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Abstract

Generalized linear models are starting to gain popularity among actuaries in most
countries for target marketing analysis. In order to better understand how these models work, a
project was commissioned regarding medical providers and their reimbursement ratios. By using
one-way analysis, several factors were selected to model the response variable and the factors'
significance was determined by using an algorithm in the statistical software, SAS. Several
general linear models were set up and tested to fit the reimbursement ratio. By calculating and
analyzing each correlation, we were able to find a model that matched the reimbursement ratio

with an 83 percent correlation.
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Executive Summary

Generalized linear models (GLMs) are an extension of the linear modeling process that
allows models to be fit to data. They have been in use for over thirty years but it is only recently
that the level of interest and the rates of adoption have increased substantially. Our team looked

into the GLM procedure for our project in order to gain a working knowledge of this method.

The goal of this project was to create a generalized linear model to determine what
factors play a more significant role in fitting the Reimbursement Ratio (RR) of Medicare

physicians. To meet this goal, we outlined the following objectives:

» Understanding the GLM procedure

» Finding appropriate data, cleaning, and analyzing the data

» Graphically examining factors for the model

» Utilizing the statistical software SAS to analyze and model the data using the

significant factors

By following these objectives, we were able to explore the GLM procedure and indicate which

factors were most useful in determining the fitted RR.

To pursue our objectives, we developed a methodology that consisted of four steps. The
first step was cleaning and selecting the data that we would use. For instance, we limited our
study to individual providers in the continental USA. These limitations were made so that no
single factors such as being an organization or shipping costs due to being outside of the
continental USA would be most significant compared to the other estimators of the RR. The

second step was summarizing and analyzing all of our factors. Since we had several factors to



consider, we needed to select only the most significant ones so that our GLM was not over fitted
to our data and could be used to estimate the RR in general. By performing one-way analysis to
each factor, we were able to see the distributions of each factor, making it easier to select those
that were statistically significant. Step three was selecting factors. After we compared these
factors, we were able to evaluate which ones would be significant in calculating a fitted RR. The
final step was the GLM analysis. In this step we took the remaining data and used SAS to

develop a fitted model for the RR.

We utilized three different GLM procedures in SAS in order to find the best combination
of distributions and link functions to build our model. Each test was conducted with the first half
of the data, which calculated the model. From each model we were able to compute the fitted RR
and compare it to the actual RR in order to find their correlations. We then chose the model that
gave us the best correlation and used it to analyze the holdout data. Finally, we estimated the RR
for the second half of the data using our model and calculated the correlation between this fitted

RR and the actual RR.



Chapter 1: Introduction

Predictive modeling is an analytical method used to create statistical models that predict
future behavior. A company can use predictive modeling to identify insurance risks, which can
lead to improved underwriting and pricing. Traditional pricing methods in the United States are
not statistically sophisticated. Claims for many lines of business are often analyzed using simple
one-way and two-way analyses. Iterative methods known as minimum bias procedures,
developed by actuaries in the 1960s, provide a significant improvement but are still only part
way toward a full statistical framework (Anderson et al., 2007). A type of predictive modeling

analysis method that has received widespread attention is the Generalized Linear Model (GLM).

The statistical framework of GLMs allows explicit assumptions to be made about the
nature of the data and its relationship with predictive variables. The method of creating GLMs is
more technically efficient than other standardized methods. Additionally, GLMs provide a
statistical diagnosis which helps in selecting only significant variables and in validating model

assumptions.

In order to learn more about GLMs and how they function, we conducted research and
tested different distributions with a large amount of data, which we obtained from data.cms.gov,
titled ““Medicare Physician and Other Supplier National Provider Identifier (NPI) Aggregate
Report." We analyzed this data and performed one-way analysis to determine which factors had
the most impact on our response variable, which we called the Reimbursement Ratio (RR). This
ratio accounted for the total amount paid to a Medicare provider divided by their total submitted
charge. Once the most significant factors were selected, we split our data in half and used the

first half to create a model that would estimate the RR. We used procedure GENMOD in SAS to



develop this model. Finally, we used our model to estimate the RR values for the second half of

the data.



Chapter 2: Background
2.1. Linear Models

In order to fully understand the structure of GLMs, it is important to understand the
classic linear model. The main purpose of the linear model is to express the relationship between
an observed response variable (YY) and a number of predictor variables. GLMs observe this

relationship. They are written in the form:
Y=Uu+e

It is assumed that p is the expected value of Y, and ¢ is the error term that is normally distributed

with mean zero and variance 2.

Let us consider a simplified example of a private passenger auto classification system
that has only two categorical rating variables: territory (urban or rural) and gender (male or

female) (Anderson et al., 2007). The observed average claim severities are as follows:

Urban Rural

800 500

w

Table 1: Example 1 Average Claim Severity

In this example, the response variable, Y, is the average claim severity. The two factors,
territory and gender, result in four different observed values: male (X1), female (X2), urban (X3),
and rural (X4). These variables can either have a value of 0 or 1. In this case, the model would

take the form:

Y= Bmale X1 + Premate X2 + Burban X3+ Prurat X4+ €



However, this model has as many parameters as it does combinations of rating factor
levels being considered, and there is a linear dependency between the four covariates X1, Xz, X3,
and Xa. This means that the model is not uniquely defined - i.e. if any arbitrary value k is added
to both Bmale and Premate, and the same value K is subtracted from Burban and PBrural, and the resulting
model is equivalent. To make the model uniquely defined, we consider three variables instead of

the four:

Y= Bmale X1+ ﬁfemale Xo+ Burban X3+e

This model assumes an average response for the base case of women in rural areas (Bfemale) With
additional additive effects for being male (Pmale - Premate) and for being in an urban area (Burban).

These observations can be expressed as the system of equations:
Y1 =800 = Bmale + 0 + Purban + €1
Y2=1500=Bmaie+ 0+ 0 + &
Y3 =400 =0+ Bfemale + Purban + €3
Y4 =200 =0+ Btemale + 0 + &4
Next, we write out the sum of squared errors (SSE):
SSE = &1+ &2% + £3° + £4°

= (800 - Bmale - Burban)2 + (500 - Bmale)2 + (400 - Bremale - Burban)2 + (200 - [3female)2



We minimize these equations by taking the derivatives and setting them to zero:

a[asfrf;e =0 = Pmale + Purban + Pmate = 800 + 500 = 1300

aBaerSnile =0 = Premale + Purban + Bremale = 400 + 200 = 600

a[fusj:an =0 = PBmate + Purban + Premate + Purban = 800 + 400 = 1200

Solving these equations we get:

Bmale =525
ﬁfemale =175
Burban =250

Using our equations we get the following predicted average claim severities:
Y1=PBmatet 0+ Purban = 525 + 0 + 250 =775
Y2=Pmaet 0+0=525+0+0 =525
Y3 =0+ Bremate + Purban = 0 + 175 + 250 = 425

Y4:0+Bfema|e+0:0+175+0:175



Finally, we compare the fitted and the observed average claim severities in the following tables:

Fitted Urban Rural Actual Urban Rural

mo e 00 o
as w

Table 2: Fitted vs Actual Average Claim Severities

We can see that the four fitted values are close to the actual. The error in all cases is 25.

2.1.1. Linear Model Assumptions
The linear model assumes that all observations are independent and normally distributed.

The linear model can be written in the following format:
Y =¥ +g,

¥ = Bo+P1 X1 + B2 Xo+ P3 X3+ ...+ Pn Xn

Some other assumptions stated in A Practitioner’s Guide to Generalized Linear Models are as

follows:

¢ Random Component: Each component of Y is independent and normally distributed. The
mean, Wi, of each component is allowed to differ but the variance, 62, is the same.

e Systematic Component: Refers to the linear combination of explanatory variables that
creates our predictor ¥ = Bo+f1 X1+ P2 Xa+ Bs Xz + ...+ Bn Xn.

e Link Function: The relationship between the random and systematic components are defined
by the link function. In a linear model, the link function is equal to the identity function so

that:

Y=V +¢

10



2.1.2. Linear Model Limitations

Some limitations of the linear models stated in A Practitioner’s Guide to Generalized Linear

Models are as follows:

e Itis difficult to insure that the response variables are normally distributed and that the
variance is constant. Linear regression models transform data to fit the assumptions even
when there is no reason for the transformation to exist.

e The values of the response variables may be restricted to be positive but the assumption of
normality violates this restriction.

e If the response variable is strictly non-negative, then the variance of Y tends to zero as the
mean of Y tends to zero. Therefore, the variance is a function of the mean.

e The additivity effects in the systematic component and the link function are not realistic
because most of the time these predictor variables are entered multiplicatively in

applications.

2.2. The Minimum Bias Procedure

Minimum bias procedures are iteratively standard univariate approaches. Each procedure
involves the selection of a rating structure. These can be additive, multiplicative, or a
combination of both. Additionally, there is a selection of a bias function which includes a
balance principle, least squares, and maximum likelihood bias functions. The bias function is a
way of comparing the procedure's observed loss statistics to the indicated loss statistics and
measuring the error. Both sides of the equation must be weighted by the exposures to adjust for

uneven mix of business.

11



For example, the balance principle applied to a multiplicative personal auto rating
structure presented in the Casualty Actuarial Society's Basic Ratemaking is given below. This
examples assumes two rating variables: gender and territory. Gender includes male (g1) and

female (g2) and territory includes urban (t1) and rural (t2). We express female and rural as the

base case (hence g2 = 1 and t2 = 1). The lost costs are given below:

Male 300
Female 350 240 244

Total 497 267 400

Table 3: Example 2 Loss Costs

The exposure distribution is as follows:

Rural Total
\ELL 170 90 260
Female 105 110 215
Total 275 200 475

Table 4: Example 2 Exposure Distribution

The balance principle requires that the exposure weighted observed loss costs equal the indicated
exposure weighted loss cost of each rating variable. The four equations below show the observed
weighted loss costs on the left and the indicated weighted loss costs on the right. The base case is

assumed to be $100.

12



Males: 170 x $650 + 90 x $300 = $100 x 170 x g1 x t1 + $100 x 90 x g1 x to

Females: 105 x $250 + 110 x $240 = $100 x 105 x g2 x t1 + $100 x 110 x g2 x t2

Urban: 170 x $650 + 105 x $250 = $100 x 170 x g1 x t1 + $100 x 105 x g2 x t1

Rural: 90 x $300 + 110 x $240 = $100 x 90 x g1 x t2 + $100 x 110 x g2 x t2

Next, we choose a seed for one of the rating variables. So the urban relativity is the total loss

costs divided by the total rural loss costs:

t1=1.86 = $497/$266

t,=1.00

We substitute these seed values into the first two equations above and solve for the values of g;

and gz:

170 x $650 + 90 x $300 = ($100 x 170 X g1 X 1.86) + ($100 x 90 X g x 1.00)

$137,500 = ($31,620 x g1) + ($9,000 X g1)

$137,500 = $40,620 x 01

01=3.39

105 x $250 + 110 x $240 = ($100 x 105 x g2 x 1.86) + ($100 x 105 x g2 x 1.00)

$52,650 = ($19,530 x g2) + ($11,000 x g2)

$52,650 = $30,530 X g2

02=1.72

13



We now use these seed values for g: and g» and set up equations to solve for the new values of t;

and to.

170 x $650 + 105 x $250 = ($100 x 170 x 3.39 x t1) + ($100 x 105 x 1.72 x t1)

$136,750 = ($57,630 x t) + (18,060 x ta)

$136,750 = $75,690 x t1

t1=1.81

90 x $300 + 110 x $240 = ($100 x 90 x 3.39 x t2) + ($100 x 110 x 1.72 x t2)

$53,400 = ($30,510 x t) + ($18,920 x t2)

$53,400 = $49,430 X to)

t2=1.08

This procedure is repeated until there is no significant change in any of the values of g1, g, t1,

and to. At this point, it is common to normalize the base case (g) relativities to 1.00.

0:=3.39/1.72 =1.97

02=1.72/1.72 = 1.00

t1=1.81/1.08 = 1.68

t.=1.08/1.08 = 1.00

14



To conclude, the base loss cost also needs to be adjusted to reflect the normalization:

Base loss cost = $100 x 1.72 x 1.08 = $185.76

Ouir fitted versus actual loss costs are as follows:

Fitted Urban Total Actual Urban Rural

615 366 529 M 650 300 528

186

Female 312 248 Female 350 240 244

Total 499 267 402 Total 497 267 400

Table 5: Fitted vs Actual Loss Costs

It is important to note that the example above only considers one of the minimum bias methods
(the multiplicative structure). Additionally, it only considers two rating variables with two levels
each. Incorporating several rating variables requires some programming. Many minimum bias
procedures are a subset of GLMs. GLMs consider all rating variables simultaneously and
automatically adjust for exposure correlations between rating variables. Multivariate methods,
such as GLMs, also remove unsystematic effects in the data as much as possible. The minimum

bias method fails to do so.

2.3. Generalized Linear Models

GLMs comprise a wide range of models that include linear models as a case. However,
the requirement for all components of Y to be normally distributed and have a common variance
is removed. Another difference between GLMs and linear models is that the effect of the

variables on Y is not assumed to be additive.

15



2.3.1. Components of Generalized Linear Models
The components of a general linear model as stated in A Practitioner’s Guide to

Generalized Linear Models are:

e Random component: Accounts for the probability distribution of Y (the response
variable.) As previously stated, each of its components is independent and from one of
the exponential family of distributions.

e Systematic component: Refers to the linear combination of explanatory variables that
creates our predictor = Xp (e.g., Po + Pax1 + P2x2.)

e Link function: Specifies the relationship (link) between the previous two components.
The link function must be differentiable. It shows how the expected value of response

variables relates to our predictor. E.g. n= g (E(Yi)), g(x) is the link function.

The exponential family of distributions includes several common distributions such as Normal,
Poisson, Exponential, Gamma, Binomial and Inverse Gaussian. These are completely specified

in terms of its mean and variance, while its variance is in turn a function of its mean.

The following table shows some of the models comprised by GLMs, according to Agresti (Ch. 4,

2013):

Model Random Link Systematic

Poisson Log Mixed
Multinomial response W\ Vil El Generalized Logit Mixed

Table 6: GLM Models

Linear Regression Normal Identity Continuous
Normal Identity Categorical
Normal Identity Mixed
Binomial Logit Mixed
Poisson Log Categorical

16



2.3.2. Further Assumptions about Generalized Linear Models
e Errors need to be independent but do not need to be normally distributed.
e GLMs rely on sufficiently large samples (detailed further on.)
e GLMS estimate the parameters using maximum likelihood estimators instead of ordinary

least squares.

2.3.3. Typical GLMs

Different GLM models are used in accordance with the assumptions we need to make
about distribution of data. For example, typical model for insurance claim frequencies is Poisson
because of its time memoryless character (i.e. measuring the frequencies per month and
frequencies per year will yield the same results). On the other hand, to model insurance
severities, Multiplicative Gamma distribution is typically used due to it being invariant to
measures of currency. This distribution makes it possible to get the same result whether the

measurements are made in cents or in dollars.

In general, typical model forms are as in the table below (Anderson et al., 2007):

Claim Claim numbers Average claim Probability (e.g.

frequencies or counts amounts of renewing)

Link function g(x) In(x) In(x/(1-x))

Poisson Poisson Gamma Binomial
Scale parameter ¢ 1 1 Estimated 1
Variance function V(x) [BS X x? X(1-x)

Prior weights @ Exposure 1 # claims 1

Table 7: Typical Model Forms

In(x) In(x)

17



2.4. Maximum Likelihood Estimator

After deciding the distribution of the response variable and the link function, we used the
Maximum Likelihood function to determine the values of the covariates. To compute these
values, we need to maximize the likelihood function which is the same as maximizing its
logarithm. The core of this method is attempting to find parameters which will result in fitted

values as close as possible to the original ones.

The likelihood function is defined as the product of probabilities of observing each value of the
y-variate. Typically, we consider the log of the likelihood function since being a summation

across observations rather than a product makes the calculations more manageable.

In the tables below the observed average claim severity for the following cases is presented:

MALE LUXURY REGULAR
OLD CAR 1400 1080
NEW CAR 1550 1230

Table 8: Example 3 Average Claim Severity Male

FEMALE LUXURY REGULAR
OLD CAR  [WE¥AI] 1100
N=WEe7a e 1570 1250

Table 9: Example 3 Average Claim Severity Female

The first step to applying the GLM procedure to analyze the following case is to identify
the factors that account for the variations in observed average claim in the given cases. There are

three such factors, namely: gender, classification of the car, age of the car. Each of these factors

18



has two levels: male (X1) and female (X2) for gender, luxury (X3) or regular (X4) for the
classification of the car and old car (Xs) and new car (Xs) for the age of the car. These indicator
variables take the value 1 or 0. For example, the male covariate, (X1), is equal to 1 if the gender

is male, and 0 otherwise.

The purpose of the linear model is to express the observed item Y (average claim
severity) as a linear combination of a specific selection of the six variables, plus a normal
random variable & with mean zero and variance 62, often written € ~ N (0, 6?). One such model

might be:

Y = B1X) + BX5 + B3X3 + BaXy+ BsXs + PeXe+ €

However, this model has as many parameters as it does combinations of rating factor levels
being considered, and there is a linear dependency between the six covariates. This means that
the model in the above form is not uniquely defined. To make this model uniquely defined we
consider selecting a base case, and reducing the number of variables to three instead of six. We
will do this by assigning variables only to one level for each of the given factors. We chose the
average claim severity for males who have a regular, old car as our base case (1080 severities).

This leads to our updated model:

Y =1080 +ﬁ2X2 + ﬁng + ﬁﬁXﬁ + £

Our new parameters are: B2 — effect of being a female, 3 — effect of having a luxury car and

Be— effect of having a new car.

The next step of applying the GLM procedure is to specify the design matrix and the vector of

parameters f3.

19



Since the parameters are 2, B3, and Ps the vector of parameters is:

B2
p= [Ba]
Bs

Based on this the design matrix will be:

0 1 07
0 0 0
0 1 1
0 0 1
X_1 1 0
i 0 0
1 1 1
i 0 1

And the response matrix will be:

r1400 — 10807 r3207
1080 — 1080 0

1550 — 1080 470
Vv 1230 — 1080 150
1420 — 1080 340

1100 — 1030 20
1570 — 1080 490

~1250 — 1080- ~170-

The classical linear model case assumes a normal error structure and an identity link function.

The predicted values in the example take the form:

Elvl= g i(x«B) =| . s

Bs + Bz + PBs
B2 + Pe
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Since error will have Normal distribution, then the response variable “Y”” will have Normal
distribution as well. Therefore, we will have to consider probability density function of Normal
distribution as below:

—(¥ —p)?

, 1 5
F¥; wo?) =exp{ — —EIHKEM‘]}

To get the best estimation, we use the strategy of maximizing the likelihood function. Likelihood

function is described with the following expression:

L(Y; po?)= l_[exp {M— %In[zﬂazj}

20
i=1

Since maximizing likelihood function is the same as maximizing log-likelihood function, we use

the log-likelihood function as below:
O —(-u)? 1 )
(Y;: woo) = ZIT—EHIEETIH )

After applying identity link function:

T

a2 _K_Ep: szﬁz 1 5
I(Y; o) = Z ( =Xy 2 ) —5In(2ne?)

202

i=1
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Now, by setting to O the partial derivatives of log-likelihood function we get the following:

a(l(Y; wea?))

=0 =28, +B; +f. =510
aﬁz 2 3 =]

a(l(Y; wo?))

=0 - 28, +p, + B, =810
a.ﬁg 3 2 &

A(l(Y; wa?))

=0 = 28, +f, + F; = 640
aﬁﬁ & 2 3

Solving the created system of equations, we get:

B, = 20,8, = 320, 8, = 150.

Using these values we get the following tables of fitted results:

Fitted

MALE LUXURY REGULAR MALE LUXURY REGULAR

OLD CAR 1400 1080 OLD CAR [ENY 1080

NV 1550 1230 N=WEO7\ 28 1550 1230

Table 10: Example 3 Fitted vs Actual Results Male

Fitted

FEMALE LUXURY REGULAR FEMALE LUXURY REGULAR
OLD CAR vy 1100 OLD CAR 1420 1100
N=WEe A al 1570 1250 NEW CAR BEr(i] 1250

Table 11: Example 3 Fitted vs Actual Results Female




We see that these tables are exactly the same as the original ones. This happens because
the data we have has a strong linear correlation that can be noticed even with a careful
observation. For example, every respective entry in the table of females is exactly 20 more that
the entry in the table of males (i.e. 1420 = 1400 + 20; 1100= 1080 + 20 etc.). The same happens
with other variables as well. Since the linear correlation is perfect, then by using Normal
distribution to model the errors and the identity link function in the GLM procedure, we replicate
the simple linear model. And, since the linear correlation of covariates is perfect, this model will

conclude in perfectly predicting the original results.

Now, let us try doing the GLM procedure using Poisson distribution for errors and a different
link function. In this case, the analysis of covariates is the same as in the first part of the
example. We only need to describe the second part of the procedure where logarithm link

function and Poisson distribution for errors are involved.

The predicted values will take the form:

- EE; -
1
eBE+Ed
eﬂﬁ
eﬁz+ﬁz
eﬁ?
eBz+Es+Eﬁ
L EB2+B6 |

El¥l=g ' (x=p) =

Since error will have Poisson distribution, then the response variable “Y*” will have Poisson
distribution as well. Therefore, we will have to consider probability density function of Poisson
distribution as below:

_HI_.LY

f(y; |JJ=ET
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To get the best estimation, we use the strategy of maximizing the likelihood function. Likelihood

function is described with the following expression:

mn

—w F

e Bopt

L(Y; |JJ=| |—‘
¥;!

i=1

Since maximizing likelihood function is the same as maximizing log-likelihood function, we use

the log-likelihood function as below:

!

107 W= ) = + % In(w) — In(xy)

i=1
After applying logarithm link function:
n P r
}’[Y: e-""ﬁ)z Z—exp ZXE_J'*E’J' TV = ZXE_J'*BJ' —In(¥1)
i=1 j=1 i=1

Now, by setting to O the partial derivatives of log-likelihood function we get the following:

‘mﬁ’é—ﬁw =0 - efr(efs +1 +efetPe + ofe) = 1020

a(L(Y; w,o?)

35 =0 - efs(1+efe +efz +ef?fe)=1620
3

all(y; u 2
M =0 — efs [EEE 4+ 1 +efaths 4 e'gﬂ) = 1280
a8
Solving the created system of equations, we get:

B, = 051,53, = 4.88,f, = 1.29.
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Using these values we get the following tables of fitted results:

Fitted

MALE LUXURY REGULAR MALE LUXURY REGULAR
OLD CAR VANKE 1080 OLD CAR 1400 1080
NEW CAR kLA 1083.63 NEW CAR  SkEl) 1230

Table 12: Example 3 Poisson Fitted vs Actual Results Male

Fitted

FEMALE LUXURY REGULAR FEMALE LUXURY REGULAR
OLD CAR  [Wicleiy 1081.67 OLD CAR 1400 1080
NEW CAR [EYRY 1086.05 NEW CAR  SkEl) 1230

Table 13: Example 3 Poisson Fitted vs Actual Results Female

We notice that even though the fitted values are relatively close to the original values, the
fit is far from perfect. This happens because the data is perfectly linear and every other fit except

identity link function and Normal distribution of response variable will give less accurate results.

N
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Chapter 3: Methodology
3.1. Introduction

The goal of this project was to work with physician Medicare data to identify key factors
that would affect the ratio of the actual payment that providers received to the amount that they
charged, which we will define as the Reimbursement Ratio (RR). For instance, if a provider has
submitted a charge of $100 and Medicare paid them $75, then their RR would be $75/$100 =
75%. In general, RR can be calculated by the following formula:

Total Amount Paid
Total Submitted Charge

Reimbursement Ratio (RR) =

We wanted to identify variables that would have a strong effect on this ratio. To
accomplish the overarching project goal, we executed the following set of objectives. The first
one was to gather, review, and clean up the physician Medicare data. The second objective was
to analyze the relationship between the RR and the factors that we selected after the data
cleaning process. These factors were: state of the provider, provider type, number of services
performed by the provider, and the "greediness factor.” We define this factor as the amount (per
service) charged by the provider compared to the average of their specialty. The greediness

factor for a given provider can be calculated using the following formula:

Submitted Charge of the Provider (per service)

Greediness factor =
Average Submitted Charge per service of their specialty
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Finally, our third objective was to utilize SAS to analyze variables that had more
influence on the RR. The overall methodology for this project is represented by the flow chart in

Figure 1.

Physician Medicare Data

Data Set Organization

Selecting Variables

Predicting Physicians'
Payment/Submitted Charge Ratio

Figure 1: Methodology Flow Chart

3.2. Data Set Organization
3.2.1. Removing Factors

Our first step was to obtain Medicare information on providers through the government
website, data.cms.gov. We were able to find a spreadsheet titled, "Medicare Physicians and
Other Supplier National Provider Identifier Aggregate Report Calendar Year 2014", which
consisted of information on utilization and payment data of doctors and medical organizations
throughout the year of 2014. We had access to 986,677 providers and 70 categories of
information, which included personal data such as their name, credentials, state and address, as
well as more relevant data such as "total submitted charge amount” and "total Medicare
payment". However, we limited our analysis to the payment data of individual medical providers
by removing Alaska, Hawaii, and other territories outside of the continental USA to eliminate

changes in price due to a possible rise in shipping costs. Whereas, since individuals and
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organizations greatly differ in the number of services that they provide, we chose to work only
with individuals (they represented 94% of the providers). Additionally, we removed possible
outliers such as providers that reported more than 2000 services (as they were above 300% of the
mean) and providers that did not report their specialty or whose specialty had very little
representation, such as providers who worked in the sleep medicine industry. This procedure
would allow our GLM to fit the RR more efficiently. Figure 2 represents our cleaning process

along with the number of providers that remained after each step.

Providers with Providers with
Organizations Non-US Providers more than 2000 unknowns
925348 914375 SErvices professions
718966 71B621

Figure 2: Data cleaning process

3.2.2. Summarizing Data

Next, the data was summarized graphically, allowing us to see the trends in the data and
the relationship between different variables. Graphs helped the team to understand the data
provided and revealed trends that needed to be further investigated. Additionally, they allowed
us to focus on specific factors in our data and helped us eliminate factors that did not have any
important effects on the RR. An example of a graph that would help describe the data is the
distribution of the RR based on the number of services performed by the physicians as seen in

Figure 3 (bigger version in Appendix A)

28



Distribution of Ratio and Services

Ratios ~

10.00

LR

Sevices

Figure 3: Distribution of Reimbursement Ratio and Number of Services

The graph above shows the RR as a percent based on the number of services the
providers performed. The number of services is broken up into intervals of 100 up till 2000
services. We can see in the graph that in most categories, the common ratio range encountered is
30%-40% (yellow bar), however, 20%-30% (gray bar) is predominant in the some of the ranges.
This graph was consistent with the average of the ratios which is about 27%. What this graph
tells us is that generally, physicians who perform more services have a larger RR. In other words,
they get more of what they ask for. Once this data set organization was complete, the team

worked on analyzing and selecting our independent variables.

3.3. Selecting Variables

The next step was to determine which factors were meaningful. We performed one-way
analysis on all the different categories of data by comparing them to the RR to check for a
correlation. We then selected the four factors that had the greatest correlation to the RR, which
were: state of the provider, provider type, number of services and the “greediness factor".
Identifying these variables was an important part of the generalized linear modeling result
because the results of the model are interpreted based on the impact of these predictors on our
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response variable. Additionally, we analyzed these factors graphically for better visualization.
Figure 4 below shows the RR depending on the state of the provider (bigger version in Appendix

A).

What percentage of what they ask for do doctors get paid, depending on their state? =

|
v ‘ H ‘

Al

gl UM AR I L 1 e l L

Figure 4: Payment ratio depending on State

We can see in the graph above that most states in the yellow bars (30%-40%) are highest
followed by the gray bars (20%-30%). However there are a few states for which the blue and
orange bars are highest. This tells us that the state the physician is from is a relevant factor for

our analysis.
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We illustrate an example of a distribution we found to not be relevant in Figure 5 below.

Count of Gender of the Provider

Distribution of Ratio for Females vs. Males

25.00%

----- Ratio of 21/19 v

mo-01
0.1-02

15.00%

03-04
w0405

10.00% =050
0708
°00% m08-09

I 051

E M

Gender of the Provider v

Figure 5: Distribution of Payment Ratio for Females and Males

The graph above shows that both male and female providers share a similar distribution,
therefore, we did not take this factor into consideration for our GLM analysis. Several other
factors showed similar distributions as in this graph so we did not consider those factors either.

After selecting our input variables we moved onto the modeling process.

3.4. Generalized Linear Model Analysis
3.4.1 Setting up the Data

First, we split the data in half in order to use one half for calibration and the other half for
testing. We separated the data using the "rand" function in Excel to assign each row of data a
random number. We then sorted the data in numerical order based on these random values and
then split the data in half. We used the first half of the data to build our GLM and the second half
to test that model. Since the number of services and the greediness factor had over a thousand
different values, we grouped them so that we had about the same amount of entries as we did for
state and provider types. To do this, we grouped the services into intervals of 50, starting at 1 and

ending at 2000, and the greediness in intervals of 10 percent, starting from 0 to 300 percent.
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However, since several providers had a greediness factor much higher than 300 percent, we

grouped them all in a "+300%" interval so that we did not have groups with a single provider.

3.4.2 Running the data in SAS

The next step was to run the first half of the data using the GENMOD procedure in SAS
(Appendix B). This procedure allowed us to acquire estimates for each level of our four factors.
We ran the GENMOD procedure with three different combinations of distributions and link
functions (see Table 4 in Chapter 2 for the full list). The distributions with their respective link

functions are listed below:

1. Normal distribution & Identity link function
2. Poisson distribution & Logarithmic link function

3. Gamma distribution & Logarithmic link function

3.4.3 Calculating Results

We then compared the fitted values of RR produced by each of these combinations to the
actual RR of each provider. The Normal distribution with the identity link function, which is the
linear model, yielded the best result in terms of correlation between the actual and fitted values.
Therefore we used this model to estimate the fitted values of the remaining half of the data. We
then calculated the correlation between the model's estimates for the second half of the data and
their respective RR's. To conclude our project, we compared the correlations for each half of the
data and calculated several statistical measurements such as the R-squared, the root mean

squared error (RMSE), and the mean absolute error (MAE).
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Chapter 4: Results

After conducting the GLM procedure on our four variables, we were able to analyze our
results. This section presents the results of our analysis of the three distributions, the fitted
model, the estimates for the four significant variables, and the comparison of the fitted model to

the estimates.

4.1. Fitted Model

The fitted values of the aforementioned combinations of distributions and link functions

were compared to the actual RRs and yielded the following statistical measurements:

Distributions/Link Correlation R-squared
functions

Normal/ldentit 0.8289 0.6871 0.0947
Poisson/Logarithmic [EUR:Y4{s 0.6849 0.0950 0.0672
Gamma/Logarithmic JIR:HEES 0.6667 0.0986 0.0679

Table 14: Statistical measurements of the distributions/link functions

As shown in Table 14 above, the most optimal results were obtained when using the Normal
distribution with the identity link function. The correlation and R-squared for this combination
are greater, while the root mean squared error (RMSE) is smaller than the rest. Therefore, we
selected the results provided by this distribution and link function to create our fitted model. Our

model can be described by the following equation:

Y = Bo + Bsti + Perj+ Psrx +Porn

wherei=0,1,...,49,j=0,1,...,73,k=0,1, ...,40,and h =0, 1, ..., 31.
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As seen in the formula, Bo is the y-intercept in our model, Bsriis the estimate of the effect of the

i-th level of the state, Ber; is the estimate of the effect of the j-th level of the provider type, Bsr« is

the estimate of the effect of the k-th level of the number of services, and Bern is the estimate of

the effect of the h-th level of the "greediness”. Table 15 also shows some of the estimates for

each factor.

Coefficients ijk,h=1 ijkh=2  ijkh=n1
Intercept (Bo) Bo=0.2068  Po=0.2068 ... Po=0.2068
State (Psi) Bst1=-0.0023 Bs2=-0022 ...  PBsrey=-0.0207
Provider (Ber;) Beri=0.045  Prro=0.1478 ... PBerey=0.0144
Services (Psr) Bsri=0.0016  Psre=0.0077 ...  Psre1y=-0.0045
Greediness (Porn)  Pori=0.1792  Pore=0.1993 ... PBore-y=-0.143

Table 15: Examples of Estimate for each Factor

L], K,h=n

Bo= 0.2068

BSTnzO n=49
BPRn:O n=73

Bsrn=-0.0046 N =40

Born=-0.1715 N=31

Each subscripted variable displayed in the table refers to the estimate for the specific level of

each factor. The whole list of these estimates is shown in Appendix C. Note that each factor has

a different number of levels, indicated in the last column of the table.
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4.2. Estimate Analysis
By analyzing each factor and its estimates, we were able to understand the weight that

each level has on the resulting RR. The maximum and minimum for each of the four factors are

listed below:

Greediness Provider Type Number of
Services

New Jersey 10%-20% Chiropractor 100-150
(0.0432) (0.1993) (0.0087)
(0.3467)
Minimum
Wisconsin (- +300% (- Interventional 1800-1850 (-
- 0.0467) 0.1715) Radiology (-0.1065) 0.0075)

Table 16: Maximum and Minimum for Estimate of Significant Variables

The middle row of the table represents the level of each factor that has the greatest positive
impact on the RR of a physician. The bottom row represents the levels with the greatest negative
impact. For example, our model estimates that living in New Jersey will add 0.0432 to a
physician's RR, while working on Interventional Radiology would subtract 0.1065 from such

RR.

It becomes clear then that the best possible scenario (upper bound) for physicians that
wish to maximize their RR is working in New Jersey, as Chiropractors, asking for 10 to 20
percent of the average of their industry, and performing from 100 to 150 services per year. On
the other hand, the lower bound for a physician's RR would be achieved by working in
Wisconsin, as an Interventional Radiologist, asking for more than 300 percent of the industry

average (greediness factor), and performing from 1800 to 1850 services per year.
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As an important note, we must clarify that our model indicates the effect of factors and
levels on the RR, not on the overall income of the physicians. It is crucial to consider this in
order to correctly understand the impact of the greediness factor. For instance, even though our
model considers 10 to 20 percent as the ideal greediness level for doctors, it is clear that asking
for about 15% of the industry average is most likely not the strategy to follow when it comes to
generating greater earning. Our model analyzes the RR of a physician, and does not help
physicians achieve the greatest possible income. Information on the greediness level that would

produce the most substantial payment will be provided later.

4.3. Testing the Model
To test the validity of our model, we assigned the estimated value for each level of each
factor to the second half of our data, and then compared the fitted RRs to the actual ones. Our

results were satisfactory and are displayed below:

Correlation R-squared RMSE MAE

0.8291 0.6874 0.0946 0.0699

Table 17: Statistical measurements of the fit of our model to the second part of the data

As shown in Table 17 above, the statistical measurements between the fitted and actual RRs
were virtually identical (even slightly better) than those obtained by applying our GLM to the
first half of the data. This shows that our model is not over fit to our dataset and efficiently
estimates the RR based on our four factors. We were surprised to see that the correlation was
roughly 83%, since we expected it to be much lower because we did not include provider

qualifications. However, we realized that it is not the best correlation because the R-squared is
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only 69%. Therefore, the model explains only 69% of the variability of the RR, leaving more

room for improvement.

4.4. Real World Applications
As mentioned previously, our model is concerned with estimating the RR of providers
and not their overall pay. However, the greediness factor can help providers to come up with an

optimal strategy to maximize earnings.

The table in is intended to explain the outcome
of charging for each of the 30 possible greediness categories (0%-10%, 10%-20% etc.). These
intervals are expressed as their midpoint for calculation purposes. The first column simply lists
the 30 categories. The second column shows our fitted RR for each level. For example, our
estimation is that providers charging 10 to 20 percent per service of the industry average will get
40.61% of what they ask for (which is their RR). The third column is the product of the first two,
this accounts for the percentage of the industry average submitted charge that providers receive
depending on their greediness level. For example, the first row of data tells us that providers that
ask for 5% of the average industry charge per service will receive 38.6% of this amount. That

would mean 1.93% (of the average industry charge per service).

Finally, the last two columns of our table represent a reordering of the greediness levels.
These are ranked from the largest to smallest when it comes to generating returns. The optimal
strategy would be to charge from 230 to 240 percent (per service) of the industry average.
However, it is also important to note that asking for 230 to 240 percent (per service) of the
industry average will yield less than 1% more than asking for 90 to 100 percent (per service). In

other words, being "greedy" is just slightly better than asking for the industry average.
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Additionally, this table shows that the worst possible strategy for medical providers is to ask for

less than 70 percent of their industry average as this would lead to the lowest income.

It is important to note that these calculations take into account the base levels of State,
Provider Type, and Number of Services (Wyoming, Vascular Surgery and “950-100"), and these
have an estimated value of zero. It is clear that the returns generated by the previously discussed

greediness levels are also subject to these other three factors.
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Chapter 5: Conclusion and Recommendations
5.1. Conclusion

Once we finished studying our results, we came up with conclusions that summarized the
highlights of our analysis. This section presents what we interpreted from our results and useful

information for providers.

5.1.1. Factor ranking

One of the most important conclusions inferred from our model, was the importance of
each factor in estimating the RR. We compared our estimates of the levels of each factors and
observed that the higher estimates (in absolute value) belonged to type of the provider. That
indicates that the industry of each provider plays the most significant role in their rate of

reimbursement (RR).

A crucial achievement of our project was discovering that the "greediness level”, which
we defined as the amount (per service) charged by the provider compared to the average of their
industry, plays a very significant role in determining the RR. For instance, being more "greedy"
will result in having a lower rate of reimbursement, while being less "greedy" will do the exact
opposite. However, as we explained under Section 4.4, this holds only for the rate of

reimbursement and not the real income.

Moreover, we discovered that the state where the provider operates is the third factor
with most influence to the RR, leaving the number of services as the least important factor. We
also observed that the number of services had little weight in our model and could also be

omitted with very little loss of estimating accuracy.
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Perhaps the most meaningful part of our results is the greediness levels’ ranking. Out of
the four factor that we took into consideration (state, greed, number of services and provider
type), greed is the only one that is completely controlled by the providers. Therefore it was
interesting for us to see how the greediness level affected providers’ income in ways that are not

obvious (Appendix D).

5.1.2. Applications

As we reveal in our results section, asking for 230 to 240 percent (per service) of the
industry average yields the largest earnings for medical providers. However, this income does
not differ much from that of the medical providers that ask for 90 to 100 percent (per service) of
the industry average. In other words, being very "greedy" does not help much more than asking
the usual average of your industry. Additionally, this table shows that the strategy that medical
providers should definitely avoid is to ask for less than 70 percent of the industry average, since

that would lead to significantly lower payments.

5.2. Recommendations
This section discusses the challenges we faced while carrying out the project. It also

includes information on how to make future projects more precise.

5.2.1. What went well

In order to get the results, we had to analyze a large amount of data efficiently so that we
did not make computational errors. We needed to work with Excel and SAS effectively to avoid
these errors. By combining both of these software, we were able to work faster and more
accurately. For example, to run SAS correctly, we had to rename provider types and group

services. Additionally, we sorted greediness into intervals so that SAS could read them and not
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cut off our entries. Since we had over 700,000 data entries, it was difficult to ensure that all of
the changes were made to each cell but by using more advanced formulas in Excel, we were able
to make precise changes. Otherwise, our fitted model could have interpreted a worse correlation,

making our results useless.

Another aspect that went well with our project was the timely feedback. Whenever we
came across a problem or question that could hold our project back, we contacted people in the
Medicare industry to get clearer definitions on variables. For example, when we first looked at
our dataset, we did not know what it meant by "services" so we contacted the website where we
found our data and they explained the exact meaning of a service to us. By getting the feedback
quickly, we were able to continue our analysis and move onto testing without losing valuable

data.

Creating the "greediness" factor also had a significant role in getting meaningful results.
The amount (per service) charged by the provider compared to the average of their industry was
very significant in fitting the RR. This factor helped us get a more profound understanding of our
results, since it allowed us to see the impact that the submitted charge had on the reimbursement

ratio of the providers.

5.2.2. Difficulties

The most difficult part of our project was finding data that would allow us to build a
general linear model. We only had access to data published publically by the government.
Initially, we thought finding car insurance claims data would be ideal for our project but that
information is private. Another problem was that most of the data we had access too had very

little predictive power. In other words, these datasets contained mostly one field that we would
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be interested in modeling and all the other fields consisted only of personal information such as
first and last name, address, limited demographics (age was often not included), which had no
predictive power on the response. After careful research, we selected the "Medicare Physician
and Other Supplier National Provider Identifier (NPI) Aggregate Report, Calendar Year 2014",
which was a much more complete information in that it consisted of more than 900.000 data
points and 70 different columns that included information such as provider, state, number of

services, etc., that we would expect to play a role on our selected response variable (the RR).

Another difficulty in our study was understanding and interpreting this data correctly.
Our background on medical field was not very advanced and many concepts were initially
vague. To improve our understanding, we used the information and explanations that were given
in the website where we found the data and did some online research. However, we were still
missing information about some concepts which were specific to our dataset such as what
constitutes of a service. This information was crucial, since we believed that the number of
services played an important role in estimating the RR in our data. Therefore, we contacted the
data providers and asked for an explanation. Fortunately, they sent us a detailed explanation,
where they defined service as an appointment of 11-15 minutes with a medical provider. For
instance, if a patient had a 30 minute appointment with a medical provider, then the medical

provider would have performed two full services with that patient.

Unfortunately, the recording of provider qualifications in our data also posed as a
complication. We believed that this factor could have an impact on the RR and wanted to include
it in our analysis. However, the formatting made that impossible for us. Same qualifications were
declared in more than 20 different manners and even with all of our efforts, we could not format

this field so that it would be usable to our project and therefore did not include it in our analysis.
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Deciding which software to use to analyze the data was also a challenge. Through
research, we discovered that fitting a general linear model was already a built-in procedure in
two statistical software, SAS and R. Since SAS often gives a more detailed output, we selected it
to analyze our data. After that, we had to find the correct procedure (GENMOD) to fit a general
linear model to our data. We watched various tutorials to understand how to correctly use the

procedure to get the desired output.

This was not the biggest problem though. Once we were able to use SAS, we had to learn
how SAS operated so that we did not lose data due to incorrect input. We spent a lot of time re-
entering data into SAS to correctly learn why some of our data was rejected. We learned a few
things from this. One, SAS can only take so many entries with different inputs. Since two out of
four factors we had are categorical, we made the mistake of putting all of the services and
greediness into SAS separately, without groups. This error resulted in SAS taking over an hour
to run, which we knew should not take that long. To fix this, we grouped each continuous factor
to make them categorical factors. The second lesson we learned is that SAS outputs only eight
characters. We had a few provider names that were similar in name, yet were completely
different titles. However, SAS did not notice this and labeled them under the same name. This
created incorrect models, making us have to go back and rename each provider type with the

eight character limit.

Due to all of these difficulties, we spent most of our time going back and correcting
mistakes in SAS and renaming provider types. But, from these difficulties, we learned more on
how GLMs operate in SAS and how to improve our project so that we can improve the

correlation for each distribution.
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5.2.3. Feasible Improvements

We believe that being able to use provider qualifications would increase the predictive
power of our model. Medical providers that belong to different industries usually require
different compensation amounts. Therefore, it seems logical that providers with a higher level of
qualification would usually require a higher amount of compensation than those with a lower
level of qualification. Since working in a specific industry had the most impact on the RR, we
believe that providing provider qualifications would further increase the correlation between

fitted and actual values of the RR.

We learned from this project that so far only provider type and greediness were
significant enough to impact the correlation of the linear model. Another improvement would be
to find more factors, including provider qualifications, which could increase the fitted RR. By

having at least four or five significant factors, the model could represent the data better.
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Appendix A: Methodology Graphs

Distribution of Reimbursement Ratio and Number of Services
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Appendix B: SAS Code for GLM Procedures

1 ¥¥*CODE FOR BACKGROUND®#®*

z
zdata claims;

4 input GENDER % TYPE $ AGE $ YIELD;
s datalines;

smale Tuxury old 1400
male Tuxury new 1550
zamale regular old 1080
amale regular new 1230

1o female Tuxury old 1420

11 female Tuxury new 1570

1z female regular old 1100

1z female regular new 1250

14 ;

15
1s proc genmod data=claims;

17 class GENDER TYPE AGE;

12 mode]l YIELD = GENDER TYPE AGE / dist=Normal

13 Tink=identity
20 Treci;

z1 putput out=d predicted=Fitted;

2z rumn;

23

z4 proc print data=d;

25 var Fitted:

26 Furn;

27

1 **%CODE FOR GLM PROCEDURE®#®*

2z data ratio;

input STATE $ PROVIDER $ SERVICES $ GREED $ RATIO;
datalines;

(8]}

om N

#*#*%insert large amount of data®*®

=
o wom

proc genmod data=ratio;

class STATE PROVIDER SERVICES GREED;

mode]l RATIO = STATE PROVIDER SERVICES GREED / dist=Normal
Tink=identity
Treci;

[ R R O
[F T TR i

output out=d predicted=Fitted;
16 run;

i1z proc print data=d;
13 var Fitted;
20 run;



Appendix C: Level Estimates for Four Factors

Estimate

-0.0023
-0.022
0.0265
0.0227
0.0162
0.0102
0.0249
0.0219
0.0274
-0.006

-0.0275
0.0098
0.0095

-0.0027

-0.0005

-0.0155

-0.0097

-0.0071
0.0364
0.0103
0.0223

-0.0109

-0.0036

-0.0283

0.022

0.0039
0.004

0.0037
0.0036
0.0038
0.0038
0.0044
0.0045
0.0036
0.0037
0.0039
0.0042
0.0036
0.0037
0.0039
0.0038
0.0038
0.0037
0.0037
0.004
0.0036
0.0037
0.0037
0.004
0.0043

Confidence
Interval

-0.0098
-0.0299

0.0192
0.0157
0.0088
0.0028
0.0162
0.0131
0.0203
-0.0133
-0.0351
0.0016
0.0024
-0.01
-0.0081
-0.0229
-0.0172
-0.0142
0.0291
0.0025
0.0152
-0.0181
-0.0109
-0.0362
0.0136

0.0053
-0.0141

0.0338
0.0298
0.0236
0.0176
0.0335
0.0307
0.0345
0.0012
-0.0199
0.0179
0.0167
0.0046
0.0072
-0.008
-0.0022
0.0001
0.0437
0.0182
0.0295
-0.0037
0.0037
-0.0203
0.0304

States

48

NC
ND

NE
NH
NJ
NM
NV
NY
OH
OK
OR
PA
RI
SC
SD
TN
LD,
ut
VA

WA
Wi

wv
wy

Estimate

-0.0021
-0.0289

-0.0244
0.0025
0.0432
-0.0044
0.0088
0.0245
0.0061
-0.0089
-0.0294
0.0178
0.0245
-0.014
0.0233
-0.0153
0.0001
0.0009
0.0078
-0.0006
-0.0132
-0.0467
-0.0207

0.0037
0.0044

0.004
0.0041
0.0037
0.0041
0.0041
0.0036
0.0036
0.0039
0.0038
0.0036
0.0042
0.0038
0.0044
0.0037
0.0036

0.004
0.0037
0.0045
0.0037
0.0037
0.0041

Confidence
Interval

-0.0093
-0.0374

-0.0323
-0.0054
0.036
-0.0124
0.0008
0.0175
-0.001
-0.0165
-0.0368
0.0107
0.0163
-0.0214
0.0148
-0.0226
-0.007
-0.0069
0.0005
-0.0094
-0.0204
-0.054
-0.0287

0.005
-0.0203

-0.0165
0.0105
0.0504
0.0035
0.0169
0.0316
0.0133
-0.0013
-0.0219
0.0249
0.0326
-0.0065
0.0318
-0.008
0.0071
0.0087
0.015
0.0082
-0.006
-0.0395
-0.0127



Provider

Addiction Medicine
Allergy Immunology
Anesthesiologist
Audiologist

Certified Nurse Clinical Specialist

Nurse Midwife

CRNA

Cardiac Electrophysiology
Cardiac Surgery
Cardiology

Chiropractic

Clinical Psychologist
Colorectal Surgery
Critical Care
Dermatology

Diagnostic Radiology
Emergency Medicine
Endocrinology

Family Practice
Gastroenterology
General Practice
General Surgery
Geriatric Medicine
Geriatric Psychiatry
Gynecological Oncology
Hand Surgery
Hematology Oncology
Hematology

Hospice Palliative Care
Interventional Pain Management
Internal Medicine
Interventional Radiology
Infectious Disease
Licensed Clinical Social Worker
Maxillofacial Surgery
Medical Oncology
Multispecialty Clinic

Providers

Estimate

0.045
0.1478
-0.0779
0.0689
0.1519
0.1577
-0.0709
0.0353
0.0001
0.0345
0.3467
0.2646
0.0578
0.0614
0.129
-0.065
-0.0249
0.1524
0.1578
0.0291
0.1516
0.0322
0.1644
0.1898
0.0371
0.011
0.1174
0.1053
0.1469
-0.0135
0.1527
-0.1065
0.1547
0.2167
0.1213
0.09
0.0342
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0.014
0.0048
0.0031
0.0035
0.0043

0.006
0.0032
0.0067
0.0047
0.0034
0.0032
0.0033
0.0049
0.0042
0.0037
0.0034
0.0031
0.0038
0.0031
0.0033
0.0037
0.0032
0.0048
0.0116
0.0058
0.0054
0.0038
0.0066
0.0065

0.006
0.0031
0.0057
0.0038
0.0032
0.0052
0.0045

0.02

95% Confidence Interval

Lower Bound | Upper Bound

0.0175
0.1384
-0.0841
0.0619
0.1434
0.146
-0.0771
0.0221
-0.009
0.0278
0.3406
0.2581
0.0482
0.0532
0.1217
-0.0716
-0.0311
0.145
0.1517
0.0226
0.1443
0.0259
0.155
0.1671
0.0257
0.0004
0.1099
0.0923
0.1341
-0.0253
0.1466
-0.1178
0.1472
0.2104
0.1111
0.0812
-0.005

0.0725
0.1572
-0.0718
0.0758
0.1604
0.1694
-0.0647
0.0485
0.0092
0.0412
0.3529
0.271
0.0673
0.0695
0.1363
-0.0584
-0.0188
0.1597
0.1639
0.0356
0.1589
0.0385
0.1738
0.2125
0.0485
0.0216
0.1249
0.1183
0.1597
-0.0016
0.1587
-0.0953
0.1621
0.2231
0.1315
0.0989
0.0734



T e69% Confidence Iterval

Error

Nephrology 0.1269 0.0038 0.1194 0.1344
Neuropsychiatry 0.1789 0.0137 0.152 0.2058
Neurology 0.106 0.0034 0.0994 0.1126
Neurosurgery -0.0262  0.0037 -0.0334 -0.0189
Nuclear Medicine -0.042 0.0075 -0.0567 -0.0272
Nurse Practitioner 0.0892 0.0031 0.0831 0.0953
Obstetrics Gynecology 0.1081 0.0032 0.1019 0.1144
Occupational Therapist 0.1596 0.0039 0.1521 0.1672
Ophthalmology 0.1259 0.0034 0.1192 0.1325
Optometry 0.3321  0.0032 0.3258 0.3383
Oral Surgery 0.1462 0.0047 0.1371 0.1553
Orthopedic Surgery -0.0106 = 0.0033 -0.017 -0.0042
Osteopathic Manipulative 0.1656 0.0067 0.1526 0.1787
Medicine

Otolaryngology 0.0564 0.0035 0.0495 0.0632
Physical Medicine and 0.1171 0.0037 0.1099 0.1243
Rehabilitation

Physical Therapist 0.1757 0.0032 0.1694 0.1819
Pain Management -0.0089 0.0054 -0.0196 0.0018
Pathology -0.008 0.0034 -0.0147 -0.0012
Pediatrician 0.0669 0.0044 0.0583 0.0755
Peripheral Vascular Disease -0.0157  0.0196 -0.0541 0.0227
Physician Assistant -0.0399 0.0031 -0.0461 -0.0338
Plastic Surgery 0.012 0.0037 0.0048 0.0193
Podiatry 0.2105 0.0034 0.2038 0.2172
Preventive Medicine 0.1993 = 0.0084 0.1829 0.2158
Psychiatry 0.2028 0.0032 0.1965 0.2091
Psychologist 0.3252 0.0089 0.3078 0.3427
Pulmonary Disease 0.1005 0.0036 0.0935 0.1075
Radiation Oncology 0.0028 0.0042 -0.0054 0.0111
Registered Dietician 0.3305 0.0044 0.3218 0.3393
Rheumatology 0.1316 0.0043 0.1231 0.1401
Speech Language Pathologist 0.2274 0.0067 0.2142 0.2406
Sports Medicine 0.0293 0.0068 0.016 0.0426
Surgical Oncology -0.0059 0.0057 -0.0171 0.0054
Thoracic Surgery -0.0049 0.0043 -0.0133 0.0035
Urology 0.0144 0.0038 0.0069 0.0219
Vascular Surgery 0 0 0 0
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"1-50"
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"150-
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0.0016

0.0077

0.0087

0.0085

0.0074

0.0072

0.0082

0.0056

0.0046

0.0029

0.0032

0.0023

0.0021

0.0025

0.0005

0.0029

0.0012

0.0021

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

0.0015

0.0015

0.001>

0.0015

0.0016

0.0016

0.0016

0.0016

0.0017

0.0017

0.0017

0.0017

0.0017

Services

95% Confidence
Interval

Lower
Bound
-0.0011

0.005

0.006

0.0058

0.0045

0.0044

0.0034

0.0027

0.0016

-0.0002

0.0001

-0.0008

-0.001

-0.0007

-0.0028

-0.0004

-0.0022

-0.0013

-0.002

0.0043

0.0104

00114

0.0113

0.0102

0.0101

0.0091

0.0085

0.0076

00059

0.0082

0.0054

0.0053

0.0057

0.0037

00062

0.0045

0.0055

0.004%

0
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Services
"1000-
1050"
"1050-
1100"
"1100-
1150"
"1150-
1200"
"1200-
1250"
"1250-
Hm "
"1300-
1350"
"1350-
lm "
"1400-
14507
"1450-
1500"
"1500-
1550"
"1550-
lﬁ "
"1600-
1650"
"1650-
1700"
"1700-
1750"
"1750-
1500"
"1500-
1850"
"1850-
1000"
"1000-
1050"
"1950-
2000"

-0.0013

0.0034

0.0016

-0.0008

0.0019

0.0011

-0.0008

-0.0006

0.000%

0.0011

-0.0011

-0.0013

-0.0012

-0.0012

-0.0015

-0.0075

-0.0017

-0.0045

-0.0046

0.0018

0.0018

0.0019

0.0019

0.0019

0.0019

0.002

0.002

0.002

0.002

0.0021

0.0021

0.0021

0.0022

0.0022

0.0023

0.0023

0.0023

0.0023

0.0024

95% Confidence
Interval

-0.0048

-0.0002

-0.0021

-0.0045

-0.0037

-0.0019

-0.0027

-0.0047

-0.0046

-0.0031

-0.003

-0.0053

-0.005%

-0.0055

-0.0056

-0.0059

-0.012

-0.0062

-0.00%

-0.0093

0.0022

0.007

0.0052

0.0029

0.0037

0.0057

0.003

0.0032

0.0034

0.0045

0.0052

0.003

0.003

0.0031

0.0031

0.0029

-0.003

0.0027

0.0001



Greediness

95% Confidence Interval

*0-10" 0.1792 0.0021 0.1751 0.1834
*10-20" 0.1993 0.0012 0.197 0.2017
"20-30" 0.1829 0.001 0.181 0.1849
30-40" 0.1359 0.0009 0.1341 0.1377
*40-50" 0.1136 0.0008 0.1119 0.1152
'50-60" 0.0942 0.0008 0.0926 0.0957
60-70" 0.0695 0.0008 0.068 0.0709
*70-80" 0.046 0.0007 0.0446 0.0475
80-90" 0.0219 0.0008 0.0204 0.0234
*90-100"" 0 0 0 0
*100-110" -0.0223 0.0008 -0.0239 0.0207
*110-120" -0.0406 0.0009 -0.0423 10.0389
*120-130" -0.0577 0.0009 -0.0596 -0.0559
*130-140" -0.0714 0.001 -0.0734 -0.0694
*140-150" -0.0811 0.0011 -0.0832 0.0789
*150-160" 0.088 0.0012 -0.0904 10,0856
*160-170" -0.096 0.0014 -0.0986 10.0933
*170-180" -0.0969 0.0015 -0.0998 10,0939
*180-190" -0.1053 0.0016 -0.1085 0.1021
*190-200" -0.1072 0.0018 -0.1107 0.1037
*200-210" 0.1128 0.0019 -0.1166 -0.109
+210-220" 0.1141 0.0021 0.1183 0.11
*220-230" 0.1191 0.0023 -0.1236 0.1146
230-240" 0.1192 0.0025 0.1241 0.1142
240-250" -0.1234 0.0026 -0.1286 0.1182
250-260" -0.1329 0.0029 -0.1386 0.1272
*260-270" 0.1312 0.0031 -0.1374 0.1251
+270-280" -0.1335 0.0032 -0.1398 0.1271
280-290" -0.1356 0.0036 -0.1425 0.1286
290-300" 0.143 0.0039 -0.1506 -0.1354
300+ 0.1715 0.0012 -0.1739 0.1691
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Appendix D: Greediness Ranking Levels

They ask for  Our SAS  Theyget__ Ranking of
____ofthe fitted RR + of the the best
industry Intercept industry percentages
average average to ask for
(greed) submitted
charge
5% 0.386 1.93% 235% 20.59%
15% 0.4061 6.09% 245% 20.43%
25% 0.3897 9.74% 285% 20.29%
35% 0.3427 11.99% 275% 20.16%
45% 0.3204 14.42% 265% 20.03%
55% 0.301 16.56% 215% 19.93%
65% 0.2763 17.96% 225% 19.73%
75% 0.2528 18.96% 95% 19.65%
85% 0.2287 19.44% 85% 19.44%
95% 0.2068 19.65% 195% 19.42%
105% 0.1845 19.37% 105% 19.37%
115% 0.1662 19.11% 205% 19.27%
125% 0.1491 18.64% 175% 19.23%
135% 0.1354 18.28% 115% 19.11%
145% 0.1257 18.23% 75% 18.96%
155% 0.1188 18.41% 255% 18.84%
165% 0.1108 18.28% 295% 18.82%
175% 0.1099 19.23% 185% 18.78%
185% 0.1015 18.78% 125% 18.64%
195% 0.0996 19.42% 155% 18.41%
205% 0.094 19.27% 165% 18.28%
215% 0.0927 19.93% 135% 18.28%
225% 0.0877 19.73% 145% 18.23%
235% 0.0876 20.59% 65% 17.96%
245% 0.0834 20.43% 55% 16.56%
255% 0.0739 18.84% 45% 14.42%
265% 0.0756 20.03% 35% 11.99%
275% 0.0733 20.16% 25% 9.74%
285% 0.0712 20.29% 15% 6.09%
295% 0.0638 18.82% 5% 1.93%
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