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Abstract

This paper aims to calculate the all-inclusive European option price based on XVA

model numerically. For European type options, the XVA can be calculated as so-

lution of a BSDE with a specific driver function. We use the FT scheme to find a

linear approximation of the nonlinear BSDE and then use linear regression Monte

Carlo method to calculate the option price.
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Chapter 1

Introduction

The Black-Scholes model for option pricing assumes that no participant will default.

But defaults do happen in the real world. They maybe forced to close out their

positions as they default, hence the trader should consider those probabilities of

additional costs when developing his portfolio. The Black-Scholes model assumes

the same short rate r for the borrowing and lending rates, but these rates are different

in reality. Another limitation at Black-Scholes model is that we cannot short stocks

or other assets as freely in reality as the Black-Scholes model suggested.

This thesis follows the (Bichuch, Capponi, & Sturm, 2016) market setup, but we

use a much simpler version. The trader gets his funding from his treasury desk and

must pay back the money. The borrowing rate depends on his own credit level and

current market conditions; it is usually higher than his lending rate. The difference

between these two rates is called funding spread, which is the funding cost needed

to be considered in our model. As in (Bichuch et al., 2016) and (Burgard & Kjaer,

2011), two corporate bonds are introduced in order to hedge the credit default risk

from both trader and his counterparty. Using the repo market mechanism, we can

short stocks in this market. Usually there is a difference between borrowing and
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lending rates, but in this paper we assume they are the same for simplification.

(Bichuch et al., 2016) then generate a Backward Stochastic Differential Equation,

BSDE in short, for the option pricing via XVA model.

Once we get the BSDEs, we can solve it numerically. This thesis uses nonlinear

Monte Carlo methods to solve it. (Crépey & Nguyen, 2016) used a perturbation

method, following (Fujii & Takahashi, 2012a, 2012b), to find a linear approximation

of the solution, and solve the BSDE by letting the perturbation parameter equal to

1. We expanded this method, which is called FT scheme, a little bit to solve our

problem. Since our driver is path dependent, linear regression Monte Carlo method

is also used. (Glasserman, 2013) uses linear regression Monte Carlo method for

American option pricing problems. But in our problem, instead of looking one step

forward, we need to remember everything in all the future time since we will future

value to define driver function at each time.

In this thesis, chapter 2 focuses on mathematical BSDE models of European

call and put options, and derives the drivers for both options. Chapter 3 presents

the numerical method used to solve previous BSDEs. Chapter 4 uses the numerical

algorithm developed in Chapter 3, and XVAs under different collateral levels are

compared. Chapter 5 concludes. The codes are included in the Appendix.
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Chapter 2

Models

A probability space, (Ω,G,P), is used to describe the physical world. We refer to

the investor or trader as I, and counterparty to investor as C. The background

filtration F := (Ft)t≥0, augmented by (G,P)-nullsets, includes all the information of

the market except for defaults. The filtration H := (Ht)t≥0 has all the information

about default events. The filtration G := (Gt)t≥0 is given by letting Gt := Ft ∨ Ht,

augmented by (G,P)-nullsets.

2.1 Market setup and notations

2.1.1 Stocks security

Let F := (Ft)t≥0 be the filtration generated by Brownian motion W P, where P is

the physical measure. Then the dynamics of stock price is given by

dSt
St

= µdt+ σdW P
t , (2.1)
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where the µ, σ are appreciation rate and volatility as common respectively, assumed

to be constant in our model.

In reality, we cannot short stock freely. Shorting is conducted through the se-

curity repo market. In the (Bichuch et al., 2016) and (Adrian, Begalle, Copeland,

& Martin, 2013) market setup, two types of repo transaction are considered. The

first one is called security driven transaction. This transaction is used to circumvent

the prohibition of the trader from selling a stock which he or she doesn’t have, also

called ’naked’ short sales of stocks. It works as follows: the trader signs a repo

contract with some participant in the repo market. The trader lends some money

to the participant, which is used to buy stocks and post them as collateral to the

trader. Thus the trader can sell stocks and must return stocks to participants in ex-

change of a pre-specified amount of money, which is usually higher than the lending

amount. So implicitly, there is a return rate on trader, called r+r .

The second type of repo transaction is called cash driven transaction, which is

exactly the other side in this repo market. When the trader wants to have a long

position in stocks, he borrows money from the treasury desk and uses them to buy

stocks which are posted as collateral for a loan at the repo market. The trader

agrees to purchase those collateral back at a pre-specified price, which is usually

slightly higher than the original price of collateral. So there is a cost rate, named

as r−r . In this paper, we assume r+r and r−r are the same, denote as rr. The relation

between repo market account and the stocks is given by

ψrtB
rr
t = −ξtSt, (2.2)

where Brr
t is the repo market account, ξt is the number of shares in security account.

This identity stems from the fact that stock is only bought and sold via repo market.
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2.1.2 Risky bonds securities

Two risky bonds written by the trader and the counterparty are introduced. Denote

their defaulting times as τi, where i ∈ {I, C}, as trader and counterparty defaulting

time respectively. We suppose the τi’s are following an exponential distribution

with intensity hPi , i ∈ {I, C}, and are independent of F and each other. Hi(t) =

1t, t ≥ 0, is the default indicator process. So the default events filtration is given as

H = (Ht)t≥0,Ht = σ(HI(u), HC(u);u ≤ t). In particular, this implies F Brownian

motion W P is also a G Brownian motion.

Assume these two bonds are zero recovery, and both expires at time T. Denote the

bond price written by trader as P I , denote the bond price written by counterparty

as PC . Accordingly, their prices are given as

dP i
t = µidt− P i

t−dH
i
t , P i

0 = e−µiT (2.3)

with µi as their return rates.

Let τ = τI ∧ τC ∧ T denote the earliest stopping time of maturity time T, trader

default time τI and counterparty default time τC .

2.1.3 Funding account

As mentioned before, the trader receives or provides funding to his treasury desk

with different rates. Usually the borrowing rate is higher than lending rate. We

denote r+f as the lending rate, r−f as the borrowing rate. So the money market

account has the dynamics

dB
r±f
t = r±f B

r±f
t dt, (2.4)
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where B
r±f
t denotes the funding account. Let ξft be the number of shares in funding

account, and define

B
rf
t := B

rf
t (ξft ) = e

∫ t
0 rf (ξ

f
s )ds, (2.5)

where

rf := rf (y) = r−f 1{y<0} + r+f 1{y>0}. (2.6)

2.1.4 Collateral process and collateral account

Collateral is used to reduce one’s loss if the other party default before expiry. We

denote the collateral process as C := (Ct)t≥0, which is an F adapted process. If

Ct > 0, we regard the trader as collateral provider. In this case, the trader measures

a positive risk toward the counterparty, and posts collateral to the counterparty to

reduce counterparty’s loss if default happens. On the other hand, if Ct < 0, the

trader is the collateral taker, who measures a positive risk toward the counterparty,

and takes collateral to mitigate loss if the counterparty defaults.

According to (ISDA, 2014), the most popular type of collateral is cash collateral.

When the trader is the collateral provider, let r+c be the rate on the collateral

amount he will receive from the counterparty. If the trader is collateral taker, we

let r−c be the rate on the collateral amount he will pay to his counterparty. In this

thesis, we assume r+c = r−c = rc. Let Brc
t be the collateral account, so the dynamics

of collateral cash account is given by

dBrc
t = rcB

rc
t dt. (2.7)

Furthermore more, if we let ψct be the shares of Brc
t held by the trader at time t,

then we have

ψctB
rc
t = −Ct. (2.8)

6



The intuition here is that Ct is the amount posted to the other part by the trader,

the collateral account is the cash amount will be received by trader if no default

happens before T . So they have the same amount but different sign.

2.2 Replication of options

2.2.1 Risk neutral measure

In order to replicate the derivatives, we need to define a risk neutral measure. As

(Bichuch et al., 2016), we first introduce the default intensity model. Given the phys-

ical measure P, default times of trader or counterparty are defined as independent

exponentially distributed random variables with constant intensity hPi , i ∈ {I, C}.

It holds then that for each i ∈ {I, C},

$i,P
t := H i

t −
∫ t

0

(1−H i
u)h

P
i du (2.9)

is a (G,P)-martingale. We defined the discounted rate as rD, which is the discount

rate of valuation party used for collateral and closeout. The risk neutral measure Q

is given by the Radon-Nikodm density

dQ
dP

∣∣∣∣
Gτ

= e
rD−µ
σ

W P
τ−

(rD−µ)2

2σ2
τ
(µI − rD

hPI

)HI
τ

e(rD−µI+h
P
I)τ
(µC − rD

hPC

)HC
τ

e(rD−µC+h
P
C)τ .

(2.10)

Under measure Q, the dynamics of our three risky assets are given by

dSt = rDStdt+ σStdW
Q
t , (2.11)

dP I
t = rDP

I
t dt− P I

t−d$
I,Q
t , (2.12)
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dPC
t = rDP

C
t dt− PC

t−d$
C,Q
t . (2.13)

The WQ := (WQ
t , 0 ≤ t ≤ τ) is (G,Q)-Brownian motion, and $I,Q := $I,Q

t , 0 ≤

t ≤ τ as well as $C,Q := $C,Q
t , 0 ≤ t ≤ τ are (G,Q)-martingales. These three

dynamics can be derived by Ito’s formula directly though (2.1), (2.2) and (2.7), and

hQi = µi − rD, i ∈ {I, C}.

2.2.2 Replication of options and collateral specification

We focus on European call and put option. The Black-Scholes price given by the

valuation agent is used to calculate the closeout value and collateral. Under the risk

neutral measure Q, we have

V̂t := e−rD(T−t)E[Φ(ST ) | Ft], (2.14)

where V̂t is the Black-Scholes option price at time t as calculated by the valuation

party. Φ(ST ) is the payoff of European options, which is given by

Φ(ST ) =

{
(ST −K)+ European call option,

(K − ST )+ European put option.

When the trader is the put or call option seller, he needs to replicate this payoff

Φ(ST ). Thus he could build a portfolio to hedge his position and use it to pay

his counterparty. On the other hand, when the trader buy one option, he need to

replicate the payoff of −Φ(ST ) in order to hedge option value fluctuation.

In addition, we need to consider collateral for this option contract. We define

the collateral level as α, so under the assumption that neither the trader nor coun-
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terparty have defaulted by time t, the collateral process is given by

Ct := αV̂t1{τ>t}, with 0 ≤ α ≤ 1. (2.15)

The collateral is allowed to be rehypothecated by the collateral taker. This

means that the collateral taker can use cash collateral to invest in other investment

opportunities. We define our strategy process as ϕ := (ξt, ξ
f
t , ξ

I
t , ξ

C
t ; t ≥ 0), where

ξt denotes the shares in security account, which is the underlying in our case. ξft

denotes the number of shares in funding account. ξIt , ξ
C
t denote the number of shares

in trader and counterparty bonds respectively. Combining with (2.2) and (2.8), the

portfolio process is given by

Vt(ϕ) := ξtSt + ξft B
rf
t + ξIt P

I
t + ξCt P

C
t + ψrtB

rr
t − ψctBrc

t . (2.16)

In this paper, we follow the risk-free closeout convention. It means that the surviving

party liquidates all his positions once someone defaults. We denote θ as the closeout

value at time τ , where τ is specified is section (2.1.2). This θ is given by

θ := θ(τ, V̂ ) = V̂τ + 1{τC<τI}LCY
− − 1{τI<τC}LIY

+

= 1{τC<τI}θI(V̂τ ) + 1{τI<τC}θC(V̂τ ),

(2.17)

where Y := V̂τ − Cτ = (1 − α)V̂τ is the value of the option at default time, netted

with the collateral and θI(v) = v−LI((1− α)v)+, θC(v) = v +LC((1− α)v)−. The

Li satisfy 0 ≤ Li ≤ 1, i ∈ {I, C} and the loss rates against trader and counterparty.

This θ is exactly the terminal amount we want to replicate, more details are in

(Bichuch et al., 2016) Remark 3.3.
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2.3 XVA model and driver functions

In this part, we are using the assumption that rD = r±r = r±c = r+f ≤ r−f . By

(Bichuch et al., 2016) section 4, this assumption satisfies trader’s non-arbitrage

condition. For simplicity, we use rD to represent r±r and r±c , and we still use r+f in

order to make difference with r−f . But finally we will change r+f to rD in drivers

function.

2.3.1 XVA models

According to (Bichuch et al., 2016) section 4, we can derive the following BSDEs by

considering the dynamics of equation (2.16), and using (2.2) & (2.15),

−dV +
t = f+(t, V +

t , Z
+
t , Z

I,+
t , ZC,+

t ; V̂ )dt− Z+
t dW

Q
t − Z

I,+
t d$I,Q

t − Z
C,+
t d$C,Q

t ,

(2.18)

V +
τ = θI(V̂τ )1{τI<τC∧T} + θC(V̂τ )1{τC<τI∧T} + Φ(ST )1{τ=T}, (2.19)

and

−dV −t = f−(t, V −t , Z
−
t , Z

I,−
t , ZC,−

t ; V̂ )dt− Z−t dW
Q
t − Z

I,−
t d$I,Q

t − Z
C,−
t d$C,Q

t ,

(2.20)

V +
τ = θI(V̂τ )1{τI<τC∧T} + θC(V̂τ )1{τC<τI∧T} + Φ(ST )1{τ=T}. (2.21)
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Notice that here we only replicate one share of claim. The drivers are given by

f+(t, v, z, zI , zC ; V̂t) :=− (r+f (v + zI + zC − αV̂t)+ − r−f (v + zI + zC − αV̂t)−

− rDzI − rDzC + rDαV̂t),

(2.22)

and

f−(t, v, z, zI , zC ; V̂t) := −f+(t,−v,−z,−zI ,−zC ;−V̂t). (2.23)

V + is the value process of the portfolio which hedges 1 share of option, V − is

the value process of portfolio which hedges −1 share of option. We let Zt = ξtσSt,

ZI
t = −ξIt P I

t− , ZC
t = −ξCt PC

t− . From (2.18-2.21), if we can solve these BSDEs,

then we have the all-inclusive price of options. Since there is no Zt in two drivers

above, we will omit this parameter in following drivers, and this is because of our

assumption of rD = rr.

Let V̂t be the Black Scholes option price. We can define XVA in our model from

(Bichuch et al., 2016) Definition 4.6.

Definition 1. The seller’s XVA is a G-adapted process, which is given by

XV A+
t := V +

t − V̂t, (2.24)

and the buyer’s XVA is given by

XV A−t := V −t − V̂t. (2.25)

By Black-Scholes pricing theorem, the dynamics of V̂t is given by

−dV̂t = −rDV̂tdt− ẐtdWQ
t (2.26)
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Then we can derive the BSDEs for XVA, by combining the BSDE for V with

Black Scholes BSDE of V̂t:

−dXV A±t =f̃±(t,XV A±t , Z̃
I,±
t , Z̃C,±

t ; V̂t)

− Z̃±t dW
Q
t − Z̃

I,±
t d$I,Q

t − Z̃
C,±
t d$C,Q

t ,

(2.27)

XV A±τ = θ̃C(V̂τ )1{τC<τI∧T} + θ̃I(V̂τ )1{τI<τC∧T}, (2.28)

where Z̃±t := Z±t − Ẑt, Z̃
I,±
t = ZI,±

t , Z̃C,±
t = ZC,±

t and θ̃C(v) := LC((1 − α)v)−,

θ̃I(v) := −LI((1− α)v)+.

The drivers f̃ are given by

f̃+(t, xva, z̃I , z̃C ; V̂ ) :=− (r+f (xva+ z̃I + z̃C − αV̂t)+ − r−f (xva+ z̃I

+ z̃C − αV̂t)− − rDz̃I − rDz̃C + rDαV̂t) + rDV̂t,

(2.29)

f̃−(t, xva, z̃I , z̃C ; V̂ ) = −f̃+(t,−xva,−z̃I ,−z̃C ;−V̂ ). (2.30)

Next, as (Bichuch et al., 2016), we can move one step forward by using reduction

technique developed by (Crépey & Song, 2015) to generate another BSDE, which

stops at expiry time T with zero terminate value. This is the exactly BSDE and

drivers we are gonna use in chapter 3.

Theorem 1. The BSDEs

−dǓ±t = ǧ±(t, Ǔ±t , Ž
±
t ; V̂ )dt− Ž±t dW

Q
t

Ǔ±T = 0

(2.31)
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in the filtration F with

ǧ+(t, ǔt, žt; V̂ ) := hQI (θ̃I(V̂t)−ǔ)+hQC(θ̃C(V̂t)−ǔ)+f̃+(t, ǔt, žt, θ̃I(V̂t)−ǔ, θ̃C(V̂t)−ǔ; V̂ ),

(2.32)

ǧ−(t, ǔt, žt; V̂ ) := −ǧ+(t,−ǔt,−žt;−V̂ ), (2.33)

admits unique solutions Ǔ± such that

Ǔ±t = XV A±t∧τ− . (2.34)

On the other hand, we can get the XV A solution from Ǔ by

XV A±t := Ǔ±t 1{t<τ} +
(
θ̃C(V̂τC )1{τC<τI∧T} + θ̃I(V̂τI )1{τI<τC∧T}

)
1{t≥τ}

2.3.2 Drivers

We are using the BSDE given by Theorem 1. The drivers are given by (2.32) and

(2.33).

First let’s focus on selling one single option, thus the trader want to hedge payoff

Φ(ST ). The driver we are using is ǧ+. For simplicity, we define

ǧ±t = ǧ±(t, ǔt, žt; V̂ ). (2.35)

When selling an European option, the option value will always be positive. Thus

13



θ̃C(V̂ ) = 0 according to our definition.

ǧ+ = hQI (θ̃I(V̂ )− ǔ)− hQC ǔ− [r+f (−ǔ+ θ̃I(V̂ ) + (1− α)V̂ )+

− r−f (−ǔ+ θ̃I(V̂ ) + (1− α)V̂ )− − rD(θ̃I(V̂ )− ǔ) + rDǔ+ rDαV̂ ]

+ rDV̂

= hQI (θ̃I(V̂ )− ǔ)− hQC ǔ− r
+
f (−ǔ+ θ̃I(V̂ ) + (1− α)V̂ )+

+ r−f (−ǔ+ θ̃I(V̂ ) + (1− α)V̂ )− + rD(θ̃I(V̂ )− ǔ)− rDǔ+ rD(1− α)V̂ .

(2.36)

Since we want to get a simpler version of the driver function, we can discuss

different cases for positive and negative (−ǔ + θ̃I(V̂ ) + (1 − α)V̂ ). Then we may

cancel some terms and collect terms having ǔt. It’s shown as follows,

i. If −ǔ+ θ̃I(V̂ ) + (1− α)V̂ ≥ 0, then

ǧ+t (ǔ) = hQI (θ̃I(V̂t)− ǔ)− hQC ǔ− rDǔ

= hQI θ̃I(V̂t)− (hQI + hQC + rD)ǔt,

(2.37)

ii. If −ǔ+ θ̃I(V̂ ) + (1− α)V̂ < 0, then

ǧ+t (ǔ) = hQI (θ̃I(V̂t)− ǔ)− hQC ǔ+ r−f (−ǔ+ θ̃I(V̂t) + (1− α)V̂t) + rD(θ̃I(V̂ )− ǔ)

− rDǔ+ rD(1− α)V̂

= (hQI + r−f + rD)θ̃I(V̂t) + (r−f + rD)(1− α)V̂t − (hQI + hQC + r−f + 2rD)ǔt.

(2.38)

Before we use (2.37) and (2.38) as formula for drivers, we need to check conditions

(i) & (ii). As these conditions are path dependent, which means the results varies

at different time, we need to check them step by step when we trace back the XVA.
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The idea is similar with what we do for American options.

When we want to hedge the payoff −Φ(ST ), which is the case of buying an

European option, we need to use ǧ− as our drivers. Also, compare to selling one

option, θ̃I(−V ) = 0 in this case.

ǧ− = −hQI (θ̃I(−V̂ ) + ǔ)− hQC(θ̃C(−V̂ ) + ǔ) + [r+f (−ǔ+ θ̃I(−V̂ ) + ǔ+ θ̃C(−V̂ ) + ǔ− (1− α)V̂ )+

− r−f (−ǔ+ θ̃I(−V̂ ) + ǔ+ θ̃C(−V̂ ) + ǔ− (1− α)V̂ )− − rD(θ̃I(−V̂ ) + ǔ)

− rD(θ̃C(−V̂ ) + ǔ)− rDαV̂ ] + rDV̂

= −hQI ǔ− h
Q
C(θ̃C(−V̂ ) + ǔ) + [r+f (ǔ+ θ̃C(−V̂ )− (1− α)V̂ )+

− r−f (ǔ+ θ̃C(−V̂ )− (1− α)V̂ )− − rDǔ− rD(θ̃C(−V̂ ) + ǔ) + (1− α)rDV̂ ]

(2.39)

Similarly, we need to discuss the sign of (ǔ+ θ̃C(−V̂ )− (1− α)V̂ ).

iii. if ǔ+ θ̃C(−V̂ )− (1− α)V̂ ≥ 0, then

ǧ− = −hQI ǔ− h
Q
C(θ̃C(−V̂ ) + ǔ) + [r+f (ǔ+ θ̃C(−V̂ )− (1− α)V̂ )

− rDǔ− rD(θ̃C(−V̂ ) + ǔ) + (1− α)rDV̂ ]

= −hQI ǔ− h
Q
C(θ̃C(−V̂ ) + ǔ)− rDǔ

= −hQC θ̃C(−V̂ )− (hQI + hQC + rD)ǔ.

(2.40)

And we add time into ǧ−, so

ǧ−t (ǔ) = −hQC θ̃C(−V̂t)− (hQI + hQC + rD)ǔt (2.41)
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iv. If ǔ+ θ̃C(−V̂ )− (1− α)V̂ < 0, then

ǧ− = −hQI ǔ− h
Q
C(θ̃C(−V̂ ) + ǔ) + [−r−f (ǔ+ θ̃C(−V̂ )− (1− α)V̂ )−

− rDǔ− rD(θ̃C(−V̂ ) + ǔ) + (1− α)rDV̂ ]

= −(hQC + rD − r−f )θ̃C(−V̂ )− (r−f − rD)(1− α)V̂

− (hQC + hQI − r
−
f + 2rD)ǔ

(2.42)

and we plug in time t,

ǧ−t (ǔ) = −(hQC+rD−r−f )θ̃C(−V̂t)−(r−f −rD)(1−α)V̂t−(hQC+hQI −r
−
f +2rD)ǔt.

(2.43)

With drivers above, we can use the FT scheme to approximately calculate the XVA

by the linear regression Monte Carlo algorithm.
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Chapter 3

Numerical methods

We define

ǧt(u) = ǧ±(t, u; V̂ ) (3.1)

for writing simplicity. Notice we omit Ž± here since Ž± doesn’t appear in our final

drivers according to (2.37), (2.38), (2.41) and (2.43). And let

Et[·] = E[· | Gt] (3.2)

to be the conditional expectation given Gt. Before digging into the Monte Carlo

method, we are changing BSDE (2.31) into the expectation form, and then take

conditional expectation of both sides given Gt. Thus

Ǔt = Et
[∫ T

t

ǧ(Ǔs)ds
]
, t ∈ (0, T ). (3.3)
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3.1 FT scheme

By (Fujii & Takahashi, 2012a, 2012b), a perturbation parameter ε and the following

perturbation form of BSDE (3.3) are introduced:

Ǔ ε
t = Et

[∫ T

t

εǧs(Ǔ
ε
s)ds

]
. (3.4)

It’s exactly the same as (3.3) when ε = 1. Suppose the solution of (3.4) can be

represented as a power series of ε:

Ǔ ε
t = Ǔ

(0)
t + εǓ

(1)
t + ε2Ǔ

(2)
t + ε3Ǔ

(3)
t + · · · . (3.5)

Then consider the Taylor expansion of ǧ at Ǔ
(0)
t ,

ǧt(Ǔ
ε
t ) = ǧt(Ǔ

(0)
t )+(εǓ

(1)
t +ε2Ǔ

(2)
t +· · · )∂uǧt(Ǔ (0)

t )+
1

2
(εǓ

(1)
t +ε2Ǔ

(2)
t +· · · )2∂2uǧt(Ǔ

(0)
t )+· · · .

(3.6)

By collecting the terms with same order with respect to ε in (3.6), and comparing

them with (3.5), we have the following relationships:

Ǔ
(0)
t = 0, (3.7)

Ǔ
(1)
t = Et

[∫ T

t

ǧs(Ǔ
(0)
s )ds

]
, (3.8)

Ǔ
(2)
t = Et

[∫ T

t

Ǔ
(1)
t ∂uǧs(Ǔ

(0)
s )ds

]
, (3.9)

Ǔ
(3)
t = Et

[∫ T

t

Ǔ
(2)
t ∂uǧs(Ǔ

(0)
s )ds

]
, (3.10)

where the third order term should have a second order partial derivative term. But

all of our drivers are linear function with respect to Ǔt, so the second order derivative

is 0 and we can omit it. By letting ε = 1, we can generate a approximation of the
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BSDE solution,

Ǔt ≈ Ǔ
(1)
t + Ǔ

(2)
t + Ǔ

(3)
t . (3.11)

To calculate the integral inside conditional expectations, (Fujii & Takahashi, 2012b)

introduce a random variable to randomize the integral. Thus the problem be-

comes figuring out the expectation which could be done numerically by Monte Carlo

method. This is called the FT scheme.

Assume η1 is a time random variable with density as

φ(s, t) = 1{s≥t}µe
−µ(s−t), (3.12)

thus we have

Ǔ
(1)
t = Et

[∫ T

t

ǧs(Ǔ
(0)
s )ds

]
= Et

[∫ T

t

1{s≥t}ǧs(Ǔ
(0)
s )ds]

= Et
[∫ T

t

φ(s, t)
eµ(s−t)

µ
ǧs(Ǔ

(0)
s )ds

]
= Et

[
1{η1≤T}

eµ(η1−t)

µ
ǧη1(Ǔ

(0)
η1

)
]
.

(3.13)

Similarly, we can derive

Ǔ
(2)
t = Et

[
1{η1≤T}Ǔ

(1)
η1

eµ(η1−t)

µ
ǧη1(Ǔ

(0)
η1

)
]
, (3.14)

plug the result from (3.13) into (3.14) and use tower property, we get

Ǔ
(2)
t = Et

[
1{η2≤T}

eµ(η2−η1)

µ
ǧη2(Ǔ

(0)
η2

)
eµ(η1−t)

µ
∂uǧη1(Ǔ

(0)
η1

)
]
, (3.15)
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where η2 is a random variable with density φ(s, η1) = 1{s≥η1}µe
−µ(s−η1). Similarly,

Ǔ
(3)
t = Et

[
1{η3≤T}

eµ(η3−η2)

µ
ǧη3(Ǔ

(0)
η3

)
eµ(η2−η1)

µ
∂uǧη2(Ǔ

(0)
η2

)
eµ(η1−t)

µ
∂uǧη1(Ǔ

(0)
η1

)
]
, (3.16)

where η3 has density of φ(s, η2) = 1{s≥η2}µe
−µ(s−η2). One important thing is that for

all t ∈ [0, T ], we have Ǔ
(0)
t = 0 from (3.7). Once we calculate these three conditional

expectations, the approximated result is just the sum of them.

3.2 Linear regression Monte Carlo method

An intuitive idea is to use a time grid and sample N random vectors (η1, η2, η3) to

calculate the Ǔt from t = T to t = 0 backwards step by step. But in every step (say

at time tn) we need to calculate many Ǔtn in order to use the Monte Carlo method

for time tn−1, so the complexity is exponentially increasing in time. A more efficient

way is to use the linear regression Monte Carlo method to do this, similar to its use

for calculating American option prices.

At first, we have to specify some model setups. We define our time grid ti = i∆t,

where i = (0, 1, · · · , n) and ∆t = T
n

. Thus, according to (Glasserman, 2013) chapter

8.6,

Eti [fti+1
(Xti+1

)] = βTi · ψi(x), (3.17)

where f(·) is a pre-specified function, βi is our coefficients vector of length m, ψi(x)

is the vector of basis function values of length m and x is the parameters given at

time ti. We need to simulate b independent paths of (Xt)t≥0 for the calculation.

The fitted βi is given by

β̂i = B̂−1ψ · B̂ψV , (3.18)
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where B̂ψ is a m×m matrix with qr entry as

1

b

b∑
j=1

ψq(Xij)ψr(Xij), (3.19)

and B̂ψV is a m-vector with rth entry as

1

b

b∑
k=1

ψr(Xik)fi+1(Xi+1,k). (3.20)

When pricing American options, we usually use stock price path as our Xt in the

above model. However, our drivers take (η1, η2, η3) as the input parameters. So it’s

reasonable to set our (Xt)t≥0 to be (η1t , η
2
t , η

3
t )t≥0, and these three process should

have the following relationships:

(1) η1ti is generated with density function φ(s, ti) = 1{s≥ti}µe
−µ(s−ti),

(2) η2ti is generated with density function φ(s, η1ti) = 1{s≥η1ti}
µe−µ(s−η

ti
1 ),

(3) η3ti is generated with density function φ(s, η2ti) = 1{s≥η2ti}
µe−µ(s−η

2
ti
).

3.3 Pricing algorithm

First we need to decide the basis functions, which are denoted as ψ(·). Second,

generate processes η = (η1, η2, η3) from the relationships above and the Black-Scholes

option price process V̂ , which could be simulated using stock price process. We also

have ǧ(·) as our drivers. According to equations (3.13), (3.14) and (3.15), we define

Ǔ
(y)
ti = Eti [f

(y)
ti (ηti , V̂ti)] (3.21)

Then let

Eti [f
(y)
ti (ηti)] = (β

(y)
ti )T · ψ(y)

i (ηti , V̂ti). (3.22)
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And βi is given by

β̂
(y)
ti =

(
B̂

(y)
ψ

)−1 · B̂(y)
ψV , (3.23)

where B̂
(y)
ψ is an m×m matrix with qr entry as

1

b

b∑
j=1

ψ(y)
q (ηti,j, V̂ti,j)ψ

(y)
r (ηti,j, V̂ti,j), (3.24)

and B̂
(y)
ψV is an m-vector with rth entry as

1

b

b∑
k=1

ψ(y)
r (ηti,k, V̂ti,k)f

(y)
ti (ηti,k, V̂ti,k), (3.25)

where y ∈ {1, 2, 3}, m is the number of basis functions. Notice in the above specifi-

cation, ft is not Gt-measurable.

The algorithm is shown in figure 3.1.

Regression-Based Monte Carlo algorithm (ǧ, T, η, ψ(·), f, V̂ )
(1) Generate b paths of η as above, generate b paths of V̌ (the clean BS price)
(2) At terminal nodes, set Ǔtn,k = 0, k = 1, 2, · · · , b
(3) Apply backward induction: for i = n− 1, · · · , 1

When t = ti, Ǔt for all t > ti are already known
for k in 1, 2, 3, · · · , b

for y = 1, 2, 3
check conditions (i)&(ii) or (iii)&(iv) in section 2.3.2 to decide driver ǧ

decide function f
(y)
ti (ηti,k, V̂ti,k)

calculate β̂
(y)
ti = (B̂

(y)
ψ )−1 · B̂(y)

ψV by (3.24) and (3.25)

calculate Ǔ
(y)
ti,k

= (β̂
(y)
ti )T · ψ(y)

i (ηti , V̂ti,k)

Ǔti,k = Ǔ
(1)
ti,k

+ Ǔ
(2)
ti,k

+ Ǔ
(3)
ti,k

(4) return Ǔt0 = e−rDt1 1
b

∑b
k=1 Ǔt1,k

Figure 3.1: Regression-Based Monte Carlo Algorithm

In step 3, we plug η into function ft, we need to calculate the drivers gη. Since
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η is greater than t, Ǔη are already calculated in previous loop. So everything is fine

as long as we set Ǔη = Ǔtk , where tk−1 < η ≤ tk. We can simply store the path of Ǔ

and search the Ǔη value.

Another problem is how to choose basis function. We choose as basis function:

ψ(y) = ψ(ti) = (1, Sti , S
2
ti

)T , y ∈ 1, 2, 3. (3.26)

Polynomial functions are smooth, which is a very good property for the linear re-

gression Monte Carlo method. Using ti as basis function’s variable instead of ηti

should be a reasonable guess, since all these ηti are generated from ti, thus their

mean should converge to some function of ti. We will see how it performs in next

chapter.

One may also be curious about why we don’t apply backward induction until

i = 0. The reason is that at i = 0, the matrix Bψ is not invertible because of the

basis function we use as the initial stock price is identical. So using the XVA prices

at time t1 and then discount it to t0 should be a reasonable plan.
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Chapter 4

Example

We are using the following benchmarks: σ = 0.2, rD = rr = rc = r+f = 0.05,

r−f = 0.08, µI = 0.21, µC = 0.16, LI = LC = 0.5 and α = 0.9, hQI and hQC can be

calculated by hQi = µi − rD, i ∈ {I, C}, which is also given previously.

Assume the trader is selling one European call option. The initial price of the

underlying stock is S0 = 100, the strike price is K = 110 and the option expires at

T = 1. Since the trader has a short position in options, his corresponding driver is

g+ as specified in (2.37) and (2.38). The conditions needed to be checked are (i) &

(ii). It’s necessary to mention that we only use b = 20, which is usually considered

as too small sample size, but we will check how it works.

We will use bootstrapping as further technique in this chapter. Bootstrapping

is a resampling technique which is used when the size of given sample is too small.

This technique works as follows: first we generate a new sample with the same size as

given sample by taking values from the given sample with replacement and calculate

the XVA price with this new sample; then we repeat the first step for many times;

finally we use all results generated by the second step to find a more stable result

(i.e. calculate the average) and check the stability of result (i.e. find the confidence
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interval).

4.1 Results

Under the assumptions above, the Black-Scholes price of this European call option

can be calculated by BS formula as follows,

V̌0 = S0 · Φ(d1)−Ke−rTΦ(d2), (4.1)

d1 =
log S0

K
+ (r + 1

2
σ2)
√
T

σ
√
T

, d2 = d1 − σ
√
T ,

where Φ(·) is cumulative density function of standard normal distribution. The

results of our XVA adjustment price and Black Scholes price are given in the below

table,

B-S price XVA adjustment

V̌0 = 39.2 U0 = -1.443

It might be a little strange that we have a negative XV A which leads to a lower

all-inclusive price with such a high collateral level α = 0.9. The reason could be

that we have rc = rD = 0.05, which is higher that (Bichuch et al., 2016) example

with rD = 0.05 but rc = 0.01. In our assumption, the trader would get more return

from his posted collateral account and thus have a lower cost. By modifying the

driver function to include rc = 0.01, we get a positive result with XV A = 5.08,

which verifies our argument.

We also calculated the result under different collateral level α. As shown in

Figure 4.1, we notice that when the collateral level α decreases, the value of XVA

is decreasing, which is consistent with (Bichuch et al., 2016) result. An intuitive

explanation is with a lower α, the trader has less limitations since he has to post
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less collateral money to his counterparty and thus his funding cost is reduced, which

leads to lower selling price. The relative XVA adjustments are also showed in Figure

4.2.

Figure 4.1: XVA adjustments with α = 0.7, 0.8, 0.9

Further more, we compare the XVA under different r−f . As shown in Figure 4.3

& Figure 4.4, XVA value decreases when the r−f increases under the assumption of

α = 0.9.
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Figure 4.2: Relative XVA adjustments with α = 0.7, 0.8, 0.9

4.2 Check stability

We use bootstrapping to check the variance of our result under the assumption of

α = 0.9 and r−f = 0.08. Figure 4.5 shows the result of all of our XVA adjustments,

and the variance is 0.028, 95% confidence interval is [−1.80,−1.147].

Even though we only use 20 sample paths, the error is just about ±0.32, which

is only 0.83% of the agent price or Black Scholes price. We consider this as an

acceptable result. By doing a further step, we can use bootstrapping easily with

almost no cost to get a much more converged result as what has been done the

section 4.1.

27



Figure 4.3: XVA adjustments with r−f = 0.07, 0.08, 0.09

Figure 4.4: Relative XVA adjustments (%) with r−f = 0.07, 0.08, 0.09
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Figure 4.5: All XVA adjustments, the vertical line is our result, the histogram shows
all results from bootstrapping

29



Chapter 5

Conclusion

Following the (Bichuch et al., 2016) market setup and XVA model, we derive a

numerical method to price European Options via BSDEs. Under the specific as-

sumption of r±r = r±c = r+f = rD < r−f , which satisfies non-arbitrage condition, we

generate driver functions for both selling and buying positions. Then the FT scheme

is used by letting perturbation parameters equal to 1 and we derive a linear approx-

imation. Since the functions inside conditional expectation are path dependent, we

use the Linear Regression Monte Carlo method which is used to price American

options.

An example is given in Chapter 4. The results generate by the numerical method

are quite stable and reasonable for only using 20 sample paths, which is always

considered as a small sample size. Another very powerful data science tool boot-

strapping is also used with very low cost but increase the stability of our result

significantly.
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