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Abstract 

Roofing is one of the most dangerous construction jobs, accounting for nearly 20% of 

total construction workplace fatalities in 2019 [1]. Autonomous robotic construction can increase 

worker safety and the overall workplace efficiency. However, these technologies are often 

designed for a single project and are not scalable. Therefore, we are applying an inchworm robot 

platform to shingle a roof with custom data shingles. Our system is a decentralized swarm of 

inchworm robots designed to collaboratively shingle roofs. These robots are able to 

communicate and collaborate by storing data within placed shingles. Overall, the use of a 

decentralized swarm that communicates through the environment will prevent single points of 

failures and increase reliability. 

 



 

This report represents the work of one or more WPI undergraduate students submitted to 

the faculty as evidence of completion of a degree requirement. WPI routinely publishes these 

reports on the web without editorial or peer review. 

Introduction 

Construction 

Construction is one of the largest industries worldwide. At the end of 2020, Statista 

valued the United States construction industry at $1.36 trillion per year [1]. Over 7 million 

people in the United States were working in construction as of August of 2021 [2]. However, 

construction jobs are dangerous, with the construction industry accounting for one in five 

workplace deaths in 2019 [3]. Industries such as agriculture have seen their productivity increase 

by almost a factor of two in the last 30 years [4], [5], but there has not been a similar growth in 

productivity in construction during the same period [6]. This project aims to increase safety and 

productivity through the introduction of fully automated robotic systems. 

Within construction, retrofitting existing structures is a major part of the industry. As of 

2011, over 40% of residential buildings within the U.S. had been built before 1970 [7]. Since 

building codes and energy regulations have changed over time, many of these buildings are not 

compliant with modern standards. A study commissioned by the Netherlands Ministry of Foreign 

Affairs suggests that the retrofitting market within Boston, Massachusetts could reach up to $41 

billion in the next 10 years [8]. Retrofitting buildings can increase disaster resistance, structural 

integrity, energy efficiency, and overall safety [9]. 

Over 6 million employees work in the construction field, equating to about 5% of all the 

workers in the U.S. [10]. Despite only making up 5% of the workers, in 2019 nearly 20% of total 

workplace fatalities were in the construction field [11]. Within construction itself, there is a 

https://www.zotero.org/google-docs/?PEFrTN
https://www.zotero.org/google-docs/?MthXjY
https://www.zotero.org/google-docs/?llibug
https://www.zotero.org/google-docs/?JnYLCH
https://www.zotero.org/google-docs/?aloVCA
https://www.zotero.org/google-docs/?DZ158V
https://www.zotero.org/google-docs/?20PKEd
https://www.zotero.org/google-docs/?kI8uzy
https://www.zotero.org/google-docs/?2aUfdt
https://www.zotero.org/google-docs/?I68nYR
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similarly disproportionate number of injuries related to roofing when compared to other 

construction jobs. Fredericks et al. stated that, “Roofers are about six times higher at risk for fatal 

occupational injuries than the average worker” [10], with 75% of their fatal injuries coming from 

workers falling off of roofs. Equipping this workforce with automated systems will reduce the 

number of people on roofs, and will increase workplace safety in the roofing industry. 

Robotics 

Robotics can increase safety and productivity on the worksite, and the precision of the 

work done, by replacing humans with machines. In the mining industry, an industry with high 

workplace injuries, operator error is estimated to account for up to 88% of all accidents [12]. By 

replacing people in hazardous situations with autonomous robots, these accidents can be reduced. 

Robots also increase productivity by completing tasks faster, and reduce the overall cost of 

production, since robots do not incur a labor cost [13]. 

Multi-robot systems can increase the scale of the benefits of robotics in a similar way that 

a team of human workers can be more productive than one human worker. A multi-robot 

construction system allows for robots to work on different parts of a structure at the same time 

[14]. A multi-robot system can employ specialized robots, such as robots that ferry materials to 

other robots that construct a structure [15]. This specialization allows for a large variety of high 

precision jobs to be accomplished at the same time. 

Swarm robotics is a subset of multi-robot systems that takes inspiration from the way 

large groups of animals, namely insects, behave in nature. These robots operate in a 

decentralized manner based on local interactions and self-organization, resulting in no one robot 

https://www.zotero.org/google-docs/?s75eut
https://www.zotero.org/google-docs/?7lAx0e
https://www.zotero.org/google-docs/?0X2p9b
https://www.zotero.org/google-docs/?dLNmi7
https://www.zotero.org/google-docs/?OkcqTx
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knowing what all other robots are doing at any given time. The decentralization and individual 

computations makes the swarm more reliable as the chance of all of the robots individually 

failing is lower than one centralized system failing. Additionally, due to the decentralization of 

information and decision-making, swarm robotics has the potential advantage of scaling well 

with the size of the problem [16]. Due to the hazardous nature of construction as well as inherent 

scale of projects, swarm robotics has higher potential for greater success than a singular robotic 

system in industrial applications. 

At this time, there have not been many industrial applications of swarm robotics. Swarm 

construction researchers have generally developed solutions to build structures in lab 

environments, not for marketable industrial applications. Swarm construction researchers have 

generally developed solutions to build structures in lab environments, not for marketable 

industrial applications. The closest systems instead use swarm based behaviors while also using 

centralized networking and decision making [17]. More research in swarm robotics will help 

close this gap within the industrial robotics sector. 

Problem Statement 

The intent of this project is to design a system to traverse and install shingles on a flat 

roof. To accomplish this, the team must design a scalable decentralized algorithm to allow 

multiple inchworms to shingle a roof, and design a robot that is capable of the behavior required 

by this algorithm 

This project will extend previous work done on a construction platform that used bipedal 

“inchworm” robots that built 3-D structures out of “smart” cubes. Instead of manipulating smart 

cubes, the robot will manipulate shingles that can store data to communicate with robots in the 

https://www.zotero.org/google-docs/?x1GSqO
https://www.zotero.org/google-docs/?SBah1H
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swarm. The data storage capabilities of the shingles allow the robots to store information in the 

environment to localize, and assign tasks without the need for a centralized system. 

Related Work 

Locomotion 

For a swarm of robots to shingle a roof there are a few constraints on how these robots 

must behave. Robots must move around on an inclined roof without falling off, and route around 

other robots without colliding.  

Dusty is a robot used to draw the layout of a building on a concrete bed within 

millimeters of accuracy [18]. Dusty uses wheels to move around and line up the drawing tool, 

displaying high accuracy in its form of locomotion. One limitation is that Dusty cannot work on 

uneven terrain or handle debris in the workspace. Since Dusty is not suited for an inclined 

workspace and the accuracy is lost when driving over rough terrain, such as roofing shingles that 

have already been placed, this approach would not work for shingling roofs. 

More complex forms of locomotion allow for navigation over uneven terrain. The 

TERMES robot utilizes whegs, which are a combination between wheels and legs [19]. The 

capability to move over rough terrain is a benefit when moving over a roof that is under 

construction. However, systems with wheels and whegs still need to be designed to not tip over 

or slide down an incline. While whegs solve the issue of uneven terrain, they will be limited by 

the angle of incline based on the coefficient of friction between the wheg and the roof. 

The RoboRoofer is a robot designed to take shingles off of a roof. The RoboRoofer 

company was planning to develop another manipulator to go on top of the chassis that would 

https://www.zotero.org/google-docs/?XsVW4V
https://www.zotero.org/google-docs/?22zPRJ
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then also place roofing shingles [20]. The RoboRoofer uses wheels for locomotion, but required 

a tether that was anchored to the top of the roof to stay on the incline. Since our system is a 

swarm system, it must be able to move around with other robots on a roof. An anchor and tether 

system was effective for keeping one RoboRoofer on a roof, but it does not scale well to include 

multiple robots on the same roof. Increasing the number of robots makes it increasingly difficult 

to keep each of the tethers untangled. 

The Bipedal Isotropic Lattice Locomoting Explorer (BILL-E) is an inchworm robot that 

was designed by the NASA Ames Research Center to be very mobile with multiple degrees of 

freedom. The BILL-E robot is able to move across inclined surfaces, including vertical surfaces, 

by gripping the structure [21]. The robot does not tip over or slip off the structure when it is on 

an incline, which makes it a good solution for moving on a roof. It can also move across uneven 

structures. This makes the bipedal inchworm structure of the BILL-E system ideal for shingling a 

roof. 

Smart Structures 

To effectively coordinate a robotic swarm, each agent in the swarm must be able to share 

information with other robots. Direct communication allows for decentralized robots to know 

where each other are and how they are affecting the environment. The larger the roof that the 

inchworms need to shingle, the further apart robots may be. Communication degrades over 

distance, and can be inconsistent causing incomplete or incorrect data to be transmitted. 

Additionally, the more robots there are trying to communicate over a network, the fewer 

messages each robot can send due to bandwidth limits. While direct robot-to-robot 

communication is one solution often used to coordinate a swarm, it is limited by the time it takes 

https://www.zotero.org/google-docs/?nECGBB
https://www.zotero.org/google-docs/?aJt4GW
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to transfer data, and this data may be outdated by the time it reaches a distant member of the 

swarm. 

 Another approach is to use the environment as a medium to communicate data. Allwright 

et al. proposed building blocks built around the idea of stigmergy, a behavior exhibited by 

colonies of insects like termites and wasps [22]. As worker insects move around and do work, 

they leave behind pheromones that indicate to future workers where to go or what tasks to 

perform. The Swarm Robotic Construction System (SRoCS) used blocks with embedded Light 

Emitting Diodes (LEDs) to simulate pheromones left behind by swarm insects [22]. The LED 

colors communicated information by changing color as the environment changed. The blocks 

were updated using Near Field Communication (NFC) as the robots interacted with them to alter 

the messages communicated by the LEDs. Using NFC to mimic pheromones allows for data to 

be stored in the environment, which workers can read and update as the environment and tasks 

change. LEDs are not very desirable for outdoor construction, as the light produced is often low 

and lighting conditions outside are subject to change. However, the application of stigmergy 

from this work can be applied to RAINSTORM, by allowing robots to store information on the 

shingles they are manipulating. 

Another project with similar design constraints was the Multi-Agent Robotic Intelligent 

Assembly (MARIA) project at Worcester Polytechnic Institute [23]. The design of the building 

blocks in MARIA is similar to the SRoCS system. Unlike SRoCS, the blocks in MARIA are 

built to directly communicate data to each other, as each face includes both an LED and a color 

sensor. The data the blocks communicate includes localization data, blueprint data, and requests 

for blocks to be added to specific faces of the structure. Similar to SRoCS, the LEDs are not 

optimal for outdoor conditions. However, the kind of data communicated and the way the data is 

https://www.zotero.org/google-docs/?FV18At
https://www.zotero.org/google-docs/?LHSX1g
https://www.zotero.org/google-docs/?dMLlxw
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processed on each block can be adapted to robots storing data on shingles. By storing data about 

the state of the structure on the building blocks of the structure, robots can quickly learn about 

new parts of the environment without needing to directly observe the changes. 

 Both SRoCS and MARIA need each element of the structure to contain electronics and a 

power source. Powering the blocks allows for active communication between blocks, and to 

change their external observable state. However, on a roof, the cost of powering the shingles 

outweighs the benefits of these properties. Each shingle needs to be lightweight and inexpensive, 

which restricts the amount of hardware like batteries that can be added to each shingle. With 

SRoCS, the NFC technology used does not require this power source. The electronics needed 

only need to be installed on the robot and can communicate with inexpensive and light data tags. 

Swarm Algorithms 

Within the research of swarm robotics there are three relevant problems in regards to 

shingling a roof: task allocation, localization, and collision avoidance. The solutions to these 

problems will determine the effectiveness of the robotic swarm tiling algorithm.  

One problem in swarm robotics is how an individual robot decides which task it should 

complete. Each robot should choose different tasks to ensure parallelization of the overall task. 

Additionally, the selection of the tasks is dependent on the order in which they need to be 

completed and the priority of the task towards the overall goal. 

One possible solution is to use a distributed auction system in which robots bid on which 

task they will complete [24]. Each robot bids on the task that has the highest score for that robot 

based on a heuristic. Robots can bid on the same task, and the robot with the highest bid gets the 

task. This approach leads to the best assignment of tasks based on the heuristic, allowing for 

https://www.zotero.org/google-docs/?9ugK5M
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higher priority tasks to be completed first. However, this method requires a lot of communication 

between robots and a lot of time to converge on an assignment. 

Another option is the distributed bees algorithm, which is based on how bees decide 

which flowers to seek out. Each robot will obtain a list of all tasks and independently assign 

probabilities to each task [25]. Each robot then independently decides which task to complete. 

While this algorithm requires less robot-to-robot communication than other methods, it assumes 

that multiple robots can work on a single task. When shingling a roof, it is not useful to have two 

robots attempting to complete the same task. 

A third option is an algorithm modeled after optimal transport theory. In this algorithm, 

robots form groups to work on sets of tasks [26]. The robot that discovers the set of tasks is 

assigned as the leader. The robots then form groups around the leaders and arrange themselves to 

accomplish the tasks. None of these three approaches can be used alone for the task of shingling 

a roof, but they provide good inspiration on how to approach the problem of distributed task 

allocation. 

Knowing where the robot is within a global coordinate system is a problem to solve in 

any mobile robotic system, but has unique problems and solutions in a swarm. On an empty roof 

there are minimal landmarks to localize a robot. In the field of swarm robotics, there are several 

approaches to localization with minimal landmarks, including the Agent model and methods 

which localize on an individual level. 

In the Agent model, robots measure their local position in reference to another robot and, 

through communication with the other robot, transform it into a global position [27]. Each robot 

determines its position relative to another robot, until the algorithm reaches an anchoring robot 

with a known position in the global frame. Linking robots together in a chain of relative 

https://www.zotero.org/google-docs/?tHpHae
https://www.zotero.org/google-docs/?Omq7aO
https://www.zotero.org/google-docs/?lFz8NC


9 

 

positions can lead to error propagation along this chain. While it is great for positioning robots in 

shapes and patterns, it is not ideal in an environment requiring high accuracy in the global frame. 

Another downside to this form of localization is it requires a large amount of robot-to-robot 

communication. This communication requires robots to stay close to each other, limiting the 

movement patterns of robots in the swarm. While there are algorithms that can decrease the 

global error [28], the time necessary to calculate the position with less error and pass along the 

data is too long. 

Localization can also be calculated on an individual scale. Each robot in the swarm can 

calculate its position using a probability based algorithm, like a Bayes filter or a particle filter, 

and update its probability that it is in a given location based on its observations of the 

environment. In these filters, the environmental observations occur when interacting with other 

robots or any smart structures available. Updating the location of the robot when interacting with 

the environment would still require robot-to-robot communication, but would limit the data 

being passed along and the number of communications needed to stay accurate. 

 In an environment with multiple robots, each robot needs to be treated as a dynamic 

obstacle. Having several moving robots makes path planning more difficult, as it is important to 

avoid collisions. In a distributed system, robots must be able to communicate with or detect other 

robots to avoid collisions. One method of solving this problem is to navigate through areas 

between robots, treating the robots as dynamic obstacles and moving along the path that avoids 

the robots and goes towards the goal [29]. 

Alternatively, a robot could operate with a safety boundary and communicate that 

boundary with other robots [30]. Communicating where each individual robot’s boundary is 

https://www.zotero.org/google-docs/?6t1bqP
https://www.zotero.org/google-docs/?uTKWiD
https://www.zotero.org/google-docs/?4ZI16b
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allows for pathing, but would still require a lot of communication between robots. The boundary 

method uses heading based path planning similar to the previous method. 

A third option that allows for pathing and does not require constant communication is 

using buffered Voronoi cells [31] as seen in Figure 1. The Voronoi cells give each robot an area 

to work with for path planning, but the method does not require constant communication. 

Additionally, the Voronoi cells only need to be recalculated when one robot reaches the end of 

their path within the Voronoi cell. 

 

Figure 1: Illustration of Voronoi cells [32, fig 1.5]. 

 

https://www.zotero.org/google-docs/?M2I63p
https://www.zotero.org/google-docs/?e0BmuH
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Robotic Construction Platforms 

Most robotic construction systems focus on building 3-D structures. One example of 

multi-agent robot construction is the TERMES system developed by a team of researchers at 

Harvard University. The TERMES system is capable of building structures much larger than the 

robots themselves [19]. Each robot can carry one block at a time, and place it in front of or on 

top of another block. These structures are limited in a few ways: 

● The robots cannot place blocks in between two other blocks. 

● The blocks are only supported by the blocks underneath them. 

● The structures must be assembled in a single, linear path. 

These limitations heavily restrict the order in which shingles could be placed on a roof by a 

robot. The required linear path would also limit the number of parallel tasks that the swarm can 

accomplish, decreasing the overall efficiency.  

SRoCS as mentioned above uses specialized blocks to build structures, using magnets to 

interface between the robot and the blocks, and between adjacent blocks. The magnets allow the 

blocks to align with each other and the robots’ end effectors precisely. Each end effector has an 

electropermanent magnet that can pick up and drop the blocks by switching the magnetic field on 

and off [22]. Unlike TERMES, the blocks can be connected to a block on any of its sides instead 

of just the block beneath it. 

The RoboRoofer system, also mentioned above, is designed to remove and install roof 

shingles. This system attaches to an anchor point at the top of the roof and maneuvers around the 

roof to attach shingles. The manipulator grabs the shingle at the top of a preloaded stack, places 

https://www.zotero.org/google-docs/?uAxnZI
https://www.zotero.org/google-docs/?3PEXkl
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the shingle, and nails the shingle to the roof [20]. This approach to shingling a roof differs from 

how RAINSTORM approaches shingling a roof. The RoboRoofer is one robot, while our system 

is a multi-agent system. While the RoboRoofer has the same application as our project, it has not 

proven it is an effective solution to install shingles on a roof. 

  

https://www.zotero.org/google-docs/?3BvnAx
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Methodology 

Problem Formulation 

Hardware Requirements 

To measure the success of the hardware of the project, the team has identified several 

goals. These goals are split between manipulation, locomotion, and information sharing.  

The robot must be able to manipulate a shingle that is at most 0.9 kg. When attempting to 

grasp a shingle, the robot must succeed 80% of the time, and it must be able to release the 

shingle 95% of the time. The robot must be able to pick or place shingles in any location 

adjacent to the robot's location. Finally, the robot must be able to move between shingles in less 

than 10 seconds. 

For the robot to succeed in shingling a roof, it also must be able to accurately traverse the 

roof and place new shingles, which also requires the robot to know which shingle it is on at all 

times. The robot must be able to use the environment to communicate information, so that it 

knows where it is and can communicate information to other robots. 

Software Requirements 

Building multiple robots is outside of the hardware scope for this project. Therefore, we 

plan to study the performance of multiple robots through a custom-made simulator. The 

simulator must be able to model the relevant state of the robot, including kinematic and dynamic 

properties, end effector states, and interactions with the environment. To accomplish this, the 

simulator must be able to model the robot stepping from one shingle to another without failure. 
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The purpose of the simulator is to compare and evaluate various roof shingling 

algorithms with different sized swarms or roof configurations. Some simulation components 

must run faster than real time to efficiently evaluate shingling algorithms. While a simulation is 

running, data must be collected regarding robot faults, task allocation across the swarm, the total 

time it takes the swarm to shingle the roof, the amount of time robots are idling, and path 

planning and execution behavior. This data will help quantify algorithm and swarm performance 

so that different scenarios can be objectively compared. 

The algorithm that controls an individual inchworm must run independent of the 

decisions made by other inchworms, this will allow us to model decentralized behavior. A 

centralized implementation would require a central computer making decisions, or one of the 

robots to direct the others. Either solution creates a single point of failure. If the central system 

failed, all of the robots would fail. With a decentralized swarm, if a single robot fails, the 

remainder of the swarm would still have the ability to complete tasks. 

Previous Hardware Design 

This project was based off of the hardware developed by the SMAC team [15]. The robot 

was a 5 degree of freedom robot with two end effectors. Each link was printed using a FDM 

printer, using PLA plastic. The end effectors required the robot to screw into the working 

environment. The inchworm was able to grab onto cubes using the same screw manipulator, with 

four circles interfacing into the blocks or environment to ensure a known orientation. 

The microcontroller running the robot was a Teensy 3.6 [33]. This was connected to 

AMS AS5048 magnetic encoders [34] on each of the motors driving the 5 primary joints using 

I2C. A combination of Castle CCBECs [35] and MP1584 step-down converters [36] in parallel to 

https://www.zotero.org/google-docs/?Jl4vlP
https://www.zotero.org/google-docs/?oCXzJf
https://www.zotero.org/google-docs/?XIVdXr
https://www.zotero.org/google-docs/?ymV6bG
https://www.zotero.org/google-docs/?icHxcK
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step down voltage to the motors and microcontroller. All of these electrical components were 

either reused or replaced for the final RAINSTORM hardware. 

 
Figure 2: The SMAC hardware and electronics. 

Hardware Design 

When manipulating roof shingles, the design of the tile itself was considered a top 

priority. The roof shingles cannot have any screw holes or indentations once fully installed to 

form a watertight seal. Therefore, the manipulator must interface on a flat surface or grasp at the 

edges of the tile. The development of the manipulator occurred in parallel to the Civil 

Engineering MQP team’s development of the roof shingle itself. To keep the end effector both 

simple and versatile, the team chose a magnetic interface inspired by the MARIA project [23]. 

An inchworm robot requires a strong, constant magnetic field as it walks across the 

environment to plant an end effector and support the weight of the robot. The magnetic field 

must then be disrupted to lift an end effector and move it to a shingle position. An electromagnet 

would solve the issues of a non-permanent magnetic field being required to walk, but it would 

https://www.zotero.org/google-docs/?naFOdm
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also heat up and slowly lose its strength if it is activated for an extended period of time. 

Permanent electromagnets (PEMs), when compared to electromagnets, have inverse logic, 

meaning the magnetic field is on when there is no power, and it gets disrupted when current is 

run through the coils. Since the magnets must be on for long periods of time, permanent 

electromagnets draw far less current, making it a good choice for the end effector. 

The design of the inchworm’s links had to be altered from SMAC’s original design. The 

chosen design is shown in Figure 3. To support more electronics, the team widened the middle 

links. To prevent intersections between these new links and existing hardware like encoders and 

motor casings, the team increased the length of links 1 and 4 and decreased the height of the end 

effectors. Links 1 and 4 were extended by the same amount that the end effectors were shrunk, 

so that kinematics stayed the same from the SMAC project. 

 

Figure 3: Robot assembly with labeled links. 
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 Upon running some basic movement tests of the robot, the team found that the robot was 

not stable, as both links 1 and 4 (the “ankles”) were cantilevered at the point where they 

connected to the motors in link 2 and 3, respectively. Figure 4 shows the old and new ankle 

designs. This led the team to redesign link 1 and 4 to be supported on both sides of link 2 and 3, 

instead of just the mounting position on the motor. Shoulder bolts were used to create an 

attachment point to links 2 and 3 on the motor horn’s opposing side. 

 

Figure 4: The old and new ankle designs, on the left and right respectively. 

Electrical Repairs & Expansion 

Due to the changes made to the end effector, the team found it necessary to rewire the 

robot. While testing the system after rewiring, multiple motors and encoders showed signs of 

failure. The team replaced all failing components, and evaluated and cleaned up poor electrical 

connections within the robot. 

Due to the number of electrical faults and troubleshooting necessary to find each of the 

faults, the team found it necessary to expand the space within each of the links to store the 

electronics. With more space between each component, testing components for proper 

functionality became much easier. The increased space is seen in areas off of links 2 and 3 in 
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Figure 2 as compared to Figure 3. Even with the increased space, there were still issues 

presenting themselves from the encoders. After measuring the current and voltage from each of 

the pins the team found that increased pressure on the top of the encoders was causing the faults. 

To prevent future faults with this known problem, we expanded the width of each of the links to 

give more space above the motors and encoders.  

 

Figure 5: Diagram of electronics within the robot. 
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Software Design 

Embedded Software 

The embedded software runs on the Teensy 3.6 on the robot using Arduino embedded 

C++ code. The embedded software is responsible for running a PID controller for each of the 

motors, and reporting faults and debug statements for monitoring. The embedded software uses 

the ros_serial library [37] to publish and subscribe to ROS topics. 

The inchworm control stack commands the robot through the following messages: 

JointState, MagnetState, PIDConsts, and an Int32 message that worked as a 

heartbeat. The JointState messages update the targets of the different motors. The 

MagnetState message updates the magnet states on the robot, enabling and disabling the 

magnetic fields on the end effectors. The PIDConsts messages can be used to update the PID 

constants on the robot to tune the PID control on the robot without re-uploading the embedded 

code to the Teensy. The heartbeat message increments as it sends signals. This is used to check 

the connection between the inchworm control stack and the embedded software on the robot. 

The embedded code publishes the current joint angles of the motors on the robot. It also 

publishes the current states of the magnets and the current PID values when they update. These 

are JointState messages and PIDConsts messages, respectively. When the embedded 

code receives a heartbeat message from the inchworm control stack, it publishes a heartbeat 

message to the inchworm control stack as an Int32. Additionally, the embedded software 

publishes debug and fault messages to the inchworm control stack. 

https://www.zotero.org/google-docs/?RaGgRG
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Simulators 

The simulator is split into two parts: a physics simulator and a swarm behavior simulator. 

The purpose of the physics simulator is to both communicate with the robot, and to show a robot 

swarm physically shingle a roof. The purpose of the swarm behavior simulator is to show the 

overall swarm behaviors, while not having to simulate the physical system. 

 Physics Simulator 

The physics simulator is built on the Gazebo physics simulator [38]. The roof, shingles, 

and inchworm are fully modeled. A shingle depot is also modeled which allows robots to retrieve 

new shingles to place on the roof. Initially, we used MoveIt to do the inverse kinematic 

calculations to find the necessary poses for the robot to move to [39]. Once we had the joint 

angles needed, we stored the poses in a dictionary and used quintic trajectory planning to move 

between poses. The ros_control stack acts as the interface for hardware, actuating joints 

based on desired positions or provided joint trajectories [40]. 

Within the physics simulator is a magnet simulation library. This is built on a custom 

Gazebo plugin that simulates magnet forces and joints to attach models to each other [41]. Our 

team made modifications to this plugin to generalize the system slightly. We have defined 

magnet mounting points on each end effector, the top of the shingle, the bottom of the shingle, 

and many points on the roof. This allows the end effectors to connect to the shingles, and 

shingles to connect to the roof. The inchworm and the shingle couple this way, so the inchworms 

can manipulate and traverse across the environment by attaching and detaching itself from 

shingles. Once the inchworm places a shingle, the magnets on the bottom keep it in place, so that 

other shingles may be installed around it. 

https://www.zotero.org/google-docs/?5pf2aY
https://www.zotero.org/google-docs/?JRugpP
https://www.zotero.org/google-docs/?XjMYXN
https://www.zotero.org/google-docs/?aGGBTI
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This simulation is also responsible for controlling the real physical robot. The 

ros_control package abstracts away hardware control, meaning that on startup it will either 

connect to a simulated or a real robot. For physics simulator tests, it will connect to the robot 

simulated by Gazebo, and command it to move around. To test real hardware, ros_control 

connects to the robot over a serial connection, and updates desired joint values to control the 

embedded software. Due to this abstraction, all of the high-level responsible for deciding how 

inchworms should complete a task is completely independent of whether a simulated robot or a 

real robot is being run. This allowed the team to develop robot control algorithms before the 

hardware was fully ready. 

Swarm Behavior Simulator 

The swarm behavior simulator is designed as a ROS node [42], which can then 

communicate with the physics simulator. This simulator controls all high-level inchworm 

behaviors, which are then passed to the physics simulator. Additionally, a visualization shows 

the current state of the roof and inchworms. This visualization allowed us to experiment with 

different swarm behaviors and tiling patterns, without having to simulate the physical systems. 

The roof is represented as a 2D array of shingle objects. This allows the swarm behavior 

simulator to correctly model all values that are being stored on the rfid chips which are on the 

physical shingles. Because each odd shingle row is offset by half a shingle, the coordinates in the 

2D list utilize a hexagonal coordinate system. The specific hexagonal coordinate system that we 

are using is shown in Figure 6. This system is called the even-r hexagonal coordinate system 

[43]. The origin is in the top left corner. The coordinates are column, row. 

https://www.zotero.org/google-docs/?rYDakz
https://www.zotero.org/google-docs/?dwzCK2
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Figure 6: Even-r hexagonal coordinate system [43]. 

Each inchworm is capable of storing data on the shingles which the inchworms can read 

and write to. The roof also contains the shingle depots. These depots exist on the left and right 

edge of the roof and provide inchworms with new shingles. For the purpose of experimenting 

with many different types of shingling algorithms, the shingle depots are able to move up along 

the roof. The roof also holds an occupancy grid for the inchworm locations. This is used to 

represent the physical location of the inchworms on the roof. 

The inchworms contain information relevant to where it is localized in the world, as well 

as a copy of the roof shingle occupancy grid and the shingle depot locations. These data points 

are updated when the inchworm reads data from a shingle, or it probes a shingle location. This 

results in the inchworm making decisions with imperfect information. The simulations of the 

inchworm decisions and actions take place using two separate functions. This is to enable 

synchronization with the physics simulator. Each inchworm that is also created with an id and an 

inchworm behavior. This will allow us to easily run tests with different shingling algorithms, by 

changing the inchworm behaviors.  

https://www.zotero.org/google-docs/?rISrWx
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When the inchworm performs operations on its copy of the roof to determine its next 

task, it converts all coordinates into cubic hexagonal coordinates. This allows the simulator to 

accurately compute distances and determine neighbors on the hexagonal grid. The coordinates 

are converted by projecting the hexagonal grid onto a cube grid. This results in the grid having 

three axes and allows for the calculating distances and calculating neighbors. 

When the swarm behavior node makes calls to the inchworms, it first randomizes the 

order in which it will iterate through the inchworms. This not only makes the simulator more 

realistic, as inchworms can become out of sync, but also prevents deadlocks. The node then 

loops through all inchworms and gives them the chance to make individual decisions. The way 

the decision function is designed will allow for almost independent decisions, with the exception 

of collision avoidance. If an inchworm is already working on another task, it will not be allowed 

to make a new decision. After all inchworms have made decisions the swarm behavior node will 

allow for each inchworm to utilize one tick of simulated time where it is able to make changes to 

the environment. This is where the inchworm will be able to read information from shingles, 

move shingles around, pick up shingles from the shingle depot and move from shingle to shingle. 

If a simulation is being run along with a physics simulation, each action will take as long as the 

physics simulation requires, otherwise constant time values will be used to simulate the different 

movements.  

Algorithm Design  

Within designing different algorithms to shingle the roof, there are a number of 

constraints that we must satisfy given the roof and the current robot design. First, due to the 

geometry of the roof shingles, each new shingle that is placed must have two shingles below it 

for support. This is because shingles overlap, and a shingle cannot be installed underneath one 



24 

 

that has already been installed. Second, when inchworms are moving shingles around, they must 

move them along the roof frontier. This is due to the inchworm not being able to store shingles 

on its body. This results in a movement pattern where an inchworm will have to move a shingle 

forward one place and then move itself forward. The last constraint that the behaviors must 

satisfy is that the last shingle to be placed on the roof must be adjacent to the shingle depot. 

Otherwise, there is no path to bring a shingle from the shingle depot to the final install locations. 

To limit the scope of the problem, we chose a few variables to be centralized in these 

algorithms. The first centralized component is a form of collision avoidance. It is imperative that 

two inchworms do not attempt to move onto the same shingle, as that will cause direct collisions 

and will prevent the inchworms from being able to shingle the roof. To solve this problem we 

made each shingle mutually exclusive to one inchworm. This would allow an inchworm to claim 

a shingle location that it intended to move to and prevent other inchworms from planning to use 

that spot. The second factor that the team decided to centralize was the order in which shingles 

would be placed. The patterns used to shingle the roof are seen in Figure 7-9. This ensured that 

all constraints discussed above would be satisfied, and allowed for experimentation of different 

orders and behaviors. These centralizations allowed us to focus on the behaviors which ran on 

the inchworms.  

 

Figure 7: Pattern 0, inspired by how an ox plows a field. 
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Figure 8: Pattern 1, the diagonal pattern. 

 

Figure 9: Pattern 2, row by row, always installing shingles at the end of the row first. 

The inchworm core was designed as a behavior tree, seen in Figure 10. This tree 

terminates with different actions that the inchworm may make. The actions of an inchworm 

include: picking up a shingle from the depot, moving towards an install target, moving a shingle, 

installing a shingle, and exploring. The inchworms decide on which behavior they will enter 

based on their internal copy of the roof, and a sampling of a random uniform distribution. The 

inchworms use the random sampling when deciding if it should explore, when they are moving 

toward the shingle depot. This ensures that inchworms will receive updates about their 

environment, and inform other inchworms about changes to the environment. 
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 These actions are lightweight in opposition to the move shingle and move towards target 

actions. These actions utilize a path planning algorithm. When an inchworm is adjacent to a 

shingle the inchworm enters the move shingle state and calculates a path for the shingle to 

follow. Since an inchworm can only move a shingle along the frontier between installed shingles 

and uninstalled space, the inchworm starts the path planning by calculating the frontier based on 

its personal map. The frontier in all patterns is only a layer of shingles, so a greedy path planning 

algorithm based on the distance from a given coordinate to the target position is more than 

adequate to find a valid path.  

With a path for the shingle to be shuffled along, the inchworm calculates its next action 

based on the next point in the shingle’s path. If the inchworm is capable of moving the shingle 

forward, it then performs a check to determine which end effector to use and moves the shingle. 

When the inchworm is not in the valid shuffling position it performs the checks described above 

and then uses the information in the move to target state. The inchworm continues in this pattern 

until it reaches the install location. 
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Figure 10: Inchworm behavior tree. 

 The inchworms can store a few different types of information about their environment. 

Each shingle can store its current coordinate on the roof, as well as its current state: uninstalled, 

placed, and installed. This allows the inchworms to know if it is safe to use the shingle as an 

anchor. Additionally, each inchworm can store the state of its neighbors. This data can only be 

updated by another inchworm. This allows inchworms to communicate the location of placed 

shingles and other installed shingles. Inchworms can use this data along with the known 

constraints of the system to rebuild a valid roof. Another form of data that the shingles can store 

is the most recent target of another inchworm. When an inchworm reads a recent target from a 

shingle that is further in the shingle order than it currently is, it will rebuild its roof such that it 
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will have the same target. With the combination of these two data points, over time the 

inchworms map will converge to the actual map. 

To determine the efficiency of the algorithm and different shingling order we recorded 

several different data points from each run. We created a test script that would run all 

configurations of inchworms for a given roof configuration. For every run we collected the 

number of steps each inchworm takes, as well as the number of times each inchworm performs 

an action from a set we are interested in. This data is then recorded in a file structured in comma-

separated value format (CSV) for post processing. 

 

Experimental setup  

 To calculate the required strength of the Permanent Electromagnets (PEMs), the team did 

a static analysis at the worst-case scenario seen in Figure 11, called the “plank position”. 

 

 

Figure 11: Free body diagram of robot in worst-case scenario. 
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 The end effector is made up of three PEMs arranged in an equilateral triangle. In the 

highest load scenario, pictured above, the force to counteract the moment, M, was supplied by a 

singular magnet. In reality, the two other magnets would also provide a small force to counter the 

moment. The calculations in Appendix B determine the maximum forces of the magnet. The 

force needed to support the robot with the magnets in the worst-case scenario without a shingle is 

30.28 N and the force needed with a shingle is 31.57 N. 

 Based on these calculations and the voltage rails on the robot, the team chose magnets 

that ran on 12V and provided 45.02 N of force. The strength of the magnets exceeds the 

necessary force required in the worst-case scenario. 

Upon arrival the team tested the PEMs to ensure that their magnetic field strength was 

sufficient. One ⅛” steel plate was clamped to a table. The magnet was then placed on the plate 

and had its own clamp attached to it to form a handle as seen in Figure 12. A spring scale 

measured the current force of the magnet. The team applied an upwards force, recording the 

maximum force recorded by the spring scale before the magnet came off of the steel. This 

experiment was repeated three times to create an average maximum force before removal. The 

experimental holding force of the magnet was found to be roughly 46.7 N, around 2.7 N greater 

than specified by the supplier. 
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Figure 12: An experiment to evaluate the vertical strength of the PEMs. 

The team also tested the PEMs shear holding force. The steel plate was fixed to the table 

once again, and the permanent electromagnet was placed on top. The spring scale then pulled the 

magnet across the plate, instead of away from the plate. The experiment was repeated three times 

to get an average of 18.2 N of translational holding force. 

 To drive these magnets, the team designed a control board. There are two main 

constraints that the design needed to meet. First, the Teensy must be able to control this circuit 

with 3.3V and very low current. Second, when the magnets were disabled, the collapsing 

magnetic field could not cause problems in the other electronics on the robot. Figure 13 shows 

the final schematic. 
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Figure 13: Magnet control circuit. 

The two resistors were chosen such that the voltage applied to the transistor base and 

MOSFET gate were sufficient to allow current to flow through each. The LED indicates the 

current state of the magnetic field, where the LED being on means the field is enabled. Finally, 

the diode is to prevent the voltage flyback caused by the collapsing magnetic field. Figure 14 

shows the voltage across the magnets when disabled without the flyback diode, while Figure 15 

shows the voltage when there is a flyback diode. 
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Figure 14: Voltage across magnets when disabled without a flyback diode. 

 

Figure 15: Voltage across magnets when disabled with a flyback diode. 
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Results 

Swarm behavior simulator 

 The swarm behavior simulator is able to simulate roofs of an arbitrary width and height 

measured in shingles, and a number of inchworms equal to half the number of shingles across the 

width of the roof. The simulation was run on roofs ranging from 10 to 30 shingles in both height 

and width with all possible swarm sizes. This shows that the shingling algorithm is reliably able 

to shingle a roof. 

To determine the differences between the patterns, we calculated timing estimates for all 

possible swarm sizes, based on the actions the inchworms take in simulation. The longest action 

an inchworm can take is moving, so the swarm behavior simulator counts the number of times 

inchworms move.We then multiplied the move count by 16 seconds, an estimate of how long the 

real robot takes to perform movements. Figure 16 shows that all shingling patterns benefit from 

an increased swarm size. The differences between pattern performance are only visible at low 

inchworm counts. With smaller swarm sizes, the left to right takes the least amount of time to 

complete. Additionally, the diagonal pattern appears to benefit the most from an increase in the 

size of the swarm. 
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Figure 16: Timing estimates on shingling a roof with different patterns. 

 

 We also collected data on the distribution of actions taken by inchworms based on the 

shingling pattern. The action counts were then averaged across inchworms to determine the 

distribution of the actions taken by the average inchworm in a given swarm size. Figures 17-19 

show that the percentage of time that an average inchworm spends moving a shingle decreases 

and the time moving towards an install target, moving to the depot and exploring increases as the 

inchworm count increases across all patterns. The diagonal shingling pattern does not experience 

as strong of an increase in exploration as the ox plowing and right to left patterns. Furthermore, 

the diagonal pattern does not see a noticeable increase in time spent moving towards the shingle 

depot when compared with the ox plowing and right to left patterns. This increase may be due to 
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a larger frontier between installed and empty space on the roof on the diagonal pattern, allowing 

for more inchworms to operate on the frontier without running into each other. 

 

Figure 17: Share of actions taken by the average inchworm on a 30x30 roof with the ox 

plowing pattern. 

 

Figure 18: Share of actions taken by the average inchworm on a 30x30 roof with the 

diagonal pattern. 
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Figure 19: Share of actions taken by the average inchworm on a 30x30 roof with right to 

left pattern. 

Physics Simulator 

The physics simulator can simulate a full roof environment with multiple robots on it. 

The performance of the modeled robot is very similar to the real hardware. Motion times are 

approximately the same, and the actions an inchworm can take (moving to a neighbor and 

manipulating a shingle) are all implemented. Some collision meshes needed to be slightly 

modified to overcome imprecision within the underlying Gazebo physics simulator, but these 

modified meshes have no measurable impact on the overall simulator performance. The robots in 

this simulator can move their free end effectors to any neighbor, and switch which end effector is 

connected to the roof. The robot can also pick up any shingle adjacent to its current location, and 

move it to any free adjacent location. Figure 20 shows an inchworm moving about a simulated 

5x5 roof in Gazebo. 
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Figure 20: One inchworm shingling a 5x5 roof in the physics simulator. 

During initial testing, the magnet simulator was too computationally expensive to 

simulate large roofs. In the original implementation, all shingles could connect to all locations on 

the roof, and both end effectors of all inchworms could connect to all shingles. This required 

many Gazebo API calls per second to update the magnet simulation state, and slowed down 

Gazebo considerably. After modifications to reduce the number of possible connections, the 

magnet simulation no longer has as large of an impact on simulator performance. However, its 

computation time still scales with the number of inchworms and shingles simulated. 

The computational performance of the simulation is high enough to observe and evaluate 

simulations in close to real time. Gazebo uses the concept of Real Time Factor (RTF), which is 

the ratio of the speed of the simulation to real time. If the RTF is 0.5, then the simulation takes 

twice as long to run as the modeled robot would. The performance of the simulator is correlated 

with the number of inchworms present, and the size of the simulated roof. Table 1 shows 

Gazebo’s RTF at various roof sizes and inchworm counts on a machine with an RTX 3070 

graphics card and an Intel i7-10700F CPU. To find these values, the team started the simulation, 

and RTF was recorded once it stabilized, without commanding the inchworms to do anything. 
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To fully shingle a 5x5 roof with a single inchworm through predetermined joint 

movements, the simulator took 45 simulation minutes, or one hour in real time. However, 

integration tests between the physics simulation and the swarm behavior simulator take much 

longer, as inchworms do not have perfect information about their environment. 

 

 1 Inchworm 2 Inchworms 3 Inchworms 4 Inchworms 

5x5 Roof 0.99 0.99   

6x6 Roof 0.96 0.94 0.91  

7x7 Roof 0.63 0.5 0.41  

8x8 Roof 0.22 0.20 0.19 0.18 

Table 1: Gazebo RTFs for various inchworm counts and roof configurations. A roof must 

have a width of twice the inchworm count to support that many inchworms. 

 

 Embedded Software 

 The software running on the robot performs its job well. While the system is not 

responsible for any high-level logic, it must process and act upon commands quickly. In final 

testing of the hardware, the embedded software consistently performed without fault. While 

testing and debugging the hardware, the robot was capable of reporting debug and fault 

information about the status of its sensors and processing. However, the team disabled this 

functionality to conserve serial bandwidth for the ros_serial bridge. 

Integration 

Figure 21 shows how the different simulators communicate. The swarm behavior 

simulator commands the movements and actions for the physics simulator in the Gazebo 
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simulation. The physics simulator creates an action server for each inchworm, which the swarm 

behavior simulator can control with action clients and goals [44]. The physics simulator does not 

provide feedback as to the success of these actions, except to indicate when the action is 

complete. There are several possible ways to walk the inchworm across the roof, but multiple 

inchworms were only able to avoid collision when lifting their end effectors directly above the 

planted foot. Shingling a 6x6 roof with 2 inchworms by walking this way in simulation takes 

roughly 7 hours of sim time and 10 hours of real time. Due to RTF and duration constraints, the 

team only tested two inchworms on a 6x6 roof in simulation to demonstrate functionality, as 

shown in Figure 22. 

 

Figure 21: Simulator communication pipeline. 

https://www.zotero.org/google-docs/?g0bbbX
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Figure 22: Swarm Behavior Simulator communicating with the Physics Simulator. 

Hardware  

The custom circuit designed to control the PEMs demonstrated full functionality. In all of 

the tests run the circuit did not fail to enable or disable the magnets when intended. The PEMs in 

combination with this circuit fulfill the hardware requirements outlined for picking up and 

dropping a shingle. 

We were able to experimentally demonstrate the inchworm robot walking across shingles 

and picking up and placing shingles on a model roof. Figure 23 shows a robot walking across the 

roof. It starts with one end effector planted on the shingle to the left, then it moves the other end 

effector on top of the shingle to its right. After planting that end effector on the new shingle, it 

disables the magnets on the old shingle and spins around to plant the old end effector on the next 
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shingle to the right. During several tests the robot was able to transfer its base end effector from 

one shingle to another in under 10 seconds. 

 

Figure 23: Inchworm walking across a shingle. 

In Figure 24, we demonstrate the robot picking up, carrying, and then placing a shingle 

on a model roof. The robot moves its end effector above a shingle, disables its magnets, then 

places its end effector on the shingle. After re-enabling the magnets, the robot connects to the 

shingle, lifts up the shingle, then moves the shingle into the next position. After the shingle is in 

the new position, the robot disables its magnets to release the shingle. The robot was able to 

reach both horizontally adjacent shingles when demonstrating walking, and all the vertically 

adjacent shingles when demonstrating placing. Through these two hardware demonstrations, the 

robot can perform the atomic actions needed to shingle a roof.   
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Figure 24: Inchworm picking up and placing a shingle. 

In both simulators, inchworms can move to any adjacent shingle, and can move a shingle 

from one neighboring location to another. Because the physical inchworm can perform these two 

kinds of actions, given more time and a larger roof, the inchworm would be able to shingle a roof 

with these actions alone. 
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Conclusion 

The team successfully modified the existing inchworm design created by the SMAC team 

to manipulate and traverse shingles. The compilation of these actions show that the robot is able 

to complete the actions necessary to shingle a roof. Additionally, the team designed a novel 

distributed shingling algorithm that runs on a swarm of inchworms to shingle roofs. The 

algorithm was experimentally shown to shingle roofs of various sizes and with different 

shingling patterns in simulation. The action pipeline allows for the shingling algorithm to 

connect to the inchworm control stack running within the physics simulator. This allowed the 

swarm behavior simulator to connect to the Gazebo physics simulator, demonstrating that 

modeled robots can complete the actions needed to shingle a roof. Because the robot can also 

replicate these actions, we have shown that a real inchworm robot could shingle a roof. 

Lessons Learned 

We learned several lessons while working on this project, the biggest being that hardware 

is more difficult than simulation. Electrical noise was present on the voltage lines, causing noise 

to propagate throughout the system, including the I2C bus. This noise caused faults in the 

embedded software, preventing the encoders from functioning until we resolved the issue. We 

recommend that future teams use communication protocols that are more noise resilient, such as 

RS-485 [45] or CAN [46]. On top of the electrical issues, there were additional mechanical 

issues that would have benefited from more thorough verification of the functionality of legacy 

hardware components. 

https://www.zotero.org/google-docs/?g05K7A
https://www.zotero.org/google-docs/?qmIeOF
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We also encountered significant issues in software that were caused by poor initial 

assumptions. Initially, the physics simulator was only built to run one robot. This required us to 

refactor significant portions of the software stack once we wanted to simulate multiple robots. 

We advise teams to carefully consider and document the assumptions made about the system to 

anticipate and resolve these problems more rapidly. 

Future Work 

Integration  

Currently the swarm behavior simulation feeds actions to the physics simulation without 

any feedback. We suggest implementing feedback from the physics simulation to allow for 

recovery behavior. As mentioned above in the integration results, the inchworms have a 

tendency to collide when moving in the optimal walking movement. These collisions can knock 

robots off of the roof. The benefit of a distributed swarm is that the rest of the swarm can 

continue to work if any of the individual robots fail. Without feedback the swarm behavior 

simulator hangs, waiting for a response or completion of an action from an inchworm the 

simulator is not aware has fallen off the roof.  

Electrical Work 

 There are a few changes that should be made to the electronics within the robot. First, we 

recommend that PCBs should be developed for some components. This would allow for the 

wires within the center links to take up less space. This would not only facilitate debugging of 

electrical issues, but also would enable expansion of the sensing and communication abilities of 
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the robot. We would also suggest the addition of a button on the magnetic control circuit across 

the mosfet to temporarily disable the magnets when the robot is powered. 

Robot to Robot Communication 

 The robot does not support any ability to communicate with other robots in its 

environment. This has been implemented in the swarm behavior simulator to experiment with 

different distributed algorithms, but this capability does not exist on the physical robot. We 

suggest that a future team implement limited robot to robot communication to allow for some 

real-time communication between nearby inchworms. As part of this, a future team may want to 

build a second inchworm to validate that features like collision avoidance works between two 

robots in a decentralized manner. 

Allowing a Robot to Store a Shingle 

 One major area of work which would allow for more experiments with shingling 

algorithms would be to create a method for the robot to store a shingle on itself and be able to 

move about at the same time. By allowing for the robot to move across the roof without needing 

to stop to shuffle a shingle about, this would remove one of the major constraints on the 

shingling algorithms explored above. New behaviors could then be defined and potentially allow 

for different robots to have different roles in the swarm. 

Installing Shingles 

 The current end effector has no way of installing the newly placed shingles. This would 

require the development of a fairly complex mechanical device that would be able to install each 
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shingle once it is in the correct location. This mechanism would then have to be integrated into 

the end effector, alongside the current magnets and control circuits. 
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Appendices 

Appendix A: Magnet Force-Torque Calculations 

Worst-case position of the robot 

 

𝑀 =  −(𝑟 ∗ 𝑤0) − (𝑟 ∗ 𝑤1) + ((𝐿2/2 − 𝑟) ∗ 𝑤2) + ((𝐿3/2 + 𝐿2 − 𝑟) ∗ 𝑤3)  

+ ((𝐿4/2 + 𝐿3 + 𝐿2 − 𝑟) ∗ 𝑤4) + ((𝐿5/2 + 𝐿4 + 𝐿3 + 𝐿2 − 𝑟) ∗ 𝑤5) 

𝐹 = 𝑀/(2 ∗ 𝑟) 

 F = 30.28 N 

Worst case with worst case shingle: 

𝑀 =  −(𝑟 ∗ 𝑤0) − (𝑟 ∗ 𝑤1) + ((𝐿2/2 − 𝑟) ∗ 𝑤2) + ((𝐿3/2 + 𝐿2 − 𝑟) ∗ 𝑤3)  

+ ((𝐿4/2 + 𝐿3 + 𝐿2 − 𝑟) ∗ 𝑤4) + ((𝐿5/2 + 𝐿4 + 𝐿3 + 𝐿2 − 𝑟) ∗ 𝑤5)  

+ ((𝐿𝑠/2 + 𝐿5 + 𝐿4 + 𝐿3 + 𝐿2 − 𝑟) ∗ 𝑤𝑠) 

𝐹 = 𝑀/(2 ∗ 𝑟)  

 F = 31.57 N 

Where: r = radius (6.9 cm), L0 and L5 are the length of the foot (5 cm), L1 and L4 are the length 

of the ankle (5.5 cm), L2 and L3 are the length of the beam (16.35 cm), wi is the weight of link i, 

Ls is the length of the shingle (2.9 cm), and ws is the weight of the shingle (0.215 kg). 

 

Appendix B: Software GitHub Links 

Simulator code: https://github.com/Ronoman/inchworm_ros 

Embedded code: https://github.com/ssgould/inchworm_embedded  

https://github.com/Ronoman/inchworm_ros
https://github.com/ssgould/inchworm_embedded
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