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ABSTRACT 

 

Chlorine as a disinfectant reacts with natural organic matter to produce undesired and 

possibly carcinogenic halogenated disinfection by-products (DBPs), which are regulated 

by the U.S. Environmental Protection Agency under the Disinfectant/Disinfection By-

products Rule (DBPR).  In order to comply with the increasingly stringent regulations, 

alternative disinfectants such as ozone, UV irradiation, and chloramines have been 

investigated.  Unfortunately, these alternatives have their own limitations and 

disadvantages as well.  Sonication is another alternative that has not yet received 

adequate research.  The hydroxyl radicals, tensile stresses, and fluid shear generated 

during sonication may inactivate microorganisms.  The goals of this research were to 

evaluate the effectiveness of sonication alone and combined sonication and chlorination 

for inactivation of E. coli. 

 

Four stages of disinfection experiments were conducted: chlorine alone, sonication alone, 

combined sonication and chlorination, and heating alone.  Experiments were conducted 

in laboratory prepared phosphate buffered saline.  The variables tested included the 

chlorine dose, chlorine contact time, sonication time, sonication system (probe or bath), 

sonication power-to-volume ratio, and sonication frequency.  E. coli was enumerated by 

use of pour plates and/or membrane filtration before and after disinfection.   

 

Substantial temperature and turbidity increases were recorded after sonication, especially 

at 900 W/L.  After 10 minutes of sonication at 900 W/L, the temperature and turbidity of 
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the experimental solution rose up to 77oC and 23 NTU, respectively.  At both 180 W/L 

and 900 W/L, sonication alone demonstrated little inactivation (less than 1 log10) of E. 

coli for temperatures below 60oC and greater than 7 log10 inactivation at temperatures 

over 60oC.  The results from heating only experiments confirmed that temperature was 

responsible for the inactivation rather than other ultrasonic wave effects. 

 

Sequential application of sonication and chlorination was ineffective at inactivating E. 

coli.  Chlorination alone achieved higher levels of E. coli inactivation than the 

combination of both disinfectants.  When sonication and chlorination were applied 

simultaneously, the inactivation was greater than the additive effect of two disinfectants, 

indicating that there were synergistic effects between sonication and chlorination.  For 

example, at 900 W/L, chlorination alone at 0.6 mg/L for 2 minutes provided 1.2 log10 

inactivation and sonication for 2 minutes alone provided less than 1 log10 inactivation of 

E. coli.  When the two disinfectants were applied simultaneously, 4.5 log10 was achieved.  

Sonication may have weakened the cell membranes, causing them to be more susceptible 

to chlorine disinfection.   
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CHAPTER 1 
INTRODUCTION 

 

1.0 STATEMENT OF THE PROBLEM 

Both surface waters and groundwaters are used as municipal drinking water supplies in 

the United States.  However, these waters can be contaminated by waste inputs from 

point sources such as wastewater treatment plant discharges and non-point sources such 

as agricultural discharges.  As a result, pathogenic microorganisms that can cause adverse 

health effects on human beings may be found in drinking waters.  Therefore, disinfection 

of drinking waters is important in order to ensure public health.   

 

Chlorine has been widely used as a disinfectant in drinking water over the past century 

because it is a strong disinfectant and is also cost effective.  It is effective at inactivating 

most types of microorganisms found in raw water sources when the appropriate chlorine 

dosage, contact time, and pH are used.  Chlorine also leaves a disinfectant residual which 

helps to minimize microbial regrowth in the water distribution system.  However, the 

disinfection effectiveness of chlorine decreases when microorganisms are protected from 

chlorine contact by attachment to other organisms or particulate matter.  Also, some 

organisms are more resistant to chlorination than other organisms.   

 

Another disadvantage of chlorination is the formation of undesired halogenated 

disinfection by-products (DBPs) when free chlorine reacts with natural organic matter.  

Trihalomethanes (THMs) and haloacetic acids (HAAs) are common disinfection by-

products from chlorine disinfection, and these DBPs are believed to be carcinogenic to 



 2

human beings.  These by-products are regulated by the U.S. Environmental Protection 

Agency (U.S. EPA) under the Disinfectants and Disinfection By-products Rule (DBPR).   

 

The Stage 1 DBPR was established on February 16, 1998 and became effective as of 

February 16, 1999.  The maximum contaminant level (MCL) for total trihalomethanes 

was set at 0.080 mg/L and the MCL for haloacetic acids (five) at 0.060 mg/L.  The future 

Stage 2 DBPR will be more stringent than the existing regulations.  For many treatment 

plants, disinfection methods other than chlorine will be needed in order to meet the Stage 

2 rule.  

 

Some alternative disinfectants of interests include ozone disinfection, UV irradiation, 

chloramination, or the application of multiple disinfectants.  Ozone is a strong oxidant; 

however, it also produces disinfection by-products.  For those microorganisms that are 

resistant to other disinfectants, UV irradiation may be effective.  Chloramine is a weaker 

disinfectant than free chlorine, therefore it is ineffective if used as a primary disinfectant.  

Sonication, applied alone or as a synergistic disinfectant, is an alternative that has not 

received sufficient analysis. 

 

Sonication is the application of ultrasonic waves (high frequency sound waves).  

Ultrasound has been widely used in cleaning jewelry and in medical fields, but it has not 

yet been applied as a disinfectant in drinking water treatment plants.  Ultrasonic waves 

may inactivate microorganisms directly by fluid shear, tensile stresses, and the formation 

of hydroxyl radicals.  When used with other disinfectants, sonication may enhance 
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inactivation by breaking up floc material, disrupting cell membranes, and increasing the 

diffusion rate of gases into cells.  This research investigated the inactivation of E. coli by 

sonication alone and by combined sonication and chlorination.  

 

1.1 RESEARCH OBJECTIVES 

There were two main goals of this research.  The first goal was to investigate the ability 

of sonication to inactivate Escherichia coli.  The second goal was to determine the 

combined effect of two disinfectants, sonication and chlorination, on E. coli.  Synergy 

between the two disinfectants might allow a treatment plant to use less chlorine to 

achieve the same amount of inactivation, which would reduce the formation of undesired 

disinfection by-products.  In order to achieve the goals, the following objectives were 

completed: 

 

1) determine the inactivation of E. coli by chlorination alone, 

2) determine the inactivation of E. coli by sonication alone, 

3) determine the combined effects of sonication and chlorination by applying the 

disinfectants sequentially or simultaneously, and  

4) determine the effect of heating on the inactivation of E. coli.  

 

1.2 SCOPE OF RESEARCH 

The sonication experiments were conducted in the laboratory using a sonication probe 

and a sonic bath.  All experiments were well controlled in the laboratory and were 
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conducted at a starting temperature of approximately 22oC.  Phosphate buffered saline 

was used as the water matrix throughout the entire experimental plan.  Temperature, pH, 

turbidity, and output power (sonication probe only) were recorded before and after 

disinfection.  E. coli concentrations were determined before and after disinfection using 

pour plate and/or membrane filtration techniques to determine the inactivation achieved 

by sonication. 

 

To study the effects of sonication alone, E. coli suspensions were subjected to 

disinfection with either an ultrasonic probe or bath system.  Power-to-volume ratios of 

180 W/L or 900 W/L were used, as were sonication times from 10 seconds to 60 minutes.  

The effect of heating versus heating plus ultrasonic waves was also studied as substantial 

temperature increases was recorded during sonication, especially at 900 W/L. 

 

The inactivation of E. coli by chlorine was also studied.  This allowed comparison of 

inactivation with a single disinfectant to inactivation in the combined disinfection 

experiments.  Various chlorine dosages were tested, ranging from 0.2 mg/L to 1.0 mg/L.  

The chlorine contact time varied from 10 seconds to 5 minutes.  Chlorination at elevated 

temperatures (32oC and 39oC) was also investigated.  In addition to the parameters 

measured in the sonication only experiments, free and total chlorine concentrations were 

also measured. 

 

Combined application of sonication and chlorination experiments were performed to 

study the synergistic effects of sonication.  The disinfectants were applied either 
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sequentially or simultaneously.  The variables tested included chlorine dose, sonication 

time (sequential), disinfection time (simultaneous), and power-to-volume ratio (180 W/L 

or 900 W/L).  Pre and post-disinfection measurements included temperature, pH, 

turbidity, and E. coli concentration.  Free and total chlorine concentrations were also 

measured. 

 

1.3 OVERVIEW OF THESIS 

The following chapter is the literature review, which includes a discussion of current 

drinking water regulations, various drinking water disinfectants, sonication, and indicator 

organisms.  The methods chapter provides details on how the research experiments were 

carried out.  Then, the results of the experiments are presented and analyzed according to 

the disinfection scheme (chlorination only, sonication only, combined sonication and 

chlorination, and temperature effects).  This report ends with conclusions and 

recommendations.  Lastly Appendix A contains spreadsheets of all experimental results.  
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CHAPTER 2 
LITERATURE REVIEW 

 

2.0 INTRODUCTION 

Chlorine is the most common chemical used in the disinfection process.  It is effective in 

inactivating most types of microorganisms found in raw water, given suitable pH 

conditions, dosages, and contact times (Sobsey, 1989).  Unfortunately, chlorine reacts 

with natural organic matter to form undesirable disinfection by-products (DBPs), most of 

which are considered carcinogenic.  These DBPs are federally regulated by the U.S. 

Environmental Protection Agency under the Stage 1 Disinfectants/Disinfection By-

products Rule.  Disinfection alternatives, such as ozone, chloramines, ultraviolet 

irradiation, or a combination of disinfectants, have therefore become an area of interest.  

 

This chapter begins with an introduction of various federal regulations on drinking water, 

followed by a discussion of the most commonly used disinfectant, chlorine, as well as 

other disinfection alternatives.  In addition, the theory of ultrasonic disinfection and prior 

sonication research is presented in detail.  Finally, information about pathogen indicators 

is provided. 

 

2.1 DRINKING WATER REGULATIONS 

2.1.1 Surface Water Treatment Rule 

The Surface Water Treatment Rule (SWTR) was established in 1989.  It became effective 

on December 31, 1990 (U.S. EPA, 1989).  This rule applies to all public water systems 
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(PWSs) that use surface water or groundwater under the direct influence of surface water 

as water sources.  The U.S. EPA set the maximum contaminant level goal (MCLG) to be 

zero for Giardia lamblia, viruses, and Legionella (U.S. EPA, 1989).  Under the SWTR, 

all PWSs that use surface water sources are required to provide filtration and disinfection.  

A treatment plant may avoid filtration by complying with several criteria set up by the 

U.S. EPA (U.S. EPA, 1989).  These criteria include a high quality source water, 

protection of the watershed, and the ability to meet all disinfection requirements.  For 

PWSs that must filter, filtration technologies such as conventional/direct filtration, slow 

sand filtration, diatomaceous earth (DE) filtration, or other effective filtration methods 

are available.  The Surface Water Treatment Rule also requires 99.9% (3 log) inactivation 

or removal of Giardia lamblia cysts and 99.99% (4 log) inactivation or removal of 

viruses.  In addition, disinfection residuals have to be maintained and monitored above a 

certain concentration in the water distribution system.  All PWSs that use surface water 

sources, whether providing filtration or not, must monitor the turbidity every four hours.  

For systems that practice conventional or direct filtration, turbidity measurements must 

be less than 0.5 Nephelometric Turbidity Units (NTU) in at least 95% of samples taken 

monthly and must not exceed 5 NTU as a maximum (U.S. EPA, 1989).  

 

2.1.2 Interim Enhanced Surface Water Treatment Rule 

The U.S. Environmental Protection Agency promulgated the Interim Enhanced Surface 

Water Treatment Rule (IESWTR) on December 16, 1998 (U.S. EPA, 1998a).  In 

conjunction with the IESWTR, the Stage 1 Disinfectants and Disinfection Byproducts 

Rule (Stage 1 DBPR) was also promulgated on this date (U.S. EPA, 1998b).  The 
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IESWTR strengthens the requirements of the Surface Water Treatment Rule that was 

established in 1989.  The IESWTR applies to public water systems (PWSs) using surface 

water or groundwater under the direct influence of surface water that serve 10,000 people 

or more (U.S. EPA, 1998a).  The goal of IESWTR was to improve public health by 

eliminating microbial contaminants, especially Cryptosporidium, by setting its Maximum 

Contaminant Level Goal (MCLG) to be zero and requiring 99% (2 log) physical removal 

of Cryptosporidium for any PWS that provides filtration.  Systems that do not filter must 

implement a watershed control program.  Apart from regulating Cryptosporidium, 

turbidity regulations were also enhanced.  The maximum effluent turbidity from 

conventional and direct filtration was set at 0.3 Nephelometric Turbidity Units (NTU) in 

a minimum of 95% of samples taken each month and the turbidity must not exceed 1 

NTU (U.S. EPA, 2001a).  In addition, this rule requires all states in which public water 

systems use surface water or groundwater under the direct influence of surface water to 

conduct sanitary surveys, even for systems serving less than 10,000 people.  The deadline 

for all systems to comply with the all IESWTR provisions was January 1, 2002.  

 

2.1.3 Long Term 1 Enhanced Surface Water Treatment Rule 

The U.S. EPA promulgated the Long Term 1 Enhanced Surface Water Treatment Rule 

(LT1ESWTR) on January 14, 2002 (U.S. EPA, 2002b).  This rule was built upon the 

SWTR and IESWTR to provide additional protection from Cryptosporidium.  The major 

provisions are the same as the ones listed in the IESWTR, however the LT1ESWTR 

affects public water systems (PWSs) that use surface water or groundwater under the 

direct influence of surface water and serve fewer than 10,000 people.  Additional 



 9

guidelines and standards on turbidity for systems using different types of filters, such as 

slow sand, diatomaceous earth, and other alternative filters, are also provided.  All PWSs 

that are affected by the Long Term 1 Enhanced Surface Water Treatment Rule must fully 

comply with the applicable provisions by January 14, 2005.  Moreover, according to the 

SWTR, the U.S. EPA has to promulgate Stage 2 Disinfectant and Disinfection 

Byproducts Rule within 18 months after the establishment of LT1ESWTR (U.S. EPA, 

2001b). 

 

2.1.4 Long Term 2 Enhanced Surface Water Treatment Rule 

The Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) will be based 

on the water treatment requirements set by the IESWTR and the LT1ESWTR (U.S. EPA, 

2001b).  The LT2ESWTR is expected to provide more control over microbial 

contaminants, particularly Cryptosporidium, as well as control the production of 

disinfection by-products formed by disinfection processes that use chemicals.  Specific 

requirements may include source water monitoring for Cryptosporidium and additional 

treatment (inactivation or removal) based on source water concentrations.  With the 

advancement in ultraviolet light disinfection, treatment plants will be allowed to utilize 

UV as a disinfectant.  Research has shown that Cryptosporidium is sensitive to low doses 

of UV.  The LT2ESWTR will apply to all community and non-community water systems 

that utilize surface water or groundwater under the direct influence of surface water.  This 

rule was scheduled to be finalized in May 2002; however, it is now anticipated that the 

proposed rule will be published in mid-2003 and the final rule in mid-2004 (Roberson, 

2002). 
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2.1.5 Stage 1 Disinfectants and Disinfection By-Products Rule  

In order to protect the public from disinfection by-products, the U.S. EPA established the 

Stage 1 Disinfectants and Disinfection By-Products Rule (Stage 1 DBPR) on February 

16, 1998 and it was effective as of February 16, 1999 (U.S. EPA, 1998b).  This rule 

applies to community water systems (CWSs) and non-transient non-community water 

systems (NTNCWs) where a chemical disinfectant is used in primary or secondary 

(residual) disinfection.  By January 1, 2002, all PWSs that use surface water or 

groundwater under the direct influence of surface water and serve 10,000 or more people 

were required to comply with the requirements set by the Stage 1 DBPR (U.S. EPA, 

2001c).  Systems serving fewer than 10,000 people and other groundwater systems that 

are bound to this rule must comply with the Stage 1 DBPR requirements by January 1, 

2004.  Table 1 shows the maximum residual disinfectant level goals (MRDLGs) and the 

maximum residual disinfectant levels (MRDLs) for chlorine, chloramine, and chlorine 

dioxide set by the U.S. EPA.  

 

Table 1. Stage 1 DBPR maximum disinfectant residual concentrations (U.S. EPA, 1998b) 

Disinfectant residual MRDLS (mg/L) MRDL (mg/L) 
Chlorine 4 (as Cl2) 4.0 (as Cl2) 
Chloramine 4 (as Cl2) 4.0 (as Cl2) 
Chlorine Dioxide 0.8 (as ClO2) 0.8 (as ClO2) 

 

 

Under the Stage 1 DBPR, the U.S. EPA also finalized a set of maximum contaminant 

level goals (MCLGs) and maximum contaminant levels (MCLs) to limit the production 

of disinfection by-products, such as total trihalomethanes (TTHMs), five haloacetic acid 
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compounds (HAA5), chlorite, and bromate (U.S. EPA, 1998b).  TTHMs include 

chloroform, bromodichloromethane, dibromochloromethane, and bromoform.  An MCL 

was set for HAA5 (monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, 

monobromoacetic acid, and dibromoacetic acid), while MCLGs were provided for 

dichloroacetic acid and trichloroacetic acid.  The MCLGs and MCLs are listed in Table 2.  

 

Table 2.  Stage 1 DBPR MCLGs and MCLs (U.S. EPA, 1998b) 

Disinfection by-products MCLG (mg/L) MCL (mg/L) 
Total trihalomethanes (TTHM) Not applicable 0.080 
     Chloroform 0  
     Bromodichloromethane 0  
     Dibromochloromethane 0.06  
     Bromoform 0  
Haloacetic acids (five) (HAA5) Not applicable 0.060 
     Dichloroacetic acid 0  
     Trichloroacetic acid 0.3  
Chlorite 0.8 1.0 
Bromate 0 0.010 

 

 

In addition to disinfection residuals and disinfection by-products, organic substances (as 

total organic carbon) are also regulated under the Stage 1 DBPR because they react with 

chemical disinfectants to form disinfection by-products.  This rule requires public water 

systems that use surface water or groundwater under the direct influence of surface water 

and practice conventional filtration methods to remove a certain percentage of total 

organic carbon (TOC, as mg/L), depending on the source water concentration of TOC 

and alkalinity (as CaCO3).  The removal of organic materials can be achieved by 

practicing enhanced coagulation or enhanced softening.  
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By promulgating the Stage 1 DBPR, the U.S. EPA believed that about 140 million people 

would be protected from disinfection by-products (U.S. EPA, 1998c).  Also, the TTHM 

levels would be reduced by 24 percent on average nationwide.  

 

2.1.6 Stage 2 Disinfectants and Disinfection By-Products Rule 

Compared to the Stage 1 DBPR, the Stage 2 DBPR is expected to be more stringent on 

the levels of disinfection by-products (U.S. EPA, 2001d).  The main purpose of 

promulgating the Stage 2 DBPR is to reduce peak disinfection by-product concentrations.  

This will be done by changing the monitoring requirements set forth by the Stage 1 

DBPR.  The Stage 1 DBPR allows the public water system to average the concentrations 

of DBPs from all monitoring locations in order to meet the MCLs, but the Stage 2 DBPR 

will require the system to meet the compliance limits at every individual sampling 

location.  The Stage 2 DBPR is expected to be proposed in mid-2002, with the final rule 

published in mid-2004 (Roberson, 2002). 

 

2.2 INACTIVATION METHODS 

2.2.1 CT Concept 

The “CT” factor is one of the most widely used methods to determine the germicidal 

efficiency of a particular disinfectant.  The definition of CT is the product of disinfectant 

residual concentration C (in mg/L) and the contact time T (in minutes) (U.S. EPA, 

1999b).  The desired degree of microbial inactivation can be achieved by adjusting the 

disinfectant residual concentrations and contact times accordingly.  The U.S. EPA has 
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developed tables of CT factors for different disinfectants (such as free chlorine, ozone, 

and chloramine), pathogens (such as viruses and Giardia cysts), temperatures and pH 

values.  The CT factor is based on Chick’s Law, which was developed by H. Chick in 

1908.  Chick’s Law is represented as: 

r = -kN 

where r is the inactivation rate, k is the inactivation rate constant and N is the 

concentration of viable organisms (AWWA, 1999).  In 1908, H. Watson also found the 

relationship between the inactivation rate constant k, and the concentration of 

disinfectant, C, 

k = k’Cn 

where k’ is presumed independant of the disinfectant and microorganism concentrations 

and n is the coefficient of dilution.  

 

2.2.2 DBP Formation 

Disinfection by-products are generated as a result of primary or secondary disinfection 

(U.S. EPA, 1999c).  Different types of DBPs are formed when different disinfectants 

react with natural organic matter (NOM) that is present in water (U.S. EPA, 1999b).  The 

species and concentration of DBPs formed are associated with the type and concentration 

of disinfectant used, the duration of disinfection, temperature, pH, and where in water 

treatment process the disinfectant is applied (Bellar et al., 1974; Rook, 1974; McGuire et 

al., 1990).  Natural organic matter reacts with free chlorine and free bromine to form 

predominantly halogenated by-products.  The free bromine comes from the oxidation 

reaction of chlorine with bromide ions present in the source water.  Trihalomethanes 
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(THM) and haloacetic acids (HAA) are the common disinfection by-products due to 

chlorine disinfection.  THMs include chloroform, bromodichloromethane, 

dibromochloromethane, and bromoform.  The HAA species of particular health concern 

include dichloroacetic acid and trichloroacetic acid.  Selected data on cancer 

classifications associated with disinfection by-products are presented in Table 3. 

 

Table 3.  Status of health information for disinfectants and DBPs (U.S. EPA, 1999c) 

Contaminant Cancer Classification* 
Chloroform B2 
Bromodichloromethane B2 
     Dibromochloromethane C 
     Bromoform B2 
Dichloroacetic acid B2 
Trichloroacetic acid C  

 
*Note: Group B2 - Probable Human Carcinogen with sufficient evidence from animal   
 studies.   
 Group C -  Possible Human Carcinogen with limited evidence from animal   
 Studies and inadequate or no data on humans. 
 

 

Disinfectants other than chlorine also produce DBPs when they react with NOM.  The 

DBPs from ozonation are mainly aldehydes, ketones, and inorganic by-products, such as 

bromate, which is produced if bromide ions are found in the water (Bellar et al., 1974; 

Rook, 1974; McGuire et al., 1990).  Chlorine dioxide also forms chlorate and chlorite as 

by-products when it reacts with NOM.  Both bromate and chlorite are regulated under the 

Stage 1 DBPR (U.S. EPA, 1998b).  
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2.2.3 Chlorine 

Chlorine was first used as a disinfectant in water treatment in the United States in 1908, 

at Bubbly Creek (Chicago) and the Jersey City Water Company (AWWA, 1999).  Shortly 

after that, chlorine was applied in several large cities in North America, such as New 

York City, Montreal, Milwaukee, Cleveland, Nashville, Baltimore, and Cincinnati, and 

also some smaller water treatment facilities within two years time.  With chlorine 

disinfection, the number of typhoid cases dropped substantially.   

 

Chlorine is primarily used as a disinfectant, but it also serves as an oxidant (U.S. EPA, 

1999c).  As chlorine has been used for nearly 100 years, characteristics and application 

techniques are well understood.  Recently, studies have focused on the combination of 

chlorine and other disinfectants.  By combining disinfectants, better microbial 

inactivation may be achieved while also controlling disinfection by-product production.   

 

Chlorine gas, sodium hypochlorite, or calcium hypochlorite are the three forms of 

chlorine commonly used in the disinfection process (U.S. EPA, 1999c).  For chlorine gas, 

hypochlorous acid (HOCl), hydrogen ions, and chloride ions are formed when chlorine 

gas is hydrolyzed in water. The H+ ion produced as a result of hydrolysis reduces the pH 

of water.  The following reaction demonstrates this phenomenon.   

Cl2(g) + H2O  HOCl + H+Cl- 

Since hypochlorus acid (HOCl) is a weak acid having a pKa of approximately 7.5, it 

dissociates into hydrogen ions and hypochlorite ions, as shown in the reaction below. 

HOCl  H+ + OCl- 



 16

Incomplete dissociation of HOCl to OCl- occurs between pH 6.5 and 8.5, but no 

dissociation take place at a pH lower than 6.5 (U.S. EPA, 1999c).  At 20oC and pH below 

7.5, the HOCl species dominates (AWWA, 1999).  At pH 7.5 or above, the OCl- species 

dominates.  HOCl is a much stronger germicide than OCl-, therefore a lower pH is 

preferred for disinfection.   

 

Sodium hypochlorite (NaOCl) is produced by dissolving chlorine gas in a sodium 

hydroxide solution (U.S. EPA, 1999c).  A typical sodium hypochlorite solution contains 

12.5% chlorine, meaning that one pound of chlorine is found in one gallon of 12.5% 

sodium hypochlorite solution.  Similar to the hydrolysis of chlorine gas, when sodium 

hypochlorite combines with water, hypochlorous acid, sodium ion, and hydroxyl ions are 

generated.  The hydroxyl ions produced are responsible for raising the overall pH of 

water.  This is illustrated in the following reaction. 

NaOCl + H2O  HOCl + Na+ + OH- 

Calcium hypochlorite is produced by dissolving chlorine gas in a solution of calcium 

oxide (lime) and sodium hydroxide (U.S. EPA, 1999c).  Calcium hypochlorite is 

available in granular form, which usually contains 65% of chlorine.  One pound of 

chlorine is contained in one and a half pounds of calcium hypochlorite.  When calcium 

hypochlorite is added to water, hypochlorous acid, calcium ions, and hydroxyl ions are 

formed (U.S. EPA, 1999c).  As with sodium hypochlorite situation, the hydroxyl ions 

raise the pH of water.  Following is the reaction for calcium hypochlorite in water.   

Ca(OCl)2 + 2H2O  2HOCl + Ca2+ + 2OH- 
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The function of chlorine differs when it is applied in different locations during water 

treatment.  Table 4 illustrates the possible points of chlorine addition and the uses of 

chlorine at each of these application points. 

 

Table 4.  Typical chlorine points of application and uses (U.S. EPA, 1999c). 

Point of Application Typical Uses 
Raw Water Intake Zebra mussel and Asiatic clam control, 

control biological growth 
Flash Mixer (prior to 
sedimentation) 

Disinfection, iron and manganese oxidation, 
taste and odor control, oxidation of hydrogen 
sulfide 

Filter Influent Disinfection, control biological growth in 
filter, iron and manganese oxidation, taste 
and odor control, algae control, color 
removal 

Filter Clearwell Disinfection 
Distribution System Maintain disinfectant residual 

 

 

Table 5 shows the typical dosages of the three chlorine compounds used as disinfectants 

at water treatment plants.  All of the three forms of chlorine compounds can serve as 

disinfectants or oxidizing agents; however, it is not economical for small water treatment 

facilities to use sodium and calcium hypochlorite because of the higher costs associated 

with the chemicals.   

 

Table 5.  Typical chlorine dosages at water treatment plants (U.S. EPA, 1999c). 

Chlorine Compound Range of Doses 
Calcium hypochlorite 0.5 – 5 mg/L 
Sodium hypochlorite 0.2 – 2 mg/L 
Chlorine gas 1 – 16 mg/L 
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The actual concentration of the chlorine residual when treated water enters the 

distribution system varies from plant to plant.  However, the U.S. EPA requires a 

minimum of 0.2 mg/L chlorine residual and the maximum residual disinfectant level 

(MRDLs) for chlorine is set to 4.0 mg/L (U.S. EPA, 1999b).   

 

There are a number of advantages to using chlorine as a disinfectant.  Chlorine is an 

effective disinfectant for many pathogens commonly found in drinking water (U.S. EPA, 

1999c).  Bacteria are extremely sensitive to chlorine, followed by viruses.  Chlorine is not 

as effective at inactivating protozoa.  According to a study performed in 1984, Giardia 

cysts are two orders higher in magnitude in resistance to chlorine than viruses, and more 

than three orders higher than bacteria (Hoff et al., 1984).  Chlorine is also a strong 

oxidizing agent that can be also used to correct taste and odor problems, prevent algal 

growth, maintain clear filter media, remove iron and manganese, destroy hydrogen 

sulfide, and suppress slime growth and hence preserve the quality of water in the 

distribution system.  Chlorine also leaves a disinfectant residual such that microbial 

regrowth in the distribution system is minimized.  The capital and operating costs of 

chlorine disinfection are relatively inexpensive compared to other disinfectants such as 

ozone and UV.   

 

Chlorine also has several disadvantages.  Chlorine reacts with organic and inorganic 

substances to produce disinfection by-products, some of which are believed to be 

carcinogenic (U.S. EPA, 1999c).  Secondly, excessive doses of chlorine give rise to taste 
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and odor problems.  Lastly, the handling of chlorine gas is dangerous, therefore a hazard 

exists when chlorine is used in the water treatment process. 

 

2.2.4 Chloramines 

Chloramines are formed by the combination of ammonia and aqueous chlorine (HOCl).  

There are three chloramine compounds: monochloramine, dichloramine, and nitrogen 

trichloride (U.S. EPA, 1999d).  The reactions below show the formation of chloramines.   

 

Cl2 + H2O  HOCl + H+ + Cl- 

HOCl  OCl- + H+ 

NH3 + HOCl  NH2Cl + H2O (monochloramine) 

NH2Cl + HOCl  NHCl2 + H2O (dichloramine) 

NHCl2 + HOCl  NCl3 + H2O (nitrogen trichloride) 

 

In the early 1900s, it was discovered that chloramines could act as disinfectants (U.S. 

EPA, 1999d).  The first use of chloramines was for controlling tastes and odors.  Later 

on, it was found that chloramines were more stable than chlorine and more effective in 

prohibiting bacterial regrowth in the distribution system.  

 

Chloramines are usually used as a secondary disinfectant because they are a weaker 

disinfectant compared to chlorine.  For example, at pH of 7 or below, monochloramine is 

200, 200, 50, and 2.5 times less effective than chlorine in the inactivation of bacteria, 

viruses, spores, and cysts, respectively (U.S. EPA, 1999d).  The CT values for 
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chloramines are much higher than that of chlorine or ozone, which means that much 

longer contact times or chloramine doses are needed.   

 

Since dichloramine and nitrogen trichloride create tastes and odors, monochloramine is 

the preferred chloramine compound for drinking water disinfection (U.S. EPA, 1999d).  

The chlorine to ammonia ratio is typically set to 4:1, but ranges from 3:1 to 5:1.  This 

ratio minimizes nitrification, the development of biofilm problems due to excess 

ammonia, and the production of tastes and odors.  The formation of monochloramine 

from chlorine is pH dependent.  The time required for 99% conversion of chlorine to 

monochloamine is shortest at pH 7 and pH 8.3, taking only 0.2 seconds and 0.069 

seconds, respectively.  At pH 2 the conversion takes 421 seconds and at pH 12 it takes 

33.2 seconds.  The dosage of monochloramine usually ranges from 1.0 – 4.0 mg/L, with a 

minimum of 0.5 mg/L of residual maintained in the water distribution system.  It is 

suggested that a minimum dosage of 2.0 mg/L monochloramine should be used to 

prevent nitrification from occurring in the water distribution system (U.S. EPA, 1999d).   

 

Comparing chloramines to free chlorine or chlorine dioxide, chloramines are less likely 

to react with organic compounds.  Therefore, fewer disinfection by-products such as 

trihalomethanes are formed and fewer taste and odor problems arise (U.S. EPA, 1999a).  

Monochloramine residuals are more stable and better at controlling biofilms.  However, 

biofilms will be formed and nitrification will occur when excess ammonia is present in 

the water distribution system.  Chlormaines are cost effective and can be generated 

without difficulty. 
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One of the disadvantages of using chloramines as a disinfectant is that chloramines are 

not as powerful as other disinfectants, such as chlorine, ozone, and chlorine dioxide (U.S. 

EPA, 1999a).  Chloramines are not a strong enough oxidant to oxidize iron, manganese, 

and sulfides.  Monochloramine is preferred, and dichloramine causes treatment problems 

such as taste and odor issues.  Despite the ease of chloramine generation, it must be 

produced on-site.  

 

2.2.5 Ozone 

The Netherlands was the first country in Europe to use ozone in drinking water treatment 

in 1893 (U.S. EPA, 1999a).  Soon after that, ozone was widely applied for drinking water 

disinfection as well as oxidation in Europe.  Ozone oxidation/disinfection technology 

reached the United States almost a century after the Netherlands first used it, but the 

number of water treatment facilities that utilize ozone has increased substantially.  As of 

1998, there were 264 water treatment plants in U.S. using ozone and 149 of them were 

small systems treating less than 1 mgd.  During the early days, the United States used 

ozone mainly for oxidation purposes, such as removing color and controlling tastes and 

odors from drinking water.  More recently ozone has been applied as the primary 

disinfectant, because of the Surface Water Treatment Rule and the Disinfection By-

products Rule that are more stringent on microbial inactivation and DBP formation, 

respectively.   

 

Ozone, with the chemical symbol O3, is a colorless gas with a pungent smell at room 

temperature (U.S. EPA, 1999a).  It exists in the air at low concentrations of 0.02 to 0.05 
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ppm, which does not cause health hazards.  Ozone is slightly soluble in water, but 12 

times less soluble than chlorine.  Ozone is a strong oxidant but highly corrosive and 

toxic.   

 

The powerful oxidizing power of ozone makes it effective for inactivating viruses, 

protozoa, and bacteria (U.S. EPA, 1999a).  In drinking water treatment, ozone can be 

applied as primary disinfectant before filtration but after sedimentation.  When used as an 

oxidant, ozone may be applied before coagulation, before sedimentation, or before 

filtration.  One of the advantages of applying ozone in drinking water treatment is that it 

requires shorter contact time and doses, because ozone is a stronger and more powerful 

oxidant than other disinfectants such as chlorine and chloramine.  Ozone is also effective 

in controlling tastes and odors and removing iron, manganese, and sulfides.  The 

microbial inactivation mechanisms are not affected by pH.  

 

The disadvantage of ozone application is that it cannot be used as a secondary 

disinfectant because it does not leave a residual.  Therefore ozone is limited to being a 

primary disinfectant (U.S. EPA, 1999a).  In addition, organic disinfection by-products are 

produced as a result of ozone oxidation with natural organic matter (NOM).  Typically 

the by-products are aldehydes, organic acids, and aldo- and ketoacids.  If bromide ion is 

involved, by-products such as hypobromous acid, hypobromite ion, bromate ion, 

brominated organics, and broamines will be generated.  Installation and operating costs 

are high, because biologically activated filters have to be installed to remove 
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biodegradable by-products and assimilable organic carbon.  Also, ozonation requires high 

energy inputs and has to be generated on-site as ozone is unstable.  

 

2.2.6 Ultraviolet Irradiation 

Ultraviolet (UV) irradiation is an electromagnetic wave having a wavelength of 100 – 

400 nanometers (nm), which is between the X-ray and visible ray spectrums (U.S. EPA, 

1999e).  There are four types of UV, classified according to the wavelength: Vacuum UV 

(100 – 200 nm), UVC (200 – 280 nm), UVB (280 – 315 nm), and UVA (315 – 400 nm).  

When UV is used as a disinfectant, the UV range of 245 – 285 nm is applied, as it is the 

optimum range for inactivation of microorganisms.  The device used for UV disinfection 

is called a UV lamp, which can be low-pressure (253.7 nm) or medium-pressure (180 – 

1,370 nm).  Medium-pressure lamps produce much greater UV intensity than low-

pressure ones.   

 

In order to quantify the microbial inactivation by UV, the dosage applied has to be 

calculated.  The following formula illustrates the determination of UV dose: 

D = I x t 

where D = UV dose (mW•s/cm2), I = intensity (mW/cm2), and t = contact time (seconds) 

(U.S. EPA, 1999e). 

 

UV radiation is not a chemical microbial inactivation method.  Rather, when UV light 

penetrates through the cell wall of the microorganism, a photochemical reaction 
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irreversibly destroys or injures the nucleic acids and vital cell components, such as DNA 

and RNA.   

 

UV has several advantages over other chemical disinfectants.  First, it is very effective in 

inactivating bacteria and viruses.  Low dosages of 5 – 25 mW•s/cm2 are required for 2 

log inactivation of bacteria and viruses, while 90 – 140 mW•s/cm2 provides 4 log 

inactivation (U.S. EPA, 1999e).  A recent study showed that an UV dose as low as 19 

mJ/cm2 caused significant oocyst inactivation (3.9 log) (Bukhari et al., 1999).  Greater 

than 4.5 log of oocyst inactivation was achieved when 66 mJ/cm2 of UV dose was 

applied.  Second, minimal concentrations of disinfection by-products are generated as the 

result of UV disinfection.  Only low levels of formaldehydes are formed when UV is 

applied to most surface waters.  It is believed that humic substances are responsible for 

the production of low levels of formaldehydes. 

 

Although UV sounds superior, there are a few shortcomings when it is used in drinking 

water disinfection.  First, UV radiation does not have a disinfectant residual, so it can 

only be used as a primary disinfectant and a different secondary disinfectant that provides 

a residual is required.  Second, high concentrations of calcium, iron, turbidity, and 

phenols in source waters may impede UV disinfection as they absorb UV light, reducing 

the dose for microorganisms.   
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2.2.7 Sonication 

Sonication is the application of ultrasonic sound waves, having a frequency of 20,000 Hz 

or above.  The normal human ear cannot hear ultrasonic waves, because the frequency is 

above the upper limit of human hearing (Diaz, 1996).  Ultrasound has been widely used 

in the medical field as well as the cleaning of jewelry, however, limited studies have been 

carried out to investigate the germicidal effects of ultrasound.  Sonication as a 

disinfectant in water and wastewater treatment is discussed in detail in Section 2.3. 

 

2.3 GERMICIDAL EFFECTS OF ULTRASOUND 

As ultrasonic waves are introduced to a liquid, acoustic cavitation occurs (Hua and 

Thompson, 2000).  Due to the sinusoidal pressure differences induced by ultrasonic 

waves, the bubbles in the liquid expand and contract, and finally collapse.  Cavitation 

happens on a microscopic level, with the lifetime of a single bubble on the order of 

microseconds and its radius on the order of micrometers.  During the process of 

cavitation, the bubbles expand in the “rarefaction” half cycle of the sound wave and 

collapse in the compression half cycle.  Stable cavitation and transient cavitation are the 

two types of cavitation.  Stable cavitation is less vigorous than transient cavitation.   

 

The bubbles that undergo transient cavitation collapse in such a quick and violent manner 

that high temperatures and pressures are experienced near the collapse site.  When the 

bubbles in the liquid medium collapse, the velocity of liquid surrounding the collapse 

region is approximately the speed of sound (Riesz et al., 1985).  Microscopically, the 

temperature of the liquid when bubbles collapse increases to 2000 – 4000 K and the 
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pressure increases to greater than 330 atm (Hua and Thompson, 2000).  Inside the 

bubbles, sonoluminescence, the emission of light from the bubbles due to cavitation, 

occurs as a result of the extreme conditions exhibited by those bubbles.  Such extreme 

temperature and pressure conditions may cause the formation of hydrogen atoms and 

hydroxyl radicals and the generation of shear and tensile stresses (Riesz and Kondo, 

1992).   

 

Microorganisms may be inactivated by several mechanisms.  First, cell membranes can 

be disrupted as a result of the stresses produced by microstreaming, which occurs when 

bubbles vibrate and the medium next to them flows (Scherba et al., 1991).  Second, the 

combined effects of fluid shear, tensile stresses, and hydroxyl radicals may lead to the 

inactivation of microorganisms.  Third, sonication effects can be combined with other 

disinfectants.  During the free radical attack, the cell membranes of the microorganisms 

are ruptured physically as a result of bubble implosion, and then disinfectants or chemical 

oxidants can diffuse into the cell and destroy the essential structures (Hua and Thompson, 

2000).  Lastly, sonication enhances the break up of floc materials or microorganisms that 

clump together, thus they are more susceptible to disinfection.   

 

Apart from hydroxyl radical attack, the hydroxyl radicals can combine to form hydrogen 

peroxide (H2O2), which has oxidizing capabilities as well (Hua and Thompson, 2000).  

However, this inactivation mechanism may not be very effective, because the upper limit 

of H2O2 production is still low in concentration compared to what is needed for the 
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inactivation of microorganisms.  Also, the enzymes such as peroxidase and catalase 

produced by aerobic microorganisms destroy H2O2, lowering its concentration in general.  

 

2.3.1 Prior Work on Sonication Alone 

Previous research has shown that sonication alone can inactivate microorganisms.  The 

inactivation efficiency using sonication depends on several factors, which include 

sonication time, intensity, and frequency.  Each of these factors is discussed in this 

section. 

 

Several researchers found that the percent of microorganism inactivation increases as 

sonication time increases.  Nakanishi et al. (2001) studied the inactivation of 

Cryptosporidium parvum oocysts in drinking water and their ability to infect mice when 

subjected to high intensity ultrasonic waves at 28, 45, and 100 kHz.  Oocysts were 

suspended in purified water.  They discovered that some oocyst walls were broken and 

nuclei leaked after sonication treatment, which was believed to be the result of cavitation.  

After 2, 10, and 20 minutes of sonication at 28 kHz, approximately 40%, 97%, and 99% 

of the oocysts lost their nuclei, respectively.  Also, after 2 and 10 minutes of sonication, 

the infectivity of oocysts dropped to approximately 30% and 0.1%, respectively.  Phull et 

al. (1997) found similar results for the inactivation of E. coli suspended in sterile saline 

solution and bacteria suspended in stream water.  Their experiments started at 

approximately 20oC.  Several sonication intensities and frequencies were tested with both 

probe and bath sonication systems.  They found that inactivation increased with the 

duration of microorganism exposure to ultrasound.  Using a 20 kHz probe at 15 W/cm3, 



 28

maximum inactivation was achieved after 15 minutes (the longest time tested).  They 

concluded that 15 minutes of sonication time in large water treatment plants would be 

uneconomical based on the power output employed in their experiments.   

 

Sonication intensity is also a key factor in the inactivation of microorganisms.  Hua and 

Thompson (2000) tested the inavtivation of E. coli with sound intensity ranging from 4.6 

– 74 W/cm2.  The results showed that inactivation rates were highest at the highest 

intensity tested, which was 74 Wcm-2.  For example, after 30 minutes of sonication at 20 

kHz, 1.6 log10 inactivation of E. coli was observed at the highest sonication intensity of 

74.1 W/cm2, while 1.3 log10 and 1 log10 inactivation was found at 4.6 W/cm2 and 18.5 

W/cm2, respectively.  Nakanishi et al. (2001) tested the inactivation of Cryptosporidium 

parvum oocysts and concluded that high sonication intensities had physical and chemical 

effects associated with cavitation, which caused local high temperatures and pressures in 

the liquid.  Scherba et al. (1991) conducted a study on microorganism inactivation in 

common-use water facilities, for example, hot tubs and whirlpools.  All of their 

experiments were conducted at a temperature of 39oC + 0.3oC and a sonication frequency 

of 26 kHz.  The organisms of concern were bacteria, such as Escherichia coli, 

Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa, as well as some 

viruses and fungi.  Their results showed that with 60 minutes of ultrasound exposure, a 

significant decrease in fungal growth was detected, with better results as intensity 

increased.  In general, the percent inactivation of bacteria increased with intensity level, 

except for E. coli.  Thacker (1973) studied the effects of ultrasonic power and frequency 

on the survival of yeast cells.  Two types of yeast cells were tested: haploid (dividing and 
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non-dividing) and diploid cells.  These cells were treated in either yeast extracted-

peptone-dextrose or 0.85% saline.  Ultrasonic intensities of 1, 2, and 4 W/cm2 and 

frequencies of 20 kHz and 1 MHz were tested.  Fewer yeast cells survived with 

increasing intensity.  Thacker also found out that the dividing and the largest cells were 

the most susceptible to ultrasonic disinfection.  Lastly, the inactivation of yeast cells was 

due to the mechanical stresses caused by cavitation. 

 

The frequency of ultrasonic waves plays an important role in disinfection effectiveness.  

Hua and Thompson (2000) conducted a study on ultrasonic wave frequencies on E. coli.  

The frequencies they tested were 205, 358, 618, and 1017 kHz.  Their results indicated 

that 205 kHz was the most effective frequency.  This frequency had the highest 

inactivation rate coefficient of 0.078 min-1, which was approximately twice as large as 

that at 1017 kHz (0.030 min-1).  Hua and Thompson (2000) also found out that hydrogen 

peroxide formation rates at frequencies of 205 kHz and 358 kHz were 3.7 µM min-1 and 

4.7 µM min-1, respectively.  These formation rates were higher than the formation rates of 

2.2 µM min-1 and 1.4 µM min-1 at 618 kHz and 1071 kHz, respectively.  Nakanishi et al. 

(2001) studied the inactivation of Cryptosporidium oocysts at frequencies of 28, 45, and 

100 kHz.  They discovered that the lowest frequency (28 kHz), was the most effective in 

inactivating oocysts.  After 10 minutes sonication time at 28 kHz, 10% of the total 

oocysts disappeared.  The oocyst cell wall ruptured and the nuclei burst from 97% of the 

remaining oocysts.  The infectivity was less than 1% of the base line, compared to 40% 

and 100% infectivity at frequencies of 45 kHz and 100 kHz, respectively.  Phull et al. 

(1997) also conducted research on frequency with respect to inactivation of 
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microorganisms.  Since their studies involved the application of ultrasound as well as 

other chemical agents, the results are presented in Section 2.3.2.  Thacker (1973) tested 

the effects of ultrasound on yeast cell inactivation at frequencies of 20 kHz and 1 MHz.  

As shown in other studies for other organisms, the rate of yeast cell inactivation was 

higher when they were exposed to 20 kHz of ultrasonic treatment compared to the higher 

frequency.  

 

2.3.2 Prior Work on the Synergistic Effect of Sonication 

Phull et al. (1997) found a synergistic effect between sonication and chlorination.  E. coli 

suspended in saline solution and raw stream water were used in their experiments.  After 

5 minutes of treatment time, the application of 1 mg/L chlorine inactivated 43% of the 

bacteria in the sample stream water and sonication alone inactivated 19%.  When 

sonication was applied followed by chlorination, 86% inactivation of bacteria was 

achieved.  After 20 minutes, 100% inactivation of bacteria was achieved for combined 

sonication and chlorination.  Their research also indicated that increasing the sonication 

power from 12 W/cm2 to 21 W/cm2 increased the bacterial kill by 40% for a 5 minute 

treatment time in the presence of chlorine.  Frequency also affected the percent 

inactivation of bacteria.  Using the same amount of power, they concluded that higher 

ultrasonic wave frequency (800 kHz) was more effective than low frequency (25 kHz).  

With 1 minute of sonication followed by 5 minutes chlorine contact time and under the 

same sonication power, 75% of the bacteria survived after treatment at 25 kHz while only 

20% survived at 800 kHz.  Phull et al. (1997) suggested sonication followed by 



 31

chlorination is a better choice than chlorination followed by sonication, because the latter 

one causes a degassing effect, leading to lower chlorine concentrations.  

 

Burleson et al. (1975) found a synergistic effect between sonication and ozonation in the 

inactivation of three types of viruses and six types of bacteria.  The microorganisms were 

suspended in phosphate buffered saline (PBS) and secondary effluent.  The effluent had a 

biological oxygen demand (BOD) of 20 mg/L and chemical oxygen demand (COD) of 45 

mg/L.  Four types of disinfection techniques were employed: ozonation alone, 

simultaneous application of ozonation and sonication, sonication alone, and sonication 

during oxygenation.  Sonication alone and sonication during oxygenation for 10 minutes 

did not lead to inactivation of bacteria suspended in PBS or secondary effluent.  

However, all six types of bacteria were completely inactivated after 15 minutes of ozone 

contact or simultaneous application of ozone and ultrasound when they were suspended 

in PBS.  When bacteria were suspended in secondary effluent, it required longer ozone or 

combined ozone and sonication contact time to achieve complete inactivation.  In 

secondary effluent, the combination of ozonation and sonication provided more effective 

bacterial inactivation than ozonation alone in all bacterial strains tested.  Since sonication 

alone did not inactivate the bacteria, but combined ozonation and sonication showed 

promising inactivation, this may be explained as a synergistic effect.  Burleson et al. 

(1975) also found that the application of ultrasound reduced oxidizable organic material, 

thus reducing the amount of ozone needed for inactivation.  The total inactivation of 

microorganisms could be enhanced by sonication, as sonication broke up clumps of 

bacteria and particulate organic material, causing microorganisms to be more exposed to 
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the ozone.  It was believed that cavitation due to sonication also enhanced inactivation.  

The authors also suggested that simultaneous ozone and ultrasound application was an 

effective treatment process for microbial inactivation because of the instability of ozone.  

 

Dahi (1976) also found synergistic effects with sonication and ozonation.  A study was 

conducted on the inactivation of E. coli when subjected to ozonation alone, simultaneous 

ozonation and sonication, and sonication followed by ozonation.  The behavior of ozone 

with or without sonication was also observed.  A sonic probe system was used, which had 

an ultrasonic wave frequency of 20 kHz and output power of 160 W.  Three types of 

water were used in the experiments: redistilled water with intermediate treatment with 

KMnO4 then made isotonic and buffered with phosphate, sterilized secondary effluent 

from a biological sewage treatment plant, and sterilized secondary effluent diluted five 

times.  The results showed that with the same given disinfection time, ozonation alone 

provided the least inactivation of E. coli compared to the combination of ozonation and 

sonication.  Sonication followed by ozonation was more efficient in inactivating E. coli 

than simultaneous application of the two disinfectants.  Ultrasonic waves enhanced 

microbial inactivation with ozone and also chemical oxidation processes caused by the 

free radicals generated from the decomposition of ozone.  According to the experimental 

results, the aeration constant (KLa) for the disinfection system was increased by 15 – 45% 

after sonication, indicating the ozone interphase transfer was intensified.  
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2.4 INDICATOR ORGANISMS 

There are a number of different types of microorganisms that exist in drinking water 

sources, including pathogenic and non-pathogenic organisms.  The pathogenic 

microorganisms in drinking water may cause adverse health effects to humans and have 

to be inactivated before distributing the water to consumers.  Because of the high costs 

and technical expertise needed to identify some pathogens, such as Cryptosporidium, 

routine testing for pathogens is not feasible.  However, many non-pathogenic 

microorganisms, such as total coliforms, fecal coliforms, Escherichia coli, 

bacteriophages, and Bacillus subtilis, can be identified easily and economically with 

current technologies.  Therefore, it is desirable to use non-pathogenic microorganisms as 

indicator organisms to indicate the expected fate of pathogens through water treatment 

processes such as disinfection.   

 

Bacteria, viruses, and protozoa have different resistances to disinfection.  Usually 

bacteria (such as E. coli or coliform bacteria) serve as indicators for the pathogenic 

bacteria group, bacteriophages (such as MS2 coliphage) for the pathogenic virus group, 

and aerobic spore-forming bacteria (such as B. subtilis) for pathogenic protozoa group.  

 

2.4.1 Bacteria Indicators 

Several researches have shown that non-pathogenic bacteria respond to disinfection in a 

similar manner as pathogenic bacteria.  Chang et al. (1985), Harris et al. (1987) and 

Hassen et al. (2000) studied the inactivation of E. coli and Streptococcus faecalis by UV 

disinfection.  Chang et al. (1985) also tested the germicidal efficiency of UV on total 
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coliform and standard plate count microorganisms obtained from secondary effluent.  The 

researchers suggested that the doses of UV needed to inactivate 99.9% of cultured 

vegetative bacteria, total coliforms, and standard plate count microorganisms were 

comparable, with the exception of S. faecalis which required a 1.4 times higher dose of 

UV to achieve the same amount of inactivation.  They also suggested that, at least for this 

study, total coliforms are adequate to serve as an indicator of disinfection (Chang et al., 

1985).  Harris et al. (1987) selected E. coli and S. faecalis for the research because they 

are common biological indicators of the disinfection efficiency in water treatment.  

Results showed similar inactivation levels for both bacteria.  Giese and Darby (2000) 

studied the sensitivity of three species of coliform bacteria (Citrobacter diversus, 

Citrobacter freundii and Klebsiella pneumoniae) and the bacteriophage φX-174 to 

medium pressure UV disinfection at wavelengths of 254 nm, 280 nm, and 301 nm.  Their 

results showed that at an UV wavelength of 280 nm, the inactivation efficiencies of the 

three coliform species and the bacteriophage tested were similar with no significant 

differences.  Giese and Darby (2000) concluded that the germicidal efficiency of one 

bacteria or virus species may be used to represent the relative inactivation of all bacteria 

and viruses when subjected to medium pressure UV irradiation. 

 

2.4.2 Virus Indicators 

Battigelli et al. (1993), Giese and Darby (2000), and Wilson et al. (1992) studied the use 

of virus indicators as surrogates for the disinfection of viral pathogens.  Battigelli et al. 

(1993) indicated that traditional bacteriological indicators were not sufficient to provide 

protection against non-bacterial contamination of drinking water.  They tested the 
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inactivation efficiencies of bacteriophages MS2 and φX-174, Hepatitis A, coxsackievirus, 

and rotavirus with various doses of UV irradiation.  Their results showed that MS2 was 

the most resistant virus to UV irradiation compared to the other viruses inactivated.  

Apart from coliform bacteria, Giese and Darby (2002) also studied the behavior of φX-

174 when subjected to medium pressure UV irradiation.  The results and conclusions 

were discussed in the previous section (Section 2.4.1).  Wilson et al. (1992) studied the 

use of MS2 coliphage as a test surrogate for the inactivation of various pathogenic 

bacteria and viruses by UV irradiation.  They also concluded that MS2 was the most 

resistant to UV disinfection among the various pathogens tested.  Their results suggested 

that 99.5% inactivation of MS2 corresponds to 99.9999% inactivation of bacterial 

pathogens or 99.99% inactivation of viral pathogens.   

 

2.4.3 Protozoa Indicators 

Barbeau et al. (1999) and Facile et al. (2000) used aerobic spore forming bacteria 

(Bacillus subtilis and environmental strains) as indicators to evaluate the inactivation of 

protozoa by chlorination and ozonation.  Barbeau et al. (1999) found that the bacterial 

spores were actually more resistant to chlorination than Giardia and that the spore 

resistance increased with temperature.  The CT value for 3 log10 inactivation B. subtilis 

was approximately 3 times the CT value for the same level of inactivation of Giardia.  

Facile et al. (2000) compared the CT values for 2 log10 inactivation of the aerobic spores 

obtained from their ozonation experiments with the CT values for the same amount of 

inactivation of Giardia and Cryptosporidium obtained from other literature.  At near 

neutral pH and temperatures between 20 – 25oC, the CT for 2 log10 inactivation of 



 36

Cryptosporidium ranged from 2.0 – 5.0 mg-min/L.  At pH 6.3 and temperatures between 

20 – 22oC, the CT for 2 log10 inactivation of B. subtilis was 3.18 mg-min/L.  These values 

were comparable, indicating that B. subtilis may be a suitable surrogate for 

Cryptosporidium.  Since the CT values for 2 log10 inactivation of Giardia were several 

times smaller than B. subtilis or aerobic spore formers in general, then spore formers 

provide a conservative indicator for Giardia.  The estimated inactivation of pathogenic 

protozoa based on this indicator due to ozonation would therefore be an underestimate. 

 

2.4.4 Indicator Organism Conclusion 

Research has shown that non-pathogenic bacteria, such as E. coli, total coliforms, and 

Streptococcus faecalis, are good indicators for the response of pathogenic bacteria to 

disinfection.  Therefore, E. coli was chosen as a surrogate in this research and the results 

can be extrapolated to include various pathogenic bacteria and some types of viruses as 

well. 
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CHAPTER 3 
METHODOLOGY 

 

This chapter begins with an overview of the experimental plan. This is followed by the 

experimental procedures and finally, the analytical methods. 

 

3.0 EXPERIMENTAL DESIGN 

The goals of this research were to determine the inactivation of E. coli by sonication 

alone and by the combination of sonication and chlorination.  A series of experiments 

were conducted to achieve these goals.  As shown in Table 6, the disinfection 

experiments consisted of three major categories: chlorination alone, sonication alone, and 

the combination of chlorination and sonication.  The disinfectants for the combined 

chlorination and sonication experiments were applied either sequentially or 

simultaneously.  In addition, experiments were performed to study the effect of heating 

on the inactivation of E. coli.  Experiments were conducted using E-pure water with a 

known starting concentration of E. coli.  

 

Chlorine only experiments provide a basis for determining the synergistic effects of 

chlorination and sonication on the inactivation of E. coli.  Based on preliminary 

experiments, chlorine doses of 0.4 to 1 mg/L were chosen.  Chlorine doses greater than 1 

mg/L inactivated all of the E. coli and hence produced undetectable counts; lower 

chlorine dose did not provide sufficient inactivation and samples had to be diluted many 

times before plating.  Based on these considerations, a chlorine dose of 0.6 mg/L was 
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Table 6.  Experimental plan for experiments using E-pure water. 

Experiment Parameters Range of Variable 
Chlorine Only  
     Dose 0.4 – 1 mg/L 
     Contact time 10 seconds – 5 minutes 
     Temperature Room temperature (22 - 23oC), 32oC, 39oC 
  
Sonication Only  
     Sonic time 10 seconds – 60 minutes 
     System Probe or bath 
     Power-to-volume ratio 180 W/L or 900 W/L 
     Frequency 20 kHz for probe; 42 ± 6% kHz for bath 
     Output power Approximately 90 W for probe; 70 W for bath 
     Temperature Started at room temperature (22 - 23oC) 
  
Sonication + Chlorination  
     Application sequence Sequential or simultaneous 
     System Probe 
     Power-to-volume ratio 180 W/L or 900 W/L 
     Chlorine dose 0.4 – 1.0 mg/L (mainly 0.6 mg/L) 
     Contact time 10 seconds - minutes 
     Temperature Started at room temperature (22 - 23oC) 
  
Heating Only  
     Temperature Started at room temperature and increased to 

mimic heating by sonication 
 

 

determined to be the most suitable concentration among the tested doses.  Contact times 

from 10 seconds to 5 minutes were tested.  Most of the chlorine only experiments were 

conducted at room temperature.  Experiments were also completed at 32oC and 39oC 

because sonication caused the temperature to rise and thus chlorination occurred at 

elevated temperature for the sequential sonication plus chlorination experiments.  

 

Sonication only experiments were conducted using both the probe and bath systems 

operating at power-to-volume ratios of 180 W/L and 900 W/L.  Since the maximum 
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sonication power outputs were fixed for both sonic systems, the power-to-volume ratios 

were adjusted by changing the volume of the test samples.  The sonication times tested 

ranged from 10 seconds to 60 minutes.  A wide range of sonication times were tested so 

as to fully characterize the inactivation of E. coli over time.  All of the sonication only 

experiments were started at room temperature and allowed to heat up during sonication.  

 

The combined sonication and chlorination experiments were performed to study the 

synergistic effects of sonication on the inactivation of E. coli using the probe system.  

Two application sequences were tested: sequential (sonication followed by chlorination), 

and simultaneous (both sonication and chlorination applied at the same time).  The 

majority of combined sonication and chlorination experiments focused on simultaneous 

disinfection, at both 180 W/L and 900 W/L, since the results showed that sequential 

disinfection was not effective.  The chlorine doses tested in the combined sonication and 

chlorination experiments ranged from 0.4 to 1 mg/L; however, 0.6 mg/L was mainly used 

because the concentrations of E. coli that survived disinfection at this dose were still 

within the countable range.   

 

3.1 EXPERIMENTAL PROCEDURES 

This section describes in detail the preparations and procedures for all experiments, 

which include chlorination alone, sonication alone, and combined sonication and 

chlorination experiments. 
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3.1.1 E. coli Preparation 

For each experiment performed, E. coli was grown in nutrient broth, centrifuged to 

decant the broth, and resuspended in phosphate buffered saline (PBS) or chlorine demand 

free PBS.  Then a certain volume of the resuspended E. coli was added to the 

experimental water to obtain the desired starting concentration of 3 x 107 cfu/mL.  

 

Two days prior to experimentation, two sterile 125-mL Erlenmeyer culture flasks, each 

containing 50 mL of tryptic soy broth, were transferred from the refrigerator to the 

incubator and incubated at 35oC overnight.  One day prior to the experiment, E. coli from 

the frozen stock culture was transferred to culture flasks using a wire loop.  The 

inoculated flask was then put on a rotating platform in the incubator at 35oC, shaking at a 

constant rate of 100 revolutions per minute (rpm).  The inoculated culture with E. coli 

was allowed to grow in the incubator overnight for 16 – 18 hours.  

 

On the day of an experiment, the E. coli culture was centrifuged to remove the broth.  

First, the centrifuge (Marathon 21000R, Fisher Scientific, Pittsburgh, PA) was cooled 

down to 4oC.  Then one of the culture flasks was taken out of the incubator.  The 50 mL 

in the flask was split into two autoclaved centrifuge tubes (Oakridge 50 mL centrifuge 

tubes 3119-0050 PPCO, Nalge Comapny, Rochester, NY).  The two tubes were then 

centrifuged at 3,650 rpm for 20 minutes at 4oC.   

 

After twenty minutes, the broth in one of the tubes was decanted, leaving behind only the 

pellet of E. coli at the bottom of the tube.  The pellet was resuspended in a milk bottle 
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containing 25 mL of 0.01 M PBS or chlorine demand free (CDF) PBS.  A small volume 

of the PBS was poured into the centrifuge tube and shaken until the pellet was completely 

dissolved.  The solution was then poured back into the milk bottle.  The resuspended E. 

coli was either used immediately or stored in the refrigerator for up to three hours until 

use.  According to the results from trial experiments, the resuspended E. coli solution had 

an approximate concentration of 4 x 109 cfu/mL. 

 

To perform an experiment, a certain volume of resuspended E. coli was spiked into the 

test water to achieve the desired initial concentration of E. coli (3 x 107 cfu/mL).  The 

volume of resuspended E. coli added to the test water was determined by the following 

equation: 

 

(mL)r  test wateof vol.
mL
cfu103(mL)  dresuspende of vol.

mL
cfu104 79 ××=×× coli E.  

 

After spiking E. coli into the test water, 1 mL of test water was withdrawn for pre-

disinfection E. coli counts and 50 mL was removed for temperature, turbidity, and pH 

measurements.  The test water was then ready for disinfection experiments. 

 

3.1.2 Chlorine Only Experiments 

For each experiment performed, a sterile 1-L media bottle containing 350 mL 0.01M 

CDF PBS (test water) was brought to starting temperature (22oC, 32 oC or 39 oC) by use 

of the water bath (Isotemp220, Fisher Scientific, Pittsburgh, PA).  The CDF PBS was 
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warmed for 30 minutes to ensure the proper temperature was reached.  Then, 2.6 mL of 

the resuspended E. coli was spiked into the test water.  Fifty mL was withdrawn for 

temperature, pH, and turbidity measurements and 1 mL was withdrawn and transferred to 

a sterile dilution test tube containing 9 mL 0.01M PBS.  The test tube was immediately 

placed in the refrigerator and was used to determine the pre-disinfection E. coli 

concentration.   

 

Chlorine was applied in a sterile CDF BOD bottle.  The BOD bottle contained a sterile 

magnetic stir bar, was wrapped with aluminum foil, and placed on a magnetic stirrer.  

Approximately 200 mL of the test water was poured into the BOD bottle.  Then, the 

appropriate amount of chlorine was injected into the BOD bottle using a syringe 

dedicated to chlorine transfers (Hamilton Series 600/700 Fixed Needle Microliter 

Syringe, Hamilton Company, Reno, Nevada).  The BOD bottle was filled with the 

remaining test water and capped headspace free.  The stopwatch was started at the time of 

chlorine introduction.  The volume of chlorine used was directly related to the target 

chlorine disinfection concentration, volume of the BOD bottle, and the concentration of 

the chlorine stock.  The calculation is shown in the following equation: 

 

( ) ( )mLbottle BOD of Vol.
L

mgconc. 2ClTarget Lused 2Cl of Vol.
mL
mgstock 2Cl of Conc. ×






=×






 µ  

 

After the reaction period, 20 mL of the test water was removed for free and total chlorine 

measurements before quenching.  The rest of the test water was then immediately 

quenched by pouring the water into an autoclaved beaker containing 0.3 mL of a 3% 
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sodium thiosulfate (Na2S2O3) solution.  Upon quenching, 1 mL of the post-disinfection 

water was transferred to a dilution tube and put in the refrigerator for post-disinfection E. 

coli enumeration.  Free and total chlorine concentrations before and after quenching were 

measured.  Post-disinfection temperature, pH, and turbidity readings were also recorded.   

 

3.1.3 Sonication Only Experiments 

3.1.3.1 Probe System 

A probe-type sonicator (Sonicator 3000, Misonix Inc., Farmingdale, NY) was used for 

some of the sonication only experiments and all combined disinfectants experiments 

(sonication plus chlorination).  The sonicator was set to the highest output power 

intensity of 10.0, which resulted in a power output of approximately 90 W. This power 

output along with the volume of test water was used to determine the power-to-volume 

ratio.  Two power-to-volume ratios were tested: 180 W/L (500 mL of test water) and 900 

W/L (100 mL of test water).  The ultrasonic frequency was 20 kHz.  It was constant and 

could not be altered.  Since sonication only experiments did not involve chlorine, the PBS 

and glassware used in these experiments were sterile but did not have to be chlorine 

demand free. 

 

All sonication only experiments started at room temperature (22 – 23oC).  For the 180 

W/L experiments, 4.1 mL of resuspended E. coli was spiked into a 1 L media bottle 

containing 550 mL of sterile 0.01 M PBS.  For 900 W/L experiments, 1.1 mL of 

resuspended E. coli was spiked into a 250-mL media bottle containing 150 mL of sterile 



 44

0.01 M PBS.  Prior to disinfection, 50 mL of test water was removed for pre-disinfection 

temperature, pH, and turbidity measurements, and 1 mL was removed to determine the 

pre-disinfection E. coli concentration.  Then, the test water was transferred to a beaker for 

sonication: 600 mL autoclaved beakers (Kimax #14000) were used for experiments at 

180 W/L  and 150 mL autoclaved beakers (Pyrex #1000) for experiments at 900 W/L.  

The probe was placed at the center of the beaker and approximately 1 inch below the 

water surface.  The sonicator was started and the output power shown on the screen of the 

generator was monitored.  After sonication, temperature was immediately recorded, 

followed by the removal of 1 mL of solution for post-disinfection E. coli enumeration.  

Turbidity and pH were measured on the remaining post-disinfection test water.  

 

3.1.3.2 Sonic Bath 

A sonic bath system (Branson 1510R-MT, Branson Ultrasonics Corporation, Danbury, 

Connecticut) was used in the sonication only experiments to compare the germicidal 

effectiveness of the bath versus the sonic probe systems.  The sonic bath provided 42 ± 

6% kHz and 70 W power output and these parameters could not be adjusted.  Similar to 

the experiments with the sonic probe, sterile beakers were used for disinfection.  The 

initial volume of test water (0.01 M PBS) and volume of resuspended E. coli to add were 

calculated to produce the power-to-volume ratios (180 W/L or 900 W/L) used in the 

probe experiments so that a direct comparison of bacterial inactivation between the sonic 

probe and bath systems could be achieved.  The low power-to-volume ratio was achieved 

with 390 mL test water (prepared 440 mL sample with 3.3 mL E. coli) and the high 
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power-to-volume ratio was achieved with 80 mL test water (prepared 130 mL sample 

with 0.95 mL E. coli) 

 

Prior to sonication, 50 mL of the test water spiked with E. coli was removed for pre-

disinfection temperature, pH, and turbidity measurements, and 1 mL was removed for 

pre-disinfection E. coli enumeration.  The remaining 390 mL or 80 mL of experimental 

water was transferred to a 600-mL or 150 mL beaker, respectively.  The beaker was then 

placed in the sonic bath and the water level in the bath was adjusted to match with the 

liquid level in the beaker.  One mL samples were withdrawn for E. coli enumeration at 

various time intervals.  Temperature measurements were taken at the end of each time 

interval, while pH and turbidity were measured at the last experimental time interval. 

 

3.1.4 Sonication Plus Chlorination Experiments  

In this section, methods for sonication and chlorination experiments are introduced.  

There are two ways that the experiments were carried out: sequential or simultaneous 

application of ultrasound and chlorine.  Sequential application means that sonication was 

applied followed by chlorination, whereas simultaneous application means that sonication 

and chlorination occurred at the same time.  

 

3.1.4.1 Sequential Application of Sonication and Chlorination 

Sequential application of sonication and chlorination was performed in the same manner 

as a sonication only experiment (sonic probe system) followed by a chlorination only 
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experiment.  First, a sonication experiment was performed as described in Section 3.1.3.1 

(sonication only).  Immediately after sonication, the test water was subjected to 

chlorination according to the methods described in Section 3.1.2.  The only difference 

occurred for experiments using 180 W/L sonication.  For this case, instead of a 300-mL 

BOD bottle, a smaller BOD bottle that holds about 60 mL was used for chlorination.  For 

each experiment, pH, turbidity, temperature, and E. coli concentrations were measured 

before sonication, after sonication, and after chlorination.  In addition, after chlorination 

free and total chlorine (before and after quenching) were measured. 

 

3.1.4.2 Simultaneous Application of Sonication and Chlorination  

For simultaneous disinfection by sonication and chlorination, both disinfectants are 

applied at the same time.  Disinfection is started by simultaneously starting the sonicator 

and injecting chlorine.  The simultaneous disinfection experiments at both 180 W/L and 

900 W/L were conducted in the same manner as the sonication only experiments (probe 

system), with the following exceptions: chlorine was injected at the beginning of the 

experiment and quenched immediately at the end of the sonication time interval.  In 

addition, free and total chlorine concentrations before and after quenching were 

measured. 

 

3.1.5 Heating Only  

Since temperature increased substantially as sonication time increased, especially for 

experiments with a high power-to-volume ratio, additional experiments were conducted 
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to determine whether temperature or the ultrasonic waves inactivated the E. coli.  

Therefore, heating experiments were carried out without the introduction of chlorine or 

sonication to mimic the heating phenomenon observed during sonication. 

 

3.1.5.1 E-pure Water 

Heating experiments on E-pure water without the introduction of E. coli were performed 

to compare the resulting temperatures with those observed during high power-to-volume 

ratio sonication experiments.  A close match in the temperature profile over time was 

desired to give a more accurate prediction of whether temperature effects or sonic waves 

inactivated the E. coli.  For this preliminary experiment, the water bath was set to 80oC.  

Then, 100 mL of E-pure water in a 250-mL media bottle at room temperature was placed 

in the water bath.  Temperature in the sample was recorded every minute from 1 to 15 

minutes and every 5 minutes from 15 minutes onwards.  It was found that the temperature 

increase by heating only matched well with the temperatures observed during sonication 

(probe system) at 900 W/L, so there was no need to perform more experiements with E-

pure water only. 

 

3.1.5.2 With E. coli 

To study the effect of temperature on the inactivation of E. coli, an experiment was set up 

in the same environment as the one without E. coli.  The water bath was preheated to 

80oC. Approximately 100 mL of experimental water was prepared by adding 1.1 mL of 

resuspended E. coli into 150 mL of 0.01M PBS and removing 50 mL for initial 
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temperature, pH, and turbidity measurements and removing 1 mL for pre-disinfection 

enumeration of E. coli.  The media bottle containing about 100 mL of experimental water 

was placed in the 80oC water bath.  At various time intervals, the temperature was 

recorded and 1 mL samples were withdrawn for E. coli enumeration. 

 

3.2 ANALYTICAL METHODS 

3.2.1 Introduction 

Aseptic techniques were applied throughout all experiments, which included the 

culturing, transfer, disinfection, and enumeration of E. coli.  This was done to prevent 

contamination of samples by other microorganisms.  During all transfers, aseptic 

conditions were maintained by working in a clean bench and flaming all open containers.  

All work spaces used in disinfection and enumeration processes were sterilized by 

spraying with 50% ethanol.  In addition, the thermometer and the sonication probe were 

wiped with 50% ethanol.  All glassware, plasticware, and metalware were also sterile.  

Glassware was sterilized by autoclaving (Sterilmatic Sterilizer, Market Forge Industries 

Inc., Everett, MA).  Pre-sterilized plasticware, including petri dishes and serological 

pipettes of various sizes were purchased.  Finally, all culture media, enumeration media, 

and chemical reagents were sterilized by use of an autoclave.   

 

3.2.2 Enumeration of E. coli 

In all of the experiments performed, pour plates and membrane filtration were the two 

enumeration techniques used to determine the E. coli concentration before and after 
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disinfection.  The samples were diluted to appropriate concentrations before plating so as 

to give countable numbers of E. coli colonies on each plate.  Whether pour plates or 

membrane filtration was used, at least 3 different dilutions were plated for each sample, 

with three replicates for each dilution.  A negative control, which consisted with PBS 

only without E. coli, was plated for each sample.  

 

3.2.2.1 E. coli Rehydration 

The E. coli culture was purchased in dehydrated form from the American Type Culture 

Collection (ATCC #11775).  The dehydrated pellet of E. coli was received in a vial.  

First, the cap of the vial was opened by using a flamed tweezer.  Second, 1 mL of tryptic 

soy broth (TSB) from an autoclaved test tube that contained 5 – 6 mL TSB was pipetted 

into the vial to rehydrate the E. coli pellet.  Then, the rehydrated contents were poured 

from the vial back into the test tube, and the test tube was incubated at 35oC for 48 hours.  

During the incubation period, 10 mL of 40% glycerol by volume was prepared by 

combining 4 mL of glycerol and 6 mL of E-pure water.  The glycerol was then 

autoclaved.  After the 48-hour incubation, the E. coli culture was transferred into a series 

of sterilized microcentrifuge tubes.  Each tube consisted of 0.5 mL of the E. coli culture 

and 0.5 mL of 40% glycerol.  The 12 microcentrifuge tubes were labeled as EC1 -  EC12.  

All of the vials tubes were frozen in –70oC alcohol, and then in a –70oC freezer.  The vial 

labeled EC1 was used for this research. 
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3.2.2.2 Dilution Series 

Dilution series were prepared in test tubes with closures.  Each test tube contained 9 mL 

of 0.01 M PBS.  They were autoclaved before use.  When 1 mL of undiluted sample was 

introduced into the first tube, the concentration of the first tube became 10-1 (diluted by 

10 times compared to the original concentration).  When 1 mL of sample from the 10-1 

tube was transferred to the another tube that contained 9 mL of 0.01 M PBS, the 

concentration of the second became 10-2.  The diluting process was continued until the 

desired dilution had been reached. 

 

3.2.2.3 Pour Plates 

The procedures for pour plating are described in Standard Methods 9215B (APHA et al., 

1998).  Pour plates were used for E. coli enumerations when determining concentrations 

of E. coli in dilutions from undiluted down to 10-7.  After the pre- and post-disinfection 

dilution series were completed, 1 mL of sample from each appropriate dilution was 

pipetted into a 100-mL petri dish.  Three replicate plates were prepared for each dilution 

plus one negative control for each sample.  The most diluted plates were placed in the 

back of the laminar flow hood and the most concentrated in the front.  Approximately 10 

– 12 mL of liquid tryptic soy agar at 47oC was pipetted directly onto the 1-mL sample 

such that the sample was evenly distributed.  The petri dish was covered and mixed in a 

figure eight motion.  Then the cover was opened slightly and the agar was allowed to 

solidify for 5 minutes.  All pour plates were incubated upside down at 35oC for 22 - 24 

hours and were counted after the incubation period was over.  The ideal range of counts 

per plate was between 30 and 300.  The dilution with counts in the ideal range was used 
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to determine the E. coli concentration.  If no dilution was in the ideal range, countable 

plates were used or the experiment was repeated.  

 

3.2.2.4 Membrane Filtration 

Standard Method 9222B describes in detail the procedure for enumerating coliforms by 

membrane filtration (APHA et al., 1998).  The membrane filtration technique was used to 

enumerate E. coli when concentrations were below 30 cfu/mL.  Low E. coli 

concentrations occurred with effective disinfection processes, such as high chlorine 

doses, long sonication times, and high temperatures associated with sonication.  For this 

method, 50 mm petri dishes were pre-filled with 5 - 6 mL of tryptic soy agar and cooled 

to allow the agar to solidify.  Dilution series were prepared if necessary.  A 0.45 µm 

Millipore membrane filter (Millipore Corporation, Bedford, Massachusetts) was placed 

on the sterile filter tower, then 20 mL of sterile 0.01 M PBS was introduced into the 

tower before adding the sample so as to ensure even distribution of E. coli colonies on the 

filter.  The appropriate volume of sample from each desired dilution was pipetted into the 

filter tower.  The vacuum pump was turned on to suction the liquid through the filter.  

The membrane filter was then transferred to the petri dish.  Each dilution was filtered in 

triplicate, and a negative control was filtered for each sample.  All membrane filtration 

plates were incubated upside down at 35oC for 22 – 24 hours.  The ideal range of MF 

plate counts was 20 – 80 colonies and no more than 200 colonies per plate. 
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3.2.3 Turbidity 

Turbidity was measured according to Standard Method 2130B (APHA et al., 1998).  A 

turbidimeter (2100N Turbidimeter, Hach Company, Loveland, Colorado) was used to 

measure the turbidity of water samples before and after disinfection.  The turbidimeter 

was calibrated according to the procedures provided by the manufacturer every three 

months.  Each day, the glass turbidity vials were coated with silicone to ensure a smooth 

vial surface.  The sample was poured into a turbidity vial and the outer surface of the vial 

was cleaned and dried with Kimwipes to remove dirt or fingerprints from the glass.  The 

vial was inverted gently two times and placed into the turbidimeter.  The turbidity 

reading was taken when the reading stabilized.    

 

3.2.4 pH 

The procedure for measuring pH is described in Standard Methods 4500-H+ B (APHA et 

al., 1998).  An Orion 420A pH meter was used to measure the pH of pre- and post- 

disinfection water samples (Orion Research Inc., Beverly, MA).  The meter was 

calibrated before each use with standard buffers of pH 4.01, 7.00, and 10.01.  The pH 

probe was rinsed with E-pure water before and after use.  To take a pH measurement, the 

probe was immersed into the solution and the value recorded when the reading stabilized. 

 

3.2.5 Chlorine 

Chlorine used in this research was NaOCl purchased from the Fisher Scientific, with a 

concentration of approximately 6% by weight (60 mg/mL).  The bottle of chlorine was 
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wrapped with aluminum foil so as to block out light that would cause it to decompose.  

To prevent contamination of the reagent bottle, approximately 35 mL of chlorine stock 

was poured into a 40-mL glass vial wrapped with aluminum foil for everyday use.  

Chlorine in the vial was used and refilled if needed.  Since the concentration of chlorine 

stock applied in the disinfection experiments was so small, it was difficult to measure the 

small volume to be added to the test water.  Therefore, the chlorine stock was diluted 10 

times with CDF E-pure (called the 10% chlorine stock), and stored in a separate vial 

wrapped with aluminum foil.  All of the chlorine vials and bottles were stored in the 

refrigerator at 4oC.   

 

3.2.6 Free and Total Chlorine 

All glassware used to determine the concentration of both free and total chlorine, such as 

125 mL Erlenmeyer flasks, 100 mL volumetric flasks, and test tubes, was chlorine 

demand free.  This was done to ensure the chlorine applied would not be consumed by 

reactions with organic matter attached to the glass.  CDF glassware was prepared by 

soaking glassware in a 100 mg/L chlorine bath.  Just before use, the glassware was rinsed 

3 times with E-pure water to remove any chlorine remaining on the glass. 

 

3.2.6.1 Free Chlorine Calibration Curve 

A free chlorine calibration curve was used to relate chlorine concentrations to absorbance 

values measured from a spectrophotometer.  Standard Methods 4500-Cl G was used to 

measure both free and total chlorine residuals using the DPD colorimetric method 



 54

(APHA et al., 1998).  The preparation of a free chlorine calibration curve involved the 

use of spectrophotometer and titration.  The spectrophotometer was set to a wavelength 

of 515 nm.  Five Erlenmeyer flasks and five volumetric flasks were taken out of the 100 

mg/L chlorine bath and rinsed with E-pure water.  The volumetric flasks were filled up to 

the graduation line with CDF E-pure and labeled #1 through 5.  A magnetic stir bar was 

put into each of the Erlenmeyer flasks, followed by adding 5 mL of DPD buffer solution 

and then 5 mL of DPD indicator solution.  By use of a 10-µL syringe dedicated for 

chlorine transfers (Hamilton Series 600/700 Fixed Needle Microliter Syringe, Hamilton 

Company, Reno, Nevada), 2 µL of chlorine stock was transferred into the volumetric 

flask.  The chlorine solution was immediately poured into the Erlenmeyer flask 

containing DPD buffer and indicator solutions and mixed.  The solution turned pink.  A 

10-mm spectrophotometer cell was rinsed with the solution and filled with solution again, 

then it was placed in the spectrophotometer (Cary 50 Scan, Varian Australia Pty Ltd., 

Mulgrave, Victoria, Australia) for an absorbance reading.  

 

Immediately after the absorbance value was obtained, the solution in the cell was poured 

back into the Erlenmeyer flask.  The Erlenmeyer flask was placed on a magnetic stirrer 

and then titrated against the FAS solution until the pink color just disappeared as 

described in Method 4500-Cl F of Standard Methods (APHA et al., 1998).  The burette 

readings before and after titration were recorded and the volume of FAS used was 

determined.   
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The above processes were repeated for additions of 3, 4, and 5 µL of chlorine to the 

volumetric flasks.  For the first volumetric flask, no chlorine was added and only the 

absorbance reading was taken for this blank solution.  The volume of FAS used during 

each titration was used to determine the initial chlorine concentrations in the volumetric 

flasks.  Using Microsoft Excel, a calibration curve was produced by plotting the chlorine 

concentration in the volumetric flasks (mg/L) on the y-axis and absorbance values (1/cm) 

on the x-axis.  Both the equation and the R2 value were obtained.  

 

3.2.6.2 Total Chlorine Calibration Curve 

The total chlorine calibration curve was produced in exactly the same way as the free 

chlorine calibration curve (see Section 3.2.6.1), except with the addition of 1.001 g 

potassium iodide (KI) to each of the Erlenmeyer flasks prior to adding DPD buffer 

solution and DPD indicator solution.  

 

3.2.6.3 Residual Free Chlorine Measurement Using DPD Colorimetric Method 

For any experiment that involved chlorine during disinfection, the free chlorine residual 

concentration was measured, before and after quenching.  The DPD chlorimetric method 

#4500-Cl G in Standard Methods was used to perform this test (APHA et al., 1998).  Test 

tubes were taken out of the 100 mg/L chlorine bath and rinsed thoroughly with E-pure 

water.  Then, 0.5 mL DPD buffer solution, 0.5 mL DPD indicator, and 10 mL of sample 

were added to a test tube in this order.  The tube was then gently shaken.  The solution in 

the tube was poured into a Varian 10-mm rectangular cell, rinsed with that solution, and 
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filled again.  The cell was placed into the spectrophotometer and the absorbance value 

was taken.  The concentration of free chlorine residual was calculated from the equation 

of the free chlorine calibration curve.   

 

3.2.6.4 Residual Total Chlorine Measurement Using DPD Colorimetric Method 

In addition to free chlorine residual concentration, the total chlorine residual 

concentration was also measured for any experiment that applied chlorine as a 

disinfectant, before and after quenching.  The method of measuring the total chlorine 

residual was the same as the procedure for measuring free chlorine residuals (Section 

3.2.6.3), with the addition of 0.1001 g KI to every CDF test tube prior to the introduction 

of DPD buffer and DPD indicator solutions.   

 

3.2.6.5 Determination of Chlorine Stock Concentration 

The total chlorine concentration of the 10% chlorine stock was checked prior to starting 

an experiment.  This was to verify the concentration of the stock that would be applied to 

disinfection and to determine the exact amount of chlorine stock to add in order to 

provide the desired chlorine concentration in the test water.  The process of checking the 

total chlorine concentration involved two testing methods: the DPD colorimetric (Section 

3.2.6.2) and the DPD ferrous titrimetric methods (Section 3.2.6.2).  However, for 

determining the concentration of the 10% chlorine stock, 50 µL of the 10% chlorine stock 

was added to a CDF volumetric flask using a pipette.  As described previously, this 

solution was then poured into an Erlenmeyer flask with DPD buffer, DPD indicator, and 



 57

KI.  The absorbance was measured and the solution titrated with FAS.  The total chlorine 

concentration of the 10% stock was determined by plugging in the absorbance value into 

the equation from the total chlorine calibration curve and also by multiplying the volume 

of FAS used by two.  The total chlorine concentrations determined from both methods 

should be the same. 

 

3.2.7 Reagents and Glasswares 

3.2.7.1 Tryptic Soy Broth 

Tryptic soy broth (TSB) was a nutrient broth for culturing E. coli.  It was prepared as 

indicated by the manufacturer by dissolving the dehydrated tryptic soy broth powder 

(DF0370-17-3, Becton, Dickinson and Company, Sparks, MD) in E-pure water, in the 

ratio of 30 g of powder to 1 L of water.  Fifty mL of TSB was placed into each 125-mL 

culture flask with metal closures.  The culture flasks containing TSB were autoclaved for 

15 minutes at 121oC and stored in the refrigerator at 4oC for up to 2 weeks.  The evening 

before E. coli inoculation, 2 flasks were transferred from the refrigerator to the 35oC 

incubator. 

 

3.2.7.2 Tryptic Soy Agar 

Tryptic soy agar (TSA) was a medium for E. coli enumeration before and after 

disinfection.  First, TSB was prepared according to the procedures described in Section 

3.2.7.1.  Second, 15 g of the dehydrated TSA powder (BactoTM Agar 214010, Dickinson 

and Company, Sparks, MD) was added to each liter of TSB.  Third, the agar was brought 
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to a boil and then autoclaved for 20 – 30 minutes at 121oC, depending on the volume of 

agar being sterilized.  The TSA was kept in media bottles with screw caps and stored in 

the refrigerator at 4oC for up to 3 months.   

 

To prepare pour plates, the TSA was autoclaved again for 15 minutes and kept warm at 

47oC in water bath.  The agar was used within 3 hours for pour plating.  Liquid TSA was 

also used to prepare 50 mm membrane filtration plates.  About 5 – 6 mL of TSA at 47oC 

was pipetted carefully into each 50 mm petri dish to avoid air bubbles.  The MF plates 

were stored in the refrigerator at 4oC upside down in sealed plastic bags for up to 2 

weeks.  The membrane filtration plates were transferred to the incubator at 35oC the 

evening before an experiment.  

 

3.2.7.3 Phosphate Buffered Saline 

The 0.1 M PBS stock was prepared by dissolving 80 g NaCl, 2.0 g KH2PO4, 2.0 g KCl, 

and 11.56 g anhydrous Na2HPO4 in E-pure water.  The solution was brought up to 1 L in 

a volumetric flask and stirred using a magnetic stir bar until all solids were completely 

dissolved.  The pH of the PBS was checked to verify that it was between pH 7.2 – 7.4.  If 

not, the pH was adjusted to this range using 0.1 M HCl or 0.1 M NaOH.  The 0.1 M PBS 

stock was autoclaved and stored in media bottles at room temperature.   

 

The 0.1 M PBS stock was diluted 10 times for use as the test water and in dilution tubes 

by combining 1 part of 0.1 M PBS with 9 parts of E-pure water.  The pH of the resulting 

0.01 M PBS was checked to verify it was in the range of pH 7.2 and 7.4.  The 0.01 M 
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PBS was then divided into various containers, such as media bottles, dilution tubes, and 

membrane filtration wash down bottles, and then autoclaved.  If they were not used 

immediately, they were stored in the refrigerator at 4oC for up to 3 months.  

 

3.2.7.4 Chlorine Demand Free Phosphate Buffered Saline 

Chlorine demand free (CDF) PBS was used in chlorination only and sonication plus 

chlorination experiments to ensure all of the chlorine applied was used for disinfection 

purposes and not on the reaction of chlorine with other constituents in the water.  CDF 

PBS was made by chlorinating 0.01 M PBS with 5 mg/L chlorine for 24 hours in the dark 

with constant stirring and then dechlorinating by immersing a Pen-Ray UV Pen (34-

0007-01 Lamp 8W germicidal 254 nm G8T5/S, UVP, Upland, CA) into the solution for 

24 hours.  Total chlorine residual was measured using the DPD colorimetric method (see 

Section 3.2.6.4).  If the 0.01 M PBS was free from chlorine, it was then autoclaved and 

stored tightly capped in the refrigerator at 4oC.  If chlorine remained, the solution was 

irradiated with the UV pen for another 12 hours.   

 

3.2.7.5 Chlorine Demand Free E-pure 

Chlorine demand free E-pure water was used to generate results for free and total 

chlorine calibration curves.  It was also used to check the concentration of 10% chlorine 

stock prior to performing an experiment.  The methods of making CDF E-pure were 

exactly the same as the methods for CDF PBS, except that E-pure water was used instead 
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of 0.01 M PBS.  The CDF E-pure water did not need to be autoclaved but was stored in 

the refrigerator at 4oC.   

 

3.2.7.6 Chlorine Demand Free Glassware 

Chlorine demand free glassware was prepared by soaking glassware, such as Erlenmeyer 

flasks, volumetric flasks, test tubes, milk bottles, and BOD bottles, in a 100 mg/L 

chlorine bath made from bleach.  The glassware were taken out of the chlorine bath just 

before use and rinsed thoroughly at least 5 times with E-pure water.  

 

3.2.7.7 Dilution Tubes 

Dilution tubes were used in the pre- and post-disinfection dilution series.  Each dilution 

tube consisted of 9 mL of 0.01 M PBS with a metal closure on the tube.  The tubes were 

placed in a test tube rack and autoclaved for 15 minutes at 121oC.  They were stored in 

the refrigerator at 4oC until use, with a maximum storage time of approximately 2 weeks.   

 

3.2.7.8 Sodium Thiosulphate 

Sodium thiosulfate (Na2S2O3) was used for quenching chlorine so that exact chlorine 

disinfection time could be achieved.  According to Method 9060A in Standard Methods 

(APHA et al., 1998), 0.1 mL of a 3% Na2S2O3 neutralizes up to 5 mg/L of residual 

chlorine in a 120 mL volume.  A 3% solution can be prepared by dissolving 3 g of 

Na2S2O3 in 100 mL of E-pure water.  Since Na2S2O3•5H2O was used, 4.7069 g was 

needed to make a 3% solution.  The solution was then autoclaved before use.  0.3 mL of 
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the 3% Na2S2O3 solution was used to quench chlorine in the experiments where chlorine 

was involved. 

 

3.2.7.9 DPD Indicator Solution 

DPD indicator solution was used to measure free and total chlorine concentrations.  It 

was purchased from a manufacturer (DPD Solution APHA, LabChem Inc., Pittsburgh, 

PA).  The shelf life of the DPD indicator solution was 2 months. 

 

3.2.7.10 DPD Buffer Solution 

DPD buffer solution was used in conjunction with DPD indicator solution for free 

chlorine measurements and total chlorine measurements.  With reference to Method 

4500-Cl F in the Standard Methods (APHA et al, 1998), the solution was prepared by 

dissolving 24 g of anhydrous Na2HPO4 and 46 g of anhydrous KH2PO4 in E-pure water.  

Then it was combined with 100 mL E-pure water in which 800 mg of disodium 

ethylenediamine tetrascetate dihydrate (EDTA) was dissolved.  The entire solution was 

diluted to a total volume of 1 L with E-pure water.  The DPD buffer solution was stored 

in the refrigerator at 4oC for up to 3 months.   

 

3.2.7.11 Standard Ferrous Ammonium Sulfate (FAS) Titrant 

The FAS solution served as a titrant to determine free and total chlorine concentrations 

using the titrimetric method.  According to Method 4500-Cl F in Standard Methods 

(APHA et al, 1998), FAS titrant was made by dissolving 1.106 g of 
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Fe(NH4)2(SO2)4•6H2O in E-pure water that already contained 1 mL of 1 + 3 H2SO4.  The 

mixture was diluted up to 1 L with freshly boiled and cooled E-pure water.  The FAS 

solution was stored in the refrigerator at 4oC for up to 1 month. 
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CHAPTER 4 
RESULTS 

 

This chapter presents the results obtained from experiments conducted to determine the 

sole and synergistic effects of sonication on the inactivation of E. coli.  It is divided into 

four sections according to the various disinfection methods applied in the experiments, 

which include disinfection by chlorine only, sonication only, the combination of 

sonication and chlorination, and heating only.  Each experiment was repeated at least 3 

times to ensure representative results were obtained.  Three replicate plates were counted 

for each dilution so as to provide more reliable average counts.  The graphs shown in this 

chapter present all experimental results, while the tables provide the average results from 

the replicate experiments.  Detailed results are included in Appendix A.  

 

4.0 DISINFECTION BY CHLORINE ONLY 

Chlorine experiments were conducted mostly at room temperature (22oC – 23oC); 

however, elevated temperatures of 32oC and 39oC were also tested.  The chlorine 

concentrations used for disinfection ranged from 0.2 to 1.0 mg/L and the contact time 

was 5 minutes.  Since a chlorine concentration of 0.6 mg/L was considered the most 

suitable concentration for the combined sonication and chlorination experiments, 

additional experiments were performed using this chlorine dose and contact times of 10 

seconds, 30 seconds, 1, 2, and 3 minutes.   

 

The chlorine only experiments required the use of chlorine demand free phosphate 

buffered saline and glassware.  The disinfection process was conducted in the dark, using  
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a CDF BOD bottle wrapped with aluminum foil, and with constant stirring using a 

magnetic stirrer.  Temperature, pH, turbidity and E. coli concentration were measured 

before and after disinfection.  Free and total chlorine residuals were measured after 

disinfection, both before and after quenching the experimental water with sodium 

thiosulfate. 

 

4.0.1 Chlorination at Room Temperature 

Figure 1 shows the log10 inactivation of E. coli by various chlorine doses with a 5 minute 

contact time.  Less than 1 log10 inactivation was achieved at chlorine doses of 0.2 and 0.4 

mg/L.  When the chlorine dose was increased to 0.6 mg/L, on average 4.13 log10 

inactivation of E. coli was achieved.  If the chlorine dose was further increased to 1 

mg/L, on average 5.25 log10 inactivation of E. coli inactivation was obtained.  Based on 

these results, a chlorine dose of 0.6 mg/L was selected for further study.  This chlorine 

dose was strong enough to achieve reasonable inactivation of E. coli while still providing 

countable results on the pour plates. 
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Figure 1.  Log10 inactivation of E. coli at various chlorine doses  
(5 minute contact time, 22-23oC). 

 

 

In addition to the 5 minute chlorine contact time, other disinfection times were also tested 

at a constant chlorine dose of 0.6 mg/L.  The results are shown in Figure 2.   Although the 

data shows some variability, up to 2 minutes resulted in approximately 1.3 log10 

inactivation of E. coli on average.  A noticeable increase in the inactivation of E. coli was 

observed after 3 and 5 minutes of chlorine disinfection, with 4.0 log10 and 4.1 log10 

inactivation, respectively.  
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Figure 2.  Log10 inactivation of E. coli at various chlorine contact times 
(chlorine dose of 0.6 mg/L, 22-23oC) 

 

 

4.0.2 Chlorination at Elevated Temperatures 

Sonication alone caused temperature increases (shown in later sections), therefore 

temperatures were higher at the start of the chlorination when sequential sonication plus 

chlorination experiments were conducted.  As a result, chlorination at elevated 

temperatures was tested to have a suitable comparison to the combined sonication and 

chlorination experiments.  Figure 3 shows the difference in the inactivation of E. coli by 

chlorination at room temperature and elevated temperatures.  All experiments were 
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Figure 3.  Log10 inactivation of E. coli at room and elevated temperatures with 0.6 mg/L 
chlorine. 

 

 

conducted with a chlorine concentration of 0.6 mg/L.  The elevated temperature tested for 

1 minute was 32oC and for 2 minutes was 39oC.  The results showed that temperature did 

not significantly affect the level of E. coli inactivation.  

 

4.1 DISINFECTION BY SONICATION ONLY 

Sonication experiments were carried out using either an ultrasonic probe or a sonic bath.  

All experiments started at room temperature and the samples were allowed to heat up 
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during sonication.  Two power-to-volume ratios (180 W/L and 900 W/L) were tested for 

both the probe and the bath system.  Measurements taken before and after disinfection 

included temperature, pH, turbidity, the output power from the probe-type sonicator, and 

E. coli concentration.  

 

4.1.1 Probe System 

The sonication times tested using the sonic probe ranged from 10 seconds to 60 minutes 

at 180 W/L and 10 seconds to 10 minutes at 900 W/L.  The ultrasonic frequency of the 

sonication probe was 20 kHz. 

 

4.1.1.1 Sonication at 180 W/L 

Sonication alone at 180 W/L for 30 minutes or more inactivated E. coli down to detection 

limits.  Figure 4 shows the inactivation of E. coli by sonication at 180 W/L, and the 

resulting temperature increase with sonication time.  For sonication times of 10 minutes 

or less, 0.1 – 0.4 log10 inactivation was achieved, and the temperature rose up to about 

40oC after 10 minutes.  The samples were heated up to about 45oC and 50oC with 15 and 

20 minutes of sonication, respectively, and 0.6 – 0.8 log10 inactivation of E. coli was 

observed.  After 30 minutes of sonication time, good inactivation of E. coli was obtained; 

the temperature rose to 60oC and almost no growth was recorded after disinfection.  For 

sonication times of 40 – 60 minutes, the temperature rose to 65 – 70 oC, and no growth 

was recorded.  The log10 inactivation values shown in Figure 4 for these long sonication 

times were calculated based on the detection limits of the enumeration techniques.   
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Figure 4.  Log10 inactivation of E. coli with sonication at 20 kHz  
(Power to volume ratio: 180 W/L; probe system) 

 

 

In addition to temperature increase, the turbidity of the samples also increased over time.  

Table 7 shows this phenomenon during sonication.  A slight and gradual increase from 

2.1 NTU to 2.4 NTU was recorded for sonication times of 0.5 to 5 minutes, followed by a 

substantial increase to 7.2 NTU after 10 minutes of sonication, 12.3 NTU after 20 

minutes, and 25.5 NTU after 60 minutes. 
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Table 7.  Average log10 inactivation, temperature, and turbidity at various sonication 
times (180 W/L; probe system). 

 
Sonication Time 

(min) 
Average log10 
Inactivation 

Average Final 
Turbidity (NTU) 

Average Final 
Temperature (oC) 

0.5 0.16 2.11 23.3 
1 0.08 2.16 26.4 
2 0.16 2.08 26.0 
5 0.19 2.36 29.9 
10 0.43 7.15 39.7 
20 0.84 12.30 50.7 
30 6.51 18.60 62.3 
40 7.46 21.90 68.3 
50 8.01 23.70 71.0 
60 7.45 25.50 74.0 

 

 

4.1.1.2 Sonication at 900 W/L 

The results obtained for sonication only at 900 W/L and 20 kHz were similar to results at 

180 W/L; however, dramatic increase in temperature, turbidity, and E. coli inactivation 

occurred with much shorter sonication times for the high power-to-volume ratio.  As 

shown in Figure 5, less than one log10 of E. coli reduction was achieved with sonication 

times from 10 seconds up to 3 minutes.  The temperature increased to approximately 

50oC and the turbidity to 10 NTU after 3 minutes of sonication time.  Using high power 

sonication, only 5 minutes was needed for 6 log10 inactivation of E. coli (compared to 30 

minutes at 180 W/L to achieve similar results).  No E. coli growth was recorded after 10 

minutes of sonication.   
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Figure 5.  Log10 inactivation of E. coli with sonication at 20 kHz 
(Power to volume ratio: 900 W/L; probe system) 

 

 

Table 8 shows the average inactivation of E. coli, turbidity, and temperature after 

sonicating at 900 W/L for various time intervals.  The final temperature and turbidity of 

samples subjected to 10 minutes of sonication was 77oC and 23.4 NTU, respectively.  

Using sonication at 180 W/L, less than 0.5 log10 reduction in E. coli was achieved at 10 

minutes, and the temperature and turbidity were 40oC and 7.2 NTU, respectively. 
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Table 8.  Average log10 inactivation, temperature, and turbidity at various sonication 
times (900 W/L; probe system). 

 
Sonication Time 

(min) 
Average log10 
Inactivation 

Average Final 
Turbidity (NTU) 

Average Final 
Temperature (oC) 

0.1667 0.01 2.53 24.0 
0.5 0.22 3.84 27.0 
1 0.24 5.32 31.7 
2 0.53 7.85 38.9 
3 0.69 10.09 47.4 
5 5.87 16.20 59.3 
10 7.27 23.35 77.0 

 

4.1.2 Bath System 

In addition to the sonic probe system, E. coli inactivation was also studied with the use of 

a sonic bath with a 70 W power output and frequency of 42 kHz.  The power-to-volume 

ratios tested using the bath were 180 W/L and 900 W/L, which were same as using the 

probe.  The sonication times tested for 180 W/L sonication were 1 to 60 minutes and for 

900 W/L were 1 to 50 minutes.   

 

4.1.2.1 Sonication at 180 W/L 

As can be seen in Figure 6, less than one log10 inactivation of E. coli was achieved for all 

sonication times tested from 1 to 60 minutes sonication.  Therefore using a sonic bath to 

inactivate E. coli was not effective.  A temperature increase was noted over time, but the 

extent was not as dramatic as was shown for the sonic probe system.  The highest 

temperature achieved was 51oC after 60 minutes.  The average 0.26 log10 inactivation 

was achieved for this sonication time. 
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Figure 6.  Log10 inactivation of E. coli with sonication at 42 kHz 
(Power to volume ratio: 180 W/L; bath system) 

 

 

4.1.2.2 Sonication at 900 W/L 

The inactivation results using high power (900 W/L) sonication using a sonic bath were 

similar to results using 180 W/L.  As shown in Figure 7, less than 1 log10 inactivation of 

E. coli was observed for all sonication times tested.  However, the temperatures recorded 

were not consistent for the three replicate experiments, especially for 10 minutes of 

sonication time onwards.  Inconsistent results in the log10 inactivation of E. coli at 40 and 
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Figure 7.  Log10 inactivation of E. coli with sonication at 42 kHz 
(Power to volume ratio: 900 W/L; bath system) 

 

 

50 minutes of sonication time were also observed.  Because of the poor E. coli 

inactivation efficiency and the inconsistent temperature effects when using the sonic bath, 

all combined sonication and chlorination experiments were conducted using the sonic 

probe system.   
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4.2 DISINFECTION BY COMBINED SONICATION AND CHLORINATION 

Combined sonication and chlorination experiments were carried out to determine the 

synergistic effects of the two disinfectants.  These experiments were conducted in two 

ways.   Sequential disinfection involved applying sonication followed by chlorination, 

and simultaneous disinfection was the application of sonication and chlorination at the 

same time.  As with the sonication only experiments, both sequential and simultaneous 

disinfection experiments were performed at 180 W/L as well as 900 W/L, using the sonic 

probe system.   

 

4.2.1 Sequential Application of Sonication and Chlorination 

The sequential application of sonication and chlorination involved the application of 

sonication (180 W/L or 900 W/L) followed by chlorination.  Temperature, pH, and 

turbidity measurements were taken before sonication, after sonication, and after 

chlorination.  Free and total chlorine residuals were also measured before and after 

chlorine quenching.  Since chlorine was added after sonicating for a certain amount of 

time, the temperature of the test water was elevated by the time chlorine was added for 

some experiments.  The temperatures after sonication were higher for longer sonication 

times and the high power-to-volume ratio.   

 

4.2.1.1 Sequential Application of Sonication and Chlorination at 180 W/L 

Figure 8 shows the comparison of percent inactivation of E. coli by sonication only at 

180 W/L, by chlorine only, and the sequential combination of sonication and  
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Figure 8.  Percent inactivation of E. coli from sequential application of sonication and 
chlorination (Sonication power-to-volume ratio: 180 W/L; probe system) 

 

 

chlorination.  Chlorine alone provided better E. coli inactivation than the combination of 

sonication and chlorination.  For example, with 1 minute of sonication at 180 W/L 

followed by 0.4 mg/L chlorination for 5 minutes, the overall inactivation of E. coli after 

both disinfection processes was only 25%, compared to 77% achieved by chlorine alone.  

Therefore, the sequential combination of the two disinfectants was shown to be 

ineffective, and no synergistic effects were observed.  It is hypothesized that the E. coli 

were under stress during sonication and this may have caused the bacteria to have 
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enhanced repair mechanisms.  Once sonication was over, the E. coli were more resistant 

to disinfection, hence they were not susceptible to chlorine disinfection after sonication. 

 

In Figure 8, the chlorine only results are from experiments conducted at room 

temperature.  Approximately a 3oC increase in temperature was recorded after 1 minute 

sonication at 180 W/L and 4oC after 5 minutes.  Thus, chlorination was started at a 

slightly elevated temperature.  However, this increase in temperature did not have 

significant impact on the inactivation of E. coli with regard to the chlorine only results at 

elevated temperatures (Section 4.0.2). 

 

4.2.1.2 Sequential Application of Sonication and Chlorination at 900 W/L 

Similar to the results obtained from the low power sequential application of sonication 

and chlorination, the results for high power (900 W/L) sequential disinfection were found 

to be ineffective in inactivating E. coli, as presented in Figure 9.  Although the 

combination of 2 minutes sonication at 900 W/L followed by 5 minutes of chlorination at 

0.4 mg/L provided more inactivation than sonication alone and chlorine alone, the overall 

reduction was still less than 1 log10 and thus was considered not effective.  Again, the 

results from the sequential application of sonication at 900 W/L and chlorination did not 

show synergistic effects. 

 

The temperature rose up to an average of 39oC after 2 minutes sonication at 900 W/L and 

an average of 46oC after 3 minutes.  Although the chlorine only results in Figure 8 are 

shown for a temperature of 22 – 23oC, the results are valid as it was previously shown  
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Figure 9.  Log10 inactivation of E. coli from sequential application of sonication and 
chlorination (Sonication power-to-volume ratio: 900 W/L; probe system) 

 

 

(Section 4.0.2) that this temperature increase did not significantly affect the results of 

chlorination. 

 

4.2.2 Simultaneous Application of Sonication and Chlorination 

Since the sequential application of sonication and chlorine failed to show improved 

inactivation of E. coli at both 180 W/L and 900 W/L, the effect of simultaneous 

application of the two disinfectants was tested.  In these experiments, chlorine was 
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injected into the test water at the same moment the sonicator was started at room 

temperature (22 – 23oC).  Since chlorine was involved, all simultaneous disinfection 

experiments were performed in the dark.  The test water was allowed to heat up during 

sonication, so even though chlorine was applied at room temperature, the temperature of 

the test water that contained chlorine may have risen slightly by the end of the 

experiment. 

 

4.2.2.1 Simultaneous Application of Sonication and Chlorination at 180 W/L 

Selected results from the simultaneous application of sonication at 180 W/L and 

chlorination at 0.6 mg/L are shown in Figure 10.  It should be noted that the chlorine only 

results presented are for room temperature (22 – 23oC) chlorination.  The temperature 

effect was not significant in this case as sonication for 5 minutes at 180 W/L did not 

cause the temperature to rise substantially.  Temperature rose up to approximately 39oC 

after 5 minutes of simultaneous disinfection at 180 W/L, this increase in temperature did 

not significantly impact the effect of chlorine on the inactivation of E. coli, with regard to 

Section 4.0.2.  For all disinfection times tested, inactivation of E. coli by simultaneous 

sonication and chlorine was greater than what would be predicted based on the additive 

effect of sonication only and chlorination only.  For example, 2 minutes of sonication 

alone achieved 0.16 log10 inactivation and 2 minutes of chlorination at 0.6 mg/L achieved 

1.28 log10 inactivation of E. coli.  When applied simultaneously, 5.10 log10 inactivation 

was achieved (compared to 1.44 log10 inactivation predicted if the results were additive).  

As a result, sonication provided a synergistic effect in the inactivation of E. coli when 

sonication and chlorination were applied simultaneously.  It is possible that sonication  
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Figure 10.  Log10 inactivation of E. coli from simultaneous application of sonication and 
chlorination (Sonication power-to-volume ratio: 180 W/L; probe system; chlorine dose 

0.6 mg/L) 
 

 

stressed the organisms, hence they were more susceptible to chlorine.  For the 5 minute 

contact time, chlorine alone was already effective (4.13 log10 inactivation), therefore the 

synergistic effect of sonication and chlorination was not as pronounced as for the 1 and 2 

minute contact times. 
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4.2.2.2 Simultaneous Application of Sonication and Chlorination at 900 W/L 

Figure 11 shows the log10 inactivation of E. coli when it was subjected to sonication only 

at 900 W/L, chlorine only at 0.6 mg/L (at room temperature), and the simultaneous 

application of sonication at 900 W/L and chlorination at 0.6 mg/L.  Results are similar to 

the results shown for simultaneous disinfection using 180 W/L sonication, as the 

synergistic effect of sonication can also be seen at this high power combination.  For 

example at 2 minutes, 0.53 log10 inactivation of E. coli was achieved by sonication only 

at 900 W/L, 1.28 log10 inactivation of E. coli was obtained by chlorination only at 0.6 

mg/L, but 4.5 log10 inactivation was recorded with simultaneous disinfection.   

 

The shorter disinfection time periods chosen (10 seconds, 30 seconds, 1, 2, and 3 

minutes) were used because the heating effect of sonication at 900 W/L was not yet 

significant.  After 2 minutes of simultaneous disinfection at 900 W/L, the temperature 

rose to an average of 37.7oC.  At this temperature, the effects of ultrasonic waves 

predominate over the effects of heating alone, as shown in Section 4.3.3 and inactivation 

is minimal (approximately 0.1 log10).  With reference to Figure 3 (chorination alone at 

room and elevated temperatures), a temperature of 39oC did not have a significant effect 

on E. coli inactivation by chlorination alone for 2 minutes.  It can be concluded that the 

temperature rise after 2 minutes of simultaneous disinfection at the high power-to-volume 

ratio did not significantly affect the germicidal efficiency of chlorine at the fixed dose of 

0.6 mg/L.  Therefore, ultrasonic waves, and not heating, resulted in synergistic effects 

with chlorine. 
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Figure 11.  Log10 inactivation of E. coli from simultaneous application of sonication and 
chlorination (Sonication power-to-volume ratio: 900 W/L; probe system; chlorine dose 

0.6 mg/L) 

 

 

4.3 TEMPERATURE EFFECTS ON INACTIVATION 

The purpose of performing heating alone experiments was to understand the effects of 

temperature on the inactivation of E. coli.  Sonication using the probe system, particularly 

at 900 W/L, caused the temperature of the sample to rise up dramatically within a short 

period of time.  It was uncertain whether the physical effect of the ultrasonic waves or the 

elevated temperature inactivated the E. coli.  Results from the heating alone experiments 

provided means to separate the effects of sonication and temperature.   
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4.3.1 Temperature Profile Over Time in E-pure Water 

Before investigating the effect of temperature on E. coli, an experiment was done using a 

water bath to attempt to mimic the temperature rise of E-pure water that was observed 

with the sonic probe.  The water bath was warmed up to 80oC, then a 250-mL media 

bottle containing 100 mL of E-pure water was placed in the center of the water bath.  The 

temperature of E-pure water inside the media bottle was recorded over time.  

 

Table 9 shows temperatures from the heating only experiment with E-pure water 

compared to the temperatures observed during high power sonication using the probe 

system.  The temperatures due to heating only matched with the ones due to sonication 

only, in terms of the temperature rise pattern and the temperature values.  It was also 

observed that E-pure water heated up slightly faster in the first 5 minutes than the E. coli 

solution, then rate of heating slowed down after that. 

 

 

Table 9.  Comparison of temperatures due to heating only and sonication only at 900 
W/L. (preliminary experiment with E-pure water) 

 
Time 

(minutes) 
Temperature oC (Heating Only) 

with E-pure Water) 
Temperature oC (Sonication 

Only, 900 W/L, probe) 
1 35.0 31.7 
2 44.5 38.9 
3 52.0 47.4 
5 63.0 59.3 
10 71.5 77.0 
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4.3.2 Temperature Profile Over Time in E. coli 

An experiment was performed to study the temperature effects on E. coli compared to 

sonication alone at 900 W/L.  E. coli was spiked into PBS test water and the experiment 

was carried out in an 80oC water bath.  Three replicates were conducted for this 

experiment.  The pattern and extent of temperature increase of the E. coli solution 

matched with that of the sonication only experiments, as illustrated below in Table 10.  

 

 

Table 10.  Comparison of temperatures due to heating only and sonication only at 900 
W/L. (E. coli in PBS) 

 
Time 

(minutes) 
Temperature oC (Heating Only 

with E. coli) 
Temperature oC (Sonication 

Only, 900 W/L, probe) 
1 30.2 31.7 
2 41.3 38.9 
3 50.7 47.4 
5 62.7 59.3 
10 72.2 77.0 

 
 

 

Figure 12 shows the log10 inactivation of E. coli due to heating alone versus time.  In 

terms of E. coli inactivation, less than one log10 of reduction was achieved at temperature 

below 60oC, which corresponded to the first 4 minutes of the experiment.  At 

temperatures over 60oC (5 - 10 minutes), the log10 inactivation of E. coli increased 

sharply and counts were at or below detection limits.  
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Figure 12.  Effects of temperature on E. coli inactivation with respect to time. 
 

 

4.3.3 Comparison of Inactivation by Sonication Versus Heating Only 

Figure 13 compares the log10 inactivation of E. coli when it was subjected to heating 

alone versus sonication using the probe system at 900 W/L.  The data shown in the 

Figure 13 are the average values of the results from the replicate experiments.  The 

temperature profiles for heating only and sonication matched fairly closely.  At 

temperatures lower than 60oC and when the disinfection time was 4 minutes or shorter,  
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Figure 13.  Comparison of temperature and log10 inactivation of E. coli by heating alone 
and sonication alone at 900 W/L. 

 

 

 
sonication had a small effect on the inactivation of E. coli.  Sonication provided about 0.3 

log10 inactivation of E. coli while heating alone resulted in approximately 0.2 log10 

inactivation.  However, at temperatures higher than 60oC and disinfection time of 5 

minutes or above, the temperature effect became significant, and E. coli was inactivated 

mainly due to heating.  
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CHAPTER 5 
CONCLUSIONS AND RECOMMENDATIONS 

 

5.0  CONCLUSIONS 

This research studied the inactivation of E. coli by chlorination, sonication, and combined 

disinfection (sonication and chlorination).  Chlorine only experiments were conducted 

with various chlorine dosages, chlorine contact times, and starting temperatures.  

Sonication only experiments were performed using either a sonication probe or a sonic 

bath system.  Two power-to-volume ratios were tested with a wide range of sonication 

times.  For the combined sonication and chlorination experiments, the disinfectants were 

applied both sequentially and simultaneously using the probe system.  Based on the 

experimental parameters tested in this study, the conclusions are as follows: 

 

1. Under room temperature conditions and a 5-minute contact time, the inactivation of 

E. coli by chlorine increased with chlorine dose.  Less than 1 log10 of inactivation 

was achieved with chlorine doses of 0.2 and 0.4 mg/L.  When chlorine concentration 

was raised to 0.6 mg/L or greater, approximately 5 log10 inactivation of E. coli was 

achieved.  

 

2. The data for fixed chlorine dose at 0.6 mg/L with varying contact times were 

inconsistent, therefore a definite conclusion could not be drawn. 

 

3. Elevated temperatures (32oC and 39oC) did not significantly affect the log10 

inactivation of E. coli by chlorine compared to the inactivation at room temperature. 
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4. The sonication probe system was more effective at inactivating E. coli than the sonic 

bath system.  The sonic bath achieved less than 1 log10 inactivation of E. coli even 

with longest sonication time tested (60 minutes for 180 W/L; 50 minutes for 900 

W/L).  Therefore, the sonication probe system was used for in-depth sonication only 

studies as well as the combined sonication and chlorination experiments. 

 

5. At both 180 W/L and 900 W/L, sonication alone with the probe system achieved 

inactivation over time. At 180 W/L, less than 1 log10 inactivation of E. coli was 

recorded within the first 20 minutes of sonication, but significant inactivation 

(greater than 7.5 log10) was achieved from 30 to 60 minutes.  At 900 W/L, 

inactivation occurred more quickly, with greater than 7.5 log10 inactivation for 5 to 

10 minutes of sonication time. 

 

6. A substantial increase in sample temperature over time was recorded for both 180 

W/L and 900 W/L sonication (probe system).  Temperature increased at a faster rate 

at the high power-to-volume ratio.  It took only 5 minutes for the E. coli samples to 

reach the pasteurization temperature (approximately 60oC) after sonicating at the 

high power-to-volume ratio, compared to 30 minutes at the low power-to-volume 

ratio. 

 

7. Turbidity increased substantially over time when sonication was applied.  Similar to 

the temperature increase, the high power sonication caused the turbidity of the E. coli 
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sample solutions to rise much faster than low power sonication.  After sonicating for 

10 minutes at 180 W/L, the average final turbidity was approximately 7 NTU.  Given 

the same duration of sonication at 900 W/L, the average final turbidity was 23 NTU. 

 

8. Heating experiments showed that the inactivation of E. coli by sonication was 

primarily due to heating rather than the effect of ultrasonic waves. 

 

9. Sequential application of sonication and chlorination was found to be ineffective, as 

chlorine alone provided more E. coli inactivation than the combination of two 

disinfectants. 

 

10. The synergistic effect of sonication was observed when sonication and chlorination 

were applied simultaneously at both 180 W/L and 900 W/L using the sonication 

probe system.  The resulting E. coli inactivation after simultaneous application of 

sonication and chlorination was greater than the additive inactivation achieved by 

chlorine alone and sonication alone.  

 

11.Disinfection by sonication alone is not practical due to the long time or high power 

output required.  However, simultaneous application of sonication and chlorine 

achieved significantly higher inactivation levels than chlorination alone.  Thus, lower 

chlorine doses can be used to achieve the same inactivation.  Ultrasound as a 

synergistic disinfectant has the potential to reduce the amount of chlorine used and 

the amount of halogenated disinfection by-products formed during chlorination. 
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5.1 RECOMMENDATIONS 

Due to the limited time frame of this research, it is recommended that additional research 

on sonication is conducted.  Specific recommendations are as follows. 

 

1. Water obtained from raw water sources should be used to study the effects of 

natural organic matter on the disinfection methods carried out in this research.  

 

2. More chlorination alone experiments are needed as the results were inconsistent. 

 

3. Using a sonication probe system, other sonication frequencies should be tested to 

determine the most effective frequency for the simultaneous application of 

sonication and chlorination experiments to maximize the synergistic effects of 

sonication.  

 

4. A cost analysis of sonication, whether ultrasound serves as a sole or synergistic 

disinfectant, is strongly recommended.  This analysis should include capital costs 

and electricity costs based on the duration and intensity of sonication needed for a 

particular application. 
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Chlorination of E. coli
Performed in 300 mL BOD bottles

Chlorine Time Pre count Post count Initial Final Initial Final 
Exp # (mg/L) (min) (cfu/ml) (cfu/ml) % inact. log10 inact. - log10 n/no Temp (oC) Temp (oC) Turb (NTU) Turb (NTU) % inact. log10 inact.

16 0.2 5 2.53E+07 3.39E+07 -33.9921 -0.127 0.127 missed missed 2.40 missed
30 0.2 5 3.30E+07 2.06E+07 37.5758 0.205 -0.205 21.5 22.0 2.23 2.01
31 0.2 5 2.23E+07 6.47E+06 70.9865 0.537 -0.537 21.5 21.5 2.08 1.95 24.857 0.124
17 0.4 5 3.47E+07 1.31E+07 62.2478 0.423 -0.423 missed missed 2.44 missed
33 0.4 5 3.77E+07 7.90E+06 79.0451 0.679 -0.679 22.0 22.0 2.59 1.99
34 0.4 5 4.23E+07 5.03E+06 88.1087 0.925 -0.925 22.0 22.0 2.31 1.82 76.467 0.628
23 0.54 5 4.83E+07 3.03E+04 99.9373 3.203 -3.203 22.0 22.0 1.95 1.56
24 0.54 5 6.17E+07 6.43E+04 99.8958 2.982 -2.982 22.0 22.0 2.05 1.68 99.917 3.078
10 0.6 5 7.77E+07 3.00E+01 100.0000 6.413 -6.413 missed missed 2.30 missed
11 0.6 5 2.56E+07 3.87E+01 99.9998 5.821 -5.821 missed missed 2.19 missed
35 0.6 5 4.23E+07 9.23E+03 99.9782 3.661 -3.661 22.0 22.0 2.17 1.86 99.993 4.134
8 1 5 7.23E+07 1.61E+02 99.9998 5.652 -5.652 missed missed 2.28 missed
9 1 5 5.97E+08 4.70E+00 100.0000 8.104 -8.104 missed missed 2.17 missed
36 1 5 3.43E+07 5.00E+02 99.9985 4.836 -4.836 22.0 22.0 2.12 2.55 99.999 5.252

Chlorine Time Pre count Post count Initial Final Initial Final 
Exp # (mg/L) (min) (cfu/ml) (cfu/ml) % inact. log10 inact. - log10 n/no Temp (oC) Temp (oC) Turb (NTU) Turb (NTU) % inact. log10 inact.
129 0.6 0.167 2.64E+07 1.21E+06 95.417 1.339 -1.339 22.0 22.0 2.47 1.56
130 0.6 0.167 2.31E+07 3.60E+03 99.984 3.807 -3.807 22.0 22.0 2.44 1.85
131 0.6 0.167 1.80E+07 7.33E+05 95.928 1.390 -1.390 22.5 22.5 2.44 1.75
171 0.6 0.167 3.97E+07 1.14E+03 99.997 4.542 -4.542 22.0 22.0 1.99 1.43 97.831 1.664
126 0.6 0.5 2.05E+07 2.97E+03 99.986 3.839 -3.839 22.5 22.5 2.89 1.83
127 0.6 0.5 1.79E+07 3.00E+03 99.983 3.776 -3.776 22.5 22.5 2.78 1.78
128 0.6 0.5 2.38E+07 3.10E+03 99.987 3.885 -3.885 22.5 22.5 2.81 1.71
172 0.6 0.5 5.17E+07 3.60E+02 99.999 5.157 -5.157 22.0 22.0 2.03 2.43 99.989 3.949
105 0.6 1 2.83E+07 3.23E+06 88.587 0.943 -0.943 22.0 22.0 2.17 1.80
107 0.6 1 2.40E+07 2.43E+05 98.988 1.995 -1.995 21.0 21.0 2.45 1.68
108 0.6 1 2.18E+07 4.17E+03 99.981 3.718 -3.718 21.0 21.0 2.43 1.62
173 0.6 1 3.60E+07 5.33E+01 100.000 5.830 -5.830 22.0 22.0 1.86 1.47 96.889 1.507
109 0.6 2 2.35E+07 9.10E+04 99.613 2.412 -2.412 21.0 21.5 2.33 1.57
110 0.6 2 2.83E+07 2.45E+04 99.913 3.063 -3.063 20.0 20.0 1.89 1.49
112 0.6 2 2.93E+07 6.07E+06 79.283 0.684 -0.684 20.0 20.5 1.83 1.55
174 0.6 2 3.40E+07 4.37E+03 99.987 3.891 -3.891 22.0 22.0 1.90 1.52 94.699 1.276
123 0.6 3 2.53E+07 5.77E+03 99.977 3.642 -3.642 22.0 22.0 2.10 1.66
124 0.6 3 2.63E+07 1.29E+03 99.995 4.310 -4.310 22.0 22.0 1.93 1.57
125 0.6 3 2.32E+07 8.07E+02 99.997 4.459 -4.459 22.0 22.0 1.85 1.58 99.990 3.983
10 0.6 5 7.77E+07 3.00E+01 100.000 6.413 -6.413 missed missed 2.30 missed
11 0.6 5 2.56E+07 3.87E+01 100.000 5.821 -5.821 missed missed 2.19 missed
35 0.6 5 4.23E+07 9.23E+03 99.978 3.661 -3.661 22.0 22.0 2.17 1.86 99.993 4.134
154 0.6 1 2.06E+07 1.63E+06 92.087 1.102 -1.102 32.0 30.0 1.76 1.66
155 0.6 1 2.20E+07 4.00E+03 99.982 3.740 -3.740 32.0 30.0 1.76 1.56
156 0.6 1 1.80E+07 4.43E+06 75.389 0.609 -0.609 32.0 30.0 1.77 1.65
175 0.6 1 2.96E+07 1.50E+04 99.949 3.295 -3.295 32.0 31.0 1.91 1.78 91.852 1.089
157 0.6 2 1.72E+07 1.00E+04 99.942 3.236 -3.236 39.0 37.0 1.54 1.76
158 0.6 2 2.25E+07 1.66E+06 92.622 1.132 -1.132 39.0 37.0 2.29 2.02
159 0.6 2 1.69E+07 2.22E+06 86.864 0.882 -0.882 39.0 36.5 1.37 1.65
176 0.6 2 6.33E+07 1.21E+04 99.981 3.719 -3.719 39.0 35.5 1.71 1.76 94.852 1.288

AVERAGE
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Sonication of E. coli
Low power to volume ratio (500 mL volume, highest power setting - 10)
Probe system
Bold numbers indicate no counts - detection limit value substituted

Sonic Pre count Post count Initial Final Initial Final Output
Exp # Time (min) (cfu/ml) (cfu/ml) % inact. log10 inact. - log10 n/no Temp (oC) Temp (oC) Turb (NTU) Turb (NTU) Power (W) % inact. log10 inact. Final Turb. Final Temp.
136 0.1667 3.67E+07 2.17E+07 40.872 0.228 -0.228 22.5 22.0 1.87 missed 93
137 0.1667 2.21E+07 3.77E+07 -70.588 -0.232 0.232 22.5 22.0 1.61 missed 96
138 0.1667 2.71E+07 1.86E+07 31.365 0.163 -0.163 22.5 22.0 1.80 missed 96-93 0.550 0.002 missed 22.0
136 0.5 3.67E+07 1.75E+07 52.316 0.322 -0.322 22.5 23.0 1.87 2.16 93
137 0.5 2.21E+07 1.62E+07 26.697 0.135 -0.135 22.5 23.5 1.61 1.95 96-93
138 0.5 2.71E+07 2.39E+07 11.808 0.055 -0.055 22.5 23.5 1.80 2.22 93 30.274 0.157 2.11 23.3
13 1 8.40E+07 4.03E+07 52.024 0.319 -0.319 24.0 26.5 2.18 2.19 96
25 1 3.45E+07 1.83E+07 46.957 0.275 -0.275 20.0 22.0 2.00 missed 90
18 1 2.09E+07 2.15E+07 -2.871 -0.012 0.012 25.5 28.0 2.05 2.01 90
19 1 2.59E+07 3.04E+07 -17.375 -0.070 0.070 25.0 26.5 2.29 2.26 90
20 1 3.31E+07 2.99E+07 9.668 0.044 -0.044 26.0 29.0 2.26 2.16 missed 17.681 0.084 2.16 26.4
14 2 3.53E+07 2.12E+07 39.943 0.221 -0.221 24.5 28.0 2.31 2.08 93
25 2 3.45E+07 3.11E+07 9.855 0.045 -0.045 20.0 24.0 2.00 missed 90

160 2 2.30E+07 1.31E+07 43.043 0.244 -0.244 23.0 26.0 2.34 3.38 93-90 30.947 0.161 2.73 26.0
15 5 2.98E+07 1.74E+07 41.611 0.234 -0.234 24.0 27.5 2.17 1.67 93
21 5 2.51E+07 1.70E+07 32.271 0.169 -0.169 22.0 31.0 2.60 1.75 missed
22 5 2.52E+07 2.45E+07 2.778 0.012 -0.012 22.0 32.0 1.96 1.54 missed
37 5 3.83E+07 2.44E+07 36.292 0.196 -0.196 21.0 30.0 2.03 4.46 84
25 5 3.45E+07 1.20E+07 65.217 0.459 -0.459 20.0 29.0 2.00 missed 93 35.634 0.191 2.36 29.9
25 10 3.45E+07 1.35E+07 60.870 0.407 -0.407 20.0 37.0 2.00 missed 90-81
44 10 3.73E+07 1.33E+07 64.343 0.448 -0.448 23.0 41.0 2.16 7.22 84-81
45 10 4.17E+07 1.51E+07 63.789 0.441 -0.441 23.0 41.0 2.01 7.07 84-76 63.001 0.432 7.15 39.7
25 15 3.45E+07 1.36E+07 60.580 0.404 -0.404 20.0 44.0 2.00 missed 81-78
38 15 3.97E+07 6.23E+06 84.307 0.804 -0.804 21.0 45.0 2.23 missed 87-78
39 15 2.60E+07 4.87E+06 81.269 0.727 -0.727 21.5 45.0 2.05 missed 84-75 75.385 0.609 missed 44.7
25 20 3.45E+07 8.33E+06 75.855 0.617 -0.617 20.0 50.0 2.00 missed 78-75
38 20 3.97E+07 2.97E+06 92.519 1.126 -1.126 21.0 51.0 2.23 13.00 78-75
39 20 2.60E+07 2.96E+06 88.615 0.944 -0.944 21.5 51.0 2.05 11.60 75 85.663 0.844 12.30 50.7
25 30 3.45E+07 1.00E+01 100.000 6.538 -6.538 20.0 59.0 2.00 missed 72-69

161 30 2.51E+07 9.33E+00 100.000 6.430 -6.430 23.0 64.0 2.18 18.50 90-75
162 30 1.94E+07 5.00E+00 100.000 6.589 -6.589 23.0 64.0 3.72 18.70 90-72 100.000 6.514 18.60 62.3
25 40 3.45E+07 1.00E+00 100.000 7.538 -7.538 20.0 66.0 2.00 missed 69-66

167 40 2.13E+07 1.00E+00 100.000 7.328 -7.328 22.0 69.0 2.20 21.90 87-63
168 40 3.53E+07 1.00E+00 100.000 7.548 -7.548 22.0 70.0 2.44 21.90 81-63 100.000 7.459 21.90 68.3
25 50 3.45E+07 1.00E+00 100.000 7.538 -7.538 20.0 70.0 2.00 missed 66-60

163 50 4.83E+07 6.70E-03 100.000 9.858 -9.858 22.0 72.0 2.26 25.70 90-66
166 50 3.23E+07 1.30E-02 100.000 9.395 -9.395 22.0 71.0 2.15 21.70 84-57 100.000 8.007 23.70 71.0
25 60 3.45E+07 1.00E+00 100.00 7.538 -7.538 20.0 72.0 2.00 missed 60-57

164 60 2.35E+07 1.00E+00 100.00 7.371 -7.371 22.0 75.0 2.86 28.80 84-60
165 60 2.80E+07 1.00E+00 100.00 7.447 -7.447 22.0 75.0 2.01 22.20 84-57 100.000 7.447 25.50 74.0

AVERAGE AVERAGE
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Sonication + Chlorination of E. coli
Low power to volume ratio (500 mL volume, highest power setting - 10)
Probe System

Sonic Chlorine Pre count Initial Initial Post sonic Post sonic Post sonic Post S+C Post S+C Post S+C
Exp # Time (min) (mg/L) (cfu/mL)  Temp (oC) Turb (NTU) count (cfu/mL)  Temp (oC) Turb (NTU) count (cfu/mL)  Temp (oC) Turb (NTU) % inact. log10 inact. % inact. log10 inact. % inact. log10 inact.

18 1 0.4 2.09E+07 25.5 2.05 2.15E+07 28.0 2.01 1.57E+07 25.5 1.86 -2.871 -0.012 24.8804 0.124
19 1 0.2 2.59E+07 25.0 2.29 3.04E+07 26.5 2.26 2.23E+07 24.0 2.29 -17.375 -0.070 13.8996 0.065
20 1 0.6 3.31E+07 26.0 2.26 2.99E+07 29.0 2.16 TNTC 25.0 1.61 9.668 0.044 - - - -
21 5 0.54 2.51E+07 22.0 2.60 1.70E+07 31.0 1.75 3.03E+04 missed 1.35 32.271 0.169 99.8793 2.918
22 5 0.54 2.52E+07 22.0 1.96 2.45E+07 32.0 1.54 2.79E+06 28.0 1.45 2.778 0.012 88.9286 0.956
37 5 0.54 3.83E+07 21.0 2.03 2.44E+07 30.0 4.46 7.77E+03 26.5 3.73 36.292 0.196 99.9797 3.693 96.2625 1.427

Sonic Chlorine Pre count Initial Initial Post count Post Post Output 
Exp # Time (min) (mg/L) (cfu/mL)  Temp (oC) Turb (NTU) count (cfu/mL) Temp (oC) Turb (NTU) Power (W) % inact. log10 inact. -log10 n/no' % inact. log10 inact. Final Turb. Final Temp.
133 0.1667 0.6 3.23E+07 22.5 2.35 1.23E+03 23.0 1.84 missed 99.996 4.418 -5.473
134 0.1667 0.6 1.87E+07 22.5 2.38 4.53E+02 23.0 1.66 missed 99.998 4.615 -5.473
141 0.1667 0.6 4.70E+07 22.0 1.92 3.07E+01 23.0 1.54 90 100.000 6.185 -5.473 99.998 4.677 1.68 23.0
135 0.5 0.6 2.26E+07 22.5 2.27 3.13E+02 23.5 1.63 missed 99.999 4.859 -5.473
139 0.5 0.6 3.27E+07 22.0 2.16 1.62E+02 23.0 1.83 96-93 100.000 5.305 -5.473
140 0.5 0.6 3.10E+07 22.0 1.94 8.97E+01 23.0 1.84 90 100.000 5.539 -5.473 99.999 5.141 1.77 23.2
89 1 0.6 2.74E+07 21.0 2.22 9.23E+01 23.0 2.12 90-87 100.000 5.473 -5.473
90 1 0.6 3.47E+07 21.5 2.22 3.37E+01 23.5 2.12 90-87 100.000 6.013 -6.013
91 1 0.6 2.72E+07 21.5 2.29 6.60E+03 23.5 2.24 87 99.976 3.615 -3.661 99.992 4.084 2.16 23.3
77 2 0.4 2.34E+07 20.0 2.10 1.50E+07 23.5 3.01 90-87 35.897 0.193 -0.193
78 2 0.4 2.49E+07 20.0 2.10 1.56E+07 24.0 3.03 87-84 37.349 0.203 -0.203
88 2 0.4 3.03E+07 20.0 2.15 4.97E+06 22.5 2.72 87-84 83.597 0.785 -0.785 52.281 0.321 2.92 23.3
79 2 0.6 2.29E+07 22.0 2.17 4.33E+02 26.5 2.65 90-87 99.998 4.723 -4.723
83 2 0.6 2.42E+07 20.0 2.24 6.83E+01 24.5 2.67 87 100.000 5.549 -5.549
84 2 0.6 2.38E+07 20.0 2.18 4.87E+01 24.0 2.47 87 100.000 5.689 -5.689 99.999 5.101 2.60 25.0
82 2 1.0 2.78E+07 20.0 2.15 1.77E+02 23.5 3.19 90 99.999 5.195 -5.195
86 2 1.0 2.38E+07 20.0 2.26 4.63E+01 23.5 2.59 93-90 100.000 5.711 -5.711
87 2 1.0 2.47E+07 20.0 2.14 1.87E+00 23.0 3.03 87-84 100.000 7.121 -7.121 100.000 5.553 2.94 23.3
92 3 0.6 2.27E+07 21.5 2.28 8.80E+01 27.5 3.06 87-84 100.000 5.412 -5.412
93 3 0.6 3.00E+07 22.5 2.16 2.02E+02 28.5 3.01 90-87 99.999 5.172 -5.100
94 3 0.6 2.67E+07 22.5 2.14 3.90E+02 28.5 3.07 87 99.999 4.835 -4.835 99.999 5.076 3.05 2802.0
95 5 0.6 2.46E+07 22.5 2.17 2.17E+02 32.0 4.27 90-84 99.999 5.054 -5.054
97 5 0.6 2.40E+07 20.0 1.99 9.67E+00 28.0 3.89 87-84 100.000 6.395 -6.395
98 5 0.6 2.23E+07 20.0 1.95 1.73E+01 28.5 3.80 87-84 100.000 6.110 -6.110 100.000 5.477 3.99 29.5
96 10 0.6 2.84E+07 22.5 2.14 2.43E+01 40.5 6.38 87-84 100.000 6.068 -6.068
99 10 0.6 4.47E+07 22.0 2.03 2.03E+02 39.5 6.86 90-84 100.000 5.342 -5.342
100 10 0.6 4.07E+07 22.0 2.04 3.83E+01 39.5 6.50 87-81 100.000 6.026 -6.026 100.000 5.675 6.58 39.8

Simultaneous

Sequential
Average - S+C

AVERAGEAverage
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Sonication of E. coli
High power to volume ratio (100 mL volume, highest power setting - 10)
Probe System
Bold numbers indicate no counts - detection limit value substituted

Sonic Pre count Post count Initial Final Initial Final Output
Exp # Time (min) (cfu/mL) (cfu/mL) % inact. log10 inact. -log10 n/no Temp (oC) Temp (oC) Turb (NTU) Turb (NTU) Power (W) % inact. log10 inact. Temp (oC) Turb (NTU)
142 0.1667 3.40E+07 2.58E+07 24.118 0.120 -0.120 22.5 24.0 2.04 2.57 93
143 0.1667 2.02E+07 2.00E+07 0.990 0.004 -0.004 22.5 24.0 2.02 2.49 93
144 0.1667 2.13E+07 2.57E+07 -20.657 -0.082 0.082 22.5 24.0 2.00 2.54 93 1.483 0.0065 24.0 2.53
145 0.5 3.07E+07 1.83E+07 40.391 0.225 -0.225 22.0 27.0 1.96 3.74 93-90
146 0.5 2.23E+07 1.91E+07 14.350 0.067 -0.067 22.0 27.0 2.09 3.94 93-90
147 0.5 4.07E+07 1.46E+07 64.128 0.445 -0.445 22.0 27.0 2.21 3.84 90 39.623 0.2191 27.0 3.84
26 1 1.02E+08 3.14E+07 69.216 0.512 -0.512 22.0 31.0 2.50 4.80 87
42 1 2.25E+07 1.95E+07 13.333 0.062 -0.062 23.0 32.0 2.25 5.53 87-84
43 1 2.66E+07 1.50E+07 43.609 0.249 -0.249 23.0 32.0 2.26 5.62 84 42.053 0.2370 31.7 5.32
26 2 1.02E+08 1.69E+07 83.431 0.781 -0.781 22.0 38.0 2.50 7.40 87
28 2 6.23E+07 1.99E+07 68.058 0.496 -0.496 23.0 39.5 2.39 8.86 87-84
29 2 5.77E+07 1.37E+07 76.256 0.624 -0.624 22.0 40.0 2.14 7.82 87-84
51 2 2.68E+07 7.63E+06 71.530 0.546 -0.546 22.0 39.5 1.89 7.58 90-87
52 2 5.43E+07 1.14E+07 79.006 0.678 -0.678 22.0 39.0 2.20 7.91 90-87
53 2 2.40E+07 1.14E+07 52.500 0.323 -0.323 22.0 38.0 2.01 7.90 90
54 2 2.27E+07 9.43E+06 58.458 0.382 -0.382 22.0 38.0 1.85 7.35 90
55 2 2.86E+07 8.10E+06 71.678 0.548 -0.548 23.0 40.0 1.79 7.35 87-84
56 2 3.50E+07 7.63E+06 78.200 0.662 -0.662 21.5 38.0 2.32 8.06 90-87
57 2 2.77E+07 9.73E+06 64.874 0.454 -0.454 22.0 38.5 2.57 8.24 90-87 70.399 0.5287 38.9 7.85
26 3 1.02E+08 1.41E+07 86.176 0.859 -0.859 22.0 45.0 2.50 10.60 87
40 3 1.75E+07 5.33E+06 69.543 0.516 -0.516 22.0 49.0 2.51 8.87 87-81
41 3 2.45E+07 4.90E+06 80.000 0.699 -0.699 24.0 50.0 2.19 10.50 87-81
58 3 3.40E+07 6.17E+06 81.853 0.741 -0.741 21.5 45.5 2.20 10.40 90-87 79.393 0.6860 47.4 10.09
46 5 5.20E+07 1.56E+02 100.000 5.523 -5.523 21.0 58.0 2.08 13.10 90-78
48 5 2.88E+07 1.10E+01 100.000 6.418 -6.418 25.0 62.0 2.25 17.60 87-72
101 5 4.50E+07 3.00E+01 100.000 6.176 -6.176 22.0 58.0 2.22 17.90 90-78 100.000 5.8698 59.3 16.20
47 10 3.06E+07 9.67E-01 100.000 7.500 -7.500 22.0 77.0 2.00 19.30 90-63
49 10 4.67E+07 4.00E-02 100.000 9.067 -9.067 23.0 77.0 3.11 missed 87-63
102 10 3.37E+07 4.35E+00 100.000 6.889 -6.889 22.0 77.0 2.24 27.40 90-60 100.000 7.2688 77.0 23.35

AVERAGE AVERAGE
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Sonication + Chlorination of E. coli
High power to volume ratio (100 mL volume, highest power setting - 10)
Probe system

Sequential
Sonic Chlorine Pre count Post sonic Post chlorine Initial Post sonic Initial Post sonic Post chlorine Output

Exp # Time (min) (mg/L) (cfu/mL) count (cfu/mL) count (cfu/mL) % inact. log10 inact. % inact. log10 inact. Temp (oC) Temp (oC) Turb (NTU) Turb (NTU) Turb (NTU) Power (W) % inact. log10 inact.
28 2 0.4 6.23E+07 1.99E+07 8.33E+06 68.058 0.496 86.629 0.874 23.0 39.5 2.39 8.86 5.9 87-84
29 2 0.4 5.77E+07 1.37E+07 9.03E+06 76.256 0.624 84.350 0.805 22.0 40.0 2.14 7.82 6.55 87-84
51 2 0.4 2.68E+07 7.63E+06 2.80E+06 71.530 0.546 89.552 0.981 22.0 39.5 1.89 7.58 6.78 90-87 86.844 0.881
52 2 0.6 5.43E+07 1.14E+07 1.56E+06 79.006 0.678 97.127 1.542 22.0 39.0 2.20 7.91 6.21 90-87
53 2 0.6 2.40E+07 1.14E+07 1.79E+06 52.500 0.323 92.542 1.127 22.0 38.0 2.01 7.90 6.62 90
54 2 0.6 2.27E+07 9.43E+06 1.79E+06 58.458 0.382 92.115 1.103 22.0 38.0 1.85 7.35 6.72 90 93.928 1.217
55 2 1.0 2.86E+07 8.10E+06 1.52E+04 71.678 0.548 99.947 3.275 23.0 40.0 1.79 7.35 4.75 87-84
56 2 1.0 3.50E+07 7.63E+06 6.40E+03 78.200 0.662 99.982 3.738 21.5 38.0 2.32 8.06 6.53 90-87
57 2 1.0 2.77E+07 9.73E+06 2.57E+04 64.874 0.454 99.907 3.033 22.0 38.5 2.57 8.24 7.04 90-87 99.945 3.262
58 3 0.6 3.40E+07 6.17E+06 2.80E+06 81.853 0.741 91.765 1.084 21.5 45.5 2.20 10.40 8.89 90-87 91.765 1.084

Disinf. Chlorine Pre count Post sonic Initial Final Initial Final Output
Exp # Time (min) (mg/L) (cfu/mL) count (cfu/mL) % inact. log10 inact. -log10 n/no Temp (oC) Temp (oC) Turb (NTU) Turb (NTU) Power (W) % inact. log10 inact. Temp (oC) Turb (NTU)
148 0.1667 0.6 1.35E+07 1.86E+06 86.222 0.861 -3.730 22.5 24.0 2.37 2.51 93
149 0.1667 0.6 1.71E+07 4.63E+02 99.997 4.567 -3.730 22.5 24.0 1.68 1.99 93
150 0.1667 0.6 1.86E+07 9.13E+01 100.000 5.309 -3.730 22.5 24.0 1.95 1.98 93 95.406 1.338 24.0 2.16
151 0.5 0.6 2.18E+07 4.33E+02 99.998 4.702 -3.730 22.5 26.5 1.50 2.91 90
152 0.5 0.6 3.67E+07 4.37E+02 99.999 4.924 -3.730 22.5 27.0 1.49 2.99 90
153 0.5 0.6 2.37E+07 7.40E+01 100.000 5.506 -3.730 22.5 27.0 1.94 3.02 93-90 99.999 4.934 26.8 2.97
70 1 0.6 2.70E+07 5.03E+03 99.981 3.730 -3.730 23.0 33.0 2.42 5.29 87
71 1 0.6 2.49E+07 6.20E+03 99.975 3.604 -3.604 22.5 31.0 2.15 4.55 90-87
72 1 0.6 2.42E+07 4.30E+03 99.982 3.750 -3.750 22.5 31.0 2.18 4.45 90-87 99.980 3.690 31.7 4.76
62 2 0.4 2.36E+07 5.17E+06 78.093 0.659 -0.659 24.0 39.0 2.11 7.88 90-87
64 2 0.4 2.22E+07 4.50E+06 79.730 0.693 -0.693 21.5 38.0 2.16 8.02 90-87
76 2 0.4 2.14E+07 9.83E+04 99.541 2.338 -2.338 22.0 36.0 1.96 7.67 90-84 85.788 0.847 37.7 7.86
59 2 0.6 2.00E+07 6.63E+02 99.997 4.480 -4.480 21.5 36.0 2.00 7.90 90-87
63 2 0.6 2.72E+07 9.40E+02 99.997 4.461 -4.461 24.0 39.0 2.08 7.27 90-87
65 2 0.6 2.41E+07 6.90E+02 99.997 4.543 -4.543 21.5 38.0 2.11 7.86 90-87 99.997 4.493 37.7 7.68
66 2 1.0 2.51E+07 2.29E+02 99.999 5.040 -5.040 22.0 38.0 2.18 6.33 87-84
67 2 1.0 2.53E+07 1.79E+03 99.993 4.151 -4.151 22.5 38.0 2.33 8.47 87
68 2 1.0 3.37E+07 3.13E+03 99.991 4.032 -4.032 22.5 39.0 2.59 9.17 87-84 99.994 4.240 38.3 7.99
73 3 0.6 2.10E+07 2.22E+03 99.989 3.976 -3.976 25.0 46.5 2.26 11.00 90-84
74 3 0.6 2.12E+07 1.26E+03 99.994 4.225 -4.225 25.0 46.5 2.31 11.20 90-84
75 3 0.6 2.54E+07 1.33E+02 99.999 5.281 -5.281 21.5 47.5 1.93 10.90 90-84 99.994 4.246 46.8 11.03

Simultaneous
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Sonication of E. coli
Low power to volume ratio (390 mL volume)
Sonic Bath

Sonic Pre count Post count Initial Final Initial Final 
Exp # Time (min) (cfu/mL) (cfu/mL) % inact. log10 inact. - log10 n/no Temp (oC) Temp (oC) Turb (NTU) Turb (NTU) % inact. log10 inact. Final Turb. Final Temp.
103 1 4.13E+07 3.20E+07 22.518 0.111 -0.111 21.0 21.5 1.82 missed
113 1 3.27E+07 2.11E+07 35.474 0.190 -0.190 22.0 24.5 2.29 missed
116 1 2.42E+07 2.40E+07 0.826 0.004 -0.004 20.0 20.0 1.53 missed 19.606 0.09 missed 22.0
103 2 4.13E+07 2.23E+07 46.005 0.268 -0.268 21.0 21.5 1.82 missed
113 2 3.27E+07 2.48E+07 24.159 0.120 -0.120 22.0 25.0 2.29 missed
116 2 2.42E+07 2.38E+07 1.653 0.007 -0.007 20.0 20.0 1.53 missed 23.939 0.12 missed 22.2
103 5 4.13E+07 2.47E+07 40.194 0.223 -0.223 21.0 23.0 1.82 missed
113 5 3.27E+07 2.43E+07 25.688 0.129 -0.129 22.0 26.0 2.29 missed
116 5 2.42E+07 3.83E+07 -58.264 -0.199 0.199 20.0 21.0 1.53 missed 2.539 0.01 missed 23.3
103 10 4.13E+07 1.94E+07 53.027 0.328 -0.328 21.0 26.0 1.82 missed
113 10 3.27E+07 2.47E+07 24.465 0.122 -0.122 22.0 29.0 2.29 missed
116 10 2.42E+07 2.54E+07 -4.959 -0.021 0.021 20.0 23.5 1.53 missed 24.178 0.12 missed 26.2
103 15 4.13E+07 1.70E+07 58.838 0.386 -0.386 21.0 29.0 1.82 missed
113 15 3.27E+07 2.52E+07 22.936 0.113 -0.113 22.0 33.0 2.29 missed
116 15 2.42E+07 2.47E+07 -2.066 -0.009 0.009 20.0 26.0 1.53 missed 26.569 0.13 missed 29.3
103 20 4.13E+07 1.69E+07 59.080 0.388 -0.388 21.0 32.0 1.82 missed
113 20 3.27E+07 2.80E+07 14.373 0.067 -0.067 22.0 36.5 2.29 missed
116 20 2.42E+07 2.56E+07 -5.785 -0.024 0.024 20.0 31.0 1.53 missed 22.556 0.11 missed 33.2
103 30 4.13E+07 1.70E+07 58.838 0.386 -0.386 21.0 42.5 1.82 missed
113 30 3.27E+07 2.07E+07 36.697 0.199 -0.199 22.0 44.0 2.29 missed
116 30 2.42E+07 2.08E+07 14.050 0.066 -0.066 20.0 36.5 1.53 missed 36.528 0.20 missed 41.0
113 40 3.27E+07 2.86E+07 12.538 0.058 -0.058 21.0 49.0 1.82 missed
114 40 2.97E+07 2.48E+07 16.498 0.078 -0.078 22.0 40.0 2.29 missed
116 40 2.42E+07 2.07E+07 14.463 0.068 -0.068 20.0 40.5 1.53 missed 14.500 0.07 missed 43.2
113 50 3.27E+07 2.44E+07 25.382 0.127 -0.127 21.0 47.5 1.82 missed
114 50 2.97E+07 4.40E+07 -48.148 -0.171 0.171 22.0 44.5 2.29 1.56
116 50 2.42E+07 1.83E+07 24.380 0.121 -0.121 20.0 43.5 1.53 missed 0.538 0.00 missed 45.2
103 60 4.13E+07 1.84E+07 55.448 0.351 -0.351 21.0 49.0 1.82 1.66
113 60 3.27E+07 1.71E+07 47.706 0.282 -0.282 22.0 51.0 2.29 1.68
116 60 2.42E+07 1.69E+07 30.165 0.156 -0.156 20.0 46.0 1.53 1.46 44.440 0.26 1.60 48.7
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Sonication of E. coli
High power to volume ratio (80 mL volume)
Sonic Bath
Bold numbers indicate no counts - detection limit value substituted

Sonic Pre count Post count Initial Final Initial Final 
Exp # Time (min) (cfu/mL) (cfu/mL) % inact. log10 inact. - log10 n/no Temp (oC) Temp (oC) Turb (NTU) Turb (NTU) % inact. log10 inact. Final Turb. Final Temp.
104 1 4.97E+07 3.43E+07 30.986 0.161 -0.161 22.0 22.5 2.16 missed
115 1 2.22E+07 2.41E+07 -8.559 -0.036 0.036 21.5 21.5 2.08 missed
117 1 2.58E+07 2.79E+07 -8.140 -0.034 0.034 20.0 19.0 1.76 missed 4.763 0.02 missed 21.0
104 2 4.97E+07 2.11E+07 57.545 0.372 -0.372 22.0 23.5 2.16 missed
115 2 2.22E+07 2.20E+07 0.901 0.004 -0.004 21.5 22.0 2.08 missed
117 2 2.58E+07 2.28E+07 11.628 0.054 -0.054 20.0 19.5 1.76 missed 23.358 0.12 missed 21.7
104 3 4.97E+07 2.41E+07 51.509 0.314 -0.314 22.0 24.0 2.16 missed
115 3 2.22E+07 2.73E+07 -22.973 -0.090 0.090 21.5 22.0 2.08 missed
117 3 2.58E+07 2.58E+07 0.000 0.000 0.000 20.0 20.0 1.76 missed 9.512 0.04 missed 22.0
104 5 4.97E+07 4.53E+07 8.853 0.040 -0.040 22.0 25.5 2.16 missed
115 5 2.22E+07 2.47E+07 -11.261 -0.046 0.046 21.5 23.0 2.08 missed
117 5 2.58E+07 2.42E+07 6.202 0.028 -0.028 20.0 21.0 1.76 missed 1.264 0.01 missed 23.2
104 10 4.97E+07 4.53E+07 8.853 0.040 -0.040 22.0 31.0 2.16 missed
115 10 2.22E+07 2.97E+07 -33.784 -0.126 0.126 21.5 25.0 2.08 missed
117 10 2.58E+07 2.80E+07 -8.527 -0.036 0.036 20.0 23.5 1.76 missed -11.153 -0.05 missed 26.5
104 15 4.97E+07 3.73E+07 24.950 0.125 -0.125 22.0 36.0 2.16 missed
115 15 2.22E+07 2.66E+07 -19.820 -0.079 0.079 21.5 27.5 2.08 missed
117 15 2.58E+07 2.81E+07 -8.915 -0.037 0.037 20.0 27.0 1.76 missed -1.262 -0.01 missed 30.2
104 20 4.97E+07 3.50E+07 29.577 0.152 -0.152 22.0 40.5 2.16 missed
115 20 2.22E+07 2.66E+07 -19.820 -0.079 0.079 21.5 30.0 2.08 missed
117 20 2.58E+07 2.31E+07 10.465 0.048 -0.048 20.0 31.0 1.76 missed 6.741 0.03 missed 33.8
104 30 4.97E+07 2.13E+07 57.143 0.368 -0.368 22.0 49.5 2.16 missed
115 30 2.22E+07 2.33E+07 -4.955 -0.021 0.021 21.5 36.0 2.08 missed
117 30 2.58E+07 2.17E+07 15.891 0.075 -0.075 20.0 39.0 1.76 missed 22.693 0.11 missed 41.5
104 40 4.97E+07 2.00E+01 100.000 6.395 -6.395 22.0 57.0 2.16 missed
115 40 2.22E+07 1.76E+07 20.721 0.101 -0.101 21.5 40.5 2.08 missed
118 40 2.86E+07 1.69E+07 40.909 0.228 -0.228 22.5 37.0 2.34 missed 53.877 0.34 missed 44.8
104 50 4.97E+07 1.00E+00 100.000 7.696 -7.696 22.0 60.5 2.16 2.60
115 50 2.22E+07 2.16E+07 2.703 0.012 -0.012 21.5 50.0 2.08 missed
118 50 2.86E+07 1.81E+07 36.713 0.199 -0.199 22.5 40.0 2.34 2.35 46.472 0.27 2.48 50.2
115 60 2.22E+07 1.67E+01 100.000 6.124 -6.124 21.5 56.5 2.08 2.05 100.000 6.12 2.05 48.8
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Heating of E. coli
Temperature Effect Only (100 mL volume placed into 80oC water bath)

Disinf. Pre count Post count Initial Final Initial Final 
Exp # Time (min) (cfu/mL) (cfu/mL) % inact. log10 inact. - log10 n/no Temp (oC) Temp (oC) Turb (NTU) Turb (NTU) % inact. log10 inact. Final Turb. Final Temp.
120 1 5.00E+07 4.07E+07 18.60 0.089 -0.089 21.0 29.0 3.02 missed
121 1 9.50E+07 5.80E+07 38.95 0.214 -0.214 19.5 29.5 3.15 missed
122 1 3.40E+07 2.93E+07 13.82 0.065 -0.065 21.0 32.0 2.35 missed 23.79 0.12 missed 30.2
120 2 5.00E+07 5.03E+07 -0.60 -0.003 0.003 21.0 40.5 3.02 missed
121 2 9.50E+07 6.40E+07 32.63 0.172 -0.172 19.5 40.5 3.15 missed
122 2 3.40E+07 2.19E+07 35.59 0.191 -0.191 21.0 43.0 2.35 missed 22.54 0.11 missed 41.3
120 3 5.00E+07 3.97E+07 20.60 0.100 -0.100 21.0 50.0 3.02 missed
121 3 9.50E+07 4.37E+07 54.00 0.337 -0.337 19.5 50.0 3.15 missed
122 3 3.40E+07 3.02E+07 11.18 0.051 -0.051 21.0 52.0 2.35 missed 28.59 0.15 missed 50.7
121 4 9.50E+07 1.76E+07 81.47 0.732 -0.732 19.5 57.5 3.15 missed
122 4 3.40E+07 1.90E+07 44.12 0.253 -0.253 21.0 58.5 2.35 missed 62.80 0.43 missed 58.0
120 5 5.00E+07 1 100.00 7.000 -7.000 21.0 62.5 3.02 missed
121 5 9.50E+07 28 100.00 6.531 -6.531 19.5 62.0 3.15 missed
122 5 3.40E+07 1 100.00 7.000 -7.000 21.0 63.5 2.35 missed 100.00 6.94 missed 62.7
120 7.5 5.00E+07 1 100.00 7.000 -7.000 21.0 69.5 3.02 missed
121 7.5 9.50E+07 1 100.00 7.000 -7.000 19.5 69.0 3.15 missed
122 7.5 3.40E+07 1 100.00 7.000 -7.000 21.0 69.0 2.35 missed 100.00 7.70 missed 69.2
120 10 5.00E+07 1 100.00 7.000 -7.000 21.0 72.5 3.02 missed
121 10 9.50E+07 1 100.00 7.000 -7.000 19.5 72.0 3.15 missed
122 10 3.40E+07 1 100.00 7.000 -7.000 21.0 72.0 2.35 missed 100.00 7.70 missed 72.2
120 20 5.00E+07 1 100.00 7.000 -7.000 21.0 74.0 3.02 8.11
121 20 9.50E+07 1 100.00 7.000 -7.000 19.5 74.0 3.15 7.45
122 20 3.40E+07 1 100.00 7.000 -7.000 21.0 74.0 2.35 7.45 100.00 7.70 7.67 74.0
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