obtain a better utility with a more tightly constrained booksize.
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Figure 5.3: Portfolio Utility: Efficient vs. Equally Weighted

5.4.3 Turnover Plots

Next the algorithm was run for different allowances of turnover (Figure 5.6).

Judging by the latter time periods, it appears that allowing larger amounts

in turnover is a great idea. These results are deceiving as the calculation of

portfolio value does not consider transaction costs.

Figure 5.7 shows the expected utility of the previous portfolios. This graph

may also seem counterintuitive, similar to the utility plot of different booksizes.
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Figure 5.4: Portfolio Value for Different Booksizes

It is important to note that similar utility does not imply similar portfolio. In

the first time step, it is possible for a loosely constrained portfolio to make

an enormous change in its distribution of weights, while a tightly constrained

portfolio will not. As a result, in the second time step the tightly constrained

portfolio might be closer to achieve a portfolio with good utility. In fact, the

loosely constrained portfolio may only be able to achieve a portfolio with poor

utility. As a result, the tightly constrained portfolio may outperform the loosely

constrained one. Even without considering transaction costs, allowing large
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Figure 5.5: Portfolio Utility for Different Booksizes

amounts of turnover is a bad idea since your portfolio may not be able to

consistently achieve good utility.
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Chapter 6

Explorations

Once the turnover and booksize constraints were implemented, it was possible to

extend the idea of constraining turnover to limit transaction costs in two more

ways. The first, called turnover budgeting, involves dynamically implementing

turnover at different time steps. The second, called threshold trading, involves

only trading if the expected change in utility is large enough.

6.1 Turnover Budgeting

With turnover budgeting, the basic idea is that a different amount of turnover

is allowed at each time step. This translates to the parameter L in the turnover

constraint being different at different times. One way to demonstrate this idea

is to consider a set of eleven time periods. If L is initially set to .2, then the

resulting portfolios can be seen in Figure 6.1.

The total amount of turnover for this set of time periods is 2.2, which means

that the turnover constraint is tight at every time period. Changing the param-

eter L to a vector ~L, where Lj is the amount of turnover allowed at time period
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Figure 6.1: Non Turnover Budgeted Portfolios

j allows a dynamic turnover implementation. Particularly, if the total turnover

is kept the same, then valid comparisons between the turnover budgeted and

non-turnover budgeted portfolios can be made. In Figure 6.2, the total turnover

was kept at 2.2, but the vector ~L was set to [.1, .1, · · · , 1.2]. The fact that the

turnover budgeted portfolios had better utility and value, as seen in Figure 6.3

than the non-turnover budgeted portfolios shows that turnover budgeting can

be a good idea. The interesting problem that arises with turnover budgeting is

when is the optimal time to change L, based on covariance and risk matrices.

6.2 Threshold Trading

If investors are only using turnover constraints to limit their transaction

costs, a problem may arise. The turnover constrained portfolios may involve

very small changes, gaining very small changes in utility. These small changes

may still cost a significant amount of money (as there is often a fixed transaction
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Figure 6.2: Turnover Budgeted Portfolios

cost associated with trades). A possible remedy to this situation is to require

that the expected change in utility is less than some parameter P < 0 (since

utility is being minimized). In other words, run the optimization, and if the best

portfolio that can be achieved in the feasible region doesn’t lower the utility by

enough, don’t make the trade. The equation used for the threshold criteria is if

(~xT Ω~x− ~µT ~x)− (−−→xold
T Ω−−→xold − ~µT−−→xold)

|−−→xold
T Ω−−→xold − ~µT−−→xold|

< P < 0 (6.1)

then make the trade. Figure 6.4 is an example of a set of time periods where

the portfolios have been optimized using threshold trading.

As can be seen in Figure 6.5, this may not be the best idea, since the value

and expected utility are both worse for threshold trading portfolios. This was

the case for all examples tried.

31



Figure 6.3: Turnover Budgeted Values

Figure 6.4: Threshold Traded Portfolios
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Figure 6.5: Threshold Traded Values
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Chapter 7

Conclusion

This portfolio efficiently implemented multi-period portfolio optimization

with non-smooth constraints on booksize and turnover. To use a standard

quadratic programming package, these constraints were linearized using split

variables.

After running the algorithm, the resulting portfolios’ actual values and

expected utilities were compared to those of an equally-weighted portfolio. The

optimal portfolio had consistently better performance. Next, the algorithm was

run on portfolios with constant allowances of turnover but different booksizes.

This showed that relaxing the booksize constraint allows for higher returns. The

algorithm was also run on portfolios with constant allowances of booksize but

different constraints on turnover. The resulting portfolios demonstrated that

relaxing turnover does not necessarily lead to higher returns and expected util-

ity. Making a huge change in one time step could prevent moving to a portfolio

with a good utility.

Turnover budgeting implies dynamic allowance of turnover. Adding
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turnover budgeting yielded better expected utility and portfolio value on the

examples tested. To further extend the idea of turnover budgeting, optimal

turnover distribution would have to be considered. Threshold trading involves

choosing whether or not to trade based on expected change in utility. On the

examples tried, threshold trading consistently performed worse than benchmark

portfolios.

This work could be extended in several ways. The ideas of turnover

budgeting and threshold trading could be further developed to more accurately

model trading with transaction costs. Also, the algorithm could be tested on

larger sets of stocks. The efficiency of the algorithm would need to be improved

so that it could be used on a realistic portfolio (consisting of about 5000 stocks).
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Chapter 8

Appendices

8.1 Appendix A: MatLab Code
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4/26/07 6:19 PM C:\Documents and Settings\jclark\Desktop\Pi...\PlotPortfolios.m 1 of 10

%optifolio takes all the inputs and calculates optimal portfolios
 
lambda  %if lambda=0, then vary lambda to generate efficient frontiers
L =  %turnover
M =  %booksize
ConstraintOption =  %which constraints to use
PlotOption =  % what to plot
ExitFlagOption =  %1 if you want exitflags, 0 if not
PeriodLength =  %the amount of shift between periods
Window =  %the number of trading days per period
 
 
[Xmat]=PlotPortfolios(lambda,L,M,ConstraintOption,PlotOption,ExitFlagOption,PeriodLength,
Window)
 
%**************************************************************************************
function [Xmat] = PlotPortfolios(lambda,L,M,Choice,PlotOption,ExitFlagOption,PeriodLength,
Window)
%takes as input lambda (risk tolerance), L (amount of turnover allowed),
%M(booksize), and Choice, which is an input that decides which constraints will be 
enforced
% if choice = 0, unconstrained
% if choice = 1, booksize only
% if choice = 2, turnover only
% if choice = 3, booksize and turnover
 
%compute the matrix of asset weights and turnover amounts by running
%Turnover123
 
if lambda == 0
    Xmat = PlotPortfoliosLam(L,M,Choice,PlotOption,ExitFlagOption,PeriodLength,Window)
else
[TurnoverMatrix,exitflagmatrix,BooksizeMat,Xmat,ClosingPrices,BigMu,BigOmega,NumStocks,
NumTimePeriods]=CalculateTurnover(lambda,L,M,Choice,PeriodLength,Window)
 
Xmat
TurnoverMatrix
 

Xonly=Xmat(1:NumStocks,1:NumTimePeriods+1)

Xmat=[Xmat TurnoverMatrix']
 
stock=zeros(NumTimePeriods,NumStocks)
stockE=zeros(NumTimePeriods,NumStocks)
deltaMMA=zeros(NumTimePeriods,NumStocks)
deltaMMAE=zeros(NumTimePeriods,NumStocks)
MMA=zeros(NumTimePeriods,NumStocks)
MMAE=zeros(NumTimePeriods,NumStocks)
portfolio=zeros(NumTimePeriods,NumStocks)
portfolioE=zeros(NumTimePeriods,NumStocks)
Xequal=10/NumStocks*ones(NumStocks,NumTimePeriods+1)
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for i=1:NumStocks
    for k=1:NumTimePeriods
        stock(k,i)=Xonly(i,k)*ClosingPrices(k,i)  %find the amount invested in stock at 
each time step
        stockE(k,i)=Xequal(i,k)*ClosingPrices(k,i)  %same for equally weighted
        
    end
    
    for k=2:NumTimePeriods
        deltaMMA(k,i)=-(Xonly(i,k)-Xonly(i,k-1))*ClosingPrices(k,i)  %find the change in 
the MMA at each time step
        deltaMMAE(k,i)=-(Xequal(i,k)-Xequal(i,k-1))*ClosingPrices(k,i)  %same for equally 
weighted
    end
    
    for k=2:NumTimePeriods
        MMA(k,i)=sum(deltaMMA(1:k,i))  %find the value of the MMA
        MMAE(k,i)=sum(deltaMMAE(1:k,i))  %same for equally weighted
    end
    
    for k=1:NumTimePeriods
        portfolio(k,i)=stock(k,i)+MMA(k,i)  %find the portfolio value
        portfolioE(k,i)=stockE(k,i)+MMAE(k,i)  %same for equally weighted
    end
   
end
 
totalportfolio=zeros(NumTimePeriods,1)
totalportfolioE=zeros(NumTimePeriods,1)
 
for i=1:NumTimePeriods
 totalportfolio(i)=sum(portfolio(i,:))
 totalportfolioE(i)=sum(portfolioE(i,:))
end
 
 
 
Utility=[]
UtilityEq=[]
BigOmega=[zeros(NumStocks,NumStocks) BigOmega]
BigMu=[zeros(1,NumStocks) BigMu]
 
for i=1:NumTimePeriods+1
    Utility=[Utility Xonly(:,i)'*BigOmega((i-1)*NumStocks+1:(i-1)*NumStocks+NumStocks,:)
*Xonly(:,i)-1/lambda*BigMu(i,:)*Xonly(:,i)]
    UtilityEq=[UtilityEq Xequal(:,i)'*BigOmega((i-1)*NumStocks+1:(i-1)
*NumStocks+NumStocks,:)*Xequal(:,i)-1/lambda*BigMu(i,:)*Xequal(:,i)]
end
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if PlotOption==1 %plot turnover, booksize, and weights
    TimePlot = []
    for i=1:NumTimePeriods+1
        TimePlot=[TimePlot,i]
    end
    hold on
    scatter(TimePlot,TurnoverMatrix,'^','m') %plot the turnover at each time step
    scatter(TimePlot,BooksizeMat,'p','g')
    TurnoverMatrix
    BooksizeMat
    bar(Xmat(1:NumStocks,:)','group') %on the same graph, plot the portfolio weights at 
each time step
    xlabel('Time Period')
    ylabel('Weight')
    title('Portfolio Weight, Booksize, Turnover')
    legend('Turnover','Booksize','Stock 1', 'Stock 2', 'Stock 3', 'Stock 4',6)
    hold off
elseif PlotOption==2 %plot return of portfolio vs. equally weighted
     TimePlot = []
    for i=1:NumTimePeriods
        TimePlot=[TimePlot,i]
    end    
    hold on
    scatter(TimePlot, totalportfolio,'p') 
    scatter(TimePlot, totalportfolioE,'o')
    xlabel('Time Period')
    ylabel('Return')
    title('Portfolio Returns')
    legend('Optifolio','Equally Weighted Portfolio',2)
    hold off
elseif PlotOption==3 %plot utility of portfolio vs. equally weighted
    TimePlot = []
    for i=1:NumTimePeriods+1
        TimePlot=[TimePlot,i]
    end
    
    figure
    hold on
    scatter(TimePlot, Utility,'p') 
    scatter(TimePlot, UtilityEq,'o')
    xlabel('Time Period')
    ylabel('Utility')
    title('Portfolio Utilities')
    legend('Optifolio','Equally Weighted Portfolio',2)
    hold off
end
 
if ExitFlagOption ==1
    exitflagmatrix
end
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end
 
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%
function [EFMat] = PlotPortfoliosLam(L,M,Choice,PlotOption,ExitFlagOption,PeriodLength,
Window)
%takes as input L (amount of turnover allowed), M(booksize),
%and Choice, which is an input that decides which constraints will be enforced
% if choice = 0, unconstrained
% if choice = 1, booksize only
% if choice = 2, turnover only
% if choice = 3, booksize and turnover
 
[EFMat1,NumStocks,NumTimePeriods]=CalculateTurnoverLam(10,M,Choice,PeriodLength,Window)
[EFMat2,NumStocks,NumTimePeriods]=CalculateTurnoverLam(1,M,Choice,PeriodLength,Window)
[EFMat3,NumStocks,NumTimePeriods]=CalculateTurnoverLam(.1,M,Choice,PeriodLength,Window)
[EFMat4,NumStocks,NumTimePeriods]=CalculateTurnoverLam(.01,M,Choice,PeriodLength,Window)
 
% for i=1:2:NumTimePeriods*2
%     figure

% end
% 
% figure
% for i=1:2:NumTimePeriods*2
%     hold on

% end
 
figure
hold on
scatter(EFMat1(:,3),EFMat1(:,4),'p')
scatter(EFMat2(:,3),EFMat2(:,4),'o')
scatter(EFMat3(:,3),EFMat3(:,4),'^')
scatter(EFMat4(:,3),EFMat4(:,4),'s')
 
xlabel('Risk')
ylabel('Return')
title('Efficient Frontiers: Time Period = 2, M=30')
legend('L=10','L=1','L=.1','L=.01',4)
 
EFMat = EFMat1
 
 
end
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%
function [TurnMatrix,Exitflags,BooksizeMat,Xmat,StockPrices,BigMu,BigOmega,NumStocks,
NumTimePeriods] = CalculateTurnover(lambda,L,M,Choice,PeriodLength,Window)
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[BigMu,BigOmega,StockPrices, NumStocks, NumTimePeriods]=GetData(PeriodLength,Window)  %run 
data to get the risk and return matrices at each time step
 

 

Utilities=zeros(NumTimePeriods,1)
Exitflags=zeros(NumTimePeriods,1)
 
xold=[10/NumStocks*ones(NumStocks,1) zeros(4*NumStocks,1)]
Xmat=[xold(1:NumStocks) ]
Weights=[xold(1:NumStocks)']

%risk-budgeting thing
for i=1:NumTimePeriods
    CurrentMu=BigMu(i,:)  %select the return vector for the current time step
    CurrentOmega=BigOmega((i-1)*NumStocks+1:(i-1)*NumStocks+NumStocks,:)  %select the risk 
matrix for the current time step
    %[x,fval,exitflag,portrisk,portreturn]=RunOptimizer(CurrentMu,CurrentOmega,lambda,

    %budgeted
    [x,fval,exitflag,portrisk,portreturn]=RunOptimizer(CurrentMu,CurrentOmega,lambda,xold,
L,M,Choice,NumStocks,NumTimePeriods)  %get the portfolio weights, risk, and return by 
running TrackTurnover123
 
    Weights=[Weights x(1:NumStocks)']  %matrix of asset weights in the portfolio
    Utilities(i)=fval
    Exitflags(i)=exitflag
    xold=x  %reset the old x to be the current x, for use in the next time step
    Xmat=[Xmat,[xold(1:NumStocks) portrisk portreturn]]  %input the current portfolio 
weights, risk, and return into Xmat
end
 
 
 
 
 
TurnMatrix=zeros(NumTimePeriods+1,1)  %make a matrix of the amount of turnover at each 
time period
 
for i=2:NumTimePeriods+1
    TurnMatrix(i)=sum(abs(Weights(i-1,:)-Weights(i,:)))  %amt of turnover = sum(abs(x_i^
{new}-x_i^{old}))
end
 
BooksizeMat = zeros(NumTimePeriods+1,1)  %make a matrix of the booksize at each time 
period
 
for i=1:NumTimePeriods+1
    BooksizeMat(i)=sum(abs(Weights(i,:)))  %booksize = sum(abs(x_i))
end
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end
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%
function [EFMat,NumStocks,NumTimePeriods] = CalculateTurnoverLam(L,M,Choice,PeriodLength,
Window)
 
[BigMu,BigOmega,StockPrices, NumStocks, NumTimePeriods]=GetData(PeriodLength,Window)  %run 
data to get the risk and return matrices at each time step
NumTimePeriods
 
 
 EFMat = []
 
    xMatold=[10/NumStocks*ones(NumStocks,100) zeros(4*NumStocks,100)]
    for i=1:NumTimePeriods
        CurrentMu=BigMu(i,:)  %select the return vector for the current time step
        CurrentOmega=BigOmega((i-1)*NumStocks+1:(i-1)*NumStocks+NumStocks,:)  %select the 
risk matrix for the current time step
        EFMati=[]
        XMati=[]
        count
        for lambda = .1:.1:10
            count=count
            xold = xMatold(:,count)
            [x,fval,exitflag,portrisk,portreturn]=RunOptimizer(CurrentMu,CurrentOmega,
lambda,xold,L,M,Choice,NumStocks,NumTimePeriods)  %get the portfolio weights, risk, and 
return by running TrackTurnover123
            EFMati = [EFMati portrisk,portreturn]
            XMati=[XMati,x]
        end
        EFMat = [EFMat,EFMati]
        xMatold=XMati  %reset the old x to be the current x, for use in the next time step
    end
 
end
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%
function [mutrans, omega, P, NumStocks, NumTimePeriods] = GetData(PeriodLength,Window)   %
last edit 2/15
%Assume that ((NumDays-(Window+1))/PeriodLength is an integer                               
 
M = csvread('HVClose118Two.csv',1,0)  %M becomes matrix of excel data
[NumDays,NumStocks] = size(M)
NumTimePeriods = ((NumDays - (Window + 1))/PeriodLength) + 
 
%Maybe Truncate Excel Matrix 
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mutrans=[]  %initialize mu matrix
omega=[]  %initialize omega matrix
N = zeros(NumDays,NumStocks)  %inverted excel data
P = zeros(NumTimePeriods,NumStocks)  %vector of stock prices for each time period
R = zeros(NumDays - 1,NumStocks)  %matrix of returns
r = zeros(Window,NumStocks)  %initalize vector of returns
 
for i = 1:NumDays
    for j = 1:NumStocks
        N(i,j) = M((NumDays+1)-i,j)  %becomes inverted M
    end
end
 
for i = 1:NumTimePeriods
   for j = 1:NumStocks
        P(i,j) = N(PeriodLength*(i-1)+(Window +1),j)  %populate vector of stock prices
   end
end
 
for i = 1:(NumDays - 1)
    for j = 1:NumStocks
        R(i,j) = (N(i+1,j) - N(i,j))/N(i,j)  %populate matrix of returns
    end
end
 
for k = 1:NumTimePeriods %k-1 refers to time period
    for i = 1:Window %i refers to trading day
        for j = 1:NumStocks %j refers to a particular asset
            r(i,j) = R((PeriodLength*(k-1))+i,j)  %r(i,j) equals the return of asset j at 
trading day (5*(k-1)+i) 
            
        end
    end
 
    mutrans = [mutrans mean(r)]  %auguments mean vector transpose at time period k-1 to 
mutrans
    omega = [omega cov(r)]  %augments covariance matrix at time period k-1 to omega
end
end
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%
 
function [x,fval,exitflag,portrisk,portreturn] = RunOptimizer(mu,omega,lambda,xold,L,M,
Choice,NumStocks,NumTimePeriods)
warning off all
% runs quadprog
 
 

    
if Choice==0 %fully invested only
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    [x,fval,exitflag] = quadprog(2*omega,-1/lambda*mu)  %min risk-1/lambda*return s.t. 
Aeqx=beq
    portrisk=x'*omega*x  %calculate portfolio risk and return
    portreturn=mu*x
    
 
  
elseif Choice==1 %booksize
 
    omega=[omega,zeros(NumStocks,NumStocks*2) zeros(NumStocks*2,NumStocks*3)]  % augment 
omega for 4 positive and 4 negative split variables (b_i^+ and b_i^-)
    mu=[mu,zeros(1,NumStocks*2)]  % augment mu for 4 positive and 4 negative split 
variables
    
 
    %some new constraints

    %<= M (booksize)
    
    A=[zeros(NumStocks,NumStocks),-eye(NumStocks,NumStocks),zeros(NumStocks,NumStocks)
zeros(NumStocks,NumStocks*2),-eye(NumStocks,NumStocks) zeros(1,NumStocks),ones(1,
NumStocks*2)]   %old constraints ONLY
    b=[zeros(NumStocks*2,1) M]  % Ax<=b ==> b_i^+ >=0, b_i^- >=0, sum(b_i^+ + b_i^-
    
    Aeq=[-eye(NumStocks,NumStocks),+eye(NumStocks,NumStocks),-eye(NumStocks,NumStocks)]  
    beq=[zeros(NumStocks,1)]
    
    % Aeqx=beq ==> b_i^- b_i^- =x_i , sum(x_i = 1)
    

risk-1/lambda*return s.t. Ax<=b, Aeqx=beq
    [x,fval,exitflag]=quadprog(2*omega,-1/lambda*mu,A,b,Aeq,beq,[],[],xold(1:
NumStocks*3))
    portrisk=x'*omega*x  %calculate portfolio risk and return
    portreturn=mu*x
 
elseif Choice==2 %turnover
    
     omega=[omega,zeros(NumStocks,NumStocks*2) zeros(NumStocks*2,NumStocks*3)]  %augment 
omega for 4 positive (y_i^+) and 4 negative (y_i^-) split variables
     mu=[mu,zeros(1,NumStocks*2)]  %augment mu
     
       
     A=[zeros(NumStocks,NumStocks),-eye(NumStocks,NumStocks),zeros(NumStocks,NumStocks)
zeros(NumStocks,NumStocks*2),-eye(NumStocks,NumStocks) zeros(1,NumStocks),ones(1,
NumStocks*2)]
     b=[zeros(NumStocks*2,1) L*sum(abs(xold(1:NumStocks)))]
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     % Ax<=b ==> y_i^+ >=0, y_i^- >=0, sum(y_i^+ + y_i^- <= L*sum(old x's)
         
     Aeq=[-eye(NumStocks,NumStocks),eye(NumStocks,NumStocks),-eye(NumStocks,NumStocks)]
     beq=[-xold(1:NumStocks)]
    
     % Aeqx=beq ==> y_i^+ - y_i^- =x_i - x_i^{old}, sum(x_i = 1)
     

risk-1/lambda*return s.t. Ax<=b, Aeqx=beq
     [x,fval,exitflag]=quadprog(2*omega,-1/lambda*mu,A,b,Aeq,beq,[],[],xold(1:
NumStocks*3))
     portrisk=x'*omega*x  %calculate portfolio risk and return
     portreturn=mu*x
    
elseif Choice==3 %turnover, booksize
    omega=[omega,zeros(NumStocks,NumStocks*4) zeros(NumStocks*2,NumStocks*5) zeros
(NumStocks*2,NumStocks*5)]  %augment omega w/ y_i^+,y_i^-,b_i^+,b_i^-
    mu=[mu,zeros(1,NumStocks*2),zeros(1,NumStocks*2)]  %augment mu
 
    %new stuff

%         eye(4,4),zeros(4,4),zeros(4,4),-eye(4,4),zeros(4,4)

%     

%16 zeros, L*sum(old x's), booksize 
    
    A=[zeros(NumStocks,NumStocks),-eye(NumStocks,NumStocks),zeros(NumStocks,NumStocks*3)  
%-y_i^+
        zeros(NumStocks,NumStocks*2),-eye(NumStocks,NumStocks),zeros(NumStocks,
NumStocks*2)  %-y_i^-
        zeros(NumStocks,NumStocks*3),-eye(NumStocks,NumStocks),zeros(NumStocks,NumStocks)  
%-b_i^+
        zeros(NumStocks,NumStocks*4),-eye(NumStocks,NumStocks)  %-b_i^-
        zeros(1,NumStocks),ones(1,NumStocks*2),zeros(1,NumStocks*2)  %sum(y_i^+ +y_i^-)
        zeros(1,NumStocks*3),ones(1,NumStocks*2)]   %sum(b_i^+ +b_i^-)
     
    
    b=[zeros(NumStocks*4,1) L*sum(abs(xold(1:NumStocks))) M]  %16 zeros, L*sum(old x's), 
booksize 
    
    % Ax<=b ==>
    % y_i^+ >= 0
    % y_i^- >= 0
    % b_i^+ >= 0
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    % b_i^- >= 0
    % sum(y_i^+ +y_i^-) <= L*sum(old x's)
    % sum(b_i^+ +b_i^-) <= M
    
    Aeq=[-eye(NumStocks,NumStocks),eye(NumStocks,NumStocks),-eye(NumStocks,NumStocks),
zeros(NumStocks,NumStocks*2)   %-x_i + y_i^+ - y_i^-
        -eye(NumStocks,NumStocks),zeros(NumStocks,NumStocks*2),eye(NumStocks,NumStocks),-
eye(NumStocks,NumStocks)]  
    
    beq=[-xold(1:NumStocks) zeros(NumStocks,1)]  
    
    %Aeqx=beq ==>
    % y_i^+ - y_i^- = x_i-x_i^{old}
    % b_i^+ - b_i^- = x_i
  
    
    

risk-1/lambda*return s.t. Ax<=b, Aeqx=beq
    [x,fval,exitflag]=quadprog(2*omega,-1/lambda*mu,A,b,Aeq,beq,[],[],xold)

    portrisk=x'*omega*x %calculate portfolio risk and return
    portreturn=mu*x
 
     
end
 
 
end
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2

Project GoalsProject Goals

Implement multi-period portfolio 
optimization for non-smooth constraints

Explore the effects of transaction 
constraints on portfolio value and utility
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Portfolio OptimizationPortfolio Optimization
Investment Strategy: Invest in each of n
assets

Amount invested in each asset can be 
positive (buying long), zero, or negative 
(selling short)
Goal: minimize risk for a given return

ixi  asset of held shares of number=
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Risk and ReturnRisk and Return

jiji  stock and  stock between covariance the is  where ,σ

jji
ji

i
T xxxx ,

,
Risk Portfolio Expected σ∑=Ω=

i
i

i
T xx ∑== μμReturn Portfolio Expected

Reference: Markowitz, H. M. (1952). Portfolio Selection, 
Journal of Finance, Vol. 7, Iss. 1, p. 77-91.

ii  stock for return the is  where μ
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Efficient FrontiersEfficient Frontiers
An efficient portfolio 
has the lowest risk for a 
given return, as well as 
the highest return for 
that amount of risk

An efficient frontier is 
the curve made up of 
all efficient portfolios
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Classical Optimization ProblemClassical Optimization Problem

∑ =

−Ω

)constraint invested(fully         s.t.

utility) (minimize        min 1

Fx

xxx

i

TT μλ

•Minimize risk subject to return

•Vary λ to get an efficient frontier
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Booksize vs. WealthBooksize vs. Wealth

Sell Short 10$102

Buy 10$101
Net BankActionShares (xi)PriceStock

Time 0
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Booksize vs. WealthBooksize vs. Wealth

+$100Sell Short 10-10$102

-$100Buy 1010$101
Net BankActionShares (xi)PriceStock

Time 0

( ) ( ) 0$100$100$
201010
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=−+=

Wealth
Booksize



Worcester Polytechnic Institute

9

Booksize vs. WealthBooksize vs. Wealth

+$100-10$152

-$10010$51
Net BankActionShares (xi)PriceStock

Time 1

( ) ( ) 0$100$100$
201010

=+−=

=−+=

Wealth
Booksize
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Booksize vs. WealthBooksize vs. Wealth

+$100Close 
Position

-10$152

-$100Sell 1010$51
Net BankActionShares (xi)PriceStock

Time 1

( ) ( ) 0$100$100$
201010
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=−+=
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Booksize vs. WealthBooksize vs. Wealth

+$100
-$150

Buy 100$152

-$100
+$50

Sell 100$51
Net BankActionShares (xi)PriceStock

Time 1
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Booksize vs. WealthBooksize vs. Wealth

-$50Buy 100$152

-$50Sell 100$51
Net BankActionShares (xi)PriceStock

Time 1

( ) ( ) 100$50$50$ −=−+−=Wealth
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Transaction CostsTransaction Costs

Difficult to model because many factors 
involved:

• Commission
• Bid/Ask spread
• Market impact

Ref:
Grinold, Richard and Kahn, Ronald. (2000). Active Portfolio Management.

Scherer,Bernd. (2002). Portfolio Construction and Risk Budgeting. Risk Waters
Group, London.
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Turnover ConstraintTurnover Constraint
Limit turnover ⇒ Limit transaction costs
Limits the total amount of change in the 
portfolio at each time step

∑∑ ≤−+
i

i
i

ii txLtxtx )()()1(
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Optimization ProblemOptimization Problem
Goal: Find efficient portfolios at multiple time 
periods subject to constraints on the booksize
and turnover

    

)constraint(turnover    

)constraint (booksize                ..

utility) (minimize        1 min

∑∑

∑
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−Ω
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i
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i
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LinearizationLinearization

Original Problem:

    

  

                ..

        1 min

∑∑

∑
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ii

i
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LinearizationLinearization
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Linearized Problem:
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Proof (Booksize Linearization)Proof (Booksize Linearization)

}|:|{
},0,0,:),,{(

MxxB
MbbbbbbxbbxA
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 Let
 Let

We want to show that minimizing utility over A is 
equivalent to minimizing utility over B.
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Proof (cont.)Proof (cont.)
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*Portfolio Weights – SEAN (?)*Portfolio Weights – SEAN (?)
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Portfolio Value – Efficient vs. 
Equally Weighted
Portfolio Value – Efficient vs. 
Equally Weighted
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*Portfolio Value over time given 
different M’s – SEAN
*Portfolio Value over time given 
different M’s – SEAN
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*Utility over time given different M’s*Utility over time given different M’s
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*Portfolio Value over time given 
different L’s – SEAN
*Portfolio Value over time given 
different L’s – SEAN
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*Utility over time given different L’s*Utility over time given different L’s
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Turnover BudgetingTurnover Budgeting

Atomistic: Current implementation allows 
the same amount of turnover at each time 
period

Holistic : Can we allow different amounts 
of turnover to get similar utility at the end?

Issue: What are criteria for turnover 
allocation?
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Turnover BudgetingTurnover Budgeting

Example: L=.2
Total turnover = 2.2
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Turnover BudgetingTurnover Budgeting

L = .1 
on every step except last 

Final Step: L = 1.2

Total turnover = 2.2



Worcester Polytechnic Institute

29

Turnover BudgetingTurnover Budgeting
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Threshold TradingThreshold Trading
Does it make sense to make a bunch of small 
trades?
Idea: Only make the trade if the expected change 
in utility is large enough
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Threshold ExampleThreshold Example
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Comparison of ValuesComparison of Values
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SummarySummary
Splitting constraint variables allowed use of 
standard QP package

Optimization yielded better value and utility than 
equally weighted portfolio

Transaction costs can be limited by constraining 
turnover statically, dynamically, or using a 
threshold for trading

Thanks!
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