

A Major Qualifying Project
Submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

April 25, 2016

Amanda A. Adkins aaadkins@wpi.edu

William S. Barnard wsbarnard@wpi.edu

Matthew J. Beardsley mjbeardsley@wpi.edu

Charles J. Frick cjfrick@wpi.edu

Samantha L. Swartz slswartz@wpi.edu

suitup-all@wpi.edu

Project Advisors:

Professor Michael A. Gennert

Professor Fred J. Looft

Professor Hugh C. Lauer

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of
completion of a degree requirement. WPI routinely publishes these reports on its website without

editorial or peer review. For more information about the projects program at WPI, please see
http://www.wpi.edu/academics/ugradstudies/project-learning.html

http://www.wpi.edu/academics/ugradstudies/project-learning.html

This page was intentionally left blank

i

Abstract

The Wearable Action Guidance (WAG) System is a training tool designed to improve the efficiency and
convenience of teaching and learning new physical skills, while matching or exceeding the quality of feed-
back received from an in-person trainer. The system consists of a computer application and a set of wear-
able bands; each band comprises a 3D printed case, an inertial measurement unit, a battery, a ring of
vibration motors, and a secure strap. Trainers can use the WAG System to record and save motions for
distribution to trainees, while Trainees can use the system to play back those motions with directed vi-
bratory feedback. Initial prototypes have attracted potential partners interested in introducing the tech-
nology to markets including athletic training and physical rehabilitation.

ii

Table of Contents

Abstract .. ii
Table of Figures .. v
Table of Tables ... vii
Challenge Definition ... 1

Project Statement .. 1
Customer Value Proposition .. 1

Background Research .. 3
Exoskeleton Applications ... 3
Wearables .. 4
Motion Capture .. 6

Motion Capture Systems ... 6
Motion Capture Software .. 6
Position Determination .. 7

Feedback .. 7
Force Feedback .. 7
Haptic Feedback ... 7

Sensor Types .. 9
Accelerometers .. 9
Gyroscopes... 11
Inertial Measurement Units (IMUs) ... 12
Communication Systems for Sensors .. 12

Concept of Operations ... 14
Stakeholders .. 14
Needs ... 14
Use Cases and User Stories .. 16
Requirements ... 18

Functional Requirements ... 18
Non-Functional Requirements ... 19

System Design .. 21
“Suit” Overview .. 21

Requirements and Specifications .. 24
Software Overview ... 25

Requirements and Specifications .. 25
Hardware Overview ... 26

Hardware Requirements .. 26
Technical Documentation .. 27

Band Design ... 27
Band Electronics... 27
Component Selection Justification .. 30

Sensors and Sensor Fusion ... 31
Haptic Motor Control ... 31
Communication .. 32
Software Design ... 32

Class Interactions ... 33
Class Functionality ... 34
Communications .. 34

iii

Motion Visualization .. 35
Motion Calibration ... 36
Playback Controls ... 37
Saving and Opening Motions ... 37
Graphical User Interface Design .. 38

Product Performance Evaluation ... 44
Complete System ... 44
Hardware ... 45
Software ... 45
Risk Management .. 46

Project Execution Performance Evaluation ... 47
Execution Summary ... 47
Timeline Adjustments .. 47
Budget and Expenditure Justification .. 47
Project Reviews .. 49

Recommendations and Future Research ... 50
Nomenclature Glossary ... 52
Appendix 1 – Timeline ... 54

Research ... 54
Systems Engineering Analysis .. 54
High Level Design ... 54
Basic Hardware Block Diagrams ... 54
Core Software Class Design Document .. 54
User Interface Development .. 54
Accelerometer/Gyro Integration ... 55
Haptic Feedback ... 55
Hardware Low Battery Detection .. 55
Hardware Voice Control ... 56
Wireless Communications ... 56
Printed Circuit Board Design .. 56
Wearable Device Design and Construction.. 57
Recording ... 57
Motion Saving and Loading .. 57
Visualization ... 58
Playback ... 58
Calibration .. 58
Motion Library ... 59
Edit Motion .. 59
Software Voice Control Integration ... 59
Software Low Battery Notification... 59

Appendix 2 – Software Core Classes and Functionality ... 61
Appendix 3 – Full Bill of Materials for Project ... 67

WAG Band .. 67
WAG Chestpiece .. 68

Appendix 4 – Assembly & Construction ... 69
WAG Band: Schematics and PCB design .. 70

Teensy 3.2 Microcontroller and MPU6050 .. 72
ESP8266 Wi-Fi Chip .. 73

iv

Motor Controllers .. 75
Low Battery Circuit .. 76
Power Distribution ... 77
Motor Connector ... 78

WAG Band: Programming and Construction ... 79
WAG Chestpiece: Schematics and PCB design ... 79

Secondary Microcontroller: ATMega328P ... 82
Voice recognition Module: EasyVR3.0 ... 83

WAG Chestpiece: Programming and Construction .. 84
Software Development .. 85

GUI ... 85
Appendix 5 – Test Plans ... 87

Software Testing .. 87
Communications .. 87
Message Processing ... 87
Kinematics .. 87

Hardware Testing ... 87
ESP8266 Testing ... 88
Teensy 3.2 Testing ... 90
PCB Testing .. 90

Full System Testing... 91
User Testing Results ... 92

Appendix 6 – Initial Design Steps: Trade Study ... 95
32-Bit MCU Comparison .. 95
Accelerometers .. 99
Gyroscopes ... 100

Appendix 7 – Gap Analysis (Desired Features Analysis) .. 101
Appendix 8 – Precursor Testing Before System Design Stages .. 106

Ubuntu Bluetooth Libraries ... 106
Initial Band Prototype .. 106
FRDM-K22F MBed and Sensor Fusion Toolbox .. 107

Appendix 9 – Reviewer Evaluation Summaries ... 111
Preliminary Design Review Presentation (9/29/15) .. 111
Critical Design Review Presentation (11/20/15) .. 112

Appendix 10 – Acknowledgements.. 113
Appendix 11 – Authorship ... 114
Bibliography ... 115

v

Table of Figures

Figure 1. A light exoskeleton for gait assistance [1] .. 3
Figure 2. A biologically inspired soft exosuit [2] .. 3
Figure 3. The master of a master/slave wearable robot system [4] .. 4
Figure 4. The Dexta F2 glove [5] .. 4
Figure 5. Cyberglove glove with force feedback [6] .. 5
Figure 6. PrioVR motion capture and game control system [10] .. 5
Figure 7. Tesla Suit for in game motion capture and haptic feedback [8] 5
Figure 8. Basic principle of a Linear Resonant Actuator (LRA) [] ... 8
Figure 9. Basic operation of an Electric Rotor Vibrator (ERV) ... 8
Figure 10. Basic outline of a capacitive MEMS accelerometer ... 10
Figure 11. Basic principle of operation of a gyro with the Sagnac Effect 11
Figure 12. Chart describing the bias of gyros over time ... 12
Figure 13. Band concept layout ... 21
Figure 14. Physical realization of band layout on a person ... 22
Figure 15. Band prototype design .. 22
Figure 16. Physical band prototype ... 23
Figure 17. Chest band prototype design .. 23
Figure 18. Physical chest band prototype .. 24
Figure 19. User interface flow diagram ... 25
Figure 20. High level band design .. 28
Figure 21. Printed circuit board of WAG Band... 29
Figure 22. Chest piece high level design .. 29
Figure 23. Printed circuit board for WAG Chestpiece .. 30
Figure 24. ESP8266 Wi-Fi chip.. 32
Figure 25. High-level software diagram ... 33
Figure 26. Network interface diagram ... 34
Figure 27. 3D human model rendered in an OpenGL widget .. 35
Figure 28. “Load Motion From Library” window in the host computer application 38
Figure 29. User interface – user selection ... 39
Figure 30. User interface – settings screen.. 40
Figure 31. User interface – new motion window .. 41
Figure 32. User interface – Trainer’s record motion window .. 41
Figure 33. User interface – Trainer’s edit motion window .. 42
Figure 34. User interface – Trainee’s playback window .. 43
Figure 35. Integration test with recording (on the left) and playback (on the right) 46
Figure 36. WAG Band schematic .. 70
Figure 37. Board design for WAG Band ... 71
Figure 38. Final PCB for WAG Band ... 71
Figure 39. Final WAG Band PCB with surface mount components and female headers 71
Figure 40. Final PCB with components for WAG Band .. 72
Figure 41. WAG Band microcontroller schematic .. 72
Figure 42. Microcontroller portion of final PCB ... 73
Figure 43. WAG Band ESP8266 schematic ... 73
Figure 44. ESP8266 with “backpack” capacitor for stability .. 74
Figure 45. ESP8266 Socket on final WAG Band PCB .. 74
Figure 46. Schematic for simple ESP8266 programming breakout ... 74

vi

Figure 47. PCB layout for ESP8266 breakout board .. 75
Figure 48. Finished ESP8266 breakout board .. 75
Figure 49. WAG Band motor controller schematic .. 76
Figure 50. MOSFET motor controllers on the final PCB ... 76
Figure 51. WAG Band low battery schematic .. 77
Figure 52. WAG Band PCB low battery circuit ... 77
Figure 53. WAG Band power distribution schematic ... 78
Figure 54. WAG Band power distribution module PCB ... 78
Figure 55. WAG Band motors outside 3D printed case ... 79
Figure 56. WAG Chestpiece schematic .. 80
Figure 57. WAG Chestpiece board layout .. 80
Figure 58. Finished PCB without microcontroller and speech recognition modules inserted 81
Figure 59. WAG Chestpiece PCB with all components on board ... 82
Figure 60. Chest piece ATMega328 schematic .. 83
Figure 61. ATMega328 interface on chest piece PCB .. 83
Figure 62. EasyVR3.0 interface schematic ... 84
Figure 63. Chest piece EasyVR3.0 interface ... 84
Figure 64. The double handled slider, used in editing and playback mode 85
Figure 65. Playback motion GUI. Qt Creator on the left, moqups on the right 85
Figure 66. Record/Edit motion GUI. Qt creator on the left, moqups on the right 86
Figure 67. Settings window. Qt Creator on the left, moqups on the right 86
Figure 68. Save as window. Qt Creator on the left, moqups on the right 86
Figure 69. A capture of TCP packets during playback mode using Wireshark............................... 89
Figure 70. Plot of time differences between arrival times of packets for recording mode 89
Figure 71. Plot of time differences between arrival times of packets for playback mode 90
Figure 72. Motion Recoridng Intuitiveness .. 93
Figure 73. Motion Editing Intuitiveness ... 93
Figure 74. Motion Playback Intuitiveness .. 93
Figure 75. Percentage of users that followed color cues to connect and calibrate bands 94
Figure 76. Visualization and vibration feedback effectiveness vs. only visualization 94
Figure 77. Band prototype progression ... 107
Figure 78. MBed (FRDM-K22F) on left and 9DOF sensor board on right 107
Figure 79. Sensor fusion toolbox program .. 108
Figure 80. Viewing the FRDM-K22F board and Sensor Fusion Toolbox concurrently 109
Figure 81. Sensor Fusion Toolbox Dynamics section (for looking at raw sensor values) 109
Figure 82. Sensor Fusion Toolbox Kalman filtering tab for seeing filter stages and outputs 110

vii

Table of Tables

Table 1 - Stakeholders and Relevant Information ... 14
Table 2 - Stakeholder needs... 15
Table 3 - Functional requirements for this project .. 19
Table 4 - Non-functional requirements for this project... 20
Table 5 - Software modes and descriptions... 26
Table 6 - Band tasks ... 27
Table 7 - Hardware component functionalities ... 28
Table 8 - Band communication implementation ... 34
Table 9 - High level budget breakdown ... 48
Table 10 - Core Software Classes and Functionality .. 61
Table 11 – Core classes and functionality of embedded hardware ... 65
Table 12 - Bill of materials for WAG Band ... 67
Table 13 - Bill of materials for WAG Chestpiece .. 68
Table 14 - Subsystem testing for hardware ... 88
Table 15 - Microcontroller trade study scoring matrix .. 96
Table 16 - 32-Bit MCU comparison .. 97
Table 17 - Accelerometer Specifications and Pricing ... 99
Table 18 - Gyroscope Specifications and Pricing ... 100
Table 19 - Gap Analysis chart containing desired features and additional information 101

viii

This page was intentionally left blank

1

Challenge Definition

Over a lifetime, an individual will occasionally need to undergo training – for a new job, a hobby,
recovery from an injury, etc. With current technology, this process can be inefficient and time consuming,
often involving doing a task wrong multiple times before learning to do it right. Imagine T’ai Chi students
learning a new form. The master must first demonstrate the form being taught. The students can then try
to replicate this, but usually need some personal guidance. The master may need to physically and verbally
instruct each student to correct the student’s mistakes. While this process may work, it is not very effi-
cient, and demands lots of personal attention, which is hard to give to a room full of students.

Industrial operations provide very different teaching environments from T’ai Chi. In this setting,
instead of improving athletic ability, teaching is used to explain safe techniques for hazardous or complex
physical activities. Currently, the most common ways to train individuals are through videos or directly
with instructors, followed in both cases by extensive practice. Unfortunately, neither approach can guar-
antee that the action is being practiced correctly – something that can have serious consequences in the
future.

What if there was a device that provided feedback about how far the user was straying from the
desired motion? In the first example above, such a system could record one user’s sweeping movements
and later guide another user through the action. In the work environment, the device could be used to
ensure that the employee was correctly practicing safe techniques. This device could also catch persistent
errors more frequently than a trainer.

Currently, motion capture devices (used in the film industry) and haptic, or tactile, feedback de-
vices (often used for immersive gaming) are commercially available. The few devices that combine wear-
able motion capture and tactile feedback capabilities are currently in research and development and are
primarily designed for physical rehabilitation or simple demonstrations of matching single poses, rather
than complex motions. This leaves a need for such a device to be developed for the purpose of training
someone in a new physical skill.

A system capable of capturing a motion and conveying corrective feedback during practice, has
the potential to be used in markets such as physical therapy and rehabilitation, athletic training, and mil-
itary conditioning. In each of these fields, the technology would help to prevent injuries as a result of
incorrectly executed physical actions.

Project Statement

The goal of this project is to create a training tool that makes learning a new physical skill easier.
The solution is a Wearable Action Guidance (WAG) System consisting of seven wearable bands (the “Suit”)
and an accompanying computer application. This system helps to increase user autonomy and independ-
ence for learning a physical motion, while attempting to match the quality of feedback from in-person
trainer. To accomplish this the WAG System uses motion tracking and haptic feedback. Using haptic feed-
back to indicate error in the user's motion, the system provides targeted real-time instructions to the user.
With real-time feedback, users could immediately correct their errors and learn much faster as a result.
As a complement to the WAG Band hardware, an easy-to-use graphical user interface (GUI) allows the
user to find, download, and learn new motion and activities. By combining motion tracking and haptic
feedback, the WAG System could make athletic training and physical therapy faster and easier.

Customer Value Proposition

Traditionally, to learn a new motion, an individual will hire a personal trainer or watch training
videos online. The trainer will be paid hourly to coach the trainee through the motion. The training ses-
sions will be spread out over days or weeks, during which time the trainer will keep checking in to make

2

sure the trainee is performing the action correctly. In this scenario, the trainer is a significant expense and
the trainee is entirely dependent on the trainer's schedule, location, and ability to teach. In addition, the
feedback given by the trainer is limited to the errors that s/he can visually detect during practice. A trainer
would likely miss small errors, particularly at the beginning of the training when the user is more error
prone due to lack of practice and experience. If the trainer misses these errors, the trainee may learn the
motion incorrectly, resulting in injury or more training to fix the problem later. A trainer also may not
consistently point out persistent errors that the trainee should address.

To learn a new motion using the WAG System, Trainees will purchase the system, choose the
motion file they want to learn from a motion library, put on and calibrate the WAG System, and play back
the motion training file. Trainees will then practice the motion by playing back the file numerous times
over the course of days or weeks. Using the WAG System, Trainees will make a one-time payment for the
system, and (possibly) a one-time payment for the motion file. Trainees can then learn at their own pace,
can practice (and be corrected) according to their own schedule, and could become as accurate as the
motion file they are using to practice.

As these examples illustrate, once a WAG System has been purchased, it is thereafter completely
reprogrammable for any desired motion or activity. It is possible that trainers would charge a fee to pur-
chase a motion file but that cost will likely be significantly less than the cost of a personal trainer. In addi-
tion, the WAG System, once purchased, will always be available to the Trainee, unlike a trainer who may
be too busy to meet or not easily accessible due to weather or lack of transportation. The WAG System
has the potential to provide higher quality training since it is designed to detect real-time deviations
through accurate sensor readings rather than waiting for a trainer to notice an error. The sensor readings
will also notice much more subtle deviations than a human typically would. Overall, the WAG System has
the potential to be more effective, efficient, and cost effective than traditional training methods.

3

Background Research

This chapter presents an overview of the current research for a number of relevant technologies
and is used as a basis for the WAG System design and development.

Exoskeleton Applications

In 2013, two different research groups published papers describing separate exoskeletal-like sys-
tems designed to assist the user’s walking gait. The exosuits, which were not rigid and did not impede
movement, are of interest to this project because they focused on creating an exoskeleton with actuation
while minimizing the strain and impedance on the body. Both papers discussed two important design
considerations: matching the human’s degrees of freedom and keeping the weight of the suit relatively
low. The first paper, written by Wehner et al, is titled A Lightweight Soft Exosuit for Gait Assistance [1]
and the second, written by Ashbek et al, is titled Biologically-Inspired Soft Exosuit [2]. Pictures of the de-
signs can be seen in Figure 1 and Figure 2, respectively.

Wehner analyzed which parts of the body move the least during normal movements and used
those points to help assert torque to the joints. In contrast, Ashbek explained a design of fabric “webbing”
that used the body’s movement to create moments around the various joints that assisted the user. Both
had unique and interesting designs for a lightweight exosuit used on the legs.

Figure 1. A light exoskeleton for gait assis-
tance [1]

Figure 2. A biologically inspired soft exosuit [2]

Common areas for research in rehabilitation exoskeletons focus on the arms and hands. The

EMG1-driven Exoskeleton Hand, presented by Ho, et al, at IEEE’s International Conference on Rehabilita-
tion Robotics, was developed to help stroke patients recover the use of their hands [3]. The system has a
linear actuator for each finger along with a motor control box and an external, wireless remote control

1 Electromyographic signals. EMG signals are those formed by the body such as heart beats or other elec-
trical nerve signals controlling muscles.

4

system. This device uses EMG signals from the wearer to determine the desired action and guides the
hand through that action. Another example of a rehabilitating exoskeleton hand was described in a paper
by Cahn, et al. entitled Finger Grip Rehabilitation Using Exoskeleton with Grip Force Feedback [4]. This
system, shown in Figure 3, consists of two exoskeletons, a slave and master, which incorporate two dif-
ferent modes of operation. The first mode allows the user to control the slave system through the move-
ments of the master system. The second mode allows the user to record a movement using the master
system and then play it back again using assistance from actuators.

Figure 3. The master of a master/slave wearable robot system [4]

Wearables

Outside the realm of rehabilitation, Dexta Robotics created an exoskeletal glove called Dexta F2
(Figure 4) that allows the wearer to either interact with virtual objects or control a robot [5]. The device
uses rotational sensors to track movement and has force feedback units on the index finger and thumb.
A signal can be sent to the glove to lock the feedback unit in place and not allow those fingers to close any
further. This system is of interest to this project because of its simplicity and low cost.

Figure 4. The Dexta F2 glove [5]

5

The realm of haptic feedback as applied to wearable exoskeletons has been growing rapidly in
recent years due to interest in immersive gaming. These systems range from small components like the
gloves created by CyberGlove Systems [6] (Figure 5) and NeuroDigital Technologies [7] to full body suits
like those developed by PrioVR [10] (Figure 6) and Tesla Studios [8] (Figure 7). Some of these systems,
such as KOR-FX [9], provide only haptic feedback in the form of vibration or force feedback, while others,
like PrioVR [10], also provide game control. Most of these systems are either under development or for
commercial use, so limited information about the specific technology or software is publically available.

Figure 5. Cyberglove glove with force feedback [6]

Figure 6. PrioVR motion capture and
game control system [10]

Figure 7. Tesla Suit for in game motion capture
and haptic feedback [8]

An example of an open source wearable robotic controller was described by Cele, Ybes, et al [11].
The goal is to translate human motion into actions mimicked by the robot. This project uses a wearable

6

sensor array consisting of eight sensors – six linear potentiometers on the legs and hips and two accel-
erometers on the arms. Data is transferred directly to the robot from the sensors over the ZigBee com-
munication protocol. A fuzzy logic component filters the signals and converts them into usable drive val-
ues for the motors. This project is useful because it describes exactly how user motions were tracked,
smoothed, and translated into drive values.

Motion Capture

Motion Capture Systems

There are currently two main types of motion capture systems: optical and mechanical. Optical
recording uses multiple cameras to detect either markers on a user’s body or features in the images. This
type of motion capture is typically very accurate and capable of fast update rates. Although, these systems
have a limited range of applications due to their cost, lack of portability, and time required for processing
image data, they are commonly used in the animation and film industries. Optical motion capture systems
can cost $50,000 for systems with low capture area and over $1 million for more precise systems [12],
while image-based methods, which use computer vision techniques to discern motion without wearing
special markers, are both less expensive and less accurate.

The second type of motion capture, called a mechanical system, uses an “exoskeleton” of sensors
on the user’s body. These sensors can include accelerometers, gyroscopes, and magnetometers, or po-
tentiometers and flex sensors, to determine location in 3D space. These systems are more portable than
optical or image-based systems, but must have many degrees of freedom, fit properly, and enable smooth
movement to avoid impeding movement. Magnetic systems detect the position of different locations on
the body using magnetic fields, either generated by the Earth or specifically for the motion capture sys-
tem. They are fairly accurate and fast, but cost more than accelerometers or gyroscopes, consume higher
amounts of power, and are more sensitive to metallic objects in the environment. Inertial motion capture
systems use accelerometers and gyroscopes to estimate movements but these sensors are prone to drift
over time, making them less accurate. These different types of systems are often combined to improve
performance. For example, Xsens produces both individual sensors and full suits using gyroscopes, accel-
erometers, and magnetometers; however they cost up to $12,200 for the hardware components alone
[13].

Motion Capture Software

Although many motion capture companies develop proprietary software to accompany their
hardware, independent software, such as Autodesk MotionBuilder [14], and open source packages, such
as OpenMoCap [15], are also available. Proprietary software is often expensive – a one-year subscription
to Xsens’s motion capture software can range from $5,400 to $9,500 [16] – and lack of support and func-
tionality could make the open source options undesirable. Many motion capture applications are also
designed for animation or film rather than motion analysis or training, making their architecture not suited
for playback.

An important component to motion capture software is how the motion data is stored. One en-
coding method is to maintain all raw sensor data [12, 17], while another contains representations of points
in space with respect to a global coordinate frame. The latter, called translational files, allows for more
complex analysis of the motion capture data. A third category of file encodings represents data based on
segments or limbs rather than free floating points in space. Files of this type, referred to as rotational files,
contain information about the rotation of segments and are typically easier to use because the work of
relating points to a skeleton has been done. Many companies have special file formats for use within their

7

motion capture software, but there are several standards commonly used within the industry, including
.C3D, .bvh, .amc, .asf, and .fbx file formats [19, 12].

Databases for captured motion are currently available on the internet, some of which support the
file formats listed above. Academically supported databases include the CMU Graphics Lab Motion Cap-
ture Database [18], while motion capture community databases include the Motion Capture Society’s
Motion Capture Library [19]. Many of these allow free download of recorded content, but do not support
sharing of original content.

Position Determination

Motion capture systems must be able to interpret human position based on sensor readings. The
method for determining a user’s position depends on the type of system used. Mechanical systems, which
use sensors to directly measure joint angles, determine the user’s position by calculating joint angles from
sensor data. After this, kinematics can be used to determine the location of a point along a body segment.
Multiplying transformation matrices containing joint angles and body segment lengths results in position
information. This information is then as useful as the output of accelerometers or gyroscopes.

Inertial sensors are also used in motion capture and give information about the sensor position
rather than joint angles. Unfortunately, inertial sensors tend to have significant error and drift over time.
Therefore, techniques are needed to combine and smooth the sensor data. These are commonly referred
to as sensor fusion techniques. Two well-known examples are Kalman filters and alpha-beta filters. Kalman
filtering combines control inputs with sensor readings in a two-step recursive process that yields an esti-
mate of the resulting state or position. Alpha-beta filtering works similarly to Kalman filtering. Although it
is slightly less accurate than Kalman filtering, it is less computationally expensive and does not require a
model of the system [20]. Some companies develop custom sensor fusion algorithms for specific sensors
or applications. For example, MTi 1-series IMU from Xsens features its own sensor fusion algorithm [34].

Feedback

Some sort of physical feedback is necessary to convey how the user’s body position varies from
the target position. Two ways to achieve this are force feedback, and haptic feedback.

Force Feedback

Force feedback is the simulation of physical forces such that a person can interact with and
“touch” virtual objects and experience a force pushing back from an object [21]. When applied to an exo-
skeleton, force feedback can simulate an environment or motion paths. Because force feedback systems
actually apply forces to the user, they are very helpful for applications like robotic surgery, where visual
feedback alone does not provided the surgeon with enough tactile information.

Haptic Feedback

Haptic feedback uses the sense of touch without actually pushing on the person. There are several
forms of haptic feedback including cutaneous, kinesthetic, vibratory, or tactile [22]. Cutaneous feedback
and tactile feedback both involve direct skin contact; the difference is that cutaneous is typically on the
arms while tactile is typically on the fingertips. Kinesthetic feedback involves guidance of a limb or digit
through external structures. Vibratory feedback is the easiest and cheapest to implement, and can be
found in many common devices, such as cellphones. The two prominent types of haptic vibrators are
linear resonant actuators (LRAs), as seen in Figure 8, and electric rotary vibrators (ERVs), shown in Figure
9. Both are very small and lightweight, making them ideal for wearable applications. The tradeoff, is that

8

LRAs can be more efficient than ERVs, but they cost more and require special driver circuitry to control
the vibrations [23].

Figure 8. Basic principle of a Linear Resonant Actuator (LRA) [24]

Figure 9. Basic operation of an Electric Rotor Vibrator (ERV) [25]

9

Sensor Types

The main functionality of this project rests in the accuracy of the sensors and their ability to rep-
resent the world. This section describes several types of sensors and how they can be used to capture
various types of motion for applications in this project.

Accelerometers

Accelerometers are devices designed to measure acceleration along one or more axes at a specific
point. Several types of accelerometers are suitable for this project. Piezoelectric accelerometers use the
movement of piezoelectric crystals2 mounted to a moving mass to generate a voltage related to acceler-
ation [27]. Piezoresistive accelerometers use a similar moving feature to the capacitive accelerometers,
but the movement of the feature changes the device’s resistance [26]. This resistance change can be con-
verted to a voltage and digitized. Hall Effect accelerometers measure motion using a changing magnetic
field [27]. Magnetoresistive accelerometers use a magnetic field to change resistivity of a material and
ultimately cause a noticeable change in voltage when placed in a voltage divider circuit. Capacitive accel-
erometers measure a change in capacitance caused by the movement of small features within the device
[26].

 The most commonly available type of accelerometer is a capacitive accelerometer which is clas-
sified under the Micro Electro Mechanical (MEMS) category of accelerometers [27]. Figure 10 illustrates
the principle of operation of a MEMS accelerometer.

2 Piezoelectric crystals generate electricity based on their deflection from an equilibrium position

10

Figure 10. Basic outline of a capacitive MEMS accelerometer [27]

To sense acceleration, the movable plates shown in Figure 10 translate along the axis of the sen-
sor. As the plates move, the capacitance between the fixed plates (C1 and C2 in the top left of the figure)
change. When a reference voltage is applied, the changes in the capacitance create a varying analog out-
put voltage that can be converted into a usable digital reading [27].

In order to determine a sensor’s suitability to an application, it is important to consider its cost,
supply voltage, sensitivity3, range of the readings, and if it is ratiometric4 [27]. The range of readings is the
range of possible accelerations that the sensor can accurately measure. The range of these readings is
from 0 up to 16g (16 * 9.8 m/s2).

For proper functionality, users should be careful not to induce large accelerations/decelerations
usually caused by dropping the devices as this can damage the unit. Users also must mount accelerome-
ters at the proper angle, as this can have a drastic effect on sensitivity [27]. Some typical applications for
accelerometers are measuring tilt/roll, vibration, accelerations along various axes, and position and
speed. The cost of an accelerometer also can range from several dollars to hundreds of dollars based on
the precision needed and the output features of the accelerometers.

3 Sensitivity indicates how quickly the output of the sensor changes with respect to the input voltage and is

measured in Volts/g for accelerometers and mV/0 for gyros

4 Ratiometric sensors are those that scale the output voltage proportionally with change supply voltage

11

Gyroscopes

Gyroscopes, also known as gyros, today measure the angular velocity of an object rotating around
a point. Most gyros are designed using MEMS technology (see Figure 10) and in contrast to MEMS accel-
erometers, measure angular rotation linear motion. Inside a MEMS gyro, a mass moves producing a
change in the MEMS device’s capacitance and a measurable voltage (see Figure 10); this is the output of
the gyroscope [28]. The output may be either digital or analog and can be used to tell how quickly and
what direction the center axis of the gyroscope sensor is moving around the axis. As such, the gyro has
important characteristics for this project. Similar to the accelerometer, the gyro has a sensor resolution
and an output sensitivity3 [28]. The cost of gyros is comparable to most accelerometers. The limitation to
this technology is the lack of accuracy due to noise from small vibrations.

Instead of using mechanical motion to measure rotational speed, some types of gyros use the
Sagnac Effect for measurement. The Sagnac effect results after two beams of light are sent around a path
and then measured at a detector. This principle is demonstrated in Figure 11. If the device is not moving,
the beams will travel equal distances and reach the detector at the same time. If the device is moving,
however, one of the paths of the light will be shorter and the interference pattern between the different
paths can be measured and related to the direction of rotation [29].

Figure 11. Basic principle of operation of a gyro with the Sagnac Effect [29]

One type of gyro that uses this effect and fiber optic technology is called a ring laser gyro (RLG).
RLGs use a single laser beam that is split and reflected around a glass chamber containing inert gases such
as helium and neon. Fiber Optic Gyros (FOGs), another type of gyro, use a beam of light produced from a
laser diode or a photodiode, but instead of a glass chamber, light passes through a single fiber optic cable.
The two basic categories of FOGs are closed loop, which use an optical chip, and open loop, which use a
piezo-electric modulator to modulate the light in the circuit. The open loop tend to be much cheaper
because of the cost associated with the integrated optical chip. A commercial example of a FOG is the
DSP-1750 FOG produced by KVH Industries [29].

Two main advantages of FOGs over MEMS gyros are:
1. FOGs are immune to vibration noise as they track interference of light patterns instead of

changing mass positions

12

2. FOGs tend to be more accurate due to the precision of the components and the resistance

to changes in temperature.

However, FOGs are typically much more costly, and as such MEMS gyros are preferred for this project
[30].

Bias or error in measurements of gyro systems tends to accumulate over time. This error is also
influenced by temperature but can be reduced by using lookup tables for various temperature ranges
[30]. Figure 12 below shows a comparison of different gyro systems and the error that builds up over time.
The scale factor corresponds to how much the output reading differs from the actual velocity. Overall, the
most accurate sensors tend to be in the bottom left corner of Figure 12, but these are also the largest and
most costly. Low-cost calibration techniques, which usually involve data collection of gyro readings fol-
lowed by software offsets, can reduce accumulated error in gyroscopes [31].

Figure 12. Chart describing the bias of gyros over time [32]

Inertial Measurement Units (IMUs)

An inertial measurement unit (IMU) consists of a collection of gyros, accelerometers and magne-
tometers to make a system for tracking position. One advantage is that IMUs tend to have an overall lower
chip footprint than the component sensors combined. Calibration of the IMU is required to reduce the
effect of the bias from gyros and accelerometers [33]. Some IMUs have microcontrollers (MCUs) that can
combine gyroscope and accelerometer data to useful values such as position angles and quaternions using
sensor fusion algorithms [34]. IMUs tend to be more expensive than single sensors, but are more accurate
than the individual sensors.

Communication Systems for Sensors

In 2007, Lee et al evaluated the features and uses of various radio frequency (RF) communications
protocols, Wi-Fi, Bluetooth, ZigBee, and ultra-wideband (UWB), with the desire to help engineers choose
an appropriate protocol for their system communications [35]. All of these technologies operate around
2.4GHz in the unlicensed radio spectrum band for industrial, commercial and medical (ICM) purposes [35].
These protocols also revolve around the creation of a wireless personal area network (WPAN), which acts
as the realm of information transfer between devices using these communications [35]. While the paper

13

discusses many of the specific power consumptions, security strategies, transmission efficiencies, and
data rate limits of the various protocols, the main theme is specifying engineering factors key to choosing
the best communication system. For low data rates, small data sizes (less than about a hundred bytes of
information), ease of use and power consumption, the ZigBee protocol tends to dominate [35]. A benefit
of ZigBee over the other protocols is the number of sensors that can be added to a single ZigBee network.
Zigbee can support approximately 65000 sensors per network while other protocols usually support fewer
than 10. ZigBee also has the added benefit of separating its networks by a specific channel number. The
channel number allows for smaller subnetworks of devices to be formed.

Wi-Fi protocols are capable of send much more data than ZigBee. With the recent innovations in
Wi-Fi technology, the cost of connecting devices to the internet has dramatically decreased, resulting in a
huge boom in online-integrated technology known as the Internet of Things (IoT). Examples of these de-
vices include wearable fitness bands, smart meters for real-time energy monitoring in homes, and mobile-
connected thermostats and home automation systems produced by Google, IBM and GE [36]. However,
one of the big concerns with all new devices is the security of data transmissions between devices and the
Internet. Currently, no well-defined standards exist from either the IEEE or a governmental body dictating
the security requirements for IoT devices. Additional analysis could be used to help guide in developing
additional security layers to any communications protocol selected for the overall sensor framework,
however this falls outside the scope of this project.

14

Concept of Operations

This project followed systems engineering practices5 and identified stakeholders, determined
their needs, and translated the needs into functional and nonfunctional requirements. The project also
established use cases to identify additional requirements and to specify the operation of the software.6
These requirements and use cases formed the basis for the WAG System design and are described in detail
below.

Stakeholders

Table 1 lists the project’s key stakeholders along with their descriptions, roles, representations,
priorities, and associated needs (Table 2). Stakeholders were identified by identifying individuals, groups
and entities that would have an impact on or stake in the project at any point during its lifecycle.

Table 1 - Stakeholders and Relevant Information

ID Title Description Role Representation Priority
Needs

(see Table 2)

SH.01 Students Developers Directly involved Self 1 N.04, N.08, N.09

SH.02 Advisors Advise/grade Directly involved Self 1 N.09

SH.03 WPI
Sponsoring

organization
Graduation

requirements
Registrar
personnel

1 N.09

SH.04
RBE/

ECE/CS
Departments

Sponsoring
departments

Funding/ MQP
requirements

Advisors 1 N.09

SH.05 End users Use the suit Use the suit Test subjects 2
N.01, N.02, N.03,
N.04, N.05, N.06,
N.07, N.08, N.10

SH.06 Future students
Continue work
on this project

Continue work
on this project

Proxy or not
represented

3 N.10, N.12

Needs

Table 2 lists the key stakeholder needs, and their associated compliance metrics, priorities, and
stakeholder traceability (validation)7. The traceability column references Table 1 above. These key needs
were identified by brainstorming use cases, analyzing software operational needs, and investigating the
roles of the stakeholders.

5 For a general review of SE methods, practices and standard forms, see the CA Department of Transportation web site.

6 For example, see this Bridging the Gap article.
7 See: https://www.captechconsulting.com/blogs/validate-vs-verify-a-traceability-matrix-gift-for-you for clarity between validation and verifi-

cation, and the need for a traceability column in a requirements matrix.

https://www.fhwa.dot.gov/cadiv/segb/
http://www.bridging-the-gap.com/what-is-a-use-case/
https://www.captechconsulting.com/blogs/validate-vs-verify-a-traceability-matrix-gift-for-you

15

Table 2 - Stakeholder needs

ID Title Description Verification Priority Validation
(Traceability)

N.01 Ease of Use
Should be easy to

use/wear/interact with
User test 1 SH.05

N.02 Save Recording
Should be able to save a

recorded motion for later
use

User test,
prototype

1 SH.05

N.03 Edit recording

System should allow for
basic editing of recordings

before being published/up-
loaded to the database

User test,
prototype

2 SH.05

N.04
Download/open saved

recordings

System should be able to
load existing recording to

get feedback

User test,
prototype

2 SH.05

N.05 Playback control

User should be able to set
‘breakpoints’, jump to

places, and pause/play re-
cordings

User test,
prototype

1 SH.05

N.06 Safety

System will be designed to
applicable engineering and
human interface practices

that limit injury risk

Standards 1 SH.05, SH.01

N.07
Visualization/

Simulation

User should be able to visu-
alize the motion after re-
cording it and before per-

forming it

User test,
prototype

2 SH.05

N.08 Adjustable Fit
Should be configurable for

different body types
User test,
prototype

2 SH.05

N.09 System Feedback
Should provide haptic sys-
tem feedback (vibratory)

Model,
simulation

1 SH.05

N.10 Documentation

Should be well docu-
mented. Should provide
component details and a

“how-to” of using the soft-
ware and hardware

User review 2 SH.05, SH.06

N.11 Response Time
Should have a non-noticea-
ble response time for hap-

tic vibrations

Prototype,
simulation

3 SH.05

N.12 Portability8
Should be portable when

on and off the body
Prototype

test
3 SH.05

8 Portability refers to how easily the entire system can be transported when on or off of a person. This

includes the host computer, the bands and the accompanying charging equipment and Wi-Fi router.

16

Use Cases and User Stories

This system is intended to perform two primary actions: recording a user’s motion and playing
back the recorded motion in order to guide another user along the recorded motion trajectory. The use
cases and user stories below illustrate the interactions between the system, the software, and the user.
They also identify features and components that may require additional research. Finally, the use cases
detail typical software usage and operation.

UC.01 below outlines a process in which a user wishes to learn a motion by using the system with
a pre-recorded motion file. The user can view a simulation of the motion file to verify the motion is the
one s/he specified by the motion file. After the user starts using the system, s/he will experience vibration
along her or his limbs indicating directions to the correct location of the motion.

UC Identifier UC-01

UC Name Playback Downloaded Action

Primary Actor(s) Baseball player who wants to practice a pitch

Initiating Conditions(s):
1. Athlete identifies a pitch he wants to practice
2. Athlete downloads the action he wants to practice onto the computer

UC Description

1. Athlete puts on the WAG Bands and turns the system on
2. Athlete pairs the system with his computer using a simple GUI
3. Athlete calibrates the system
4. Athlete plays the desired action on the GUI’s motion viewer window to

verify the motion
5. Athlete presses a button on computer to start the motion playback
6. Athlete moves through the action following the haptic vibrations
7. Athlete restarts the action using the GUI to play it through again
8. Athlete finishes the action
9. Athlete presses a button on the GUI to stop playback capabilities
10. Athlete removes the WAG Bands and connects charger

Alternative(s) and
corresponding
step number

5. Athlete issues simple voice command to start the motion playback
9. Athlete issues simple voice command to stop playback capabilities

Exit Conditions

 Athlete turns off WAG Bands and closes GUI

 Battery dies on computer or bands

 Athlete moves out of range of Wi-Fi router

Needs/Requirements
Discovered

 User needs to be able to interface with library of actions

 User should be able to stop/start the system via GUI on the computer
and via simple voice commands

 System should include basic controls for action playback

 User needs to be able to connect/disconnect the WAG Bands from the
computer

 User needs to be able to charge the system or tether it for control

Models/Studies Needed

 Response time for haptics

 Capabilities of wireless communication with computer (ranges)

 Battery life

UC.02 describes the process by which a user’s own motion is recorded. The user can start or stop

the motion recording via verbal commands or GUI input. Once the motion is recorded, the user can crop
the motion recording to narrow it down to a specific selection, and play it back as a simulation in order to
verify his/her recording. This motion recording can then be saved to a file and kept for personal review,
or distributed to others as a teaching tool for that particular recorded action.

17

UC Identifier UC-02

UC Name Record Action

Primary Actor(s) T’ai Chi trainer

Initiating Conditions(s): A T’ai Chi trainer wants to teach others T’ai chi

UC Description

1. T’ai Chi trainer puts on WAG Bands and turns the system on
2. T’ai Chi trainer pairs the system with her computer using a simple GUI
3. T’ai Chi trainer calibrates the system
4. T’ai Chi trainer selects the recording interface on the GUI
5. T’ai Chi trainer issues simple voice command to start the recording
6. T’ai Chi trainer performs and records a T’ai Chi form
7. T’ai Chi trainer issues simple voice command to stop recording
8. T’ai Chi trainer plays the action on the GUI’s simulation to verify motion
9. T’ai Chi trainer uses the GUI to complete small edits on the action
10. T’ai Chi trainer removes the suit and connects charger
11. T’ai Chi trainer uploads the complete motion file to the library

Alternative(s) and
corresponding
step number

5. T’ai Chi trainer uses GUI button to start the motion playback
7. T’ai Chi trainer uses GUI button to stop the motion playback

Exit Conditions

 T’ai Chi trainer stops the recording through simple voice commands or
the GUI

 The maximum recording time is reached

 Suit battery dies or computer battery dies

Needs/Requirements
Discovered

 User needs to be able to see the action recorded

 User needs to be able to edit the action (trim it to critical parts)

Models/Studies Needed
 Study of visualization tools of motion

 Study of recording process for sensors to minimize data file size

Each of the user stories below highlights a different part of the intended software functionality.

These stories specify what needs to be available to the user, and intend to provide specific usage examples
for the system.

 As a Trainer, I can create a new motion file with a unique name and description.

 As a Trainer, I can record myself moving through a motion and save it to a file.

 As a Trainer, I can crop off the first 3 seconds of my motion.

 As a Trainee, I can search through a library of motion files and select one to learn.

 As a Trainee, I can play back a motion at half speed.

 As a Trainer, I can connect my bands to the application with one click.

 As a Trainer, I can calibrate my bands by mimicking the pose shown on the application and saying
“calibrate.”

 As a Trainer, I can disable my wrist bands.

 As a Trainee, the application will notify me when my bands disconnect from the application.

 As a Trainee, the application will notify me when the battery in a band needs charging.

 As a Trainee, I can step-through frames of a motion.

 As a Trainer, I can review the motion I recorded.

 As a Trainee, I can preview a motion before I play it.

The user stories and use cases are used to develop the functional requirements which are de-

tailed in the following section.

18

Requirements

Table 3 and Table 4 present the functional and nonfunctional project requirements for this pro-
ject, respectively. Functional requirements detail how the system should behave while the non-functional
requirements describe auxiliary aspects of the system not necessarily critical to operation. The require-
ments were developed by analyzing the stakeholder needs and use cases, and then developing “good”
requirements that were traceable, unambiguous, measurable, testable, and feasible.9 Each requirement
has a short description, validation, a priority, and a verification process [37].

The requirements are individually testable, and encompass concrete subsections of the project
that must be realized to be considered a success.

Functional Requirements

Functional requirements are presented in Table 3 on the following page. In this table, the require-
ments FR.01, FR.02, FR.03, and FR.06, refer to the ability of a user to record motions; preview or review
the recorded motions in a GUI visualization; control playback and recording with controls such as play,
stop, fast-forward, or rewind; make basic edits to the recorded motions; and save the motions for future
use.

The requirements FR.04 and FR.05 involve the ability of users to control settings on the motion
they are about to learn. These settings allow the users to learn at their preferred speed, and enable users
to repeatedly practice specific sections of the motion without needing to play through the entirety of the
motion every time.

Finally, the last two requirements, FR.07 and FR.08, involve haptic feedback. These requirements
ensure that the system helps to guide the user through a motion. The response time between when the
suit senses positional error and when the user feels the suit’s haptic feedback should not be noticed by
the user. FR.08 relates to a human’s response time to recognize a visual change.

9 For example, see: Slide Share Good Requirements or IBM Good Requirements

http://www.slideshare.net/guest24d72f/8-characteristics-of-good-user-requirements-presentation
http://www.ibmpressbooks.com/articles/article.asp?p=1152528&seqNum=4

19

Table 3 - Functional requirements for this project

No. Title Description
Validation

(See Table 2)10
Priority

Verifica-
tion11

FR.1 Record Time
The system shall be able to record at least
10 min. of continuous movement

N.02 1
Prototype,
user tests

FR.2
Edit Motion
Recordings

The system shall allow the user to perform
basic editing on a motion, including crop-
ping recorded actions

N.03 2
Unit tests,
Prototype

FR.3
Transferrable
Motion Re-
cordings

The system shall be able to save motion re-
cordings to a file format

N.04 1
Unit tests,
Prototype

FR.4
Playback
Speed

The system shall allow the user to specify a
range of motion playback speeds

N.05 2
Unit tests,
Prototype

FR.5
Motion Play-
back Controls

The system shall allow the user to control
motion playback via setting breakpoints,
skip forward/backward, play/pause, stop

N.05 3
Unit tests,
Prototype

FR.6 Simulation
The system shall allow the user to view a
simulation of the movement

N.07 2
Unit tests,
Prototype

FR.7
Haptic Feed-
back

The system shall provide vibratory feedback
relative to positional errors made by the
user

N.09 1
Prototype,
Modeling

FR.8
Haptic
Response Time

The system shall provide haptic feedback
within 100ms of a positional error made by
the user [38]

N.11 2
Unit tests,
Prototype

FR.9
Visual Play-
back Ghosting

The system shall visually overlay the user’s
current location with the intended position

N.01, N.07 3
Unit tests,
Prototype

Non-Functional Requirements

Non-functional requirements are presented in Table 4 on the following page. Many of the non-
functional requirements listed are self-explanatory, but a few require more information. NFR.02 and
NFR.04, though intangible, can be measured by surveying test subjects to determine how well they felt
that the system adhered to the requirements. NFR.03 refers to safety – although there are currently no
OSHA standards for exoskeletal robots, ISO 13482 covers "personal care robots," which includes wearable
exoskeletons.

10 Validation refers to requirement traceability. Essentially this asks what need each requirement comes from.

11 Verification refers to how the requirement will be tested for compliance.

20

Table 4 - Non-functional requirements for this project

No. Title Description Validation Priority Verification

NFR.1
Degrees of
Freedom

The sensors of the system shall allow for
up to 9 degrees of freedom per arm

N.01 1
Prototype,
modeling

NFR.2 Non- Restrictive

On a Likert scale of 1 to 5, at least 80% of
the users shall rank the system as 4 (good)
or 5 (very good) in terms of motions not
being impeded by the system

N.01 2
Prototype,

User studies

NFR.3 Safe Operation

The system shall adhere to ISO
13482:2014(en) safety standards.
NOTE: According to the FDA classification of
devices, this sort of device falls into class II.

N.06 1
Prototype,
Modeling

NFR.4
Fits Variety of Hu-

mans

On a Likert scale from 1 to 5, 60% of users
should rank the system adjustability and
fit as 4 (good) or 5 (very good)

N.08 2
Prototype,
Modeling

NFR.5 Documentation

Documentation is included for all parts of
the system for developers to continue the
project and for users to understand the
system

N.10 2
User study,
Prototype

NFR.6 Lightweight
The weight of the entire wearable system
shall be less than 10 pounds

N.13 1 Prototype

NFR.7 Intuitive UI
The system interface shall be ranked as
either a 4 or 5 on a Likert scale by at least
90% of users for ease of navigability.

N.01 2
Prototype,

User studies

NFR.8
Playback Battery

Life

The system shall support at least an hour
of continuous playback which involves the
use of vibratory feedback

N.13 1 Prototype

NFR.9
Recording Battery

Life

The system shall support at least 2 hours
of motion recording which does not in-
volve the use of vibratory feedback

N.13 1 Prototype

21

System Design

This project's deliverables include wearable action guidance (WAG) bands for the arms, shoulders,
and chest, and a software application to accompany the bands. Each band consists of a hook and loop
strap, a secure elastic cord, a wireless electronic control board, and vibratory modules for feedback. The
WAG Bands for the arms, shoulders and chest make up a “Suit.” Functionally, the system supports two
types of users who correspond to different modes of use: a Trainer, who will primarily record motions,
and a Trainee, who can play back motions. During motion playback, haptic feedback indicates the Train-
ee's deviations from the motion in real-time so the Trainee can correct himself/herself as the motion is
executed. The main benefit of a system with these capabilities is the potential to train individuals in a
more efficient, more effective, and overall less expensive manner. Due to time and financial limitations
the project is limited to the upper body only, however the WAG System could easily be expanded to in-
clude lower body. T’ai Chi is applicable for system validation because it consists of large sweeping motions
and is relatively slow.

“Suit” Overview

The wearable component of the system consists of a set of seven bands that the wearer places
on his/her wrists, biceps, shoulders, and on the front of the torso, as illustrated in Figure 13. Each shoul-
der, wrist, and bicep band looks similar to the prototype in Figure 13 with the overall design. Each band
consists of a 3D printed case, a strap, a 1000mAh battery, a Teensy 3.2 microcontroller, a Wi-Fi module
(ESP8266), an accelerometer/gyroscope sensor package (MPU6050), and six vibration motors. The final
result of this design can also be seen in Figure 14. The bands use the accelerometer and gyroscope sensors
to calculate their orientations.

The bands communicate wirelessly and have individual batteries, allowing them to be completely
self-contained. Each band is securely affixed to the user to prevent the sensors from shifting while in use
to maintain sensor accuracy. The bands use six vibration motors to indicate motion error to the wearer.

The chest band is distinct from the other bands in two key ways: it does not have any motors and
it has a voice control module. The chest band is the central control and reference unit; thus it is the only
band that the wearer is required to use. This module uses voice control to allow the user to give hands-
free commands to activate various functions of the WAG System.

Figure 13. Band concept layout

22

Figure 14. Physical realization of band layout on a person

Figure 15. Band prototype design

The physical realization of the band prototype in Figure 15 can be seen in Figure 16. The Initial
Band Prototype section within Appendix 8 – Precursor Testing Before System Design Stages includes a
progression of all prototypes that led up to the final version shown here.

23

Figure 16. Physical band prototype

The band for the center of the chest is the reference point for the rest of the suit and can be seen
in Figure 17.

Figure 17. Chest band prototype design

The physical realization of this chest piece band attached to the chest straps can be seen in Figure 18.

24

Figure 18. Physical chest band prototype

The final component of the system is the host computer that runs the computer application. This

can be the Intel Atom or any other computer capable of running the control interface where the user
controls the suit and playback settings. Motion files can be stored to the local computer and a cloud library
will be implemented later for file sharing.

Requirements and Specifications

Detailed below are the requirements relating to the full, wearable system. The wearable compo-
nents were designed to meet the requirements specifications. The applicable requirements are FR.07,
NFR.01, NFR.02, NFR.03, NFR.04, NFR.06, NFR.07, NFR.08, and NFR.09.

The design process of the band casing was primarily driven by the non-functional requirements.
These requirements focused on making the bands user friendly, comfortable, and safe. The band proto-
types were designed so that no tools are needed to open and close them. They are highly adjustable to
allow differently sized users to adjust them for a more comfortable fit. The bands need to be tightly se-
cured to the user to prevent the sensors from shifting, but not so tight that they would hinder his/her
motion. The arm bands use hook and loop straps to hold the main part of the band in place and elastic
cord to hold the vibration motors in place. Both the hook and loop fasteners and the elastic are adjustable.
The elastic cord allows the user to move each motor to be appropriately and evenly spaced for his/her
body. A padded harness holds the shoulder and chest bands in place. The harness is adjustable, light-
weight, and unrestrictive. To ensure that the bands are safe to operate, all electronics are completely
encased, except the vibration motors that have to be in contact with the user's skin to effectively indicate
motion error.

The internal design of the bands is such that the components, particularly the accelerometer and
gyroscope sensors, are securely held in place in order to maintain the accuracy of the bands’ motion data.
Additionally, because the bands are independent of each other, any one band can be easily replaced if a
component is broken. There is no hardware limit to the number of bands that can be added; only software
changes are required to add additional bands.

25

The functional and non-functional design requirements drove the design process to ensure that
the system meets the needs of the challenge specification.

Software Overview

The WAG System includes an application with a graphical user interface (GUI) that handles user
inputs and the system’s modes and settings. This application runs on the user's computer and allows the
user to easily interact with the system.

Requirements and Specifications

The WAG System software design came directly from the requirements detailed in Table 3 and
Table 4, as well as the user stories and use cases developed in the Concept of Operations section. The
software-related requirements are FR.01, FR.02, FR.03, FR.04, FR.05, FR.06, FR.07, FR.08, FR.09, NFR.05,
and NFR.7. These requirements fall into a few categories: playback, recording, editing, and opening/saving
a motion. A state diagram detailing a user's interactions with the GUI, shown in Figure 19, describes the
control flow of the software. Each arrow represents a button that changes the content of the primary
screen. This diagram only shows interactions that involve major screen switches for the user; interactions
changing only the state of the current screen are not shown.

Figure 19. User interface flow diagram

The WAG System has two types of users: Trainers and Trainees. Since these users have different
needs and can interact with the software differently, the application first prompts users to select their

26

type (Trainer/Trainee) on the program's welcome window. The program then opens up windows accord-
ing to the user type, as illustrated in Figure 19. Trainees only have the ability to open and playback motions
recorded by Trainers, while Trainers can record, edit, and/or playback motions that they have created. As
a result, Trainees only have access to the open menu while Trainers can open or save their motions from
any window. Each of the three modes (Recording, Editing, Playback) are on separate screens so Trainers
will only see settings pertaining to the mode they currently have open. The full descriptions of the modes
can be seen in Table 5.

Table 5 - Software modes and descriptions

Mode Selectable by Description

Record Trainers
Trainers can adjust relevant settings and start/stop recording a motion.
Trainers also have the ability to record over an existing motion.
Trainers can switch to edit or playback mode.

Edit Trainers

Trainers can crop their motion and edit the motion's name, description, and
keywords. This mode includes the motion viewer so Trainers can see their mo-
tion performed on a 3D model. From here, Trainers can return to recording
mode to rerecord the motion, or they can enter playback mode to see how a
Trainee would learn the motion.

Playback
Trainers and

Trainees

Contains playback settings and the motion viewer. This mode allows Train-
ers/Trainees to playback the current motion file on either the viewer window's
3D model only or both the 3D model and the WAG bands.

Saving and opening a motion file can be done either from the user's local file directory or through

the motion library. When opening a motion from the motion library, users search for specific motion
names, descriptions, or associated keywords.

Hardware Overview

The WAG Bands are designed to be compact and lightweight. The high level design diagram in
Figure 20 shows the general outline of all the hardware for the band. Each band uses a wireless link to
send data from the accelerometer/gyroscope to the main computer. The microcontroller transmits data
between the sensors and the wireless link, and controls the vibration feedback motors. The design
changes slightly for each different type of band, but the general architecture is still the same.

Hardware Requirements

This section pertains to hardware requirements that come from functional and nonfunctional re-
quirements established by the systems engineering design process. The hardware requirements FR.01,
FR.07, FR.08, NFR.01, NFR.03, NFR.11, and NFR.12 come from Table 3 and Table 4 in the Requirements
section. The bands must be able to provide haptic feedback within 100ms of error detection (10Hz). Each
band also must be able to support 2 hours of recording usage, and 1 hour of vibration playback. The sys-
tem hardware was designed to meet each of these requirements so that the system meets the needs of
the challenge specification.

27

Technical Documentation

Band Design

Each band is responsible for communicating with the off board computer by sending its position
data. The various types of bands and their functions can be seen in Table 6.

Table 6 - Band tasks

Band type Quantity of band in system Function

Wrist 2
Measure orientation of wrist
Provide position information to computer
Receive rotational and translational feedback from computer

Bicep 2
Measure orientation of bicep
Provide position information to computer
Receive rotational and translational feedback from computer

Shoulder 2
Measure orientation of shoulder
Provide position information to computer
Receive rotational and translational feedback from computer

Chest piece 1
Measure reference orientation at center of chest
Manage voice commands (for speech recognition)

Band Electronics

The high level overview of the band hardware can be seen in Figure 20. The core functionality of
the band is its ability to determine its orientation in 3D space using a six degree of freedom accelerometer
and gyroscope sensor package over I2C (2 wire)12 communications. The band’s primary processor is a
Teensy 3.2 which runs at a clock speed of 96MHz, and features 256k bytes of flash memory and 64k bytes
of RAM [39].13 The band communicates with the software application over Wi-Fi using an ESP8266 Wi-Fi
chip. The Teensy relays the orientation updates it receives from the accelerometer/gyroscope sensor over
UART to the Wi-Fi module, which packages the data into TCP packets and sends those packets to the host
computer via Wi-Fi.

In order to provide vibratory feedback, the system uses six electric rotor vibrators (ERVs). These
are about half the size of a dime and provide a sensation similar to the buzz of a cell phone on vibrate
mode. Each band contains its own battery which supplies the band with 3.7V and 1000mAH capacity. A
3.3V regulator outputs constant voltage to the ERVs, Teensy 3.2 and ESP8266, which require the lower
voltage level. Each of the band’s components and their functionalities are listed in Table 7.

12 I2C is a communication protocol developed by Phillips Semiconductor to communicate between inte-

grated circuits using a simple two wire serial communication. The benefit of using this approach is that a simple
communications bus between an arbitrary number of integrated circuits can be developed.

13 The Teensy is an embedded microcontroller with more memory and functionality than the Arduino Uno
platform that runs at 16MHz and has 32k bytes of flash and 2k bytes of RAM. The Arduino platform was considered
for this project due to its low-cost, but it could not maintain the refresh rate required by the platform.

28

Table 7 - Hardware component functionalities

Hardware component Description

Teensy 3.2
Run communication to ESP8266, receive position and
rotation information from MPU6050

ESP8266
Implement and run Wi-Fi communications over UART
at 115200 baud

Low battery detection circuit
Determine when battery voltage has dropped below
threshold of acceptable operation

N-channel MOSFETs
Increase current drive capability of Teensy PWM pin
from 10mA to 300mA for ERVs

ERV (Electric Rotor Vibrator) Motors (shaft-less motors) Vibratory feedback

The high-level diagram for the bands on the arms, wrists, and shoulders shown in Figure 20 de-

scribes the hardware for each of the shoulder, bicep and wrist bands. This was then implemented into the
Printed Circuit Board (PCB) shown in Figure 21.

Figure 20. High level band design

29

Figure 21. Printed circuit board of WAG Band

The high-level diagram for the center chest module seen in Figure 22 shows a slight variation in
the hardware: the EasyVR 3.0 speech recognition module14 [40]. The chest piece also does not have any
haptic motor feedback; it is intended to be a central reference frame for the suit, and does not provide
vibratory feedback.

Appendix 4 – Assembly & Construction includes additional images of the completed printed circuit
board for both the bands and the chest module.

Figure 22. Chest piece high level design

14 The EasyVR 3.0 module is produced by VeeaR and is intended to be a plug-and-play speech recognition

module for Arduino platforms. The module comes with 26 built in person-independent speech commands it can
recognize along with the option to add more custom user-specific words.

30

Figure 23. Printed circuit board for WAG Chestpiece

Component Selection Justification

A trade study of different accelerometers, gyroscopes, and microcontrollers was used to select
components that would allow the WAG System to meet the system requirements. These trade studies
were conducted using decision matrices, which weight important features of the components to generate
a final score (see Appendix 6 – Initial Design Steps: Trade Study). The MPU6050 was selected from the
accelerometer/gyroscope trade study due to its small size, low cost, and high accuracy. The MPU6050 also
uses built-in motion processing that fuses its accelerometer and gyroscope data into one filtered sensor
orientation, making it easy to use.

A key component of the WAG System is the communication between each band and the host
computer. Three main options exist for wireless communications in this range: ZigBee, Bluetooth, and Wi-
Fi. ZigBee, however is typically used for applications with very low data rates, and therefore, would not
be suitable for the WAG System. After conducting hardware tests with Bluetooth and Wi-Fi, Wi-Fi was
determined to be significantly simpler to develop with, while greatly exceeding the data rate requirements
of the project.

A decision matrix-based trade study also determined that the easiest to use and least expensive
Wi-Fi chip available was the ESP8266, while also being able to meet all of the system’s data rate require-
ments. This chip includes an easy to use UART interface and a built-in Wi-Fi stack inside the microcontrol-
ler, and it can be programmed from the Arduino environment.

The Teensy 3.2 was selected from the microcontroller decision matrix because it features several
hardware UARTs to debug the module and to communicate with peripherals (Wi-Fi chip), it has a small
form factor suitable for wearable applications, and it is capable of using the breakout board within the
final band. Despite being relatively expensive, the Teensy 3.2’s performance, form factor, and debugging
capabilities made it the best choice as the primary band processor.

The shaft-less vibration motors were selected due to their cost, size, the intensity of vibration
they could provide and the simplicity of their controller circuitry. Since the shaft-less rotor motors run on
a DC voltage, they can be run using a PWM (pulse-width modulation) signal from a microcontroller. This
signal can be applied using a simple MOSFET circuit, as opposed to the more complex driver circuitry
required by AC vibration motors.

31

The EasyVR3.0 voice control module was selected based on its pre-configured intuitive control
and command set. The software libraries available for this board make the module particularly easy to
integrate into a pre-existing microcontroller project with an additional UART connection. This module is
fairly expensive ($50), but the benefit of having built-in recognition of 26 commands in several languages,
along with its general ease-of-use, justifies its cost.

Sensors and Sensor Fusion

Each band uses an MPU6050, an accelerometer and gyroscope sensor package, to measure its
orientation in three dimensional space. The bands use a closed-source motion determination algorithm
developed by InvenSense to precisely estimate their rotational poses. Each band’s sensors are capable of
generating pose estimates at rates of up to 200Hz. The MPU6050 is the bands’ means of tracking the
wearer’s motion.

Haptic Motor Control

Each band includes 6 vibration motors distributed in a circle around the band to indicate pose
error to a user through vibratory stimuli. The bands use these vibration motors to indicate spatial error to
a user in two primary ways: by guiding the user to rotate the band in-place (a motion similar to turning a
key), or to guiding the user to move the band perpendicular to its in-place rotation axis (a motion similar
to moving an arm vertically without rotation). Each band receives error updates comprising three numer-
ical values from the computer application over the Wi-Fi link. These three numerical values describe the
rotational and perpendicular errors: (1) the in-place rotation error magnitude, (2) the angle describing the
axis of perpendicular motion error, and (3) the magnitude of the perpendicular motion error. The rota-
tional and perpendicular errors are calculated using a swing-twist decomposition of the error rotation,
shown in the following equation:

𝑅𝑒𝑟𝑟𝑜𝑟 = 𝑅𝑡𝑤𝑖𝑠𝑡 = 𝑅𝑡𝑤𝑖𝑠𝑡𝑅𝑠𝑤𝑖𝑛𝑔

𝑝 = (𝑎𝑥𝑖𝑠(𝑅𝑒𝑟𝑟𝑜𝑟) ∙ �⃗�𝑡𝑤𝑖𝑠𝑡) = (𝑎𝑥𝑖𝑠(𝑅𝑒𝑟𝑟𝑜𝑟) ∙ �⃗�𝑡𝑤𝑖𝑠𝑡)�⃗�𝑡𝑤𝑖𝑠𝑡
𝑅𝑡𝑤𝑖𝑠𝑡 = 𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛(𝑠𝑐𝑎𝑙𝑎𝑟(𝑅𝑒𝑟𝑟𝑜𝑟), 𝑝)
𝑅𝑠𝑤𝑖𝑛𝑔 = (𝑅𝑡𝑤𝑖𝑠𝑡)−1 = (𝑅𝑡𝑤𝑖𝑠𝑡)−1𝑅𝑒𝑟𝑟𝑜𝑟

where 𝑝 is the projection of the axis of the error 𝑅𝑒𝑟𝑟𝑜𝑟 represented in axis-angle form onto the

unit-axis about which the twist rotation will occur, �⃗�𝑡𝑤𝑖𝑠𝑡. The twist rotation component of the total error
is constructed by constructing a quaternion rotation representation using the scalar component of the
original error (from axis-angle format) and the projection vector 𝑝. The swing rotation component of the
total error is all that remains of the error after removing the twist component. The magnitude of the in-
place error (1) is the angle of the twist error from its axis-angle representation, and the angle of the per-
pendicular motion error (2) is represented by the angle between the z-axis of the band and the swing axis.
The magnitude of the perpendicular motion error (3) is the angle of the swing error is calculated from its
axis-angle representation.

The band indicates the in-place rotational (twist) error to the user by vibrating the motors se-
quentially around the band in the direction of the user's error. If the user needs to rotate a band clockwise
to correct an error, for example, the vibration pattern will move clockwise about the band. The band uses
the magnitude of the in-place rotational error it receives over the Wi-Fi link to control the amplitude of
the rotational vibration pattern.

The band uses the perpendicular motion (swing) error axis it receives over the Wi-Fi link to place
a vibration stimulus behind where the user needs to move in order to correct the perpendicular motion

32

(swing) error. The band uses the perpendicular motion error magnitude to control the amplitude of this
stationary vibration stimulus.

The rotational vibration pattern and stationary vibration stimuli are superimposed so that both
the in-place rotational error and the perpendicular motion error are evident to the user. If both the in-
place rotational error and the perpendicular motion error are large and the vibration signals to the motors
become saturated, the maximum allowed vibration amplitude is divided between the rotational vibration
pattern and the stationary vibration proportional to the in-place rotation error magnitude and the per-
pendicular motion error magnitude.

Communication

Each band uses an ESP8266 chip (seen in Figure 24) communicate with the WAG System software
application. The ESP8266 can be programmed using a custom Arduino core by placing the device into
bootloader mode and then sending program data over an FTDI cable to the chip’s UART. This core allows
a developer to program code using Arduino syntax using the Wi-Fi capabilities. The ESP8266 exchanges
data with the Teensy microcontroller via a UART link operating at 9600 baud. Further details on how the
ESP8266 interfaces with the computer application are provided in the Software Design section.

Figure 24. ESP8266 Wi-Fi chip

Software Design

The WAG System software application is written in C++ and uses key libraries including Boost15,
OpenGL16, and Qt17[41][42][43]. C++ offered easy communication with the hardware components, object-
oriented design capabilities, fast operation, and its OpenGL and Qt libraries. The Qt Library offered a ‘slots-
and-signals’ message passing mechanism. This mechanism is used extensively throughout the application
to pass data between objects. A ‘signal’ is emitted when a specific event occurs. Signals can be parame-
terized to carry data related to the event or can have no parameters and simply indicate that an event has
occurred. Slots are similar to functions. A slot and signal can be linked by using the ‘connect’ function. If
this occurs, then a slot is called when a signal it is connected to is emitted. Signals and slots must have the
same signature, or number and type of inputs, to correctly connect. Multiple signals can be connected to
multiple slots. This allows data to be transferred between objects without having to maintain instances of
an object within another object [44].

The WAG System software application runs on the Intel Atom, which serves as the central com-
munication hub for all of the WAG Bands.

15 Boost provides a number of free peer-reviewed portable C++ source libraries. We are using libraries from Boost

to interface with the user’s file system.
16 OpenGL is a widely used graphics application programming interface. OpenGL supports 2D and 3D graphics.
17 Qt is an IDE for cross-platform C++ development. Qt also has numerous libraries that extend the core functionality

in C++.

33

Class Interactions

The core interactions between the main classes are shown in Figure 25 below. Each of the three
modes (recording, editing, and playback) have a central controller that processes user input to maintain
the control flow of the application and routes and packages data. The suit class is a container for all of the
band objects, which consumes messages received over Wi-Fi and routes them to the appropriate software
band object. Encapsulating the band objects in this way allows the application to communicate with and
maintain the state of the user's WAG Bands. The WAGFile object represents a single motion and contains
its name, location, description, and searchable keywords, as well as the mapping from times to Posi-
tionSnapshot objects. A PositionSnapshot object represent the full state of a user’s body at a given time,
and contains mappings from a band to a pose.

Figure 25. High-level software diagram

34

Class Functionality

To accomplish the required software functionality, a number of C++ classes were developed as
part of the application. The most important of these are shown in Figure 25. Several other classes were
developed to support and encapsulate data required by the key classes. The classes, their descriptions,
and their fields and methods are shown in Table 10 in Appendix 2 – Software Core Classes and Function-
ality.

Communications

Within the application, the WifiManager class acts as a hub for Wi-Fi communications. To send a
message, a band object calls a method in the WifiManager with the message it would like to send to its
respective hardware band. The WifiManager class also receives and routes messages from hardware
bands to the suit object, which then passes messages to the proper software band objects. All Wi-Fi com-
munications are done using TCP connections and all inner-application communications use Qt’s signals
and slots mechanism. This interaction is detailed in Figure 26.

Figure 26. Network interface diagram

Table 8 details the required update frequency from the project requirements, the actual update
frequencies measured with the hardware, the bandwidths, communication partners, and required input
processing capabilities for each component of the system.

Table 8 - Band communication implementation

Device
Required
update

frequency

Actual up-
date

frequency
Bandwidth Communication Partner Processing

Computer 10 Hz 16Hz ~49kbps
Hardware bands (positional
error information)

All incoming accelerometer
and voice control data from
the bands

Arm and
Shoulder
Bands

10 Hz 16Hz ~7kbps Computer (sensor data)
Read sensor data
Received data from computer
into motor command signals

Chest
Band

10 Hz 16Hz ~7kbps
Computer (sensor data,
voice control messages)

Reads voice control module
data
Read sensor data

35

Motion Visualization

The visualization module for displaying a motion for the user is constructed using OpenGL. The Qt
library provides an OpenGL widget that can be embedded in an application and extended for customiza-
tion. The software classes that run the visualization extend the provided OpenGL widget class to make use
of the built-in OpenGL support while adding custom functionality. This includes the ability to set a camera
location with the camera always looking at the origin, the ability to add a planar convex shape to the scene
by specifying the corner points of the plane as well as the translation and rotation from the origin point,
and functionality for registering mouse click and drag events for moving the camera.

A kinematic human model was developed in Blender, a 3D modeling application, and included
individual links for each movable segment of the body. This Blender model was exported as a Wavefront
object file, which preserved the identities of each individual body segment (bicep, wrist, chest, etc.) are
all recognized as distinct meshes in the Wavefront object file). The C++ library Assimp imported the Wave-
front object into the software application and loaded the meshes, materials and transformations between
each of these meshes into structs. The OpenGL widget used the information from these structs to display
the model, which can be seen in Figure 26. Each link in this model can be individually colored, and inde-
pendently moved via standard linear transformation operations.

Figure 27. 3D human model rendered in an OpenGL widget

Each segment of the mesh is independently movable by a single orientation update with respect
to the visualization’s world frame. However, the original Blender model defines the positions and orien-
tations of each mesh with respect to their parent frames. Therefore, the software calculates the transfor-
mation of each mesh from the world frame to their final position so that they can be easily updated by
the bands’ reported orientations. Each limb’s mesh is initialized using the following calculation:

𝑅𝑖
0 = ∏ 𝑅𝑖

𝑖−1

𝑛

𝑖=1

𝑅𝑖
0 is the rotation from the Blender coordinate frame of the ith mesh to align with the world coor-

dinate frame, and gets calculated by successively pre-multiplying the rotation from itself to its parent,

𝑅𝑖
𝑖−1.

36

𝑇𝑖
0 = [

𝑅𝑖
0 −ℎ⃗⃗0

𝑖

0⃗⃗ 1
]

𝑇𝑖
0 is the homogeneous transformation from the default Blender frame to the OpenGL world

frame. ℎ0
𝑖 is the translation from the origin to the mesh, and is extracted directly from the Blender model

using the Python API. This transformation is used to rotate and translate every mesh into the shared world
coordinate frame.

Once each mesh is aligned with the world coordinate frame, each mesh can be updated with
orientations specified in that world coordinate frame. The following equations define the recursive update
calculations that the software uses to correctly track the WAG Bands user’s pose:

ℎ⃗⃗0
𝑖

′
= 𝑡0

𝑖−1′
+ 𝑅0

𝑖−1′
𝑅𝑖−1

0 (ℎ⃗⃗0
𝑖 − 𝑡0

𝑖−1)

𝑡0
𝑖 = ℎ⃗⃗0

𝑖
′

+ 𝑅0
𝑖 ′

𝑅𝑖
0 (𝑡0

𝑖 ′
− ℎ⃗⃗0

𝑖
′
)

 ℎ⃗⃗0
𝑖

′
 represents the rotated head vector of the ith mesh in its parent chain. This vector places the

base of the mesh in the correct position in the visualization based on the world rotation update of the

mesh, 𝑅0
𝑖−1′

. 𝑡0
𝑖 ′

 is the rotated tail vector of the ith mesh, and is used to correctly place child meshes. ℎ⃗⃗0
𝑖

and 𝑡0
𝑖 are both pulled directly from the Blender model using the Python API, and represent the transfor-

mations of the ith head and tail vectors in the model’s default pose. The ith band’s mesh is transformed
into its updated position using the following equation:

𝑇0
𝑖′

= [𝑅0
𝑖 ′

𝑅0
𝑖 ′

ℎ⃗⃗0
𝑖

′

0⃗⃗ 1
] 𝑇𝑖

0

𝑇𝑜
𝑖′

 is used to correctly place and orient the ith mesh in the visualization, and is updated with one

variable input – the updated world rotation, 𝑅0
𝑖−1′

. The rest of the parameters in the previous equations
are constants collected from the original Blender model.

Through the wireless link discussed in the previous section, the bands send orientation updates
to the software application. These orientation updates are used to rotate and translate the meshes of the
links of the human model to match the actual pose of the wearer – for example, as the wearer bends his
or her elbow, the OpenGL simulation updates, bending at its elbow joint as well.

Motion Calibration

The orientation updates sent to the software from each band are defined in a semi-arbitrary ref-
erence frame that is dependent on the configuration of the band when the user turns it on. Also, the
coordinate frames defined by the Wavefront meshes exported from the Blender model do not necessarily
align with the sensors in the bands. Therefore, calibration has two stages – an axis alignment stage and a
user pose-matching stage.

The axis-alignment stage is simple and occurs completely behind the scenes in the software. The
software uses pre-computed coordinate frame transformations to align orientation updates from the
bands with the Blender axes. These transformations are precomputed by moving a band, and observing
how the model responds in order to define a transformation that re-aligns the mesh model with the mo-
tion of that particular band.

The user pose-matching stage must be executed by the user each time any new bands get pow-
ered on, because each time a band gets powered on its arbitrary reference frame changes. The pose-
matching stage requires a user to match a pose shown on-screen while wearing the WAG Bands. The user
then signals the software to calibrate, and the software generates a rotational conversion to the shown
pose (which the user is now matching) from what each band is reporting as its orientation. Then, each

37

rotational conversion is applied to all future orientation updates that the software receives from the as-
sociated band, mapping the arbitrary band reference frames to the mesh model’s coordinate frame. The
following equation represents how the band orientation updates get processed for calibration:

𝑅𝐵𝑎𝑛𝑑 = 𝑅𝑃𝑜𝑠𝑒𝑀𝑎𝑝𝑅𝑅𝑎𝑤𝐵𝑎𝑛𝑑𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝐹𝑟𝑎𝑚𝑒𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

The 𝑅𝐵𝑎𝑛𝑑 output represents the final processed band orientation that gets used as the band’s
actual orientation. 𝑅𝑅𝑎𝑤𝐵𝑎𝑛𝑑𝑈𝑝𝑑𝑎𝑡𝑒 represents the raw orientation data generated by the band that nei-

ther matches the axes of the mesh model, and is with respect to an arbitrary coordinate frame. 𝑅𝑃𝑜𝑠𝑒𝑀𝑎𝑝

represents the orientation map that gets generated when the user matches the pose shown on the GUI,
and gets pre-multiplied by 𝑅𝑅𝑎𝑤𝐵𝑎𝑛𝑑𝑈𝑝𝑑𝑎𝑡𝑒 to map the raw band update into the mesh model coordi-

nates. 𝑅𝐹𝑟𝑎𝑚𝑒𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 aligns the axes of the band’s accelerometer and gyroscope sensors with the mesh

model’s coordinate frame for the associated limb. The final 𝑅𝐵𝑎𝑛𝑑 value gets used for all further spatial
computations, including visualization updates, feedback calculations. 𝑅𝐵𝑎𝑛𝑑 is consistent for all users,
since it has been processed by both frame alignment and by pose mapping. 𝑅𝐵𝑎𝑛𝑑 represents the orien-
tation of the band with respect to the base frame of the visualization, which is defined by the OpenGL

widget. Each band stores and uses their own independent 𝑅𝐵𝑎𝑛𝑑 values. 𝑅𝐵𝑎𝑛𝑑 is equivalent to the 𝑅0
𝑖 ′

parameter used for world orientation updates in the Motion Visualization section.

Playback Controls

A PlaybackController class was developed to maintain playback parameters and to issue updates
for which frame to display. This class is integrated with the user interface, so any playback options that
are selected are reflected in this class. There are two mode options for playback: timed, in which the user
matches motions using timing, and step-through, in which the user tries to match a position from a dis-
cretized version of the motion before moving on to a new position in the motion. When the user presses
play in timed mode, the PlaybackController class issues frame updates reflective of the user chosen speed.
Playback stops when a pre-determined end frame number has been reached. In step-through mode the
PlaybackController issues frame updates only when the error from the last frame is within the user spec-
ified tolerance threshold.

Saving and Opening Motions

One key feature of the WAG System software is the ability for a motion file to be saved and loaded
to/from the user’s local computer or the motion library. More specifically, Trainers have the ability to save
and load recorded files and Trainees can load files from their computer or the motion library. When Train-
ers want to record a new motion, they must first give the motion a name and a description, optionally
giving the motion some relevant keywords, and choose a save location – either a directory on their local
computer or the motion library. This allows the motion to be automatically saved as the Trainers record
and then edit and/or play back the motion. When a motion is saved, all of its data, including its name,
description, keywords, and PositionSnapshots, is saved to the designated save location. When Train-
ers/Trainees want to load a file from their local computer, a generic file browser is launched. This file
browser lets the Trainers/Trainees navigate around their computer, but only shows files with the exten-
sion ‘.wagz.’

To abstract the motion library, the file ‘.WAGConfig’ was created to specify where the motion
library is. For testing, the configuration file points to a MotionLibrary directory, allowing for easy access
to any motions saved to the library. In the future, the configuration file may be updated if the motion
library is implemented as a central database. When users want to load a file from the library, they are
shown a window with a table where each rows contains information for one motion file, shown in Figure
28. This window also contains a search bar for searching through motion names, descriptions, and/or

38

keywords. Once users select a row and press the ‘Load’ button, the chosen motion is loaded into the
application.

Figure 28. “Load Motion From Library” window in the host computer application

Graphical User Interface Design

The design of the GUI came from analyzing the user interface flow chart shown in Figure 20. This
chart made it clear that the two types of users (Trainers and Trainees) had different needs. To address
this, the application prompted the user to choose which type of user they were, and this decision dictated
which windows they would be presented. Below are screenshot images of the final GUI design along with
an explanation of how the user would access the given window.

39

Figure 29. User interface – user selection

When a user first opens the software application, they are presented with the window shown in
Figure 29. At the top of this window is the ‘Settings’ button and the ‘About’ button. These are available to
all users at any time and remain in the menu bar. Below the menu bar, there is a status bar that displays
how many bands (out of 7) are disconnected and which bands have low battery. The status bar updates
in real time. In addition, if any bands are disconnected, the settings button changes from blue to red, to
signify to the user that they should enter the settings panel to reconnect the bands. The majority of the
window is taken up by a white tab titled ‘User selection’. This tab prompts the user connect and calibrate
the bands and to select a type of user. Once the user has chosen, this tab is replaced with the content for
the mode the user is in. The red connect and calibrate message was added as a result of analyzing the
user test results, as discussed in the Product Performance Evaluation section.

40

Figure 30. User interface – settings screen

When the user clicks on the ‘Settings’ button, the overlay shown in Figure 30 is displayed. This
overlay is the same regardless of user type or current window. The first thing a user should do upon
launching this window is choose which bands to work with, by selecting/deselecting the checkboxes, and
clicking the ‘Connect Bands’ button. The application tries to initiate a connection with each of the selected
WAG Bands and updates the application’s status bar accordingly. Next, the user needs to calibrate the
bands using the two windows displaying 3D models of a human torso. The top model is in the position
that the user needs to mimic for calibrating the bands, while the bottom model shows what position the
system believes the user to be in. After matching the top pose, the user can click the ‘Calibrate Bands’
button and the system zeroes the bands’ positions to those shown by the first model.

41

Figure 31. User interface – new motion window

If a user has chosen to be a Trainer, s/he is given the options of creating a new motion or opening
an existing one. Selecting the ‘Record a New Motion’ option, leads them to the overlay shown in Figure
31. This window requires the user to give the motion a name and description, and optionally give the
motion keywords that can help someone find the motion later. Finally, the user must choose a save loca-
tion, which defaults to the motion library but can also be a directory on the user’s local computer. This
window has basic verification and only enables the ‘Create’ button if all required fields are filled.

Figure 32. User interface – Trainer’s record motion window

42

After creating a new motion, a Trainer is shown the window in Figure 32. This window signifies
that the user is done “setting up” the system and is ready to begin using the WAG Bands. The Trainer now
has two new buttons in the menu bar allowing them to easily create a new motion or load a previously
recorded motion. Figure 32 also illustrates that a user can have multiple motion files open at once, laid
out in the form of tabs under the status bar. The open tab above is displaying the application in record
mode. There are a few ‘Recording Options’ available to the user, and an enabled ‘Start Recording’ button.
Because the user must record a motion before editing or playing it back, the ‘Modes’ at the bottom left
are initially disabled. Once the user clicks the ‘Start Recording’ button, that button changes to say ‘Stop
Recording’ and the countdown runs to zero and then keeps track of the time passed during the recording
(shown in Figure 32). Once the user stops recording, the other modes and reset button are enabled.

Figure 33. User interface – Trainer’s edit motion window

Once the Trainer has finished recording a motion and selected the ‘Edit Motion’ mode, the win-
dow in Figure 33 is displayed. This window has the same layout as the recording mode window to maintain
consistency across the application. The ‘Editing Options’ include ‘Crop’, which allows the user to cut off
the beginning or end of the motion by moving the two grey handles across the video slider at the bottom
of the visualization window, and ‘Edit Motion Information’, which displays an overlay identical to Figure
31 and allows the user to edit the previously entered information. Also available in edit mode, is the option
to play the motion on the 3D model, without the WAG Bands, and see what was previously recorded.

43

Figure 34. User interface – Trainee’s playback window

The last window available for users is the playback mode window shown in Figure 34. For a Trainer
this window would have the same layout – menu bar and mode selection – as displayed in Figure 33 and
Figure 32. Instead, Figure 34 shows what a Trainee would see after selecting the user type. A Trainee does
not have the ‘Record New Motion’ button in the menu bar, and does not have the ability to switch modes
within the application. A user who wants to play back a motion is given the various playback options
shown above. These options allow users to customize their training. To being playback mode the user
must click the play button at the bottom of the visualization window, at which point the application counts
down for the designated number of seconds, and begins playing the motion on the 3D model and the
WAG Bands, if that option was selected.

44

Product Performance Evaluation

To successfully evaluate the WAG System, the project was split into three types of requirements:
Hardware, Software, and Full System. Each of these categories are explained and evaluated below.

Complete System

The complete system refers to the completed set of WAG Bands as a whole. The requirements for
the complete system are non-functional requirements NFR.1 - NFR.6 presented above in Table 4. This
document fulfils requirement NFR.5 for comprehensive documentation.

The requirements NFR.1 and NFR.6, which involve the system’s degrees of freedom and its weight
limit respectively, have both been met due to the nature of the system. By using three wireless bands per
arm (each with 3DOF of rotation measurement), the system can track 9 degrees of freedom per arm. The
bands each weigh ~0.5lbs, multiplied by 7 bands, for a total of ~3.5lbs of wearable components, which is
well under the requirement of less than 10lbs.

User Studies
NFR.2 and NFR.4, which involve a non-restrictive system and adjustability respectively, were hard

to design around because of their intangibility. Both of these non-functional requirements were evaluated
with user tests to determine how well test participants felt that the system adhered to these require-
ments. The responses collected from user tests indicated that while the WAG Bands do not inhibit the
user’s motion and are capable of fitting on most bodies, putting on the bands takes a significant amount
of time.

Next, user tests were used to determine the effectiveness of the WAG Band vibration patterns,
and the effectiveness of learning a new motion with the WAG System. The test participants were sub-
jected to three different vibration patterns in order to determine their natural response to the transla-
tional and rotational impulses. Test subjects consistently determined that they should move away from a
localized vibrational impulse, which are currently used to indicate translational error, without hesitation.
Unfortunately, the rotational vibration patterns were less intuitive to the test subjects. Test subjects took
longer to comprehend the rotational pattern than the translational pattern, and even longer for them to
decide how to react once they identified the rotation pattern. Finally, the test subjects were unsuccessful
in identifying a natural response to the combined rotational and translational vibration patterns. Some
test subjects were able to clearly identify the rotational pattern within the combination, while other test
subjects were able to only identify the translational pattern. No test subjects had a natural response to
both components of the combined signals. These results indicate that a more natural rotation pattern
should be researched and tested.

The test subjects also evaluated the effectiveness of the WAG System for learning new physical
skills, in order to compare video-based learning methods with using both the haptic guidance and the
built-in motion visualization. The motion learning test measured the effectiveness of the 3D visualization
and vibration feedback for a simple hand-wave motion. The test results indicated that the built-in 3D
visualization alone served as an effective motion teaching tool, with survey respondents rating it 4.375 on
average on a 1 to 5 Likert scale for motion teaching effectiveness. When test subjects tried to learn the
same motion using the vibration feedback, they generally found that the vibration was distracting, and
made the vibration feedback and visualization combination a less effective teaching tool than the 3D mo-
tion visualization alone. Because the test subjects responded very well to the translational vibration pat-
terns and not as well to the rotational vibration patterns, these results may be improved by researching
better means for indicating rotational error to the wearer. Additionally, the bands vibrate with increasing
intensity as a user’s error increases, but the bands do not stop vibrating unless their measured errors are
very small. Many test users suggested including adjustable vibration thresholds to change how closely a

45

user needs to mimic a motion for it to be considered ‘correct’. These tolerances may better indicate cor-
rect motion following to the user.

Safety Standards
Requirement NFR.3 involves adhering to safety regulations. Although there are currently no OSHA

standards for exoskeletal robots, the International Standards Organization standard ISO 13482, which co-
vers “personal care robots” including wearable exoskeletons, was referenced. According to ISO 13482, a
robot is an “actuated mechanism programmable in two or more axes with a degree of autonomy moving
within its environment to perform intended tasks.” Consequently, the WAG System does not fall under
the category of devices covered by ISO 13482. Instead, the WAG System more closely fits with the classi-
fication of robotic devices, defined as “actuated mechanism fulfilling the characteristics of an industrial
robot or a service robot but lacking either the number of programmable axes or the degree of autonomy.”
ISO 13482 does provide guidelines for restraint-type physical assistant robot such as wearable exoskele-
tons, which more closely matches the WAG System. Guidelines for these robots that are relevant to the
WAG System include battery charging procedures, electrical levels and component insulation require-
ments, and important safety and usage information. Most of these guidelines are important for consumer
safety and were not strictly followed for this project prototype. Future iterations of this project geared
toward introducing this system as a consumer product will strictly follow these safety guidelines.

Hardware

The hardware requirements for this project are functional requirements FR.7 and NFR.8, pre-
sented above in Table 3, and non-functional requirements NFR.8 and NFR.9, shown in Table 4. The re-
quirements FR.7 and FR.8 involve haptic feedback and its response time. FR.7 is met through the design
of a WAG Band, which includes a ring of vibration motors which encircles the user’s arm or shoulder. FR.8
requires the system to have a haptic response time of 100ms (10Hz), meaning that the system needs to
respond to an error within 100ms. The WAG System response frequency was found to be within ~16Hz,
as calculated using Wireshark. This corresponds to a ~62ms response time, satisfying this requirement
(see the ESP8266 Testing section for details).

The requirements NFR.8 and NFR.9 involve the battery life and how long a user can play a motion
and record a motion respectively. NFR.8 refers to the playback battery life which should be at least an
hour. This is different than NFR.9 the recording battery life requirement of 2 hours, as playback draws
much more current than recording. The system draws about 350mA in playback and about 200mA in re-
cording (as measured from a power supply), and as such the battery lives are ~2.8hrs and ~5 hours re-
spectively; which fulfill both requirements. More detailed information on testing the hardware can be
found in the Hardware Testing section of Appendix 5 – Test Plans).

Software

The key software requirements include FR.1 - FR.6, FR.9, and NFR.7 from Table 3 and Table 4.
These include maximum allowed record time, editing capabilities, save/load capabilities, playback con-
trols, simulation, ghosting, and an intuitive user interface (UI). Each of these features, excluding ghosting
and the intuitive UI, underwent unit testing and integration testing to verify that they were met. The
ability for the software application to show ghosting, a priority 3 requirement, was not completed due to
time constraints. The user stories provided more detailed functionality to include in the software applica-
tion. Over the course of development, each of the functionalities described in the user stories was ad-
dressed and added to the final application.

Integration Testing
Integration tests were completed to verify that all components worked together. The most exten-

sive test completed involved recording a motion with the WAG Bands, editing it, and playing it back with

46

the 3D model. This test verified that the system could record the positions of the bands over time, save
them to a file, and play them back on the 3D model in the application. This test, which was successfully
completed, was videotaped and is shown in Figure 35.

Figure 35. Integration test with recording (on the left) and playback (on the right)

User Studies
To meet the intuitive UI requirement, a Human Computer Interactions professor reviewed an

early version of the WAG System graphical user interface and provided suggestions to help make the ap-
plication more user friendly. User studies were also conducted to determine the usability of the interface.
The feedback from both of these sources were used in the final design of the software application’s inter-
face.

User studies conducted with a focus on GUI intuitiveness indicated that the user interface was
well-designed and easy to use overall. Test subjects were assigned specific tasks in the interface with no
other guidance (e.g. record a new motion, play back a motion, etc.). Test subjects consistently rated the
simplicity of completing these tasks between 4 and 5 on a scale of 1 to 5 for simplicity and intuitiveness,
with 5 being the most intuitive. However, users consistently failed to connect and calibrate the bands
when they tried to record motions, indicating that the software’s existing visual cues were not clear or
substantial enough for users to take those necessary action. As a result, the calibration and connection
options were made much more prominent in the GUI, and the software will not allow the user to record
or play back motions without first connecting and calibrating the bands.

Risk Management

Risks for this project included a limited time frame, budget, and previous experience. To mitigate
these, systems engineering practices were followed and a concept of operations was created before start-
ing development of the WAG System. This kept the project under budget and helped to ensure milestones
were reached on time. To mitigate a lack of previous experience, the team met with the project advisors
every week for updates and suggestions.

47

Project Execution Performance Evaluation

Execution Summary

This project explored the fields of wearable devices, haptic feedback, and motion capture. The
WAG System has the potential to influence athletic training and rehabilitation by providing accurate, di-
rect, and exact feedback to the wearer. The research and development leading to this achievement faced
many challenged and endured several setbacks. Wireless communication was one key component of the
system design which proved to be perhaps the hardest challenge. Bluetooth was originally intended for
the communications system, but after much testing, it was found to be insufficient for the project purpose
due to the complexity of library dependencies for the computer software, and a low slave device limit,
and insufficient data rates. This setback was costly and time consuming but lead to the implementation
of Wi-Fi for system communication.

Wi-Fi hardware also experienced a few issues including stability of the Wi-Fi chip (ESP8266) and
the code base for the ESP8266. It took several weeks to develop a stable and usable code base after
throwing out the original firmware and choosing a community-supported Arduino code base. Part of in-
creasing the stability of the platform came in changing the hardware to have an additional capacitor due
to the chip drawing current relatively erratically. An additional circuit board was designed specifically to
program the module to increase its ease of use for testing.

The first order of printed circuit boards was completed and assembled in early January. However,
the voltage rails for several key components had been combined resulting in incoming battery and regu-
lated voltages being merged. While originally this seemed to be passable for the project, testing with
batteries showed this to be a critical error that required redesign. The final printed circuit boards were
designed in late February and re-ordered. This took around a week, but only cost around $20.

Another setback found later in development was the presence of memory leaks in the software
application. These leaks caused segmentation faults while running the application. The leaks were identi-
fied using the open source program Valgrind and patched manually. This delayed the development soft-
ware application and shifted testing much later in the project.

Timeline Adjustments

The final timeline has shifted quite substantially from initial estimates. The first major reason is
that the project completion date was extended from early March to early May. This was done as a result
of the balance of team workloads around the project. Many tasks are lengthy and also interdependent on
each other. Consequently, it made more sense to accomplish small pieces in parallel so that subtasks could
be tested with each other, rather than completing a major task quickly and not being able to thoroughly
test how it interacts with other subsystems. Another major change was the shift of communications ear-
lier in the schedule and other tasks later. After developing the core functionality of the GUI, fully imple-
menting communications was necessary for meaningful testing and development of other subsystems.
Once Wi-Fi communications functionality was implemented, it was much easier to test other subsystems
as well as determine how the remaining portions of the system would interface with each other. The final
timeline can be seen in Appendix 1 – Timeline.

Budget and Expenditure Justification

The budget for the project was set at $1000 with university departmental funding at $200 per
student (5 students). The actual spending was $978.31 out of the total. This can be broken down into large
categories within Table 9. Each item shows the cost associated with it and how it factored into the project.
For some of the costs under communications testing and sensor testing, these were for parts that served
no role in the final project (such as the flex sensors). These parts were considered for a hand module that

48

never was developed due to time restrictions. The Bluetooth modules were also not used as mentioned
above and served as part of the research costs associated with this project. A full listing of materials in
each final WAG Band and the WAG Chestpiece can be seen in Table 12 and Table 13. Note that the costs
in Table 9 do not include any human costs such as labor, since this is a student project.

Table 9 - High level budget breakdown

Part description Company Cost Justification

BTLE USB Dongle Amazon $12.95 Communications testing

Adafruit nRF8001 module Adafruit $32 Communications testing

Adafruit Bluefruit LE UART Friend Adafruit $29 Communications testing

CC3000 Wi-Fi Board SparkFun $39.08 Communications testing

Bluetooth 4.1 chips with antenna DigiKey $24.77 Communications testing

Kinivo Bluetooth 4.0 Adapter Amazon $13.99 Communications testing

ESP8266 Wi-Fi modules Zou Ting $30.72 Communication modules

ESP8266 Wi-Fi module DigiKey $13.90 Communication modules

MPU6050 Modules Amazon $19.92 Sensors for project

30 ERV motors Polulu $89.15 Feedback motors for project

Shaftless vibration motors Pololu $35.35 Feedback motors for project

Stranded Wire for Motors SparkFun $10.50 Feedback motors for project

5 Teensy 3.2 boards PJRC $102.22 Microcontrollers for project

Teensy 3.2 Modules (x2) PJRC $62.34 Microcontrollers for project

Connectors for PCBs DigiKey $8.56 PCB parts for motors

Newark PCB parts (round 1) Newark $29.24 PCB parts for boards

PCBs from advanced circuits (round 1) Advanced Circuits $23.05 PCBs

PCBs (round 2) Advanced Circuits $24.35 PCBs

Newark PCB parts (round 2) Newark $26.65 PCB parts for boards

Chest harness Amazon $43.03 Band straps

1 1000mAh Battery HobbyKing $8.72 Batteries for project

8 1000mAh Batteries HobbyKing $28.00 Batteries for project

Battery charger and splitter HobbyKing $50.30 Batteries for project

Easy VR Shield 3.0 (speech recognition) SparkFun $54.17 Speech recognition

Flex sensors SparkFun $25.90 Sensor testing

Force sensors SparkFun $18.03 Sensor testing

Freescale Freedom board Kinetis K22F DigiKey $37.21 Sensor testing

Freedom Board FXAS21002 DigiKey $15.95 Sensor testing

4A power supply for Intel Atom Adafruit $24.53 Cornell Cup Competition

60GB SSD for Intel Atom Amazon $44.94 Cornell Cup Competition

 Total costs: $978.31

 Budget total: $1000

 Under budget: $21.69

49

Project Reviews

This section addresses the reviewer feedback from advisors during the two review sessions. There
were two major design reviews called the Preliminary Design Review (PDR) and the Critical Design Review
(CDR) which are included in the university curriculum for capstone projects. These sessions are designed
to give advisors and general university students an opportunity to critical and evaluate a design by listen-
ing to a 20 minute presentation and then providing questions and feedback. Typically the PDR occurs early
on in the beginning of the design phase and seeks to refine the project proposal. The CDR occurs later in
the design phase to verify the design for the project is feasible and applicable to the original design. In
addition to the PDR and CDR, the project advisors were consulted weekly for advice and feedback. These
meetings helped the team follow better systems engineering practices, overcome many of the project
challenges, and produce a patentable technology. The advice and feedback of the advisors led the team
to meet with industry professionals, technical advisors, and the campus patent lawyer. These connections
gave the team access to valuable resources and advice which the team was able to integrate into the
design.

By the PDR, the team had developed a full project proposal that outlined the details of the WAG
System. The feedback provided by the advisors at this meeting helped to define the scope of the project.
Due to the budget and time limitation, it was decided that the project would be limited to upper body
only. At the time of the PDR, plans for adding flex sensors for hand motion tracking were a major compo-
nent of the project, but it was decided that hand motion tracking should be a low priority in order to make
sure torso and arm tracking was completed first. The overall outcome of the PDR was to begin taking this
theoretical system and turning it into a realistic design.

Prior to the CDR, a preliminary design was complete and most parts were ordered to allow for
assembly to begin in January. The feedback from this presentation was primarily on presentation quality
rather than content and technical details. While the team had made good progress on the technical side
of the project, the presentation was very technical and failed to address some of the larger goals of the
project.

The team improved non-technical aspects of the presentation the following week. The team pre-
sented to Rita Vasquez-Torres, a Senior Technology and Programs Strategist who was asked to come eval-
uate the WAG System. Working with the feedback from the CDR, the team kept in mind that the potential
lack of familiarity of audience members with the WAG System. The presentation went very well and Mrs.
Torres provided lots of valuable information about preparing a product for market, which would later lead
to the team filing for a provisional patent.

50

Recommendations and Future Research

A useful investigation following development of the WAG System would be determining how use-
ful it is for teaching people new physical skills. This research could examine stimuli patterns that could be
used with the WAG Bands to indicate error in motion, as well as how the WAG System compares to teach-
ing motion using a trainer or video instruction. This would require longer and more numerous tests on
human subjects as well as researchers with more background in experiments involving learning.

In addition to investigating the usefulness of the WAG System, it would also be useful to investi-
gate different vibration schemes and thresholds. Test users reported that translational feedback was in-
tuitive, but were typically confused by rotational feedback and the combined feedback. If other rotations
schemes were tested, a more intuitive and consequently more useful scheme could be implemented in-
stead. In addition, users noted confusion at the degree of vibration that was present during most of their
attempted motions. Testing different ranges for the acceptable margin of error for the user, as well as
trying different scale factors relating error and vibration could make the feedback more easily interpreted
by the user. Additional user tests with various vibrational schemes would be necessary to determine these
margins of error and scale factors. Developers would also have to implement ways to vary the vibration
scheme for different trials. This could involve settings to select the vibration scheme or different imple-
mentations that would be switched between trials. Depending on the approach, it may be necessary to
send the vibration signal to the bands instead of the angular error to simplify modification of the vibration
scheme. This change would require modifying the playback message structure in the software application,
and the processing done on received packets in the code for the WAG Bands.

One potential future addition to the project would be the ability to record motion for other por-
tions of the body, including the abdomen and legs. Adding motion capture for these components would
increase the number and utility of motions that could be recorded. This would likely require more biome-
chanics knowledge due to increased complexity of the additional body segments. The physical band layout
would also need to be heavily revised to be able to capture these different body segments. Developing
wearable units for measuring hand movement would allow users to learn more actions involving hand
movements.

Another expansion to this project could involve developing a series of modules that could inter-
face similarly with the software that could support force feedback. Force feedback would be useful as it
would help to physically guide users through the correct paths, rather than simply alerting them to errors
in their motion. This force feedback could be implemented through motors driving parts of the module or
soft actuators. This would also likely require greater knowledge of biomechanics, as precision and accu-
racy needed in applying force to a user would need to be greater than for haptic feedback as to prevent
injury. This expansion would also require significant knowledge of the actuation mechanisms used to im-
plement force feedback. Adding actuation would also be a costly and time consuming addition, as most
hardware components would have to be redesigned, and actuators are much more expensive than vibra-
tion motors. Additional time and effort would be needed to ensure that the safety issues raised by apply-
ing force to humans are mitigated and managed appropriately.

In addition, implementing visual playback ghosting, where the users can see their actual path and
intended path into the motion visualization window could improve the usefulness of the WAG System.
Currently, the system conveys positional error to users through vibration. Extending the system so that
users could also visually review their motion path alongside the intended motion path could help them
remove errors more quickly. This would require that PositionSnapshot objects also be aggregated into a
timestamped data structure during playback as well as during recording and that the visualization would
be capable of displaying and updating two body models as a motion is played. This feature was frequently
requested in the open-ended feedback section at the end of the user studies.

51

Enabling compatibility with a wider variety of motion capture file formats could also be a valuable
extension to this project. This greater compatibility could either be through direct compatibility with the
application, through which users could directly play or save motions with other motion capture file for-
mats, or through development of file converters, which could be used outside of the main flow of the
application to convert files between the standard used by the WAG software and other file available file
formats. Compatibility with other file types could allow users to pull motions to learn from existing data-
bases as well as to use the WAG software for other motion capture purposes. Having a greater range of
databases to pull motions from would likely increase the usefulness of the application, as motions would
not need to be created specifically through the WAG software to be learned.

Enabling live recording and playback between a Trainer and a Trainee could also be a valuable
extension to the project. This feature could allow the WAG System to enhance in-person teaching sessions
by providing tactile feedback in addition to the verbal and visual feedback that an instructor typically pro-
vides. Adding live playback would require that the system draw PositionSnapshots to match from a sec-
ondary suit object, corresponding to the set of bands worn by the Trainer, instead of from a file. It would
also likely require improved communication and processing speeds in the application, as the software
would have to receive position data for two sets of WAG Bands instead of just one. This could eventually
be expanded to have multiple students receiving live feedback from one instructor in a group class envi-
ronment.

Reducing the cost of the WAG System would also be a useful next step in development of this
project. The current cost of materials per band is between $70 and $80. To be more available and afford-
able for potential consumers, this cost should be below $10 per assembled device. However, this would
require a redesign the breakout boards to use just the components of the breakouts rather than the full
breakout. This will increase development time but will make the overall footprint of the device smaller
and will lower the cost. Buying circuit component items in bulk would also decrease the cost.

Another improvement for this project would be reducing the overall latency in the system (to
increase the duplex communication rate between the computer and the bands). Next year, the ESP32 chip
(an improvement on the ESP8266 hardware) is being released and could potentially increase the commu-
nication. The ESP32 chip is also set to use less power than the ESP8266 chip and could help increase the
potential battery lifetime of the bands. Alternatively, better communication chips such as Bluetooth could
be used if better libraries (embedded and host computer side) were available. The use of Bluetooth could
decrease the power usage of the circuit as well.

Should this project be developed for consumer use, miniaturizing the hardware would allow the
WAG System to be less intrusive and obstructing to motions of the user. The existing components could
be replaced with smaller models. The hardware size could also be reduced without switching components
by soldering components together rather than allowing them to be removable and reprogrammable.

Other sensors that monitor body functions could be added to form a more complete picture of
the user’s body while they are performing a motion. These could include blood-oxygen sensors, breathing
monitors, and heart rate monitors. Adding these would involve either developing more bands or adding
components to existing bands. Additional message types would be needed to process the data from these
sensors. The GUI would also need to be modified to display this information to users while they are exe-
cuting motions or after the execution of motions.

Incorporating long term performance data for motions could also allow the user to better track
their progress over time. If performance data was stored, the software could be extended to analyze this
data to look for habitual errors or suggest other exercises or stretches based on individual progress. Simply
storing historical data would require adding specific storage for each user and saving either each run of
an exercise or analysis data calculated from each exercise. Knowledge of artificial intelligence and exercise
science would be needed to identify persistent errors or suggest potential exercises or stretches for the
user to improve their performance.

52

Nomenclature Glossary

 ADC – Analog to Digital Converter

 AES – Advanced Encryption Standard

 Breakout board – A small printed circuit board designed to give users easy access to circuit func-
tionality and onboard peripherals

 Bootloader – A section of code installed into low memory of a microcontroller to run user pro-
grammed code

 BJT – Bipolar Junction Transistor; An electrical component used commonly as an amplifier

 C++ – A middle level programming language good for hardware communication and object ori-
ented programming

 CDR – Critical Design Review; a design review with advisors completed mid-way through the de-
sign phase to verify system design and concepts

 Crimp connector – A style of metal contact that is affixed to the end of a wire with a combination
of pressure and solder

 CPU – Central Processing Unit

 DAC – Digital to Analog Converter

 DIP Socket – Dual Inline Package; A style of connector to enable integrated circuits to be con-
nected to a printed circuit board without solder

 EAGLE – A PCB design software developed by CadSoft

 EasyVR3.0 – A commercial breakout board for speech recognition

 ERV – Electric Rotary Vibrator

 Eval Board – Evaluation Board. A PCB designed for testing electrical hardware, such as microcon-
trollers and active sensors.

 FOGS – Fiber Optic Gyroscope

 FR – Functional Requirement

 GND – Electrical Ground

 GPIO – General Purpose Input/Output pins on a microcontroller

 GUI – Graphical User Interface

 I2C – I2C, Inter-Integrated Circuit communication protocol

 IC – Integrated circuit; An electrical component designed for a generic function

 ICM – Industrial, Commercial, and Medical

 IDE – Integrated Development Environment used for writing code for an application

 IoT – Internet of Things

 ISO – International Standardization Organization

 JTAG – Joint Test Action Group

 LED – Light Emitting Diode; a device which produces light given a voltage of ~2V to ~3V

 Li-Po Battery – Lithium Polymer battery; This style of battery features high current capabilities
and fast recharge rates with a large batter capacity

 LM358 – An amplifier IC used with a single supply (only a positive voltage and 0V).

 LPF – Low Pass Filter

 LRA – Linear Resonant Actuator

 MATLAB – Numerical computing environment and programming language

 MCU – Microcontroller

 MEMS – Micro Electro Mechanical System

 MOSFET – Metal-oxide-semiconductor field-effect Transistor, basically a digital switch

53

 MPU6050 – Accelerometer and Gyroscope sensor breakout board available for around $4

 NFR – Non-Functional Requirement

 NPN – A type of BJT transistor

 OpenGL – Open Graphics Library for rendering 2D and 3D vector graphics

 OSHA – Occupational Safety and Health Administration

 PCB – Printed Circuit Board

 PLA – Polylactic Acid; material used for 3D printing

 PositionSnapshot – mapping of band type to band position; represents full body position measur-
able by bands at a given time

 Potentiometer – An electrical component which varies its resistance as a knob is turned

 PDR – Preliminary Design Review; a design review with advisors completed at the beginning of
the design phase to explain and refine the project proposal

 PWM – Pulse Width Modulation

 Quaternion – A four-dimensional representation for expressing rotational position

 Qt – Cross-platform application development framework for C++ with supporting libraries

 RAM – Random Access Memory; used to store variables at run time in an application

 Regulator – A voltage regulator takes in a higher voltage and provides a constant steady voltage
output

 RF – Radio Frequency

 RTC – Real Time Clock

 Sensor Fusion – a technique used to combine sensory data from separate sources

 Software application/the application – The software application (GUI) responsible for collecting
information from the WAG Bands and processing user input and preferences

 SPDT Switch – Single Pole Double Throw; A style of switch that has three connection pins and two
positions of the switch (the middle of the three and one of the outer connection pins are always
connected in the states)

 SPI – Serial Peripheral Interface Bus

 Suit – Another term for the collection of wearable bands

 TCP – Transmission Control Protocol

 TLV1117 – A 3.3V voltage regulator produced by Texas Instruments

 Trainee – Person using the WAG System to learn a new skill

 Trainer – Person using the WAG System primarily for recording actions

 UART – Universal Asynchronous Receiver/Transmitter

 USART – Universal Synchronous/Asynchronous Receiver/Transmitter

 User – Person using WAG System – either a Trainee or a Trainer

 Vcc – Supply Voltage

 WAG – Wearable Action Guidance

 WAG System – Full system including seven wearable bands (WAG Bands) and the accompanying
software application

 WAG Bands – Wearable bands containing position measurement devices and vibration motors

 WAGFile – Software object containing motion file data; file containing motion file data

 WPAN – Wireless Personal Area Network

 XML – Extensible Markup Language; human and machine readable markup language

54

Appendix 1 – Timeline

This appendix contains the timeline for the project split up into chronological subsections. Each
subsection contains additional subtasks, a start time and a duration.

Research

This was the initial research phase of the project.

 Subtasks: background research, trade study

 Duration: 16 weeks (through November 2015)

 Start Time: Late August 2015

Systems Engineering Analysis

This included the concept of operations and resulted in the delivery of the initial systems engi-
neering content.

 Subtasks: stakeholders analysis, needs analysis, use case development, requirements
analysis

 Duration: 5 weeks (through mid-October 2015).

 Start Time: Mid-September 2015

High Level Design

This involved the creation of the high level design of the system including the concepts of bands
and the computer application.

 Duration: 2 weeks (through late October 2015).

 Start Time: early October 2015

Basic Hardware Block Diagrams

This included laying out the block diagrams for the hardware functionality. The deliverables in-
cluded diagrams for both the bands and the chest piece as well as interaction diagrams between hardware
subsystems.

 Subtasks: Laying out hardware functionality, determining hardware subsystems (micro-
controller, wireless interface, motor controllers etc.), determining interaction medium
between subsystems

 Duration: 1 week (through mid-October 2015).

 Start Time: early October 2015

Core Software Class Design Document

This involved the creation of a document containing core classes for the software application. The
document contains functionality of each class and how the classes communicate with other classes

 Duration: 2 weeks (mid-October 2015)

 Start Time: early October 2015

User Interface Development

This involved creating and implementing a UI design using Qt’s widget library of buttons, tabs,
sliders, text boxes, etc. so that the user can navigate and access the functionality of the WAG System.

 Subtasks: Settings display, open motion display, motion library display, recording dis-
play, editing display, playback display, new motion display

55

 Steps:
o Design: November 2015
o Build: Mid-November 2015 through December 2015
o Preliminary Review: Early January 2016
o Build: January 2016 through March 2016
o Test: January 2016 through April 2016
o Document: Mid-February 2016 through April 2016
o Review: March 2016 through April 2016

Accelerometer/Gyro Integration

This task included testing and integrating the MPU6050 into the WAG Band and chest piece hard-
ware.

 Subtasks: MPU6050 integration

 Dependencies: This task was independent from other hardware subsystems.

 Steps:
o Design: started October 2015, took 2 weeks (through mid-October 2015)
o Ordering: two rounds of ordering sensors (early October and November 2015)
o Build: early October 2015 (testing), November 2015 (assembly with first round

of PCBs), February 2016 (final PCB integration)
o Test: early October 2015 (testing), November 2015 (assembly with first round of

PCBs), February 2016 (final PCB integration)
o Document: from October 2015 through March 2016
o Review: from October 2015 through March 2016

Haptic Feedback

This task involved the design, integration and testing of the motor controllers along with the vi-
bration pattern.

 Subtasks: Scheme determination, mapping error to vibration signal, vibration motor at-
tachment

 Dependencies: This task was independent from other hardware subsystems

 Steps:
o Design: October 2015, took 8 weeks through November 2015
o Ordering: October 2015 and November 2015
o Build: November 2015
o Test: October 2015 through November 2015. March 2016 through May 2016
o Document: November 2015 through April 2016
o Review: January 2016 through May 2016

Hardware Low Battery Detection

This task involved the testing and installation of the low battery detection circuit.

 Subtasks: Battery installation, low battery circuit design, testing and calibration of circuit
at desired low battery voltage

 Dependencies: The task has only dependent on the operating voltage of the system
which was decided during design in October 2015

 Steps:
o Design: Early November 2015 through mid-November 2015
o Ordering: Mid-November 2015 (1 week)

56

o Build: Late November 2015 through December 2015
o Test: Mid-November through late November 2015
o Document: Late November 2015 through April 2016
o Review: Late November 2015 and January 2016 through May 2016

Hardware Voice Control

This task involved the development of the embedded hardware and software to enable the voice
control on the WAG Chestpiece. The deliverable was the hardware setup that integrated this into the
chest piece.

 Subtasks: Voice control module setup, interface voice control module with other hard-
ware, determine and implement appropriate voice commands for stopping/starting mo-
tion and calibration

 Dependencies: The development of this was dependent on the microcontroller interface
i.e. which microcontroller communicated with the voice control module.

 Steps:
o Design: Early November 2015
o Ordering: Mid November 2015
o Build: Prototype in mid-November 2015, final system integration in March 2016
o Test: Mid-November through March 2016
o Document: February 2016 through April 2016
o Review: March 2016 through May 2016

Wireless Communications

This task involved testing Bluetooth communications initially and then involved the switch to Wi-
Fi and the integration of the Wi-Fi communication hardware into the WAG Bands. On the software appli-
cation, this involved including Wi-Fi processing code.

 Subtasks: Bluetooth feasibility (connection management on computer and device, data
rates), connection setup, multiple connection maintenance, message parsing, message
encoding, state machine setup within the EPS8266, integration of UART with Teensy,
increasing stability of the module

 Dependencies: This task was dependent on the microcontroller choice.

 Steps:
o Design: Mid-October 2015 through December 2015
o Ordering: Mid-October 2015 (1 week)
o Build: Mid-December 2015 through February 2016
o Test: Mid-January 2016 through March 2016
o Document: Mid-January 2016 through late January 2016
o Review: Late January 2016 through early February 2016

Printed Circuit Board Design

This task involved the creation of the PCBs for the project to integrate all of the hardware com-
ponents. This task featured one original design period and a design revision where a second round of PCBs
were ordered to correct several errors.

 Subtasks: Designing PCBs, Ordering PCBs, Revising PCBs, Assembling PCBs, Testing PCBs

 Dependencies: This task was dependent on all of the hardware testing tasks to deter-
mine the components needed for the WAG Bands and the chest piece

 Steps:

57

o Design: Mid-December 2015 (1 week), 2nd round: Late February 2016
o Ordering: Mid-December 2015 (1 week), 2nd round: Early March 2016
o Build: Early January 2016 through late March 2016
o Test: Mid-January 2016 through April 2016
o Document: Mid-December 2016 through April 2016
o Review: Late January 2016 through late February 2016

Wearable Device Design and Construction

This task involved the physical construction of the WAG Bands and the chest piece.

 Subtasks: Prototyping band designs in SolidWorks, 3D printing of band cases, strap de-
velopment, vibration motor housing design and printing, PCB design

 Dependencies: This step depended on the final choice for vibration motors and the PCB
sizing

 Steps:
o Design: November 2015 – February 2016
o Build: Mid-December 2015 – March 2016
o Test: January 2016 – March 2015
o Document: January 2016 – February 2016
o Review: February 2016 – march 2016

Recording

This task involved getting data from the wearable bands and storing it into a motion file.

 Subtasks: parse position data, aggregate into snapshots, store snapshots, signal record-
ing start, signal recording stop

 Dependencies: Position Determination, Wi-Fi Communications

 Steps:
o Design: Mid-December 2015 through January 2016
o Build: January 2016 through late January 2016
o Test: Late January 2016 through late February 2016
o Document: Late January 2016 through late February 2016
o Review: February 2016 through March 2016

Motion Saving and Loading

This step involved being able to save and load motion files from the motion library or the user’s
computer.

 Subtasks: serialize motion metadata, serialize position state, serialize mapping of bands
to position states (serialize a position snapshot), serialize mapping of times to position
snapshots, deserialize metadata, deserialize position state, deserialize position snap-
shot, deserialize mapping of times to position snapshots

 Dependencies: Recording

 Steps:
o Design: February 2016 through mid-February 2016
o Build: Mid-February 2016 through Early March 2016
o Test: March 2016 through late March 2016
o Document: March 2016 through late-March 2016
o Review: March 2016 through April 2016

58

Visualization

This step involved being able to review a motion performed using a 3D human model in playback
and editing modes.

 Subtasks: create human model, export model, load extra data from Blender model, load
model into software, configure OpenGL, configure nodes to receive world orientation
updates while staying attached to parent

 Dependencies: User Interface Development

 Steps:
o Design: February 2016
o Build: February 2016 through March 2016
o Test: March 2016
o Document: early March 2016
o Review: late March 2016

Playback

This involves being able to play a collected motion and trigger seeing the motion in the visualiza-
tion and sending appropriate error messages to each of the bands.

 Subtasks: determine desired snapshot, compare desired snapshot with current position
to determine error, serialize error message, send error message, signal playback start,
signal playback stop

 Dependencies: Haptic Feedback Scheme Development, Recording, Position Determina-
tion, Wi-Fi Communications

 Steps:
o Design: January 2016 through late January 2016
o Build: Late January 2016 through mid-February 2016
o Test: Mid-February 2016 through March 2016
o Document: Mid-February 2016 through late March 2016
o Review: Late February 2016 through March 2016

Calibration

This involves calibrating the accelerometer/gyroscope sensors themselves so their filtering algo-
rithm generates stable, non-drifting orientation measurements, defining coordinate frame transfor-
mations from the sensor axes to the visualization model axes, and implementing the pose-matching cali-
bration algorithm to align orientation updates based on fixed rotational offsets.

 Subtasks: calibrate MPU6050 sensors, calculate coordinate frame transformations from
sensor axes to model axes, develop pose-matching math

 Dependencies: Recording

 Steps:
o Design: December 2015
o Build: February 2016
o Test: March 2016
o Document: March 2016
o Review: late March 2016

59

Motion Library

This involves saving and loading files to a motion library and allowing users to easily interface with
the library.

 Subtasks: setup motion library directory, design interface, implement interface, connect
to relevant application windows, implement search bar

 Dependencies: Motion Saving and Loading

 Steps:
o Design: Late February 2016
o Build: March 2016
o Test: Late March 2016
o Document: March 2016
o Review: Late March 2016

Edit Motion

This involves allowing users to crop their motion and edit the motion metadata, including name,
description, keywords, and save location.

 Subtasks: add buttons, re-implement the new motion window for editing, implement
crop by interfacing with the editingController and WAGFile

 Dependencies: Recording, Motion Saving and Loading

 Steps:
o Design: Mid-February 2016
o Build: March 2016
o Test: Late March 2016 through Early April 2016
o Document: Early April 2016
o Review: Mid-April 2016

Software Voice Control Integration

This task involves configuring the software to parse the voice control messages and trigger cali-
bration or start and stop playback or recording.

 Subtasks: send voice control data to computer, parse voice control messages sent to ap-
plication, voice control trigger computer action

 Dependencies: Hardware Voice Control, Wi-Fi integration

 Steps:
o Design: February 2016 through mid-February 2016
o Build: Mid-February 2016 through late February 2016
o Test: Mid-February 2016 through mid-March 2016
o Document: Late February 2016 through late March 2016
o Review: March 2016 through late March 2016

Software Low Battery Notification

This involves getting low battery signals from the wearable bands and displaying and removing
low battery notifications from the GUI.

 Subtasks: low battery message parsing, software application notification on low battery

 Dependencies: Hardware Low Battery Detection, Wi-Fi integration,

 Steps:
o Design: Mid-January 2016 through late January 2016

60

o Build: Late January 2016 through February 2016
o Test: February 2016 through mid-February 2016
o Document: February 2016 through late February 2016
o Review: Mid-February 2016 through March 2016

61

Appendix 2 – Software Core Classes and Functionality

Since a provisional patent was filed partially based on the software developed for this project, the
full software for replication was withheld from this report. This includes both the software for the embed-
ded hardware (band hardware including the Wi-Fi chip, the Teensy 3.2 and the ATMega328P) and the C++
code to run the Qt application on the user’s computer. This appendix includes tables outlining classes and
their functionality, for both the software application and the embedded software.

Table 10 - Core Software Classes and Functionality

Class Name Description Fields & Methods

WifiManager Handles all communications with
hardware bands

Fields:
HashMap<BandType, socket> socketMap

Methods:
void sendMessageToBand(BandType destina-
tionBand, BandMessage msg)
void initiateConnection(QList<BandType> band-
sToConnect)
void sendRawDataToBand(BandType destina-
tionBand, QByteArray data)

Signals:
void dataAvailable(BandType recvdFrom, Band-
Message data, QElapsedTimer timestamp)

BandMessage Class for parsing and serializing
data for Wi-Fi transmission

Fields:
MessageType msgType
QByteArray msgData

Methods:
BandMessage(MessageType, QByteArray
msgData)
BandMessage()
void parseFromByteArray(QByteArray recvd-
Packet) QByteArray getSerializedMessage()

PositionSnapshot Contains position information for
a given time for multiple bands in
a suit
Represents the user’s full position
at a given time

Fields:
map<BandType, AbsState> positions

Methods:
void addMapping(BandType, AbsState)
QSet<BandType> getRecordedBands()
QHash<BandType, AbsState> getSnapshot()

62

Class Name Description Fields & Methods

WAGFile Contains information about a sin-
gle motion recording.

Fields:
map<int, PositionSnapshot> positions
QString name
QString description
QString author
QVector<QString> tags

Methods:
int getLastFrameNum()
PositionSnapshot getSnapshot(int frame-
Number)
QHash<int, PositionSnapshot> getSnap-
shotsInFrameRange(int startFrame, int
endFrame)

AbsPose (abstract) Maintains calibration and can re-
turn an AbsState object repre-
senting the pose of the band at
the current time

Fields:
AbsState current
AbsState calibration

Methods:
void calibrate(AbsState calibrationPose)
AbsError error(AbsState desiredPose)
void update(AbsState newPosition)

IError (interface) Defines functions for error in a
band (difference between two
states)

Methods:
QByteArray serialize()
bool withinTolerance(int tolerance)

AbsState (abstract class) Position for a band
Currently, only implementation is
quaternion

AbsBand (abstract) Class for bands
3 subclasses (Arm, Shoulder,
Chest)
Responsible for processing mes-
sages sent to the application and
for determining messages to send
during playback
Each Band class communicates
with its hardware counterpart

Fields:
BandType typeOfBand
bool connected
AbsPose pose

Methods:
void updateState(AbsState, stateTime)
bool moveTo(AbsState)
void handleMessage(messageTime, BandMes-
sage)
void sendIfConnected(BandMessage)

Signals:
Void sendMessage(BandType, BandMessage)

63

Class Name Description Fields & Methods

Suit Keeps track of a single set of
Bands
Serves as interface between
bands and the rest of the applica-
tion

Fields:
QHash<BandType, AbsBand> bands

Methods:
void startOrStopMode(StartOrStopType)
AbsBand getBand(BandType)
void processNewPose(AbsState pose,
BandType, int msgTime)
void playSnapshot(PositionSnapshot)

Signals:
void positionSnapshotReady(int msgTime, Posi-
tionSnapshot)
void voiceControlCommandReady(StartOrStop-
Type)
void bandHasLowBattery(BandType)
void positionMet()

PlaybackController Handles Playback mode. Main-
tains playback settings and sends
playback signals to the Suit class

Fields:
bool playing
bool suitActive
bool stepThroughMode
float framerate
int currentFrame
int endFramePointer
int beginningFramePointer
Suit suitObj

Methods:
void togglePlay()
void setActiveMotion(WAGFile)
void updateSpeed(int newSpeed)
void positionMet()
void changePlaybackMode(bool isStepThrough)
void toggleSuitActive()

Signals:
void frameChanged(int newFrame)
void goToSnapshot(PositionSnapshot)

64

Class Name Description Fields & Methods

EditingController Handles Edit mode settings and
user input
Updates suit visualization window
for reviewing recorded motion
Issues signals to update GUI ele-
ments

Fields:
int beginningFramePointer
int endFramePointer
int currentFrame
WAGFile activeMotion

Methods:
void setActiveMotion(WAGFile)
WAGFile cropMotion(int startFrame, int
endFrame)
void togglePlay()

Signals:
void goToSnapshot()

RecordingController Handles Record mode

Fields:
bool voiceControlEnabled
WAGFile activeMotion

Methods:
RecordingController(Suit)
void startRecording()
Motion stopRecording()
void setActiveMotion(WAGFile)
void addSnapshotToMotion(int snapshotTime,
PositionSnapshot)
void handleVoiceControlCommand(StartOrStop-
Type)

Model Stores motion simulation states Methods:
void updatePose(PositionSnapshot)

ModelLoader Loads the data needed to con-
struct the motion simulation
model

Methods:
Model* load()

GLWidget Draws and displays the motion
visualization

Methods:
void initializeGL()
void paintGL()
void resizeGL(int,int)

ModelGL Stores visualization meshes and
coloring/lighting data

Methods:
void updatePose(QHash<QString,NodeState>)

Signals:
void modelGLChanged()

65

Class Name Description Fields & Methods

ModelGLLoader Reads and parses the human
model object files, loading into
memory

Methods:
bool Load(QString,PathType)
ModelGL* toModel()

enum BandType List of possible band types Types:
leftLowerArmBand
rightLowerArmBand
leftUpperArmBand
rightUpperArmBand
leftShoulderBand
rightShoulderBand
chestBand

Table 11 describes the basic breakdown of classes within the embedded hardware.

Table 11 – Core classes and functionality of embedded hardware

Class Name Description Fields & Methods

WifiStateMachine Contains all the ESP8266 code

Fields:
char recordingMsg[11]
char playbackMsg[11]
Methods:
void readTeensySerialSendPkt(boolean
printStuff)
boolean listenForSpecificPacket(char
specificPacket, boolean printInfo)

WiFiMsgTypes
Contains the definitions of the Wi-
Fi message types

Fields:
typedef enum MessageType

pfodESP8266WiFi
Contains non-blocking implemen-
tation of ESP8266 Wi-Fi client [45]

Methods:
WiFiClient.write(...)
WiFiClient.isSendWaiting()
pfodESP8266BufferedClient
pfodESP8266BufferedClient()
pfodESP8266BufferedClient.connect(WiFiCli-
ent*)
pfodESP8266BufferedClient.write(..)
pfodESP8266BufferedClient.isSendWaiting()
pfodESP8266BufferedClient.flush()
pfodESP8266BufferedClient.setDebug-
Stream(Stream* debugOut)

BatteryMonitor
Contains the code to check on the
low battery circuitry

Fields:
NUM_LOW_BATT_CYCLES
LOW_BATT_PIN_ACTIVE_LOW
Methods:
BatteryMonitor()
void initLowBatteryInfo()
void checkBattery()
int hasLowBat()

66

Class Name Description Fields & Methods

ESP8266Comms
Contains the code within the
Teensy to enable communications
with the ESP8266

Fields:
uint8_t msgToESP8266[12]
Methods:
void ESP8266Comms()
void zeroErrorCalculations()
void setCommand(char cmd)
void sendMsgToESP8266(char cmd)

I2Cdev Contains the I2C library code [46]
Method:
Wire.begin()

MPU6050
Contains the I2C development for
the MPU6050 [46]

Methods:
void initialize()
void dmpInitialize()
int testConnection()
void getFIFOBytes(uint8_t buffer, int pack-
etSize)

MPU6050WAGWrapper
Contains the code to abstract the
MPU6050 interface for the WAG
Band

Methods:
MPU6050WAGWrapper(uint8_t bandNum)
void extractMPU6050Vals(uint8_t* packet)
void loadAccelGyroOffsets(int xAccel, int yAc-
cel, int zAccel, int xCyro, int yGyro, int zGyro)

VibrationPattern
Contains the code necessary to
control the motors from the
Teensy 3.2

Methods:
void performMotorCalculationsAndRunMo-
tors()
void writeMotorSpeeds(int* motorSpeeds, int
nAngles)
void stopAllMotors()

WAGBandCommon
Contains global definitions of
shared information such as UARTs

Fields:
ESP8266_SERIAL
DEBUG_SERIAL

WAGBandTeensyCode
Contains the code to connect all
embedded hardware with a WAG
Band

Methods:
boolean readESP8266SerialSendPkt(boolean
printStuff)
void loop()

WAGBand-
ChestPieceTeensyCode

Contains the code to enable all
embedded hardware within the
chest piece

Methods:
void listenToArduino()
void enableVoiceControl()
void loop()

easyVR_arduino_simple

Contains all the code running on
the ATMega328 within the chest
piece (based on the EasyVR code
base [47])

Methods:
void checkMonitorInput()
void loop()

67

Appendix 3 – Full Bill of Materials for Project

This appendix contains a listing of materials for each band and what would be required to build
another band.

WAG Band

The full bill of materials is seen in Table 12. This shows the part along with the manufacturer part
number, the cost, quantity on the board and the cost for the component(s).

Table 12 - Bill of materials for WAG Band

Part Manufacturer number Quantity Cost per Cost total

Panasonic 1000µF Capacitor EEU-FR1A102L 1 $0.19 $0.19

MPU6050 Breakout board - 1 $3.50 $3.50

Teensy 3.2 - 1 $20.00 $20.00

1kOhm (SM) ERJ-U02F1001X 3 $0.01 $0.04

10kOhm (SM) CRCW120610K0FKEAHP 1 $0.10 $0.10

1uF capacitor (SM) 0805ZC105KAT2A 2 $0.01 $0.02

TLV1117 3.3V regulator TLV1117LV33DCYR 1 $0.52 $0.52

NPN BJT (SM) MMBT3904LT1G 2 $0.01 $0.02

N-Channel MOSFET (SM) BSS138LT1G 6 $0.24 $1.46

10kOhm potentiometer CB10LV103M 1 $0.20 $0.20

5mm Red LED - 1 $0.20 $0.20

5mm Yellow LED - 1 $0.20 $0.20

5mm Green LED - 1 $0.20 $0.20

Female 40 pin header 0.1" spacing - 2 $0.40 $0.80

LM358 (SM) LM358DR 1 $0.10 $0.10

30kOhm (SM) CRCW120630K0FKEA 2 $0.01 $0.01

ESP8266 Wi-Fi Board - 1 $4.00 $4.00

PCB - 1 $4.00 $4.00

SPDT power switch MS12ASW13 1 $1.79 $1.79

JST-PH connector for battery and charger (female) S2B-PH-K-S(LF)(SN) 2 $0.17 $0.34

Motor crimp connectors SXH-002T-P0.6 12 $0.10 $1.20

Stranded wire for motors - 1 $1.50 $1.50

JST-PH connector for battery and charger (male) PHR-2 2 $0.10 $0.20

Wire for battery - 1 $0.30 $0.30

Battery 3.7V Li-Po T1000.1S.20 1 $2.60 $2.60

Motor connector (male) XHP-12 1 $0.24 $0.24

Motor (3V) 10x2mm Polulu 1636 6 $3.49 $20.94

Motor connector (female) S12B-XH-A(LF)(SN) 1 $0.68 $0.68

3D Printed Case and motor mounts - 1 $4.00 $4.00

 Total cost per band: $73.86

http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=74R3403&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=51W2916&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=68R3003&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=96M1308&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=48T4644&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=83H7337&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=83H6430&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=16R3920&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=34K7599&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=42K4978&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=11X3335&storeId=10194

68

WAG Chestpiece

The full bill of materials is seen in Table 13. This shows the part along with the manufacturer part
number, the cost, quantity on the board and the cost for the component(s).

Table 13 - Bill of materials for WAG Chestpiece

Part Manufacturer number Quantity Cost per Cost total

Panasonic 1000µF Capacitor EEU-FR1A102L 1 $0.19 $0.19

MPU6050 Breakout board - 1 $3.50 $3.50

Teensy 3.2 - 1 $20.00 $20.00

1kOhm (SM) ERJ-U02F1001X 3 $0.01 $0.04

10kOhm (SM) CRCW120610K0FKEAHP 1 $0.10 $0.10

1uF capacitor (SM) 0805ZC105KAT2A 2 $0.01 $0.02

TLV1117 3.3V regulator TLV1117LV33DCYR 1 $0.52 $0.52

NPN BJT (SM) MMBT3904LT1G 2 $0.01 $0.02

10kOhm potentiometer CB10LV103M 1 $0.20 $0.20

Red LED - 1 $0.20 $0.20

Yellow LED - 1 $0.20 $0.20

Green LED - 1 $0.20 $0.20

Female 40 pin header 0.1" spacing - 3 $0.40 $1.20

LM358 (SM) LM358DR 1 $0.10 $0.10

30kOhm (SM) CRCW120630K0FKEA 2 $0.01 $0.01

ESP8266 Wi-Fi Board - 1 $4.00 $4.00

PCB - 1 $5.00 $5.00

SPDT power switch MS12ASW13 1 $1.79 $1.79

JST-PH connector for battery and charger
(female)

S2B-PH-K-S(LF)(SN) 2 $0.17 $0.34

JST-PH connector for battery and charger
(male)

PHR-2 2 $0.10 $0.20

Wire for battery - 1 $0.30 $0.30

Battery 3.7V Li-Po T1000.1S.20 1 $2.60 $2.60

EasyVR3.0 Speech Recognition Module COM-13316 1 $49.95 $49.95

ATMega328-PU (with internal 8MHz oscilla-
tor bootloader)

ATMEGA328-PU-ND 1 $3.38 $3.38

DIP Socket 28 position ED3050-5-ND 1 $0.33 $0.33

3D Printed Case - 1 $4.00 $4.00

Chest strap - 1 $8.00 $8.00

 Total cost $106.40

http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=74R3403&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=51W2916&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=68R3003&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=96M1308&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=48T4644&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=83H7337&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=16R3920&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=34K7599&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=42K4978&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=11X3335&storeId=10194
https://www.digikey.com/product-detail/en/atmel/ATMEGA328-PU/ATMEGA328-PU-ND/2271026
https://www.digikey.com/product-detail/en/on-shore-technology-inc/ED281DT/ED3050-5-ND/4147600

69

Appendix 4 – Assembly & Construction

In Table 12 and Table 13, the full listings of parts required for a WAG Band and WAG Chestpiece
are detailed and various manufacturer part numbers are included where applicable. These parts could be
ordered either directly from the manufacturer or from a distributor. The part that is not detailed there is
the PCB board and schematic files. This appendix describes these files and the process of constructing a
band. Each PCB was designed in EAGLE 7.5.0 Light produced by CadSoft. EAGLE is a schematic capture
(design) and PCB layout software. The Light version of EAGLE is a limited feature free version of the pro-
gram (with one of the main restrictions being the size of PCB board of 100mmx80mm and the number of
layers of the board to only top and bottom layer routing). The free version was fine for project as the
board was simple with only a few components needing to share space. One challenge was the spacing of
all the through-hole modules (ESP8266, Teensy 3.2, MPU6050 etc.) which required larger clearances than
using surface mount parts only. To layout the board, a number of virtual “parts” needed to be created.
These “parts” define the specific physical footprint of a component so the designer knows how to properly
layout the board. For a through-hole component such as a resistor with metal leads, this package is usually
two holes with some spacing between them. For more advanced surface mount components these pack-
ages can have much smaller spacing between the pads (metal rectangles) where the part is soldered to.
With the plethora of components available, each one can have a unique footprint. To aid in the design
process, EAGLE includes a number of common components in virtual form in libraries. For this project a
number of the pieces were specialized and required custom virtual parts to be created (for schematics
and for the board layout) for objects such as the potentiometer for the low battery threshold, the
EasyVR3.0 module, the motor controller MOSFETs, and the motor JST connector. The remainder of this
appendix covers the schematics, PCBs, band construction and assembly.

70

WAG Band: Schematics and PCB design

The full schematic for the WAG Band can be seen in Figure 36. The whole schematic is broken
down into smaller subsections in the following sections.

Figure 36. WAG Band schematic

The full board layout can be seen in Figure 37.

71

Figure 37. Board design for WAG Band

The final PCB for the WAG Band can be seen in Figure 38.

Figure 38. Final PCB for WAG Band

An intermediate step can be seen in Figure 39. This shows where all of the larger components
would go as well.

Figure 39. Final WAG Band PCB with surface mount components and female headers

72

The populated final WAG Band PCB can be seen in Figure 40. This shows the various modules

placed in the female headers from Figure 39.

Figure 40. Final PCB with components for WAG Band

Teensy 3.2 Microcontroller and MPU6050

For this part of the schematic, the only important part is shown in Figure 41. The main portion of
the image shows the Teensy 3.2 schematic symbol with nets going to LOW_BATT (battery monitoring
circuitry), ESP_GPIO2 (GPIO2 pin on the ESP8266), ESP_GPIO0 (GPIO0 pin on the ESP8266), CH_PD (CH_PD
pin on the ESP8266), ESP_RX (the ESP8266 RX UART pin), ESP_TX (the ESP8266 TX UART pin), Q1, Q2, Q3,
Q4, Q5 (all the 6 motor MOSFET gates) and the V_BAT (battery voltage input). There also exist a few
unlabeled connections going to a MPU6050 part in the image. These lines are the interrupt line (on Teensy
pin 17) and the I2C connection lines (Teensy Pins 19 and 18) to the I2C pins on the MPU6050 header JP1
(SCL and SDA). On the actual PCB, both the MPU6050 and Teensy 3.2 are held in place in 0.1” spacing
female through-hole headers. These aid in debugging and allow for modularity where components can be
easily swapped out in case of failure.

Figure 41. WAG Band microcontroller schematic

73

This part of the final PCB can be seen in Figure 42. This shows the 14 pin female headers for the
Teensy in addition to the 8 pin vertical header for the MPU6050. Below the MPU6050 are the connections
for the charger and the battery in addition to the voltage regulator. Beneath the Teensy 3.2 is the low
battery detection circuitry including the two BJT transistors and an LM358 op-amp.

Figure 42. Microcontroller portion of final PCB

ESP8266 Wi-Fi Chip

The schematic for the ESP8266 Wi-Fi module can be seen in Figure 43. This shows the ESP_GPIO2
(GPIO2 pin on the ESP8266), ESP_GPIO0 (GPIO0 pin on the ESP8266), CH_PD (used to pull the module out
of sleep mode), ESP_RX (the ESP8266 RX UART pin) and ESP_TX (the ESP8266 TX UART pin). Additionally
the 3V3 line is connected to the VCC and RST connections (and CH_PD through a pull-up resistor). This
3V3 line comes from the regulated 3.3V power provided by the onboard regulator.

Figure 43. WAG Band ESP8266 schematic

The 1000µF capacitor shown in the top of Figure 43 was originally a surface mount capacitor to
stabilize the operation of the ESP8266 module, however it was found this did not solve the issue. Instead
a 1000µF “backpack” capacitor soldered directly onto the VCC and GND pins of the ESP8266 provided the
required stability (see Figure 44). Similarly to the Teensy 3.2 and MPU6050, the ESP8266 symbol U$2 in
Figure 43 is represented on the PCB with two 4 pin 0.1” spacing female through-hole headers. This allows
for easy programming and swapping of ESP8266 chips. This also provides the required spacing between
the PCB and the ESP8266 for the “backpack” capacitor.

74

Figure 44. ESP8266 with “backpack” capacitor for stability

The physical representation of the ESP8266 socket can be seen in Figure 45. The PCB also contains
the surface mount capacitor pads, but this was replaced with the “backpack” capacitor.

Figure 45. ESP8266 Socket on final WAG Band PCB

To make programming of the ESP8266 module easier (after electing to use a custom Arduino-core
developed by the ESP8266 community), a simple ESP8266 breakout board was used. This can be seen in
schematic form in Figure 46.

Figure 46. Schematic for simple ESP8266 programming breakout

75

The resulting board layout can be seen in Figure 47. This breakout board includes the ESP8266
headers on the right side and brings the UART pins out to an FTDI header on the far left. The switch in the
upper right corner allows the module to be placed in normal operating mode or programming mode (for
loading code through the FTDI header). Using 0.1” male headers, two other 5 pin connections allow for a
selectable voltage input to the ESP8266. An on board voltage regulator also handles voltage filtering. Ad-
ditionally since the ESP8266 is a 3.3V system, an external level shifter is included on the board to translate
the voltage thresholds between the 5V and 3.3V UARTs of the FTDI cable and the ESP8266. A simple
pushbutton switch is also included to reset the module. Lastly 4 pin headers on the top and bottom of
Figure 47 are included to allow the device to be slotted into a breadboard for ease of debugging.

Figure 47. PCB layout for ESP8266 breakout board

The final product of the ESP8266 breakout board can be seen in Figure 48.

Figure 48. Finished ESP8266 breakout board

Motor Controllers

For this portion of the WAG Band, the schematic is shown in Figure 49. Each one of the devices
named Q1 through Q6 is an n-channel MOSFET with the source connected to ground and the drain con-
nected to one lead of the motor (through the MOTOR_IN connector). The gate is connected to a wire
which leads back to a Teensy PWM pin. The motors connect to the MOTOR_IN connector through a JST-
XH 12-pin connector with one lead going to a connection to 3.3V regulated and the other to the drain of
a MOSFET.

76

Figure 49. WAG Band motor controller schematic

The physical representation of these MOSFETs on the PCB can be seen in Figure 50. The JST-XH
connector was chosen to allow the motors to be disconnected from the PCB if necessary (to replace a
component or battery). With the ability to disconnect the motors from the PCB, other circuit components
such as LEDs could be substituted for testing the WAG Bands.

Figure 50. MOSFET motor controllers on the final PCB

Low Battery Circuit

The circuit schematic for the low-battery schematic can be seen below in Figure 51. The top por-
tion of this circuit is a surface mount LM358 single supply op-amp to take in the voltage levels of the
potentiometer and the LED from the detection circuit and provide a single digital signal indicating if the
battery voltage supplied through (V_BAT) has dropped below a certain threshold. This threshold is set
manually by adjusting the potentiometer (in a voltage divider with the 30kΩ resistor). The BJTs used in
the detection circuit are biased at by the potentiometer voltage and conduct when this voltage changes
as the voltage drops. This design is based off the original design by Swagatam Majumdar which was for
9V batteries [48], but was modified for 3.7V battery systems and converted into a digital signal.

77

Figure 51. WAG Band low battery schematic

The final version of this battery monitor circuit can be seen in Figure 52. This shows the LM358
along with the required NPN BJT transistors. The potentiometer can also be seen with the LED for display-
ing the LOW battery notification. This information is also sent over Wi-Fi to the computer application.

Figure 52. WAG Band PCB low battery circuit

Power Distribution

The power distribution subsystem can be seen in the schematic snippet in Figure 53. The biggest
part of this circuit is the 3.3V voltage regulator (TLV1117). The connections for powering the rest of the
board (the V_BAT and 3V3 connections) can also be seen here. The CHGR and BAT connections are to JST-
PH connectors on the PCB. The U$4 module is a SPDT power switch which enables charging the battery
when the band is not in use. On the 3V3 power side, there is a green PWR LED to indicate the band is
powered on.

78

Figure 53. WAG Band power distribution schematic

The final PCB result of this power distribution module can be seen in Figure 54. This shows the
SPDT switch along with the LEDs on the bottom of the image. The voltage regulator and the JST-PH con-
nectors are on the top of the image.

Figure 54. WAG Band power distribution module PCB

Motor Connector

For this part of the hardware, the motors were soldered to stranded wires which were fed into a
male JST-XH 12-pin connector. They were then placed into 3D printed motor housings and placed on a
nylon rope outside of the band. This can be seen in Figure 55. Heat shrink was used on the motor wires to
reduce the chance of snapping a motor lead. The male JST-XH connector was slotted into the PCB within
the band. Fastener straps were also fed through the bottom of the 3D printed case to attach the band
casing.

79

Figure 55. WAG Band motors outside 3D printed case

WAG Band: Programming and Construction

With an understanding of the hardware behind the WAG Band, each of the bands was constructed
with all the surface mount components soldered first. Next the boards were populated with the various
through-hole components (potentiometer, LEDs, power switch, JST connectors). Once the boards were
completed, these were tested for complete functionality and were populated with the various modules
(Teensy, MPU6050, ESP8266 etc.).

After testing the PCBs and functionality of the bands, the physical construction of the bands with
additional Fastener and harnesses was completed. Each band casing was 3D printed in PLA. The casings
were designed to house the battery and custom PCB. The casing attaches to the user with a hook and loop
strap and an elastic band is used to hold the ring of ERVs. 5 of each band’s ERVs was glued into a 3D
printed slider which was attached to the elastic band so that the user could adjust the ERVs’ locations.
The 6th ERV’s was located on the underside of the main band casing. Each ERV had leads of appropriate
length soldered on the connector plug for attachment to the PCB. The lid of the band casing was designed
to securely hold the PCB in place inside of the band so that the IMU would not move relative to the limb
it was tracking.

Programming of the Teensy 3.2 was done via the USB port on the device and code was written in

the Arduino 1.6.5 IDE. Code was also stored on a private Github repository for version control. The
ESP8266 module was programmed using a special plugin for the Arduino 1.6.5 IDE that enabled program-
ming of the module through the breakout board (and the ESP8266 community Arduino-core). This was
programmed with the use of an FTDI cable and the ESP8266 breakout board seen in Figure 48. Once the
ESP8266 was programmed, the board was slotted into the band and the band hardware was complete.

WAG Chestpiece: Schematics and PCB design

The schematic of the WAG Chestpiece can be seen in Figure 56. The biggest difference from the
normal WAG Band schematic is the addition of an ATMega328P (the chip behind the popular Arduino
Uno) and an EasyVR3.0 module and the removal of the motor MOSFETs.

80

Figure 56. WAG Chestpiece schematic

Since the chest piece shares similarities to the WAG Band, see the WAG Band: Schematics and
PCB design section for information about the Teensy 3.2, MPU6050, low battery detection circuitry,
ESP8266 or the power distribution circuitry. The resulting board layout for the WAG Chestpiece can be
seen in Figure 57.

Figure 57. WAG Chestpiece board layout

81

The PCB produced from this layout, without the microcontroller and speech recognition modules,

can be seen in Figure 58.

Figure 58. Finished PCB without microcontroller and speech recognition modules inserted

The final populated PCB with all modules installed can be seen in Figure 59. This also includes a
quarter for size reference. This board is then installed in the harness for the chest as seen in Figure 14.

82

Figure 59. WAG Chestpiece PCB with all components on board

Secondary Microcontroller: ATMega328P

One difference was the ATMega328P chip. This circuitry can be seen in Figure 60. This chip was
used because of the low cost associated with the microcontroller (around ~$4). Additionally, this chip is
easily programmable using the Arduino IDE and bootloader. While Figure 60 indicates the presence of a
16MHz oscillator crystal, this was used to burn the 8MHz internal oscillator Arduino bootloader into the
chip. It was not used on the final chest piece PCB.

The main connections are the UART connections (RXD_ARD and TXD_ARD) to the Teensy’s second
UART. There was an included interrupt line from the Teensy to the Arduino (INT_FROM_TNSY) to indicate
data was ready, although this was not needed in the final version of the hardware and was not used. The
other connection was another UART link to the EasyVR3.0 module (on lines EASYVR_TX/RX performed
with a software defined UART called SoftSerial in the Arduino Libraries). There is also a !RST (active low)
rest line coming in from the Teensy to reset the Arduino). Lastly, is an interrupt line to the Teensy
(INT_TO_TNSY) which is used to tell the Teensy that voice command data has been transferred from the
Arduino UART to the Teensy.

83

Figure 60. Chest piece ATMega328 schematic

The physical representation of the ATMega328 can be seen in Figure 61. This shows a 28 pin DIP
socket used to include the IC. The reason behind this was the ability to easily remove and reprogram the
module (using an Arduino Uno board) for the final system.

Figure 61. ATMega328 interface on chest piece PCB

Voice recognition Module: EasyVR3.0

The EasyVR3.0 module schematic can be seen in Figure 62. The main connections are the UART
connection to the ATMega328 (see Figure 60). The only other connections needed are 3.3V power, GND
and an active-low reset signal.

84

Figure 62. EasyVR3.0 interface schematic

The physical representation of this part of the chest piece PCB can be seen in Figure 63. The actual
module sits on top of this and uses the female 0.1” spacing headers. Figure 63 also features a few com-
ponents from the low-battery circuit.

Figure 63. Chest piece EasyVR3.0 interface

WAG Chestpiece: Programming and Construction

The chest piece went through the same construction as described in the WAG Band: Programming
and Construction section, although the EasyVR module had to be broken out and tested separately before
being included in the final design.

The physical box and mounting of the chest piece to the harness around the user’s torso was
completed in early April. The harness used is a repurposed GoPro chest harness. The shoulder bands and
chest band were attached to the harness in their appropriate locations. The harness is adjustable and
form fitting so it is perfect for holding the bands in place on the user.

Similar to the WAG Band: Programming and Construction section, programming of the Teensy 3.2
was done via the USB port on the device in the Arduino 1.6.5 IDE. The ATMega328P was also programmed
through the 1.6.5 IDE, however the DIP chip was placed on a breadboard rather than a standard Arduino
Uno breakout board. This was done because a 3V bootloader was burned into the device that relies on

85

the internal 8MHz oscillator rather than the traditional external 16MHz oscillator crystal. This “bread-
board” Arduino setup is described on the Arduino CC website. The ESP8266 chip was also programmed
using a 5V FTDI cable and the ESP8266 breakout PCB.

After the Teensy, Arduino and ESP8266 were programmed, they were placed into their headers
on the board and the band was complete. The battery was placed in the chest piece below the PCB and a
protective layer was placed above that. The PCB was then slotted into the casing and the lid was replaced
on the top of the open case. Both the chest piece and the WAG Band case lids were painted with the
correct ON/OFF locations and the logo of the team. The bands could then be tested and connected with
the computer. For the chest piece this included verifying that the voice commands of “run,” “stop” and
“action” worked as they should.

Software Development

GUI

To meet the project requirements, a list of features and functions that the GUI would need was
made. After the list was complete, some preliminary designs were made using moqups.com. Designs were
implemented after gaining stakeholder approval. Qt creator was used to design the GUI using C/C++ be-
cause it is well documented and supported, and some team members had prior experience with it. Figure
65, Figure 66, Figure 67, and Figure 68 show the final GUI design next to the original moqups.com design.
The edit recording and playback recording windows were implemented first, followed by the settings and
save as overlay windows.

The hardest feature to implement was the double handled slider shown in Figure 64. Qt’s generic
slider object does not support two handles so the application used a custom SuperSlider class. The base
implementation was taken from a Stack Overflow answer and modified to meet the needs [49]. The final
result is a slider with two handles that cannot cross.

Figure 64. The double handled slider, used in editing and playback mode

Figure 65. Playback motion GUI. Qt Creator on the left, moqups on the right

86

Figure 66. Record/Edit motion GUI. Qt creator on the left, moqups on the right

Figure 67. Settings window. Qt Creator on the left, moqups on the right

Figure 68. Save as window. Qt Creator on the left, moqups on the right

87

Appendix 5 – Test Plans

Software Testing

Communications

Testing communications capabilities of the software took place in a few stages. The first was de-
veloping a basic server in within the application and using a TCP command line utility to connect and send
messages to the IP address and port number associated with the messages. The next step in testing was
to create a simple C program that would wait for data, and when received, would reverse the string, and
then send it back to the application. This was used to test basic communication capabilities, and that
messages were fired on certain button presses.

Message Processing

After significantly more application development, the application message handling and propaga-
tion was tested. To accomplish this, a C program was developed that simulates behavior of the physical
bands. This enabled testing of communications and application functionality before the physical bands
were complete. When the user pressed connect, record, or playback in the application, messages would
be sent to the C program. The program would then respond accordingly. In the case of starting recording
or playback, the program would send mock IMU data. Print statements embedded in the computer appli-
cation would then display how the information was processed and propagated through the application.
This confirmed that messages were being received, parsed, and saved properly. In playback mode, the C
program would print out the returned error data that would be converted to motor vibrations. The bytes
received by the mock band program could be examined to verify that this error was being calculated and
transmitted correctly.

Kinematics

The visualization and human model software classes include several methods that track the user’s
pose in three-dimensional space based on the relationships between the user’s limb orientations and the
model’s limb lengths. These relationships are referred to as the kinematics of the system. Unit tests were
created using QtTestLib to test the functionality of the kinematic models. These tests verified the func-
tionality of the operations implemented to track pose updates and error calculations. These unit tests
tested each method of the AbsState, AbsError, and AbsPose classes, and each of their subclasses (e.g.
QuatState, QuatPose, and QuatError). The test procedure included developing a series of test inputs and
expected outputs for each method, and evaluating that method with those inputs to verify that that
method’s output matches the expected output. This test procedure identified multiple errors and missed
edge cases in the software, which were then fixed. Also, with these test cases in place, any future updates
to the kinematics methods can be immediately comprehensively tested using the same core tests.

Hardware Testing

Testing of the hardware has been ongoing since early October. Since that time, subsystems such
as the communications Wi-Fi chips, IMU, feedback motor controllers and the low battery monitoring sys-
tem have been tested independently and verified. For each subsystem embedded C code was developed
for integrating the system with the Teensy 3.2 microcontroller. In mid-December, an initial run of PCBs
was created to integrate all of the subsystems in a single board. In early January, these boards were as-
sembled and tested using the subsystem code that was developed. Connections on the PCBs were also
verified to enable the functionality of each subsystem. To see the detailed testing process for each sub-
system see Table 14.

88

Table 14 - Subsystem testing for hardware

Hardware tested Subsystem Testing strategy

MPU6050
(Accelerometer
and gyroscope)

Sensors

Check connections to Teensy
Read position information from internal FIFO using Teensy
Send position information over Wi-Fi to computer and check data in-
tegrity

ESP8266 (Wi-Fi) Communications

Check connections to Teensy
Check received Wi-Fi packets for data integrity from computer appli-
cation
Receive accelerometer data from Teensy via UART
Send data received from computer to Teensy via UART
Connect to Wi-Fi access point and wait for computer
Check connect/reconnect to computer
Check current usage to be under 250mA

Low battery moni-
tor circuit

Power
distribution

Check connections to Teensy
Check can send interrupt to Teensy
Check can be set low battery threshold at varying voltage between
battery and 1V

Motor
controllers

Feedback

Check connections to Teensy
Check each motor can be driven with PWM signal with duty cycle
~0% to ~100%
Check motor vibration works correctly

3.3V Regulator
Power
distribution

Check connections to supply power to motors and ESP8266
Check dropout voltage below 3.3V input voltage

3.7V battery
Power
distribution

Check connections to Teensy and MPU6050
Check can be charged using external charger by changing power
switch

ESP8266 Testing

After changing to the custom Arduino Core for the ESP8266 Wi-Fi device, the stability of the chip
began to degrade. Occasionally the chip would crash or trigger a system reset as the watchdog timer (a
module designed to reset the board in case of a failure) would catch a failure. Various solutions were
proposed online, but the only solution that worked was a 1000µF capacitor on the back of the ESP8266
(see Figure 44). With the final code running on the ESP8266 it was found that the module draws around
80mA during normal operation and draws up to 120mA of current during sending of Wi-Fi packets. This
was checked with the power supply providing current to the board. The ESP8266 did emit small spikes in
current which were detected in the low battery monitoring circuitry, but this was accounted for by setting
the threshold a bit above the desired low-battery voltage setting.

To test the Wi-Fi speed of the ESP8266 and the computer, Wireshark, an open-source application
for measuring various types of wired and wireless network traffic, was used to capture and verify the
contents of messages between the computer and Wi-Fi chip. A capture of several packets from a single
band and the computer can be seen in Figure 69. The main body of the program shows TCP traffic between
192.168.1.205 (a band) and 192.168.1.203 (a laptop computer).

89

Figure 69. A capture of TCP packets during playback mode using Wireshark

By using Wireshark, an “IO Graph” of the difference in arrival times (to tell how quickly the packets
are being sent and received) can be constructed to give an idea of how quickly data is being transferred
in the system. This sort of plot is shown in Figure 70 for recording mode and Figure 71 for playback mode.
From visual inspection, the majority of the peaks in recording mode occur between 60 ms and 80 ms.

Figure 70. Plot of time differences between arrival times of packets for recording mode

90

Looking at Figure 70, the average arrival time is around 60ms between packets (meaning the fre-
quency is around 16.7Hz) for recording. For playback, the results of Figure 71 show that the average arrival
time for packets is about the same and is around 60ms or so on average. This means the frequency for
playback is around 16.7Hz.

Figure 71. Plot of time differences between arrival times of packets for playback mode

Teensy 3.2 Testing

Since the code inside the Teensy 3.2 and the ESP8266 is not included in this report (see Appendix
2 – Software Core Classes and Functionality), the testing is not covered as deeply. Testing results indicated
the Teensy 3.2 was able to successfully integrate floating point math to process error signals coming from
the computer, while running UART communications between the ESP8266 and the Teensy. The data trans-
fer rate between the ESP8266 and the Teensy (set at 115200 bits/second) was high enough to minimize
latency from reading the current motion position to sending this to the computer via Wi-Fi. The Teensy
3.2’s I2C libraries were also fast enough to read data from the MPU6050 at around 116 Hz as measured
within the loop of the Teensy code.

PCB Testing

After checking the power distribution of on the PCBs, it was found that the regulated 3.3 V rail
and been combined with the raw input voltage rail on all the boards. This necessesitated a design change
given the voltage tolerances on the ESP8266. The chest piece design also had the JST connections mirrored
onto the underside of the board and as such needed to be changed. Given these two problems, a second
round of PCBs was ordered that included the fixes for the voltage rails and the connector issue. This
second round of boards became the final boards used for the project. The second round of boards were
tested upon arrival and verified to fix the issues previously encountered on the first boards.

This second round of boards also included the ESP8266 breakout board (see Figure 47) that greatly
increased testing of the embedded code using the FTDI breakout. The code used the UART on the ESP8266

91

to print debug messages to the Arduino IDE for testing and verification of the Wi-Fi code. After fixing the
issues on the board, the operation of the PCBs was as expected.

Full System Testing

Full system testing of the system indicates that all the core functionality exists. Testing has indi-
cated the system captures motion during recording with minimal latency on the Intel Atom (with dedi-
cated Wi-Fi hardware). However, certain USB Wi-Fi dongles cause packet loss; dedicated Wi-Fi hardware
is preferable for optimal WAG System performance.

User tests include evaluating the performance of the software application and the set of bands
together. The user tests evaluate the full system to determine its effectiveness as a motion training tool
– particularly, to identify the effectiveness of real-time vibrational haptics as a teaching and training mech-
anism. This is evaluated by surveying test subjects to determine how well they felt that the system ad-
hered to these requirements. The test subjects evaluate the effectiveness of the WAG System for learning
new physical skills, in order to compare video-based learning methods with using both the haptic guidance
and the built-in motion visualization. The tester reports the effectiveness of the system for motion training
with just the visualization, and with the visualization and haptic feedback. The motion training effective-
ness tests also have a tester perform the same motion multiple times with haptic feedback to try to learn
that motion. The software measures improvements based on the magnitude of the angular errors of each
band over the course of the motion. The tests compare the haptic-driven motion learning to the same
procedure, except the tester only has access to the visualization as a control. These results are compared
to determine if the haptic feedback-based training shows significant improvements in motion training
compared to video or visualization-based training. These tests also evaluate the test subjects’ natural re-
actions to three primary vibration patterns – a localized impulse, a sequential rotation, and a superposi-
tion of the impulse and sequential patterns – in order to determine if users have natural reactions to these
impulses.

The following surveys are used to evaluate the intuitiveness of the WAG System software appli-
cation, and the functionality and the effectiveness of the WAG System as a physical training tool:

Survey 1: GUI Evaluation
Section 1: Task Intuition

This survey will ask you to complete a few tasks in the WAG System computer application,
and will ask you to rate the software's intuitiveness, and to provide open-ended feedback
on how you think we can improve the software. If you have any problems along the way,
please make note of it in the open-ended feedback section at the end!

1. Record a new motion. Then please rate how intuitive or unintuitive you found the software to
use. (1-5 scale, 1 being very unintuitive, 5 being very intuitive).

2. Next, crop the motion you just recorded. How intuitive was the software? (1-5 scale, 1 being very
unintuitive, 5 being very intuitive).

3. Now, play back the motion you just recorded. How intuitive was it to complete this action? (1-5
scale, 1 being very unintuitive, 5 being very intuitive).

Section 2: GUI Color Cues

This will evaluate whether the color cues used to encourage you to take a specific action
were effective.

1. Did you open the “Settings” window and connect/calibrate the bands before trying to record a
motion? (Yes/No/Other)

Section 3: Demographics

92

1. What is your gender? (Male/Female/Prefer not to answer/Other)
2. What is your age (in years)? (number)

Section 4: Final Thoughts

1. What other thoughts do you have regarding the usefulness and intuitiveness of the software ap-
plication? How do you think the software could be improved? Are there any features that you
think need to be added? (Open response)

Survey 2: WAG System Evaluation
Section 1: Feedback Patterns – Natural Reactions

In this section, the bands will provide different vibrational stimuli patterns to determine
the user's natural reactions. (it is unknown to the test subject that the first pattern is a
localized vibration impulse, the second pattern is a sequential rotational vibration pat-
tern, and that the third pattern is a superposition of feedback patterns #1 and #2)

1. Feedback Pattern #1 - Don't move in reaction - say out loud how you want to move as a response
to the vibration feedback. (Open response)

2. Feedback Pattern #2 - Don't move in reaction - say out loud how you want to move as a response
to the vibration feedback. (Open response)

3. Feedback Pattern #3 - Don't move in reaction - say out loud how you want to move as a response
to the vibration feedback. (Open response)

Section 2: Training Improvement

In this section, we will have you try to learn a motion by a) watching a visualization of the
motion with no feedback from the bands, and b) watching the visualization with feedback
from the bands.

1. How effective was solely watching the visualization as a teaching tool? (1-5 scale, 1 being very
ineffective, 5 being very effective)

2. How effective was visualization + vibration feedback as a teaching tool? (1-5 scale, 1 being less
effective than with only the visualization, 5 being more effective than with only the visualization)

Section 3: Demographics

1. What is your gender? (Male/Female/Prefer not to answer/Other)
2. What is your age (in years)? (number)

Section 4: Final Thoughts

1. What other thoughts or feedback do you have regarding vibration feedback as a motion training
tool? Do you have any suggestions for how to improve the vibration patterns in order to better
correct motion errors? Is the vibration feedback actually helpful? (Open response)

User Testing Results

 Most users found the user interface very intuitive. Figure 72, Figure 73, and Figure 74 show the
ratings for intuitiveness of main tasks within the software application, with 1 representing very unintuitive
and 5 representing very intuitive. Most responses for these primary tasks were either intuitive or very
intuitive.

93

Figure 72. Motion Recoridng Intuitiveness

Figure 73. Motion Editing Intuitiveness

Figure 74. Motion Playback Intuitiveness

94

However, all users failed to connect and calibrate the bands. The results of this are shown in Figure
75, with the single ‘Other selection’ indicating that they did not connect and calibrate the bands, plus an
additional comment.

Figure 75. Percentage of users that followed color cues to connect and calibrate bands

Seven out of eight users who responded to the vibrational feedback schemes said that the trans-
lational feedback scheme was intuitive. Most users took longer to recognize the rotational vibration
scheme, and only five out of eight interpreted the scheme to indicate that they should rotate their limb.
Of these five, the intuitive direction to rotate was inconsistent, with some users indicating that they should
move their arms with the vibration and others in the opposite direction of the vibration. When subjected
to the superimposed translational and rotational signals, only one user correctly interpreted the vibra-
tional signals. Three other users were able to perceive one signal and react to it. The remaining four users
indicated that it was clear that they were not correctly performing the motion, but that the vibration
scheme did not intuitively convey how to correctly perform the motion.

Users also compared the vibrational and visual components of the WAG System with solely the
visual component. Most users found that, in their initial trials, the vibration feedback was distracting.
Figure 76 shows how effective the visualization and vibration feedback is compared to solely visual feed-
back, with 1 representing significantly less effective, 3 being equally effective, 5 being significantly more
effective.

Figure 76. Visualization and vibration feedback effectiveness vs. only visualization

95

Appendix 6 – Initial Design Steps: Trade Study

This appendix contains a number of trade studies that were performed for different hardware
platforms available. These studies guided selection of a MCU and accelerometer/gyroscope during the
design phase of the project. Additionally, these studies helped to identify a number of key features to
focus on for the selection of the final hardware.

32-Bit MCU Comparison

Initially in the selection of a 32-bit MCU, several hardware options were compared using a scoring
matrix appropriate for that hardware. Each option was scored based on the features desired for the sys-
tem and the Teensy 3.2, powered by the MK20DX256, was selected as the final MCU for the system.

The listing of 32 bit MCUs can be seen in Table 16 and Table 15. Each MCU was ranked based on
a feature of the hardware and a grading scheme. The CPU speed categories were <=50MHz (1), 50-
100MHz (2) and >=100MHz (3). The RAM in each MCU was about the same and as such was not included.
The RAM is sufficient enough to run the small amount of software needed to interface to sensors over
SPI. The ADC resolution categories were 12-bit (1), 14-bit (2) and 16 bit (3). The I2C categories were based
on the number of I2C connections: 2 (1), 3 (2) and 6 (3). The UARTs section was based on the number of
UARTs on the board: 3 (1), 4 (2) and 6 (3). The ease of programming feature was scored on how easy the
software required to program the MCU would be to learn (based on previous experience with it).

The same sort of ranking: low (1), medium (2) and high (3) was used to rank the number of re-
sources available for the chip. This included online forum support, any reference designs or schematics,
datasheets available and other technical support. The breakout board cost metric is based on the cost of
the evaluation board that is available. The rating was high cost (1), medium cost (2) and low cost (3). The
MSP432 was the cheapest evaluation board at $12.99 for a functional board, but the Teensy 3.2 breakout
was close at only $20 per breakout. The extra features category was scored based on the usefulness of
other features of the chip. The Teensy 3.2 scored a 3 because it had all the features of the other MCUs
but had the smallest breakout, a touch sensor module and a USB debugger built into the board. The last
criteria for scoring was the chip cost. The grading was cost for 1 unit > $14 (1), $9-$14 (2) and < $9 (3). The
MK20DX256 (used in the Teensy 3.2) came up as the cheapest at only $7 per unit (without factoring in the
volume discount). The package areas were also included to show that the MK20DX256, while being the
best by the scoring, does not have the smallest footprint on the board. Despite this minor drawback, the
MK20DX256 scored the best on the matrix (as seen in Table 15).

96

Table 15 - Microcontroller trade study scoring matrix

Chip TI
F28M35H2

2C [50]

TI
MSP432P401

R [51]

STM32F411C

E [52]
STM32F205RGT

6 [53]

Atmel
AT32UC3C264

C [54]

MK20DX256
[55]

CPU Speed 3 1 2 3 2 2

RAM 2 2 2 2 2 3

ADC reso-
lution

1 2 1 1 1 3

I2C 3 2 2 2 1 1

UARTS 3 1 1 2 2 1

Ease of
program-

ming
1 1 2 1 1 3

Resources
available

1 2 2 2 2 3

Breakout
board cost

1 3 2 3 1 3

Extra fea-
tures

2 2 2 2 2 2

Chip Cost 1 3 2 2 2 3

Package
area (mm2)

144 256 49 100 81 100

Total
points from

column:
18 19 18 20 16 24

The purpose of the trade study was to determine the requirements for various hardware compo-

nents in a project design. For the study several key hardware features of the system were developed
based on the requirements and needs. These features ranged from power supply constraints to number
of SPI interfaces to programming interfaces. Soft features such as breakout board availability or ease of
programming were also included. A small list of appropriate microcontrollers was then constructed as
seen in Table 16 and each device was scored on specific features and functionalities as seen in Table 15.
Note that all microcontrollers in Table 16 have a temperature range of -45oC to 85oC and support USB
interfaces.

97

Table 16 - 32-Bit MCU comparison

Chip name

TI
F28M35H2

2C [56]

TI
MSP432P40

1R [57]

STM32F41

1CE [58]
STM32F205RGT

6 [59]

Atmel
AT32UC3C2

64C [60]

Freescale
MK20DX256
(used in Teensy

3.2) [61]

Company
Texas In-

struments

Texas Instru-
ments

STM STM Atmel Freescale

Family F28M3x MSP432X ARM ARM AVR UC3 K20

CPU
C28x, Cor-

tex-M3
Arm Cortex-

M4F
ARM-Cor-

tex-M4
ARM-Cortex-M3 32-bit AVR

ARM-Cortex-
M4

Clock Fre-
quency

150 MHz
100

48 MHz 100 MHz 120 MHz 66 MHz 96MHz

RAM KB 136 64 KB
128 KB,
512 KB
Flash

128 KB RAM,
1024 KB Flash

64 KB
Flash, 20 KB

SRAM

256 KB Flash,
64 KB SRAM

PWM Channels 24 - - - 14 12

ADC Resolution 12-bit 14 bit 12 bit 12 bit 12 bit 16 bit

ADC Channels 20 12,16,24 12 16 11 21

Number I2C 3 3,4,4 3, 5x I2S 3, 2x I2S 2, I2S also 2, I2S also

Number of
UARTs

6 3,3,4 3x USARTs
4x USARTs, 2x

UART
4 3

Number of SPIs 5 6,7,8 5 3 5 2

GPIO 64 48,64,84 36 51 45 40

Timers 4x 16bit
4x 16bit tim-
ers, 2x 32 bit

timers

6x 16bit
timers, 2x
32 bit tim-

ers

12x 16 bit tim-
ers, 2x 32 bit

timers
3 4

Power Rails
2.97V to

3.63V
1.6V to 3.7V

1.7V to
3.6V

1.7V to 3.6V
3.0V to 3.6V

or 4.5V to
5.5V

1.71V to 3.6V

Current draw
(min/max)

150MHz:
2mA/325
mA 100M
Hz: 2mA
295mA

850nA (Min)
LPM,

90uA/MHz *
48MHz

Current:
1.8uA LPM,
100uA*10
0MHz max

2.5uA LPM,
188uA*120MHz

48uA/MHz
* 66 MHz

(Min),512uA
/MHz * 66
MHz (Max)

39mA (all pe-
ripherals run-

ning)

Package
Type/Size

HTQFP
144

LQFP 100
16.2x16.2x1.

4mm

UFQFPN 48
7x7x0.55m

m

LQFP 64
10x10mm

QFN64_V
9x9mm

LQFP 64
10x10mm

DACs 6 0 2 2
1x 12 bit (2
channels)

1x 12 bit

Programming
option/Debug

JTAG emu-
lator

JTAG/Serial
Wire Debug

(SWD)

JTAG/Se-
rial Wire
Debug
(SWD)

JTAG JTAG USB OTG, JTAG

Other Features

IEEE-754
single-pre-

cision
floating

point

AES encryp-
tion, floating

point unit

RTC, 2.4
MSPS ADC

RTC

Floating
point unit,
1.5MSps

ADC

RTC module,
CAN controller,

touch sensor
module

98

Chip name

TI
F28M35H2

2C [56]

TI
MSP432P40

1R [57]

STM32F41

1CE [58]
STM32F205RGT

6 [59]

Atmel
AT32UC3C2

64C [60]

Freescale
MK20DX256
(used in Teensy

3.2) [61]

Cost each

$22 from
Arrow

[62]

$7 from TI

[63]

$7.35 each
from

AVNET

[64]

$13.08 each
from Digikey

[65]

$9.5 for
AT32UC3C2
64C-Z2UT

from ATMEL

$7 for
MK20DX256VL

H7-ND from
DigiKey

Breakouts
$185 from

TI [66]
$13 eval

board [67]

$22 [68] or

another
board for

$8 [69]

Simple Wi-Fi

board [70] or

$330 for full

eval board [71]

$330 eval

board [72]

$20 Teensy 3.2
Module

breakout [73]

Cons:

Have to
design RF
layout a

bit or copy
reference
diagram,

expensive
Breakout/
dev board

No DACs

Have to
learn the
new pro-
gramming
environ-

ment, have
to buy sep-
arate mod-

ules and
solder to-
gether for
eval board

Have to learn
programming
environment

Have to get
avr32pro-

gram
Have to

learn AVR32
Studio 2.6
Expensive
dev board

Cost of
breakout board

Pros:

Lots of re-
sources
from TI

and refer-
ence de-

signs

Very easy
eval board

Easy to pro-
gram from
Code Com-
poser (CCS)

Integrated
Wi-Fi Sup-

port
Easy drag
and drop
module

chip

Programming
could be simpli-

fied via eval
board

Free soft-
ware

Lots of fo-
rums/ sup-

port
RTC counter

Free software
loader, Low

cost with multi-
ple libraries

availble, Pro-
grammable us-
ing Arduino IDE

99

Accelerometers

This section contains a trade study performed in a similar manner to that of the 32-bit MCUs.
While the final accelerometer used in the project was not on this list, Table 17 shows the original work
involved in considering an accelerometer for the project.

Table 17 - Accelerometer Specifications and Pricing

Manu-
facturer

ADI ST ADI InvenSense Freescale

Chip
type

Triple axis ac-
celerometer

Triple axis accel-
erometer

Triple axis accel-
erometer

Triple Axis Accel-
erometer/Triple
Axis Gyroscope

Triple accelerometer
and triple magne-

tometer

Part ADXL345 LIS331 ADXL362 MPU6050 FXOS8700CQ

Supply
voltage

2.0 - 3.6V 2.1V to 3.6V 1.6V to 3.5V 2.375V to 3.46V 1.9V to 3.6V

Current 0.1uA to 40uA 10uA to 250uA 0.01uA to 3.3uA 10uA to 500uA 2uA to 575uA

Inter-
face

I2C, SPI (3 and
4 wire)

I2C, SPI (3 and 4
wire)

SPI (4 wire) I2C
I2C, SPI (3 and 4

wire)

Range 3, 4, 8, 16g 6, 12, 24g 2, 4, 8g
2,4,8,16g and
250,500,1000,

2000 °/s
2, 4, 8g/1200uT

Data
resolu-

tion
13 bit 16 bit 12 bit, 8 bit 16 bit for both

14 bit accelerome-
ter, 16 bit magne-

tometer

Other
pins

2x interrupt
pins, measure
down to 1.0

degrees

2x interrupt pins
2x interrupt pins,
Low noise modes

1x interrupt,
alternate address

lines interface
1x interrupts

Cost
$18 (breakout)

[74]
$28 (breakout)

[75]
$15 (breakout)

[76]

$5.45/chip [77]

$3 a breakout

[78]

$2.63/chip [79]
$16 (breakout) [87]

Devel-
opment

Libraries avail-
able

Libraries available Libraries available

Small and com-
pact cheap

breakouts availa-
ble ($3), Many li-
braries available

Breakout available

100

Gyroscopes

This section contains a trade study performed for gyroscopes in a similar manner to that of the
32-bit MCUs. While the final gyro used in the project was integrated into the MPU6050 (above in Table
17), Table 18 shows the other gyro considered for the project.

Table 18 - Gyroscope Specifications and Pricing

Part LPY503AL L3G4200D ITG-3200 MPU-3050 MPU-6500 FXAS21002C

Manu-
facturer

ST ST InvenSense InvenSense InvenSense Freescale

Chip
type

2 axis gyro 3 axis gyro 3 axis gyro 6-axis, gyro
with I2C link to
external accel

6 axis ac-
cel/gyro

3 axis gyro

Supply
voltage

2.7V to 3.6V 2.4V to 3.6V 2.1V to 3.6V 2.1V to 3.6V 1.71 to 3.6V 1.95 to 3.7V

Current 1uA to 6.8mA 5uA to
6.1mA

5uA to
6.5mA

6.1mA 6.37uA to
3.5mA

2.7mA

Inter-
face

Analog I2C, SPI (3
wire)

I2C (400kHz) I2C (30kHz) I2C (400kHz),
SPI (1MHz)

I2C
(100kHz/40kHz),
SPI (3 and 4
wire 2MHz)

Range 30 (°/s), 120
(°/s)

250,500,200
0 (°/s)

2000 (°/s) 250, 500,
1000, 20000
(°/s)

250, 500,
1000, 2000
(°/s)
 2, 4, 8, 16g

250, 500, 1000,
2000, 4000 (°/s)

Data
resolu-
tion

8.3mV/(°/s),
33.3mV/(°/s)

16 bit data 14.375
LSB/(°/s)
16 bit

131LSB/(°/s),
65.5LSB/(°/s),
32.8LSB/(°/s),
16.4LSB/(°/s)

16 bit 16 bit data,
0.0625 (°/s) at
2000 (°/s)

Other
pins

Amplifier (4x)
pins/non-am-
plified pins,
external filter
connections

2 interrupt
pins

1 interrupt 1 programma-
ble interrupt

1 programma-
ble interrupt

1 programma-
ble interrupt

Fea-
tures

Zeroing, low
pass filters

Embedded
temp sen-
sor, external
filter specs

Digitally
controlled
LPF

programmable
LPF, HPF

Digital motion
processor for
gestures
programmable
filters, temp
sensor

LPF, temp sen-
sor

Cost $30 dev

board [80]

$50 dev

board [81]

$25 dev

board [82]

$9 chip $70

dev board [83,

84]

$10 chip [85] $3.5 chip, $15

dev board [86,
87]

Devel-
opment

Reference
layout in
datasheet, li-
braries avail-
able

Reference
layout in
datasheet,
libraries
available

Example
wiring
guides for
mBed MCU,
schematics

Not much in-
formation

No eval boards Breakout board
and reference
designs

Package LGA16,
5x5x1.6mm

LGA16,
4x4x1.1mm

QFN20,
4x4x0.9mm

24-QFN
4x4mm

24-QFN
4x4mm

24-QFN 4x4mm

101

Appendix 7 – Gap Analysis (Desired Features Analysis)

A gap analysis involves comparing the current state of the art of technology to the desired capa-
bilities of a project, to understand the “gap” and the project’s feasibility. Table 19 outlines the desired
features of this project, relevant information about the current state of the art and its limitations, topics
that need further research and development, and possible risks associated with meeting each desired
feature. As the table illustrates, the current state of the art is very close to the features and technologies
identified in this project proposal, which suggests that this project is feasible.

Table 19 - Gap Analysis chart containing desired features and additional information

Desired Feature Current state of the
art (and cost)

Limitations to the
state of the art

Research and de-
velopment topics

Possible risks

Portable system Exoskeletal hand
with wireless re-
mote control [88]
Wireless motion
capture gloves [89]

Exoskeleton’s
power consumption
Batteries increase
size and weight of
suit
Sensors and haptic
modules increase
system weight

Suitable wireless
communication
protocols
How much power
does the system
need
How much power
do sensor/comms
need

Power supply is too
big to comfortably
make portable
Too expensive
Too many batteries

Implements haptic
feedback

DexMo glove
freezes when robot
hand senses that it
can’t move [5]
Using the sensAble
stylus to control
and receive haptic
feedback from Bax-
ter [90]

Force feedback sys-
tem too large and
bulky
Limitations of the
controlling hard-
ware using actua-
tors and AC volt-
ages for LRA motors

Various feedback
types and charac-
teristics
How sensitive they
are
Easiest ways to
build haptic feed-
back systems (low
cost options) [91]

Feedback mecha-
nisms are too ex-
pensive
Feedback is not de-
tailed enough to
guide user to cor-
rect position

Real-time response
(<1 second) latency

LCH is 500 ms [92]
Telekyb[93] frame-
work of 0.3 seconds
Human body imita-
tion at 1.5 seconds
[94]
MVN Link - 240Hz
refresh
MVN Awinda 60Hz

LCH uses Arduino
system, but recom-
mends ARM for bet-
ter math
Wireless transmis-
sion time (data size)
MVN Awinda -
30ms
MVN Link - 20ms

Optimal data size
for transmission
Data rates of wire-
less protocols
Data rates of wired
protocols
Latency for motion
capture
ADC sampling rates
MCU clock speeds

Latency from wire-
less system could
higher than re-
sponse rate given
overhead
Response rate of
MCUs might not be
high enough (clock
speeds)

Cost Market Costs:
Araig - $500
TeslaSuit $600
Xsens suits: The
MVN suits [16]
MVN Awinda $7.4K
MVN Link $12.2K

Grant money
Sponsorship money

Costs of sensors
Costs of hardware
Costs of feedback
(haptics)
Costs of software

Overspending the
budget

102

Desired Feature Current state of the
art (and cost)

Limitations to the
state of the art

Research and de-
velopment topics

Possible risks

Battery life >= 2
hours

Motion capture
suits:
MVN Awinda – 6
hours [16]
MVN Link – 9 hours
[16]
IGS-190 runs for 3
hours on NiMHs
Hulc from Lockheed
Martin with 72 hour
batteries

Current battery ca-
pacities
Motors draw use
too much power
More dense batter-
ies = more power =
more weight
Interchanging bat-
teries means more
hardware
Battery charging
adds more com-
plexity to design

Current battery
tech
Motors for feed-
back
General power con-
sumption for sen-
sors
Costs of batteries
Best rechargeable
batteries
Weight of batteries

Batteries not good
enough (small
enough)
Vibrators take too
much current

Ability to power
over tether

Most current exo-
skeletons are teth-
ered
Gypsy is USB teth-
ered (~500mA)
5DT gloves use up
to 150mA per glove
powered from 9V
power supply

Wire size not suita-
ble for current load
Cable length cre-
ates too much loss
of power
Power supply not
able to support
power
Tethering adds
complexity to de-
sign (managing of
wires)

Powering over
tether for distrib-
uted power systems
Wire sizes and cur-
rent limitations
Power over Ether-
net

Power distribution
system makes sys-
tem more rigid

103

Desired Feature Current state of the
art (and cost)

Limitations to the
state of the art

Research and de-
velopment topics

Possible risks

Ability to capture
motion & save mo-
tion path

Optical motion cap-
ture using motion
capture dots or
manual or auto-
matic feature de-
tection in video, ex.
Vicon, Phase Space
ex. Vicon, Phas-
espace
Inertial motion cap-
ture using combina-
tion of accelerome-
ters, gyros, and
magnetometers, ex.
Synertial (gloves
and body suits),
Xsens (individual
sensors > $1000;
full body suits:
above)Existing file
formats
require costly edit-
ing software (Xsens
Studio, 1 yr -
$5400), Autodesk
MotionBuilder,
~$4000
Audio
Gypsy system (IGS-
190)
This system uses so-
nar sensors and
mics to record the
sensor outputs
Need more mics to
record system and
need external costly
setup

Optical
Many cameras re-
quire large space
and minimal view
obstructions
Expensive and diffi-
cult to set up
Difficult to track
features if person’s
limb obstructed
Inertial
High drift unless
many sensors and
advanced filtering
used
Many systems re-
stricted to major
limbs due to error
(support arms and
legs, not fingers,
etc)

Formatting data so
that it can be
cropped/paused
Existing motion cap-
ture file formats
Filtering sensor
readings for smooth
motion paths

Incompatibility with
existing file formats
limiting usability of
recorded motions
proprietary/re-
stricted motion cap-
ture file formats
Sensor drift in iner-
tial sensors could
be difficult to limit,
leading to inaccu-
rate position esti-
mates

104

Desired Feature Current state of the
art (and cost)

Limitations to the
state of the art

Research and de-
velopment topics

Possible risks

Non-intrusive, low-
profile, non-restrict-
ing

Optical
Unrestricted user
motion within the
configured space
[95]
Inertial
User is much more
globally mobile (not
confined to a single
configured mocap
space) due to the
motion capture sys-
tem being attached
to the body
The hexoskin
doesn’t do motion
capture, but it col-
lects other bio-
metric data with a
relatively unrestric-
tive form factor
($400) [96]
Actuating exoskele-
tons
Vanderbilt rehabili-
tation exoskeleton
weighs 27 lbs [97]

Optical
User is confined to
a single room or
setup area
Haptic feedback is
impossible with a
purely optical sys-
tem - need some
sort of worn device
Inertial
User’s limbs have
added bulk due to
sensors being at-
tached directly to
the body rather
than using an exter-
nal imaging system,
but this limitation
can be as minimal
to what feels like a
tight-fitting outfit
Actuating exoskele-
tons
Having actuation to
directly aid user
motion adds an ad-
ditional degree of
rigidity to the sys-
tem, which pre-
vents the user from
recording natural
movements

Need to create a
system that bal-
ances user’s free-
dom to move natu-
rally with ability to
move around in dif-
ferent locations
Need to develop
system that can
guide a user to
move in a certain
manner without
adding substantial
rigidity/motion limi-
tations to the sys-
tem

Increasing user’s
ability to move nat-
urally and incorpo-
rating motion guid-
ance may be direct
trade-offs

Control through
speech commands

Google web speech
API sends audio to
external servers and
gets transcribed off-
site
CMU Sphinx/Pock-
etSphinx are
standalone speech
recognition sys-
tems. PocketSphinx
is intended for em-
bedded platforms

Voice recognition
requires additional
microphone hard-
ware (cost and ad-
ditional processing)

 Libraries and nec-
essary hardware

Processing time for
speech recognition
may introduce de-
lay in process of suit
operation
incompatibility of
the hardware with
the system

105

Desired Feature Current state of the
art (and cost)

Limitations to the
state of the art

Research and de-
velopment topics

Possible risks

Database of motion
capture

mocap.cs.cmu.edu
Library of motion
capture data
All recorded at CMU
using Vicon optical
motion capture sys-
tem
Supports several
motion capture file
formats.
mocapclub.com
Motion Capture
Data library
large variety of mo-
tions recorded

Neither seem to al-
low 3rd party up-
load of motion cap-
ture

Existing motion cap-
ture file formats
Database manage-
ment
Allowing uploads
and downloads to
database
Suitability of exist-
ing file formats for
haptics

Managing poten-
tially large database
Managing catego-
ries of motion cap-
ture data (want
large amount of
data to be available,
but still find desired
content without
digging through all
of the data)

http://www.mocapclub.com/

106

Appendix 8 – Precursor Testing Before System Design Stages

This section describes a few ideas and tests that were conducted before settling on the final hard-
ware design for the project. The reason for these being different from the normal report is due to the fact
that these were not used in the final project, but served as useful information to assist the project.

Ubuntu Bluetooth Libraries

Bluez is the default Bluetooth protocol stack for Linux machines. Bluez has a low level API for
discovering Bluetooth devices and sending and receiving messages as well as a higher level API for pairing
and Bluetooth profiles and services. Both APIs have little documentation available. The low level API has
direct C/C++ support, whereas the higher level API must be accessed through DBus calls. DBus is an inter-
process communication protocol. The Bluez DBus API allows function calls to be sent to the core Bluetooth
libraries from a program through the DBus protocol. However, there is little documentation on a high-
level C/C++ binding for the DBus protocol or the Bluez DBus APIs.

In addition, the Bluez version on a machine varies with the Linux distribution. Bluez 5 is the latest
version and is the only version with significant support for Bluetooth LE and Bluetooth Smart devices.
Bluez 5 is only officially compatible with Ubuntu 15.10 (an open-source Linux operating system), which at
the time of this draft, has been available for only a few months.

The tools tested with Bluez were the low level APIs, which were found could scan and find Blue-
tooth devices, and the DBus API. Although the DBus API was not particularly useful due to its complex
nature.

Qt also has a Bluetooth API that provides support for ClassicBluetooth, Bluetooth Smart, and Blue-
tooth Low Energy devices. The Qt Bluetooth API includes functions for scanning for devices, pairing with
devices, connecting to devices, and sending data through sockets or Bluetooth profiles and services. The
Qt APIs use the Bluetooth protocol stack of the operating system running the application. There are sev-
eral examples for both classic and low energy Bluetooth within Qt. Using the Qt Bluetooth libraries, the
software application was able to scan for external Bluetooth devices, and connection and pairing attempts
with Bluetooth devices were tried. However, this approach was ultimately abandoned in favor of Wi-Fi
options due to the complex nature of the libraries and system specific dependencies that could not be
resolved.

Along with the libraries, a number of Bluetooth hardware modules were tried. The hardware mod-
ules tested included the Adafruit Bluefruit LE UART Friend ($20), the Adafruit nRF8001 Bluetooth LE
breakout ($20), several JY-MCU HC-06 BT 2.0 modules and the Roving Networks RN4020 BTLE device. The
accompanying embedded software libraries for these devices were found to perform at max capacity of
around 10Hz duplex communications with the computer.

Initial Band Prototype

Throughout the system development many hardware changes were made. Below is a picture of
all the generations of the band prototypes as different features were added to accomidate increasing
functionality. The current prototype can be seen on the left with the electrical hardware installed.

107

Figure 77. Band prototype progression

FRDM-K22F MBed and Sensor Fusion Toolbox

The FRDM-K22F MBed microcontroller (MCU) was purchased to support a simple demo of sensor
fusion tools within the project (at the start of the project). To complement the MCU, a simple 9 degree of
freedom (DOF) sensor board, called the FRDM-STBC-AGM01 and produced by Freescale, which features
an accelerometer and magnetometer combo and a gyroscope was used to demonstrate and evaluate the
effectiveness of sensor fusion techniques. To this end, Freescale provides all the C code (extensible to
other microcontroller platforms) to run and support the sensor fusion on the sensor board. The setup can
be seen in Figure 78.

Figure 78. MBed (FRDM-K22F) on left and 9DOF sensor board on right

Testing of this device relied on the use of the sensor fusion toolbox program developed for Win-
dows by Freescale (seen in Figure 79). The benefit of using this program is that it provides an easy way to
enable and disable various sensors. On the left portion of the window is a view of the FRDM MCU board

108

that will move correspondingly to the 9 DOF sensor board being moved. The movement is identical to the
real life position of the board as seen in Figure 80. This shows the board and the onscreen orientation.
Within the GUI, each sensor can be turned off independently. By comparing combinations of various sen-
sors within the program, it was determined that the combination of the accelerometer and gyro afforded
the greatest accuracy and least drift over time of the board’s position. From this testing, the next step was
to find a suitable accelerometer and gyro combination that could be easily interfaced with the MCU sys-
tem. This was determined to be the MPU6050 (described in the Hardware Overview section) based on the
wide available of the low-cost breakout board.

Figure 79. Sensor fusion toolbox program

109

Figure 80. Viewing the FRDM-K22F board and Sensor Fusion Toolbox concurrently

Another benefit of testing out sensor fusion techniques with this board was the ability to visualize
the raw sensor readings and the output of Kalman filters. These can be seen in Figure 81 and Figure 82.
These readings provided a greater insight into the sensor fusion algorithms.

Figure 81. Sensor Fusion Toolbox Dynamics section (for looking at raw sensor values)

110

Figure 82. Sensor Fusion Toolbox Kalman filtering tab for seeing filter stages and outputs

The last testing this board enabled was checking if vibrations from the vibration motors would
disrupt the measurements and sensor readings. The motors were affixed directly to the sensor board
using secure adhesives and then motors were run at full speed while the sensor fusion toolbox was open.
While the raw sensor data showed the vibrations due to the motors, the Kalman filtering stages removed
the effect caused by the vibrations. As such the use of an accelerometer and gyro with Kalman filtering is
immune to motor noise that would be experienced in this application.

111

Appendix 9 – Reviewer Evaluation Summaries

This section contains a summary of the reviewer feedback from advisors during the two review
sessions. There were two major design reviews called the Preliminary Design Review (PDR) and the Critical
Design Review (CDR) which are included in the university curriculum for capstone projects. These sessions
are designed to give advisors and general university students an opportunity to critical and evaluate a
design by listening to a 20 minute presentation and then providing questions and feedback. Typically the
PDR occurs early on in the beginning of the design phase and seeks to refine the project proposal. The
CDR occurs later in the design phase to verify the design for the project is feasible and applicable to the
original design.

Preliminary Design Review Presentation (9/29/15)

The following listing shows the advisor feedback provided during the PDR.

Project Goal
 Potential applications to consider

 Physical therapy + reporting progress to therapist
 Telemedicine
 Sports training
 Physical activity training within workplace

 Objectives of project
 Refer to motion database as library

 Suit configuration: jacket
 ‘Tendons’ for actuation (piezoelectric material for force feedback, could get additional

funding)
 Hardware - hand sensor

 Flex sensors on fingers won’t be as precise, won’t be able to get definite determination
of finger location

 Add functional diagrams of system to project
 Look at motor vibration patterns for indicating error to the user
 Specify the interface between subsystems

 Potential risks
 Consider weight of bands in addition to overall weight
 Communications

 Test Bluetooth
 Limited channels, but could have multiple modules
 Lower power

 Test Wi-Fi
 Interference from other 2.4GHz sources
 Higher power than Bluetooth
 Campus IT services might have issues with personal Wi-Fi router use

 Analysis on bandwidth usage
 Budget

 Perform a ‘reasonable first pass at a budget’
 Reevaluate suit material costs
 Check if MSP 432 can work for project
 Use h-bridge rather than transistors
 Add PCB costs

112

 Project timeline
 Put Project Presentation Day (for university) on timeline
 Look into Atom board usage requirements for Intel Cornell Cup
 Put Intel Cornell Cup on project timeline

Critical Design Review Presentation (11/20/15)

This was the information gathered from advisors after the CDR.

General:
 Make sure CDR slides reflect talking points
 Incorporate pictures to back up talking points
 Make sure to use professional language
 Speak slowly and clearly
 Add general use case to provide outline/context to presentation

Problem and goal presentation slide:
 Enumerate benefits of project more clearly

Band Design slide:
 Talk about band and then electronics (high level and then low level)
 Include amp-hours of battery along with relevant electrical characteristics

Software slides:
 Make clear that this is a functional diagram rather than class hierarchy
 Add class hierarchy diagram as well
 Try saving/exporting data to XML

Current Testing:
 Explain acronyms (IMU)
 Speak in terms of functionality and then relate to technical (don’t say technical and then relate

back to functionality, ex. Quaternions)
 MATLAB diagram of initial visualization not clear
 Explain more specifically what we mean by sensor fusion

Future testing slide:
 Specify that testing against requirements/what requirements were
 Specify testing with users

Risks and challenges:
 Don’t use precision and accuracy interchangeably
 More clearly state precision/cost trade off
 Characterize error (order of magnitude)
 Specify difference between cost of parts and potential market/development costs

Information to add to future presentations:
 Future implications
 Suggest additional research questions

Intel Cornell Cup Proposal:
 Tell as a story (incorporate problem, background, design and testing, potential benefits & future

applications)
 Emphasize systems engineering

113

Appendix 10 – Acknowledgements

We would like to thank three supporters to our project. The first is Advanced Circuits who did an
excellent job creating and providing us with high-quality printed circuit boards for out circuits. Without
the special student sponsorship deal they gave us on the PCBs, we would not have been able to afford
making PCBs for our project.

Another supporter for our project is Pololu Corporation which gave us a huge discount on our
order of vibration motors. This helped us purchase enough motors for all seven bands.

Another supporter was Tin Can Tools (the manufacturer of the SilverJaw Lure board that holds
the SSD and Wi-Fi chip for the Intel Atom). When our Lure board failed, Tin Can Tools sent us a new board
completely free, which we thank them for.

We would also like to thank WPI as their project-based curriculum allowed for the conception and
completion of this project as an MQP. WPI also provided the budget for purchasing electrical components
and materials.

114

Appendix 11 – Authorship

Section Primary Author(s)

Abstract Team

Challenge Definition Team

Background Research Team

Concept of Operations Swartz

System Design Team

1. Suit Overview Barnard

2. Software Overview Adkins, Beardsley, Swartz

3. Hardware Overview Barnard, Beardsley, Frick

Technical Documentation Team

1. Band Design Barnard, Frick

2. Sensors and Sensor Fusion Beardsley

3. Haptic Motor Control Beardsley

4. Communication Adkins, Frick

5. Software Design Adkins, Beardsley, Swartz

Product Performance Evaluation Swartz

Project Execution Performance Evaluation Adkins, Frick

Recommendations and Next Steps – Conclusions and Future Research Adkins

Nomenclature Glossary Team

Timeline Appendix Team

Software Core Classes and Functionality Appendix Adkins, Beardsley, Swartz, Frick

Full Bill of Materials for Project Appendix Frick

Assembly & Construction Appendix Team

Test Plans Appendix Team

Initial Design Steps – Trade Study Appendix Frick

Gap Analysis (Desired Features Analysis) Appendix Team

Precursor Testing before System Design Stages Appendix Team

Reviewer Evaluation Summaries Appendix Team

Acknowledgements Team

Authorship Team

Bibliography Team

115

Bibliography

[1] Wehner, M. e. a. (2013). A Lightweight Soft Exosuit for Gait Assistance (Web ed., pp. n. pag). Interna-
tional Conference on Robotics and Automation: IEEE.

[2] Asbeck, A. T. e. a. (2013). Biologically-Inspired Soft Exosuit (Web ed.). 13th International Conference
on Rehabilitation Robotics (ICORR): IEEE.

[3] Ho, N. S. K. e. a. (2011). An EMG-Driven Exoskeleton Hand Robotic Training Device on Chronic Stroke
Subjects: Task Training System for Stroke Rehabilitation (Web ed., pp. n. pag). International Conference
on Rehabilitation Robotics: IEEE.

[4] Chan, C. L., Suresh Gobee, and D. Vickneswari. (2014). Finger Grip Rehabilitation Using Exoskeleton
With Grip Force Feedback (Web ed., pp. 520-523). IFMBE Proceedings The 15th International Confer-
ence on Biomedical Engineering.

[5] Dexta Robotics. Dexta Robotics. Retrieved from Dexmo – Overview. China. <www.dextarobot-
ics.com/products/dexmo>

[6] CyberGlove Systems LLC. CyberGrasp. – Overview of CyberGrasp.. San Jose, CA. <www.cyberglove-
systems.com/cybergrasp/>

[7] NeuroDigital RSS: Fun & Serious VR.Technologies. Homepage. Almeria, Spain. <www.neurodigital.es>

[8] Tesla Studios. Tesla Studios | VR Future.Homepage. United Kingdom. <www.teslastudios.co.uk/in-
dex.html>

[9] Immerz, Inc. “KOR-FX 4DFX Haptic Gaming Vest.” KOR-FX 4DFX Haptic Gaming Vest. Web. 2 Sep.
2015. <http://Cambridge, MA <korfx.com/>>

[10] YEI Technology. “About Prio-VR.” PrioVR. Web. 2 Sep. 2015. <http://Portsmouth, Ohio <www.pri-
ovr.com/>

[11] Cela, A., Yebes, J. J., Arroyo, R., Bergasa, L. M., Rafael, B., & López, E. (2013). Complete Low-Cost Im-
plementation of a Teleoperated Control System for a Humanoid Robot (Vol. Sensors, pp. 1385-1401).
National Polytechnic, EC170135 Quito, Ecuador: Department of Automation and Industrial Control.

[12] Menache, Alberto, I. T. Pro Collection Books24x, and Online Safari Books. Understanding Motion
Capture for Computer Animation. Vol. 2nd;2;. Burlington, MA: Morgan Kaufmann, 2011. Print.

[13] Vlasic, D., Adelsberger, R., Vannucci, G., Barnwell, J., Gross, M., Matusik, W., & Popović, J.
(2007). Practical motion capture in everyday surroundings.

[14] AutoDesk., Inc. “MotionBuilder – 3D Character Animation Software | MotionBuilder. Retrieved
from”. San Rafael, CA. <http://www.autodesk.com/products/motionbuilder/overview>

http://www.autodesk.com/products/motionbuilder/overview

116

[15] Flam, David L., Ramos, Thatyene L. A. S., Queriroz, Daniel P., & Araujo, Arnaldo A. (2009).
Openmocap: An Open Source Software for Optical Motion Capture. 2009. Universidade Federal de Mi-
nas Gerais. Print.

[16] Xsens North America, Inc. (2015). Xsens MVN brochure: The ultimate animator’s tool. Culver City,
CA. Retrieved from www.xsens.com/wp-content/uploads/2013/12/Xsens-DM-MVN-2.0-bro-
chure_D05112014.pdf

[17] Daniel Roetenberg, H. L., Per Slycke. (2013). Xsens MVN: Full 6DOF Human Motion Tracking Using
Miniature Inertial Sensors. Retrieved from https://www.xsens.com/wp-content/up-
loads/2013/12/MVN_white_paper1.pdf

[18] Carnegie Mellon University. CMU Graphics Lab Motion Capture Database. Pittsburg, PA. Retrieved
from http://mocap.cs.cmu.edu

[19] Mocap Club -. Motion Capture Library. Retrieved from http://mocapclub.com

[20] Hall, David Lee, and Sonya A. H. McMullen. (2004). Mathematical Techniques in Multisensor Data
Fusion. Artech House, 2004. Print.

[21] Oxford Dictionary. (2015). Retrieved from http://www.oxforddictionaries.com/us/definition/ameri-
can_english/force-feedback

[22] Introduction to Haptic Feedback. (2015). Precision Microdrives.

[23] Understanding Linear Resonance Actuator Characteristics. Retrieved from http://www.precisionmi-
crodrives.com/application-notes-technical-guides/application-bulletins/ab-020-understanding-linear-
resonant-actuator-characteristics

[24] Linear Resonant Actuator (LRA) Vibration Motors. Haptic Feedback. (n.d.). Retrieved October 12,
2015.

[25] Coin Vibration Motor: Pico Vibe™ Range. (n.d.). Retrieved October 12, 2015.

[26] Texas Instruments. (2005). Accelerometers: US FIRST.

[27] Andrejašic, M. (2008). MEMS Accelerometers. University of Ljubljana Department of physics: Uni-
versity of Ljubljana.

[28] a1ronzo. Gyroscope: SparkFun.

[29] KVH Industries. (2014a). An Update on KVH Fiber Optic Gyros and Their Benefits Relative to Other
Gyro Technologies. 50 Enterprise Center, Middletown, RI, 02842: KVH Industries.

[30] KVH Industries. (2014b). Guide to Comparing Gyro and IMU Technologies – Micro-Electro-Mechani-
cal Systems and Fiber Optic Gyros. 50 Enterprise Center, Middletown, RI, 02842: KVH Industries.

[31] Looney, M. (2010). A SIMPLE CALIBRATION FOR MEMS GYROSCOPES. EDN Europe: Analog Devices.

[32] IEEE Sensors Journal, Vol. 1, No. 4, 2001, pp 332-339 (Barbour & Schmidt)

https://www.xsens.com/wp-content/uploads/2013/12/MVN_white_paper1.pdf
https://www.xsens.com/wp-content/uploads/2013/12/MVN_white_paper1.pdf
http://mocap.cs.cmu.edu/
http://mocapclub.com/
http://www.oxforddictionaries.com/us/definition/american_english/force-feedback
http://www.oxforddictionaries.com/us/definition/american_english/force-feedback
http://www.precisionmicrodrives.com/application-notes-technical-guides/application-bulletins/ab-020-understanding-linear-resonant-actuator-characteristics
http://www.precisionmicrodrives.com/application-notes-technical-guides/application-bulletins/ab-020-understanding-linear-resonant-actuator-characteristics
http://www.precisionmicrodrives.com/application-notes-technical-guides/application-bulletins/ab-020-understanding-linear-resonant-actuator-characteristics

117

[33] Skog, I. a. P. H. (2006). Calibration of a MEMS inertial measurement
unit. Metrology for a Sustainable Development, Rio de Janeiro, Brazil: ResearchGate.

[34] Xsens North America, Inc. (2015). MTi 1-series. Xsens Culver City, CA.

[35] Lee, J.-S., Su, Y.-W., & Shen, C.-C. (2007). A Comparative Study of Wireless Protocols: Bluetooth,
UWB, Zigbee, and Wi-Fi. The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON),
Taipei, Taiwan: IEEE.

[36] Thierer, A. (2013). Privacy and Security Implications of the Internet of Things. Mercatus Center 3434
Washington Blvd, 4th Floor, Arlington, VA: George Mason University.

[37] MITRE. (2013, 18 December). Analyzing and Defining Requirements. Available: http://www.mi-
tre.org/publications/systems-engineering-guide/se-lifecycle-building-blocks/requirements-engineer-
ing/analyzing-and-defining-requirements

[38] Miller, R. B. (1968). Response time in man-computer conversational transactions. Proc. AFIPS Fall
Joint Computer Conference Vol. 33, 267-277.

[39] Stoffregen, P. (2015). Teensy 3.2 & 3.1 - New Features. PJRC. Retrieved December 21, 2015, from
https://www.pjrc.com/teensy/teensy31.html

[40] EasyVR 3. (2015). ROBOTECH. Retrieved December 21, 2015, from http://www.veear.eu/prod-
ucts/easyvr3/

[41] Rivera. (2007). Boost C++ Libraries. Available: http://www.boost.org/

[42] Khronos Group. (2012). OpenGL Overview. Available: https://www.opengl.org/about/

[43] The Qt Company. (2016). Qt - Developers. Available: http://www.qt.io/developers/

[44] The Qt Company. (2016). Signals and Slots. Available: http://doc.qt.io/qt-4.8/signalsandslots.html

[45] Ford, Matthew (2016, February 3). PfodTM Parser Libraries V2.20. pfodTM Parser Library for Arduino
– Forward Computing Control Pty Ltd. Retrieved April 18, 2016, from http://www.for-
ward.com.au/pfod/pfodParserLibraries/

[46] Rowberg, Jeff. (n.d.). I2Cdevlib. Retrieved April 18, 2016, from http://www.i2cdevlib.com/

[47] Webmaster. (2015, April 3). Introducing EasyVR 3 & EasyVR Shield 3. Retrieved April 18, 2016, from
http://www.veear.eu/introducing-easyvr-3-easyvr-shield-3/

[48] Majumdar, Swagatam. (2013, May 26). Low Battery Indicator Circuit Using Two Transistors Only.
Homemade Circuits. Retrieved April 10, 2016, from http://www.homemade-circuits.com/2013/05/low-
battery-indicator-circuit-using-two.html

[49] Range Slider in Qt (Two Handles in a QSlider). Retrieved November 28, 2015, from http://stackover-
flow.com/questions/17361885/how-to-get-two-handles-in-a-qslider

[50] F28M35H22C. (n.d.). Retrieved October 12, 2015, from http://www.ti.com/product/f28m35h22c

http://doc.qt.io/qt-4.8/signalsandslots.html
http://www.ti.com/product/f28m35h22c

118

[51] MSP432P401R. (n.d.). Retrieved October 12, 2015, from http://www.ti.com/product/msp432p401r

[52] STM32F411CE. (n.d.). Retrieved October 12, 2015, from http://www.st.com/web/cata-
log/mmc/FM141/SC1169/SS1577/LN1877/PF260148

[53] STM32F205RG. (n.d.). Retrieved October 12, 2015, from http://www.st.com/web/cata-
log/mmc/FM141/SC1169/SS1575/LN1433/PF245094

[54] AT32UC3C264C. (n.d.). Retrieved October 12, 2015, from http://www.atmel.com/de-
vices/AT32UC3C264C.aspx

[55] K20P64M72SF1RM. (n.d.). Retrieved October 12, 2015, from
https://www.pjrc.com/teensy/K20P64M72SF1RM.pdf

[56] F28M35H22C. (n.d.). Retrieved October 12, 2015, from http://www.ti.com/product/f28m35h22c

[57] MSP432P401R. (n.d.). Retrieved October 12, 2015, from http://www.ti.com/product/msp432p401r

[58] STM32F411CE. (n.d.). Retrieved October 12, 2015, from http://www.st.com/web/cata-
log/mmc/FM141/SC1169/SS1577/LN1877/PF260148

[59] STM32F205RG. (n.d.). Retrieved October 12, 2015, from http://www.st.com/web/cata-
log/mmc/FM141/SC1169/SS1575/LN1433/PF245094

[60] AT32UC3C264C. (n.d.). Retrieved October 12, 2015, from http://www.atmel.com/de-
vices/AT32UC3C264C.aspx

[61] AT32UC3L064. (n.d.). Retrieved October 12, 2015, from http://www.atmel.com/de-
vices/at32uc3l064.aspx

[62] K20P64M72SF1. (n.d.). Retrieved October 12, 2015, from
https://www.pjrc.com/teensy/K20P64M72SF1.pdf

[63] XMS432P401RIPZR. (n.d.). Retrieved October 12, 2015, from
https://store.ti.com/XMS432P401RIPZR.aspx

[64] STM32F411CEU6. (n.d.). Retrieved October 12, 2015, from http://avnetex-
press.avnet.com/store/em/EMController?action=products&cata-
logId=500201&storeId=500201&N=0&langId=-
1&slnk=e&term=STM32F411CEU6&mfr=STM&hrf=http://www.st.com/web/cata-
log/mmc/FM141/SC1169/SS1577/LN1877/PF260148

[65] STM32F205RGT6. (n.d.). Retrieved October 12, 2015, from http://www.digikey.com/product-
search/en?WT.z_cid=sp_497_0928_buynow&Enterprise=44&lang=en&Ven-
dor=497&mpart=STM32F205RGT6

[66] H52C1 Concerto Experimenter Kit. (n.d.). Retrieved October 12, 2015, from
http://www.ti.com/tool/tmdsdockh52c1

http://www.ti.com/product/msp432p401r
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1877/PF260148
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1877/PF260148
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1575/LN1433/PF245094
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1575/LN1433/PF245094
http://www.atmel.com/devices/AT32UC3C264C.aspx
http://www.atmel.com/devices/AT32UC3C264C.aspx
http://www.ti.com/product/f28m35h22c
http://www.ti.com/product/msp432p401r
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1877/PF260148
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1877/PF260148
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1575/LN1433/PF245094
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1575/LN1433/PF245094
http://www.atmel.com/devices/AT32UC3C264C.aspx
http://www.atmel.com/devices/AT32UC3C264C.aspx
http://www.atmel.com/devices/at32uc3l064.aspx
http://www.atmel.com/devices/at32uc3l064.aspx
https://store.ti.com/XMS432P401RIPZR.aspx
http://avnetexpress.avnet.com/store/em/EMController?action=products&catalogId=500201&storeId=500201&N=0&langId=-1&slnk=e&term=STM32F411CEU6&mfr=STM&hrf=http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1877/PF260148
http://avnetexpress.avnet.com/store/em/EMController?action=products&catalogId=500201&storeId=500201&N=0&langId=-1&slnk=e&term=STM32F411CEU6&mfr=STM&hrf=http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1877/PF260148
http://avnetexpress.avnet.com/store/em/EMController?action=products&catalogId=500201&storeId=500201&N=0&langId=-1&slnk=e&term=STM32F411CEU6&mfr=STM&hrf=http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1877/PF260148
http://avnetexpress.avnet.com/store/em/EMController?action=products&catalogId=500201&storeId=500201&N=0&langId=-1&slnk=e&term=STM32F411CEU6&mfr=STM&hrf=http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1877/PF260148
http://avnetexpress.avnet.com/store/em/EMController?action=products&catalogId=500201&storeId=500201&N=0&langId=-1&slnk=e&term=STM32F411CEU6&mfr=STM&hrf=http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1877/PF260148
http://www.digikey.com/product-search/en?WT.z_cid=sp_497_0928_buynow&Enterprise=44&lang=en&Vendor=497&mpart=STM32F205RGT6
http://www.digikey.com/product-search/en?WT.z_cid=sp_497_0928_buynow&Enterprise=44&lang=en&Vendor=497&mpart=STM32F205RGT6
http://www.digikey.com/product-search/en?WT.z_cid=sp_497_0928_buynow&Enterprise=44&lang=en&Vendor=497&mpart=STM32F205RGT6
http://www.ti.com/tool/tmdsdockh52c1

119

[67] MSP432P401R LaunchPad. (n.d.). Retrieved October 12, 2015, from http://www.ti.com/tool/msp-
exp432p401r

[68] “EMWE - 3165 - A Development Board.” Seeed. Retrieved from http://www.seeedstudio.com/de-
pot/EMWE-3165-A-Development-Board-p-2489.html?ref=newInBazaar%E2%80%9D

[69] “EMW3165 - Cortex-M4 based Wi-Fi SoC Module.” Seeed. Retrieved from http://www.seeedstu-
dio.com/depot/EMW3165-p-2488.html?cPath=19_20

[70] Photon Datasheet. (n.d.). Retrieved October 12, 2015, from https://docs.parti-
cle.io/datasheets/photon-datasheet/

[71] STMicroelectronics STM3220G-EVAL. (n.d.). Retrieved October 12, 2015, from http://www.digi-
key.com/product-detail/en/STM3220G-EVAL/497-11202-ND/2640848

[72] UC3C-EK. (n.d.). Retrieved October 12, 2015, from http://www.atmel.com/tools/uc3c-ek.aspx

[73] Teensy USB Development Board. PJRC. (n.d.). Retrieved October 12, 2015, from
https://www.pjrc.com/store/teensy32.html

[74] SparkFun Triple Axis Accelerometer Breakout - ADXL345. (n.d.). Retrieved October 12, 2015, from
https://www.sparkfun.com/products/9836

[75] SparkFun Triple Axis Accelerometer Breakout - LIS331. (n.d.). Retrieved October 12, 2015, from
https://www.sparkfun.com/products/10345

[76] SparkFun Triple Axis Accelerometer Breakout - ADXL362. (n.d.). Retrieved October 12, 2015, from
https://www.sparkfun.com/products/11446

[77] InvenSense MPU-6050 Six-Axis (Gyro + Accelerometer) MEMS MotionTrackingTM Devices. (2015).
Retrieved October 12, 2015, from http://www.invensense.com/products/motion-tracking/6-axis/mpu-
6050/

[78] Kootek GY-521 MPU6050. (n.d.) Retrieved October 12, 2015, from http://www.amazon.com/Koo-
tek-MPU-6050-MPU6050-sensors-Accelerometer/dp/B008BOPN40/ref=cm_cr_arp_d_prod-
uct_top?ie=UTF8

[79] FXOS8700CQR1. (n.d.). Retrieved October 12, 2015, from http://www.digikey.com/product-de-
tail/en/FXOS8700CQR1/FXOS8700CQR1CT-ND/4004929

[80] SparkFun Gyro Breakout - LPY503AL (Dual 30°/s). (n.d.). Retrieved October 12, 2015.

[81] SparkFun Tri-Axis Gyro Breakout - L3G4200D. (n.d.). Retrieved October 12, 2015.

[82] SparkFun Triple-Axis Digital-Output Gyro Breakout - ITG-3200. (n.d.). Retrieved October 12, 2015.

[83] MPU-3050. (n.d.). Retrieved October 12, 2015.

[84] MPU-3050 Triple-Axis Gyroscope with Embedded Digital Motion Processor. (n.d.). Retrieved Octo-
ber 12, 2015.

http://www.ti.com/tool/msp-exp432p401r
http://www.ti.com/tool/msp-exp432p401r
http://www.seeedstudio.com/depot/EMWE-3165-A-Development-Board-p-2489.html?ref=newInBazaar%E2%80%9D
http://www.seeedstudio.com/depot/EMWE-3165-A-Development-Board-p-2489.html?ref=newInBazaar%E2%80%9D
http://www.seeedstudio.com/depot/EMW3165-p-2488.html?cPath=19_20
http://www.seeedstudio.com/depot/EMW3165-p-2488.html?cPath=19_20
https://docs.particle.io/datasheets/photon-datasheet/
https://docs.particle.io/datasheets/photon-datasheet/
http://www.digikey.com/product-detail/en/STM3220G-EVAL/497-11202-ND/2640848
http://www.digikey.com/product-detail/en/STM3220G-EVAL/497-11202-ND/2640848
http://www.atmel.com/tools/uc3c-ek.aspx
https://www.sparkfun.com/products/9836
https://www.sparkfun.com/products/10345
https://www.sparkfun.com/products/11446

120

[85] MPU-6500. (n.d.). Retrieved October 12, 2015.

[86] FXAS21002CQR1. (n.d.). Retrieved October 12, 2015.

[87] FRDM-STBC-AGM01. (n.d.). Retrieved October 12, 2015, from http://www.digikey.com/product-
detail/en/FRDM-STBC-AGM01/FRDM-STBC-AGM01-ND/5130169

[88] Ho, N. S. K., Tong, K. Y., Hu, X. L., Fung, K. L., Wei, X. J., Rong, W., & Susanto, E. A. (2011). An EMG-
driven Exoskeleton Hand Robotic Training Device on Chronic Stroke Subjects. Hong Kong SAR, China.

[89] Motion., M. Datagloves by 5DT.

[90] Ju, Z., Yang, C., Li, Z., Cheng, L., & Ma, H. Teleoperation of Humanoid Baxter Robot Using Haptic
Feedback.

[91] macgyver603. How to Build a Robotic Hand with Haptic Feedback. Instructables.

[92] Cela, A., Yebes, J. J., Arroyo, R., Bergasa, L. M., Rafael, B., & López, E. (2013). Complete Low-Cost Im-
plementation of a Tele operated Control System for a Humanoid Robot (Vol. Sensors, pp. 1385-1401).
National Polytechnic, EC170135 Quito, Ecuador: Department of Automation and Industrial Control.

[93] Grabe, V., Riedel, M., Bulthoff, H. H., Giordano, P. R., & Franchi, A. (2013). The TeleKyb framework
for a modular and extendible ROS-based quadrotor control.

[94] Koenemann, J., Burget, F., & Bennewitz, M. (2014). Real-time Imitation of Human Whole-Body Mo-
tions by Humanoids.

[95] Organic Motion: Markerless Mocap for Animation.

[96] Hexoskin. (2015).

[97] Salisbury, D. (2012). Advanced Exoskeleton Promises More Independence for People with Paraple-
gia.

http://www.digikey.com/product-detail/en/FRDM-STBC-AGM01/FRDM-STBC-AGM01-ND/5130169
http://www.digikey.com/product-detail/en/FRDM-STBC-AGM01/FRDM-STBC-AGM01-ND/5130169

