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Abstract 

The goal of this project is to investigate the performance tradeoffs between a Central Processing 

Unit (CPU) when compared to general-purpose computing on GPUs (GPGPU). GPUs typically 

handle computer graphics, GPGPU is when a GPU is used to perform applications traditionally 

handled by a CPU. A comparison is achieved by running similar algorithms with varying input 

sizes on both pieces of hardware and measuring the differences in total execution time. The best 

suited applications for these types of tests are applications that benefit from parallel execution, to 

take advantage of the parallel nature of GPUs. 
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Chapter 1: Introduction 

GPUs have become a popular piece of hardware sold with nearly every high-end computer. They 

act as a coprocessor along with the standard CPU. However, much of the time they simple run 

idle. Perhaps, they can be utilized for processes outside of the standard use cases. The goal of 

this project is to understand GPU performance when used in general computing. This will help 

us better understand cloud-based GPUs as most of the tests will be done using a GPU provided 

through the use of the Google Compute Engine, an Infrastructure as a Service hosted by Google.   

1.1 Motivation 

Many applications require powerful Graphical Processing Units (GPU) to run well; CAD, 

graphics rendering, and machine learning all benefit from a better GPU. The problem is that 

GPUs are not only physically large but also expensive. This limits users to expensive desktop 

workstations to complete jobs that require such hardware. When the owner of the workstation is 

not making use of the GPU it simply sits there idle, creating an opportunity cost. Virtualization 

can help solve these issues by allowing users to access the computing power of a GPU from a 

remote location whenever they need it, and the idle time will be minimized since multiple users 

can access it. Nvidia Grid has implemented this system as GaaS, or Gaming as a service, where 

clients can have their video games rendered by a remote Graphics Card owned by Nvidia for a 

monthly fee. This way the user does not need to buy an expensive card to play a video game.  

CPU virtualization has been extensively researched, so to better understand how GPU 

virtualization can be efficiently implemented we must first look at the differences between a 

CPU and a GPU, which have fundamentally different design philosophies.  

1.2 Report Organization 
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This report is broken into six distinct chapters. Chapter 1: Introduction, introduces the intent and 

purpose of the report, providing the motivation for the development of the project and a high-

level overview of the differences between a CPU and GPU. Chapter 2: Literature review 

investigates previous work done on this topic, discussing their goal, methods and conclusions. 

Chapter 3: Proposed Design and Project Logistics discusses how the performance differences 

were going to be tested on the processing units. Chapter 4: Implementation discusses how the 

tests were implemented on the different processing units, and how the results were recorded. 

Chapter 5: Results discusses the results returned by the tests and what the tests signify. Chapter 

6: Conclusions and future work summarizes the overall finding of this project and the next steps 

that can be taken to further the research in the differences between GPUs and CPUs. 

 

Chapter 2: Background 

CPUs originally were designed to have a single core with an extremely clock speed to ensure the 

fastest execution of a sequential program. This model was used for decades with each subsequent 

year resulting in faster single core performance. This meant that any programs would simply run 

faster with new hardware. However, since 2003 the energy consumption and heat dissipation 

caused by marginal increases in clock speed has imparted a hard performance limit. 

Microprocessor vendors switched to a multicore trajectory, seeking to maintain high execution 

speeds of sequential programs when moving onto multiple cores. This means that programs will 

not as easily see a speed up when the hardware is upgraded, it instead forces the software 

developer to develop with multicore processors in mind. CPUs make use of sophisticated control 



8 

logic to allow instructions from a single thread to execute in parallel or even out of sequential 

order while maintaining the appearance of sequential execution. They feature large cache 

memories to reduce the instruction and data access latencies of large complex applications. 

GPUs are designed with a many-thread trajectory, focusing on the execution throughput 

of parallel applications. GPUs favor throughput, they operate at 10x the memory bandwidth of 

comparable CPUs. They move large amount of data in and out the main system memory. 

Reducing latency is much more expensive than increasing throughput in terms of power and chip 

area. The solution is to optimize for the execution of a massive number of threads. Small caches 

are used so multiple threads that access the same memory do not need to reassess the same 

DRAM. The sheer number of threads makes up for the potentially long execution time. This is 

called throughput-oriented design. 

 

Figure 1: High level overview of the architectural designs of a CPU and a GPU demonstrating the 

differences in the layouts of the ALUs, Control Units, and Caches. [1] 

 

The GPU has many more arithmetic logic units divided into rows, each with a small control unis 

and cache but the total cache size is much smaller than the CPU's. 
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 Since hardware has reached a limit in terms of clock speed the only way for programs to 

enjoy a speed increase in future hardware generations is to make them more parallel. When an 

application is suitable for parallel execution an efficient implementation on a GPU can achieve a 

speedup factor of 100 over the speed of a single CPU core. The true speed up depends on how 

much the program can be parallelized. If 30% of a program can be parallelized, a 100x speed up 

of that portion will reduce the execution time by no more than 30%, making the entire 

application only about 1.4X faster. Even an infinite speed up of that portion take 30% off the the 

entire execution time, achieving a 1.43X speed up.  The idea that speed up is limited by the 

proportion of the code than can be parallelized is called Amdahl's law. In practice, 

straightforward parallelization can cause a saturation of memory bandwidth, lowering the true 

speed up to only about 10x.  

 Most of the code in real applications tend to be sequential, making them better suited for 

CPU execution. However, only a small amount of execution time is spent in these sections, the 

rest is spent on parts the can be parallelized.  
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Figure 2: The "Peach Analogy" of modern algorithms the pit of the peach represents the execution time 

spent in serial processes. These serial processes are surrounded by the meat of the peach, representing a 

proportionally larger amount of execution time spent in parallelizable processes. [2] 

 

An analogy is that of a peach, with the sequential execution time as a the pit of the peach and the 

parallelizable portions as the meat. The obstacles represent the problems faced by data transfer 

speeds from the main memory. 

 The purpose of parallelizing code is to make the end result run faster, but this can be a 

challenge because designing parallel code not only adds programming complexity  but some 

parallel algorithms add large overheads that cause them to run slower than a similar sequential 

algorithm. The goal of this MQP is to determine which tasks are better suited for GPU execution 

when the overhead is considered. 

2.1 Literature Review 

As CPU performance increases begin to plateau due to the powerwall faced by designers 

trying to increase the clock speed and GPUs becoming more powerful every year, the question of 
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using a GPU to accelerate programs is becoming a more important one. Research on the topic is 

not exactly scarce, but it tends to get quickly outdated since GPU technology is growing quite 

rapidly. 

 

Figure 3: The theoretical peak performance of GPUs is following an exponential growth trend where 

CPU follows a more linear growth trend. [3]  

 

GPU performance when compared to CPUs is not a new subject of research, partially because of 

the importance of the implications. Faster parallel programs allow for larger simulations, faster 

machine learning, and better graphics to name a few use cases. In order to find which types of 

benchmarks that should be ran in order to return the most insightful results some prior research 

on the subject was investigated.  

 It has been said before that running code on a GPU can offer up to a 1000X performance 

increase compared to running similar code on a CPU. The paper Debunking the 100X GPU vs. 
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CPU Myth: An Evaluation of Throughput Computing on CPU and GPU [4] attempts to 

investigate the validity of that claim. To test this the researchers developed some benchmarks 

that made high use of data parallelism, such as Monte Carlo, Fast Fourier Transform, and Basic 

Linear Algebra such as vector addition and multiplication. Using Intel's i7-960 and Nvidia's 

GTX 280, the researchers find that the performance differences between CPUs and GPUs are not 

as wide as initially thought. They found when proper optimizations are applied to both the CPU 

and GPU code they perform at roughly similar speeds. Instead of being 1000X faster, GPUs tend 

to operate closer to 2.5X faster when given highly parallelizable problems. These tests are using 

an old GPU relative to today, so perhaps the performance gap has grown.  

 Researchers have made it clear that optimization played a big part in how much speed up 

can actually be achieved using the GPU over the CPU. Code optimized for multithreaded CPU 

use can beat unoptimized GPU code and vice-versa. In the paper Optimization schemes and 

performance evaluation of Smith–Waterman algorithm on CPU, GPU and FPGA [5] researchers 

tried to measure the differences between speedup of optimized and unoptimized code on GPUs 

versus CPUs. They found that the optimized GPU was much faster than the unoptimized GPU 

version, but only marginally better than the CPU in various parallel benchmarks. The FPGA 

ended up being the fastest and most efficient due to its low power requirements. 

 We know that image processing is a highly parallel processes, this is due to the fact that 

each pixel can be operated on independently of every other pixel. The pixels do no depend on 

each other’s prior state to find out their own next state. This means that image processing 

algorithms are a great candidate for GPU execution. In the paper Performance comparison of 

FPGA, GPU and CPU in image processing [6] researchers compare GPUs to CPUs and FPGAs 

using simple and well-known problems in image processing, two-dimensional filters, stereo-
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vision and k-means clustering. In the two-dimensional filters test they found that GPUs far 

exceeded both CPUs and FPGAs. The CPU only beat the FPGA when the input size was kept 

small. The others two tests had FPGAs exceeding both the GPU and CPU, while the GPU and 

CPU were neck and neck. They concluded that the GPU only outperforms FPGAs when each 

pixel needs to be operated on independently, such as the case of the two-dimensional filter. The 

CPU used in the testing was an Intel Core 2 Extreme QX6850, the GPU was Nvidia's GTX 280, 

and the FPGA was a Xilinx XC4VLX160. As mentioned before this GPU is rather outdated, 

however I doubt that a more modern GPU will change the trends of their results in reference to 

the FPGA, however it might make the gap between the CPU and GPU larger.  

One research group at WPI did a similar MQP called Computing Performance 

Benchmarks among CPU, GPU, and FPGA [7], where they compared the performance 

differences of CPUs, GPUs and FPGAs using a series of benchmarks. They chose seven 

benchmark suites that represented common computation problems, such as sorting and 

compression. They performed these across two Intel Xeon 5650 CPUs, the Virtex-5 FPGA and 

NVIDIA’s GeForce GTX460 and 9800 GTX+ GPUs. Their conclusion was rather ambiguous, 

claiming that more research needs to be done in in the future as technology improves. The GPUs 

they chose are considered rather outdated compared to today's standards. So perhaps this is the 

future where technology has sufficiently improved they were talking about. 

Investigating many benchmarks lead to an ambiguous conclusion to the varying results 

but investigating a specific task will lead to a much more explicit conclusion. The ideal task is 

something that can be broken down into many different parts that all are worked on 

independently. A research group at UC Berkeley in the paper SSLShader: Cheap SSL 

Acceleration with Commodity Processors [8] attempted a GPU implementation of the RSA 
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encryption algorithm. They claim that they developed the fastest known implementation of the 

algorithm using GPU parallelization. They achieved this by breaking up multiple RSA ciphertext 

messages and splitting them into thousands of threads so in order to utilize all the GPU cores.  

 

[4] 

They found that the GPU execution outperformed the CPU execution as the number of messages 

increased. Their results show that the latency grows witch the throughput, this is due to the fact 

that as the input message increases, more data needs to be transcoded to the GPU. The larger bit 

cipher messages experience a faster growth in latency because they are taking up more 

bandwidth in the hardware. The GPU they chose was the Nvidia GTX 580, a brand-new card at 

the time. If this was ran on modern GPUs the trends would probably be similar, where the CPU 

outperforms the algorithm until the input size grows large enough. However, the rate of growth 

would probably be delayed or dampened due to modern GPUs having much more onboard 

memory.  

 A tree can be operated on independently, making them a good candidate for a parallel 

algorithm. Efficient Parallel Graph Exploration on Multi-Core CPU and GPU [9] was written 

for a conference on parallel architectures and investigated using a parallel approach for exploring 

breadth-first search trees. The team developed two algorithms, one that would run on a 



15 

conventional CPU, making sure to make use of all available cores, and an algorithm that runs on 

a GPU. The CPUs used were Intel's Xeon X5550, X5570, X7550, and E5345. The GPUs chosen 

were Nvidia's Fermi C2050, and Tesla GTX275. They found that a quad-core CPU operates very 

similarly in speed to that of a high-end GPU. However, the high-end GPUs used in their tests are 

considered quite weak compared to today's high-end GPUs, so perhaps the results would look 

different if ran on more contemporary GPUs.  

 In Theano: A CPU and GPU math compiler in Python [10] researchers attempt to create 

mathematical expression compiler in order to increase the speed at which they run. It forms low 

level machine code and supports CUDA kernels. They found that expressions running on GPUs 

tended to be faster compared to running on CPUs. They used a GTX 285 for their testing.  

 These research papers often seem to use a 200 series Nvidia card. According to Figure 3, 

this card has been highly outclassed by modern GPUs. This means that in any case where 

researchers found a CPU to be better suited to the problem could have a different result with 

newer hardware. This research has also pointed us in the direction of which benchmarks to use, 

especially highly parallel ones such as Linear Algebra and the Fast Fourier Transform.  

Chapter 3: Proposed Design and Project Logistics 

3.1 - Main Goal 

The main goal of this project was to determine in which cases a GPU would be a better choice 

than a traditional CPU. A CPU excels in fast sequential operations, where GPU excels in 

massive throughput of parallel operations. Parallel operations are sequence independent, 

meaning that you do not need to solve the problem in a series of steps. You can paint the front of 

a house at the same time as you can paint the back of the house, making this a parallel problem, 

however, you cannot prime the house the same time as you paint it, making this a serial problem.  
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Figure 5: Example of the differences between a parallel and a serial process [11] 

 

GPUs are better at handling parallel problems due to the large amount of independent processing 

units normally used in graphical problems, each pixel is independent of the ones around it. The 

CPU is better at handling sequential problems due to its fast clock speed and large memory cache 

per processing unit. This may make it seems that a GPU will always beat a CPU for a parallel 

task, however this is not the case. The primary reason being that data has to be transcoded from 

the main memory by the CPU to the GPU, this all takes some amount of time called overhead. If 

the total execution time on the GPU including overhead is larger than the total execution time of 

the same problem on the CPU, then using the GPU slowed down the total process time. The goal 

of this project is to develop a series of benchmarks that represent different use cases of parallel 

programs and provide each algorithm with varying sizes of data to determine when a GPU 

outperforms the CPU.  
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3.2 - Project Objectives 

The main objective of the benchmarks was to get measurements of the CPU execution time, the 

GPU execution time, and the total overhead time required to transfer the data between them. In 

order to do this, the following needed to be achieved: 

● Research and understand GPU design 

● A way to create programs that can run on both a CPU and GPU 

● A platform on which to test the programs on a variety of hardware 

● Research which benchmarks should be chosen 

● A system to capture the execution times and overhead costs for the CPUs and CPUs 

3.3 - Project Management and Tasks 

Since this was a solo project I was in charge of all research and development involved in the 

project. The first task was investigating how a GPU actually works, this involved reading several 

research papers and the book Programming Massively Parallel Processors by David B. Kirk and 

Wen-mei Hwu, engineers at Nvidia and Advanced Micro Devices respectively. This book 

provided much insight into the high-level architectural design of GPUs and its relevance to 

developing efficiently parallel programs. It also gave some simple examples I used for 

benchmarking purposes.  

The next task was to research which platform to design the benchmarks should be chosen 

as there are a couple options available such as OpenCL and CUDA. The program needs to be ran 

on some hardware, the more hardware the stronger the results. My personal computer has a 

Nvidia 660M, this will be used as a preliminary test, but a more robust platform was needed. The 

choice of which programs be used to benchmark needed to be researched, as some benchmarks 

will return different results than others. Then the program would need to capture the amount of 
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time it took to run on all of the different pieces of hardware, and this data needed to be stored in 

a way that was able to show a clear trend if one existed.  

3.4 - Design Decisions 

Nvidia's CUDA was the programming model of choice. While CUDA is proprietary and is only 

supported by CUDA enabled GPUs limited to the Nvidia brand, it has the highest level of 

performance due to its tight hardware integration. The increased performance makes CUDA the 

primary choice for developers interested in parallel development, and as a result most fields 

interested in parallel development, such as machine learning, use CUDA. This makes the results 

of this report have the highest level of relevance. The main drawback of CUDA is that it is not 

supported on AMD GPUs. 

 The necessity of needing multiple pieces of hardware in order to get robust results was 

met through the use of Google's Compute Engine. Google's Compute Engine allows users to 

create servers using virtual CPUs and choose from a variety of very high-end GPUs. This 

allowed me to test any benchmarks on GPUs such as the K80, and P100, which would normally 

cost thousands of dollars. 

 The first benchmark chosen, vector addition, was out of simplicity, however it does 

represent a large portion of parallel problems. The benchmark simply adds two matrices of 

varying input sizes together. The second benchmark is a Fast Fourier Transform, this was chosen 

due to both the relevance and problem size. FFTs are used by a wide variety of industries and is a 

quite difficult problem that can be parallelized. This will allow us to show the difference between 

a simple problem and a much more difficult one.  
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 The execution times are captured using CUDA's built in timer functions, even the CPU 

only code used these functions to keep the tests consistent as the execution time of timer 

functions could cause an effect on the measurements.  

Chapter 4: Implementation 

4.2 - Vector Addition 

With the benchmarks chosen the next step is to implement each one into a form that could be 

tested by both the CPU and GPU of a system. CUDA allows for a program to be written 

primarily for a CPU but GPU kernels called for data to be offloaded to the GPU. With vector 

addition being the simplest benchmark that that was the obvious place to start. The textbook 

Programming Massively Parallel Processes [2] provided a simple example of vector addition 

which was expanded upon to allow for testing. The main features of the program generate two 

matrices of a given length, then run a simple while loop to add each of the respective indices 

together returning a third matrix. This represents a CPU executing vector addition. The system 

time was taken before and after the while loop using a CUDA timer function. 

 Creating the GPU version of the problem was a bit more involved. First several pointers 

needed to be created to hold the vectors in the memory of the GPU. Then data for our matrices 

was allocated on the GPU using the cudaMemcpy function. The cudaMemcpy allows for a data 

transfer from the CPU to GPU and vice versa. It takes four parameters; a pointer to the 

destination, a pointer to the source, the number of bytes being copied, and the direction of 

transfer. In this case the data was being transferred from the CPU to the GPU, so the destination 

were the pointers we had just created, and the source were the matrices that holding the data to 

be added. After copying the arrays to the GPU some more data was allocated for the matrix that 
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will hold the results of the addition. The function used for this was cudaMalloc, which functions 

similarly to the normal malloc function in standard C.  

 After preparing all of the necessary data onto the GPU the execution is performed by a 

GPU kernel, a segment of code that is run on every processing unit inside the GPU. The vector 

addition code looks like this: 

 

Int i = blockDim.x * blockIdx.x + threadIdx.x 

if(i<n) C[i] = A[i] + B[i]; 

 

CUDA kernels have access to two or more built-in variables, threadIDx and blockIDx that 

allows threads to distinguish themselves and determine the area of data each thread is to work 

on. Variable threadIdx gives each thread a unique coordinate within a block. In this case we are 

using a one-dimensional thread organization because out matrix is only one dimensional, 

therefore we only use threadIdx.x. All threads in a block share a common block coordinate. 

blockDim is a value picked by the developer which determines the amount of threads per block. 

If a developer chose a blockDim of 256 then blockIDx.x 0 would contain the threads 0-255. The 

value of n represents the number of values in the matrix. It prevents the GPU from attempting 

adding data that does not exist together by constraining it.[2] 
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Figure 6: Example of a two dimensional threads and blocks. In this case the block dimension is 2, but the 

two dimensions allow each block to hold 4 threads. Not to be confused with the 4x4 grid size which is 

fixed by the hardware. [6] 
 

4.3 - Fast Fourier Transform 

The Fast Fourier Transform was a bit easier because I used a few common implementations and 

simply adjusted them to my needs. There is a well-known FFT program called FFTW3 which 

does simple FFTs on a CPU. It took a parameter representing the scale, the larger the scale the 

larger the computation time. Nvidia supplies an example project called cuFFT which took a 

similar scale parameter. A timer function captured the amount of time that each program took to 

calculate the FFT.  
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Chapter 5: Results 

n i7-3610QM 
660M 
OH 

660M 
NOH vCPU 

k80 
OH 

k80 
NOH vCPU2 

P100 
OH 

P100 
NOH 

10 0.034 0.328 0.046 0.012 0.316 0.037 0.009 0.413 0.032 

100 0.03 0.961 0.039 0.015 0.244 0.024 0.02 0.263 0.02 

1000 0.028 0.963 0.043 0.015 0.242 0.025 0.01 0.273 0.034 

10000 0.03 0.583 0.049 0.04 0.372 0.041 0.035 0.283 0.018 

100000 0.03 2.094 0.426 0.42 0.722 0.034 0.314 0.456 0.022 

1000000 0.061 7.616 1.551 3.661 2.916 0.129 3.423 2.309 0.042 

10000000 0.073 54.628 12.752 38.65 22.652 1.012 35.593 19.353 0.252 

100000000 0.077 504.04 110.795 396.33   372.82   
 Figure 7: Total result chart of vector addition. OH stands for results including overhead times. NOH 

stands for results excluding overhead times. All results are times measured in (ms) 

 

 

n vCPU k80 OH k80 NOH vCPU2 P100 OH P100 NOH 

10 0.001 453.995 0.037 0.001 361.812 0.051 

100 0.001 424.52 0.032 0.001 301.719 0.024 

1000 0.014 419.897 0.02 0.025 281.144 0.012 

10000 0.136 406.131 0.02 0.193 309.633 0.035 

100000 2.047 470.963 0.041 1.96 352.604 0.024 

Figure 8: Total result chart of Fast Fourier transform. OH stands for results including overhead times. 

NOH stands for results excluding overhead times. All results are times measured in (ms) 

 

Bytes 
totalFFT 
OH 

FFT 
NOH 

vectorAdd 
OH 

vectorAdd 
NOH 

simpleVecadd 
NOH 

simpleVecadd 
NOH2 

128 331.77 0.039 0.319 0.033 0.346 0.312 

848 292.494 0.038 0.274 0.024 0.267 0.236 

32768 281.017 0.022 0.596 0.046 0.306 0.272 

325632 294.9 0.022 4.053 0.071 0.574 0.536 

3241984 343.611 0.041 39.664 0.234 2.45 2.337 

Figure 9: Comparing different tests using the same amount of input data. vectorAdd is a custom vector 

addition program, and simpleVecadd is provided by Nvdidia. OH stands for results including overhead 

times. NOH stands for results excluding overhead times. All results are times measured in (ms) 

 

 

5.1 - Vector Addition 
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The first test to determine the difference speed differences between the CPU and GPU was 

running a simple matrix addition test. Two matrices of n length were generated and then added 

together using both a CPU and then a GPU using a CUDA kernel. The experiment was 

measuring how long it took each length of matrix to complete its addition. The system time was 

captured before the vector addition and afterwards to calculate the total execution time. 

Execution time was the metric chosen because it has the most real-world implications. The faster 

the execution time the faster the program is in general. The time taken for the GPU to allocate 

and transfer data was also measured and included in the total execution time. This is an 

important metric because it shows how much of the total time used by the GPU was spent doing 

something that was not calculating. It can help demonstrate why the time taken by a GPU might 

be higher than expected. The CPU has no overhead time because it has direct access to the data. 

These were performed on three different graphics cards; a 660M, a K80, and a P100. The CPU 

was an i7-3610QM when paired with the 660M, but the K80 and P100 used an Intel Haswell 

virtual CPU provided by the Google Compute engine.  

 

 

 

 

 

 

 

\ 
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660M results 

 

Figure 7: Results of a parallelized vector addition ran on an Nvidia 660M  

Blue line represents the total CPU execution time 

Yellow line represents the GPU execution time without measuring the overhead of data transfer 

Red line represents the total GPU execution time with overhead  

 

The CPU took relatively the same amount of time until n increased to over 1 million. This was 

probably due to n exceeding the size of the cache. The GPU execution followed a similar trend 

until 10,000 at which point it started growing linearly with n. This was also probably due to n 

exceeding the cache size. The total time with overhead followed the execution time trend, 

implying that the overhead did not grow as n increased. This is a case where the small cache size 

of the GPU negatively affects the performance relative the CPU. 
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K80 results 

 

Figure 8: Results of a parallelized vector addition ran on a Nvidia K80  

Blue line represents the total CPU execution time 

Yellow line represents the GPU execution time without measuring the overhead of data transfer 

Red line represents the total GPU execution time with overhead  

 

Using a K80, a more powerful GPU, and a virtual CPU provided by Google's compute engine, 

the trends started to change. The CPU time started to increase linearly with n after n exceeded 

10,000. This implies that the virtual CPU has a smaller cache than the i7-3610QM. The GPU 

execution time started to follow n in what looks like exponential growth but exceeding an n 

value of 1 million would cause the test to crash. The growth it probably follows a linear trend 

after fully exceeding the cache which looks like it happens when n reaches 100,000. The total 

time, including overhead, follows the execution time, implying that the overhead does not 

increase as n increases. This test shows that a higher quality GPU can change the trade-offs 

between a GPU and CPU performance differences. This is a case where the GPU offers better 
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performance over the CPU with a large enough data set, but a smaller data set still favors the 

CPU. 

 

P100 results 

 

Figure 9: Results of a parallelized vector addition ran on an Nvidia P100  

Blue line represents the total CPU execution time 

Yellow line represents the GPU execution time without measuring the overhead of data transfer 

Red line represents the total GPU execution time with overhead  

Using an even more powerful GPU, the P100, and the same processor as the last test, the 

performance follows the same trends. The CPU grows linearly after exceeding the same n value, 

which is most likely due to n exceeding the cache size. The GPU follows the same trend as the 

K80's results, however the times are slightly faster. This implies that there are diminishing 

returns when it comes to a GPU, as after a certain point a more powerful one will not make a 

massive difference in total time.  
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These graphs help demonstrate the tradeoff between CPUs and GPUs. A CPU will handle 

a small data set more efficiently because the overhead of transferring it to the GPU is larger than 

the performance gain the GPU offers. One point of confusion created by these graphs is how the 

CPU results of the 660M are always faster than the GPU. This is probably due to the CPU 

having a cache larger than n.  

5.2 - Fast Fourier Transform 

The next test was comparing the performance between the GPU and CPUs was a Fast Fourier 

Transform. This test was set up similarly to the Vector Addition test where an increasing load 

was supplied to the algorithm and timers captured the execution times with and without the 

overhead used for data transfer. The n in this instance represented what is called the scale, a 

larger scale allows for more detailed results from the wave but increases computational 

complexity. Increasing the scale should increase the execution times in both the CPU and GPU. 

This was only performed on the K80 and P100 using Google's virtual CPU. 
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K80 results 

 

Figure 10: Results of a parallelized Fast Fourier Transform ran on a Nvidia K80  

Blue line represents the total CPU execution time 

Yellow line represents the GPU execution time without measuring the overhead of data transfer 

Red line represents the total GPU execution time with overhead  

 

The Fast Fourier transform on the CPU shows a linear growth after n equals 100, n represents the 

amount of data in this test, so it is probably where the cache size is exceeded. The GPU 

experiences no growth through the entire data set. This implies that a GPU will eventually beat a 

CPU given a large enough data set, however any attempts to increase the scale further resulted in 

a crash of the GPU program.  
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P100 results 

 

Figure 11: Results of a parallelized Fast Fourier Transform ran on a Nvidia P100  

Blue line represents the total CPU execution time 

Yellow line represents the GPU execution time without measuring the overhead of data transfer 

Red line represents the total GPU execution time with overhead  
 

These graphs were interesting because the GPU performance time does not increase as the 

sample size increases where the CPU experiences linear growth. This test again shows that the 

total execution time in the GPU does not increase as n grows. The results show that CPUs are 

faster, but according to the trends increasing the data set further would have the CPU take longer 

than the GPU. However, this could not be tested due to increasing n any further would cause the 

GPU test to crash.  
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5.3 - Result Comparison 

The next test was comparing the performance difference between two tests given the same data 

size of the input. This was performed using only one GPU, the K80. The FFT testing error was 

fixed before this test. 

 

Figure 12: Comparisons of the total execution times of two vector addition algorithms and the FFT on a 

Nvidia K80  
Blue line represents the total GPU FFT execution time with overhead 

Yellow line represents the total GPU vector addition time with overhead with optimization  

Red line represents the total GPU vector addition time with overhead without optimization  
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Figure 13: Comparisons of the execution times not including data transfer of the two vector addition 

algorithms and the FFT on an Nvidia K80  
Blue line represents the total GPU FFT execution time with NO overhead(time spent in data transfer) 

Yellow line represents the total GPU vector addition time with NO overhead with optimization  

Red line represents the total GPU vector addition time with NO overhead without optimization 

 

The graph shows how the execution times for the different tests were usually very similar, this 

speaks to the computation efficiency of the GPU. It also shows that the overhead of transferring 

the data is where this efficiency is lost. Notice how large the gap is between the FFT execution 

time and FFT total time. This graph does create some questions, why do certain processes take 

more overhead? Why does the overhead of vecAdd grow over time when simple Vecadd and 

FFT stay relatively the same? 
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5.4 - Data Analysis 

In this experiment we try to understand the overheads of the workloads by using a command 

provided by Nvidia called Nvidia-SMI which shows the current state of the GPU.  

 

Figure 14: Output of the linux command Nvidia-SMI. This is used to get the current memory utilization of 

the GPU. 

The relevant information is the total memory usage and the memory usage per process. 

A script was written in order to run this test multiple times per second while a benchmark is 

being run. This way the memory usage can be graphed over time. 

Using grep, each line containing the string MiB was saved to a text file along with the outputs 

from the benchmark script. 
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Figure 15: Output of running Nvidia-SMI during the Vector Addition algorithm and using grep to pull 

relevant data 
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This shows the utilization over time as the tests are being ran, as expected the larger the n value, 

the higher memory utilization.  

Chapter 6: Conclusions and Future Work 

According to the results it seems that the optimal processing unit depends on the size of the data 

set. In general, a small data set will take less time to complete when ran on a CPU because of the 

immediacy of the data. The CPU has a larger cache and a faster clock speed so if it can store the 

entire data set within the cache then it will be able to work through the data quite quickly. The 

GPU faces an overhead cost due to the time it takes to allocate and transfer the data to the GPU. 

A CPU can finish the execution before the GPU even receives the data if the data set is small. 

However, as the data set increases the overhead cost does not. This means that a large amount of 

data will take a similar amount of time to transfer to the GPU as a small set of data. Since CPUs 

experience a linear growth in execution time due to its sequential nature, there is a point where 

using the GPU becomes the faster option. This point is relative to the transfer speed of the GPU 

and the cache size of the CPU.  

 These tests were all operated on a discrete GPU, where the data must travel through PCIE 

to reach the GPU. A future work could perform similar benchmarks using an integrated GPU. 

This would be interesting as the integrated GPU is located inside the CPU, which would reduce 

the amount of overhead. Since overhead is the main limiting factor the tests would probably 

favor the GPU with smaller data sets. Recently the performance of integrated GPUs has 

increased making them competitive with discrete GPUs making them an interesting point of 

research for general purpose computing on graphical processing units. 
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Appendix 

VectorAddition.cu 

#include <stdio.h> 

#include <stdlib.h> 

 

void cpuVectorAdd(int *a, int *b, int *c, int n) 

{ 

    int i; 

 

    for (i = 0; i < n; i++) 

    { 

        c[i] = a[i] + b[i]; 

    } 

} 

 

__global__ void gpuVectorAdd(int *a, int *b, int *c, int n) 

{ 

    int i = blockIdx.x * blockDim.x + threadIdx.x; 

 

    if (i < n)  

    {  

        c[i] = a[i] + b[i];  

    } 

} 

 

void CPUtest(int *a, int *b, int*c, int n) 

{ 

    float time; 

    cudaEvent_t start, stop; 

    cudaEventCreate(&start); 

    cudaEventCreate(&stop); 

 

    cudaEventRecord(start, 0); 

 

    cpuVectorAdd(a, b, c, n); 

    cudaDeviceSynchronize();//simply there to balance the test 

 

    cudaEventRecord(stop, 0); 

    cudaEventSynchronize(stop); 

    cudaEventElapsedTime(&time, start, stop); 

    printf("CPU elapsed time:  %3.3f ms \n", time); 
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} 

 

void GPUtest(int *h_A, int *h_B, int*h_C, int n) 

{ 

    int *d_A, *d_B, *d_C; 

    int size = n * sizeof(int); 

 

    int blockSize; 

    int minGridSize; 

    int gridSize; 

 

    float time, sumTime, gpuTime, overheadTime; 

    cudaEvent_t start, stop; //timer varaibles 

    cudaEventCreate(&start); //initializes timer 

    cudaEventCreate(&stop); 

 

    cudaEventRecord(start, 0); //starts timer 

 

    cudaOccupancyMaxPotentialBlockSize(&minGridSize, &blockSize, gpuVectorAdd, 0, 

n); //calculates block size 

 

    gridSize = (n + blockSize - 1) / blockSize; //calculates grid size 

 

    cudaEventRecord(stop, 0); //stops timer 

    cudaEventSynchronize(stop); 

    cudaEventElapsedTime(&time, start, stop); //calculates elapsed time 

    sumTime = time; //used to calculate total time 

 

    //printf("Occupancy calculator elapsed time:  %3.3f ms \n", time); 

    //printf("Grid size of: %d Block size of %d minGridSize: %d\n", gridSize, 

blockSize, minGridSize); 

 

    cudaEventRecord(start, 0); //start timer for allocation 

 

    cudaMalloc((void **) &d_A, size); //allocates some space on GPU 

    cudaMalloc((void **) &d_B, size); 

    cudaMalloc((void **) &d_C, size); 

 

    cudaEventRecord(stop, 0); 

    cudaEventSynchronize(stop); 

    cudaEventElapsedTime(&time, start, stop); 

    sumTime += time; 

    //printf("cudaMalloc elapsed time:  %3.3f ms \n", time); 
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    cudaEventRecord(start, 0); 

 

    cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); //moves  data from 

cpumemory to GPU memory 

    cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice); 

 

    cudaEventRecord(stop, 0); 

    cudaEventSynchronize(stop); 

    cudaEventElapsedTime(&time, start, stop); 

    sumTime += time; 

    //printf("cudaMemcpy Host to Device elapsed time:  %3.3f ms \n", time); 

 

    cudaEventRecord(start, 0); 

 

    gpuVectorAdd <<<gridSize, blockSize>>> (d_A, d_B, d_C, n); //calls kernel 

 

    cudaDeviceSynchronize(); //makes sure kernel is done before moving on 

 

    cudaEventRecord(stop, 0); 

 

    cudaError_t error = cudaGetLastError(); //this is how i found out that i 

needed to use special compile parameters 

    if (error != cudaSuccess) 

    { 

        fprintf(stderr, "ERROR: %s\n", cudaGetErrorString(error)); 

        exit(-1); 

    } 

 

    cudaEventSynchronize(stop); 

    cudaEventElapsedTime(&time, start, stop); 

    gpuTime = time; 

    sumTime += time; 

    //printf("vecAdd elapsed time:  %3.3f ms \n", time); 

 

    cudaEventRecord(start, 0); 

 

    cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost); //grab data from GPU and 

put it back into cpu memory 

 

    cudaEventRecord(stop, 0); 

    cudaEventSynchronize(stop); 

    cudaEventElapsedTime(&time, start, stop); 

    sumTime += time; 

    //printf("cudaMemcpy Device to Host elapsed time:  %3.3f ms \n", time); 
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    overheadTime = sumTime - gpuTime; //find out how much of the time was not 

calculation time 

 

    printf("GPU elapsed time:  %3.3f ms (%3.3f ms was overhead, %3.3f ms was 

calculation)\n", sumTime, overheadTime, gpuTime); 

 

    cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); //free the data 

} 

 

int main(int  argc, char* argv[]) 

{ 

 

    int numberArray[] ={32, 212, 8192, 81408, 81049}; 

    int counterValue; 

    if(argc == 0) 

    { 

        counterValue = 5;    

    } 

    else 

    { 

        counterValue = 1; 

        numberArray[0]= atoi(argv[1]); 

        //printf("Entered Value:%d aka %s\n ",numberArray[0],argv[1]); 

    } 

 

    int n = 0;  

    for (int counter = 0; counter < counterValue; counter ++) 

    { 

        cudaDeviceReset(); 

        n = numberArray[counter];    

        int *a, *b, *c, *d; 

        int size = n * sizeof(int); 

        a = (int *)malloc(size); 

        b = (int *)malloc(size); 

        c = (int *)malloc(size); 

 

        for (int i = 0; i < n; ++i) //for this test it simples adds two of the 

same number 

        { 

            a[i] = i; 

            b[i] = i; 

            c[i] = 0; 

        } 
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        printf("n = %d\n", n); 

 

        //CPUtest(a, b, c, n); 

 

        GPUtest(a, b, c, n); 

 

        free(a); 

        free(b); 

        free(c); 

    } 

} 

 

 



41 

 
 

#include <stdio.h> 

#include <stdlib.h> 

 

void cpuVectorAdd(int *a, int *b, int *c, int n) 

{ 

    int i; 

 

    for (i = 0; i < n; i++) 

    { 

        c[i] = a[i] + b[i]; 

    } 

} 

 

__global__ void gpuVectorAdd(int *a, int *b, int *c, int n) 

{ 

    int i = blockIdx.x * blockDim.x + threadIdx.x; 

 

    if (i < n)  

    {  

        c[i] = a[i] + b[i];  

    } 

} 

 

void CPUtest(int *a, int *b, int*c, int n) 

{ 

    float time; 

    cudaEvent_t start, stop; 

    cudaEventCreate(&start); 

    cudaEventCreate(&stop); 

 

    cudaEventRecord(start, 0); 

 

    cpuVectorAdd(a, b, c, n); 

    cudaDeviceSynchronize();//simply there to balance the test 

 

    cudaEventRecord(stop, 0); 

    cudaEventSynchronize(stop); 

    cudaEventElapsedTime(&time, start, stop); 

    printf("CPU elapsed time:  %3.3f ms \n", time); 

} 

 

void GPUtest(int *h_A, int *h_B, int*h_C, int n) 

{  



42 

simpleCUFFT.cu 

/* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. 

 * 

 * Redistribution and use in source and binary forms, with or without 

 * modification, are permitted provided that the following conditions 

 * are met: 

 *  * Redistributions of source code must retain the above copyright 

 *    notice, this list of conditions and the following disclaimer. 

 *  * Redistributions in binary form must reproduce the above copyright 

 *    notice, this list of conditions and the following disclaimer in the 

 *    documentation and/or other materials provided with the distribution. 

 *  * Neither the name of NVIDIA CORPORATION nor the names of its 

 *    contributors may be used to endorse or promote products derived 

 *    from this software without specific prior written permission. 

 * 

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY 

 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 

 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR 

 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 

 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 

 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 

 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 

 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 

 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

 */ 

 

/* Example showing the use of CUFFT for fast 1D-convolution using FFT. */ 

 

// includes, system 

#include <math.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

//#include <fftw3.h> 

 

// includes, project 

#include <cuda_runtime.h> 

#include <cufft.h> 

#include <cufftXt.h> 

#include <helper_cuda.h> 

#include <helper_functions.h> 
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// Complex data type 

typedef float2 Complex; 

static __device__ __host__ inline Complex ComplexAdd(Complex, Complex); 

static __device__ __host__ inline Complex ComplexScale(Complex, float); 

static __device__ __host__ inline Complex ComplexMul(Complex, Complex); 

static __global__ void ComplexPointwiseMulAndScale(Complex *, const Complex *, 

                                                   int, float); 

 

// Filtering functions 

void Convolve(const Complex *, int, const Complex *, int, Complex *); 

 

// Padding functions 

int PadData(const Complex *, Complex **, int, const Complex *, Complex **, int); 

 

//////////////////////////////////////////////////////////////////////////////// 

// declaration, forward 

float runTest(int argc, char **argv, int SIGNAL_SIZE); 

 

#define REAL 0 

#define IMAG 1 

// The filter size is assumed to be a number smaller than the signal size 

#define FILTER_KERNEL_SIZE 11 

 

//////////////////////////////////////////////////////////////////////////////// 

// Program main 

//////////////////////////////////////////////////////////////////////////////// 

 

/* 

void acquire_from_somewhere(fftw_complex* signal, int NUM_POINTS) { 

 

  int i; 

  for (i = 0; i < NUM_POINTS; ++i) { 

    double theta = (double)i / (double)NUM_POINTS * M_PI; 

 

    signal[i][REAL] = 1.0 * cos(10.0 * theta) + 

      0.5 * cos(25.0 * theta); 

 

    signal[i][IMAG] = 1.0 * sin(10.0 * theta) + 

      0.5 * sin(25.0 * theta); 

  } 

} 
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float cpuTest(int NUM_POINTS) { 

  fftw_complex signal[NUM_POINTS]; 

  fftw_complex result[NUM_POINTS]; 

 

  fftw_plan plan = fftw_plan_dft_1d(NUM_POINTS, 

    signal, 

    result, 

    FFTW_FORWARD, 

    FFTW_ESTIMATE); 

 

  acquire_from_somewhere(signal, NUM_POINTS); 

 

  float cputime; 

  cudaEvent_t start, stop; 

  cudaEventCreate(&start); 

  cudaEventCreate(&stop); 

 

  cudaEventRecord(start, 0); 

 

  fftw_execute(plan); 

 

  cudaEventRecord(stop, 0); 

  cudaEventSynchronize(stop); 

  cudaEventElapsedTime(&cputime, start, stop); 

 

  fftw_destroy_plan(plan); 

 

  return cputime; 

} 

*/ 

 

int main(int argc, char **argv)  

{  

  FILE *f = fopen("FFT.txt", "a"); 

  if (f == NULL) 

  { 

    printf("Error opening file!\n"); 

    exit(1); 

  } 

 

  int n = 10; 

 

  while (n < 1000000) 
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  { 

 

    cudaDeviceReset(); 

    fprintf(f, "GPU(%d)\n", n); 

 

    float time, exetime, cputime; 

    cudaEvent_t start, stop; 

    cudaEventCreate(&start); 

    cudaEventCreate(&stop); 

 

    cudaEventRecord(start, 0); 

 

    exetime = runTest(argc, argv, n); 

 

    cudaEventRecord(stop, 0); 

    cudaEventSynchronize(stop); 

    cudaEventElapsedTime(&time, start, stop); 

    printf("GPU total time:  %3.3f ms \n", time); 

 

    fprintf(f, "%3.3f, %3.3f \n", exetime, time); 

 

    /*fprintf(f, "CPU(%d)\n", n); 

 

    cputime = cpuTest(n); 

 

    fprintf(f, "%3.3f\n", cputime);*/ 

 

    n *= 10; 

  } 

  fclose(f); 

  

} 

 

//////////////////////////////////////////////////////////////////////////////// 

//! Run a simple test for CUDA 

//////////////////////////////////////////////////////////////////////////////// 

float runTest(int argc, char **argv, int SIGNAL_SIZE) { 

 

  printf("[simpleCUFFT] is starting...\n"); 

  

  float time; 

  cudaEvent_t start, stop; 

  cudaEventCreate(&start); 

  cudaEventCreate(&stop); 
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  findCudaDevice(argc, (const char **)argv); 

 

  // Allocate host memory for the signal 

  Complex *h_signal = 

      reinterpret_cast<Complex *>(malloc(sizeof(Complex) * SIGNAL_SIZE)); 

 

  // Initialize the memory for the signal 

  for (unsigned int i = 0; i < SIGNAL_SIZE; ++i) { 

    h_signal[i].x = rand() / static_cast<float>(RAND_MAX); 

    h_signal[i].y = 0; 

  } 

 

 

  // Allocate host memory for the filter 

  Complex *h_filter_kernel = 

      reinterpret_cast<Complex *>(malloc(sizeof(Complex) * FILTER_KERNEL_SIZE)); 

 

  // Initialize the memory for the filter 

  for (unsigned int i = 0; i < FILTER_KERNEL_SIZE; ++i) { 

    h_filter_kernel[i].x = rand() / static_cast<float>(RAND_MAX); 

    h_filter_kernel[i].y = 0; 

  } 

 

  // Pad signal and filter kernel 

  Complex *h_padded_signal; 

  Complex *h_padded_filter_kernel; 

  int new_size = 

      PadData(h_signal, &h_padded_signal, SIGNAL_SIZE, h_filter_kernel, 

              &h_padded_filter_kernel, FILTER_KERNEL_SIZE); 

  int mem_size = sizeof(Complex) * new_size; 

 

  // Allocate device memory for signal 

  Complex *d_signal; 

  checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&d_signal), mem_size)); 

  // Copy host memory to device 

  checkCudaErrors( 

      cudaMemcpy(d_signal, h_padded_signal, mem_size, cudaMemcpyHostToDevice)); 

 

  // Allocate device memory for filter kernel 

  Complex *d_filter_kernel; 

  checkCudaErrors( 

      cudaMalloc(reinterpret_cast<void **>(&d_filter_kernel), mem_size)); 

 

  // Copy host memory to device 
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  checkCudaErrors(cudaMemcpy(d_filter_kernel, h_padded_filter_kernel, mem_size, 

                             cudaMemcpyHostToDevice)); 

 

  // CUFFT plan simple API 

  cufftHandle plan; 

  checkCudaErrors(cufftPlan1d(&plan, new_size, CUFFT_C2C, 1)); 

 

  // CUFFT plan advanced API 

  cufftHandle plan_adv; 

  size_t workSize; 

  long long int new_size_long = new_size; 

 

  checkCudaErrors(cufftCreate(&plan_adv)); 

  checkCudaErrors(cufftXtMakePlanMany(plan_adv, 1, &new_size_long, NULL, 1, 1, 

                                      CUDA_C_32F, NULL, 1, 1, CUDA_C_32F, 1, 

                                      &workSize, CUDA_C_32F)); 

  printf("Temporary buffer size %li bytes\n", workSize); 

 

  // Transform signal and kernel 

  printf("Transforming signal cufftExecC2C\n"); 

  checkCudaErrors(cufftExecC2C(plan, reinterpret_cast<cufftComplex *>(d_signal), 

                               reinterpret_cast<cufftComplex *>(d_signal), 

                               CUFFT_FORWARD)); 

  checkCudaErrors(cufftExecC2C( 

      plan_adv, reinterpret_cast<cufftComplex *>(d_filter_kernel), 

      reinterpret_cast<cufftComplex *>(d_filter_kernel), CUFFT_FORWARD)); 

 

//start timer 

  cudaEventRecord(start, 0); 

 

  // Multiply the coefficients together and normalize the result 

  printf("Launching ComplexPointwiseMulAndScale<<< >>>\n"); 

  ComplexPointwiseMulAndScale<<<32, 256>>>(d_signal, d_filter_kernel, new_size, 

                                           1.0f / new_size); 

 

  cudaDeviceSynchronize(); 

 

  cudaEventRecord(stop, 0); 

  cudaEventSynchronize(stop); 

  cudaEventElapsedTime(&time, start, stop); 

  printf("GPU execution elapsed time:  %3.3f ms \n", time); 

 

  // Check if kernel execution generated and error 

  getLastCudaError("Kernel execution failed [ ComplexPointwiseMulAndScale ]"); 
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  // Transform signal back 

  printf("Transforming signal back cufftExecC2C\n"); 

  checkCudaErrors(cufftExecC2C(plan, reinterpret_cast<cufftComplex *>(d_signal), 

                               reinterpret_cast<cufftComplex *>(d_signal), 

                               CUFFT_INVERSE)); 

 

  // Copy device memory to host 

  Complex *h_convolved_signal = h_padded_signal; 

  checkCudaErrors(cudaMemcpy(h_convolved_signal, d_signal, mem_size, 

                             cudaMemcpyDeviceToHost)); 

 

  // Allocate host memory for the convolution result 

  Complex *h_convolved_signal_ref = 

      reinterpret_cast<Complex *>(malloc(sizeof(Complex) * SIGNAL_SIZE)); 

 

  // Convolve on the host 

  Convolve(h_signal, SIGNAL_SIZE, h_filter_kernel, FILTER_KERNEL_SIZE, 

           h_convolved_signal_ref); 

 

  // check result 

  bool bTestResult = sdkCompareL2fe( 

      reinterpret_cast<float *>(h_convolved_signal_ref), 

      reinterpret_cast<float *>(h_convolved_signal), 2 * SIGNAL_SIZE, 1e-5f); 

 

  // Destroy CUFFT context 

  checkCudaErrors(cufftDestroy(plan)); 

  checkCudaErrors(cufftDestroy(plan_adv)); 

 

  // cleanup memory 

  free(h_signal); 

  free(h_filter_kernel); 

  free(h_padded_signal); 

  free(h_padded_filter_kernel); 

  free(h_convolved_signal_ref); 

  checkCudaErrors(cudaFree(d_signal)); 

  checkCudaErrors(cudaFree(d_filter_kernel)); 

 

  return time; 

  //exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE); 

} 

 

// Pad data 

int PadData(const Complex *signal, Complex **padded_signal, int signal_size, 

            const Complex *filter_kernel, Complex **padded_filter_kernel, 

            int filter_kernel_size) { 
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  int minRadius = filter_kernel_size / 2; 

  int maxRadius = filter_kernel_size - minRadius; 

  int new_size = signal_size + maxRadius; 

 

  // Pad signal 

  Complex *new_data = 

      reinterpret_cast<Complex *>(malloc(sizeof(Complex) * new_size)); 

  memcpy(new_data + 0, signal, signal_size * sizeof(Complex)); 

  memset(new_data + signal_size, 0, (new_size - signal_size) * sizeof(Complex)); 

  *padded_signal = new_data; 

 

  // Pad filter 

  new_data = reinterpret_cast<Complex *>(malloc(sizeof(Complex) * new_size)); 

  memcpy(new_data + 0, filter_kernel + minRadius, maxRadius * sizeof(Complex)); 

  memset(new_data + maxRadius, 0, 

         (new_size - filter_kernel_size) * sizeof(Complex)); 

  memcpy(new_data + new_size - minRadius, filter_kernel, 

         minRadius * sizeof(Complex)); 

  *padded_filter_kernel = new_data; 

 

  return new_size; 

} 

 

//////////////////////////////////////////////////////////////////////////////// 

// Filtering operations 

//////////////////////////////////////////////////////////////////////////////// 

 

// Computes convolution on the host 

void Convolve(const Complex *signal, int signal_size, 

              const Complex *filter_kernel, int filter_kernel_size, 

              Complex *filtered_signal) { 

  int minRadius = filter_kernel_size / 2; 

  int maxRadius = filter_kernel_size - minRadius; 

 

  // Loop over output element indices 

  for (int i = 0; i < signal_size; ++i) { 

    filtered_signal[i].x = filtered_signal[i].y = 0; 

 

    // Loop over convolution indices 

    for (int j = -maxRadius + 1; j <= minRadius; ++j) { 

      int k = i + j; 

 

      if (k >= 0 && k < signal_size) { 

        filtered_signal[i] = 

            ComplexAdd(filtered_signal[i], 
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                       ComplexMul(signal[k], filter_kernel[minRadius - j])); 

      } 

    } 

  } 

} 

 

//////////////////////////////////////////////////////////////////////////////// 

// Complex operations 

//////////////////////////////////////////////////////////////////////////////// 

 

// Complex addition 

static __device__ __host__ inline Complex ComplexAdd(Complex a, Complex b) { 

  Complex c; 

  c.x = a.x + b.x; 

  c.y = a.y + b.y; 

  return c; 

} 

 

// Complex scale 

static __device__ __host__ inline Complex ComplexScale(Complex a, float s) { 

  Complex c; 

  c.x = s * a.x; 

  c.y = s * a.y; 

  return c; 

} 

 

// Complex multiplication 

static __device__ __host__ inline Complex ComplexMul(Complex a, Complex b) { 

  Complex c; 

  c.x = a.x * b.x - a.y * b.y; 

  c.y = a.x * b.y + a.y * b.x; 

  return c; 

} 

 

// Complex pointwise multiplication 

static __global__ void ComplexPointwiseMulAndScale(Complex *a, const Complex *b, 

                                                   int size, float scale) { 

  const int numThreads = blockDim.x * gridDim.x; 

  const int threadID = blockIdx.x * blockDim.x + threadIdx.x; 

 

  for (int i = threadID; i < size; i += numThreads) { 

    a[i] = ComplexScale(ComplexMul(a[i], b[i]), scale); 

  } 

} 

 



51 

fftw.c 

/* Start reading here */ 

 

#include <fftw3.h> 

#include <sys/time.h>  

#include <stdlib.h> 

//#define NUM_POINTS 64 

 

/* Never mind this bit */ 

 

#include <stdio.h> 

#include <math.h> 

 

#define REAL 0 

#define IMAG 1 

 

void acquire_from_somewhere(fftw_complex* signal, int NUM_POINTS) { 

    /* Generate two sine waves of different frequencies and 

     * amplitudes. 

     */ 

 

    int i; 

    for (i = 0; i < NUM_POINTS; ++i) { 

        double theta = (double)i / (double)NUM_POINTS * M_PI; 

 

        signal[i][REAL] = 1.0 * cos(10.0 * theta) + 

                          0.5 * cos(25.0 * theta); 

 

        signal[i][IMAG] = 1.0 * sin(10.0 * theta) + 

                          0.5 * sin(25.0 * theta); 

    } 

} 

 

/* Resume reading here */ 

 

float cpuTest(int NUM_POINTS) { 

    fftw_complex signal[NUM_POINTS]; 

    fftw_complex result[NUM_POINTS]; 

 

    fftw_plan plan = fftw_plan_dft_1d(NUM_POINTS, 

                                      signal, 

                                      result, 
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                                      FFTW_FORWARD, 

                                      FFTW_ESTIMATE); 

 

    acquire_from_somewhere(signal, NUM_POINTS); 

 

    struct timeval t1, t2; 

    double elapsedTime; 

 

    // start timer 

    gettimeofday(&t1, NULL); 

 

    fftw_execute(plan); 

 

    // stop timer 

    gettimeofday(&t2, NULL); 

 

    // compute and print the elapsed time in millisec 

    elapsedTime = (t2.tv_sec - t1.tv_sec) * 1000.0;      // sec to ms 

    elapsedTime += (t2.tv_usec - t1.tv_usec) / 1000.0;   // us to ms 

 

    fftw_destroy_plan(plan); 

 

    return elapsedTime; 

} 

 

int main() 

{ 

    FILE *f = fopen("FFT.txt", "a"); 

    if (f == NULL) 

    { 

        printf("Error opening file!\n"); 

        exit(1); 

    } 

 

    int n = 10; 

 

    while (n < 1000000) 

    { 

        float cputime; 

 

        fprintf(f, "CPU(%d)\n", n); 

 

        cputime = cpuTest(n); 

 

        fprintf(f, "%3.3f\n", cputime); 
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        n *= 10; 

    } 

    fclose(f); 

} 
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Smiscript.sh 

#!/bin/bash 

 

echo "running Nvidia-smi" 

 

while true; do 

nvidia-smi | grep  MiB 

done 

 

 

memorychecker.sh 

#!/bin/bash 

 

trap "kill 0" EXIT 

 

(exec "./smiscript.sh" &) 

echo running simpleTest 10 

./simpleTest 10 

echo running simpleTest 100 

./simpleTest 100 

echo running simpleTest 1000 

./simpleTest 1000 

echo running simpleTest 10000 

./simpleTest 10000 

echo running simpleTest 100000 

./simpleTest 100000 

echo running simpleTest 1000000 

./simpleTest 1000000 

echo running simpleTest 10000000 

./simpleTest 10000000 

echo tests complete 

wait 

 

runMemorychecker.sh 

#!/bin/bash 

 

rm memoryCheckerOutput.txt 

(exec "./memoryChecker.sh" > memoryCheckerOutput.txt) 

 

 


