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ABSTRACT 

 
 

Interaction with the CD4 co-receptor can change tropism in HIV-1.  It has been 

shown that CCR5-using isolates cultured in vitro without the presence of neutralizing 

antibodies can be more efficient at infection, while at the same time becoming more 

sensitive to neutralization.  This project studies CXCR4-using envelopes examining the 

effect of viral isolation on tropism, receptor use, and antibody sensitivity.  The cultured 

CXCR4-using isolates did not evolve different properties from the uncultured CXCR4-

using isolate.  
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BACKGROUND 
 

 

Introduction to HIV 

 

 Human immunodeficiency virus (HIV) is a lentivirus and part of the retrovirus 

family.  HIV is the only known lentivirus to infect humans (Knipe and Howley, 2001).  

HIV has many characteristics common to lentiviruses, such as a long and variable 

incubation period.  An individual with HIV can be asymptomatic for a period of months 

or years before any complications present. 

 HIV is very prone to mutation.  HIV mutates so often, that through the course of 

their infection, it is not uncommon to find different strains of HIV in the same patient.  

HIV’s reverse transcriptase contains no system to check for errors.  On average it will 

make a mistake every 1 in 100,000 bases, which translates to about one mistake per 

round of replication.  With mistakes so frequent, any sample of virus will have a ‘swarm’ 

of variants, which are often called “quasi species.”  This rapid changing allows HIV to 

escape immunity and therapy.  The ability to escape, coupled with the HIV’s speed of 

replication make it very difficult to treat effectively. 

   

HIV Classification and Affected Areas 

 

 There are two main types of HIV that can affect humans, HIV-1 and HIV-2.  

HIV-1 is more predominant throughout the world, with HIV-2 being found mainly in 

western Africa.  It is believed that both forms of HIV resulted from zoonotic transmission 

to humans (Knipe and Howley, 2001).  Both forms are closely related to simian 
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immunodeficiency virus (SIV).  HIV-1 is closely related to SIV in chimpanzees, while 

HIV-2 is closely related to SIV in sooty mangabey monkeys (Knipe and Howley, 2001).  

HIV-1 is separated into 3 groups: M, the main group; O, the outlier; and the recently 

discovered N group (Knipe and Howley, 2001).  The M group is further separated into 

subtypes A-J (Knipe and Howley, 2001).  In North America, subtype B is the most 

predominant.  Figure 1 shows a map of the world with the most predominant subtypes in 

each area.  The larger circled letter indicates the predominant subtype and the smaller 

letters indicate the other subtypes present. 

 

 

Figure 1.   Worldwide Distribution of HIV-1 Sub-types (Knipe and Howley, 2001). 

 

In humans, there are three major stages of disease progression, acute, asymptomatic, and 

symptomatic (Fauci, et al. 1996). 
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HIV Composition 

 HIV-1 has all of the standard retroviral structural genes including gag, pol, and 

env (Wiley, 2001).  HIV also includes at least six more genes, including tat, rev, nef, vif, 

vpr, and vpu (Wiley, 2001).   Table 1 lists each of these genes and the major proteins they 

encode. 

Gene Name Proteins Encoded 

Group-specific antigen (gag) Structural Protein; Precursor for the Matrix 

(MA), Capsid (CA), Nucleocapsid (NC), 

p6 proteins. 

Polymerase (pol Enzymes; Protease (PR), Reverse 

Transcriptase (RT), and Integrase (IN). 

Envelope (env) Structural Protein; Envelope glycoproteins 

Trans-activator of viral transcription (tat) Regulatory Protein; Enhances transcription. 

Regulator of viral protein expression (rev) Regulatory Protein; Regulates RNA 

splicing. 

Negative factor (nef) Accessory Protein; enhances viral 

replication. Down modulation and 

degradation on CD4 and MHC class I. 

Virus Infectivity factor (vif) Accessory Protein; Crucial for production 

of infectious virons. 

Viral protein R (vpr) Accessory Protein; Stimulates viral gene 

expression. Important for infection of non-

dividing cells. 

Viral protein U (vpu) Accessory Protein; Enhances virus release 

and degrades CD4. 

Table 1.  HIV Genes and Description of Encoded Proteins (Wiley, 2001; Knipe and Howley, 2001). 

 

Figure 2 shows a map of the HIV genome, indicating where each protein is encoded. 
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Figure 2.   Map of the HIV Genome and Proteins Encoded.  Listed size is in kilodaltons (Knipe and 

Howley, 2001). 

 

Structural Proteins 

 

 HIV contains all of the structural proteins commonly found in retroviruses.  The 

structural proteins are made from polyprotein precursors (Knipe and Howley, 2001).  The 

gag precursor is cleaved into four different proteins: the matrix (MA), capsid (CA), 

nucleocapsid (NC), and p6 proteins.  The MA protein is involved with the incorporation 

of envelope protein via interactions with the cytoplasmic tail of gp41 (Wiley, 2001).  The 

CA protein forms the core of the HIV virus particle (Wiley, 2001).  The NC protein 

encapsulates the viral genomic RNA and delivers it to the assembling viron (Wiley, 

2001).  The p6 protein has a role in late stages of viral release and has been shown to 

recruit cellular proteins needed for virus budding (Freed, 2002).  Figure 3 is a model of 

the HIV-1 virus particle. 
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Figure 3.   Model of HIV-1 Showing the Topology of Individual Proteins Within the Mature Virion 

(Welker, et al. 2000). 

  

The pol precursor is cleaved into three proteins: viral protease (PR), reverse 

transcriptase (RT), and Integrase (IN) (Knipe and Howley, 2001).  The PR protein 

cleaves gag and the gag-pol precursor proteins into constituents after the virus has 

budded from the host cell (Wiley, 2001).  This process is called virion maturation.  After 

infection of a new cell, the RT protein synthesizes viral RNA into double stranded DNA 

(Wiley, 2001).  The IN protein assists in several reactions that involve integrating the 

viral DNA into the host genome (Wiley, 2001). 

 The env precursor is cleaved into two parts named for their size in kilodaltons: 

gp120 and gp41.  The gp120 protein is the surface subunit of env, and offers protection 

against host antibodies (Losman, et al. 2001).  The gp41 protein has a hydrophobic 
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domain that fuses the viral and host membranes.  The envelope is described in more 

detail in the section titled HIV Co-Receptors and Fusion. 

 

Regulatory Proteins 

 

 HIV has two regulatory proteins: the transactivator of viral transcription (tat) and 

the regulator of viral protein expression (rev).  The tat protein enhances transcription 

activity by binding to the transactivating response element (TAR) on HIV mRNA 

molecules (Wiley, 2001).  The rev protein regulates the transportation of unspliced viral 

mRNAs out of the nucleus. 

 

Accessory Proteins 

 

 HIV has four accessory proteins: nef, vif, vpr, and vpu.  These proteins are unique 

to lentiviruses and are not absolutely necessary for viral replication in vitro (Wiley, 

2001).  However, they are important for viral infection in vivo (Wiley, 2001).  The nef 

protein is involved with CD4 and MHC class I down regulation, and modulation of 

cellular activation (Chowers, et al. 1994).  The vif protein is involved with virus 

assembly, and degrades the antiviral cellular protein APOBEC3G (Rose, et al. 2004).    

The vpr protein increases virus expression and is important in early stages of HIV 

replication (Burkrinsky and Adzhubei, 1999).  In SIV and HIV-2 the two vpr functions 

are carried out by two proteins, vpr and vpx (Fletcher, et al. 1996).  The vpu protein 
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degrades CD4 within the endoplasmic reticulum and stimulates the release of virus 

(Willey, et al. 1992).    

 

The Envelope Glycoprotein 

 

 HIV virus particles attach to receptors on the surface of the cell via glycoprotein 

spikes on the surface of the virus (Clapham and McKnight, 2002).  The envelope is 

composed of two proteins, gp120 and gp41.  A precursor molecule, gp160, is produced 

and then cleaved in the Golgi apparatus to form gp120 and gp41 (Clapham and 

McKnight, 2002).  Each spike is trimeric and made up of three gp120 and three gp41 

molecules (Clapham and McKnight, 2002).  There are five variable loops (V1-V5) 

contained within gp120, with conserved regions between each loop, while gp41 is 

relatively conserved (Clapham and McKnight, 2002).    

 

CD4 and Co-Receptors 

 The major receptor utilized by HIV-1 is the CD4 receptor.  It is expressed on T-

helper/inducer subset of lymphocytes, macrophages, and on some dendritic cells (Knipe 

and Howley, 2001).  The presence of CD4 is a major determinant of HIV tropism.  

Normally, CD4 functions as an accessory receptor to increase the attraction between 

helper T cells and MHC class II antigen presenting cells (Clapham and McKnight, 2002).  

CD4 binds to gp120 causing a conformational change in the gp120 core (Myszka, et al, 

2000).  This change causes movement of the variable loops, exposing a binding site for a 

co-receptor.  Co-receptors are the chemokine receptors CCR5 or CXCR4 (Clapham and 
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McKnight, 2002).  Some viruses are able to use both CCR5 and CXCR4.  Figure 4 is a 

model of HIV-1 co-receptor use by viral variants.  CCR5-using viruses can infect 

memory T-cells and primary macrophages.  CXCR4-using viruses can infect naïve T-

cells and some macrophages.   

 

Figure 4.   Model of HIV-1 Co-Receptor Usage (updated from Berger, et al 1999). 

 

CCR5 and CXCR4 are both seven transmembrane (7TM) chemokine receptors.  There is 

evidence that HIV-1 can use other 7TM chemokine receptors in vitro (e.g., CCR3, 

CCR8).  However, there is little evidence that such alternative co-receptors are used in 

vivo (Clapham and McKnight, 2002).   

 

HIV Co-Receptors and Fusion 

 

 It is thought that the binding of HIV to the co-receptor triggers membrane fusion 

(Doms and Moore, 2000).  The most widely accepted Env mediated fusion model for 

HIV-1 proposes the extension of a coil in gp41 that protrudes the fusion peptide, which 
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then embeds in the cell membrane (Doms and Moore, 2000).  Then gp41 folds back on 

itself to form a six helix bundle, or “hairpin,” bringing the viral and cell membranes in 

close proximity to each other (Doms and Moore, 2000).  The exact mechanisms that 

confer fusion after that point are still unclear.  The observed transmembrane structures in 

HIV-1 are consistent with other unrelated enveloped viruses (e.g., Influenza, Ebola) 

(Clapham and McKnight, 2002).  Figure 5 below shows the interactions of gp120 and 

gp41 for viral entry of HIV. 

 

 

Figure 5.   Model of Envelope Membrane Fusion in HIV-1 (Doms and Moore, 2000). 

 

 Interactions between gp120 with CD4 and co-receptors mainly determine virus 

tropism.  The sites that dictate tropism and co-receptor binding include variable loops V1, 

V2, V3, and a conserved region of beta-strands (Clapham and McKnight, 2002).  

Variations in the loops allow HIV to interact with different co-receptors (Clapham and 

McKnight, 2002).  This variability also likely helps the virus escape immune response 

(Clapham and McKnight, 2002).  Variation in structure of the V3 loop can switch co-

receptor use from CCR5 to CXCR4 (Clapham and McKnight, 2002).    
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V3 Loop Charge 

 

There is a correlation between the sequence of the V3 loop in envelope, and the 

co-receptor it will use.  Viruses that infect using CXCR4 as a co-receptor have 

significantly higher net charges in the V3 loop, while they seem to be unaffected by the 

charge in the V1 and V2 loops (Dong, et al. 2005).  This association between charge of 

the V3 loop on envelope and co-receptor use is also seen in HIV-2 (Shi, et al. 2005).   

 

 

Tropism Studies 

 

Generally, CCR5-using viruses infect macrophages and CD4 positive T-Cells, 

while CXCR4-using viruses infect CD4 positive T-cells. CCR5-using viruses will infect 

memory T-cells which express CCR5, while CXCR4-using viruses evolve to target naïve 

T-cells, which express CXCR4 (Peters, et al. 2004). 

It has been shown that CCR5-using viruses vary in their interactions with CD4 

and CCR5, resulting in a range of tropism from macrophage-tropic to non-macrophage-

tropic.  More efficient use of CD4 and CCR5 can allow a virus to infect cells with low 

levels of these receptors (e.g., macrophages) (Peters, et al. 2004).  It is believed that the 

changes in the variable loops of envelopes better expose the receptor binding sites on the 

virus envelope and allow more efficient interaction with cell surface receptors.  However, 

while these changes increase the efficiency of interactions between the virus and cell 

surface receptors, increased exposure of receptor binding sites may confer increased 

sensitivity to neutralizing antibodies and receptor ligands.  This is seen in the envelopes 

of virus amplified from brain tissue (Peters, et al. 2004).  Most neutralizing antibodies are 
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too large to pass through the blood-brain barrier.  The large variable loops that protect 

receptor binding sites from antibodies in other tissues are not necessary in the brain.  

Smaller loops allow for more efficient receptor interaction and the brain is a highly 

selective environment (Peters, et al. 2004). 

Recent unpublished data confirm that CCR5-using envelopes amplified from 

brain tissue are more sensitive to neutralizing antibodies than envelopes amplified from 

other tissues (e.g., lymph node).   

 

HIV-1 Isolation 

 

 HIV-1 is usually isolated by co-culturing HIV positive lymphocytes from patients 

with uninfected lymphocytes.  HIV-1 isolates are thus amplified in vitro without the 

presence of neutralizing antibodies.  These conditions may select for variants that interact 

more efficiently with CD4 and co-receptor and they are not representative of the 

predominant quasi species in vivo. 

 

Isolate 2044 

 

 The patient from whom isolate 2044 was derived was from London, and the 

isolate was made at Addenbrooke’s Hospital, Cambridge, England.  This patient’s CD4+ 

blood cell count was less than 190 cells per mm
3
.  The isolate is HIV-1 subtype B, and 

was cultured from phytohemagglutinin-interleukin-2-stimulated PBMCs derived from the 

peripheral blood from the affected individual (Simmons, et al. 1996). 
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The 2044.1 envelope clones were amplified directly from uncultured blood 

lymphocytes.  The 2044 envelope clones were amplified from the primary isolate of 

2044, which had been derived from phytohemagglutinin-interleukin-2-stimulated PBMCs 

in vitro (Simmons, et al. 1996).   The uncultured envelopes from patient 2044 are mainly 

CCR5-using, while the cultured virus envelopes all use CXCR4.  These envelopes 

provide an excellent case to study the effect of virus isolation on the sensitivity to 

neutralizing antibodies and receptor ligands. 
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PROJECT PURPOSE 

 

 

 The purpose of this project was three-fold: to investigate the tropism, receptor 

use, and antibody sensitivity of the cultured 2044 and uncultured 2044.1 envelope clones.  

CCR5-using viruses have been shown to expand tropism and become more sensitive to 

neutralizing antibodies when isolated in the absence of immunity, while less work has 

been done on viruses that use CXCR4.  The 2044.1 clones are mainly CCR5-using while 

the 2044 clones are CXCR4-using.  This project thus studies the differences between 

envelopes amplified directly from uncultured lymphocytes versus a virus isolate cultured 

in vitro on phytohemagglutinin-interleukin-2-stimulated peripheral blood mononuclear 

cells. 
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MATERIALS AND METHODS 
 

 

 

Sub-Cloning Envelope DNA from pCR3.1uni Into pSVIIIenv 

 

Preparation of DNA 

 

HIV envelopes were amplified previously and supplied in the vector pCR3.1uni.   

The envelopes were sub-cloned into the mammalian expression vector pSVIIIenv via 

KpnI sites before further experiments were performed.  TOP10F’ cells transformed with 

the pCR3.1uni plasmid were cultured in 4 mL of LB Medium with ampicillin in a 37°C 

shaker overnight. STBL-2 cells with the pSVIIIenv plasmid were cultured in 4 mL of LB 

Medium with ampicillin in a 30°C shaker overnight.  These cultures were “minipreped” 

using the Qiagen kit, and plasmid DNA was eluted with dH20.  

 

Gel Extraction 

 

Envelope DNA was digested with the restriction enzyme KpnI.  Vector pSVIIIenv 

DNA was digested with KpnI and then Antarctic Phosphatase.  Both digests were 

electrophoresed on a 0.1% agar gel with crystal violet.  The 5 kb band containing 

pSVIIIenv and the 3 kb bands containing env DNA were extracted using the Qiagen gel 

extraction kit.  Isopropanol was added while extracting pSVIIIenv to increase yield. 

 

Ligation  
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 New England Biotech’s Quick Ligase® was used to ligate each envelope clone 

into pSVIIIenv.  Competent TOP10F’ cells were transformed with 5 µL of the ligation 

mixture, and plated onto agar plates containing ampicillin.  Envelope and vector only 

controls were plated with each ligation batch to provide background colony levels. 

 

PCR Screening 

 

Colonies were screened via PCR using the primers Vpu8 and Ltr1, which amplify 

a fragment from the 5’ long terminal repeat (LTR) of pSVIIIenv with part of the envelope 

gene.  Only plasmids with an envelope inserted will screen positive by PCR.  Colonies 

that screened positive were cultured in 4 mL of LB Medium with ampicillin overnight in 

a 37°C shaker.  The cultures were made into glycerol stocks by centrifuging at 4000 rpm 

for 15 min.  The pellet was resuspended in 50% glycerol and stored at –80°C.  DNA was 

then minipreped from this new stock.   

 

Sequencing 

 

 DNA Sequencing was used to obtain the envelope nucleotide and amino acid 

sequences for 2044 and 2044.1 envelope clones.  Analysis of the data was performed 

with MacVector, including the phylogenetic tree. 

 

Cell Based Assays of Envelope Clones 
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Transfection of 293T Cells 

 

 293T cells were transfected with envelope and HIV backbone DNA using 

Promega’s Profection® Mammalian Transfection System.  The backbone DNA 

(NL4.3env-) is derived from NL4.3 type HIV and encodes all genes except envelope.  On 

the day prior to transfection, 293T cells were plated into 6 well plates at 1x10
5
 cells/mL, 

2 mL per well.  Dulbecco’s modified Eagle Medium (DMEM) with 4% fetal bovine 

serum (FBS) and gentamicin was used.  The cells were incubated overnight at 37°C and 

5% CO2.   The following day, cell media was changed 3 hours prior to transfection.  The 

concentration of both envelope DNA and NL4.3env- was calculated to be 1.25 µg/µL.  

Transfection was performed using two 14mL snap-cap tubes for each clone.  Tube A 

contained envelope DNA, NL4.3env-, DNase free water, and calcium chloride reaching a 

final volume of 83.4 µL.  Tube B contained 83.4 µL of 2X Herpes Buffers Saline (HBS).   

Tube A was then added to Tube B dropwise while vortexing.  The mixture was incubated 

at room temperature for 30 min.  After the incubation period, all 166.8 µL of mixture was 

added to one well of 293T cells dropwise with gentle swirling.  The media was changed 

on the 293Ts the following day, approximately 24 hours after transfection. 

 

Fusion Assays with GHOST CCR5 and GHOST CXCR4  

 

 The GHOST cell fusion assays were done by mixing GHOST cells with 293T 

cells transfected with (and expressing) the HIV envelope.  For envelope expression, 293T 
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cells were transfected with pSVIIIenv envelope and backbone DNA.  Control envelopes 

included were from subject NA20; B59 and LN3, NL4.3 (a standard HIV-1 envelope).  

JRCSF and JRFL envelopes were also from one individual.  All control envelopes use 

CCR5, except for NL4.3 which uses CXCR4.  One day prior to the assay GHOST cells of 

both lines were set up in 48-well plates.  Cells were plated at 8x10
4
 cells/mL with 500 µL 

per well.  DMEM with 4% FBS and gentamicin was the media used.  GHOST cells were 

incubated overnight so that they would attach to the bottom of the wells.  The following 

day, 100 µL and 50 µL of 293T cells (transfected 48 hours previously) were added to 

separate wells at a concentration of 2x10
5
 cells/mL.  The plates were incubated overnight.  

GHOST cells carry a reporter gene controlled by an HIV promoter.  Green fluorescent 

protein (GFP) is expressed when GHOST cells become fused to 293T cells expressing 

the HIV tat protein.  After 24 hours of incubation with the 293T cells, the plates were 

viewed under ultra-violet (UV) light.  The wells were scored from 0-5 on the extent of 

green fluorescence and photographed. 

 

Fusion Assays with NP2 cells 

 

 NP2 fusion assays were performed as described for the GHOST assays.  GHOST 

cells express low levels of endogenous CXCR4, while NP2 cells do not.  The NP2 lines 

used were NP2/CD4, NP2/CCR5, NP2/CD4/CCR5, and NP2/CD4/CXCR4.  They were 

plated at 1x10
5
 cells/mL the day before co-culture, and incubated for 24 hours so the NP2 

cells would attach to the bottom of the wells.  The following day, 100 µL and 50 µL of 

transfected 293T cells were added to separate wells at a concentration of 2x10
5
 cells/mL.  
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After 24 hours of incubation, plates were fixed and stained for syncytia.  Media was 

aspirated off and the wells were washed once with 1X  Phosphate Buffer Solution (PBS).  

Then syncytia stain (1% methylene blue, 0.2% basic fuchsin in methanol) was added and 

left on the cells for 10 minutes.  The solution fixed the cells and stained syncytia blue.  

After 10 minutes, the stain was removed and the plates were washed twice with 1X PBS.  

Finally, 1X PBS/ 0.05% Azide was added to preserve the cells and protect against 

bacterial growth.  The wells were scored on a scale from 0-5 according to the amount of 

syncytia and photographed.  

 

Pseudotype Virus Stocks 

 

 Transfection of 293T cells was performed, as described above with pSVIIIenv 

and pNL4.3env-.  24 hours later, the media was changed.  48 hours after transfection 

pseudotype viruses were harvested.  The media was removed and placed in a 15mL 

centrifuge tube.  The tubes were centrifuged for 10 minutes at 1,200 rpm to remove cell 

debris.  Supernatant from each vial was added to cryovials in 500 µL aliquots.  The vials 

were then frozen rapidly in liquid nitrogen, and were transferred to –152°C for storage.  

Pseudotype viruses carry the RNA genome of pNL4.3env- and assemble the envelope of 

choice expressed from pSVIIIenv.  Pseudotypes cannot synthesize new envelope protein, 

and are therefore only capable of one round of replication. 

 

Titers of Virus Stocks 
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 Pseudotype virus stocks were titered on TZM-BL cells, GHOST CCR5, and 

GHOST CXCR4 cells.  TZM-BL cells are Hela cells that express CD4, CCR5, and 

CXCR4.  They carry a beta-galactosidase reporter gene controlled by an HIV promoter.  

Beta-galactosidase is therefore induced if HIV infects and expresses tat.  24 hours prior to 

infection, the target cells were plated on 48 well plates at 4x10
4
 cells/mL with 500 µL per 

well.   

DMEM with 4% FBS and gentamycin was used.  On the day of infection, virus 

stocks were thawed and diluted in a 48 well plate.  Undiluted virus and three 10-fold 

dilutions were used.  The media of each well was aspirated off and replaced with 100 µL 

of diluted virus.  After 3 hours, media was added so that each well contained 

approximately 500 µL.  72 hours after infection, the TZM-BL cells were fixed with 

glutaraldehyde and stained with X-gal (40 mg/mL in N,N,-dimethyl formamide, diluted 

to 0.5 mg/mL in 1X PBS with 3 mM potassium ferrocyanide, 3 mM potassium 

ferricyanide, and 1 mM magnesium chloride).  Stained cells were viewed under 

microscope and blue focus forming units (FFU) were counted.  72 hours after infection, 

GHOST CCR5 and CXCR4 cells were viewed under UV light, and green foci of 

infection were counted. 

 

Cell Surface Receptor Inhibition assays   

 

 Q4120 is a mouse antibody against CD4.  AMD3100 is a small organic molecule 

that binds to CXCR4.  Envelope positive pseudotypes were tested for sensitivity to both 

reagents.  Infection inhibition assays were performed on TZM-BL cells.  TZM-BL cells 
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were plated at 4x20
4
 cells/mL with 200 µL per well into 96 well luminometer plates 24 

hours prior to infection.  DMEM with 4% FBS and gentamicin was used.  On the day of 

infection, Q4120 and AMD3100 were serially diluted in two-fold steps.  Media on the 

TZM-BL cells was aspirated and replaced with 50 µL of diluted inhibitor.  The plates 

were then incubated at 37°C for 1 hour.  4000 FFU of each virus was then added.  3 hours 

after infection, the virus containing media was aspirated off and replaced with media 

including diluted inhibitor.  48 hours after infection the media on the plates was replaced 

with a 1:1 mixture of DMEM without phenol red and Beta-Glo.  Beta-Glo provides a 

luminescent readout for beta-galactosidase.  The plates were incubated at room 

temperature for at least 30 minutes and then read in a luminometer. 

 

Human Monoclonal Antibody Inhibition Assays 

 

 The human monoclonal antibodies B6 and B12 bind to the receptors on virus 

envelope.  These assays were carried out as described for cell surface receptor inhibitions 

with two exceptions: dilutions of antibody were incubated with virus at room temperature 

for one hour, with the virus and antibody mixture being used to infect cells. After 3 hours 

of infection, the mixture was aspirated off and replaced with DMEM with 4% FBS and 

gentamicin. 
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RESULTS 
 

 

Cloning and Expression 

 

Sub-cloning envelopes into expression vector pSVIIIenv 

 

Cultured 2044 and uncultured 2044.1 envelope genes were sub-cloned into the 

mammalian expression vector pSVIIIenv via KpnI sites.  TOP10F’ cells were 

transformed with the plasmid and then grown on LB agar plates containing ampicillin.  

Colonies were screened by PCR.  Amplification of a 600 bp band by the Ltr1 and Vpu8 

primers confirmed correct insertion of the envelope gene.  Figure 6 is an example of PCR 

screening.  The center lanes on the top and bottom are both 10 kb DNA ladder.  Lanes 

with a band approximately 600 bp in size are positive (lanes 1, 4, 5, 10, 24, 25, 29, 30, 

32, 33, and 34). 

  



 26 

 

Figure 6.  Sample PCR Screening Gel. 

 

 

Sequencing 

 

The V3 loop in the 2044 clones and 2044.1 cl 2 has a different charge than the 

2044.1 clones 102 and 105.  The net charge of +5, compared to +3, is responsible for the 

shift in use of CCR5 to CXCR4.  Figure 7 is an alignment of the primary structure of 

envelope proteins from the 2044 and 2044.1 clones.  The variable loops V1-V4 are noted 

for reference.  The nucleotide sequences of the 2044 envelopes were analyzed and 

compared to NA20 B59 as a reference.  Figure 8 is the generated phylogenetic tree.  The 

tree shows the 2044.1 clones 102 and 105 that are likely to be CCR5-using (by V3 loop 

charge) are distinct from clones likely to be CXCR4-using.  2044.1 clone 2 clustered 

closely with clones from the virus isolate, all of which are likely to be CXCR4-using. 
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Figure 7.  Alignment of Envelope Protein Primary Structure.   The V1-V4 regions are noted. 
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Figure 8.   Phylogenetic Tree of 2044 Clones Compared to NA20 B59. 

 

 

Fusion Assays 

 

Fusion assays were performed with GHOST CCR5 and GHOST CXCR4 cells to 

determine the functional viability of cloned 2044 and 2044.1 envelopes.  Two different 

assays were performed to monitor cell fusion.  The first assay used GHOST cells.  Green 

fluorescent protein (GFP) is expressed when GHOST cells (transfected with a gene 

encoding an HIV co-receptor) become fused to 293T cells expressing a compatible HIV 

env protein and the HIV tat protein.  An example of the GFP green glow is shown in 

Figure 9. 
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Figure 9.   An Example of GFP Fluorescence in GHOST Cell Syncytia.  Visualized under UV light. 

 

To clarify the fusion results, the cloned envelopes were also assayed for fusion 

with NP2 cells, which have no background expression of CXCR4, using a blue dye 

(methylene blue/fuscin) for syncytia formation (see Figure 10 for an example). 
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Figure 10.  An Example of Fused NP2 Cells, With Syncytia Stained Blue. 

 

Table 2 is a summary of data from both GHOST and NP2 Fusion assays.  Fusion 

was evaluated on a scale of 0 to 5, with 5 being the highest level of fusion.  GHOST cells 

were scored by GFP production under UV light.  NP2 cells were scored for methylene 

blue-stained syncytia.  The results indicate that all 2044 envelope clones use CXCR4, as 

does 2044.1 clone 2, while 2044.1 clones 102 and 105 use CCR5.  As expected, the 

control envelopes NA20 B59, NA20 LN3, JRCSF, and JRFL use CCR5, while the 

remaining control envelope, NL4.3, uses CXCR4. 

 

Clone GHOST 

CCR5 

GHOST 

CXCR4 

NP2/CD4 NP2/CCR5 NP2/CD4/ 

CCR5 

NP2/CD4/ 

CXCR4 

2044 cl 5 1 5 0 0 1 4 

2044 cl 8 1 5 0 0 1 4 

2044 cl 9 1 5 0 0 1 4 

2044.1 cl 2 1 5 0 0 1 4 
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2044.1 cl 102 5 0 0 0 3 0 

2044.1 cl 105 5 0 0 0 3 1 

NA20 B59 2 1 0 0 3 1 

NA20 LN3 3 0 0 0 3 0 

NL4.3 1 5 0 0 1 4 

JRCSF 5 1 0 0 3 0 

JRFL 5 1 0 0 3 0 

Table 2 GHOST and NP2 fusion results. 

 

 

Sensitivity to Inhibition 

 

Sensitivity to a CD4 specific monoclonal antibody, Q4120 

 

 Q4120 is a mouse antibody against CD4.  It bound the CD4 on the surface of the 

target cells and inhibited infection conferred by all 2044 and 2044.1 envelopes, as shown 

in Figure 11.  The macrophage-tropic controls (JRFL and NA20 B59) are more resistant 

to Q4120 than the non-macrophage-tropic controls (JRCSF and NA20 LN3).  Note that 

the CCR5-using clones (2044.1 clones 102, 105) are more sensitive, while all CXCR4-

using envelopes are more resistant. 
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Figure 11.  Virus Inhibition With CD4 Antibody Q4120. 

 

 

Sensitivity to a small molecule CXCR4 inhibitor, AMD3100 

 

AMD3100 is a small organic molecule that binds to CXCR4 molecules on the cell 

surface.  As seen in Figure 12, as expected, all CCR5-using control viruses were 

completely resistant to AMD3100, while infection of CXCR4-using control viruses was 

knocked out at very low drug concentrations.  All of the CXCR4-using clones (2044 

clones 5, 8, 9, and 2044.1 clone 2) (as determined in the fusion assays) showed similar 

sensitivity to AMD3100. The control envelope NL4.3 was by far more sensitive than any 

other envelope.  It was reduced to almost no residual infection with the smallest dose of 

inhibitor. 

   



 33 

AMD3100 Inhibition

0

20

40

60

80

100

120

140

0 0.04 0.08 0.16 0.31 0.63 1.25 2.5 5 10

AMD3100 Concentration (ug/mL)

2044 cl 5

2044 cl 8

2044 cl 9

2044.1 cl 2

2044.1 cl 102

2044.1 cl 105

NA20 B59

NA20 LN3

NL4.3

JRCSF

JRFL

 

Figure 12.  Virus Inhibition with CXCR4-Binding Drug AMD3100. 

 

 

Sensitivity to Human Monoclonal Antibodies 

 

B6 

 

 B6 is an antibody that recognizes the CD4-binding site on gp120.   This site is 

usually protected on primary isolates but is accessible on some highly passaged lab 

strains (e. g., NL4.3).  Only the positive control envelope, NL4.3 (a highly passaged lab 

isolate) (yellow in the figure), was sensitive to B6, as seen in Figure 13. 
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Figure 13.  Virus Inhibition With B6. 

 

B12 

 

 B12 is another antibody that binds to the CD4-binding site on the virus envelope.  

B12 has an unusual structure with long complimentarily determining loops that allow it 

to access the CD4-binding site on some primary HIV-1 isolates.  As seen in Figure 14, 

NL4.3 was sensitive to B12, in addition to JRCSF and JRFL.  NA20 B59 showed some 

reduction.  All cultured 2044 envelopes were resistant. 
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Figure 14.  Virus Inhibition With B12. 

 

 

Macrophage Infection 

 

 Clones were titered on macrophages, and the macrophage titer was compared to 

that virus’s TZM-BL titer.  The resulting ratios are shown in Table 3, and are also plotted 

in Figure 15.  Focus forming units per mL were compared. 

 

 

Envelope Macrophage Titer 

(FFU per mL) 

TZM-BL Titer 

(FFU per mL) 

Percent  TZM-BL 

Titer 

2044 cl 5 25 2,400 1.04 

2044 cl 8 35 11,750 0.30 

2044 cl 9 55 21,000 0.26 

2044.1 cl 2 5 2,256 0.22 

2044.1 cl 102 5 1,400 0.36 

2044.1 cl 105 10 1,800 0.56 

NA20 B59 19,800 38,000 52.11 

NA20 LN3 0 3,850 0.01 
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NL4.3 5 5,400 0.09 

JRCSF 25 7,700 0.32 

JRFL 23,400 39,500 59.24 

Isolate 2044 15,550 228,000 6.82 

Table 3.  Percent Macrophage Infection. 
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Figure 15.   Macrophage Infection Percentages. 
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DISCUSSION 

 

 The culture of HIV-1 in  PBMCs in the absence of neutralizing antibodies may 

select for variants that are not representative of quasi species in vivo.  This project studied 

HIV-1 envelopes derived from patient 2044.  Envelopes were amplified from a primary 

isolate cultured in PBMCs, and from uncultured PBMCs.  The uncultured PBMCs 

yielded three envelopes, two apparently CCR5-using (2044.1 clones 102 and 105) and 

one CXCR4-using (2044.1 clone 2) as determined by cell fusion assays.  Cultured 

PBMCs yielded only CXCR4-using envelopes (2044 clones 5, 8, and 9). 

 All of the CXCR4-using envelopes, both cultured and uncultured, displayed 

similar properties.  They all had similar sensitivity to receptor ligand and neutralizing 

antibodies.  The CXCR4 receptor ligand AMD3100 was able to block infection of both 

uncultured and cultured CXCR4-using envelopes at low concentrations.  The cultured 

envelopes did not become sensitive to anti-CD4 antibodies B6 or B12.  All CXCR4-using 

envelopes were more resistant to the mouse anti-CD4 antibody Q4120 than CCR5-using 

envelopes.  This is consistent with an increased affinity for CD4 compared to CCR5-

using envelops. 

 The original 2044 isolate infects macrophages at 6% TZM-BL infection.  

However, all of the clones, both CCR5-using and CXCR4-using, were much less efficient 

for macrophage infection.  2044 clone 5 infected macrophages the best, reaching 1% of 

TZM-BL infection.  Note that 2044 infection of macrophages was previously shown to be 

sensitive to CXCR4 ligands and not CCR5 ligands (Simmons, et al. 1996).  All of the 
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envelope clones contain only one version of envelope, while the 2044 isolate presumably 

contains envelope quasispecies that were not represented by the amplified clones. 

 The 2044 envelopes amplified from the primary isolate have not evolved different 

properties from the CXCR4-using envelope amplified from uncultured PBMCs.  None of 

the amplified envelopes, including all of the CXCR4-using and the two CCR5-using 

envelopes from uncultured PBMCs, were macrophage-tropic. 

 The macrophage-tropic isolate 2044 is not representative of the envelopes 

amplified from uncultured PBMCs.  However, it is unclear whether the envelopes 

amplified are representative of the viral population in vivo or even in the virus isolate.  

PCR of a larger number of envelopes by endpoint dilution is required to address these 

issues. 

 Safety issues prevented the use of infectious 2044 isolates until late in the project.  

Comparison of the isolate with amplified envelopes for sensitivity to receptor ligand and 

neutralizing antibodies would have been helpful. 
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