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Abstract 

The Wearable Action Guidance (WAG) System is a training tool designed to improve the efficiency and 
convenience of teaching and learning new physical skills, while matching or exceeding the quality of feed-
back received from an in-person trainer. The system consists of a computer application and a set of wear-
able bands; each band comprises a 3D printed case, an inertial measurement unit, a battery, a ring of 
vibration motors, and a secure strap. Trainers can use the WAG System to record and save motions for 
distribution to trainees, while Trainees can use the system to play back those motions with directed vi-
bratory feedback. Initial prototypes have attracted potential partners interested in introducing the tech-
nology to markets including athletic training and physical rehabilitation. 
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Challenge Definition 

Over a lifetime, an individual will occasionally need to undergo training – for a new job, a hobby, 
recovery from an injury, etc. With current technology, this process can be inefficient and time consuming, 
often involving doing a task wrong multiple times before learning to do it right. Imagine T’ai Chi students 
learning a new form. The master must first demonstrate the form being taught. The students can then try 
to replicate this, but usually need some personal guidance. The master may need to physically and verbally 
instruct each student to correct the student’s mistakes. While this process may work, it is not very effi-
cient, and demands lots of personal attention, which is hard to give to a room full of students.  

Industrial operations provide very different teaching environments from T’ai Chi. In this setting, 
instead of improving athletic ability, teaching is used to explain safe techniques for hazardous or complex 
physical activities. Currently, the most common ways to train individuals are through videos or directly 
with instructors, followed in both cases by extensive practice. Unfortunately, neither approach can guar-
antee that the action is being practiced correctly – something that can have serious consequences in the 
future. 

What if there was a device that provided feedback about how far the user was straying from the 
desired motion? In the first example above, such a system could record one user’s sweeping movements 
and later guide another user through the action. In the work environment, the device could be used to 
ensure that the employee was correctly practicing safe techniques. This device could also catch persistent 
errors more frequently than a trainer.  

Currently, motion capture devices (used in the film industry) and haptic, or tactile, feedback de-
vices (often used for immersive gaming) are commercially available. The few devices that combine wear-
able motion capture and tactile feedback capabilities are currently in research and development and are 
primarily designed for physical rehabilitation or simple demonstrations of matching single poses, rather 
than complex motions. This leaves a need for such a device to be developed for the purpose of training 
someone in a new physical skill. 

A system capable of capturing a motion and conveying corrective feedback during practice, has 
the potential to be used in markets such as physical therapy and rehabilitation, athletic training, and mil-
itary conditioning. In each of these fields, the technology would help to prevent injuries as a result of 
incorrectly executed physical actions.  

Project Statement  

The goal of this project is to create a training tool that makes learning a new physical skill easier. 
The solution is a Wearable Action Guidance (WAG) System consisting of seven wearable bands (the “Suit”) 
and an accompanying computer application. This system helps to increase user autonomy and independ-
ence for learning a physical motion, while attempting to match the quality of feedback from in-person 
trainer. To accomplish this the WAG System uses motion tracking and haptic feedback. Using haptic feed-
back to indicate error in the user's motion, the system provides targeted real-time instructions to the user. 
With real-time feedback, users could immediately correct their errors and learn much faster as a result. 
As a complement to the WAG Band hardware, an easy-to-use graphical user interface (GUI) allows the 
user to find, download, and learn new motion and activities. By combining motion tracking and haptic 
feedback, the WAG System could make athletic training and physical therapy faster and easier.  

Customer Value Proposition 

Traditionally, to learn a new motion, an individual will hire a personal trainer or watch training 
videos online. The trainer will be paid hourly to coach the trainee through the motion. The training ses-
sions will be spread out over days or weeks, during which time the trainer will keep checking in to make 
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sure the trainee is performing the action correctly. In this scenario, the trainer is a significant expense and 
the trainee is entirely dependent on the trainer's schedule, location, and ability to teach. In addition, the 
feedback given by the trainer is limited to the errors that s/he can visually detect during practice. A trainer 
would likely miss small errors, particularly at the beginning of the training when the user is more error 
prone due to lack of practice and experience. If the trainer misses these errors, the trainee may learn the 
motion incorrectly, resulting in injury or more training to fix the problem later. A trainer also may not 
consistently point out persistent errors that the trainee should address.  

To learn a new motion using the WAG System, Trainees will purchase the system, choose the 
motion file they want to learn from a motion library, put on and calibrate the WAG System, and play back 
the motion training file. Trainees will then practice the motion by playing back the file numerous times 
over the course of days or weeks. Using the WAG System, Trainees will make a one-time payment for the 
system, and (possibly) a one-time payment for the motion file. Trainees can then learn at their own pace, 
can practice (and be corrected) according to their own schedule, and could become as accurate as the 
motion file they are using to practice. 

As these examples illustrate, once a WAG System has been purchased, it is thereafter completely 
reprogrammable for any desired motion or activity. It is possible that trainers would charge a fee to pur-
chase a motion file but that cost will likely be significantly less than the cost of a personal trainer. In addi-
tion, the WAG System, once purchased, will always be available to the Trainee, unlike a trainer who may 
be too busy to meet or not easily accessible due to weather or lack of transportation. The WAG System 
has the potential to provide higher quality training since it is designed to detect real-time deviations 
through accurate sensor readings rather than waiting for a trainer to notice an error. The sensor readings 
will also notice much more subtle deviations than a human typically would. Overall, the WAG System has 
the potential to be more effective, efficient, and cost effective than traditional training methods.   
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Background Research 

This chapter presents an overview of the current research for a number of relevant technologies 
and is used as a basis for the WAG System design and development. 

Exoskeleton Applications 

In 2013, two different research groups published papers describing separate exoskeletal-like sys-
tems designed to assist the user’s walking gait. The exosuits, which were not rigid and did not impede 
movement, are of interest to this project because they focused on creating an exoskeleton with actuation 
while minimizing the strain and impedance on the body. Both papers discussed two important design 
considerations: matching the human’s degrees of freedom and keeping the weight of the suit relatively 
low. The first paper, written by Wehner et al, is titled A Lightweight Soft Exosuit for Gait Assistance [1] 
and the second, written by Ashbek et al, is titled Biologically-Inspired Soft Exosuit [2]. Pictures of the de-
signs can be seen in Figure 1 and Figure 2, respectively.  

Wehner analyzed which parts of the body move the least during normal movements and used 
those points to help assert torque to the joints. In contrast, Ashbek explained a design of fabric “webbing” 
that used the body’s movement to create moments around the various joints that assisted the user. Both 
had unique and interesting designs for a lightweight exosuit used on the legs. 

 

 

Figure 1. A light exoskeleton for gait assis-
tance [1] 

 

Figure 2. A biologically inspired soft exosuit [2] 

 
Common areas for research in rehabilitation exoskeletons focus on the arms and hands. The 

EMG1-driven Exoskeleton Hand, presented by Ho, et al, at IEEE’s International Conference on Rehabilita-
tion Robotics, was developed to help stroke patients recover the use of their hands [3]. The system has a 
linear actuator for each finger along with a motor control box and an external, wireless remote control 

                                                           

1 Electromyographic signals. EMG signals are those formed by the body such as heart beats or other elec-
trical nerve signals controlling muscles. 
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system. This device uses EMG signals from the wearer to determine the desired action and guides the 
hand through that action. Another example of a rehabilitating exoskeleton hand was described in a paper 
by Cahn, et al. entitled Finger Grip Rehabilitation Using Exoskeleton with Grip Force Feedback [4]. This 
system, shown in Figure 3, consists of two exoskeletons, a slave and master, which incorporate two dif-
ferent modes of operation. The first mode allows the user to control the slave system through the move-
ments of the master system. The second mode allows the user to record a movement using the master 
system and then play it back again using assistance from actuators. 

 

 

Figure 3. The master of a master/slave wearable robot system [4] 

Wearables 

Outside the realm of rehabilitation, Dexta Robotics created an exoskeletal glove called Dexta F2 
(Figure 4) that allows the wearer to either interact with virtual objects or control a robot [5]. The device 
uses rotational sensors to track movement and has force feedback units on the index finger and thumb. 
A signal can be sent to the glove to lock the feedback unit in place and not allow those fingers to close any 
further. This system is of interest to this project because of its simplicity and low cost. 

 

Figure 4. The Dexta F2 glove [5] 
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The realm of haptic feedback as applied to wearable exoskeletons has been growing rapidly in 
recent years due to interest in immersive gaming. These systems range from small components like the 
gloves created by CyberGlove Systems [6] (Figure 5) and NeuroDigital Technologies [7] to full body suits 
like those developed by PrioVR [10] (Figure 6) and Tesla Studios [8] (Figure 7). Some of these systems, 
such as KOR-FX [9], provide only haptic feedback in the form of vibration or force feedback, while others, 
like PrioVR [10], also provide game control. Most of these systems are either under development or for 
commercial use, so limited information about the specific technology or software is publically available. 

 

Figure 5. Cyberglove glove with force feedback [6] 

 

 

Figure 6. PrioVR motion capture and  
game control system [10] 

 

Figure 7. Tesla Suit for in game motion capture  
and haptic feedback [8] 

An example of an open source wearable robotic controller was described by Cele, Ybes, et al [11]. 
The goal is to translate human motion into actions mimicked by the robot. This project uses a wearable 
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sensor array consisting of eight sensors – six linear potentiometers on the legs and hips and two accel-
erometers on the arms. Data is transferred directly to the robot from the sensors over the ZigBee com-
munication protocol. A fuzzy logic component filters the signals and converts them into usable drive val-
ues for the motors. This project is useful because it describes exactly how user motions were tracked, 
smoothed, and translated into drive values. 

Motion Capture 

Motion Capture Systems 

There are currently two main types of motion capture systems: optical and mechanical. Optical 
recording uses multiple cameras to detect either markers on a user’s body or features in the images. This 
type of motion capture is typically very accurate and capable of fast update rates. Although, these systems 
have a limited range of applications due to their cost, lack of portability, and time required for processing 
image data, they are commonly used in the animation and film industries. Optical motion capture systems 
can cost $50,000 for systems with low capture area and over $1 million for more precise systems [12], 
while image-based methods, which use computer vision techniques to discern motion without wearing 
special markers, are both less expensive and less accurate. 

The second type of motion capture, called a mechanical system, uses an “exoskeleton” of sensors 
on the user’s body. These sensors can include accelerometers, gyroscopes, and magnetometers, or po-
tentiometers and flex sensors, to determine location in 3D space. These systems are more portable than 
optical or image-based systems, but must have many degrees of freedom, fit properly, and enable smooth 
movement to avoid impeding movement. Magnetic systems detect the position of different locations on 
the body using magnetic fields, either generated by the Earth or specifically for the motion capture sys-
tem. They are fairly accurate and fast, but cost more than accelerometers or gyroscopes, consume higher 
amounts of power, and are more sensitive to metallic objects in the environment. Inertial motion capture 
systems use accelerometers and gyroscopes to estimate movements but these sensors are prone to drift 
over time, making them less accurate. These different types of systems are often combined to improve 
performance. For example, Xsens produces both individual sensors and full suits using gyroscopes, accel-
erometers, and magnetometers; however they cost up to $12,200 for the hardware components alone 
[13]. 

Motion Capture Software 

Although many motion capture companies develop proprietary software to accompany their 
hardware, independent software, such as Autodesk MotionBuilder [14], and open source packages, such 
as OpenMoCap [15], are also available. Proprietary software is often expensive – a one-year subscription 
to Xsens’s motion capture software can range from $5,400 to $9,500 [16] – and lack of support and func-
tionality could make the open source options undesirable. Many motion capture applications are also 
designed for animation or film rather than motion analysis or training, making their architecture not suited 
for playback.  

An important component to motion capture software is how the motion data is stored. One en-
coding method is to maintain all raw sensor data [12, 17], while another contains representations of points 
in space with respect to a global coordinate frame. The latter, called translational files, allows for more 
complex analysis of the motion capture data. A third category of file encodings represents data based on 
segments or limbs rather than free floating points in space. Files of this type, referred to as rotational files, 
contain information about the rotation of segments and are typically easier to use because the work of 
relating points to a skeleton has been done. Many companies have special file formats for use within their 
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motion capture software, but there are several standards commonly used within the industry, including 
.C3D, .bvh, .amc, .asf, and .fbx file formats [19, 12]. 

Databases for captured motion are currently available on the internet, some of which support the 
file formats listed above. Academically supported databases include the CMU Graphics Lab Motion Cap-
ture Database [18], while motion capture community databases include the Motion Capture Society’s 
Motion Capture Library [19]. Many of these allow free download of recorded content, but do not support 
sharing of original content.  

Position Determination 

Motion capture systems must be able to interpret human position based on sensor readings. The 
method for determining a user’s position depends on the type of system used. Mechanical systems, which 
use sensors to directly measure joint angles, determine the user’s position by calculating joint angles from 
sensor data. After this, kinematics can be used to determine the location of a point along a body segment. 
Multiplying transformation matrices containing joint angles and body segment lengths results in position 
information. This information is then as useful as the output of accelerometers or gyroscopes.  

Inertial sensors are also used in motion capture and give information about the sensor position 
rather than joint angles. Unfortunately, inertial sensors tend to have significant error and drift over time. 
Therefore, techniques are needed to combine and smooth the sensor data. These are commonly referred 
to as sensor fusion techniques. Two well-known examples are Kalman filters and alpha-beta filters. Kalman 
filtering combines control inputs with sensor readings in a two-step recursive process that yields an esti-
mate of the resulting state or position. Alpha-beta filtering works similarly to Kalman filtering. Although it 
is slightly less accurate than Kalman filtering, it is less computationally expensive and does not require a 
model of the system [20]. Some companies develop custom sensor fusion algorithms for specific sensors 
or applications. For example, MTi 1-series IMU from Xsens features its own sensor fusion algorithm [34].  

Feedback 

Some sort of physical feedback is necessary to convey how the user’s body position varies from 
the target position. Two ways to achieve this are force feedback, and haptic feedback.  

Force Feedback 

Force feedback is the simulation of physical forces such that a person can interact with and 
“touch” virtual objects and experience a force pushing back from an object [21]. When applied to an exo-
skeleton, force feedback can simulate an environment or motion paths. Because force feedback systems 
actually apply forces to the user, they are very helpful for applications like robotic surgery, where visual 
feedback alone does not provided the surgeon with enough tactile information.  

Haptic Feedback 

Haptic feedback uses the sense of touch without actually pushing on the person. There are several 
forms of haptic feedback including cutaneous, kinesthetic, vibratory, or tactile [22]. Cutaneous feedback 
and tactile feedback both involve direct skin contact; the difference is that cutaneous is typically on the 
arms while tactile is typically on the fingertips. Kinesthetic feedback involves guidance of a limb or digit 
through external structures. Vibratory feedback is the easiest and cheapest to implement, and can be 
found in many common devices, such as cellphones. The two prominent types of haptic vibrators are 
linear resonant actuators (LRAs), as seen in Figure 8, and electric rotary vibrators (ERVs), shown in Figure 
9. Both are very small and lightweight, making them ideal for wearable applications. The tradeoff, is that 
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LRAs can be more efficient than ERVs, but they cost more and require special driver circuitry to control 
the vibrations [23].  

 

Figure 8. Basic principle of a Linear Resonant Actuator (LRA) [24] 

 

Figure 9. Basic operation of an Electric Rotor Vibrator (ERV) [25] 
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Sensor Types 

The main functionality of this project rests in the accuracy of the sensors and their ability to rep-
resent the world. This section describes several types of sensors and how they can be used to capture 
various types of motion for applications in this project. 

Accelerometers 

Accelerometers are devices designed to measure acceleration along one or more axes at a specific 
point. Several types of accelerometers are suitable for this project. Piezoelectric accelerometers use the 
movement of piezoelectric crystals2 mounted to a moving mass to generate a voltage related to acceler-
ation [27]. Piezoresistive accelerometers use a similar moving feature to the capacitive accelerometers, 
but the movement of the feature changes the device’s resistance [26]. This resistance change can be con-
verted to a voltage and digitized. Hall Effect accelerometers measure motion using a changing magnetic 
field [27]. Magnetoresistive accelerometers use a magnetic field to change resistivity of a material and 
ultimately cause a noticeable change in voltage when placed in a voltage divider circuit. Capacitive accel-
erometers measure a change in capacitance caused by the movement of small features within the device 
[26]. 

 The most commonly available type of accelerometer is a capacitive accelerometer which is clas-
sified under the Micro Electro Mechanical (MEMS) category of accelerometers [27]. Figure 10 illustrates 
the principle of operation of a MEMS accelerometer. 

                                                           
2 Piezoelectric crystals generate electricity based on their deflection from an equilibrium position 
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Figure 10. Basic outline of a capacitive MEMS accelerometer [27] 

To sense acceleration, the movable plates shown in Figure 10 translate along the axis of the sen-
sor. As the plates move, the capacitance between the fixed plates (C1 and C2 in the top left of the figure) 
change. When a reference voltage is applied, the changes in the capacitance create a varying analog out-
put voltage that can be converted into a usable digital reading [27]. 

In order to determine a sensor’s suitability to an application, it is important to consider its cost, 
supply voltage, sensitivity3, range of the readings, and if it is ratiometric4 [27]. The range of readings is the 
range of possible accelerations that the sensor can accurately measure. The range of these readings is 
from 0 up to 16g (16 * 9.8 m/s2).  

For proper functionality, users should be careful not to induce large accelerations/decelerations 
usually caused by dropping the devices as this can damage the unit. Users also must mount accelerome-
ters at the proper angle, as this can have a drastic effect on sensitivity [27]. Some typical applications for 
accelerometers are measuring tilt/roll, vibration, accelerations along various axes, and position and 
speed. The cost of an accelerometer also can range from several dollars to hundreds of dollars based on 
the precision needed and the output features of the accelerometers.  

                                                           
3 Sensitivity indicates how quickly the output of the sensor changes with respect to the input voltage and is 

measured in Volts/g for accelerometers and mV/0 for gyros 

4 Ratiometric sensors are those that scale the output voltage proportionally with change supply voltage 
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Gyroscopes 

Gyroscopes, also known as gyros, today measure the angular velocity of an object rotating around 
a point. Most gyros are designed using MEMS technology (see Figure 10) and in contrast to MEMS accel-
erometers, measure angular rotation linear motion. Inside a MEMS gyro, a mass moves producing a 
change in the MEMS device’s capacitance and a measurable voltage (see Figure 10); this is the output of 
the gyroscope [28]. The output may be either digital or analog and can be used to tell how quickly and 
what direction the center axis of the gyroscope sensor is moving around the axis. As such, the gyro has 
important characteristics for this project. Similar to the accelerometer, the gyro has a sensor resolution 
and an output sensitivity3 [28]. The cost of gyros is comparable to most accelerometers. The limitation to 
this technology is the lack of accuracy due to noise from small vibrations. 

Instead of using mechanical motion to measure rotational speed, some types of gyros use the 
Sagnac Effect for measurement. The Sagnac effect results after two beams of light are sent around a path 
and then measured at a detector. This principle is demonstrated in Figure 11. If the device is not moving, 
the beams will travel equal distances and reach the detector at the same time. If the device is moving, 
however, one of the paths of the light will be shorter and the interference pattern between the different 
paths can be measured and related to the direction of rotation [29].  

 

 

Figure 11. Basic principle of operation of a gyro with the Sagnac Effect [29] 

One type of gyro that uses this effect and fiber optic technology is called a ring laser gyro (RLG). 
RLGs use a single laser beam that is split and reflected around a glass chamber containing inert gases such 
as helium and neon. Fiber Optic Gyros (FOGs), another type of gyro, use a beam of light produced from a 
laser diode or a photodiode, but instead of a glass chamber, light passes through a single fiber optic cable. 
The two basic categories of FOGs are closed loop, which use an optical chip, and open loop, which use a 
piezo-electric modulator to modulate the light in the circuit. The open loop tend to be much cheaper 
because of the cost associated with the integrated optical chip. A commercial example of a FOG is the 
DSP-1750 FOG produced by KVH Industries [29].  

Two main advantages of FOGs over MEMS gyros are:  
1. FOGs are immune to vibration noise as they track interference of light patterns instead of 

changing mass positions  
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2. FOGs tend to be more accurate due to the precision of the components and the resistance 

to changes in temperature.  

However, FOGs are typically much more costly, and as such MEMS gyros are preferred for this project 
[30]. 

Bias or error in measurements of gyro systems tends to accumulate over time. This error is also 
influenced by temperature but can be reduced by using lookup tables for various temperature ranges 
[30]. Figure 12 below shows a comparison of different gyro systems and the error that builds up over time. 
The scale factor corresponds to how much the output reading differs from the actual velocity. Overall, the 
most accurate sensors tend to be in the bottom left corner of Figure 12, but these are also the largest and 
most costly. Low-cost calibration techniques, which usually involve data collection of gyro readings fol-
lowed by software offsets, can reduce accumulated error in gyroscopes [31]. 

 

 

Figure 12. Chart describing the bias of gyros over time [32] 

Inertial Measurement Units (IMUs) 

An inertial measurement unit (IMU) consists of a collection of gyros, accelerometers and magne-
tometers to make a system for tracking position. One advantage is that IMUs tend to have an overall lower 
chip footprint than the component sensors combined. Calibration of the IMU is required to reduce the 
effect of the bias from gyros and accelerometers [33]. Some IMUs have microcontrollers (MCUs) that can 
combine gyroscope and accelerometer data to useful values such as position angles and quaternions using 
sensor fusion algorithms [34]. IMUs tend to be more expensive than single sensors, but are more accurate 
than the individual sensors. 

Communication Systems for Sensors 

In 2007, Lee et al evaluated the features and uses of various radio frequency (RF) communications 
protocols, Wi-Fi, Bluetooth, ZigBee, and ultra-wideband (UWB), with the desire to help engineers choose 
an appropriate protocol for their system communications [35]. All of these technologies operate around 
2.4GHz in the unlicensed radio spectrum band for industrial, commercial and medical (ICM) purposes [35]. 
These protocols also revolve around the creation of a wireless personal area network (WPAN), which acts 
as the realm of information transfer between devices using these communications [35]. While the paper 
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discusses many of the specific power consumptions, security strategies, transmission efficiencies, and 
data rate limits of the various protocols, the main theme is specifying engineering factors key to choosing 
the best communication system. For low data rates, small data sizes (less than about a hundred bytes of 
information), ease of use and power consumption, the ZigBee protocol tends to dominate [35]. A benefit 
of ZigBee over the other protocols is the number of sensors that can be added to a single ZigBee network. 
Zigbee can support approximately 65000 sensors per network while other protocols usually support fewer 
than 10. ZigBee also has the added benefit of separating its networks by a specific channel number. The 
channel number allows for smaller subnetworks of devices to be formed.  

Wi-Fi protocols are capable of send much more data than ZigBee. With the recent innovations in 
Wi-Fi technology, the cost of connecting devices to the internet has dramatically decreased, resulting in a 
huge boom in online-integrated technology known as the Internet of Things (IoT). Examples of these de-
vices include wearable fitness bands, smart meters for real-time energy monitoring in homes, and mobile-
connected thermostats and home automation systems produced by Google, IBM and GE [36]. However, 
one of the big concerns with all new devices is the security of data transmissions between devices and the 
Internet. Currently, no well-defined standards exist from either the IEEE or a governmental body dictating 
the security requirements for IoT devices. Additional analysis could be used to help guide in developing 
additional security layers to any communications protocol selected for the overall sensor framework, 
however this falls outside the scope of this project. 
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Concept of Operations 

This project followed systems engineering practices5 and identified stakeholders, determined 
their needs, and translated the needs into functional and nonfunctional requirements. The project also 
established use cases to identify additional requirements and to specify the operation of the software.6 
These requirements and use cases formed the basis for the WAG System design and are described in detail 
below. 

Stakeholders 

Table 1 lists the project’s key stakeholders along with their descriptions, roles, representations, 
priorities, and associated needs (Table 2). Stakeholders were identified by identifying individuals, groups 
and entities that would have an impact on or stake in the project at any point during its lifecycle. 

Table 1 - Stakeholders and Relevant Information 

ID Title Description Role Representation Priority 
Needs 

(see Table 2) 

SH.01 Students Developers Directly involved Self 1 N.04, N.08, N.09 

SH.02 Advisors Advise/grade Directly involved Self 1 N.09 

SH.03 WPI 
Sponsoring 

organization 
Graduation 

requirements 
Registrar 
personnel 

1 N.09 

SH.04 
RBE/ 

ECE/CS 
Departments 

Sponsoring 
departments 

Funding/ MQP 
requirements 

Advisors 1 N.09 

SH.05 End users Use the suit Use the suit Test subjects 2 
N.01, N.02, N.03, 
N.04, N.05, N.06, 
N.07, N.08, N.10 

SH.06 Future students 
Continue work 
on this project 

Continue work 
on this project 

Proxy or not 
represented 

3 N.10, N.12 

 

Needs 

Table 2 lists the key stakeholder needs, and their associated compliance metrics, priorities, and 
stakeholder traceability (validation)7. The traceability column references Table 1 above. These key needs 
were identified by brainstorming use cases, analyzing software operational needs, and investigating the 
roles of the stakeholders. 

                                                           
5  For a general review of SE methods, practices and standard forms, see the CA Department of Transportation web site. 

6 For example, see this Bridging the Gap article. 
7 See:  https://www.captechconsulting.com/blogs/validate-vs-verify-a-traceability-matrix-gift-for-you for clarity between validation and verifi-

cation, and the need for a traceability column in a requirements matrix. 

https://www.fhwa.dot.gov/cadiv/segb/
http://www.bridging-the-gap.com/what-is-a-use-case/
https://www.captechconsulting.com/blogs/validate-vs-verify-a-traceability-matrix-gift-for-you
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Table 2 - Stakeholder needs  

ID Title Description Verification Priority Validation 
(Traceability) 

N.01 Ease of Use 
Should be easy to 

use/wear/interact with 
User test 1 SH.05 

N.02 Save Recording 
Should be able to save a 

recorded motion for later 
use 

User test, 
prototype 

1 SH.05 

N.03 Edit recording 

System should allow for 
basic editing of recordings 

before being published/up-
loaded to the database 

User test, 
prototype 

2 SH.05 

N.04 
Download/open saved 

recordings 

System should be able to 
load existing recording to 

get feedback 

User test, 
prototype 

2 SH.05 

N.05 Playback control 

User should be able to set 
‘breakpoints’, jump to 

places, and pause/play re-
cordings 

User test, 
prototype 

1 SH.05 

N.06 Safety 

System will be designed to 
applicable engineering and 
human interface practices 

that limit injury risk 

Standards 1 SH.05, SH.01 

N.07 
Visualization/ 

Simulation 

User should be able to visu-
alize the motion after re-
cording it and before per-

forming it 

User test, 
prototype 

2 SH.05 

N.08 Adjustable Fit 
Should be configurable for 

different body types 
User test, 
prototype 

2 SH.05 

N.09 System Feedback 
Should provide haptic sys-
tem feedback (vibratory) 

Model, 
simulation 

1 SH.05 

N.10 Documentation 

Should be well docu-
mented. Should provide 
component details and a 

“how-to” of using the soft-
ware and hardware 

User review 2 SH.05, SH.06 

N.11 Response Time 
Should have a non-noticea-
ble response time for hap-

tic vibrations 

Prototype, 
simulation 

3 SH.05 

N.12 Portability8 
Should be portable when 

on and off the body 
Prototype 

test 
3 SH.05 

 
 

                                                           
8 Portability refers to how easily the entire system can be transported when on or off of a person. This 

includes the host computer, the bands and the accompanying charging equipment and Wi-Fi router.  
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Use Cases and User Stories 

This system is intended to perform two primary actions: recording a user’s motion and playing 
back the recorded motion in order to guide another user along the recorded motion trajectory. The use 
cases and user stories below illustrate the interactions between the system, the software, and the user. 
They also identify features and components that may require additional research. Finally, the use cases 
detail typical software usage and operation. 

UC.01 below outlines a process in which a user wishes to learn a motion by using the system with 
a pre-recorded motion file. The user can view a simulation of the motion file to verify the motion is the 
one s/he specified by the motion file. After the user starts using the system, s/he will experience vibration 
along her or his limbs indicating directions to the correct location of the motion.  
 

UC Identifier UC-01 

UC Name Playback Downloaded Action 

Primary Actor(s) Baseball player who wants to practice a pitch 

Initiating Conditions(s): 
1. Athlete identifies a pitch he wants to practice 
2. Athlete downloads the action he wants to practice onto the computer 

UC Description 

1. Athlete puts on the WAG Bands and turns the system on 
2. Athlete pairs the system with his computer using a simple GUI 
3. Athlete calibrates the system 
4. Athlete plays the desired action on the GUI’s motion viewer window to 

verify the motion 
5. Athlete presses a button on computer to start the motion playback 
6. Athlete moves through the action following the haptic vibrations 
7. Athlete restarts the action using the GUI to play it through again 
8. Athlete finishes the action 
9. Athlete presses a button on the GUI to stop playback capabilities 
10. Athlete removes the WAG Bands and connects charger 

Alternative(s) and 
corresponding  
step number 

5.  Athlete issues simple voice command to start the motion playback 
9.  Athlete issues simple voice command to stop playback capabilities 

Exit Conditions 

 Athlete turns off WAG Bands and closes GUI 

 Battery dies on computer or bands 

 Athlete moves out of range of Wi-Fi router 

Needs/Requirements 
Discovered 

 User needs to be able to interface with library of actions 

 User should be able to stop/start the system via GUI on the computer 
and via simple voice commands 

 System should include basic controls for action playback 

 User needs to be able to connect/disconnect the WAG Bands from the 
computer 

 User needs to be able to charge the system or tether it for control 

Models/Studies Needed 

 Response time for haptics 

 Capabilities of wireless communication with computer (ranges) 

 Battery life 

 
UC.02 describes the process by which a user’s own motion is recorded. The user can start or stop 

the motion recording via verbal commands or GUI input. Once the motion is recorded, the user can crop 
the motion recording to narrow it down to a specific selection, and play it back as a simulation in order to 
verify his/her recording. This motion recording can then be saved to a file and kept for personal review, 
or distributed to others as a teaching tool for that particular recorded action. 
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UC Identifier UC-02 

UC Name Record Action 

Primary Actor(s) T’ai Chi trainer 

Initiating Conditions(s): A T’ai Chi trainer wants to teach others T’ai chi 

UC Description 

1. T’ai Chi trainer puts on WAG Bands and turns the system on 
2. T’ai Chi trainer pairs the system with her computer using a simple GUI 
3. T’ai Chi trainer calibrates the system 
4. T’ai Chi trainer selects the recording interface on the GUI 
5. T’ai Chi trainer issues simple voice command to start the recording  
6. T’ai Chi trainer performs and records a T’ai Chi form 
7. T’ai Chi trainer issues simple voice command to stop recording 
8. T’ai Chi trainer plays the action on the GUI’s simulation to verify motion 
9. T’ai Chi trainer uses the GUI to complete small edits on the action 
10. T’ai Chi trainer removes the suit and connects charger 
11. T’ai Chi trainer uploads the complete motion file to the library 

Alternative(s) and 
corresponding 
step number 

5.  T’ai Chi trainer uses GUI button to start the motion playback 
7.  T’ai Chi trainer uses GUI button to stop the motion playback 

Exit Conditions 

 T’ai Chi trainer stops the recording through simple voice commands or 
the GUI 

 The maximum recording time is reached 

 Suit battery dies or computer battery dies 

Needs/Requirements 
Discovered 

 User needs to be able to see the action recorded 

 User needs to be able to edit the action (trim it to critical parts) 

Models/Studies Needed 
 Study of visualization tools of motion 

 Study of recording process for sensors to minimize data file size 

 
Each of the user stories below highlights a different part of the intended software functionality. 

These stories specify what needs to be available to the user, and intend to provide specific usage examples 
for the system.  

 As a Trainer, I can create a new motion file with a unique name and description. 

 As a Trainer, I can record myself moving through a motion and save it to a file. 

 As a Trainer, I can crop off the first 3 seconds of my motion. 

 As a Trainee, I can search through a library of motion files and select one to learn. 

 As a Trainee, I can play back a motion at half speed. 

 As a Trainer, I can connect my bands to the application with one click. 

 As a Trainer, I can calibrate my bands by mimicking the pose shown on the application and saying 
“calibrate.” 

 As a Trainer, I can disable my wrist bands. 

 As a Trainee, the application will notify me when my bands disconnect from the application. 

 As a Trainee, the application will notify me when the battery in a band needs charging. 

 As a Trainee, I can step-through frames of a motion. 

 As a Trainer, I can review the motion I recorded. 

 As a Trainee, I can preview a motion before I play it.  
 
The user stories and use cases are used to develop the functional requirements which are de-

tailed in the following section.  
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Requirements  

Table 3 and Table 4 present the functional and nonfunctional project requirements for this pro-
ject, respectively. Functional requirements detail how the system should behave while the non-functional 
requirements describe auxiliary aspects of the system not necessarily critical to operation. The require-
ments were developed by analyzing the stakeholder needs and use cases, and then developing “good” 
requirements that were traceable, unambiguous, measurable, testable, and feasible.9 Each requirement 
has a short description, validation, a priority, and a verification process [37].  

The requirements are individually testable, and encompass concrete subsections of the project 
that must be realized to be considered a success. 

Functional Requirements 

Functional requirements are presented in Table 3 on the following page. In this table, the require-
ments FR.01, FR.02, FR.03, and FR.06, refer to the ability of a user to record motions; preview or review 
the recorded motions in a GUI visualization; control playback and recording with controls such as play, 
stop, fast-forward, or rewind; make basic edits to the recorded motions; and save the motions for future 
use.  

The requirements FR.04 and FR.05 involve the ability of users to control settings on the motion 
they are about to learn. These settings allow the users to learn at their preferred speed, and enable users 
to repeatedly practice specific sections of the motion without needing to play through the entirety of the 
motion every time. 

Finally, the last two requirements, FR.07 and FR.08, involve haptic feedback. These requirements 
ensure that the system helps to guide the user through a motion. The response time between when the 
suit senses positional error and when the user feels the suit’s haptic feedback should not be noticed by 
the user. FR.08 relates to a human’s response time to recognize a visual change.  

 

                                                           
9 For example, see: Slide Share Good Requirements  or IBM Good Requirements 

http://www.slideshare.net/guest24d72f/8-characteristics-of-good-user-requirements-presentation
http://www.ibmpressbooks.com/articles/article.asp?p=1152528&seqNum=4
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Table 3 - Functional requirements for this project 

No. Title Description 
Validation 

(See Table 2)10 
Priority 

Verifica-
tion11 

FR.1 Record Time 
The system shall be able to record at least 
10 min. of continuous movement 

N.02 1 
Prototype, 
user tests 

FR.2 
Edit Motion 
Recordings 

The system shall allow the user to perform 
basic editing on a motion, including crop-
ping recorded actions 

N.03 2 
Unit tests, 
Prototype 

FR.3 
Transferrable 
Motion Re-
cordings 

The system shall be able to save motion re-
cordings to a file format 

N.04 1 
Unit tests, 
Prototype 

FR.4 
Playback 
Speed 

The system shall allow the user to specify a 
range of motion playback speeds 

N.05 2 
Unit tests, 
Prototype 

FR.5 
Motion Play-
back Controls 

The system shall allow the user to control 
motion playback via setting breakpoints, 
skip forward/backward, play/pause, stop 

N.05 3 
Unit tests, 
Prototype 

FR.6 Simulation 
The system shall allow the user to view a 
simulation of the movement 

N.07 2 
Unit tests, 
Prototype 

FR.7 
Haptic Feed-
back 

The system shall provide vibratory feedback 
relative to positional errors made by the 
user 

N.09 1 
Prototype, 
Modeling 

FR.8 
Haptic  
Response Time 

The system shall provide haptic feedback 
within 100ms of a positional error made by 
the user [38] 

N.11 2 
Unit tests, 
Prototype 

FR.9 
Visual Play-
back Ghosting 

The system shall visually overlay the user’s 
current location with the intended position 

N.01, N.07 3 
Unit tests, 
Prototype 

 

Non-Functional Requirements 

Non-functional requirements are presented in Table 4 on the following page. Many of the non-
functional requirements listed are self-explanatory, but a few require more information. NFR.02 and 
NFR.04, though intangible, can be measured by surveying test subjects to determine how well they felt 
that the system adhered to the requirements. NFR.03 refers to safety – although there are currently no 
OSHA standards for exoskeletal robots, ISO 13482 covers "personal care robots," which includes wearable 
exoskeletons. 

 
  

                                                           
10 Validation refers to requirement traceability. Essentially this asks what need each requirement comes from. 

11 Verification refers to how the requirement will be tested for compliance. 
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Table 4 - Non-functional requirements for this project 

No. Title Description Validation Priority Verification 

NFR.1 
Degrees of  
Freedom 

The sensors of the system shall allow for 
up to 9 degrees of freedom per arm 

N.01 1 
Prototype, 
modeling 

NFR.2 Non- Restrictive 

On a Likert scale of 1 to 5, at least 80% of 
the users shall rank the system as 4 (good) 
or 5 (very good) in terms of motions not 
being impeded by the system 

N.01 2 
Prototype, 

User studies 

NFR.3 Safe Operation 

The system shall adhere to ISO 
13482:2014(en) safety standards.    
NOTE:  According to the FDA classification of 
devices, this sort of device falls into class II. 

N.06 1 
Prototype, 
Modeling 

NFR.4 
Fits Variety of Hu-

mans 

On a Likert scale from 1 to 5, 60% of users 
should rank the system adjustability and 
fit as 4 (good) or 5 (very good)  

N.08 2 
Prototype, 
Modeling 

 

NFR.5 Documentation 

Documentation is included for all parts of 
the system for developers to continue the 
project and for users to understand the 
system 

N.10 2 
User study, 
Prototype 

NFR.6 Lightweight 
The weight of the entire wearable system 
shall be less than 10 pounds 

N.13 1 Prototype 

NFR.7 Intuitive UI 
The system interface shall be ranked as 
either a 4 or 5 on a Likert scale by at least 
90% of users for ease of navigability. 

N.01 2 
Prototype, 

User studies 

NFR.8 
Playback Battery 

Life 

The system shall support at least an hour 
of continuous playback which involves the 
use of vibratory feedback 

N.13 1 Prototype 

NFR.9 
Recording Battery 

Life 

The system shall support at least 2 hours 
of motion recording which does not in-
volve the use of vibratory feedback 

N.13 1 Prototype 
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System Design 

This project's deliverables include wearable action guidance (WAG) bands for the arms, shoulders, 
and chest, and a software application to accompany the bands. Each band consists of a hook and loop 
strap, a secure elastic cord, a wireless electronic control board, and vibratory modules for feedback. The 
WAG Bands for the arms, shoulders and chest make up a “Suit.” Functionally, the system supports two 
types of users who correspond to different modes of use: a Trainer, who will primarily record motions, 
and a Trainee, who can play back motions. During motion playback, haptic feedback indicates the Train-
ee's deviations from the motion in real-time so the Trainee can correct himself/herself as the motion is 
executed. The main benefit of a system with these capabilities is the potential to train individuals in a 
more efficient, more effective, and overall less expensive manner. Due to time and financial limitations 
the project is limited to the upper body only, however the WAG System could easily be expanded to in-
clude lower body. T’ai Chi is applicable for system validation because it consists of large sweeping motions 
and is relatively slow. 

“Suit” Overview 

The wearable component of the system consists of a set of seven bands that the wearer places 
on his/her wrists, biceps, shoulders, and on the front of the torso, as illustrated in Figure 13. Each shoul-
der, wrist, and bicep band looks similar to the prototype in Figure 13 with the overall design. Each band 
consists of a 3D printed case, a strap, a 1000mAh battery, a Teensy 3.2 microcontroller, a Wi-Fi module 
(ESP8266), an accelerometer/gyroscope sensor package (MPU6050), and six vibration motors. The final 
result of this design can also be seen in Figure 14. The bands use the accelerometer and gyroscope sensors 
to calculate their orientations. 

The bands communicate wirelessly and have individual batteries, allowing them to be completely 
self-contained. Each band is securely affixed to the user to prevent the sensors from shifting while in use 
to maintain sensor accuracy. The bands use six vibration motors to indicate motion error to the wearer.  

The chest band is distinct from the other bands in two key ways: it does not have any motors and 
it has a voice control module. The chest band is the central control and reference unit; thus it is the only 
band that the wearer is required to use. This module uses voice control to allow the user to give hands-
free commands to activate various functions of the WAG System. 

 

 

Figure 13. Band concept layout 
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Figure 14. Physical realization of band layout on a person 

 

Figure 15. Band prototype design 

The physical realization of the band prototype in Figure 15 can be seen in Figure 16. The Initial 
Band Prototype section within Appendix 8 – Precursor Testing Before System Design Stages includes a 
progression of all prototypes that led up to the final version shown here. 
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Figure 16. Physical band prototype 

The band for the center of the chest is the reference point for the rest of the suit and can be seen 
in Figure 17.  

 

Figure 17. Chest band prototype design 

The physical realization of this chest piece band attached to the chest straps can be seen in Figure 18. 
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Figure 18. Physical chest band prototype 

 
The final component of the system is the host computer that runs the computer application. This 

can be the Intel Atom or any other computer capable of running the control interface where the user 
controls the suit and playback settings. Motion files can be stored to the local computer and a cloud library 
will be implemented later for file sharing.  

Requirements and Specifications 

Detailed below are the requirements relating to the full, wearable system. The wearable compo-
nents were designed to meet the requirements specifications. The applicable requirements are FR.07, 
NFR.01, NFR.02, NFR.03, NFR.04, NFR.06, NFR.07, NFR.08, and NFR.09. 

The design process of the band casing was primarily driven by the non-functional requirements. 
These requirements focused on making the bands user friendly, comfortable, and safe. The band proto-
types were designed so that no tools are needed to open and close them. They are highly adjustable to 
allow differently sized users to adjust them for a more comfortable fit. The bands need to be tightly se-
cured to the user to prevent the sensors from shifting, but not so tight that they would hinder his/her 
motion. The arm bands use hook and loop straps to hold the main part of the band in place and elastic 
cord to hold the vibration motors in place. Both the hook and loop fasteners and the elastic are adjustable. 
The elastic cord allows the user to move each motor to be appropriately and evenly spaced for his/her 
body. A padded harness holds the shoulder and chest bands in place. The harness is adjustable, light-
weight, and unrestrictive. To ensure that the bands are safe to operate, all electronics are completely 
encased, except the vibration motors that have to be in contact with the user's skin to effectively indicate 
motion error.  

The internal design of the bands is such that the components, particularly the accelerometer and 
gyroscope sensors, are securely held in place in order to maintain the accuracy of the bands’ motion data. 
Additionally, because the bands are independent of each other, any one band can be easily replaced if a 
component is broken. There is no hardware limit to the number of bands that can be added; only software 
changes are required to add additional bands.  
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The functional and non-functional design requirements drove the design process to ensure that 
the system meets the needs of the challenge specification.  

Software Overview 

The WAG System includes an application with a graphical user interface (GUI) that handles user 
inputs and the system’s modes and settings. This application runs on the user's computer and allows the 
user to easily interact with the system. 

Requirements and Specifications 

The WAG System software design came directly from the requirements detailed in Table 3 and 
Table 4, as well as the user stories and use cases developed in the Concept of Operations section. The 
software-related requirements are FR.01, FR.02, FR.03, FR.04, FR.05, FR.06, FR.07, FR.08, FR.09, NFR.05, 
and NFR.7. These requirements fall into a few categories: playback, recording, editing, and opening/saving 
a motion. A state diagram detailing a user's interactions with the GUI, shown in Figure 19, describes the 
control flow of the software. Each arrow represents a button that changes the content of the primary 
screen. This diagram only shows interactions that involve major screen switches for the user; interactions 
changing only the state of the current screen are not shown.  

 
 

 

Figure 19. User interface flow diagram 

The WAG System has two types of users: Trainers and Trainees. Since these users have different 
needs and can interact with the software differently, the application first prompts users to select their 
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type (Trainer/Trainee) on the program's welcome window. The program then opens up windows accord-
ing to the user type, as illustrated in Figure 19. Trainees only have the ability to open and playback motions 
recorded by Trainers, while Trainers can record, edit, and/or playback motions that they have created. As 
a result, Trainees only have access to the open menu while Trainers can open or save their motions from 
any window. Each of the three modes (Recording, Editing, Playback) are on separate screens so Trainers 
will only see settings pertaining to the mode they currently have open. The full descriptions of the modes 
can be seen in Table 5. 

Table 5 - Software modes and descriptions 

Mode Selectable by Description 

Record Trainers 
Trainers can adjust relevant settings and start/stop recording a motion. 
Trainers also have the ability to record over an existing motion.  
Trainers can switch to edit or playback mode. 

Edit Trainers 

Trainers can crop their motion and edit the motion's name, description, and 
keywords. This mode includes the motion viewer so Trainers can see their mo-
tion performed on a 3D model. From here, Trainers can return to recording 
mode to rerecord the motion, or they can enter playback mode to see how a 
Trainee would learn the motion. 

Playback 
Trainers and 

Trainees 

Contains playback settings and the motion viewer. This mode allows Train-
ers/Trainees to playback the current motion file on either the viewer window's 
3D model only or both the 3D model and the WAG bands. 

 
Saving and opening a motion file can be done either from the user's local file directory or through 

the motion library. When opening a motion from the motion library, users search for specific motion 
names, descriptions, or associated keywords. 

Hardware Overview 

The WAG Bands are designed to be compact and lightweight. The high level design diagram in 
Figure 20 shows the general outline of all the hardware for the band. Each band uses a wireless link to 
send data from the accelerometer/gyroscope to the main computer. The microcontroller transmits data 
between the sensors and the wireless link, and controls the vibration feedback motors. The design 
changes slightly for each different type of band, but the general architecture is still the same. 

Hardware Requirements 

This section pertains to hardware requirements that come from functional and nonfunctional re-
quirements established by the systems engineering design process. The hardware requirements FR.01, 
FR.07, FR.08, NFR.01, NFR.03, NFR.11, and NFR.12 come from Table 3 and Table 4 in the Requirements 
section. The bands must be able to provide haptic feedback within 100ms of error detection (10Hz). Each 
band also must be able to support 2 hours of recording usage, and 1 hour of vibration playback. The sys-
tem hardware was designed to meet each of these requirements so that the system meets the needs of 
the challenge specification.   
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Technical Documentation 

Band Design 

Each band is responsible for communicating with the off board computer by sending its position 
data. The various types of bands and their functions can be seen in Table 6. 

Table 6 - Band tasks 

Band type Quantity of band in system Function 

Wrist 2 
Measure orientation of wrist 
Provide position information to computer 
Receive rotational and translational feedback from computer 

Bicep 2 
Measure orientation of bicep 
Provide position information to computer 
Receive rotational and translational feedback from computer 

Shoulder 2 
Measure orientation of shoulder 
Provide position information to computer 
Receive rotational and translational feedback from computer 

Chest piece 1 
Measure reference orientation at center of chest 
Manage voice commands (for speech recognition) 

Band Electronics 

The high level overview of the band hardware can be seen in Figure 20. The core functionality of 
the band is its ability to determine its orientation in 3D space using a six degree of freedom accelerometer 
and gyroscope sensor package over I2C (2 wire)12 communications. The band’s primary processor is a 
Teensy 3.2 which runs at a clock speed of 96MHz, and features 256k bytes of flash memory and 64k bytes 
of RAM [39].13 The band communicates with the software application over Wi-Fi using an ESP8266 Wi-Fi 
chip. The Teensy relays the orientation updates it receives from the accelerometer/gyroscope sensor over 
UART to the Wi-Fi module, which packages the data into TCP packets and sends those packets to the host 
computer via Wi-Fi.  

In order to provide vibratory feedback, the system uses six electric rotor vibrators (ERVs). These 
are about half the size of a dime and provide a sensation similar to the buzz of a cell phone on vibrate 
mode. Each band contains its own battery which supplies the band with 3.7V and 1000mAH capacity. A 
3.3V regulator outputs constant voltage to the ERVs, Teensy 3.2 and ESP8266, which require the lower 
voltage level. Each of the band’s components and their functionalities are listed in Table 7. 

 

 

 

                                                           
12 I2C is a communication protocol developed by Phillips Semiconductor to communicate between inte-

grated circuits using a simple two wire serial communication. The benefit of using this approach is that a simple 
communications bus between an arbitrary number of integrated circuits can be developed.  

13 The Teensy is an embedded microcontroller with more memory and functionality than the Arduino Uno 
platform that runs at 16MHz and has 32k bytes of flash and 2k bytes of RAM. The Arduino platform was considered 
for this project due to its low-cost, but it could not maintain the refresh rate required by the platform. 
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Table 7 - Hardware component functionalities 

Hardware component Description 

Teensy 3.2 
Run communication to ESP8266, receive position and 
rotation information from MPU6050 

ESP8266 
Implement and run Wi-Fi communications over UART 
at 115200 baud 

Low battery detection circuit 
Determine when battery voltage has dropped below 
threshold of acceptable operation 

N-channel MOSFETs 
Increase current drive capability of Teensy PWM pin 
from 10mA to 300mA for ERVs 

ERV (Electric Rotor Vibrator) Motors (shaft-less motors) Vibratory feedback 

 
The high-level diagram for the bands on the arms, wrists, and shoulders shown in Figure 20 de-

scribes the hardware for each of the shoulder, bicep and wrist bands. This was then implemented into the 
Printed Circuit Board (PCB) shown in Figure 21. 

 

 

Figure 20. High level band design 
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Figure 21. Printed circuit board of WAG Band 

The high-level diagram for the center chest module seen in Figure 22 shows a slight variation in 
the hardware: the EasyVR 3.0 speech recognition module14 [40]. The chest piece also does not have any 
haptic motor feedback; it is intended to be a central reference frame for the suit, and does not provide 
vibratory feedback.  

Appendix 4 – Assembly & Construction includes additional images of the completed printed circuit 
board for both the bands and the chest module.  

 

 

Figure 22. Chest piece high level design 

                                                           
14 The EasyVR 3.0 module is produced by VeeaR and is intended to be a plug-and-play speech recognition 

module for Arduino platforms. The module comes with 26 built in person-independent speech commands it can 
recognize along with the option to add more custom user-specific words.  
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Figure 23. Printed circuit board for WAG Chestpiece 

Component Selection Justification 

A trade study of different accelerometers, gyroscopes, and microcontrollers was used to select 
components that would allow the WAG System to meet the system requirements. These trade studies 
were conducted using decision matrices, which weight important features of the components to generate 
a final score (see Appendix 6 – Initial Design Steps: Trade Study). The MPU6050 was selected from the 
accelerometer/gyroscope trade study due to its small size, low cost, and high accuracy. The MPU6050 also 
uses built-in motion processing that fuses its accelerometer and gyroscope data into one filtered sensor 
orientation, making it easy to use. 

A key component of the WAG System is the communication between each band and the host 
computer. Three main options exist for wireless communications in this range: ZigBee, Bluetooth, and Wi-
Fi. ZigBee, however is typically used for applications with very low data rates, and therefore, would not 
be suitable for the WAG System. After conducting hardware tests with Bluetooth and Wi-Fi, Wi-Fi was 
determined to be significantly simpler to develop with, while greatly exceeding the data rate requirements 
of the project.  

A decision matrix-based trade study also determined that the easiest to use and least expensive 
Wi-Fi chip available was the ESP8266, while also being able to meet all of the system’s data rate require-
ments. This chip includes an easy to use UART interface and a built-in Wi-Fi stack inside the microcontrol-
ler, and it can be programmed from the Arduino environment. 

The Teensy 3.2 was selected from the microcontroller decision matrix because it features several 
hardware UARTs to debug the module and to communicate with peripherals (Wi-Fi chip), it has a small 
form factor suitable for wearable applications, and it is capable of using the breakout board within the 
final band. Despite being relatively expensive, the Teensy 3.2’s performance, form factor, and debugging 
capabilities made it the best choice as the primary band processor. 

The shaft-less vibration motors were selected due to their cost, size, the intensity of vibration 
they could provide and the simplicity of their controller circuitry. Since the shaft-less rotor motors run on 
a DC voltage, they can be run using a PWM (pulse-width modulation) signal from a microcontroller. This 
signal can be applied using a simple MOSFET circuit, as opposed to the more complex driver circuitry 
required by AC vibration motors.  
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The EasyVR3.0 voice control module was selected based on its pre-configured intuitive control 
and command set. The software libraries available for this board make the module particularly easy to 
integrate into a pre-existing microcontroller project with an additional UART connection. This module is 
fairly expensive ($50), but the benefit of having built-in recognition of 26 commands in several languages, 
along with its general ease-of-use, justifies its cost.  

Sensors and Sensor Fusion 

Each band uses an MPU6050, an accelerometer and gyroscope sensor package, to measure its 
orientation in three dimensional space. The bands use a closed-source motion determination algorithm 
developed by InvenSense to precisely estimate their rotational poses. Each band’s sensors are capable of 
generating pose estimates at rates of up to 200Hz. The MPU6050 is the bands’ means of tracking the 
wearer’s motion. 

Haptic Motor Control 

Each band includes 6 vibration motors distributed in a circle around the band to indicate pose 
error to a user through vibratory stimuli. The bands use these vibration motors to indicate spatial error to 
a user in two primary ways: by guiding the user to rotate the band in-place (a motion similar to turning a 
key), or to guiding the user to move the band perpendicular to its in-place rotation axis (a motion similar 
to moving an arm vertically without rotation). Each band receives error updates comprising three numer-
ical values from the computer application over the Wi-Fi link. These three numerical values describe the 
rotational and perpendicular errors: (1) the in-place rotation error magnitude, (2) the angle describing the 
axis of perpendicular motion error, and (3) the magnitude of the perpendicular motion error. The rota-
tional and perpendicular errors are calculated using a swing-twist decomposition of the error rotation, 
shown in the following equation: 

 
𝑅𝑒𝑟𝑟𝑜𝑟 = 𝑅𝑡𝑤𝑖𝑠𝑡 =  𝑅𝑡𝑤𝑖𝑠𝑡𝑅𝑠𝑤𝑖𝑛𝑔 

𝑝 = (𝑎𝑥𝑖𝑠(𝑅𝑒𝑟𝑟𝑜𝑟)  ∙ �⃗�𝑡𝑤𝑖𝑠𝑡) =  (𝑎𝑥𝑖𝑠(𝑅𝑒𝑟𝑟𝑜𝑟)  ∙ �⃗�𝑡𝑤𝑖𝑠𝑡)�⃗�𝑡𝑤𝑖𝑠𝑡 
𝑅𝑡𝑤𝑖𝑠𝑡 = 𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛(𝑠𝑐𝑎𝑙𝑎𝑟(𝑅𝑒𝑟𝑟𝑜𝑟), 𝑝) 
𝑅𝑠𝑤𝑖𝑛𝑔 = (𝑅𝑡𝑤𝑖𝑠𝑡)−1 =  (𝑅𝑡𝑤𝑖𝑠𝑡)−1𝑅𝑒𝑟𝑟𝑜𝑟  

 
where 𝑝 is the projection of the axis of the error 𝑅𝑒𝑟𝑟𝑜𝑟  represented in axis-angle form onto the 

unit-axis about which the twist rotation will occur, �⃗�𝑡𝑤𝑖𝑠𝑡. The twist rotation component of the total error 
is constructed by constructing a quaternion rotation representation using the scalar component of the 
original error (from axis-angle format) and the projection vector 𝑝. The swing rotation component of the 
total error is all that remains of the error after removing the twist component. The magnitude of the in-
place error (1) is the angle of the twist error from its axis-angle representation, and the angle of the per-
pendicular motion error (2) is represented by the angle between the z-axis of the band and the swing axis. 
The magnitude of the perpendicular motion error (3) is the angle of the swing error is calculated from its 
axis-angle representation.  

The band indicates the in-place rotational (twist) error to the user by vibrating the motors se-
quentially around the band in the direction of the user's error. If the user needs to rotate a band clockwise 
to correct an error, for example, the vibration pattern will move clockwise about the band. The band uses 
the magnitude of the in-place rotational error it receives over the Wi-Fi link to control the amplitude of 
the rotational vibration pattern.  

The band uses the perpendicular motion (swing) error axis it receives over the Wi-Fi link to place 
a vibration stimulus behind where the user needs to move in order to correct the perpendicular motion 
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(swing) error. The band uses the perpendicular motion error magnitude to control the amplitude of this 
stationary vibration stimulus.  

The rotational vibration pattern and stationary vibration stimuli are superimposed so that both 
the in-place rotational error and the perpendicular motion error are evident to the user. If both the in-
place rotational error and the perpendicular motion error are large and the vibration signals to the motors 
become saturated, the maximum allowed vibration amplitude is divided between the rotational vibration 
pattern and the stationary vibration proportional to the in-place rotation error magnitude and the per-
pendicular motion error magnitude.  

Communication 

Each band uses an ESP8266 chip (seen in Figure 24) communicate with the WAG System software 
application. The ESP8266 can be programmed using a custom Arduino core by placing the device into 
bootloader mode and then sending program data over an FTDI cable to the chip’s UART. This core allows 
a developer to program code using Arduino syntax using the Wi-Fi capabilities. The ESP8266 exchanges 
data with the Teensy microcontroller via a UART link operating at 9600 baud. Further details on how the 
ESP8266 interfaces with the computer application are provided in the Software Design section.  

 

 

Figure 24. ESP8266 Wi-Fi chip 

Software Design 

The WAG System software application is written in C++ and uses key libraries including Boost15, 
OpenGL16, and Qt17[41][42][43]. C++ offered easy communication with the hardware components, object-
oriented design capabilities, fast operation, and its OpenGL and Qt libraries. The Qt Library offered a ‘slots-
and-signals’ message passing mechanism. This mechanism is used extensively throughout the application 
to pass data between objects. A ‘signal’ is emitted when a specific event occurs. Signals can be parame-
terized to carry data related to the event or can have no parameters and simply indicate that an event has 
occurred. Slots are similar to functions. A slot and signal can be linked by using the ‘connect’ function. If 
this occurs, then a slot is called when a signal it is connected to is emitted. Signals and slots must have the 
same signature, or number and type of inputs, to correctly connect. Multiple signals can be connected to 
multiple slots. This allows data to be transferred between objects without having to maintain instances of 
an object within another object [44].  

The WAG System software application runs on the Intel Atom, which serves as the central com-
munication hub for all of the WAG Bands. 

                                                           
15 Boost provides a number of free peer-reviewed portable C++ source libraries. We are using libraries from Boost 

to interface with the user’s file system.  
16 OpenGL is a widely used graphics application programming interface. OpenGL supports 2D and 3D graphics.  
17 Qt is an IDE for cross-platform C++ development. Qt also has numerous libraries that extend the core functionality 

in C++.  
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Class Interactions 

The core interactions between the main classes are shown in Figure 25 below. Each of the three 
modes (recording, editing, and playback) have a central controller that processes user input to maintain 
the control flow of the application and routes and packages data. The suit class is a container for all of the 
band objects, which consumes messages received over Wi-Fi and routes them to the appropriate software 
band object. Encapsulating the band objects in this way allows the application to communicate with and 
maintain the state of the user's WAG Bands. The WAGFile object represents a single motion and contains 
its name, location, description, and searchable keywords, as well as the mapping from times to Posi-
tionSnapshot objects. A PositionSnapshot object represent the full state of a user’s body at a given time, 
and contains mappings from a band to a pose. 

 

 

Figure 25. High-level software diagram 
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Class Functionality 

To accomplish the required software functionality, a number of C++ classes were developed as 
part of the application. The most important of these are shown in Figure 25. Several other classes were 
developed to support and encapsulate data required by the key classes. The classes, their descriptions, 
and their fields and methods are shown in Table 10 in Appendix 2 – Software Core Classes and Function-
ality. 

Communications 

Within the application, the WifiManager class acts as a hub for Wi-Fi communications. To send a 
message, a band object calls a method in the WifiManager with the message it would like to send to its 
respective hardware band. The WifiManager class also receives and routes messages from hardware 
bands to the suit object, which then passes messages to the proper software band objects. All Wi-Fi com-
munications are done using TCP connections and all inner-application communications use Qt’s signals 
and slots mechanism. This interaction is detailed in Figure 26. 

 

 

Figure 26. Network interface diagram 

Table 8 details the required update frequency from the project requirements, the actual update 
frequencies measured with the hardware, the bandwidths, communication partners, and required input 
processing capabilities for each component of the system. 

 

Table 8 - Band communication implementation 

Device 
Required 
update 

frequency 

Actual up-
date 

frequency 
Bandwidth Communication Partner Processing 

Computer 10 Hz 16Hz ~49kbps 
Hardware bands (positional 
error information) 

All incoming accelerometer 
and voice control data from 
the bands 

Arm and 
Shoulder 
Bands 

10 Hz 16Hz ~7kbps Computer (sensor data) 
Read sensor data 
Received data from computer 
into motor command signals 

Chest 
Band 

10 Hz 16Hz ~7kbps 
Computer (sensor data, 
voice control messages) 
 

Reads voice control module 
data 
Read sensor data 
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Motion Visualization  

The visualization module for displaying a motion for the user is constructed using OpenGL. The Qt 
library provides an OpenGL widget that can be embedded in an application and extended for customiza-
tion. The software classes that run the visualization extend the provided OpenGL widget class to make use 
of the built-in OpenGL support while adding custom functionality. This includes the ability to set a camera 
location with the camera always looking at the origin, the ability to add a planar convex shape to the scene 
by specifying the corner points of the plane as well as the translation and rotation from the origin point, 
and functionality for registering mouse click and drag events for moving the camera.  

A kinematic human model was developed in Blender, a 3D modeling application, and included 
individual links for each movable segment of the body. This Blender model was exported as a Wavefront 
object file, which preserved the identities of each individual body segment (bicep, wrist, chest, etc.) are 
all recognized as distinct meshes in the Wavefront object file). The C++ library Assimp imported the Wave-
front object into the software application and loaded the meshes, materials and transformations between 
each of these meshes into structs. The OpenGL widget used the information from these structs to display 
the model, which can be seen in Figure 26. Each link in this model can be individually colored, and inde-
pendently moved via standard linear transformation operations. 

  

 

Figure 27. 3D human model rendered in an OpenGL widget 

Each segment of the mesh is independently movable by a single orientation update with respect 
to the visualization’s world frame. However, the original Blender model defines the positions and orien-
tations of each mesh with respect to their parent frames. Therefore, the software calculates the transfor-
mation of each mesh from the world frame to their final position so that they can be easily updated by 
the bands’ reported orientations. Each limb’s mesh is initialized using the following calculation: 

𝑅𝑖
0 = ∏ 𝑅𝑖

𝑖−1

𝑛

𝑖=1

 

𝑅𝑖
0 is the rotation from the Blender coordinate frame of the ith mesh to align with the world coor-

dinate frame, and gets calculated by successively pre-multiplying the rotation from itself to its parent, 

𝑅𝑖
𝑖−1. 
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𝑇𝑖
0 = [

𝑅𝑖
0 −ℎ⃗⃗0

𝑖

0⃗⃗ 1
] 

𝑇𝑖
0 is the homogeneous transformation from the default Blender frame to the OpenGL world 

frame. ℎ0
𝑖  is the translation from the origin to the mesh, and is extracted directly from the Blender model 

using the Python API. This transformation is used to rotate and translate every mesh into the shared world 
coordinate frame.  

Once each mesh is aligned with the world coordinate frame, each mesh can be updated with 
orientations specified in that world coordinate frame. The following equations define the recursive update 
calculations that the software uses to correctly track the WAG Bands user’s pose:  

ℎ⃗⃗0
𝑖

′
= 𝑡0

𝑖−1′
+ 𝑅0

𝑖−1′
𝑅𝑖−1

0 (ℎ⃗⃗0
𝑖 − 𝑡0

𝑖−1) 

𝑡0
𝑖 = ℎ⃗⃗0

𝑖
′

+ 𝑅0
𝑖 ′

𝑅𝑖
0 (𝑡0

𝑖 ′
− ℎ⃗⃗0

𝑖
′
) 

 ℎ⃗⃗0
𝑖

′
 represents the rotated head vector of the ith mesh in its parent chain. This vector places the 

base of the mesh in the correct position in the visualization based on the world rotation update of the 

mesh, 𝑅0
𝑖−1′

. 𝑡0
𝑖 ′

 is the rotated tail vector of the ith mesh, and is used to correctly place child meshes. ℎ⃗⃗0
𝑖  

and 𝑡0
𝑖  are both pulled directly from the Blender model using the Python API, and represent the transfor-

mations of the ith head and tail vectors in the model’s default pose. The ith band’s mesh is transformed 
into its updated position using the following equation: 

𝑇0
𝑖′

= [𝑅0
𝑖 ′

𝑅0
𝑖 ′

ℎ⃗⃗0
𝑖

′

0⃗⃗ 1
] 𝑇𝑖

0 

𝑇𝑜
𝑖′

 is used to correctly place and orient the ith mesh in the visualization, and is updated with one 

variable input – the updated world rotation, 𝑅0
𝑖−1′

. The rest of the parameters in the previous equations 
are constants collected from the original Blender model.  

Through the wireless link discussed in the previous section, the bands send orientation updates 
to the software application. These orientation updates are used to rotate and translate the meshes of the 
links of the human model to match the actual pose of the wearer – for example, as the wearer bends his 
or her elbow, the OpenGL simulation updates, bending at its elbow joint as well.  

Motion Calibration 

The orientation updates sent to the software from each band are defined in a semi-arbitrary ref-
erence frame that is dependent on the configuration of the band when the user turns it on. Also, the 
coordinate frames defined by the Wavefront meshes exported from the Blender model do not necessarily 
align with the sensors in the bands. Therefore, calibration has two stages – an axis alignment stage and a 
user pose-matching stage.  

The axis-alignment stage is simple and occurs completely behind the scenes in the software. The 
software uses pre-computed coordinate frame transformations to align orientation updates from the 
bands with the Blender axes. These transformations are precomputed by moving a band, and observing 
how the model responds in order to define a transformation that re-aligns the mesh model with the mo-
tion of that particular band.  

The user pose-matching stage must be executed by the user each time any new bands get pow-
ered on, because each time a band gets powered on its arbitrary reference frame changes. The pose-
matching stage requires a user to match a pose shown on-screen while wearing the WAG Bands. The user 
then signals the software to calibrate, and the software generates a rotational conversion to the shown 
pose (which the user is now matching) from what each band is reporting as its orientation. Then, each 
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rotational conversion is applied to all future orientation updates that the software receives from the as-
sociated band, mapping the arbitrary band reference frames to the mesh model’s coordinate frame. The 
following equation represents how the band orientation updates get processed for calibration: 

𝑅𝐵𝑎𝑛𝑑 = 𝑅𝑃𝑜𝑠𝑒𝑀𝑎𝑝𝑅𝑅𝑎𝑤𝐵𝑎𝑛𝑑𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝐹𝑟𝑎𝑚𝑒𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 

The 𝑅𝐵𝑎𝑛𝑑 output represents the final processed band orientation that gets used as the band’s 
actual orientation. 𝑅𝑅𝑎𝑤𝐵𝑎𝑛𝑑𝑈𝑝𝑑𝑎𝑡𝑒 represents the raw orientation data generated by the band that nei-

ther matches the axes of the mesh model, and is with respect to an arbitrary coordinate frame. 𝑅𝑃𝑜𝑠𝑒𝑀𝑎𝑝 

represents the orientation map that gets generated when the user matches the pose shown on the GUI, 
and gets pre-multiplied by 𝑅𝑅𝑎𝑤𝐵𝑎𝑛𝑑𝑈𝑝𝑑𝑎𝑡𝑒 to map the raw band update into the mesh model coordi-

nates. 𝑅𝐹𝑟𝑎𝑚𝑒𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 aligns the axes of the band’s accelerometer and gyroscope sensors with the mesh 

model’s coordinate frame for the associated limb. The final 𝑅𝐵𝑎𝑛𝑑 value gets used for all further spatial 
computations, including visualization updates, feedback calculations. 𝑅𝐵𝑎𝑛𝑑 is consistent for all users, 
since it has been processed by both frame alignment and by pose mapping. 𝑅𝐵𝑎𝑛𝑑 represents the orien-
tation of the band with respect to the base frame of the visualization, which is defined by the OpenGL 

widget. Each band stores and uses their own independent 𝑅𝐵𝑎𝑛𝑑 values. 𝑅𝐵𝑎𝑛𝑑 is equivalent to the 𝑅0
𝑖 ′

 
parameter used for world orientation updates in the Motion Visualization section.  

Playback Controls 

A PlaybackController class was developed to maintain playback parameters and to issue updates 
for which frame to display. This class is integrated with the user interface, so any playback options that 
are selected are reflected in this class. There are two mode options for playback: timed, in which the user 
matches motions using timing, and step-through, in which the user tries to match a position from a dis-
cretized version of the motion before moving on to a new position in the motion. When the user presses 
play in timed mode, the PlaybackController class issues frame updates reflective of the user chosen speed. 
Playback stops when a pre-determined end frame number has been reached. In step-through mode the 
PlaybackController issues frame updates only when the error from the last frame is within the user spec-
ified tolerance threshold. 

Saving and Opening Motions 

One key feature of the WAG System software is the ability for a motion file to be saved and loaded 
to/from the user’s local computer or the motion library. More specifically, Trainers have the ability to save 
and load recorded files and Trainees can load files from their computer or the motion library. When Train-
ers want to record a new motion, they must first give the motion a name and a description, optionally 
giving the motion some relevant keywords, and choose a save location – either a directory on their local 
computer or the motion library. This allows the motion to be automatically saved as the Trainers record 
and then edit and/or play back the motion. When a motion is saved, all of its data, including its name, 
description, keywords, and PositionSnapshots, is saved to the designated save location. When Train-
ers/Trainees want to load a file from their local computer, a generic file browser is launched. This file 
browser lets the Trainers/Trainees navigate around their computer, but only shows files with the exten-
sion ‘.wagz.’ 

To abstract the motion library, the file ‘.WAGConfig’ was created to specify where the motion 
library is. For testing, the configuration file points to a MotionLibrary directory, allowing for easy access 
to any motions saved to the library. In the future, the configuration file may be updated if the motion 
library is implemented as a central database. When users want to load a file from the library, they are 
shown a window with a table where each rows contains information for one motion file, shown in Figure 
28. This window also contains a search bar for searching through motion names, descriptions, and/or 
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keywords. Once users select a row and press the ‘Load’ button, the chosen motion is loaded into the 
application. 

 

 

Figure 28. “Load Motion From Library” window in the host computer application 

Graphical User Interface Design 

The design of the GUI came from analyzing the user interface flow chart shown in Figure 20. This 
chart made it clear that the two types of users (Trainers and Trainees) had different needs. To address 
this, the application prompted the user to choose which type of user they were, and this decision dictated 
which windows they would be presented. Below are screenshot images of the final GUI design along with 
an explanation of how the user would access the given window. 
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Figure 29. User interface – user selection 

When a user first opens the software application, they are presented with the window shown in 
Figure 29. At the top of this window is the ‘Settings’ button and the ‘About’ button. These are available to 
all users at any time and remain in the menu bar. Below the menu bar, there is a status bar that displays 
how many bands (out of 7) are disconnected and which bands have low battery. The status bar updates 
in real time. In addition, if any bands are disconnected, the settings button changes from blue to red, to 
signify to the user that they should enter the settings panel to reconnect the bands. The majority of the 
window is taken up by a white tab titled ‘User selection’. This tab prompts the user connect and calibrate 
the bands and to select a type of user. Once the user has chosen, this tab is replaced with the content for 
the mode the user is in. The red connect and calibrate message was added as a result of analyzing the 
user test results, as discussed in the Product Performance Evaluation section. 
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Figure 30. User interface – settings screen 

When the user clicks on the ‘Settings’ button, the overlay shown in Figure 30 is displayed. This 
overlay is the same regardless of user type or current window. The first thing a user should do upon 
launching this window is choose which bands to work with, by selecting/deselecting the checkboxes, and 
clicking the ‘Connect Bands’ button. The application tries to initiate a connection with each of the selected 
WAG Bands and updates the application’s status bar accordingly. Next, the user needs to calibrate the 
bands using the two windows displaying 3D models of a human torso. The top model is in the position 
that the user needs to mimic for calibrating the bands, while the bottom model shows what position the 
system believes the user to be in. After matching the top pose, the user can click the ‘Calibrate Bands’ 
button and the system zeroes the bands’ positions to those shown by the first model. 
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Figure 31. User interface – new motion window 

If a user has chosen to be a Trainer, s/he is given the options of creating a new motion or opening 
an existing one. Selecting the ‘Record a New Motion’ option, leads them to the overlay shown in Figure 
31. This window requires the user to give the motion a name and description, and optionally give the 
motion keywords that can help someone find the motion later. Finally, the user must choose a save loca-
tion, which defaults to the motion library but can also be a directory on the user’s local computer. This 
window has basic verification and only enables the ‘Create’ button if all required fields are filled. 

 

 

Figure 32. User interface – Trainer’s record motion window 
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After creating a new motion, a Trainer is shown the window in Figure 32. This window signifies 
that the user is done “setting up” the system and is ready to begin using the WAG Bands. The Trainer now 
has two new buttons in the menu bar allowing them to easily create a new motion or load a previously 
recorded motion. Figure 32 also illustrates that a user can have multiple motion files open at once, laid 
out in the form of tabs under the status bar. The open tab above is displaying the application in record 
mode. There are a few ‘Recording Options’ available to the user, and an enabled ‘Start Recording’ button. 
Because the user must record a motion before editing or playing it back, the ‘Modes’ at the bottom left 
are initially disabled. Once the user clicks the ‘Start Recording’ button, that button changes to say ‘Stop 
Recording’ and the countdown runs to zero and then keeps track of the time passed during the recording 
(shown in Figure 32). Once the user stops recording, the other modes and reset button are enabled. 

 

 

Figure 33. User interface – Trainer’s edit motion window 

Once the Trainer has finished recording a motion and selected the ‘Edit Motion’ mode, the win-
dow in Figure 33 is displayed. This window has the same layout as the recording mode window to maintain 
consistency across the application. The ‘Editing Options’ include ‘Crop’, which allows the user to cut off 
the beginning or end of the motion by moving the two grey handles across the video slider at the bottom 
of the visualization window, and ‘Edit Motion Information’, which displays an overlay identical to Figure 
31 and allows the user to edit the previously entered information. Also available in edit mode, is the option 
to play the motion on the 3D model, without the WAG Bands, and see what was previously recorded. 
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Figure 34. User interface – Trainee’s playback window 

The last window available for users is the playback mode window shown in Figure 34. For a Trainer 
this window would have the same layout – menu bar and mode selection – as displayed in Figure 33 and 
Figure 32. Instead, Figure 34 shows what a Trainee would see after selecting the user type. A Trainee does 
not have the ‘Record New Motion’ button in the menu bar, and does not have the ability to switch modes 
within the application. A user who wants to play back a motion is given the various playback options 
shown above. These options allow users to customize their training. To being playback mode the user 
must click the play button at the bottom of the visualization window, at which point the application counts 
down for the designated number of seconds, and begins playing the motion on the 3D model and the 
WAG Bands, if that option was selected. 
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Product Performance Evaluation 

To successfully evaluate the WAG System, the project was split into three types of requirements: 
Hardware, Software, and Full System. Each of these categories are explained and evaluated below. 

Complete System 

The complete system refers to the completed set of WAG Bands as a whole. The requirements for 
the complete system are non-functional requirements NFR.1 - NFR.6 presented above in Table 4. This 
document fulfils requirement NFR.5 for comprehensive documentation. 

The requirements NFR.1 and NFR.6, which involve the system’s degrees of freedom and its weight 
limit respectively, have both been met due to the nature of the system. By using three wireless bands per 
arm (each with 3DOF of rotation measurement), the system can track 9 degrees of freedom per arm. The 
bands each weigh ~0.5lbs, multiplied by 7 bands, for a total of ~3.5lbs of wearable components, which is 
well under the requirement of less than 10lbs. 

User Studies 
NFR.2 and NFR.4, which involve a non-restrictive system and adjustability respectively, were hard 

to design around because of their intangibility. Both of these non-functional requirements were evaluated 
with user tests to determine how well test participants felt that the system adhered to these require-
ments. The responses collected from user tests indicated that while the WAG Bands do not inhibit the 
user’s motion and are capable of fitting on most bodies, putting on the bands takes a significant amount 
of time. 

Next, user tests were used to determine the effectiveness of the WAG Band vibration patterns, 
and the effectiveness of learning a new motion with the WAG System. The test participants were sub-
jected to three different vibration patterns in order to determine their natural response to the transla-
tional and rotational impulses. Test subjects consistently determined that they should move away from a 
localized vibrational impulse, which are currently used to indicate translational error, without hesitation. 
Unfortunately, the rotational vibration patterns were less intuitive to the test subjects. Test subjects took 
longer to comprehend the rotational pattern than the translational pattern, and even longer for them to 
decide how to react once they identified the rotation pattern. Finally, the test subjects were unsuccessful 
in identifying a natural response to the combined rotational and translational vibration patterns. Some 
test subjects were able to clearly identify the rotational pattern within the combination, while other test 
subjects were able to only identify the translational pattern. No test subjects had a natural response to 
both components of the combined signals. These results indicate that a more natural rotation pattern 
should be researched and tested. 

The test subjects also evaluated the effectiveness of the WAG System for learning new physical 
skills, in order to compare video-based learning methods with using both the haptic guidance and the 
built-in motion visualization. The motion learning test measured the effectiveness of the 3D visualization 
and vibration feedback for a simple hand-wave motion. The test results indicated that the built-in 3D 
visualization alone served as an effective motion teaching tool, with survey respondents rating it 4.375 on 
average on a 1 to 5 Likert scale for motion teaching effectiveness. When test subjects tried to learn the 
same motion using the vibration feedback, they generally found that the vibration was distracting, and 
made the vibration feedback and visualization combination a less effective teaching tool than the 3D mo-
tion visualization alone. Because the test subjects responded very well to the translational vibration pat-
terns and not as well to the rotational vibration patterns, these results may be improved by researching 
better means for indicating rotational error to the wearer. Additionally, the bands vibrate with increasing 
intensity as a user’s error increases, but the bands do not stop vibrating unless their measured errors are 
very small. Many test users suggested including adjustable vibration thresholds to change how closely a 
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user needs to mimic a motion for it to be considered ‘correct’. These tolerances may better indicate cor-
rect motion following to the user.  

Safety Standards 
Requirement NFR.3 involves adhering to safety regulations. Although there are currently no OSHA 

standards for exoskeletal robots, the International Standards Organization standard ISO 13482, which co-
vers “personal care robots” including wearable exoskeletons, was referenced. According to ISO 13482, a 
robot is an “actuated mechanism programmable in two or more axes with a degree of autonomy moving 
within its environment to perform intended tasks.” Consequently, the WAG System does not fall under 
the category of devices covered by ISO 13482. Instead, the WAG System more closely fits with the classi-
fication of robotic devices, defined as “actuated mechanism fulfilling the characteristics of an industrial 
robot or a service robot but lacking either the number of programmable axes or the degree of autonomy.” 
ISO 13482 does provide guidelines for restraint-type physical assistant robot such as wearable exoskele-
tons, which more closely matches the WAG System. Guidelines for these robots that are relevant to the 
WAG System include battery charging procedures, electrical levels and component insulation require-
ments, and important safety and usage information. Most of these guidelines are important for consumer 
safety and were not strictly followed for this project prototype. Future iterations of this project geared 
toward introducing this system as a consumer product will strictly follow these safety guidelines.  

Hardware 

The hardware requirements for this project are functional requirements FR.7 and NFR.8, pre-
sented above in Table 3, and non-functional requirements NFR.8 and NFR.9, shown in Table 4. The re-
quirements FR.7 and FR.8 involve haptic feedback and its response time. FR.7 is met through the design 
of a WAG Band, which includes a ring of vibration motors which encircles the user’s arm or shoulder. FR.8 
requires the system to have a haptic response time of 100ms (10Hz), meaning that the system needs to 
respond to an error within 100ms. The WAG System response frequency was found to be within ~16Hz, 
as calculated using Wireshark. This corresponds to a ~62ms response time, satisfying this requirement 
(see the ESP8266 Testing section for details). 

The requirements NFR.8 and NFR.9 involve the battery life and how long a user can play a motion 
and record a motion respectively. NFR.8 refers to the playback battery life which should be at least an 
hour. This is different than NFR.9 the recording battery life requirement of 2 hours, as playback draws 
much more current than recording. The system draws about 350mA in playback and about 200mA in re-
cording (as measured from a power supply), and as such the battery lives are ~2.8hrs and ~5 hours re-
spectively; which fulfill both requirements. More detailed information on testing the hardware can be 
found in the Hardware Testing section of Appendix 5 – Test Plans).  

Software 

The key software requirements include FR.1 - FR.6, FR.9, and NFR.7 from Table 3 and Table 4. 
These include maximum allowed record time, editing capabilities, save/load capabilities, playback con-
trols, simulation, ghosting, and an intuitive user interface (UI). Each of these features, excluding ghosting 
and the intuitive UI, underwent unit testing and integration testing to verify that they were met. The 
ability for the software application to show ghosting, a priority 3 requirement, was not completed due to 
time constraints. The user stories provided more detailed functionality to include in the software applica-
tion. Over the course of development, each of the functionalities described in the user stories was ad-
dressed and added to the final application. 

Integration Testing 
Integration tests were completed to verify that all components worked together. The most exten-

sive test completed involved recording a motion with the WAG Bands, editing it, and playing it back with 
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the 3D model. This test verified that the system could record the positions of the bands over time, save 
them to a file, and play them back on the 3D model in the application. This test, which was successfully 
completed, was videotaped and is shown in Figure 35. 

 

 

Figure 35. Integration test with recording (on the left) and playback (on the right) 

User Studies 
To meet the intuitive UI requirement, a Human Computer Interactions professor reviewed an 

early version of the WAG System graphical user interface and provided suggestions to help make the ap-
plication more user friendly. User studies were also conducted to determine the usability of the interface. 
The feedback from both of these sources were used in the final design of the software application’s inter-
face.  

User studies conducted with a focus on GUI intuitiveness indicated that the user interface was 
well-designed and easy to use overall. Test subjects were assigned specific tasks in the interface with no 
other guidance (e.g. record a new motion, play back a motion, etc.). Test subjects consistently rated the 
simplicity of completing these tasks between 4 and 5 on a scale of 1 to 5 for simplicity and intuitiveness, 
with 5 being the most intuitive. However, users consistently failed to connect and calibrate the bands 
when they tried to record motions, indicating that the software’s existing visual cues were not clear or 
substantial enough for users to take those necessary action. As a result, the calibration and connection 
options were made much more prominent in the GUI, and the software will not allow the user to record 
or play back motions without first connecting and calibrating the bands.  

Risk Management 

Risks for this project included a limited time frame, budget, and previous experience. To mitigate 
these, systems engineering practices were followed and a concept of operations was created before start-
ing development of the WAG System. This kept the project under budget and helped to ensure milestones 
were reached on time. To mitigate a lack of previous experience, the team met with the project advisors 
every week for updates and suggestions. 
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Project Execution Performance Evaluation 

Execution Summary 

This project explored the fields of wearable devices, haptic feedback, and motion capture. The 
WAG System has the potential to influence athletic training and rehabilitation by providing accurate, di-
rect, and exact feedback to the wearer. The research and development leading to this achievement faced 
many challenged and endured several setbacks. Wireless communication was one key component of the 
system design which proved to be perhaps the hardest challenge. Bluetooth was originally intended for 
the communications system, but after much testing, it was found to be insufficient for the project purpose 
due to the complexity of library dependencies for the computer software, and a low slave device limit, 
and insufficient data rates. This setback was costly and time consuming but lead to the implementation 
of Wi-Fi for system communication.  

Wi-Fi hardware also experienced a few issues including stability of the Wi-Fi chip (ESP8266) and 
the code base for the ESP8266. It took several weeks to develop a stable and usable code base after 
throwing out the original firmware and choosing a community-supported Arduino code base. Part of in-
creasing the stability of the platform came in changing the hardware to have an additional capacitor due 
to the chip drawing current relatively erratically. An additional circuit board was designed specifically to 
program the module to increase its ease of use for testing.  

The first order of printed circuit boards was completed and assembled in early January. However, 
the voltage rails for several key components had been combined resulting in incoming battery and regu-
lated voltages being merged. While originally this seemed to be passable for the project, testing with 
batteries showed this to be a critical error that required redesign. The final printed circuit boards were 
designed in late February and re-ordered. This took around a week, but only cost around $20.  

Another setback found later in development was the presence of memory leaks in the software 
application. These leaks caused segmentation faults while running the application. The leaks were identi-
fied using the open source program Valgrind and patched manually. This delayed the development soft-
ware application and shifted testing much later in the project. 

Timeline Adjustments 

The final timeline has shifted quite substantially from initial estimates. The first major reason is 
that the project completion date was extended from early March to early May. This was done as a result 
of the balance of team workloads around the project. Many tasks are lengthy and also interdependent on 
each other. Consequently, it made more sense to accomplish small pieces in parallel so that subtasks could 
be tested with each other, rather than completing a major task quickly and not being able to thoroughly 
test how it interacts with other subsystems. Another major change was the shift of communications ear-
lier in the schedule and other tasks later. After developing the core functionality of the GUI, fully imple-
menting communications was necessary for meaningful testing and development of other subsystems. 
Once Wi-Fi communications functionality was implemented, it was much easier to test other subsystems 
as well as determine how the remaining portions of the system would interface with each other. The final 
timeline can be seen in Appendix 1 – Timeline. 

Budget and Expenditure Justification 

The budget for the project was set at $1000 with university departmental funding at $200 per 
student (5 students). The actual spending was $978.31 out of the total. This can be broken down into large 
categories within Table 9. Each item shows the cost associated with it and how it factored into the project. 
For some of the costs under communications testing and sensor testing, these were for parts that served 
no role in the final project (such as the flex sensors). These parts were considered for a hand module that 
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never was developed due to time restrictions. The Bluetooth modules were also not used as mentioned 
above and served as part of the research costs associated with this project. A full listing of materials in 
each final WAG Band and the WAG Chestpiece can be seen in Table 12 and Table 13. Note that the costs 
in Table 9 do not include any human costs such as labor, since this is a student project.  

Table 9 - High level budget breakdown 

Part description Company Cost Justification 

BTLE USB Dongle Amazon $12.95 Communications testing  

Adafruit nRF8001 module Adafruit $32 Communications testing 

Adafruit Bluefruit LE UART Friend Adafruit $29 Communications testing 

CC3000 Wi-Fi Board SparkFun $39.08 Communications testing 

Bluetooth 4.1 chips with antenna DigiKey $24.77 Communications testing 

Kinivo Bluetooth 4.0 Adapter Amazon $13.99 Communications testing 

ESP8266 Wi-Fi modules Zou Ting $30.72 Communication modules 

ESP8266 Wi-Fi module DigiKey $13.90 Communication modules 

MPU6050 Modules Amazon $19.92 Sensors for project 

30 ERV motors Polulu $89.15 Feedback motors for project 

Shaftless vibration motors Pololu $35.35 Feedback motors for project 

Stranded Wire for Motors SparkFun $10.50 Feedback motors for project 

5 Teensy 3.2 boards PJRC $102.22 Microcontrollers for project 

Teensy 3.2 Modules (x2) PJRC $62.34 Microcontrollers for project 

Connectors for PCBs DigiKey $8.56 PCB parts for motors 

Newark PCB parts (round 1) Newark $29.24 PCB parts for boards 

PCBs from advanced circuits (round 1) Advanced Circuits $23.05 PCBs 

PCBs (round 2) Advanced Circuits $24.35 PCBs 

Newark PCB parts (round 2) Newark $26.65 PCB parts for boards 

Chest harness Amazon $43.03 Band straps 

1 1000mAh Battery HobbyKing $8.72 Batteries for project 

8 1000mAh Batteries HobbyKing $28.00 Batteries for project 

Battery charger and splitter HobbyKing $50.30 Batteries for project 

Easy VR Shield 3.0 (speech recognition) SparkFun $54.17 Speech recognition 

Flex sensors SparkFun $25.90 Sensor testing 

Force sensors SparkFun $18.03 Sensor testing 

Freescale Freedom board Kinetis K22F DigiKey $37.21 Sensor testing 

Freedom Board FXAS21002 DigiKey $15.95 Sensor testing 

4A power supply for Intel Atom Adafruit $24.53 Cornell Cup Competition 

60GB SSD for Intel Atom Amazon $44.94 Cornell Cup Competition 

 Total costs: $978.31  

 Budget total: $1000  

 Under budget: $21.69  
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Project Reviews 

This section addresses the reviewer feedback from advisors during the two review sessions. There 
were two major design reviews called the Preliminary Design Review (PDR) and the Critical Design Review 
(CDR) which are included in the university curriculum for capstone projects. These sessions are designed 
to give advisors and general university students an opportunity to critical and evaluate a design by listen-
ing to a 20 minute presentation and then providing questions and feedback. Typically the PDR occurs early 
on in the beginning of the design phase and seeks to refine the project proposal. The CDR occurs later in 
the design phase to verify the design for the project is feasible and applicable to the original design. In 
addition to the PDR and CDR, the project advisors were consulted weekly for advice and feedback. These 
meetings helped the team follow better systems engineering practices, overcome many of the project 
challenges, and produce a patentable technology. The advice and feedback of the advisors led the team 
to meet with industry professionals, technical advisors, and the campus patent lawyer. These connections 
gave the team access to valuable resources and advice which the team was able to integrate into the 
design.  

By the PDR, the team had developed a full project proposal that outlined the details of the WAG 
System. The feedback provided by the advisors at this meeting helped to define the scope of the project. 
Due to the budget and time limitation, it was decided that the project would be limited to upper body 
only. At the time of the PDR, plans for adding flex sensors for hand motion tracking were a major compo-
nent of the project, but it was decided that hand motion tracking should be a low priority in order to make 
sure torso and arm tracking was completed first. The overall outcome of the PDR was to begin taking this 
theoretical system and turning it into a realistic design. 

Prior to the CDR, a preliminary design was complete and most parts were ordered to allow for 
assembly to begin in January. The feedback from this presentation was primarily on presentation quality 
rather than content and technical details. While the team had made good progress on the technical side 
of the project, the presentation was very technical and failed to address some of the larger goals of the 
project.  

The team improved non-technical aspects of the presentation the following week. The team pre-
sented to Rita Vasquez-Torres, a Senior Technology and Programs Strategist who was asked to come eval-
uate the WAG System. Working with the feedback from the CDR, the team kept in mind that the potential 
lack of familiarity of audience members with the WAG System. The presentation went very well and Mrs. 
Torres provided lots of valuable information about preparing a product for market, which would later lead 
to the team filing for a provisional patent. 
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Recommendations and Future Research 

A useful investigation following development of the WAG System would be determining how use-
ful it is for teaching people new physical skills. This research could examine stimuli patterns that could be 
used with the WAG Bands to indicate error in motion, as well as how the WAG System compares to teach-
ing motion using a trainer or video instruction. This would require longer and more numerous tests on 
human subjects as well as researchers with more background in experiments involving learning.  

In addition to investigating the usefulness of the WAG System, it would also be useful to investi-
gate different vibration schemes and thresholds. Test users reported that translational feedback was in-
tuitive, but were typically confused by rotational feedback and the combined feedback. If other rotations 
schemes were tested, a more intuitive and consequently more useful scheme could be implemented in-
stead. In addition, users noted confusion at the degree of vibration that was present during most of their 
attempted motions. Testing different ranges for the acceptable margin of error for the user, as well as 
trying different scale factors relating error and vibration could make the feedback more easily interpreted 
by the user. Additional user tests with various vibrational schemes would be necessary to determine these 
margins of error and scale factors. Developers would also have to implement ways to vary the vibration 
scheme for different trials. This could involve settings to select the vibration scheme or different imple-
mentations that would be switched between trials. Depending on the approach, it may be necessary to 
send the vibration signal to the bands instead of the angular error to simplify modification of the vibration 
scheme. This change would require modifying the playback message structure in the software application, 
and the processing done on received packets in the code for the WAG Bands.  

One potential future addition to the project would be the ability to record motion for other por-
tions of the body, including the abdomen and legs. Adding motion capture for these components would 
increase the number and utility of motions that could be recorded. This would likely require more biome-
chanics knowledge due to increased complexity of the additional body segments. The physical band layout 
would also need to be heavily revised to be able to capture these different body segments. Developing 
wearable units for measuring hand movement would allow users to learn more actions involving hand 
movements.  

Another expansion to this project could involve developing a series of modules that could inter-
face similarly with the software that could support force feedback. Force feedback would be useful as it 
would help to physically guide users through the correct paths, rather than simply alerting them to errors 
in their motion. This force feedback could be implemented through motors driving parts of the module or 
soft actuators. This would also likely require greater knowledge of biomechanics, as precision and accu-
racy needed in applying force to a user would need to be greater than for haptic feedback as to prevent 
injury. This expansion would also require significant knowledge of the actuation mechanisms used to im-
plement force feedback. Adding actuation would also be a costly and time consuming addition, as most 
hardware components would have to be redesigned, and actuators are much more expensive than vibra-
tion motors. Additional time and effort would be needed to ensure that the safety issues raised by apply-
ing force to humans are mitigated and managed appropriately.  

In addition, implementing visual playback ghosting, where the users can see their actual path and 
intended path into the motion visualization window could improve the usefulness of the WAG System. 
Currently, the system conveys positional error to users through vibration. Extending the system so that 
users could also visually review their motion path alongside the intended motion path could help them 
remove errors more quickly. This would require that PositionSnapshot objects also be aggregated into a 
timestamped data structure during playback as well as during recording and that the visualization would 
be capable of displaying and updating two body models as a motion is played. This feature was frequently 
requested in the open-ended feedback section at the end of the user studies.  
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Enabling compatibility with a wider variety of motion capture file formats could also be a valuable 
extension to this project. This greater compatibility could either be through direct compatibility with the 
application, through which users could directly play or save motions with other motion capture file for-
mats, or through development of file converters, which could be used outside of the main flow of the 
application to convert files between the standard used by the WAG software and other file available file 
formats. Compatibility with other file types could allow users to pull motions to learn from existing data-
bases as well as to use the WAG software for other motion capture purposes. Having a greater range of 
databases to pull motions from would likely increase the usefulness of the application, as motions would 
not need to be created specifically through the WAG software to be learned.  

Enabling live recording and playback between a Trainer and a Trainee could also be a valuable 
extension to the project. This feature could allow the WAG System to enhance in-person teaching sessions 
by providing tactile feedback in addition to the verbal and visual feedback that an instructor typically pro-
vides. Adding live playback would require that the system draw PositionSnapshots to match from a sec-
ondary suit object, corresponding to the set of bands worn by the Trainer, instead of from a file. It would 
also likely require improved communication and processing speeds in the application, as the software 
would have to receive position data for two sets of WAG Bands instead of just one. This could eventually 
be expanded to have multiple students receiving live feedback from one instructor in a group class envi-
ronment. 

Reducing the cost of the WAG System would also be a useful next step in development of this 
project. The current cost of materials per band is between $70 and $80. To be more available and afford-
able for potential consumers, this cost should be below $10 per assembled device. However, this would 
require a redesign the breakout boards to use just the components of the breakouts rather than the full 
breakout. This will increase development time but will make the overall footprint of the device smaller 
and will lower the cost. Buying circuit component items in bulk would also decrease the cost.  

Another improvement for this project would be reducing the overall latency in the system (to 
increase the duplex communication rate between the computer and the bands). Next year, the ESP32 chip 
(an improvement on the ESP8266 hardware) is being released and could potentially increase the commu-
nication. The ESP32 chip is also set to use less power than the ESP8266 chip and could help increase the 
potential battery lifetime of the bands. Alternatively, better communication chips such as Bluetooth could 
be used if better libraries (embedded and host computer side) were available. The use of Bluetooth could 
decrease the power usage of the circuit as well.  

Should this project be developed for consumer use, miniaturizing the hardware would allow the 
WAG System to be less intrusive and obstructing to motions of the user. The existing components could 
be replaced with smaller models. The hardware size could also be reduced without switching components 
by soldering components together rather than allowing them to be removable and reprogrammable.  

Other sensors that monitor body functions could be added to form a more complete picture of 
the user’s body while they are performing a motion. These could include blood-oxygen sensors, breathing 
monitors, and heart rate monitors. Adding these would involve either developing more bands or adding 
components to existing bands. Additional message types would be needed to process the data from these 
sensors. The GUI would also need to be modified to display this information to users while they are exe-
cuting motions or after the execution of motions.  

Incorporating long term performance data for motions could also allow the user to better track 
their progress over time. If performance data was stored, the software could be extended to analyze this 
data to look for habitual errors or suggest other exercises or stretches based on individual progress. Simply 
storing historical data would require adding specific storage for each user and saving either each run of 
an exercise or analysis data calculated from each exercise. Knowledge of artificial intelligence and exercise 
science would be needed to identify persistent errors or suggest potential exercises or stretches for the 
user to improve their performance.   
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Nomenclature Glossary 

 ADC – Analog to Digital Converter 

 AES – Advanced Encryption Standard  

 Breakout board – A small printed circuit board designed to give users easy access to circuit func-
tionality and onboard peripherals 

 Bootloader – A section of code installed into low memory of a microcontroller to run user pro-
grammed code 

 BJT – Bipolar Junction Transistor; An electrical component used commonly as an amplifier 

 C++ – A middle level programming language good for hardware communication and object ori-
ented programming 

 CDR – Critical Design Review; a design review with advisors completed mid-way through the de-
sign phase to verify system design and concepts 

 Crimp connector – A style of metal contact that is affixed to the end of a wire with a combination 
of pressure and solder 

 CPU – Central Processing Unit 

 DAC – Digital to Analog Converter 

 DIP Socket – Dual Inline Package; A style of connector to enable integrated circuits to be con-
nected to a printed circuit board without solder 

 EAGLE – A PCB design software developed by CadSoft 

 EasyVR3.0 – A commercial breakout board for speech recognition 

 ERV – Electric Rotary Vibrator 

 Eval Board – Evaluation Board. A PCB designed for testing electrical hardware, such as microcon-
trollers and active sensors. 

 FOGS – Fiber Optic Gyroscope 

 FR – Functional Requirement  

 GND – Electrical Ground  

 GPIO – General Purpose Input/Output pins on a microcontroller 

 GUI – Graphical User Interface 

 I2C – I2C, Inter-Integrated Circuit communication protocol  

 IC – Integrated circuit; An electrical component designed for a generic function 

 ICM – Industrial, Commercial, and Medical 

 IDE – Integrated Development Environment used for writing code for an application 

 IoT – Internet of Things 

 ISO – International Standardization Organization 

 JTAG – Joint Test Action Group 

 LED – Light Emitting Diode; a device which produces light given a voltage of ~2V to ~3V 

 Li-Po Battery – Lithium Polymer battery; This style of battery features high current capabilities 
and fast recharge rates with a large batter capacity 

 LM358 – An amplifier IC used with a single supply (only a positive voltage and 0V). 

 LPF – Low Pass Filter 

 LRA – Linear Resonant Actuator 

 MATLAB – Numerical computing environment and programming language 

 MCU – Microcontroller  

 MEMS – Micro Electro Mechanical System 

 MOSFET – Metal-oxide-semiconductor field-effect Transistor, basically a digital switch 
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 MPU6050 – Accelerometer and Gyroscope sensor breakout board available for around $4 

 NFR – Non-Functional Requirement 

 NPN – A type of BJT transistor 

 OpenGL – Open Graphics Library for rendering 2D and 3D vector graphics 

 OSHA – Occupational Safety and Health Administration 

 PCB – Printed Circuit Board 

 PLA – Polylactic Acid; material used for 3D printing 

 PositionSnapshot – mapping of band type to band position; represents full body position measur-
able by bands at a given time 

 Potentiometer – An electrical component which varies its resistance as a knob is turned 

 PDR – Preliminary Design Review; a design review with advisors completed at the beginning of 
the design phase to explain and refine the project proposal 

 PWM – Pulse Width Modulation 

 Quaternion – A four-dimensional representation for expressing rotational position 

 Qt – Cross-platform application development framework for C++ with supporting libraries 

 RAM – Random Access Memory; used to store variables at run time in an application 

 Regulator – A voltage regulator takes in a higher voltage and provides a constant steady voltage 
output 

 RF – Radio Frequency 

 RTC – Real Time Clock 

 Sensor Fusion – a technique used to combine sensory data from separate sources 

 Software application/the application – The software application (GUI) responsible for collecting 
information from the WAG Bands and processing user input and preferences 

 SPDT Switch – Single Pole Double Throw; A style of switch that has three connection pins and two 
positions of the switch (the middle of the three and one of the outer connection pins are always 
connected in the states)  

 SPI – Serial Peripheral Interface Bus 

 Suit – Another term for the collection of wearable bands 

 TCP – Transmission Control Protocol 

 TLV1117 – A 3.3V voltage regulator produced by Texas Instruments 

 Trainee – Person using the WAG System to learn a new skill 

 Trainer – Person using the WAG System primarily for recording actions  

 UART – Universal Asynchronous Receiver/Transmitter  

 USART – Universal Synchronous/Asynchronous Receiver/Transmitter  

 User – Person using WAG System – either a Trainee or a Trainer 

 Vcc – Supply Voltage 

 WAG – Wearable Action Guidance 

 WAG System – Full system including seven wearable bands (WAG Bands) and the accompanying 
software application  

 WAG Bands – Wearable bands containing position measurement devices and vibration motors 

 WAGFile – Software object containing motion file data; file containing motion file data 

 WPAN – Wireless Personal Area Network 

 XML – Extensible Markup Language; human and machine readable markup language 
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Appendix 1 – Timeline 

This appendix contains the timeline for the project split up into chronological subsections. Each 
subsection contains additional subtasks, a start time and a duration.  

Research 

This was the initial research phase of the project. 

 Subtasks: background research, trade study 

 Duration: 16 weeks (through November 2015) 

 Start Time: Late August 2015 

Systems Engineering Analysis 

This included the concept of operations and resulted in the delivery of the initial systems engi-
neering content. 

 Subtasks: stakeholders analysis, needs analysis, use case development, requirements 
analysis   

 Duration: 5 weeks (through mid-October 2015). 

 Start Time: Mid-September 2015 

High Level Design 

This involved the creation of the high level design of the system including the concepts of bands 
and the computer application.  

 Duration: 2 weeks (through late October 2015). 

 Start Time: early October 2015 

Basic Hardware Block Diagrams 

This included laying out the block diagrams for the hardware functionality. The deliverables in-
cluded diagrams for both the bands and the chest piece as well as interaction diagrams between hardware 
subsystems. 

 Subtasks: Laying out hardware functionality, determining hardware subsystems (micro-
controller, wireless interface, motor controllers etc.), determining interaction medium 
between subsystems 

 Duration: 1 week (through mid-October 2015). 

 Start Time: early October 2015 

Core Software Class Design Document 

This involved the creation of a document containing core classes for the software application. The 
document contains functionality of each class and how the classes communicate with other classes 

 Duration: 2 weeks (mid-October 2015) 

 Start Time: early October 2015 

User Interface Development 

This involved creating and implementing a UI design using Qt’s widget library of buttons, tabs, 
sliders, text boxes, etc. so that the user can navigate and access the functionality of the WAG System.  

 Subtasks: Settings display, open motion display, motion library display, recording dis-
play, editing display, playback display, new motion display 
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 Steps: 
o Design: November 2015 
o Build: Mid-November 2015 through December 2015 
o Preliminary Review: Early January 2016 
o Build: January 2016 through March 2016 
o Test: January 2016 through April 2016 
o Document: Mid-February 2016 through April 2016 
o Review: March 2016 through April 2016 

Accelerometer/Gyro Integration 

This task included testing and integrating the MPU6050 into the WAG Band and chest piece hard-
ware. 

 Subtasks: MPU6050 integration 

 Dependencies: This task was independent from other hardware subsystems. 

 Steps: 
o Design: started October 2015, took 2 weeks (through mid-October 2015) 
o Ordering: two rounds of ordering sensors (early October and November 2015) 
o Build: early October 2015 (testing), November 2015 (assembly with first round 

of PCBs), February 2016 (final PCB integration) 
o Test: early October 2015 (testing), November 2015 (assembly with first round of 

PCBs), February 2016 (final PCB integration) 
o Document: from October 2015 through March 2016 
o Review: from October 2015 through March 2016 

Haptic Feedback  

This task involved the design, integration and testing of the motor controllers along with the vi-
bration pattern.  

 Subtasks: Scheme determination, mapping error to vibration signal, vibration motor at-
tachment 

 Dependencies: This task was independent from other hardware subsystems 

 Steps: 
o Design: October 2015, took 8 weeks through November 2015 
o Ordering: October 2015 and November 2015 
o Build: November 2015 
o Test: October 2015 through November 2015. March 2016 through May 2016 
o Document: November 2015 through April 2016 
o Review: January 2016 through May 2016 

Hardware Low Battery Detection 

This task involved the testing and installation of the low battery detection circuit. 

 Subtasks: Battery installation, low battery circuit design, testing and calibration of circuit 
at desired low battery voltage 

 Dependencies: The task has only dependent on the operating voltage of the system 
which was decided during design in October 2015 

 Steps: 
o Design: Early November 2015 through mid-November 2015 
o Ordering: Mid-November 2015 (1 week) 
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o Build: Late November 2015 through December 2015 
o Test: Mid-November through late November 2015 
o Document: Late November 2015 through April 2016 
o Review: Late November 2015 and January 2016 through May 2016 

Hardware Voice Control  

This task involved the development of the embedded hardware and software to enable the voice 
control on the WAG Chestpiece. The deliverable was the hardware setup that integrated this into the 
chest piece. 

 Subtasks: Voice control module setup, interface voice control module with other hard-
ware, determine and implement appropriate voice commands for stopping/starting mo-
tion and calibration 

 Dependencies: The development of this was dependent on the microcontroller interface 
i.e. which microcontroller communicated with the voice control module. 

 Steps: 
o Design: Early November 2015 
o Ordering: Mid November 2015 
o Build: Prototype in mid-November 2015, final system integration in March 2016 
o Test: Mid-November through March 2016 
o Document: February 2016 through April 2016 
o Review: March 2016 through May 2016 

Wireless Communications 

This task involved testing Bluetooth communications initially and then involved the switch to Wi-
Fi and the integration of the Wi-Fi communication hardware into the WAG Bands. On the software appli-
cation, this involved including Wi-Fi processing code.  

 Subtasks: Bluetooth feasibility (connection management on computer and device, data 
rates), connection setup, multiple connection maintenance, message parsing, message 
encoding, state machine setup within the EPS8266, integration of UART with Teensy, 
increasing stability of the module 

 Dependencies: This task was dependent on the microcontroller choice. 

 Steps: 
o Design: Mid-October 2015 through December 2015 
o Ordering: Mid-October 2015 (1 week) 
o Build: Mid-December 2015 through February 2016 
o Test: Mid-January 2016 through March 2016 
o Document: Mid-January 2016 through late January 2016 
o Review: Late January 2016 through early February 2016 

Printed Circuit Board Design 

This task involved the creation of the PCBs for the project to integrate all of the hardware com-
ponents. This task featured one original design period and a design revision where a second round of PCBs 
were ordered to correct several errors. 

 Subtasks: Designing PCBs, Ordering PCBs, Revising PCBs, Assembling PCBs, Testing PCBs 

 Dependencies: This task was dependent on all of the hardware testing tasks to deter-
mine the components needed for the WAG Bands and the chest piece 

 Steps: 
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o Design: Mid-December 2015 (1 week), 2nd round: Late February 2016 
o Ordering: Mid-December 2015 (1 week), 2nd round: Early March 2016 
o Build: Early January 2016 through late March 2016 
o Test: Mid-January 2016 through April 2016 
o Document: Mid-December 2016 through April 2016 
o Review: Late January 2016 through late February 2016 

 

Wearable Device Design and Construction 

This task involved the physical construction of the WAG Bands and the chest piece.  

 Subtasks: Prototyping band designs in SolidWorks, 3D printing of band cases, strap de-
velopment, vibration motor housing design and printing, PCB design 

 Dependencies: This step depended on the final choice for vibration motors and the PCB 
sizing 

 Steps: 
o Design: November 2015 – February 2016 
o Build: Mid-December 2015 – March 2016 
o Test: January 2016 – March 2015 
o Document: January 2016 – February 2016 
o Review: February 2016 – march 2016 

Recording 

This task involved getting data from the wearable bands and storing it into a motion file.  

 Subtasks: parse position data, aggregate into snapshots, store snapshots, signal record-
ing start, signal recording stop 

 Dependencies: Position Determination, Wi-Fi Communications 

 Steps: 
o Design: Mid-December 2015 through January 2016 
o Build: January 2016 through late January 2016 
o Test: Late January 2016 through late February 2016 
o Document: Late January 2016 through late February 2016 
o Review: February 2016 through March 2016 

Motion Saving and Loading 

This step involved being able to save and load motion files from the motion library or the user’s 
computer.  

 Subtasks: serialize motion metadata, serialize position state, serialize mapping of bands 
to position states (serialize a position snapshot), serialize mapping of times to position 
snapshots, deserialize metadata, deserialize position state, deserialize position snap-
shot, deserialize mapping of times to position snapshots 

 Dependencies: Recording 

 Steps: 
o Design: February 2016 through mid-February 2016 
o Build: Mid-February 2016 through Early March 2016 
o Test: March 2016 through late March 2016 
o Document: March 2016 through late-March 2016 
o Review: March 2016 through April 2016 
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Visualization 

This step involved being able to review a motion performed using a 3D human model in playback 
and editing modes.  

 Subtasks: create human model, export model, load extra data from Blender model, load 
model into software, configure OpenGL, configure nodes to receive world orientation 
updates while staying attached to parent 

 Dependencies: User Interface Development 

 Steps: 
o Design: February 2016 
o Build: February 2016 through March 2016 
o Test: March 2016 
o Document: early March 2016 
o Review: late March 2016 

Playback 

This involves being able to play a collected motion and trigger seeing the motion in the visualiza-
tion and sending appropriate error messages to each of the bands.  

 Subtasks: determine desired snapshot, compare desired snapshot with current position 
to determine error, serialize error message, send error message, signal playback start, 
signal playback stop 

 Dependencies: Haptic Feedback Scheme Development, Recording, Position Determina-
tion, Wi-Fi Communications 

 Steps: 
o Design: January 2016 through late January 2016 
o Build: Late January 2016 through mid-February 2016 
o Test: Mid-February 2016 through March 2016 
o Document: Mid-February 2016 through late March 2016 
o Review: Late February 2016 through March 2016 

Calibration 

This involves calibrating the accelerometer/gyroscope sensors themselves so their filtering algo-
rithm generates stable, non-drifting orientation measurements, defining coordinate frame transfor-
mations from the sensor axes to the visualization model axes, and implementing the pose-matching cali-
bration algorithm to align orientation updates based on fixed rotational offsets.  

 Subtasks: calibrate MPU6050 sensors, calculate coordinate frame transformations from 
sensor axes to model axes, develop pose-matching math 

 Dependencies: Recording 

 Steps: 
o Design: December 2015 
o Build: February 2016 
o Test: March 2016 
o Document: March 2016 
o Review: late March 2016 
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Motion Library 

This involves saving and loading files to a motion library and allowing users to easily interface with 
the library. 

 Subtasks: setup motion library directory, design interface, implement interface, connect 
to relevant application windows, implement search bar 

 Dependencies: Motion Saving and Loading 

 Steps: 
o Design: Late February 2016 
o Build: March 2016 
o Test: Late March 2016 
o Document: March 2016 
o Review: Late March 2016 

Edit Motion 

This involves allowing users to crop their motion and edit the motion metadata, including name, 
description, keywords, and save location. 

 Subtasks: add buttons, re-implement the new motion window for editing, implement 
crop by interfacing with the editingController and WAGFile 

 Dependencies: Recording, Motion Saving and Loading 

 Steps: 
o Design: Mid-February 2016 
o Build: March 2016 
o Test: Late March 2016 through Early April 2016 
o Document: Early April 2016 
o Review: Mid-April 2016 

Software Voice Control Integration 

This task involves configuring the software to parse the voice control messages and trigger cali-
bration or start and stop playback or recording.  

 Subtasks: send voice control data to computer, parse voice control messages sent to ap-
plication, voice control trigger computer action 

 Dependencies: Hardware Voice Control, Wi-Fi integration 

 Steps: 
o Design: February 2016 through mid-February 2016 
o Build: Mid-February 2016 through late February 2016 
o Test: Mid-February 2016 through mid-March 2016 
o Document: Late February 2016 through late March 2016 
o Review: March 2016 through late March 2016 

Software Low Battery Notification 

This involves getting low battery signals from the wearable bands and displaying and removing 
low battery notifications from the GUI.  

 Subtasks: low battery message parsing, software application notification on low battery 

 Dependencies: Hardware Low Battery Detection, Wi-Fi integration,  

 Steps: 
o Design: Mid-January 2016 through late January 2016 
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o Build: Late January 2016 through February 2016 
o Test: February 2016 through mid-February 2016 
o Document: February 2016 through late February 2016 
o Review: Mid-February 2016 through March 2016 
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Appendix 2 – Software Core Classes and Functionality 

Since a provisional patent was filed partially based on the software developed for this project, the 
full software for replication was withheld from this report. This includes both the software for the embed-
ded hardware (band hardware including the Wi-Fi chip, the Teensy 3.2 and the ATMega328P) and the C++ 
code to run the Qt application on the user’s computer. This appendix includes tables outlining classes and 
their functionality, for both the software application and the embedded software. 

Table 10 - Core Software Classes and Functionality 

Class Name Description Fields & Methods 

WifiManager Handles all communications with 
hardware bands 

Fields: 
HashMap<BandType, socket> socketMap 
 
Methods: 
void sendMessageToBand(BandType destina-
tionBand, BandMessage msg) 
void initiateConnection(QList<BandType> band-
sToConnect) 
void sendRawDataToBand(BandType destina-
tionBand, QByteArray data) 
 
Signals: 
void dataAvailable(BandType recvdFrom, Band-
Message data, QElapsedTimer timestamp)  

BandMessage Class for parsing and serializing 
data for Wi-Fi transmission 

Fields:  
MessageType msgType 
QByteArray msgData 
 
Methods: 
BandMessage(MessageType, QByteArray 
msgData) 
BandMessage() 
void parseFromByteArray(QByteArray recvd-
Packet) QByteArray getSerializedMessage() 

PositionSnapshot Contains position information for 
a given time for multiple bands in 
a suit 
Represents the user’s full position 
at a given time 

Fields: 
map<BandType, AbsState> positions 
 
Methods: 
void addMapping(BandType, AbsState) 
QSet<BandType> getRecordedBands() 
QHash<BandType, AbsState> getSnapshot() 
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Class Name Description Fields & Methods 

WAGFile Contains information about a sin-
gle motion recording. 

Fields: 
map<int, PositionSnapshot> positions 
QString name 
QString description 
QString author 
QVector<QString> tags 
 
Methods: 
int getLastFrameNum() 
PositionSnapshot getSnapshot(int frame-
Number) 
QHash<int, PositionSnapshot> getSnap-
shotsInFrameRange(int startFrame, int 
endFrame) 

AbsPose (abstract) Maintains calibration and can re-
turn an AbsState object repre-
senting the pose of the band at 
the current time 

Fields: 
AbsState current 
AbsState calibration 
 
Methods: 
void calibrate(AbsState calibrationPose) 
AbsError error(AbsState desiredPose) 
void update(AbsState newPosition) 

IError (interface) Defines functions for error in a 
band (difference between two 
states) 

Methods: 
QByteArray serialize() 
bool withinTolerance(int tolerance) 

AbsState (abstract class) Position for a band 
Currently, only implementation is 
quaternion 

 

AbsBand (abstract) Class for bands 
3 subclasses (Arm, Shoulder, 
Chest) 
Responsible for processing mes-
sages sent to the application and 
for determining messages to send 
during playback 
Each Band class communicates 
with its hardware counterpart 

Fields: 
BandType typeOfBand 
bool connected 
AbsPose pose 
 
Methods: 
void updateState(AbsState, stateTime) 
bool moveTo(AbsState) 
void handleMessage(messageTime, BandMes-
sage) 
void sendIfConnected(BandMessage) 
 
Signals: 
Void sendMessage(BandType, BandMessage) 
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Class Name Description Fields & Methods 

Suit Keeps track of a single set of 
Bands 
Serves as interface between 
bands and the rest of the applica-
tion 
 

Fields: 
QHash<BandType, AbsBand> bands 
 
Methods: 
void startOrStopMode(StartOrStopType) 
AbsBand getBand(BandType) 
void processNewPose(AbsState pose, 
BandType, int msgTime) 
void playSnapshot(PositionSnapshot) 
 
Signals: 
void positionSnapshotReady(int msgTime, Posi-
tionSnapshot) 
void voiceControlCommandReady(StartOrStop-
Type) 
void bandHasLowBattery(BandType) 
void positionMet() 

PlaybackController Handles Playback mode. Main-
tains playback settings and sends 
playback signals to the Suit class 

Fields: 
bool playing 
bool suitActive 
bool stepThroughMode 
float framerate 
int currentFrame 
int endFramePointer 
int beginningFramePointer 
Suit suitObj 
 
Methods: 
void togglePlay() 
void setActiveMotion(WAGFile) 
void updateSpeed(int newSpeed) 
void positionMet() 
void changePlaybackMode(bool isStepThrough) 
void toggleSuitActive() 
 
Signals: 
void frameChanged(int newFrame) 
void goToSnapshot(PositionSnapshot) 
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Class Name Description Fields & Methods 

EditingController Handles Edit mode settings and 
user input 
Updates suit visualization window 
for reviewing recorded motion 
Issues signals to update GUI ele-
ments 
 

Fields: 
int beginningFramePointer 
int endFramePointer 
int currentFrame 
WAGFile activeMotion 
 
Methods: 
void setActiveMotion(WAGFile) 
WAGFile cropMotion(int startFrame, int 
endFrame) 
void togglePlay() 
 
Signals: 
void goToSnapshot() 
 

RecordingController Handles Record mode 
 
 

Fields: 
bool voiceControlEnabled 
WAGFile activeMotion 
 
Methods: 
RecordingController(Suit) 
void startRecording() 
Motion stopRecording() 
void setActiveMotion(WAGFile)  
void addSnapshotToMotion(int snapshotTime, 
PositionSnapshot) 
void handleVoiceControlCommand(StartOrStop-
Type) 

Model Stores motion simulation states Methods: 
void updatePose(PositionSnapshot) 

ModelLoader Loads the data needed to con-
struct the motion simulation 
model 

Methods: 
Model* load() 

GLWidget Draws and displays the motion 
visualization 

Methods: 
void initializeGL() 
void paintGL() 
void resizeGL(int,int) 

ModelGL Stores visualization meshes and 
coloring/lighting data 

Methods: 
void updatePose(QHash<QString,NodeState>) 
 
Signals: 
void modelGLChanged() 
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Class Name Description Fields & Methods 

ModelGLLoader Reads and parses the human 
model object files, loading into 
memory 

Methods: 
bool Load(QString,PathType) 
ModelGL* toModel() 

enum BandType List of possible band types Types: 
leftLowerArmBand 
rightLowerArmBand 
leftUpperArmBand 
rightUpperArmBand 
leftShoulderBand 
rightShoulderBand 
chestBand 

 
Table 11 describes the basic breakdown of classes within the embedded hardware. 

Table 11 – Core classes and functionality of embedded hardware 

Class Name Description Fields & Methods 

WifiStateMachine Contains all the ESP8266 code 

Fields: 
char recordingMsg[11] 
char playbackMsg[11] 
Methods: 
void readTeensySerialSendPkt(boolean 
printStuff) 
boolean listenForSpecificPacket(char 
specificPacket, boolean printInfo) 

WiFiMsgTypes 
Contains the definitions of the Wi-
Fi message types 

Fields: 
typedef enum MessageType 

pfodESP8266WiFi 
Contains non-blocking implemen-
tation of ESP8266 Wi-Fi client [45] 

Methods: 
WiFiClient.write(...)  
WiFiClient.isSendWaiting()  
pfodESP8266BufferedClient  
pfodESP8266BufferedClient()  
pfodESP8266BufferedClient.connect(WiFiCli-
ent*)  
pfodESP8266BufferedClient.write(..)  
pfodESP8266BufferedClient.isSendWaiting()  
pfodESP8266BufferedClient.flush()  
pfodESP8266BufferedClient.setDebug-
Stream(Stream* debugOut)  

BatteryMonitor 
Contains the code to check on the 
low battery circuitry 

Fields: 
NUM_LOW_BATT_CYCLES 
LOW_BATT_PIN_ACTIVE_LOW 
Methods: 
BatteryMonitor() 
void initLowBatteryInfo() 
void checkBattery() 
int hasLowBat() 
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Class Name Description Fields & Methods 

ESP8266Comms 
Contains the code within the 
Teensy to enable communications 
with the ESP8266 

Fields: 
uint8_t msgToESP8266[12] 
Methods: 
void ESP8266Comms() 
void zeroErrorCalculations() 
void setCommand(char cmd) 
void sendMsgToESP8266(char cmd) 

I2Cdev Contains the I2C library code [46] 
Method: 
Wire.begin() 

MPU6050 
Contains the I2C development for 
the MPU6050 [46] 

Methods: 
void initialize() 
void dmpInitialize() 
int testConnection() 
void getFIFOBytes(uint8_t buffer, int pack-
etSize) 

MPU6050WAGWrapper 
Contains the code to abstract the 
MPU6050 interface for the WAG 
Band 

Methods: 
MPU6050WAGWrapper(uint8_t bandNum) 
void extractMPU6050Vals(uint8_t* packet) 
void loadAccelGyroOffsets(int xAccel, int yAc-
cel, int zAccel, int xCyro, int yGyro, int zGyro) 

VibrationPattern 
Contains the code necessary to 
control the motors from the 
Teensy 3.2 

Methods: 
void performMotorCalculationsAndRunMo-
tors() 
void writeMotorSpeeds(int* motorSpeeds, int 
nAngles) 
void stopAllMotors() 

WAGBandCommon 
Contains global definitions of 
shared information such as UARTs 

Fields: 
ESP8266_SERIAL 
DEBUG_SERIAL 

WAGBandTeensyCode 
Contains the code to connect all 
embedded hardware with a WAG 
Band 

Methods: 
boolean readESP8266SerialSendPkt(boolean 
printStuff) 
void loop() 

WAGBand-
ChestPieceTeensyCode 

Contains the code to enable all 
embedded hardware within the 
chest piece 

Methods: 
void listenToArduino() 
void enableVoiceControl() 
void loop() 

easyVR_arduino_simple 

Contains all the code running on 
the ATMega328 within the chest 
piece (based on the EasyVR code 
base [47]) 

Methods: 
void checkMonitorInput() 
void loop() 
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Appendix 3 – Full Bill of Materials for Project 

This appendix contains a listing of materials for each band and what would be required to build 
another band. 

WAG Band 

The full bill of materials is seen in Table 12. This shows the part along with the manufacturer part 
number, the cost, quantity on the board and the cost for the component(s). 

Table 12 - Bill of materials for WAG Band 

Part Manufacturer number Quantity Cost per Cost total 

Panasonic 1000µF Capacitor EEU-FR1A102L  1 $0.19 $0.19 

MPU6050 Breakout board - 1 $3.50 $3.50 

Teensy 3.2 - 1 $20.00 $20.00 

1kOhm (SM) ERJ-U02F1001X  3 $0.01 $0.04 

10kOhm (SM) CRCW120610K0FKEAHP  1 $0.10 $0.10 

1uF capacitor (SM) 0805ZC105KAT2A  2 $0.01 $0.02 

TLV1117 3.3V regulator TLV1117LV33DCYR  1 $0.52 $0.52 

NPN BJT (SM) MMBT3904LT1G  2 $0.01 $0.02 

N-Channel MOSFET (SM) BSS138LT1G  6 $0.24 $1.46 

10kOhm potentiometer CB10LV103M  1 $0.20 $0.20 

5mm Red LED - 1 $0.20 $0.20 

5mm Yellow LED - 1 $0.20 $0.20 

5mm Green LED - 1 $0.20 $0.20 

Female 40 pin header 0.1" spacing - 2 $0.40 $0.80 

LM358 (SM) LM358DR  1 $0.10 $0.10 

30kOhm (SM) CRCW120630K0FKEA  2 $0.01 $0.01 

ESP8266 Wi-Fi Board - 1 $4.00 $4.00 

PCB - 1 $4.00 $4.00 

SPDT power switch MS12ASW13  1 $1.79 $1.79 

JST-PH connector for battery and charger (female) S2B-PH-K-S(LF)(SN) 2 $0.17 $0.34 

Motor crimp connectors SXH-002T-P0.6 12 $0.10 $1.20 

Stranded wire for motors - 1 $1.50 $1.50 

JST-PH connector for battery and charger (male) PHR-2 2 $0.10 $0.20 

Wire for battery - 1 $0.30 $0.30 

Battery 3.7V Li-Po T1000.1S.20 1 $2.60 $2.60 

Motor connector (male) XHP-12 1 $0.24 $0.24 

Motor (3V) 10x2mm Polulu 1636 6 $3.49 $20.94 

Motor connector (female) S12B-XH-A(LF)(SN) 1 $0.68 $0.68 

3D Printed Case and motor mounts - 1 $4.00 $4.00 

  Total cost per band: $73.86 

 

http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=74R3403&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=51W2916&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=68R3003&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=96M1308&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=48T4644&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=83H7337&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=83H6430&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=16R3920&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=34K7599&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=42K4978&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=11X3335&storeId=10194
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WAG Chestpiece 

The full bill of materials is seen in Table 13. This shows the part along with the manufacturer part 
number, the cost, quantity on the board and the cost for the component(s). 

Table 13 - Bill of materials for WAG Chestpiece 

Part Manufacturer number Quantity Cost per Cost total 

Panasonic 1000µF Capacitor EEU-FR1A102L 1 $0.19 $0.19 

MPU6050 Breakout board - 1 $3.50 $3.50 

Teensy 3.2 - 1 $20.00 $20.00 

1kOhm (SM) ERJ-U02F1001X 3 $0.01 $0.04 

10kOhm (SM) CRCW120610K0FKEAHP 1 $0.10 $0.10 

1uF capacitor (SM) 0805ZC105KAT2A 2 $0.01 $0.02 

TLV1117 3.3V regulator TLV1117LV33DCYR 1 $0.52 $0.52 

NPN BJT (SM) MMBT3904LT1G 2 $0.01 $0.02 

10kOhm potentiometer CB10LV103M 1 $0.20 $0.20 

Red LED - 1 $0.20 $0.20 

Yellow LED - 1 $0.20 $0.20 

Green LED - 1 $0.20 $0.20 

Female 40 pin header 0.1" spacing - 3 $0.40 $1.20 

LM358 (SM) LM358DR 1 $0.10 $0.10 

30kOhm (SM) CRCW120630K0FKEA 2 $0.01 $0.01 

ESP8266 Wi-Fi Board - 1 $4.00 $4.00 

PCB - 1 $5.00 $5.00 

SPDT power switch MS12ASW13 1 $1.79 $1.79 

JST-PH connector for battery and charger 
(female) 

S2B-PH-K-S(LF)(SN) 2 $0.17 $0.34 

JST-PH connector for battery and charger 
(male) 

PHR-2 2 $0.10 $0.20 

Wire for battery - 1 $0.30 $0.30 

Battery 3.7V Li-Po T1000.1S.20 1 $2.60 $2.60 

EasyVR3.0 Speech Recognition Module COM-13316 1 $49.95 $49.95 

ATMega328-PU (with internal 8MHz oscilla-
tor bootloader) 

ATMEGA328-PU-ND 1 $3.38 $3.38 

DIP Socket 28 position ED3050-5-ND 1 $0.33 $0.33 

3D Printed Case - 1 $4.00 $4.00 

Chest strap - 1 $8.00 $8.00 

  Total cost $106.40 

 
 

http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=74R3403&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=51W2916&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=68R3003&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=96M1308&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=48T4644&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=83H7337&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=16R3920&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=34K7599&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=42K4978&storeId=10194
http://www.newark.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=15003&langId=-1&urlRequestType=Base&partNumber=11X3335&storeId=10194
https://www.digikey.com/product-detail/en/atmel/ATMEGA328-PU/ATMEGA328-PU-ND/2271026
https://www.digikey.com/product-detail/en/on-shore-technology-inc/ED281DT/ED3050-5-ND/4147600
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Appendix 4 – Assembly & Construction 

In Table 12 and Table 13, the full listings of parts required for a WAG Band and WAG Chestpiece 
are detailed and various manufacturer part numbers are included where applicable. These parts could be 
ordered either directly from the manufacturer or from a distributor. The part that is not detailed there is 
the PCB board and schematic files. This appendix describes these files and the process of constructing a 
band. Each PCB was designed in EAGLE 7.5.0 Light produced by CadSoft. EAGLE is a schematic capture 
(design) and PCB layout software. The Light version of EAGLE is a limited feature free version of the pro-
gram (with one of the main restrictions being the size of PCB board of 100mmx80mm and the number of 
layers of the board to only top and bottom layer routing). The free version was fine for project as the 
board was simple with only a few components needing to share space. One challenge was the spacing of 
all the through-hole modules (ESP8266, Teensy 3.2, MPU6050 etc.) which required larger clearances than 
using surface mount parts only. To layout the board, a number of virtual “parts” needed to be created. 
These “parts” define the specific physical footprint of a component so the designer knows how to properly 
layout the board. For a through-hole component such as a resistor with metal leads, this package is usually 
two holes with some spacing between them. For more advanced surface mount components these pack-
ages can have much smaller spacing between the pads (metal rectangles) where the part is soldered to. 
With the plethora of components available, each one can have a unique footprint. To aid in the design 
process, EAGLE includes a number of common components in virtual form in libraries. For this project a 
number of the pieces were specialized and required custom virtual parts to be created (for schematics 
and for the board layout) for objects such as the potentiometer for the low battery threshold, the 
EasyVR3.0 module, the motor controller MOSFETs, and the motor JST connector. The remainder of this 
appendix covers the schematics, PCBs, band construction and assembly. 
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WAG Band: Schematics and PCB design 

The full schematic for the WAG Band can be seen in Figure 36. The whole schematic is broken 
down into smaller subsections in the following sections.  

 

 

Figure 36. WAG Band schematic 

The full board layout can be seen in Figure 37.  
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Figure 37. Board design for WAG Band 

The final PCB for the WAG Band can be seen in Figure 38.  
 

 

Figure 38. Final PCB for WAG Band 

An intermediate step can be seen in Figure 39. This shows where all of the larger components 
would go as well.  

 

 

Figure 39. Final WAG Band PCB with surface mount components and female headers 
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The populated final WAG Band PCB can be seen in Figure 40. This shows the various modules 

placed in the female headers from Figure 39.  
 

 

Figure 40. Final PCB with components for WAG Band 

Teensy 3.2 Microcontroller and MPU6050 

For this part of the schematic, the only important part is shown in Figure 41. The main portion of 
the image shows the Teensy 3.2 schematic symbol with nets going to LOW_BATT (battery monitoring 
circuitry), ESP_GPIO2 (GPIO2 pin on the ESP8266), ESP_GPIO0 (GPIO0 pin on the ESP8266), CH_PD (CH_PD 
pin on the ESP8266), ESP_RX (the ESP8266 RX UART pin), ESP_TX (the ESP8266 TX UART pin), Q1, Q2, Q3, 
Q4, Q5 (all the 6 motor MOSFET gates) and the V_BAT (battery voltage input). There also exist a few 
unlabeled connections going to a MPU6050 part in the image. These lines are the interrupt line (on Teensy 
pin 17) and the I2C connection lines (Teensy Pins 19 and 18) to the I2C pins on the MPU6050 header JP1 
(SCL and SDA). On the actual PCB, both the MPU6050 and Teensy 3.2 are held in place in 0.1” spacing 
female through-hole headers. These aid in debugging and allow for modularity where components can be 
easily swapped out in case of failure.  

 

 

Figure 41. WAG Band microcontroller schematic 
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This part of the final PCB can be seen in Figure 42. This shows the 14 pin female headers for the 
Teensy in addition to the 8 pin vertical header for the MPU6050. Below the MPU6050 are the connections 
for the charger and the battery in addition to the voltage regulator. Beneath the Teensy 3.2 is the low 
battery detection circuitry including the two BJT transistors and an LM358 op-amp.  

 

 

Figure 42. Microcontroller portion of final PCB 

ESP8266 Wi-Fi Chip 

The schematic for the ESP8266 Wi-Fi module can be seen in Figure 43. This shows the ESP_GPIO2 
(GPIO2 pin on the ESP8266), ESP_GPIO0 (GPIO0 pin on the ESP8266), CH_PD (used to pull the module out 
of sleep mode), ESP_RX (the ESP8266 RX UART pin) and ESP_TX (the ESP8266 TX UART pin). Additionally 
the 3V3 line is connected to the VCC and RST connections (and CH_PD through a pull-up resistor). This 
3V3 line comes from the regulated 3.3V power provided by the onboard regulator.  

 

 

Figure 43. WAG Band ESP8266 schematic 

The 1000µF capacitor shown in the top of Figure 43 was originally a surface mount capacitor to 
stabilize the operation of the ESP8266 module, however it was found this did not solve the issue. Instead 
a 1000µF “backpack” capacitor soldered directly onto the VCC and GND pins of the ESP8266 provided the 
required stability (see Figure 44). Similarly to the Teensy 3.2 and MPU6050, the ESP8266 symbol U$2 in 
Figure 43 is represented on the PCB with two 4 pin 0.1” spacing female through-hole headers. This allows 
for easy programming and swapping of ESP8266 chips. This also provides the required spacing between 
the PCB and the ESP8266 for the “backpack” capacitor. 
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Figure 44. ESP8266 with “backpack” capacitor for stability 

The physical representation of the ESP8266 socket can be seen in Figure 45. The PCB also contains 
the surface mount capacitor pads, but this was replaced with the “backpack” capacitor.  

 

 

Figure 45. ESP8266 Socket on final WAG Band PCB 

To make programming of the ESP8266 module easier (after electing to use a custom Arduino-core 
developed by the ESP8266 community), a simple ESP8266 breakout board was used. This can be seen in 
schematic form in Figure 46.  

 

 

Figure 46. Schematic for simple ESP8266 programming breakout 
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The resulting board layout can be seen in Figure 47. This breakout board includes the ESP8266 
headers on the right side and brings the UART pins out to an FTDI header on the far left. The switch in the 
upper right corner allows the module to be placed in normal operating mode or programming mode (for 
loading code through the FTDI header). Using 0.1” male headers, two other 5 pin connections allow for a 
selectable voltage input to the ESP8266. An on board voltage regulator also handles voltage filtering. Ad-
ditionally since the ESP8266 is a 3.3V system, an external level shifter is included on the board to translate 
the voltage thresholds between the 5V and 3.3V UARTs of the FTDI cable and the ESP8266. A simple 
pushbutton switch is also included to reset the module. Lastly 4 pin headers on the top and bottom of 
Figure 47 are included to allow the device to be slotted into a breadboard for ease of debugging. 

 

 

Figure 47. PCB layout for ESP8266 breakout board 

The final product of the ESP8266 breakout board can be seen in Figure 48. 
 

 

Figure 48. Finished ESP8266 breakout board 

Motor Controllers 

For this portion of the WAG Band, the schematic is shown in Figure 49. Each one of the devices 
named Q1 through Q6 is an n-channel MOSFET with the source connected to ground and the drain con-
nected to one lead of the motor (through the MOTOR_IN connector). The gate is connected to a wire 
which leads back to a Teensy PWM pin. The motors connect to the MOTOR_IN connector through a JST-
XH 12-pin connector with one lead going to a connection to 3.3V regulated and the other to the drain of 
a MOSFET. 



76 
 

 

Figure 49. WAG Band motor controller schematic  

The physical representation of these MOSFETs on the PCB can be seen in Figure 50. The JST-XH 
connector was chosen to allow the motors to be disconnected from the PCB if necessary (to replace a 
component or battery). With the ability to disconnect the motors from the PCB, other circuit components 
such as LEDs could be substituted for testing the WAG Bands.  

 

Figure 50. MOSFET motor controllers on the final PCB 

Low Battery Circuit 

The circuit schematic for the low-battery schematic can be seen below in Figure 51. The top por-
tion of this circuit is a surface mount LM358 single supply op-amp to take in the voltage levels of the 
potentiometer and the LED from the detection circuit and provide a single digital signal indicating if the 
battery voltage supplied through (V_BAT) has dropped below a certain threshold. This threshold is set 
manually by adjusting the potentiometer (in a voltage divider with the 30kΩ resistor). The BJTs used in 
the detection circuit are biased at by the potentiometer voltage and conduct when this voltage changes 
as the voltage drops. This design is based off the original design by Swagatam Majumdar which was for 
9V batteries [48], but was modified for 3.7V battery systems and converted into a digital signal.  
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Figure 51. WAG Band low battery schematic 

The final version of this battery monitor circuit can be seen in Figure 52. This shows the LM358 
along with the required NPN BJT transistors. The potentiometer can also be seen with the LED for display-
ing the LOW battery notification. This information is also sent over Wi-Fi to the computer application. 

 

 

Figure 52. WAG Band PCB low battery circuit 

Power Distribution 

The power distribution subsystem can be seen in the schematic snippet in Figure 53. The biggest 
part of this circuit is the 3.3V voltage regulator (TLV1117). The connections for powering the rest of the 
board (the V_BAT and 3V3 connections) can also be seen here. The CHGR and BAT connections are to JST-
PH connectors on the PCB. The U$4 module is a SPDT power switch which enables charging the battery 
when the band is not in use. On the 3V3 power side, there is a green PWR LED to indicate the band is 
powered on.  
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Figure 53. WAG Band power distribution schematic 

The final PCB result of this power distribution module can be seen in Figure 54. This shows the 
SPDT switch along with the LEDs on the bottom of the image. The voltage regulator and the JST-PH con-
nectors are on the top of the image. 

 

 

Figure 54. WAG Band power distribution module PCB 

Motor Connector 

For this part of the hardware, the motors were soldered to stranded wires which were fed into a 
male JST-XH 12-pin connector. They were then placed into 3D printed motor housings and placed on a 
nylon rope outside of the band. This can be seen in Figure 55. Heat shrink was used on the motor wires to 
reduce the chance of snapping a motor lead. The male JST-XH connector was slotted into the PCB within 
the band. Fastener straps were also fed through the bottom of the 3D printed case to attach the band 
casing. 

 



79 
 

 

Figure 55. WAG Band motors outside 3D printed case 

WAG Band: Programming and Construction 

With an understanding of the hardware behind the WAG Band, each of the bands was constructed 
with all the surface mount components soldered first. Next the boards were populated with the various 
through-hole components (potentiometer, LEDs, power switch, JST connectors). Once the boards were 
completed, these were tested for complete functionality and were populated with the various modules 
(Teensy, MPU6050, ESP8266 etc.).  

After testing the PCBs and functionality of the bands, the physical construction of the bands with 
additional Fastener and harnesses was completed. Each band casing was 3D printed in PLA. The casings 
were designed to house the battery and custom PCB. The casing attaches to the user with a hook and loop 
strap and an elastic band is used to hold the ring of ERVs. 5 of each band’s ERVs was glued into a 3D 
printed slider which was attached to the elastic band so that the user could adjust the ERVs’ locations. 
The 6th ERV’s was located on the underside of the main band casing. Each ERV had leads of appropriate 
length soldered on the connector plug for attachment to the PCB. The lid of the band casing was designed 
to securely hold the PCB in place inside of the band so that the IMU would not move relative to the limb 
it was tracking. 

 
Programming of the Teensy 3.2 was done via the USB port on the device and code was written in 

the Arduino 1.6.5 IDE. Code was also stored on a private Github repository for version control. The 
ESP8266 module was programmed using a special plugin for the Arduino 1.6.5 IDE that enabled program-
ming of the module through the breakout board (and the ESP8266 community Arduino-core). This was 
programmed with the use of an FTDI cable and the ESP8266 breakout board seen in Figure 48. Once the 
ESP8266 was programmed, the board was slotted into the band and the band hardware was complete.  

WAG Chestpiece: Schematics and PCB design 

The schematic of the WAG Chestpiece can be seen in Figure 56. The biggest difference from the 
normal WAG Band schematic is the addition of an ATMega328P (the chip behind the popular Arduino 
Uno) and an EasyVR3.0 module and the removal of the motor MOSFETs.  
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Figure 56. WAG Chestpiece schematic 

Since the chest piece shares similarities to the WAG Band, see the WAG Band: Schematics and 
PCB design section for information about the Teensy 3.2, MPU6050, low battery detection circuitry, 
ESP8266 or the power distribution circuitry. The resulting board layout for the WAG Chestpiece can be 
seen in Figure 57. 

 

Figure 57. WAG Chestpiece board layout 
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The PCB produced from this layout, without the microcontroller and speech recognition modules, 

can be seen in Figure 58. 
 

 

Figure 58. Finished PCB without microcontroller and speech recognition modules inserted 

The final populated PCB with all modules installed can be seen in Figure 59. This also includes a 
quarter for size reference. This board is then installed in the harness for the chest as seen in Figure 14. 
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Figure 59. WAG Chestpiece PCB with all components on board 

Secondary Microcontroller: ATMega328P 

One difference was the ATMega328P chip. This circuitry can be seen in Figure 60. This chip was 
used because of the low cost associated with the microcontroller (around ~$4). Additionally, this chip is 
easily programmable using the Arduino IDE and bootloader. While Figure 60 indicates the presence of a 
16MHz oscillator crystal, this was used to burn the 8MHz internal oscillator Arduino bootloader into the 
chip. It was not used on the final chest piece PCB.  

The main connections are the UART connections (RXD_ARD and TXD_ARD) to the Teensy’s second 
UART. There was an included interrupt line from the Teensy to the Arduino (INT_FROM_TNSY) to indicate 
data was ready, although this was not needed in the final version of the hardware and was not used. The 
other connection was another UART link to the EasyVR3.0 module (on lines EASYVR_TX/RX performed 
with a software defined UART called SoftSerial in the Arduino Libraries). There is also a !RST (active low) 
rest line coming in from the Teensy to reset the Arduino). Lastly, is an interrupt line to the Teensy 
(INT_TO_TNSY) which is used to tell the Teensy that voice command data has been transferred from the 
Arduino UART to the Teensy. 
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Figure 60. Chest piece ATMega328 schematic 

The physical representation of the ATMega328 can be seen in Figure 61. This shows a 28 pin DIP 
socket used to include the IC. The reason behind this was the ability to easily remove and reprogram the 
module (using an Arduino Uno board) for the final system.  

 

 

Figure 61. ATMega328 interface on chest piece PCB 

Voice recognition Module: EasyVR3.0 

The EasyVR3.0 module schematic can be seen in Figure 62. The main connections are the UART 
connection to the ATMega328 (see Figure 60). The only other connections needed are 3.3V power, GND 
and an active-low reset signal.  
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Figure 62. EasyVR3.0 interface schematic 

The physical representation of this part of the chest piece PCB can be seen in Figure 63. The actual 
module sits on top of this and uses the female 0.1” spacing headers. Figure 63 also features a few com-
ponents from the low-battery circuit. 

 

 

Figure 63. Chest piece EasyVR3.0 interface 

 

WAG Chestpiece: Programming and Construction 

The chest piece went through the same construction as described in the WAG Band: Programming 
and Construction section, although the EasyVR module had to be broken out and tested separately before 
being included in the final design.  

The physical box and mounting of the chest piece to the harness around the user’s torso was 
completed in early April. The harness used is a repurposed GoPro chest harness. The shoulder bands and 
chest band were attached to the harness in their appropriate locations. The harness is adjustable and 
form fitting so it is perfect for holding the bands in place on the user.  

Similar to the WAG Band: Programming and Construction section, programming of the Teensy 3.2 
was done via the USB port on the device in the Arduino 1.6.5 IDE. The ATMega328P was also programmed 
through the 1.6.5 IDE, however the DIP chip was placed on a breadboard rather than a standard Arduino 
Uno breakout board. This was done because a 3V bootloader was burned into the device that relies on 
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the internal 8MHz oscillator rather than the traditional external 16MHz oscillator crystal. This “bread-
board” Arduino setup is described on the Arduino CC website. The ESP8266 chip was also programmed 
using a 5V FTDI cable and the ESP8266 breakout PCB.  

After the Teensy, Arduino and ESP8266 were programmed, they were placed into their headers 
on the board and the band was complete. The battery was placed in the chest piece below the PCB and a 
protective layer was placed above that. The PCB was then slotted into the casing and the lid was replaced 
on the top of the open case. Both the chest piece and the WAG Band case lids were painted with the 
correct ON/OFF locations and the logo of the team. The bands could then be tested and connected with 
the computer. For the chest piece this included verifying that the voice commands of “run,” “stop” and 
“action” worked as they should.  

Software Development 

GUI 

To meet the project requirements, a list of features and functions that the GUI would need was 
made. After the list was complete, some preliminary designs were made using moqups.com. Designs were 
implemented after gaining stakeholder approval. Qt creator was used to design the GUI using C/C++ be-
cause it is well documented and supported, and some team members had prior experience with it. Figure 
65, Figure 66, Figure 67, and Figure 68 show the final GUI design next to the original moqups.com design. 
The edit recording and playback recording windows were implemented first, followed by the settings and 
save as overlay windows. 

The hardest feature to implement was the double handled slider shown in Figure 64. Qt’s generic 
slider object does not support two handles so the application used a custom SuperSlider class. The base 
implementation was taken from a Stack Overflow answer and modified to meet the needs [49]. The final 
result is a slider with two handles that cannot cross. 

 

 

Figure 64. The double handled slider, used in editing and playback mode 

 
 

 

Figure 65. Playback motion GUI. Qt Creator on the left, moqups on the right 
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Figure 66. Record/Edit motion GUI. Qt creator on the left, moqups on the right 

 

Figure 67. Settings window. Qt Creator on the left, moqups on the right 

 

 

Figure 68. Save as window. Qt Creator on the left, moqups on the right 
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Appendix 5 – Test Plans 

Software Testing 

Communications 

Testing communications capabilities of the software took place in a few stages. The first was de-
veloping a basic server in within the application and using a TCP command line utility to connect and send 
messages to the IP address and port number associated with the messages. The next step in testing was 
to create a simple C program that would wait for data, and when received, would reverse the string, and 
then send it back to the application. This was used to test basic communication capabilities, and that 
messages were fired on certain button presses.  

Message Processing 

After significantly more application development, the application message handling and propaga-
tion was tested. To accomplish this, a C program was developed that simulates behavior of the physical 
bands. This enabled testing of communications and application functionality before the physical bands 
were complete. When the user pressed connect, record, or playback in the application, messages would 
be sent to the C program. The program would then respond accordingly. In the case of starting recording 
or playback, the program would send mock IMU data. Print statements embedded in the computer appli-
cation would then display how the information was processed and propagated through the application. 
This confirmed that messages were being received, parsed, and saved properly. In playback mode, the C 
program would print out the returned error data that would be converted to motor vibrations. The bytes 
received by the mock band program could be examined to verify that this error was being calculated and 
transmitted correctly.  

Kinematics 

The visualization and human model software classes include several methods that track the user’s 
pose in three-dimensional space based on the relationships between the user’s limb orientations and the 
model’s limb lengths. These relationships are referred to as the kinematics of the system. Unit tests were 
created using QtTestLib to test the functionality of the kinematic models. These tests verified the func-
tionality of the operations implemented to track pose updates and error calculations. These unit tests 
tested each method of the AbsState, AbsError, and AbsPose classes, and each of their subclasses (e.g. 
QuatState, QuatPose, and QuatError). The test procedure included developing a series of test inputs and 
expected outputs for each method, and evaluating that method with those inputs to verify that that 
method’s output matches the expected output. This test procedure identified multiple errors and missed 
edge cases in the software, which were then fixed. Also, with these test cases in place, any future updates 
to the kinematics methods can be immediately comprehensively tested using the same core tests.  

Hardware Testing 

Testing of the hardware has been ongoing since early October. Since that time, subsystems such 
as the communications Wi-Fi chips, IMU, feedback motor controllers and the low battery monitoring sys-
tem have been tested independently and verified. For each subsystem embedded C code was developed 
for integrating the system with the Teensy 3.2 microcontroller. In mid-December, an initial run of PCBs 
was created to integrate all of the subsystems in a single board. In early January, these boards were as-
sembled and tested using the subsystem code that was developed. Connections on the PCBs were also 
verified to enable the functionality of each subsystem. To see the detailed testing process for each sub-
system see Table 14.   
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Table 14 - Subsystem testing for hardware 

Hardware tested Subsystem Testing strategy 

MPU6050 
(Accelerometer 
and gyroscope) 

Sensors 

Check connections to Teensy 
Read position information from internal FIFO using Teensy 
Send position information over Wi-Fi to computer and check data in-
tegrity 

ESP8266 (Wi-Fi) Communications 

Check connections to Teensy 
Check received Wi-Fi packets for data integrity from computer appli-
cation 
Receive accelerometer data from Teensy via UART 
Send data received from computer to Teensy via UART 
Connect to Wi-Fi access point and wait for computer 
Check connect/reconnect to computer 
Check current usage to be under 250mA 

Low battery moni-
tor circuit 

Power  
distribution 

Check connections to Teensy 
Check can send interrupt to Teensy 
Check can be set low battery threshold at varying voltage between 
battery and 1V 

Motor  
controllers 

Feedback 

Check connections to Teensy 
Check each motor can be driven with PWM signal with duty cycle 
~0% to ~100% 
Check motor vibration works correctly 

3.3V Regulator 
Power 
distribution 

Check connections to supply power to motors and ESP8266 
Check dropout voltage below 3.3V input voltage 

3.7V battery 
Power  
distribution 

Check connections to Teensy and MPU6050 
Check can be charged using external charger by changing power 
switch 

 

ESP8266 Testing 

After changing to the custom Arduino Core for the ESP8266 Wi-Fi device, the stability of the chip 
began to degrade. Occasionally the chip would crash or trigger a system reset as the watchdog timer (a 
module designed to reset the board in case of a failure) would catch a failure. Various solutions were 
proposed online, but the only solution that worked was a 1000µF capacitor on the back of the ESP8266 
(see Figure 44). With the final code running on the ESP8266 it was found that the module draws around 
80mA during normal operation and draws up to 120mA of current during sending of Wi-Fi packets. This 
was checked with the power supply providing current to the board. The ESP8266 did emit small spikes in 
current which were detected in the low battery monitoring circuitry, but this was accounted for by setting 
the threshold a bit above the desired low-battery voltage setting.  

To test the Wi-Fi speed of the ESP8266 and the computer, Wireshark, an open-source application 
for measuring various types of wired and wireless network traffic, was used to capture and verify the 
contents of messages between the computer and Wi-Fi chip. A capture of several packets from a single 
band and the computer can be seen in Figure 69. The main body of the program shows TCP traffic between 
192.168.1.205 (a band) and 192.168.1.203 (a laptop computer). 
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Figure 69. A capture of TCP packets during playback mode using Wireshark 

By using Wireshark, an “IO Graph” of the difference in arrival times (to tell how quickly the packets 
are being sent and received) can be constructed to give an idea of how quickly data is being transferred 
in the system. This sort of plot is shown in Figure 70 for recording mode and Figure 71 for playback mode. 
From visual inspection, the majority of the peaks in recording mode occur between 60 ms and 80 ms.  
 

 

Figure 70. Plot of time differences between arrival times of packets for recording mode 
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Looking at Figure 70, the average arrival time is around 60ms between packets (meaning the fre-
quency is around 16.7Hz) for recording. For playback, the results of Figure 71 show that the average arrival 
time for packets is about the same and is around 60ms or so on average. This means the frequency for 
playback is around 16.7Hz. 

 

 

Figure 71. Plot of time differences between arrival times of packets for playback mode 

Teensy 3.2 Testing 

Since the code inside the Teensy 3.2 and the ESP8266 is not included in this report (see Appendix 
2 – Software Core Classes and Functionality), the testing is not covered as deeply. Testing results indicated 
the Teensy 3.2 was able to successfully integrate floating point math to process error signals coming from 
the computer, while running UART communications between the ESP8266 and the Teensy. The data trans-
fer rate between the ESP8266 and the Teensy (set at 115200 bits/second) was high enough to minimize 
latency from reading the current motion position to sending this to the computer via Wi-Fi. The Teensy 
3.2’s I2C libraries were also fast enough to read data from the MPU6050 at around 116 Hz as measured 
within the loop of the Teensy code. 

PCB Testing 

After checking the power distribution of on the PCBs, it was found that the regulated 3.3 V rail 
and been combined with the raw input voltage rail on all the boards. This necessesitated a design change 
given the voltage tolerances on the ESP8266. The chest piece design also had the JST connections mirrored 
onto the underside of the board and as such needed to be changed. Given these two problems, a second 
round of PCBs was ordered that included the fixes for the voltage rails and the connector issue. This 
second round of boards became the final boards used for the project. The second round of boards were 
tested upon arrival and verified to fix the issues previously encountered on the first boards. 

This second round of boards also included the ESP8266 breakout board (see Figure 47) that greatly 
increased testing of the embedded code using the FTDI breakout. The code used the UART on the ESP8266 
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to print debug messages to the Arduino IDE for testing and verification of the Wi-Fi code. After fixing the 
issues on the board, the operation of the PCBs was as expected. 

Full System Testing 

Full system testing of the system indicates that all the core functionality exists. Testing has indi-
cated the system captures motion during recording with minimal latency on the Intel Atom (with dedi-
cated Wi-Fi hardware). However, certain USB Wi-Fi dongles cause packet loss; dedicated Wi-Fi hardware 
is preferable for optimal WAG System performance.  

User tests include evaluating the performance of the software application and the set of bands 
together. The user tests evaluate the full system to determine its effectiveness as a motion training tool 
– particularly, to identify the effectiveness of real-time vibrational haptics as a teaching and training mech-
anism. This is evaluated by surveying test subjects to determine how well they felt that the system ad-
hered to these requirements. The test subjects evaluate the effectiveness of the WAG System for learning 
new physical skills, in order to compare video-based learning methods with using both the haptic guidance 
and the built-in motion visualization. The tester reports the effectiveness of the system for motion training 
with just the visualization, and with the visualization and haptic feedback. The motion training effective-
ness tests also have a tester perform the same motion multiple times with haptic feedback to try to learn 
that motion. The software measures improvements based on the magnitude of the angular errors of each 
band over the course of the motion. The tests compare the haptic-driven motion learning to the same 
procedure, except the tester only has access to the visualization as a control. These results are compared 
to determine if the haptic feedback-based training shows significant improvements in motion training 
compared to video or visualization-based training. These tests also evaluate the test subjects’ natural re-
actions to three primary vibration patterns – a localized impulse, a sequential rotation, and a superposi-
tion of the impulse and sequential patterns – in order to determine if users have natural reactions to these 
impulses.  

The following surveys are used to evaluate the intuitiveness of the WAG System software appli-
cation, and the functionality and the effectiveness of the WAG System as a physical training tool: 

 
Survey 1: GUI Evaluation 
Section 1: Task Intuition 

This survey will ask you to complete a few tasks in the WAG System computer application, 
and will ask you to rate the software's intuitiveness, and to provide open-ended feedback 
on how you think we can improve the software. If you have any problems along the way, 
please make note of it in the open-ended feedback section at the end! 

1. Record a new motion. Then please rate how intuitive or unintuitive you found the software to 
use. (1-5 scale, 1 being very unintuitive, 5 being very intuitive). 

2. Next, crop the motion you just recorded. How intuitive was the software? (1-5 scale, 1 being very 
unintuitive, 5 being very intuitive). 

3. Now, play back the motion you just recorded. How intuitive was it to complete this action? (1-5 
scale, 1 being very unintuitive, 5 being very intuitive). 
 
Section 2: GUI Color Cues 

This will evaluate whether the color cues used to encourage you to take a specific action 
were effective. 

1. Did you open the “Settings” window and connect/calibrate the bands before trying to record a 
motion? (Yes/No/Other) 
 
Section 3: Demographics 



92 
 

1. What is your gender? (Male/Female/Prefer not to answer/Other) 
2. What is your age (in years)? (number) 

 
Section 4: Final Thoughts 

1. What other thoughts do you have regarding the usefulness and intuitiveness of the software ap-
plication? How do you think the software could be improved? Are there any features that you 
think need to be added? (Open response) 
 
Survey 2: WAG System Evaluation 
Section 1: Feedback Patterns – Natural Reactions 

In this section, the bands will provide different vibrational stimuli patterns to determine 
the user's natural reactions. (it is unknown to the test subject that the first pattern is a 
localized vibration impulse, the second pattern is a sequential rotational vibration pat-
tern, and that the third pattern is a superposition of feedback patterns #1 and #2) 

1. Feedback Pattern #1 - Don't move in reaction - say out loud how you want to move as a response 
to the vibration feedback. (Open response) 

2. Feedback Pattern #2 - Don't move in reaction - say out loud how you want to move as a response 
to the vibration feedback. (Open response) 

3. Feedback Pattern #3 - Don't move in reaction - say out loud how you want to move as a response 
to the vibration feedback. (Open response) 
 
Section 2: Training Improvement 

In this section, we will have you try to learn a motion by a) watching a visualization of the 
motion with no feedback from the bands, and b) watching the visualization with feedback 
from the bands. 

1. How effective was solely watching the visualization as a teaching tool? (1-5 scale, 1 being very 
ineffective, 5 being very effective) 

2. How effective was visualization + vibration feedback as a teaching tool? (1-5 scale, 1 being less 
effective than with only the visualization, 5 being more effective than with only the visualization) 
 
Section 3: Demographics 

1. What is your gender? (Male/Female/Prefer not to answer/Other) 
2. What is your age (in years)? (number) 

 
Section 4: Final Thoughts 

1. What other thoughts or feedback do you have regarding vibration feedback as a motion training 
tool? Do you have any suggestions for how to improve the vibration patterns in order to better 
correct motion errors? Is the vibration feedback actually helpful? (Open response) 
 

User Testing Results 

 Most users found the user interface very intuitive. Figure 72, Figure 73, and Figure 74 show the 
ratings for intuitiveness of main tasks within the software application, with 1 representing very unintuitive 
and 5 representing very intuitive. Most responses for these primary tasks were either intuitive or very 
intuitive.  
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Figure 72. Motion Recoridng Intuitiveness 

 

 

Figure 73. Motion Editing Intuitiveness 

 

Figure 74. Motion Playback Intuitiveness 
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However, all users failed to connect and calibrate the bands. The results of this are shown in Figure 
75, with the single ‘Other selection’ indicating that they did not connect and calibrate the bands, plus an 
additional comment.  

 

Figure 75. Percentage of users that followed color cues to connect and calibrate bands 

Seven out of eight users who responded to the vibrational feedback schemes said that the trans-
lational feedback scheme was intuitive. Most users took longer to recognize the rotational vibration 
scheme, and only five out of eight interpreted the scheme to indicate that they should rotate their limb. 
Of these five, the intuitive direction to rotate was inconsistent, with some users indicating that they should 
move their arms with the vibration and others in the opposite direction of the vibration. When subjected 
to the superimposed translational and rotational signals, only one user correctly interpreted the vibra-
tional signals. Three other users were able to perceive one signal and react to it. The remaining four users 
indicated that it was clear that they were not correctly performing the motion, but that the vibration 
scheme did not intuitively convey how to correctly perform the motion.  

Users also compared the vibrational and visual components of the WAG System with solely the 
visual component. Most users found that, in their initial trials, the vibration feedback was distracting. 
Figure 76 shows how effective the visualization and vibration feedback is compared to solely visual feed-
back, with 1 representing significantly less effective, 3 being equally effective, 5 being significantly more 
effective.  

 

Figure 76. Visualization and vibration feedback effectiveness vs. only visualization 
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Appendix 6 – Initial Design Steps: Trade Study 

This appendix contains a number of trade studies that were performed for different hardware 
platforms available. These studies guided selection of a MCU and accelerometer/gyroscope during the 
design phase of the project. Additionally, these studies helped to identify a number of key features to 
focus on for the selection of the final hardware.  

32-Bit MCU Comparison 

Initially in the selection of a 32-bit MCU, several hardware options were compared using a scoring 
matrix appropriate for that hardware. Each option was scored based on the features desired for the sys-
tem and the Teensy 3.2, powered by the MK20DX256, was selected as the final MCU for the system. 

The listing of 32 bit MCUs can be seen in Table 16 and Table 15. Each MCU was ranked based on 
a feature of the hardware and a grading scheme. The CPU speed categories were <=50MHz (1), 50-
100MHz (2) and >=100MHz (3). The RAM in each MCU was about the same and as such was not included. 
The RAM is sufficient enough to run the small amount of software needed to interface to sensors over 
SPI. The ADC resolution categories were 12-bit (1), 14-bit (2) and 16 bit (3). The I2C categories were based 
on the number of I2C connections: 2 (1), 3 (2) and 6 (3). The UARTs section was based on the number of 
UARTs on the board: 3 (1), 4 (2) and 6 (3). The ease of programming feature was scored on how easy the 
software required to program the MCU would be to learn (based on previous experience with it).  

The same sort of ranking: low (1), medium (2) and high (3) was used to rank the number of re-
sources available for the chip. This included online forum support, any reference designs or schematics, 
datasheets available and other technical support. The breakout board cost metric is based on the cost of 
the evaluation board that is available. The rating was high cost (1), medium cost (2) and low cost (3). The 
MSP432 was the cheapest evaluation board at $12.99 for a functional board, but the Teensy 3.2 breakout 
was close at only $20 per breakout. The extra features category was scored based on the usefulness of 
other features of the chip. The Teensy 3.2 scored a 3 because it had all the features of the other MCUs 
but had the smallest breakout, a touch sensor module and a USB debugger built into the board. The last 
criteria for scoring was the chip cost. The grading was cost for 1 unit > $14 (1), $9-$14 (2) and < $9 (3). The 
MK20DX256 (used in the Teensy 3.2) came up as the cheapest at only $7 per unit (without factoring in the 
volume discount). The package areas were also included to show that the MK20DX256, while being the 
best by the scoring, does not have the smallest footprint on the board. Despite this minor drawback, the 
MK20DX256 scored the best on the matrix (as seen in Table 15). 
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Table 15 - Microcontroller trade study scoring matrix 

Chip TI 
F28M35H2

2C [50] 

TI 
MSP432P401

R [51] 

STM32F411C

E [52] 
STM32F205RGT

6 [53] 

Atmel 
AT32UC3C264

C [54] 

MK20DX256 
[55] 

CPU Speed 3 1 2 3 2 2 

RAM 2 2 2 2 2 3 

ADC reso-
lution 

1 2 1 1 1 3 

I2C 3 2 2 2 1 1 

UARTS 3 1 1 2 2 1 

Ease of 
program-

ming 
1 1 2 1 1 3 

Resources 
available 

1 2 2 2 2 3 

Breakout 
board cost 

1 3 2 3 1 3 

Extra fea-
tures 

2 2 2 2 2 2 

Chip Cost 1 3 2 2 2 3 

Package 
area (mm2) 

144 256 49 100 81 100 

Total 
points from 

column: 
18 19 18 20 16 24 

 
The purpose of the trade study was to determine the requirements for various hardware compo-

nents in a project design. For the study several key hardware features of the system were developed 
based on the requirements and needs. These features ranged from power supply constraints to number 
of SPI interfaces to programming interfaces. Soft features such as breakout board availability or ease of 
programming were also included. A small list of appropriate microcontrollers was then constructed as 
seen in Table 16 and each device was scored on specific features and functionalities as seen in Table 15. 
Note that all microcontrollers in Table 16 have a temperature range of -45oC to 85oC and support USB 
interfaces. 
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Table 16 - 32-Bit MCU comparison 

Chip name 

TI 
F28M35H2

2C [56] 

TI 
MSP432P40

1R [57] 

STM32F41

1CE [58] 
STM32F205RGT

6 [59] 

Atmel 
AT32UC3C2

64C [60] 

Freescale 
MK20DX256 
(used in Teensy 

3.2) [61] 

Company 
Texas In-

struments 

Texas Instru-
ments 

STM STM Atmel Freescale 

Family F28M3x MSP432X ARM ARM AVR UC3 K20 

CPU 
C28x, Cor-

tex-M3 
Arm Cortex-

M4F 
ARM-Cor-

tex-M4 
ARM-Cortex-M3 32-bit AVR 

ARM-Cortex-
M4 

Clock Fre-
quency 

150 MHz 
100 

48 MHz 100 MHz 120 MHz 66 MHz 96MHz 

RAM KB 136 64 KB 
128 KB, 
512 KB 
Flash 

128 KB RAM, 
1024 KB Flash 

64 KB 
Flash, 20 KB 

SRAM 

256 KB Flash, 
64 KB SRAM 

PWM Channels 24 - - - 14 12 

ADC Resolution 12-bit 14 bit 12 bit 12 bit 12 bit 16 bit 

ADC Channels 20 12,16,24 12 16 11 21 

Number I2C 3 3,4,4 3, 5x I2S 3, 2x I2S 2, I2S also 2, I2S also 

Number of 
UARTs 

6 3,3,4 3x USARTs 
4x USARTs, 2x 

UART 
4 3 

Number of SPIs 5 6,7,8 5 3 5 2 

GPIO 64 48,64,84 36 51 45 40 

Timers 4x 16bit 
4x 16bit tim-
ers, 2x 32 bit 

timers 

6x 16bit 
timers, 2x 
32 bit tim-

ers 

12x 16 bit tim-
ers, 2x 32 bit 

timers 
3 4 

Power Rails 
2.97V to 

3.63V 
1.6V to 3.7V 

1.7V to 
3.6V 

1.7V to 3.6V 
3.0V to 3.6V 

or 4.5V to 
5.5V 

1.71V to 3.6V 

Current draw 
(min/max) 

150MHz: 
2mA/325
mA  100M
Hz: 2mA 
295mA 

850nA (Min) 
LPM, 

90uA/MHz * 
48MHz 

Current: 
1.8uA LPM, 
100uA*10
0MHz max 

2.5uA LPM, 
188uA*120MHz 

48uA/MHz 
* 66 MHz 

(Min),512uA
/MHz * 66 
MHz (Max) 

39mA (all pe-
ripherals run-

ning) 

Package 
Type/Size 

HTQFP 
144 

LQFP 100 
16.2x16.2x1.

4mm 

UFQFPN 48 
7x7x0.55m

m 

LQFP 64 
10x10mm 

QFN64_V 
9x9mm 

LQFP 64 
10x10mm 

DACs 6 0 2 2 
1x 12 bit (2 
channels) 

1x 12 bit  

Programming 
option/Debug 

JTAG emu-
lator 

JTAG/Serial 
Wire Debug 

(SWD) 

JTAG/Se-
rial Wire 
Debug 
(SWD) 

JTAG JTAG USB OTG, JTAG 

Other Features 

IEEE-754 
single-pre-

cision 
floating 

point 

AES encryp-
tion, floating 

point unit 

RTC, 2.4 
MSPS ADC 

RTC 

Floating 
point unit, 
1.5MSps 

ADC 

RTC module, 
CAN controller, 

touch sensor 
module 
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Chip name 

TI 
F28M35H2

2C [56] 

TI 
MSP432P40

1R [57] 

STM32F41

1CE [58] 
STM32F205RGT

6 [59] 

Atmel 
AT32UC3C2

64C [60] 

Freescale 
MK20DX256 
(used in Teensy 

3.2) [61] 

Cost each 

$22 from 
Arrow 

[62] 

$7 from TI 

[63] 

$7.35 each 
from 

AVNET  

[64] 

$13.08 each 
from Digikey 

[65] 

$9.5 for 
AT32UC3C2
64C-Z2UT 

from ATMEL 

$7 for 
MK20DX256VL

H7-ND from 
DigiKey 

Breakouts 
$185 from 

TI [66] 
$13 eval 

board [67] 

$22 [68] or 

another 
board for 

$8 [69] 

Simple Wi-Fi 

board [70] or 

$330  for full 

eval board [71] 

$330 eval 

board [72] 

$20 Teensy 3.2 
Module 

breakout [73] 

Cons: 

Have to 
design RF 
layout a 

bit or copy 
reference 
diagram, 

expensive 
Breakout/
dev board 

No DACs 

Have to 
learn the 
new pro-
gramming 
environ-

ment, have 
to buy sep-
arate mod-

ules and 
solder to-
gether for 
eval board 

Have to learn 
programming 
environment 

Have to get 
avr32pro-

gram 
Have to 

learn AVR32 
Studio 2.6 
Expensive 
dev board 

Cost of 
breakout board 

Pros: 

Lots of re-
sources 
from TI 

and refer-
ence de-

signs 

Very easy 
eval board 

Easy to pro-
gram from 
Code Com-
poser (CCS) 

Integrated 
Wi-Fi Sup-

port 
Easy drag 
and drop 
module 

chip 

Programming 
could be simpli-

fied via eval 
board 

Free soft-
ware 

Lots of fo-
rums/ sup-

port 
RTC counter 

Free software 
loader, Low 

cost with multi-
ple libraries 

availble, Pro-
grammable us-
ing Arduino IDE 
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Accelerometers 

This section contains a trade study performed in a similar manner to that of the 32-bit MCUs. 
While the final accelerometer used in the project was not on this list, Table 17 shows the original work 
involved in considering an accelerometer for the project. 

Table 17 - Accelerometer Specifications and Pricing 

Manu-
facturer 

ADI ST ADI InvenSense Freescale 

Chip 
type 

Triple axis ac-
celerometer 

Triple axis accel-
erometer 

Triple axis accel-
erometer 

Triple Axis Accel-
erometer/Triple 
Axis Gyroscope 

Triple accelerometer 
and triple magne-

tometer 

Part ADXL345 LIS331 ADXL362 MPU6050 FXOS8700CQ 

Supply 
voltage 

2.0 - 3.6V 2.1V to 3.6V 1.6V to 3.5V 2.375V to 3.46V 1.9V to 3.6V 

Current 0.1uA to 40uA 10uA to 250uA 0.01uA to 3.3uA 10uA to 500uA 2uA to 575uA 

Inter-
face 

I2C, SPI (3 and 
4 wire) 

I2C, SPI (3 and 4 
wire) 

SPI (4 wire) I2C 
I2C, SPI (3 and 4 

wire) 

Range 3, 4, 8, 16g 6, 12, 24g 2, 4, 8g 
2,4,8,16g and 
250,500,1000, 

2000 °/s 
2, 4, 8g/1200uT 

Data 
resolu-

tion 
13 bit 16 bit 12 bit, 8 bit 16 bit for both 

14 bit accelerome-
ter, 16 bit magne-

tometer 

Other 
pins 

2x interrupt 
pins, measure 
down to 1.0 

degrees 

2x interrupt pins 
2x interrupt pins, 
Low noise modes 

1x interrupt,  
alternate address 

lines interface 
1x interrupts 

Cost 
$18 (breakout) 

[74] 
$28 (breakout) 

[75] 
$15 (breakout) 

[76] 

$5.45/chip [77] 

$3 a breakout 

[78] 

$2.63/chip [79] 
$16 (breakout) [87] 

Devel-
opment 

Libraries avail-
able 

Libraries available Libraries available 

Small and com-
pact cheap 

breakouts availa-
ble ($3), Many li-
braries available 

Breakout available 
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Gyroscopes 

This section contains a trade study performed for gyroscopes in a similar manner to that of the 
32-bit MCUs. While the final gyro used in the project was integrated into the MPU6050 (above in Table 
17), Table 18 shows the other gyro considered for the project. 

Table 18 - Gyroscope Specifications and Pricing 

Part LPY503AL L3G4200D ITG-3200 MPU-3050 MPU-6500 FXAS21002C 

Manu-
facturer 

ST ST InvenSense InvenSense InvenSense Freescale 

Chip 
type 

2 axis gyro 3 axis gyro 3 axis gyro 6-axis, gyro 
with I2C link to 
external accel 

6 axis ac-
cel/gyro 

3 axis gyro 

Supply 
voltage 

2.7V to 3.6V 2.4V to 3.6V 2.1V to 3.6V 2.1V to 3.6V 1.71 to 3.6V 1.95 to 3.7V 

Current 1uA to 6.8mA 5uA to 
6.1mA 

5uA to 
6.5mA 

6.1mA 6.37uA to 
3.5mA 

2.7mA 

Inter-
face 

Analog I2C, SPI (3 
wire) 

I2C (400kHz) I2C (30kHz) I2C (400kHz), 
SPI (1MHz) 

I2C 
(100kHz/40kHz), 
SPI (3 and 4 
wire 2MHz) 

Range 30 (°/s), 120 
(°/s) 

250,500,200
0 (°/s) 

2000 (°/s) 250, 500, 
1000, 20000 
(°/s) 

250, 500, 
1000, 2000 
(°/s) 
 2, 4, 8, 16g 

250, 500, 1000, 
2000, 4000 (°/s) 

Data 
resolu-
tion 

8.3mV/(°/s), 
33.3mV/(°/s) 

16 bit data 14.375 
LSB/(°/s) 
16 bit 

131LSB/(°/s), 
65.5LSB/(°/s), 
32.8LSB/(°/s), 
16.4LSB/(°/s) 

16 bit 16 bit data, 
0.0625 (°/s) at 
2000 (°/s) 

Other 
pins 

Amplifier (4x) 
pins/non-am-
plified pins, 
external filter 
connections 

2 interrupt 
pins 

1 interrupt 1 programma-
ble interrupt 

1 programma-
ble interrupt 

1 programma-
ble interrupt 

Fea-
tures 

Zeroing, low 
pass filters 

Embedded 
temp sen-
sor, external 
filter specs 

Digitally 
controlled 
LPF 

programmable 
LPF, HPF 

Digital motion 
processor for 
gestures 
programmable 
filters, temp 
sensor 

LPF, temp sen-
sor 

Cost $30 dev 

board [80] 

$50 dev 

board [81] 

$25 dev 

board [82] 

$9 chip $70 

dev board [83, 

84] 

$10 chip [85] $3.5 chip, $15 

dev board [86, 
87] 

Devel-
opment 

Reference 
layout in 
datasheet, li-
braries avail-
able 

Reference 
layout in 
datasheet, 
libraries 
available 

Example 
wiring 
guides for 
mBed MCU, 
schematics 

Not much in-
formation 

No eval boards Breakout board 
and reference 
designs 

Package LGA16, 
5x5x1.6mm 

LGA16, 
4x4x1.1mm 

QFN20, 
4x4x0.9mm 

24-QFN 
4x4mm 

24-QFN 
4x4mm 

24-QFN 4x4mm 
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Appendix 7 – Gap Analysis (Desired Features Analysis) 

A gap analysis involves comparing the current state of the art of technology to the desired capa-
bilities of a project, to understand the “gap” and the project’s feasibility. Table 19 outlines the desired 
features of this project, relevant information about the current state of the art and its limitations, topics 
that need further research and development, and possible risks associated with meeting each desired 
feature. As the table illustrates, the current state of the art is very close to the features and technologies 
identified in this project proposal, which suggests that this project is feasible. 

Table 19 - Gap Analysis chart containing desired features and additional information 

Desired Feature Current state of the 
art (and cost) 

Limitations to the 
state of the art 

Research and de-
velopment topics 

Possible risks 

Portable system Exoskeletal hand 
with wireless re-
mote control [88] 
Wireless motion 
capture gloves [89] 

Exoskeleton’s 
power consumption 
Batteries increase 
size and weight of 
suit 
Sensors and haptic 
modules increase 
system weight 

Suitable wireless 
communication 
protocols 
How much power 
does the system 
need 
How much power 
do sensor/comms 
need 

Power supply is too 
big to comfortably 
make portable 
Too expensive 
Too many batteries  

Implements haptic 
feedback 

DexMo glove 
freezes when robot 
hand senses that it 
can’t move [5] 
Using the sensAble 
stylus to control 
and receive haptic 
feedback from Bax-
ter [90] 

Force feedback sys-
tem too large and 
bulky 
Limitations of the 
controlling hard-
ware using actua-
tors and AC volt-
ages for LRA motors 

Various feedback 
types and charac-
teristics 
How sensitive they 
are 
Easiest ways to 
build haptic feed-
back systems (low 
cost options) [91] 

Feedback mecha-
nisms are too ex-
pensive 
Feedback is not de-
tailed enough to 
guide user to cor-
rect position 

Real-time response 
(<1 second) latency 

LCH is 500 ms [92] 
Telekyb[93] frame-
work of 0.3 seconds 
Human body imita-
tion at 1.5 seconds 
[94] 
MVN Link - 240Hz 
refresh 
MVN Awinda 60Hz 

LCH uses Arduino 
system, but recom-
mends ARM for bet-
ter math 
Wireless transmis-
sion time (data size) 
MVN Awinda - 
30ms 
MVN Link - 20ms 

Optimal data size 
for transmission 
Data rates of wire-
less protocols 
Data rates of wired 
protocols 
Latency for motion 
capture 
ADC sampling rates 
MCU clock speeds 

Latency from wire-
less system could 
higher than re-
sponse rate given 
overhead 
Response rate of 
MCUs might not be 
high enough (clock 
speeds) 

Cost Market Costs: 
Araig - $500 
TeslaSuit $600 
Xsens suits: The 
MVN suits [16] 
MVN Awinda $7.4K 
MVN Link $12.2K 

Grant money 
Sponsorship money 

Costs of sensors 
Costs of hardware 
Costs of feedback 
(haptics) 
Costs of software 

Overspending the 
budget 
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Desired Feature Current state of the 
art (and cost) 

Limitations to the 
state of the art 

Research and de-
velopment topics 

Possible risks 

Battery life >= 2 
hours 

Motion capture 
suits: 
MVN Awinda – 6 
hours [16] 
MVN Link – 9 hours 
[16] 
IGS-190 runs for 3 
hours on NiMHs 
Hulc from Lockheed 
Martin with 72 hour 
batteries 

Current battery ca-
pacities 
Motors draw use 
too much power 
More dense batter-
ies = more power = 
more weight 
Interchanging bat-
teries means more 
hardware 
Battery charging 
adds more com-
plexity to design  

Current battery 
tech 
Motors for feed-
back 
General power con-
sumption for sen-
sors 
Costs of batteries 
Best rechargeable 
batteries 
Weight of batteries 
 

Batteries not good 
enough (small 
enough) 
Vibrators take too 
much current 

Ability to power 
over tether 

Most current exo-
skeletons are teth-
ered 
Gypsy is USB teth-
ered (~500mA) 
5DT gloves use up 
to 150mA per glove 
powered from 9V 
power supply 

Wire size not suita-
ble for current load 
Cable length cre-
ates too much loss 
of power 
Power supply not 
able to support 
power 
Tethering adds 
complexity to de-
sign (managing of 
wires) 

Powering over 
tether for distrib-
uted power systems 
Wire sizes and cur-
rent limitations 
Power over Ether-
net 

Power distribution 
system makes sys-
tem more rigid 
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Desired Feature Current state of the 
art (and cost) 

Limitations to the 
state of the art 

Research and de-
velopment topics 

Possible risks 

Ability to capture 
motion & save mo-
tion path 

Optical motion cap-
ture using motion 
capture dots or 
manual or auto-
matic feature de-
tection in video, ex. 
Vicon, Phase Space 
ex. Vicon, Phas-
espace 
Inertial motion cap-
ture using combina-
tion of accelerome-
ters, gyros, and 
magnetometers, ex. 
Synertial (gloves 
and body suits), 
Xsens (individual 
sensors > $1000; 
full body suits: 
above)Existing file 
formats 
require costly edit-
ing software (Xsens 
Studio, 1 yr - 
$5400), Autodesk 
MotionBuilder, 
~$4000 
Audio 
Gypsy system (IGS-
190) 
This system uses so-
nar sensors and 
mics to record the 
sensor outputs 
Need more mics to 
record system and 
need external costly 
setup 

Optical  
Many cameras re-
quire large space 
and minimal view 
obstructions 
Expensive and diffi-
cult to set up 
Difficult to track 
features if person’s 
limb obstructed  
Inertial 
High drift unless 
many sensors and 
advanced filtering 
used 
Many systems re-
stricted to major 
limbs due to error 
(support arms and 
legs, not fingers, 
etc) 
 
 
 

Formatting data so 
that it can be 
cropped/paused 
Existing motion cap-
ture file formats 
Filtering sensor 
readings for smooth 
motion paths 

Incompatibility with 
existing file formats 
limiting usability of 
recorded motions 
proprietary/re-
stricted motion cap-
ture file formats 
Sensor drift in iner-
tial sensors could 
be difficult to limit, 
leading to inaccu-
rate position esti-
mates 
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Desired Feature Current state of the 
art (and cost) 

Limitations to the 
state of the art 

Research and de-
velopment topics 

Possible risks 

Non-intrusive, low-
profile, non-restrict-
ing 

Optical  
Unrestricted user 
motion within the 
configured space 
[95]  
Inertial 
User is much more 
globally mobile (not 
confined to a single 
configured mocap 
space) due to the 
motion capture sys-
tem being attached 
to the body 
The hexoskin 
doesn’t do motion 
capture, but it col-
lects other bio-
metric data with a 
relatively unrestric-
tive form factor 
($400) [96] 
Actuating exoskele-
tons 
Vanderbilt rehabili-
tation exoskeleton 
weighs 27 lbs [97] 

Optical 
User is confined to 
a single room or 
setup area 
Haptic feedback is 
impossible with a 
purely optical sys-
tem - need some 
sort of worn device 
Inertial 
User’s limbs have 
added bulk due to 
sensors being at-
tached directly to 
the body rather 
than using an exter-
nal imaging system, 
but this limitation 
can be as minimal 
to what feels like a 
tight-fitting outfit 
Actuating exoskele-
tons 
Having actuation to 
directly aid user 
motion adds an ad-
ditional degree of 
rigidity to the sys-
tem, which pre-
vents the user from 
recording natural 
movements 

Need to create a 
system that bal-
ances user’s free-
dom to move natu-
rally with ability to 
move around in dif-
ferent locations 
Need to develop 
system that can 
guide a user to 
move in a certain 
manner without 
adding substantial 
rigidity/motion limi-
tations to the sys-
tem 

Increasing user’s 
ability to move nat-
urally and incorpo-
rating motion guid-
ance may be direct 
trade-offs 

Control through 
speech commands 

Google web speech 
API sends audio to 
external servers and 
gets transcribed off-
site 
CMU Sphinx/Pock-
etSphinx are 
standalone speech 
recognition sys-
tems. PocketSphinx 
is intended for em-
bedded platforms 

Voice recognition 
requires additional 
microphone hard-
ware (cost and ad-
ditional processing) 

 Libraries and nec-
essary hardware 

Processing time for 
speech recognition 
may introduce de-
lay in process of suit 
operation 
incompatibility of 
the hardware with 
the system  
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Desired Feature Current state of the 
art (and cost) 

Limitations to the 
state of the art 

Research and de-
velopment topics 

Possible risks 

Database of motion 
capture 

mocap.cs.cmu.edu 
Library of motion 
capture data 
All recorded at CMU 
using Vicon optical 
motion capture sys-
tem  
Supports several 
motion capture file 
formats.  
mocapclub.com 
Motion Capture 
Data library 
large variety of mo-
tions recorded 
 

Neither seem to al-
low 3rd party up-
load of motion cap-
ture 

Existing motion cap-
ture file formats 
Database manage-
ment 
Allowing uploads 
and downloads to 
database 
Suitability of exist-
ing file formats for 
haptics 

Managing poten-
tially large database 
Managing catego-
ries of motion cap-
ture data (want 
large amount of 
data to be available, 
but still find desired 
content without 
digging through all 
of the data) 

 
  

http://www.mocapclub.com/
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Appendix 8 – Precursor Testing Before System Design Stages 

This section describes a few ideas and tests that were conducted before settling on the final hard-
ware design for the project. The reason for these being different from the normal report is due to the fact 
that these were not used in the final project, but served as useful information to assist the project.  

Ubuntu Bluetooth Libraries 

Bluez is the default Bluetooth protocol stack for Linux machines. Bluez has a low level API for 
discovering Bluetooth devices and sending and receiving messages as well as a higher level API for pairing 
and Bluetooth profiles and services. Both APIs have little documentation available. The low level API has 
direct C/C++ support, whereas the higher level API must be accessed through DBus calls. DBus is an inter-
process communication protocol. The Bluez DBus API allows function calls to be sent to the core Bluetooth 
libraries from a program through the DBus protocol. However, there is little documentation on a high-
level C/C++ binding for the DBus protocol or the Bluez DBus APIs.  

In addition, the Bluez version on a machine varies with the Linux distribution. Bluez 5 is the latest 
version and is the only version with significant support for Bluetooth LE and Bluetooth Smart devices. 
Bluez 5 is only officially compatible with Ubuntu 15.10 (an open-source Linux operating system), which at 
the time of this draft, has been available for only a few months.  

The tools tested with Bluez were the low level APIs, which were found could scan and find Blue-
tooth devices, and the DBus API. Although the DBus API was not particularly useful due to its complex 
nature. 

Qt also has a Bluetooth API that provides support for ClassicBluetooth, Bluetooth Smart, and Blue-
tooth Low Energy devices. The Qt Bluetooth API includes functions for scanning for devices, pairing with 
devices, connecting to devices, and sending data through sockets or Bluetooth profiles and services. The 
Qt APIs use the Bluetooth protocol stack of the operating system running the application. There are sev-
eral examples for both classic and low energy Bluetooth within Qt. Using the Qt Bluetooth libraries, the 
software application was able to scan for external Bluetooth devices, and connection and pairing attempts 
with Bluetooth devices were tried. However, this approach was ultimately abandoned in favor of Wi-Fi 
options due to the complex nature of the libraries and system specific dependencies that could not be 
resolved.  

Along with the libraries, a number of Bluetooth hardware modules were tried. The hardware mod-
ules tested included the Adafruit Bluefruit LE UART Friend ($20), the Adafruit nRF8001 Bluetooth LE 
breakout ($20), several JY-MCU HC-06 BT 2.0 modules and the Roving Networks RN4020 BTLE device. The 
accompanying embedded software libraries for these devices were found to perform at max capacity of 
around 10Hz duplex communications with the computer.   

Initial Band Prototype 

Throughout the system development many hardware changes were made. Below is a picture of 
all the generations of the band prototypes as different features were added to accomidate increasing 
functionality. The current prototype can be seen on the left with the electrical hardware installed.  
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Figure 77. Band prototype progression 

FRDM-K22F MBed and Sensor Fusion Toolbox 

The FRDM-K22F MBed microcontroller (MCU) was purchased to support a simple demo of sensor 
fusion tools within the project (at the start of the project). To complement the MCU, a simple 9 degree of 
freedom (DOF) sensor board, called the FRDM-STBC-AGM01 and produced by Freescale, which features 
an accelerometer and magnetometer combo and a gyroscope was used to demonstrate and evaluate the 
effectiveness of sensor fusion techniques. To this end, Freescale provides all the C code (extensible to 
other microcontroller platforms) to run and support the sensor fusion on the sensor board. The setup can 
be seen in Figure 78. 

 

 

Figure 78. MBed (FRDM-K22F) on left and 9DOF sensor board on right 

Testing of this device relied on the use of the sensor fusion toolbox program developed for Win-
dows by Freescale (seen in Figure 79). The benefit of using this program is that it provides an easy way to 
enable and disable various sensors. On the left portion of the window is a view of the FRDM MCU board 
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that will move correspondingly to the 9 DOF sensor board being moved. The movement is identical to the 
real life position of the board as seen in Figure 80. This shows the board and the onscreen orientation. 
Within the GUI, each sensor can be turned off independently. By comparing combinations of various sen-
sors within the program, it was determined that the combination of the accelerometer and gyro afforded 
the greatest accuracy and least drift over time of the board’s position. From this testing, the next step was 
to find a suitable accelerometer and gyro combination that could be easily interfaced with the MCU sys-
tem. This was determined to be the MPU6050 (described in the Hardware Overview section) based on the 
wide available of the low-cost breakout board. 

 

Figure 79. Sensor fusion toolbox program 
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Figure 80. Viewing the FRDM-K22F board and Sensor Fusion Toolbox concurrently 

Another benefit of testing out sensor fusion techniques with this board was the ability to visualize 
the raw sensor readings and the output of Kalman filters. These can be seen in Figure 81 and Figure 82. 
These readings provided a greater insight into the sensor fusion algorithms. 

  

 

Figure 81. Sensor Fusion Toolbox Dynamics section (for looking at raw sensor values) 
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Figure 82. Sensor Fusion Toolbox Kalman filtering tab for seeing filter stages and outputs 

The last testing this board enabled was checking if vibrations from the vibration motors would 
disrupt the measurements and sensor readings. The motors were affixed directly to the sensor board 
using secure adhesives and then motors were run at full speed while the sensor fusion toolbox was open. 
While the raw sensor data showed the vibrations due to the motors, the Kalman filtering stages removed 
the effect caused by the vibrations. As such the use of an accelerometer and gyro with Kalman filtering is 
immune to motor noise that would be experienced in this application.  
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Appendix 9 – Reviewer Evaluation Summaries 

This section contains a summary of the reviewer feedback from advisors during the two review 
sessions. There were two major design reviews called the Preliminary Design Review (PDR) and the Critical 
Design Review (CDR) which are included in the university curriculum for capstone projects. These sessions 
are designed to give advisors and general university students an opportunity to critical and evaluate a 
design by listening to a 20 minute presentation and then providing questions and feedback. Typically the 
PDR occurs early on in the beginning of the design phase and seeks to refine the project proposal. The 
CDR occurs later in the design phase to verify the design for the project is feasible and applicable to the 
original design.  

Preliminary Design Review Presentation (9/29/15) 

The following listing shows the advisor feedback provided during the PDR. 
 

Project Goal 
 Potential applications to consider 

 Physical therapy + reporting progress to therapist 
 Telemedicine 
 Sports training 
 Physical activity training within workplace 

 Objectives of project 
 Refer to motion database as library 

 Suit configuration: jacket 
 ‘Tendons’ for actuation (piezoelectric material for force feedback, could get additional 

funding) 
 Hardware - hand sensor 

 Flex sensors on fingers won’t be as precise, won’t be able to get definite determination 
of finger location 

 Add functional diagrams of system to project 
 Look at motor vibration patterns for indicating error to the user 
 Specify the interface between subsystems 

 Potential risks 
 Consider weight of bands in addition to overall weight 
 Communications 

 Test Bluetooth 
 Limited channels, but could have multiple modules 
 Lower power 

 Test Wi-Fi 
 Interference from other 2.4GHz sources 
 Higher power than Bluetooth 
 Campus IT services might have issues with personal Wi-Fi router use 

 Analysis on bandwidth usage 
 Budget 

 Perform a ‘reasonable first pass at a budget’ 
 Reevaluate suit material costs 
 Check if MSP 432 can work for project 
 Use h-bridge rather than transistors  
 Add PCB costs 
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 Project timeline 
 Put Project Presentation Day (for university) on timeline 
 Look into Atom board usage requirements for Intel Cornell Cup  
 Put Intel Cornell Cup on project timeline  

 

Critical Design Review Presentation (11/20/15) 

This was the information gathered from advisors after the CDR.  
 

General: 
 Make sure CDR slides reflect talking points 
 Incorporate pictures to back up talking points 
 Make sure to use professional language 
 Speak slowly and clearly 
 Add general use case to provide outline/context to presentation 

Problem and goal presentation slide: 
 Enumerate benefits of project more clearly 

Band Design slide: 
 Talk about band and then electronics (high level and then low level) 
 Include amp-hours of battery along with relevant electrical characteristics 

Software slides: 
 Make clear that this is a functional diagram rather than class hierarchy 
 Add class hierarchy diagram as well 
 Try saving/exporting data to XML 

Current Testing: 
 Explain acronyms (IMU) 
 Speak in terms of functionality and then relate to technical (don’t say technical and then relate 

back to functionality, ex. Quaternions) 
 MATLAB diagram of initial visualization not clear 
 Explain more specifically what we mean by sensor fusion 

Future testing slide: 
 Specify that testing against requirements/what requirements were 
 Specify testing with users 

Risks and challenges: 
 Don’t use precision and accuracy interchangeably 
 More clearly state precision/cost trade off 
 Characterize error (order of magnitude) 
 Specify difference between cost of parts and potential market/development costs 

Information to add to future presentations: 
 Future implications 
 Suggest additional research questions  

Intel Cornell Cup Proposal: 
 Tell as a story (incorporate problem, background, design and testing, potential benefits & future 

applications) 
 Emphasize systems engineering 

  



113 
 

Appendix 10 – Acknowledgements 

We would like to thank three supporters to our project. The first is Advanced Circuits who did an 
excellent job creating and providing us with high-quality printed circuit boards for out circuits. Without 
the special student sponsorship deal they gave us on the PCBs, we would not have been able to afford 
making PCBs for our project.  

Another supporter for our project is Pololu Corporation which gave us a huge discount on our 
order of vibration motors. This helped us purchase enough motors for all seven bands. 

Another supporter was Tin Can Tools (the manufacturer of the SilverJaw Lure board that holds 
the SSD and Wi-Fi chip for the Intel Atom). When our Lure board failed, Tin Can Tools sent us a new board 
completely free, which we thank them for.  

We would also like to thank WPI as their project-based curriculum allowed for the conception and 
completion of this project as an MQP. WPI also provided the budget for purchasing electrical components 
and materials.  
  



114 
 

Appendix 11 – Authorship 

 
Section Primary Author(s) 

Abstract Team 

Challenge Definition Team 

Background Research Team 

Concept of Operations Swartz 

System Design Team 

1. Suit Overview Barnard 

2. Software Overview Adkins, Beardsley, Swartz 

3. Hardware Overview Barnard, Beardsley, Frick 
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1. Band Design Barnard, Frick 
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4. Communication Adkins, Frick 

5. Software Design Adkins, Beardsley, Swartz 

Product Performance Evaluation Swartz 

Project Execution Performance Evaluation Adkins, Frick 

Recommendations and Next Steps – Conclusions and Future Research Adkins 

Nomenclature Glossary Team 

Timeline Appendix Team 

Software Core Classes and Functionality Appendix Adkins, Beardsley, Swartz, Frick 

Full Bill of Materials for Project Appendix Frick 

Assembly & Construction Appendix Team 

Test Plans Appendix Team 

Initial Design Steps – Trade Study Appendix Frick 
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Precursor Testing before System Design Stages Appendix  Team 

Reviewer Evaluation Summaries Appendix Team 
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Authorship Team 
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