
1

Investigating the Tradeoffs of GPUs for Parallel

Processes

A Major Qualifying Project

Submitted to the Faculty of

Worcester Polytechnic Institute in partial

fulfillment of the requirements for the Degree

in Bachelor of Science in

Computer Science

By

Jacob Freise

Date: 3/1/19

Sponsoring Organization:

Worcester Polytechnic Institute

Project Advisors:

Professor Tian Guo, Advisor

 This report represents work of WPI undergraduate students submitted to the faculty as evidence

of a degree requirement. WPI routinely publishes these reports on its web site without editorial

or peer review. For more information about the projects program at WPI, see

http://www.wpi.edu/Academics/Projects

2

Abstract

The goal of this project is to investigate the performance tradeoffs between a Central Processing

Unit (CPU) when compared to general-purpose computing on GPUs (GPGPU). GPUs typically

handle computer graphics, GPGPU is when a GPU is used to perform applications traditionally

handled by a CPU. A comparison is achieved by running similar algorithms with varying input

sizes on both pieces of hardware and measuring the differences in total execution time. The best

suited applications for these types of tests are applications that benefit from parallel execution, to

take advantage of the parallel nature of GPUs.

3

Acknowledgments

Without help from certain individuals the completion of this project would not have been

possible. Some of these people helped us by providing guidance while others helped by

supplying the resources necessary to proper testing.

I would like to thank Google for providing credits to use the Google Compute Engine.

Without this funding testing would have been limited to a single low power GPU. This would

have limited the results and made and findings inconclusive. With access the Google's Compute

engine testing was allowed to take place on some of the most high end GPUs on the market

today.

 I would also like thank Tian Guo, the advisor to this project, for overseeing the project,

providing much needed guidance, and giving me a sense of direction.

4

Table of Contents

Title. ………………………………………………………………….....……….1

Abstract ………………………………………………….………..…….……….2

Acknowledgments ………...……………………..…………………..….……….3

Table of Contents ………………………….…………………………….……….4

Table of Figures……....………………………………………………….……….5

Chapter 1. Introduction ………………………………………………….……….6

Chapter 2. Background……. ………………………………………….….……...7

Chapter 3. Project Strategy...…………………………………………….……….15

Chapter 4. Alternative Designs …………………………………………………..19

Chapter 5. Design Verification …………………………………………………..22

Chapter 6. Conclusion and Future Work……………..……...………….…….......34

Bibliography………….. …………………………………………………...……..35

Appendix ………………...………………………...…………………….……….36

5

List of Figures

Figure 1: High level architecture comparison of CPUs and GPUS

Figure 2: Execution time peach analogy

Figure 3: Generational performance gains of GPUs compared to CPUs

Figure 4: Results of parallel RSA algorithm

Figure 5: Difference between a Serial and Parallel Process

Figure 6: Diagram of Nvidia Thread, Grid, and Blocks

Figure 7: 660M results of Vector Addition

Figure 8: K80 results of Vector Addition

Figure 9: P100 results of Vector Addition

Figure 10: 660M results of Vector Addition

Figure 11: K80 results of Vector Addition

Figure 12: P100 results of Vector Addition

Figure 13: K80 results of Fast Fourier Transform

Figure 14: P100 results of Fast Fourier Transform

Figure 15: Comparative results of total execution time

Figure 16: Comparative results of execution time without overhead

Figure 17: Result of the Nvidia-SMI command

Figure 18: Result of Nvidia-SMI during vector Addition

6

Chapter 1: Introduction

GPUs have become a popular piece of hardware sold with nearly every high-end computer. They

act as a coprocessor along with the standard CPU. However, much of the time they simple run

idle. Perhaps, they can be utilized for processes outside of the standard use cases. The goal of

this project is to understand GPU performance when used in general computing. This will help

us better understand cloud-based GPUs as most of the tests will be done using a GPU provided

through the use of the Google Compute Engine, an Infrastructure as a Service hosted by Google.

1.1 Motivation

Many applications require powerful Graphical Processing Units (GPU) to run well; CAD,

graphics rendering, and machine learning all benefit from a better GPU. The problem is that

GPUs are not only physically large but also expensive. This limits users to expensive desktop

workstations to complete jobs that require such hardware. When the owner of the workstation is

not making use of the GPU it simply sits there idle, creating an opportunity cost. Virtualization

can help solve these issues by allowing users to access the computing power of a GPU from a

remote location whenever they need it, and the idle time will be minimized since multiple users

can access it. Nvidia Grid has implemented this system as GaaS, or Gaming as a service, where

clients can have their video games rendered by a remote Graphics Card owned by Nvidia for a

monthly fee. This way the user does not need to buy an expensive card to play a video game.

CPU virtualization has been extensively researched, so to better understand how GPU

virtualization can be efficiently implemented we must first look at the differences between a

CPU and a GPU, which have fundamentally different design philosophies.

1.2 Report Organization

7

This report is broken into six distinct chapters. Chapter 1: Introduction, introduces the intent and

purpose of the report, providing the motivation for the development of the project and a high-

level overview of the differences between a CPU and GPU. Chapter 2: Literature review

investigates previous work done on this topic, discussing their goal, methods and conclusions.

Chapter 3: Proposed Design and Project Logistics discusses how the performance differences

were going to be tested on the processing units. Chapter 4: Implementation discusses how the

tests were implemented on the different processing units, and how the results were recorded.

Chapter 5: Results discusses the results returned by the tests and what the tests signify. Chapter

6: Conclusions and future work summarizes the overall finding of this project and the next steps

that can be taken to further the research in the differences between GPUs and CPUs.

Chapter 2: Background

CPUs originally were designed to have a single core with an extremely clock speed to ensure the

fastest execution of a sequential program. This model was used for decades with each subsequent

year resulting in faster single core performance. This meant that any programs would simply run

faster with new hardware. However, since 2003 the energy consumption and heat dissipation

caused by marginal increases in clock speed has imparted a hard performance limit.

Microprocessor vendors switched to a multicore trajectory, seeking to maintain high execution

speeds of sequential programs when moving onto multiple cores. This means that programs will

not as easily see a speed up when the hardware is upgraded, it instead forces the software

developer to develop with multicore processors in mind. CPUs make use of sophisticated control

8

logic to allow instructions from a single thread to execute in parallel or even out of sequential

order while maintaining the appearance of sequential execution. They feature large cache

memories to reduce the instruction and data access latencies of large complex applications.

GPUs are designed with a many-thread trajectory, focusing on the execution throughput

of parallel applications. GPUs favor throughput, they operate at 10x the memory bandwidth of

comparable CPUs. They move large amount of data in and out the main system memory.

Reducing latency is much more expensive than increasing throughput in terms of power and chip

area. The solution is to optimize for the execution of a massive number of threads. Small caches

are used so multiple threads that access the same memory do not need to reassess the same

DRAM. The sheer number of threads makes up for the potentially long execution time. This is

called throughput-oriented design.

Figure 1: High level overview of the architectural designs of a CPU and a GPU demonstrating the

differences in the layouts of the ALUs, Control Units, and Caches. [1]

The GPU has many more arithmetic logic units divided into rows, each with a small control unis

and cache but the total cache size is much smaller than the CPU's.

9

 Since hardware has reached a limit in terms of clock speed the only way for programs to

enjoy a speed increase in future hardware generations is to make them more parallel. When an

application is suitable for parallel execution an efficient implementation on a GPU can achieve a

speedup factor of 100 over the speed of a single CPU core. The true speed up depends on how

much the program can be parallelized. If 30% of a program can be parallelized, a 100x speed up

of that portion will reduce the execution time by no more than 30%, making the entire

application only about 1.4X faster. Even an infinite speed up of that portion take 30% off the the

entire execution time, achieving a 1.43X speed up. The idea that speed up is limited by the

proportion of the code than can be parallelized is called Amdahl's law. In practice,

straightforward parallelization can cause a saturation of memory bandwidth, lowering the true

speed up to only about 10x.

 Most of the code in real applications tend to be sequential, making them better suited for

CPU execution. However, only a small amount of execution time is spent in these sections, the

rest is spent on parts the can be parallelized.

10

Figure 2: The "Peach Analogy" of modern algorithms the pit of the peach represents the execution time

spent in serial processes. These serial processes are surrounded by the meat of the peach, representing a

proportionally larger amount of execution time spent in parallelizable processes. [2]

An analogy is that of a peach, with the sequential execution time as a the pit of the peach and the

parallelizable portions as the meat. The obstacles represent the problems faced by data transfer

speeds from the main memory.

 The purpose of parallelizing code is to make the end result run faster, but this can be a

challenge because designing parallel code not only adds programming complexity but some

parallel algorithms add large overheads that cause them to run slower than a similar sequential

algorithm. The goal of this MQP is to determine which tasks are better suited for GPU execution

when the overhead is considered.

2.1 Literature Review

As CPU performance increases begin to plateau due to the powerwall faced by designers

trying to increase the clock speed and GPUs becoming more powerful every year, the question of

11

using a GPU to accelerate programs is becoming a more important one. Research on the topic is

not exactly scarce, but it tends to get quickly outdated since GPU technology is growing quite

rapidly.

Figure 3: The theoretical peak performance of GPUs is following an exponential growth trend where

CPU follows a more linear growth trend. [3]

GPU performance when compared to CPUs is not a new subject of research, partially because of

the importance of the implications. Faster parallel programs allow for larger simulations, faster

machine learning, and better graphics to name a few use cases. In order to find which types of

benchmarks that should be ran in order to return the most insightful results some prior research

on the subject was investigated.

 It has been said before that running code on a GPU can offer up to a 1000X performance

increase compared to running similar code on a CPU. The paper Debunking the 100X GPU vs.

12

CPU Myth: An Evaluation of Throughput Computing on CPU and GPU [4] attempts to

investigate the validity of that claim. To test this the researchers developed some benchmarks

that made high use of data parallelism, such as Monte Carlo, Fast Fourier Transform, and Basic

Linear Algebra such as vector addition and multiplication. Using Intel's i7-960 and Nvidia's

GTX 280, the researchers find that the performance differences between CPUs and GPUs are not

as wide as initially thought. They found when proper optimizations are applied to both the CPU

and GPU code they perform at roughly similar speeds. Instead of being 1000X faster, GPUs tend

to operate closer to 2.5X faster when given highly parallelizable problems. These tests are using

an old GPU relative to today, so perhaps the performance gap has grown.

 Researchers have made it clear that optimization played a big part in how much speed up

can actually be achieved using the GPU over the CPU. Code optimized for multithreaded CPU

use can beat unoptimized GPU code and vice-versa. In the paper Optimization schemes and

performance evaluation of Smith–Waterman algorithm on CPU, GPU and FPGA [5] researchers

tried to measure the differences between speedup of optimized and unoptimized code on GPUs

versus CPUs. They found that the optimized GPU was much faster than the unoptimized GPU

version, but only marginally better than the CPU in various parallel benchmarks. The FPGA

ended up being the fastest and most efficient due to its low power requirements.

 We know that image processing is a highly parallel processes, this is due to the fact that

each pixel can be operated on independently of every other pixel. The pixels do no depend on

each other’s prior state to find out their own next state. This means that image processing

algorithms are a great candidate for GPU execution. In the paper Performance comparison of

FPGA, GPU and CPU in image processing [6] researchers compare GPUs to CPUs and FPGAs

using simple and well-known problems in image processing, two-dimensional filters, stereo-

13

vision and k-means clustering. In the two-dimensional filters test they found that GPUs far

exceeded both CPUs and FPGAs. The CPU only beat the FPGA when the input size was kept

small. The others two tests had FPGAs exceeding both the GPU and CPU, while the GPU and

CPU were neck and neck. They concluded that the GPU only outperforms FPGAs when each

pixel needs to be operated on independently, such as the case of the two-dimensional filter. The

CPU used in the testing was an Intel Core 2 Extreme QX6850, the GPU was Nvidia's GTX 280,

and the FPGA was a Xilinx XC4VLX160. As mentioned before this GPU is rather outdated,

however I doubt that a more modern GPU will change the trends of their results in reference to

the FPGA, however it might make the gap between the CPU and GPU larger.

One research group at WPI did a similar MQP called Computing Performance

Benchmarks among CPU, GPU, and FPGA [7], where they compared the performance

differences of CPUs, GPUs and FPGAs using a series of benchmarks. They chose seven

benchmark suites that represented common computation problems, such as sorting and

compression. They performed these across two Intel Xeon 5650 CPUs, the Virtex-5 FPGA and

NVIDIA’s GeForce GTX460 and 9800 GTX+ GPUs. Their conclusion was rather ambiguous,

claiming that more research needs to be done in in the future as technology improves. The GPUs

they chose are considered rather outdated compared to today's standards. So perhaps this is the

future where technology has sufficiently improved they were talking about.

Investigating many benchmarks lead to an ambiguous conclusion to the varying results

but investigating a specific task will lead to a much more explicit conclusion. The ideal task is

something that can be broken down into many different parts that all are worked on

independently. A research group at UC Berkeley in the paper SSLShader: Cheap SSL

Acceleration with Commodity Processors [8] attempted a GPU implementation of the RSA

14

encryption algorithm. They claim that they developed the fastest known implementation of the

algorithm using GPU parallelization. They achieved this by breaking up multiple RSA ciphertext

messages and splitting them into thousands of threads so in order to utilize all the GPU cores.

[4]

They found that the GPU execution outperformed the CPU execution as the number of messages

increased. Their results show that the latency grows witch the throughput, this is due to the fact

that as the input message increases, more data needs to be transcoded to the GPU. The larger bit

cipher messages experience a faster growth in latency because they are taking up more

bandwidth in the hardware. The GPU they chose was the Nvidia GTX 580, a brand-new card at

the time. If this was ran on modern GPUs the trends would probably be similar, where the CPU

outperforms the algorithm until the input size grows large enough. However, the rate of growth

would probably be delayed or dampened due to modern GPUs having much more onboard

memory.

 A tree can be operated on independently, making them a good candidate for a parallel

algorithm. Efficient Parallel Graph Exploration on Multi-Core CPU and GPU [9] was written

for a conference on parallel architectures and investigated using a parallel approach for exploring

breadth-first search trees. The team developed two algorithms, one that would run on a

15

conventional CPU, making sure to make use of all available cores, and an algorithm that runs on

a GPU. The CPUs used were Intel's Xeon X5550, X5570, X7550, and E5345. The GPUs chosen

were Nvidia's Fermi C2050, and Tesla GTX275. They found that a quad-core CPU operates very

similarly in speed to that of a high-end GPU. However, the high-end GPUs used in their tests are

considered quite weak compared to today's high-end GPUs, so perhaps the results would look

different if ran on more contemporary GPUs.

 In Theano: A CPU and GPU math compiler in Python [10] researchers attempt to create

mathematical expression compiler in order to increase the speed at which they run. It forms low

level machine code and supports CUDA kernels. They found that expressions running on GPUs

tended to be faster compared to running on CPUs. They used a GTX 285 for their testing.

 These research papers often seem to use a 200 series Nvidia card. According to Figure 3,

this card has been highly outclassed by modern GPUs. This means that in any case where

researchers found a CPU to be better suited to the problem could have a different result with

newer hardware. This research has also pointed us in the direction of which benchmarks to use,

especially highly parallel ones such as Linear Algebra and the Fast Fourier Transform.

Chapter 3: Proposed Design and Project Logistics

3.1 - Main Goal

The main goal of this project was to determine in which cases a GPU would be a better choice

than a traditional CPU. A CPU excels in fast sequential operations, where GPU excels in

massive throughput of parallel operations. Parallel operations are sequence independent,

meaning that you do not need to solve the problem in a series of steps. You can paint the front of

a house at the same time as you can paint the back of the house, making this a parallel problem,

however, you cannot prime the house the same time as you paint it, making this a serial problem.

16

Figure 5: Example of the differences between a parallel and a serial process [11]

GPUs are better at handling parallel problems due to the large amount of independent processing

units normally used in graphical problems, each pixel is independent of the ones around it. The

CPU is better at handling sequential problems due to its fast clock speed and large memory cache

per processing unit. This may make it seems that a GPU will always beat a CPU for a parallel

task, however this is not the case. The primary reason being that data has to be transcoded from

the main memory by the CPU to the GPU, this all takes some amount of time called overhead. If

the total execution time on the GPU including overhead is larger than the total execution time of

the same problem on the CPU, then using the GPU slowed down the total process time. The goal

of this project is to develop a series of benchmarks that represent different use cases of parallel

programs and provide each algorithm with varying sizes of data to determine when a GPU

outperforms the CPU.

17

3.2 - Project Objectives

The main objective of the benchmarks was to get measurements of the CPU execution time, the

GPU execution time, and the total overhead time required to transfer the data between them. In

order to do this, the following needed to be achieved:

● Research and understand GPU design

● A way to create programs that can run on both a CPU and GPU

● A platform on which to test the programs on a variety of hardware

● Research which benchmarks should be chosen

● A system to capture the execution times and overhead costs for the CPUs and CPUs

3.3 - Project Management and Tasks

Since this was a solo project I was in charge of all research and development involved in the

project. The first task was investigating how a GPU actually works, this involved reading several

research papers and the book Programming Massively Parallel Processors by David B. Kirk and

Wen-mei Hwu, engineers at Nvidia and Advanced Micro Devices respectively. This book

provided much insight into the high-level architectural design of GPUs and its relevance to

developing efficiently parallel programs. It also gave some simple examples I used for

benchmarking purposes.

The next task was to research which platform to design the benchmarks should be chosen

as there are a couple options available such as OpenCL and CUDA. The program needs to be ran

on some hardware, the more hardware the stronger the results. My personal computer has a

Nvidia 660M, this will be used as a preliminary test, but a more robust platform was needed. The

choice of which programs be used to benchmark needed to be researched, as some benchmarks

will return different results than others. Then the program would need to capture the amount of

18

time it took to run on all of the different pieces of hardware, and this data needed to be stored in

a way that was able to show a clear trend if one existed.

3.4 - Design Decisions

Nvidia's CUDA was the programming model of choice. While CUDA is proprietary and is only

supported by CUDA enabled GPUs limited to the Nvidia brand, it has the highest level of

performance due to its tight hardware integration. The increased performance makes CUDA the

primary choice for developers interested in parallel development, and as a result most fields

interested in parallel development, such as machine learning, use CUDA. This makes the results

of this report have the highest level of relevance. The main drawback of CUDA is that it is not

supported on AMD GPUs.

 The necessity of needing multiple pieces of hardware in order to get robust results was

met through the use of Google's Compute Engine. Google's Compute Engine allows users to

create servers using virtual CPUs and choose from a variety of very high-end GPUs. This

allowed me to test any benchmarks on GPUs such as the K80, and P100, which would normally

cost thousands of dollars.

 The first benchmark chosen, vector addition, was out of simplicity, however it does

represent a large portion of parallel problems. The benchmark simply adds two matrices of

varying input sizes together. The second benchmark is a Fast Fourier Transform, this was chosen

due to both the relevance and problem size. FFTs are used by a wide variety of industries and is a

quite difficult problem that can be parallelized. This will allow us to show the difference between

a simple problem and a much more difficult one.

19

 The execution times are captured using CUDA's built in timer functions, even the CPU

only code used these functions to keep the tests consistent as the execution time of timer

functions could cause an effect on the measurements.

Chapter 4: Implementation

4.2 - Vector Addition

With the benchmarks chosen the next step is to implement each one into a form that could be

tested by both the CPU and GPU of a system. CUDA allows for a program to be written

primarily for a CPU but GPU kernels called for data to be offloaded to the GPU. With vector

addition being the simplest benchmark that that was the obvious place to start. The textbook

Programming Massively Parallel Processes [2] provided a simple example of vector addition

which was expanded upon to allow for testing. The main features of the program generate two

matrices of a given length, then run a simple while loop to add each of the respective indices

together returning a third matrix. This represents a CPU executing vector addition. The system

time was taken before and after the while loop using a CUDA timer function.

 Creating the GPU version of the problem was a bit more involved. First several pointers

needed to be created to hold the vectors in the memory of the GPU. Then data for our matrices

was allocated on the GPU using the cudaMemcpy function. The cudaMemcpy allows for a data

transfer from the CPU to GPU and vice versa. It takes four parameters; a pointer to the

destination, a pointer to the source, the number of bytes being copied, and the direction of

transfer. In this case the data was being transferred from the CPU to the GPU, so the destination

were the pointers we had just created, and the source were the matrices that holding the data to

be added. After copying the arrays to the GPU some more data was allocated for the matrix that

20

will hold the results of the addition. The function used for this was cudaMalloc, which functions

similarly to the normal malloc function in standard C.

 After preparing all of the necessary data onto the GPU the execution is performed by a

GPU kernel, a segment of code that is run on every processing unit inside the GPU. The vector

addition code looks like this:

Int i = blockDim.x * blockIdx.x + threadIdx.x

if(i<n) C[i] = A[i] + B[i];

CUDA kernels have access to two or more built-in variables, threadIDx and blockIDx that

allows threads to distinguish themselves and determine the area of data each thread is to work

on. Variable threadIdx gives each thread a unique coordinate within a block. In this case we are

using a one-dimensional thread organization because out matrix is only one dimensional,

therefore we only use threadIdx.x. All threads in a block share a common block coordinate.

blockDim is a value picked by the developer which determines the amount of threads per block.

If a developer chose a blockDim of 256 then blockIDx.x 0 would contain the threads 0-255. The

value of n represents the number of values in the matrix. It prevents the GPU from attempting

adding data that does not exist together by constraining it.[2]

21

Figure 6: Example of a two dimensional threads and blocks. In this case the block dimension is 2, but the

two dimensions allow each block to hold 4 threads. Not to be confused with the 4x4 grid size which is

fixed by the hardware. [6]

4.3 - Fast Fourier Transform

The Fast Fourier Transform was a bit easier because I used a few common implementations and

simply adjusted them to my needs. There is a well-known FFT program called FFTW3 which

does simple FFTs on a CPU. It took a parameter representing the scale, the larger the scale the

larger the computation time. Nvidia supplies an example project called cuFFT which took a

similar scale parameter. A timer function captured the amount of time that each program took to

calculate the FFT.

22

Chapter 5: Results

n i7-3610QM
660M
OH

660M
NOH vCPU

k80
OH

k80
NOH vCPU2

P100
OH

P100
NOH

10 0.034 0.328 0.046 0.012 0.316 0.037 0.009 0.413 0.032

100 0.03 0.961 0.039 0.015 0.244 0.024 0.02 0.263 0.02

1000 0.028 0.963 0.043 0.015 0.242 0.025 0.01 0.273 0.034

10000 0.03 0.583 0.049 0.04 0.372 0.041 0.035 0.283 0.018

100000 0.03 2.094 0.426 0.42 0.722 0.034 0.314 0.456 0.022

1000000 0.061 7.616 1.551 3.661 2.916 0.129 3.423 2.309 0.042

10000000 0.073 54.628 12.752 38.65 22.652 1.012 35.593 19.353 0.252

100000000 0.077 504.04 110.795 396.33 372.82
 Figure 7: Total result chart of vector addition. OH stands for results including overhead times. NOH

stands for results excluding overhead times. All results are times measured in (ms)

n vCPU k80 OH k80 NOH vCPU2 P100 OH P100 NOH

10 0.001 453.995 0.037 0.001 361.812 0.051

100 0.001 424.52 0.032 0.001 301.719 0.024

1000 0.014 419.897 0.02 0.025 281.144 0.012

10000 0.136 406.131 0.02 0.193 309.633 0.035

100000 2.047 470.963 0.041 1.96 352.604 0.024

Figure 8: Total result chart of Fast Fourier transform. OH stands for results including overhead times.

NOH stands for results excluding overhead times. All results are times measured in (ms)

Bytes
totalFFT
OH

FFT
NOH

vectorAdd
OH

vectorAdd
NOH

simpleVecadd
NOH

simpleVecadd
NOH2

128 331.77 0.039 0.319 0.033 0.346 0.312

848 292.494 0.038 0.274 0.024 0.267 0.236

32768 281.017 0.022 0.596 0.046 0.306 0.272

325632 294.9 0.022 4.053 0.071 0.574 0.536

3241984 343.611 0.041 39.664 0.234 2.45 2.337

Figure 9: Comparing different tests using the same amount of input data. vectorAdd is a custom vector

addition program, and simpleVecadd is provided by Nvdidia. OH stands for results including overhead

times. NOH stands for results excluding overhead times. All results are times measured in (ms)

5.1 - Vector Addition

23

The first test to determine the difference speed differences between the CPU and GPU was

running a simple matrix addition test. Two matrices of n length were generated and then added

together using both a CPU and then a GPU using a CUDA kernel. The experiment was

measuring how long it took each length of matrix to complete its addition. The system time was

captured before the vector addition and afterwards to calculate the total execution time.

Execution time was the metric chosen because it has the most real-world implications. The faster

the execution time the faster the program is in general. The time taken for the GPU to allocate

and transfer data was also measured and included in the total execution time. This is an

important metric because it shows how much of the total time used by the GPU was spent doing

something that was not calculating. It can help demonstrate why the time taken by a GPU might

be higher than expected. The CPU has no overhead time because it has direct access to the data.

These were performed on three different graphics cards; a 660M, a K80, and a P100. The CPU

was an i7-3610QM when paired with the 660M, but the K80 and P100 used an Intel Haswell

virtual CPU provided by the Google Compute engine.

\

24

660M results

Figure 7: Results of a parallelized vector addition ran on an Nvidia 660M

Blue line represents the total CPU execution time

Yellow line represents the GPU execution time without measuring the overhead of data transfer

Red line represents the total GPU execution time with overhead

The CPU took relatively the same amount of time until n increased to over 1 million. This was

probably due to n exceeding the size of the cache. The GPU execution followed a similar trend

until 10,000 at which point it started growing linearly with n. This was also probably due to n

exceeding the cache size. The total time with overhead followed the execution time trend,

implying that the overhead did not grow as n increased. This is a case where the small cache size

of the GPU negatively affects the performance relative the CPU.

25

K80 results

Figure 8: Results of a parallelized vector addition ran on a Nvidia K80

Blue line represents the total CPU execution time

Yellow line represents the GPU execution time without measuring the overhead of data transfer

Red line represents the total GPU execution time with overhead

Using a K80, a more powerful GPU, and a virtual CPU provided by Google's compute engine,

the trends started to change. The CPU time started to increase linearly with n after n exceeded

10,000. This implies that the virtual CPU has a smaller cache than the i7-3610QM. The GPU

execution time started to follow n in what looks like exponential growth but exceeding an n

value of 1 million would cause the test to crash. The growth it probably follows a linear trend

after fully exceeding the cache which looks like it happens when n reaches 100,000. The total

time, including overhead, follows the execution time, implying that the overhead does not

increase as n increases. This test shows that a higher quality GPU can change the trade-offs

between a GPU and CPU performance differences. This is a case where the GPU offers better

26

performance over the CPU with a large enough data set, but a smaller data set still favors the

CPU.

P100 results

Figure 9: Results of a parallelized vector addition ran on an Nvidia P100

Blue line represents the total CPU execution time

Yellow line represents the GPU execution time without measuring the overhead of data transfer

Red line represents the total GPU execution time with overhead

Using an even more powerful GPU, the P100, and the same processor as the last test, the

performance follows the same trends. The CPU grows linearly after exceeding the same n value,

which is most likely due to n exceeding the cache size. The GPU follows the same trend as the

K80's results, however the times are slightly faster. This implies that there are diminishing

returns when it comes to a GPU, as after a certain point a more powerful one will not make a

massive difference in total time.

27

These graphs help demonstrate the tradeoff between CPUs and GPUs. A CPU will handle

a small data set more efficiently because the overhead of transferring it to the GPU is larger than

the performance gain the GPU offers. One point of confusion created by these graphs is how the

CPU results of the 660M are always faster than the GPU. This is probably due to the CPU

having a cache larger than n.

5.2 - Fast Fourier Transform

The next test was comparing the performance between the GPU and CPUs was a Fast Fourier

Transform. This test was set up similarly to the Vector Addition test where an increasing load

was supplied to the algorithm and timers captured the execution times with and without the

overhead used for data transfer. The n in this instance represented what is called the scale, a

larger scale allows for more detailed results from the wave but increases computational

complexity. Increasing the scale should increase the execution times in both the CPU and GPU.

This was only performed on the K80 and P100 using Google's virtual CPU.

28

K80 results

Figure 10: Results of a parallelized Fast Fourier Transform ran on a Nvidia K80

Blue line represents the total CPU execution time

Yellow line represents the GPU execution time without measuring the overhead of data transfer

Red line represents the total GPU execution time with overhead

The Fast Fourier transform on the CPU shows a linear growth after n equals 100, n represents the

amount of data in this test, so it is probably where the cache size is exceeded. The GPU

experiences no growth through the entire data set. This implies that a GPU will eventually beat a

CPU given a large enough data set, however any attempts to increase the scale further resulted in

a crash of the GPU program.

29

P100 results

Figure 11: Results of a parallelized Fast Fourier Transform ran on a Nvidia P100

Blue line represents the total CPU execution time

Yellow line represents the GPU execution time without measuring the overhead of data transfer

Red line represents the total GPU execution time with overhead

These graphs were interesting because the GPU performance time does not increase as the

sample size increases where the CPU experiences linear growth. This test again shows that the

total execution time in the GPU does not increase as n grows. The results show that CPUs are

faster, but according to the trends increasing the data set further would have the CPU take longer

than the GPU. However, this could not be tested due to increasing n any further would cause the

GPU test to crash.

30

5.3 - Result Comparison

The next test was comparing the performance difference between two tests given the same data

size of the input. This was performed using only one GPU, the K80. The FFT testing error was

fixed before this test.

Figure 12: Comparisons of the total execution times of two vector addition algorithms and the FFT on a

Nvidia K80
Blue line represents the total GPU FFT execution time with overhead

Yellow line represents the total GPU vector addition time with overhead with optimization

Red line represents the total GPU vector addition time with overhead without optimization

31

Figure 13: Comparisons of the execution times not including data transfer of the two vector addition

algorithms and the FFT on an Nvidia K80
Blue line represents the total GPU FFT execution time with NO overhead(time spent in data transfer)

Yellow line represents the total GPU vector addition time with NO overhead with optimization

Red line represents the total GPU vector addition time with NO overhead without optimization

The graph shows how the execution times for the different tests were usually very similar, this

speaks to the computation efficiency of the GPU. It also shows that the overhead of transferring

the data is where this efficiency is lost. Notice how large the gap is between the FFT execution

time and FFT total time. This graph does create some questions, why do certain processes take

more overhead? Why does the overhead of vecAdd grow over time when simple Vecadd and

FFT stay relatively the same?

32

5.4 - Data Analysis

In this experiment we try to understand the overheads of the workloads by using a command

provided by Nvidia called Nvidia-SMI which shows the current state of the GPU.

Figure 14: Output of the linux command Nvidia-SMI. This is used to get the current memory utilization of

the GPU.

The relevant information is the total memory usage and the memory usage per process.

A script was written in order to run this test multiple times per second while a benchmark is

being run. This way the memory usage can be graphed over time.

Using grep, each line containing the string MiB was saved to a text file along with the outputs

from the benchmark script.

33

Figure 15: Output of running Nvidia-SMI during the Vector Addition algorithm and using grep to pull

relevant data

34

This shows the utilization over time as the tests are being ran, as expected the larger the n value,

the higher memory utilization.

Chapter 6: Conclusions and Future Work

According to the results it seems that the optimal processing unit depends on the size of the data

set. In general, a small data set will take less time to complete when ran on a CPU because of the

immediacy of the data. The CPU has a larger cache and a faster clock speed so if it can store the

entire data set within the cache then it will be able to work through the data quite quickly. The

GPU faces an overhead cost due to the time it takes to allocate and transfer the data to the GPU.

A CPU can finish the execution before the GPU even receives the data if the data set is small.

However, as the data set increases the overhead cost does not. This means that a large amount of

data will take a similar amount of time to transfer to the GPU as a small set of data. Since CPUs

experience a linear growth in execution time due to its sequential nature, there is a point where

using the GPU becomes the faster option. This point is relative to the transfer speed of the GPU

and the cache size of the CPU.

 These tests were all operated on a discrete GPU, where the data must travel through PCIE

to reach the GPU. A future work could perform similar benchmarks using an integrated GPU.

This would be interesting as the integrated GPU is located inside the CPU, which would reduce

the amount of overhead. Since overhead is the main limiting factor the tests would probably

favor the GPU with smaller data sets. Recently the performance of integrated GPUs has

increased making them competitive with discrete GPUs making them an interesting point of

research for general purpose computing on graphical processing units.

35

Bibliography

[1] http://ixbtlabs.com/articles3/video/cuda-1-p1.html

[2] Kirk, David, and Wen-mei Hwu. Programming Massively Parallel Processors: a Hands-on

with CUDA. Morgan Kaufmann Publishers, 2010.

[3] https://michaelgalloy.com/2013/06/11/cpu-vs-gpu-performance.html

[4] https://dl.acm.org/citation.cfm?id=1816021

[5]https://www.researchgate.net/publication/262312302_Optimization_schemes_and_performan

ce_evaluation_of_Smith-Waterman_algorithm_on_CPU_GPU_and_FPGA

[6]https://www.researchgate.net/publication/220759541_Performance_comparison_of_FPGA_G

PU_and_CPU_in_image_processing

[7]https://web.wpi.edu/Pubs/E-project/Available/E-project-030212-

123508/unrestricted/Benchmarking_Final.pdf

[8] https://people.eecs.berkeley.edu/~sangjin/static/pub/nsdi2011_sslshader.pdf

[9] https://ppl.stanford.edu/papers/pact11-hong.pdf

[10] http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf

[11] https://www.xait.com/resources/blog/serial-vs-parallel-process/

[12] https://sidkashyap.files.wordpress.com/2013/05/block_grid_thread.jpg

http://ixbtlabs.com/articles3/video/cuda-1-p1.html
https://michaelgalloy.com/2013/06/11/cpu-vs-gpu-performance.html
http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf
https://www.xait.com/resources/blog/serial-vs-parallel-process/

36

Appendix

VectorAddition.cu

#include <stdio.h>

#include <stdlib.h>

void cpuVectorAdd(int *a, int *b, int *c, int n)

{

 int i;

 for (i = 0; i < n; i++)

 {

 c[i] = a[i] + b[i];

 }

}

__global__ void gpuVectorAdd(int *a, int *b, int *c, int n)

{

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < n)

 {

 c[i] = a[i] + b[i];

 }

}

void CPUtest(int *a, int *b, int*c, int n)

{

 float time;

 cudaEvent_t start, stop;

 cudaEventCreate(&start);

 cudaEventCreate(&stop);

 cudaEventRecord(start, 0);

 cpuVectorAdd(a, b, c, n);

 cudaDeviceSynchronize();//simply there to balance the test

 cudaEventRecord(stop, 0);

 cudaEventSynchronize(stop);

 cudaEventElapsedTime(&time, start, stop);

 printf("CPU elapsed time: %3.3f ms \n", time);

37

}

void GPUtest(int *h_A, int *h_B, int*h_C, int n)

{

 int *d_A, *d_B, *d_C;

 int size = n * sizeof(int);

 int blockSize;

 int minGridSize;

 int gridSize;

 float time, sumTime, gpuTime, overheadTime;

 cudaEvent_t start, stop; //timer varaibles

 cudaEventCreate(&start); //initializes timer

 cudaEventCreate(&stop);

 cudaEventRecord(start, 0); //starts timer

 cudaOccupancyMaxPotentialBlockSize(&minGridSize, &blockSize, gpuVectorAdd, 0,

n); //calculates block size

 gridSize = (n + blockSize - 1) / blockSize; //calculates grid size

 cudaEventRecord(stop, 0); //stops timer

 cudaEventSynchronize(stop);

 cudaEventElapsedTime(&time, start, stop); //calculates elapsed time

 sumTime = time; //used to calculate total time

 //printf("Occupancy calculator elapsed time: %3.3f ms \n", time);

 //printf("Grid size of: %d Block size of %d minGridSize: %d\n", gridSize,

blockSize, minGridSize);

 cudaEventRecord(start, 0); //start timer for allocation

 cudaMalloc((void **) &d_A, size); //allocates some space on GPU

 cudaMalloc((void **) &d_B, size);

 cudaMalloc((void **) &d_C, size);

 cudaEventRecord(stop, 0);

 cudaEventSynchronize(stop);

 cudaEventElapsedTime(&time, start, stop);

 sumTime += time;

 //printf("cudaMalloc elapsed time: %3.3f ms \n", time);

38

 cudaEventRecord(start, 0);

 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); //moves data from

cpumemory to GPU memory

 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

 cudaEventRecord(stop, 0);

 cudaEventSynchronize(stop);

 cudaEventElapsedTime(&time, start, stop);

 sumTime += time;

 //printf("cudaMemcpy Host to Device elapsed time: %3.3f ms \n", time);

 cudaEventRecord(start, 0);

 gpuVectorAdd <<<gridSize, blockSize>>> (d_A, d_B, d_C, n); //calls kernel

 cudaDeviceSynchronize(); //makes sure kernel is done before moving on

 cudaEventRecord(stop, 0);

 cudaError_t error = cudaGetLastError(); //this is how i found out that i

needed to use special compile parameters

 if (error != cudaSuccess)

 {

 fprintf(stderr, "ERROR: %s\n", cudaGetErrorString(error));

 exit(-1);

 }

 cudaEventSynchronize(stop);

 cudaEventElapsedTime(&time, start, stop);

 gpuTime = time;

 sumTime += time;

 //printf("vecAdd elapsed time: %3.3f ms \n", time);

 cudaEventRecord(start, 0);

 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost); //grab data from GPU and

put it back into cpu memory

 cudaEventRecord(stop, 0);

 cudaEventSynchronize(stop);

 cudaEventElapsedTime(&time, start, stop);

 sumTime += time;

 //printf("cudaMemcpy Device to Host elapsed time: %3.3f ms \n", time);

39

 overheadTime = sumTime - gpuTime; //find out how much of the time was not

calculation time

 printf("GPU elapsed time: %3.3f ms (%3.3f ms was overhead, %3.3f ms was

calculation)\n", sumTime, overheadTime, gpuTime);

 cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); //free the data

}

int main(int argc, char* argv[])

{

 int numberArray[] ={32, 212, 8192, 81408, 81049};

 int counterValue;

 if(argc == 0)

 {

 counterValue = 5;

 }

 else

 {

 counterValue = 1;

 numberArray[0]= atoi(argv[1]);

 //printf("Entered Value:%d aka %s\n ",numberArray[0],argv[1]);

 }

 int n = 0;

 for (int counter = 0; counter < counterValue; counter ++)

 {

 cudaDeviceReset();

 n = numberArray[counter];

 int *a, *b, *c, *d;

 int size = n * sizeof(int);

 a = (int *)malloc(size);

 b = (int *)malloc(size);

 c = (int *)malloc(size);

 for (int i = 0; i < n; ++i) //for this test it simples adds two of the

same number

 {

 a[i] = i;

 b[i] = i;

 c[i] = 0;

 }

40

 printf("n = %d\n", n);

 //CPUtest(a, b, c, n);

 GPUtest(a, b, c, n);

 free(a);

 free(b);

 free(c);

 }

}

41

#include <stdio.h>

#include <stdlib.h>

void cpuVectorAdd(int *a, int *b, int *c, int n)

{

 int i;

 for (i = 0; i < n; i++)

 {

 c[i] = a[i] + b[i];

 }

}

__global__ void gpuVectorAdd(int *a, int *b, int *c, int n)

{

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < n)

 {

 c[i] = a[i] + b[i];

 }

}

void CPUtest(int *a, int *b, int*c, int n)

{

 float time;

 cudaEvent_t start, stop;

 cudaEventCreate(&start);

 cudaEventCreate(&stop);

 cudaEventRecord(start, 0);

 cpuVectorAdd(a, b, c, n);

 cudaDeviceSynchronize();//simply there to balance the test

 cudaEventRecord(stop, 0);

 cudaEventSynchronize(stop);

 cudaEventElapsedTime(&time, start, stop);

 printf("CPU elapsed time: %3.3f ms \n", time);

}

void GPUtest(int *h_A, int *h_B, int*h_C, int n)

{

42

simpleCUFFT.cu

/* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions

 * are met:

 * * Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 * * Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in the

 * documentation and/or other materials provided with the distribution.

 * * Neither the name of NVIDIA CORPORATION nor the names of its

 * contributors may be used to endorse or promote products derived

 * from this software without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY

 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 */

/* Example showing the use of CUFFT for fast 1D-convolution using FFT. */

// includes, system

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

//#include <fftw3.h>

// includes, project

#include <cuda_runtime.h>

#include <cufft.h>

#include <cufftXt.h>

#include <helper_cuda.h>

#include <helper_functions.h>

43

// Complex data type

typedef float2 Complex;

static __device__ __host__ inline Complex ComplexAdd(Complex, Complex);

static __device__ __host__ inline Complex ComplexScale(Complex, float);

static __device__ __host__ inline Complex ComplexMul(Complex, Complex);

static __global__ void ComplexPointwiseMulAndScale(Complex *, const Complex *,

 int, float);

// Filtering functions

void Convolve(const Complex *, int, const Complex *, int, Complex *);

// Padding functions

int PadData(const Complex *, Complex **, int, const Complex *, Complex **, int);

//

// declaration, forward

float runTest(int argc, char **argv, int SIGNAL_SIZE);

#define REAL 0

#define IMAG 1

// The filter size is assumed to be a number smaller than the signal size

#define FILTER_KERNEL_SIZE 11

//

// Program main

//

/*

void acquire_from_somewhere(fftw_complex* signal, int NUM_POINTS) {

 int i;

 for (i = 0; i < NUM_POINTS; ++i) {

 double theta = (double)i / (double)NUM_POINTS * M_PI;

 signal[i][REAL] = 1.0 * cos(10.0 * theta) +

 0.5 * cos(25.0 * theta);

 signal[i][IMAG] = 1.0 * sin(10.0 * theta) +

 0.5 * sin(25.0 * theta);

 }

}

44

float cpuTest(int NUM_POINTS) {

 fftw_complex signal[NUM_POINTS];

 fftw_complex result[NUM_POINTS];

 fftw_plan plan = fftw_plan_dft_1d(NUM_POINTS,

 signal,

 result,

 FFTW_FORWARD,

 FFTW_ESTIMATE);

 acquire_from_somewhere(signal, NUM_POINTS);

 float cputime;

 cudaEvent_t start, stop;

 cudaEventCreate(&start);

 cudaEventCreate(&stop);

 cudaEventRecord(start, 0);

 fftw_execute(plan);

 cudaEventRecord(stop, 0);

 cudaEventSynchronize(stop);

 cudaEventElapsedTime(&cputime, start, stop);

 fftw_destroy_plan(plan);

 return cputime;

}

*/

int main(int argc, char **argv)

{

 FILE *f = fopen("FFT.txt", "a");

 if (f == NULL)

 {

 printf("Error opening file!\n");

 exit(1);

 }

 int n = 10;

 while (n < 1000000)

45

 {

 cudaDeviceReset();

 fprintf(f, "GPU(%d)\n", n);

 float time, exetime, cputime;

 cudaEvent_t start, stop;

 cudaEventCreate(&start);

 cudaEventCreate(&stop);

 cudaEventRecord(start, 0);

 exetime = runTest(argc, argv, n);

 cudaEventRecord(stop, 0);

 cudaEventSynchronize(stop);

 cudaEventElapsedTime(&time, start, stop);

 printf("GPU total time: %3.3f ms \n", time);

 fprintf(f, "%3.3f, %3.3f \n", exetime, time);

 /*fprintf(f, "CPU(%d)\n", n);

 cputime = cpuTest(n);

 fprintf(f, "%3.3f\n", cputime);*/

 n *= 10;

 }

 fclose(f);

}

//

//! Run a simple test for CUDA

//

float runTest(int argc, char **argv, int SIGNAL_SIZE) {

 printf("[simpleCUFFT] is starting...\n");

 float time;

 cudaEvent_t start, stop;

 cudaEventCreate(&start);

 cudaEventCreate(&stop);

46

 findCudaDevice(argc, (const char **)argv);

 // Allocate host memory for the signal

 Complex *h_signal =

 reinterpret_cast<Complex *>(malloc(sizeof(Complex) * SIGNAL_SIZE));

 // Initialize the memory for the signal

 for (unsigned int i = 0; i < SIGNAL_SIZE; ++i) {

 h_signal[i].x = rand() / static_cast<float>(RAND_MAX);

 h_signal[i].y = 0;

 }

 // Allocate host memory for the filter

 Complex *h_filter_kernel =

 reinterpret_cast<Complex *>(malloc(sizeof(Complex) * FILTER_KERNEL_SIZE));

 // Initialize the memory for the filter

 for (unsigned int i = 0; i < FILTER_KERNEL_SIZE; ++i) {

 h_filter_kernel[i].x = rand() / static_cast<float>(RAND_MAX);

 h_filter_kernel[i].y = 0;

 }

 // Pad signal and filter kernel

 Complex *h_padded_signal;

 Complex *h_padded_filter_kernel;

 int new_size =

 PadData(h_signal, &h_padded_signal, SIGNAL_SIZE, h_filter_kernel,

 &h_padded_filter_kernel, FILTER_KERNEL_SIZE);

 int mem_size = sizeof(Complex) * new_size;

 // Allocate device memory for signal

 Complex *d_signal;

 checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&d_signal), mem_size));

 // Copy host memory to device

 checkCudaErrors(

 cudaMemcpy(d_signal, h_padded_signal, mem_size, cudaMemcpyHostToDevice));

 // Allocate device memory for filter kernel

 Complex *d_filter_kernel;

 checkCudaErrors(

 cudaMalloc(reinterpret_cast<void **>(&d_filter_kernel), mem_size));

 // Copy host memory to device

47

 checkCudaErrors(cudaMemcpy(d_filter_kernel, h_padded_filter_kernel, mem_size,

 cudaMemcpyHostToDevice));

 // CUFFT plan simple API

 cufftHandle plan;

 checkCudaErrors(cufftPlan1d(&plan, new_size, CUFFT_C2C, 1));

 // CUFFT plan advanced API

 cufftHandle plan_adv;

 size_t workSize;

 long long int new_size_long = new_size;

 checkCudaErrors(cufftCreate(&plan_adv));

 checkCudaErrors(cufftXtMakePlanMany(plan_adv, 1, &new_size_long, NULL, 1, 1,

 CUDA_C_32F, NULL, 1, 1, CUDA_C_32F, 1,

 &workSize, CUDA_C_32F));

 printf("Temporary buffer size %li bytes\n", workSize);

 // Transform signal and kernel

 printf("Transforming signal cufftExecC2C\n");

 checkCudaErrors(cufftExecC2C(plan, reinterpret_cast<cufftComplex *>(d_signal),

 reinterpret_cast<cufftComplex *>(d_signal),

 CUFFT_FORWARD));

 checkCudaErrors(cufftExecC2C(

 plan_adv, reinterpret_cast<cufftComplex *>(d_filter_kernel),

 reinterpret_cast<cufftComplex *>(d_filter_kernel), CUFFT_FORWARD));

//start timer

 cudaEventRecord(start, 0);

 // Multiply the coefficients together and normalize the result

 printf("Launching ComplexPointwiseMulAndScale<<< >>>\n");

 ComplexPointwiseMulAndScale<<<32, 256>>>(d_signal, d_filter_kernel, new_size,

 1.0f / new_size);

 cudaDeviceSynchronize();

 cudaEventRecord(stop, 0);

 cudaEventSynchronize(stop);

 cudaEventElapsedTime(&time, start, stop);

 printf("GPU execution elapsed time: %3.3f ms \n", time);

 // Check if kernel execution generated and error

 getLastCudaError("Kernel execution failed [ComplexPointwiseMulAndScale]");

48

 // Transform signal back

 printf("Transforming signal back cufftExecC2C\n");

 checkCudaErrors(cufftExecC2C(plan, reinterpret_cast<cufftComplex *>(d_signal),

 reinterpret_cast<cufftComplex *>(d_signal),

 CUFFT_INVERSE));

 // Copy device memory to host

 Complex *h_convolved_signal = h_padded_signal;

 checkCudaErrors(cudaMemcpy(h_convolved_signal, d_signal, mem_size,

 cudaMemcpyDeviceToHost));

 // Allocate host memory for the convolution result

 Complex *h_convolved_signal_ref =

 reinterpret_cast<Complex *>(malloc(sizeof(Complex) * SIGNAL_SIZE));

 // Convolve on the host

 Convolve(h_signal, SIGNAL_SIZE, h_filter_kernel, FILTER_KERNEL_SIZE,

 h_convolved_signal_ref);

 // check result

 bool bTestResult = sdkCompareL2fe(

 reinterpret_cast<float *>(h_convolved_signal_ref),

 reinterpret_cast<float *>(h_convolved_signal), 2 * SIGNAL_SIZE, 1e-5f);

 // Destroy CUFFT context

 checkCudaErrors(cufftDestroy(plan));

 checkCudaErrors(cufftDestroy(plan_adv));

 // cleanup memory

 free(h_signal);

 free(h_filter_kernel);

 free(h_padded_signal);

 free(h_padded_filter_kernel);

 free(h_convolved_signal_ref);

 checkCudaErrors(cudaFree(d_signal));

 checkCudaErrors(cudaFree(d_filter_kernel));

 return time;

 //exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);

}

// Pad data

int PadData(const Complex *signal, Complex **padded_signal, int signal_size,

 const Complex *filter_kernel, Complex **padded_filter_kernel,

 int filter_kernel_size) {

49

 int minRadius = filter_kernel_size / 2;

 int maxRadius = filter_kernel_size - minRadius;

 int new_size = signal_size + maxRadius;

 // Pad signal

 Complex *new_data =

 reinterpret_cast<Complex *>(malloc(sizeof(Complex) * new_size));

 memcpy(new_data + 0, signal, signal_size * sizeof(Complex));

 memset(new_data + signal_size, 0, (new_size - signal_size) * sizeof(Complex));

 *padded_signal = new_data;

 // Pad filter

 new_data = reinterpret_cast<Complex *>(malloc(sizeof(Complex) * new_size));

 memcpy(new_data + 0, filter_kernel + minRadius, maxRadius * sizeof(Complex));

 memset(new_data + maxRadius, 0,

 (new_size - filter_kernel_size) * sizeof(Complex));

 memcpy(new_data + new_size - minRadius, filter_kernel,

 minRadius * sizeof(Complex));

 *padded_filter_kernel = new_data;

 return new_size;

}

//

// Filtering operations

//

// Computes convolution on the host

void Convolve(const Complex *signal, int signal_size,

 const Complex *filter_kernel, int filter_kernel_size,

 Complex *filtered_signal) {

 int minRadius = filter_kernel_size / 2;

 int maxRadius = filter_kernel_size - minRadius;

 // Loop over output element indices

 for (int i = 0; i < signal_size; ++i) {

 filtered_signal[i].x = filtered_signal[i].y = 0;

 // Loop over convolution indices

 for (int j = -maxRadius + 1; j <= minRadius; ++j) {

 int k = i + j;

 if (k >= 0 && k < signal_size) {

 filtered_signal[i] =

 ComplexAdd(filtered_signal[i],

50

 ComplexMul(signal[k], filter_kernel[minRadius - j]));

 }

 }

 }

}

//

// Complex operations

//

// Complex addition

static __device__ __host__ inline Complex ComplexAdd(Complex a, Complex b) {

 Complex c;

 c.x = a.x + b.x;

 c.y = a.y + b.y;

 return c;

}

// Complex scale

static __device__ __host__ inline Complex ComplexScale(Complex a, float s) {

 Complex c;

 c.x = s * a.x;

 c.y = s * a.y;

 return c;

}

// Complex multiplication

static __device__ __host__ inline Complex ComplexMul(Complex a, Complex b) {

 Complex c;

 c.x = a.x * b.x - a.y * b.y;

 c.y = a.x * b.y + a.y * b.x;

 return c;

}

// Complex pointwise multiplication

static __global__ void ComplexPointwiseMulAndScale(Complex *a, const Complex *b,

 int size, float scale) {

 const int numThreads = blockDim.x * gridDim.x;

 const int threadID = blockIdx.x * blockDim.x + threadIdx.x;

 for (int i = threadID; i < size; i += numThreads) {

 a[i] = ComplexScale(ComplexMul(a[i], b[i]), scale);

 }

}

51

fftw.c

/* Start reading here */

#include <fftw3.h>

#include <sys/time.h>

#include <stdlib.h>

//#define NUM_POINTS 64

/* Never mind this bit */

#include <stdio.h>

#include <math.h>

#define REAL 0

#define IMAG 1

void acquire_from_somewhere(fftw_complex* signal, int NUM_POINTS) {

 /* Generate two sine waves of different frequencies and

 * amplitudes.

 */

 int i;

 for (i = 0; i < NUM_POINTS; ++i) {

 double theta = (double)i / (double)NUM_POINTS * M_PI;

 signal[i][REAL] = 1.0 * cos(10.0 * theta) +

 0.5 * cos(25.0 * theta);

 signal[i][IMAG] = 1.0 * sin(10.0 * theta) +

 0.5 * sin(25.0 * theta);

 }

}

/* Resume reading here */

float cpuTest(int NUM_POINTS) {

 fftw_complex signal[NUM_POINTS];

 fftw_complex result[NUM_POINTS];

 fftw_plan plan = fftw_plan_dft_1d(NUM_POINTS,

 signal,

 result,

52

 FFTW_FORWARD,

 FFTW_ESTIMATE);

 acquire_from_somewhere(signal, NUM_POINTS);

 struct timeval t1, t2;

 double elapsedTime;

 // start timer

 gettimeofday(&t1, NULL);

 fftw_execute(plan);

 // stop timer

 gettimeofday(&t2, NULL);

 // compute and print the elapsed time in millisec

 elapsedTime = (t2.tv_sec - t1.tv_sec) * 1000.0; // sec to ms

 elapsedTime += (t2.tv_usec - t1.tv_usec) / 1000.0; // us to ms

 fftw_destroy_plan(plan);

 return elapsedTime;

}

int main()

{

 FILE *f = fopen("FFT.txt", "a");

 if (f == NULL)

 {

 printf("Error opening file!\n");

 exit(1);

 }

 int n = 10;

 while (n < 1000000)

 {

 float cputime;

 fprintf(f, "CPU(%d)\n", n);

 cputime = cpuTest(n);

 fprintf(f, "%3.3f\n", cputime);

53

 n *= 10;

 }

 fclose(f);

}

54

Smiscript.sh

#!/bin/bash

echo "running Nvidia-smi"

while true; do

nvidia-smi | grep MiB

done

memorychecker.sh

#!/bin/bash

trap "kill 0" EXIT

(exec "./smiscript.sh" &)

echo running simpleTest 10

./simpleTest 10

echo running simpleTest 100

./simpleTest 100

echo running simpleTest 1000

./simpleTest 1000

echo running simpleTest 10000

./simpleTest 10000

echo running simpleTest 100000

./simpleTest 100000

echo running simpleTest 1000000

./simpleTest 1000000

echo running simpleTest 10000000

./simpleTest 10000000

echo tests complete

wait

runMemorychecker.sh

#!/bin/bash

rm memoryCheckerOutput.txt

(exec "./memoryChecker.sh" > memoryCheckerOutput.txt)

