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Abstract 

Generalized linear models are starting to gain popularity among actuaries in most 

countries for target marketing analysis. In order to better understand how these models work, a 

project was commissioned regarding medical providers and their reimbursement ratios. By using 

one-way analysis, several factors were selected to model the response variable and the factors' 

significance was determined by using an algorithm in the statistical software, SAS. Several 

general linear models were set up and tested to fit the reimbursement ratio. By calculating and 

analyzing each correlation, we were able to find a model that matched the reimbursement ratio 

with an 83 percent correlation.   
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Executive Summary  

Generalized linear models (GLMs) are an extension of the linear modeling process that 

allows models to be fit to data. They have been in use for over thirty years but it is only recently 

that the level of interest and the rates of adoption have increased substantially. Our team looked 

into the GLM procedure for our project in order to gain a working knowledge of this method. 

The goal of this project was to create a generalized linear model to determine what 

factors play a more significant role in fitting the Reimbursement Ratio (RR) of Medicare 

physicians. To meet this goal, we outlined the following objectives:  

 Understanding the GLM procedure 

 Finding appropriate data, cleaning, and analyzing the data 

 Graphically examining factors for the model  

 Utilizing the statistical software SAS to analyze and model the data using the 

significant factors  

By following these objectives, we were able to explore the GLM procedure and indicate which 

factors were most useful in determining the fitted RR. 

To pursue our objectives, we developed a methodology that consisted of four steps. The 

first step was cleaning and selecting the data that we would use. For instance, we limited our 

study to individual providers in the continental USA. These limitations were made so that no 

single factors such as being an organization or shipping costs due to being outside of the 

continental USA would be most significant compared to the other estimators of the RR. The 

second step was summarizing and analyzing all of our factors. Since we had several factors to 
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consider, we needed to select only the most significant ones so that our GLM was not over fitted 

to our data and could be used to estimate the RR in general. By performing one-way analysis to 

each factor, we were able to see the distributions of each factor, making it easier to select those 

that were statistically significant. Step three was selecting factors. After we compared these 

factors, we were able to evaluate which ones would be significant in calculating a fitted RR. The 

final step was the GLM analysis. In this step we took the remaining data and used SAS to 

develop a fitted model for the RR. 

We utilized three different GLM procedures in SAS in order to find the best combination 

of distributions and link functions to build our model. Each test was conducted with the first half 

of the data, which calculated the model. From each model we were able to compute the fitted RR 

and compare it to the actual RR in order to find their correlations. We then chose the model that 

gave us the best correlation and used it to analyze the holdout data. Finally, we estimated the RR 

for the second half of the data using our model and calculated the correlation between this fitted 

RR and the actual RR.  
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Chapter 1: Introduction 

Predictive modeling is an analytical method used to create statistical models that predict 

future behavior. A company can use predictive modeling to identify insurance risks, which can 

lead to improved underwriting and pricing. Traditional pricing methods in the United States are 

not statistically sophisticated. Claims for many lines of business are often analyzed using simple 

one-way and two-way analyses. Iterative methods known as minimum bias procedures, 

developed by actuaries in the 1960s, provide a significant improvement but are still only part 

way toward a full statistical framework (Anderson et al., 2007). A type of predictive modeling 

analysis method that has received widespread attention is the Generalized Linear Model (GLM). 

The statistical framework of GLMs allows explicit assumptions to be made about the 

nature of the data and its relationship with predictive variables. The method of creating GLMs is 

more technically efficient than other standardized methods. Additionally, GLMs provide a 

statistical diagnosis which helps in selecting only significant variables and in validating model 

assumptions.  

In order to learn more about GLMs and how they function, we conducted research and 

tested different distributions with a large amount of data, which we obtained from data.cms.gov, 

titled “Medicare Physician and Other Supplier National Provider Identifier (NPI) Aggregate 

Report." We analyzed this data and performed one-way analysis to determine which factors had 

the most impact on our response variable, which we called the Reimbursement Ratio (RR). This 

ratio accounted for the total amount paid to a Medicare provider divided by their total submitted 

charge. Once the most significant factors were selected, we split our data in half and used the 

first half to create a model that would estimate the RR. We used procedure GENMOD in SAS to 
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develop this model. Finally, we used our model to estimate the RR values for the second half of 

the data. 
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Chapter 2: Background  

2.1.     Linear Models  

In order to fully understand the structure of GLMs, it is important to understand the 

classic linear model. The main purpose of the linear model is to express the relationship between 

an observed response variable (Y) and a number of predictor variables. GLMs observe this 

relationship. They are written in the form:  

Y = µ + ε   

It is assumed that µ is the expected value of Y, and ε is the error term that is normally distributed 

with mean zero and variance σ2.  

Let us consider a simplified example of a private passenger auto classification system 

that has only two categorical rating variables: territory (urban or rural) and gender (male or 

female) (Anderson et al., 2007). The observed average claim severities are as follows:  

 Urban  Rural  

Male  800  500  

Female  400  200  

Table 1: Example 1 Average Claim Severity 

In this example, the response variable, Y, is the average claim severity. The two factors, 

territory and gender, result in four different observed values: male (X1), female (X2), urban (X3), 

and rural (X4). These variables can either have a value of 0 or 1. In this case, the model would 

take the form:   

Y= βmale X1  + βfemale X2 + βurban X3 + βrural X4 + ε  
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However, this model has as many parameters as it does combinations of rating factor 

levels being considered, and there is a linear dependency between the four covariates X1, X2, X3, 

and X4. This means that the model is not uniquely defined - i.e. if any arbitrary value k is added 

to both βmale and βfemale, and the same value k is subtracted from βurban and βrural, and the resulting 

model is equivalent. To make the model uniquely defined, we consider three variables instead of 

the four:  

Y= βmale X1  + βfemale X2 + βurban X3 + ε 

This model assumes an average response for the base case of women in rural areas (βfemale) with 

additional additive effects for being male (βmale - βfemale) and for being in an urban area (βurban). 

These observations can be expressed as the system of equations:  

Y1 = 800 = βmale + 0 + βurban + ε1 

Y2 = 500 = βmale + 0 + 0 + ε2  

Y3 = 400 = 0 + βfemale + βurban + ε3  

Y4 = 200 = 0 + βfemale + 0 + ε4  

Next, we write out the sum of squared errors (SSE):  

SSE = ε1
2

 + ε2
2

 + ε3
2
 + ε4

2
  

= (800 - βmale - βurban)
2 + (500 - βmale)2 + (400 - βfemale - βurban)2 + (200 - βfemale)2  
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We minimize these equations by taking the derivatives and setting them to zero:  

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕βmale

 = 0 ⇒ βmale + βurban + βmale = 800 + 500 = 1300  

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕βfemale

 = 0 ⇒ βfemale + βurban + βfemale = 400 + 200 = 600  

            𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕βurban

 = 0 ⇒ βmale + βurban + βfemale + βurban = 800 + 400 = 1200  

Solving these equations we get:  

βmale = 525  

βfemale = 175  

βurban = 250  

Using our equations we get the following predicted average claim severities: 

Y1 = βmale + 0 + βurban = 525 + 0 + 250 =775   

Y2 = βmale + 0 + 0 = 525 + 0 + 0 = 525 

Y3 = 0 + βfemale + βurban = 0 + 175 + 250 = 425  

Y4 = 0 + βfemale + 0 = 0 + 175 + 0 = 175 
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Finally, we compare the fitted and the observed average claim severities in the following tables: 

Fitted Urban  Rural  
 

Actual Urban   Rural  

Male    775  525 
 

Male    800 500 

Female  425 175 
 

Female  400 200 

Table 2: Fitted vs Actual Average Claim Severities 

We can see that the four fitted values are close to the actual. The error in all cases is 25.  

2.1.1.   Linear Model Assumptions  

The linear model assumes that all observations are independent and normally distributed. 

The linear model can be written in the following format:  

   Y =    + ε,   

  = β0 +β1 X1  + β2 X2 + β3 X3 + ....+ βn Xn 

Some other assumptions stated in A Practitioner’s Guide to Generalized Linear Models are as 

follows:  

• Random Component: Each component of Y is independent and normally distributed. The 

mean, µi, of each component is allowed to differ but the variance, σ2, is the same.  

• Systematic Component:  Refers to the linear combination of explanatory variables that 

creates our predictor    = β0 +β1 X1 + β2 X2 + β3 X3 + ....+ βn Xn. 

• Link Function: The relationship between the random and systematic components are defined 

by the link function. In a linear model, the link function is equal to the identity function so 

that:  

Y =     + ε   
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2.1.2.   Linear Model Limitations  
 

Some limitations of the linear models stated in A Practitioner’s Guide to Generalized Linear 

Models are as follows:  

• It is difficult to insure that the response variables are normally distributed and that the 

variance is constant. Linear regression models transform data to fit the assumptions even 

when there is no reason for the transformation to exist.  

• The values of the response variables may be restricted to be positive but the assumption of 

normality violates this restriction.  

• If the response variable is strictly non-negative, then the variance of Y tends to zero as the 

mean of Y tends to zero. Therefore, the variance is a function of the mean. 

• The additivity effects in the systematic component and the link function are not realistic 

because most of the time these predictor variables are entered multiplicatively in 

applications.   

2.2.     The Minimum Bias Procedure 

Minimum bias procedures are iteratively standard univariate approaches. Each procedure 

involves the selection of a rating structure. These can be additive, multiplicative, or a 

combination of both. Additionally, there is a selection of a bias function which includes a 

balance principle, least squares, and maximum likelihood bias functions. The bias function is a 

way of comparing the procedure's observed loss statistics to the indicated loss statistics and 

measuring the error. Both sides of the equation must be weighted by the exposures to adjust for 

uneven mix of business.   
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For example, the balance principle applied to a multiplicative personal auto rating 

structure presented in the Casualty Actuarial Society's Basic Ratemaking is given below. This 

examples assumes two rating variables: gender and territory. Gender includes male (g1) and 

female (g2) and territory includes urban (t1) and rural (t2). We express female and rural as the 

base case (hence g2 = 1 and t2 = 1). The lost costs are given below:  

  Urban  Rural  Total  

Male  650  300  528  

Female  350  240  244  

Total  497  267  400  

Table 3: Example 2 Loss Costs 

The exposure distribution is as follows:  

  Urban  Rural  Total  

Male  170  90  260  

Female  105  110  215  

Total  275  200  475  

Table 4: Example 2 Exposure Distribution 

 

 

The balance principle requires that the exposure weighted observed loss costs equal the indicated 

exposure weighted loss cost of each rating variable. The four equations below show the observed 

weighted loss costs on the left and the indicated weighted loss costs on the right. The base case is 

assumed to be $100.  
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Males: 170 x $650 + 90 x $300 = $100 x 170 x g1 x t1 + $100 x 90 x g1 x t2  

Females: 105 x $250 + 110 x $240 = $100 x 105 x g2 x t1 + $100 x 110 x g2 x t2  

Urban: 170 x $650 + 105 x $250 = $100 x 170 x g1 x t1 + $100 x 105 x g2 x t1  

Rural: 90 x $300 + 110 x $240 = $100 x 90 x g1 x t2 + $100 x 110 x g2 x t2  

Next, we choose a seed for one of the rating variables. So the urban relativity is the total loss 

costs divided by the total rural loss costs: 

t1 = 1.86 = $497/$266 

t2 = 1.00 

We substitute these seed values into the first two equations above and solve for the values of g1 

and g2:  

170 x $650 + 90 x $300 = ($100 x 170 x g1 x 1.86) + ($100 x 90 x g1 x 1.00)  

$137,500 = ($31,620 x g1) + ($9,000 x g1)  

$137,500 = $40,620 x g1  

g1 = 3.39  

105 x $250 + 110 x $240 = ($100 x 105 x g2 x 1.86) + ($100 x 105 x g2 x 1.00)  

$52,650 = ($19,530 x g2) + ($11,000 x g2)  

$52,650 = $30,530 x g2  

g2 = 1.72  
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We now use these seed values for g1 and g2 and set up equations to solve for the new values of t1 

and t2.  

170 x $650 + 105 x $250 = ($100 x 170 x 3.39 x t1) + ($100 x 105 x 1.72 x t1)  

$136,750 = ($57,630 x t1) + (18,060 x t1)  

$136,750 = $75,690 x t1  

t1 = 1.81  

90 x $300 + 110 x $240 = ($100 x 90 x 3.39 x t2) + ($100 x 110 x 1.72 x t2)  

$53,400 = ($30,510 x t2) + ($18,920 x t2)  

$53,400 = $49,430 x t2)  

t2 = 1.08  

This procedure is repeated until there is no significant change in any of the values of g1, g2, t1, 

and t2. At this point, it is common to normalize the base case (g2) relativities to 1.00.   

g1 = 3.39/1.72 = 1.97  

g2 =1.72/1.72 = 1.00  

t1 = 1.81/1.08 = 1.68  

t2 = 1.08/1.08 = 1.00  
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To conclude, the base loss cost also needs to be adjusted to reflect the normalization:  

Base loss cost = $100 x 1.72 x 1.08 = $185.76   

Our fitted versus actual loss costs are as follows: 

Fitted Urban  Rural  Total  Actual Urban  Rural  Total 

Male  615 366 529 Male  650  300  528  

Female  312 186 248 Female  350  240  244  

Total 499 267 402 Total 497  267  400  
Table 5: Fitted vs Actual Loss Costs 

It is important to note that the example above only considers one of the minimum bias methods 

(the multiplicative structure). Additionally, it only considers two rating variables with two levels 

each. Incorporating several rating variables requires some programming. Many minimum bias 

procedures are a subset of GLMs. GLMs consider all rating variables simultaneously and 

automatically adjust for exposure correlations between rating variables. Multivariate methods, 

such as GLMs, also remove unsystematic effects in the data as much as possible. The minimum 

bias method fails to do so.  

2.3.     Generalized Linear Models 

GLMs comprise a wide range of models that include linear models as a case. However, 

the requirement for all components of Y to be normally distributed and have a common variance 

is removed. Another difference between GLMs and linear models is that the effect of the 

variables on Y is not assumed to be additive. 
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2.3.1.   Components of Generalized Linear Models 

 The components of a general linear model as stated in A Practitioner’s Guide to 

Generalized Linear Models are: 

• Random component: Accounts for the probability distribution of Y (the response 

variable.) As previously stated, each of its components is independent and from one of 

the exponential family of distributions. 

• Systematic component: Refers to the linear combination of explanatory variables that 

creates our predictor η = Xβ (e.g., β0 + β1x1 + β2x2.) 

• Link function: Specifies the relationship (link) between the previous two components. 

The link function must be differentiable. It shows how the expected value of response 

variables relates to our predictor. E.g. η= g (E(Yi)), g(x) is the link function. 

The exponential family of distributions includes several common distributions such as Normal, 

Poisson, Exponential, Gamma, Binomial and Inverse Gaussian. These are completely specified 

in terms of its mean and variance, while its variance is in turn a function of its mean.  

The following table shows some of the models comprised by GLMs, according to Agresti (Ch. 4, 

2013): 

Model Random Link Systematic 
Linear Regression Normal Identity Continuous 
ANOVA Normal Identity Categorical 
ANCOVA Normal Identity Mixed 
Logistic Regression Binomial Logit Mixed 
Loglinear Poisson Log Categorical 
Poisson Regression Poisson Log Mixed 
Multinomial response Multinomial Generalized Logit Mixed 

Table 6: GLM Models 
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2.3.2.   Further Assumptions about Generalized Linear Models 

• Errors need to be independent but do not need to be normally distributed. 

• GLMs rely on sufficiently large samples (detailed further on.) 

• GLMS estimate the parameters using maximum likelihood estimators instead of ordinary 

least squares. 

2.3.3.   Typical GLMs 

Different GLM models are used in accordance with the assumptions we need to make 

about distribution of data. For example, typical model for insurance claim frequencies is Poisson 

because of its time memoryless character (i.e. measuring the frequencies per month and 

frequencies per year will yield the same results). On the other hand, to model insurance 

severities, Multiplicative Gamma distribution is typically used due to it being invariant to 

measures of currency. This distribution makes it possible to get the same result whether the 

measurements are made in cents or in dollars. 

In general, typical model forms are as in the table below (Anderson et al., 2007): 

Table 7: Typical Model Forms 

 

Y Claim 
frequencies 

Claim numbers 
or counts 

Average claim 
amounts 

Probability (e.g. 
of renewing) 

Link function g(x) ln(x) ln(x) ln(x) ln(x/(1-x)) 

Error Poisson Poisson Gamma Binomial 

Scale parameter φ 1 1 Estimated 1 

Variance function V(x) x x x2 x(1-x) 

Prior weights ω Exposure 1 # claims 1 

Offset ξ 0 ln(exposure) 0 0 
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2.4.     Maximum Likelihood Estimator 

After deciding the distribution of the response variable and the link function, we used the 

Maximum Likelihood function to determine the values of the covariates. To compute these 

values, we need to maximize the likelihood function which is the same as maximizing its 

logarithm. The core of this method is attempting to find parameters which will result in fitted 

values as close as possible to the original ones.  

The likelihood function is defined as the product of probabilities of observing each value of the 

y-variate. Typically, we consider the log of the likelihood function since being a summation 

across observations rather than a product makes the calculations more manageable. 

In the tables below the observed average claim severity for the following cases is presented: 

MALE LUXURY REGULAR 

OLD CAR    1400 1080 

NEW CAR 1550 1230 
 

Table 8: Example 3 Average Claim Severity Male 

 

 

 

 

Table 9: Example 3 Average Claim Severity Female 

The first step to applying the GLM procedure to analyze the following case is to identify 

the factors that account for the variations in observed average claim in the given cases. There are 

three such factors, namely: gender, classification of the car, age of the car. Each of these factors 

FEMALE LUXURY REGULAR 

OLD CAR    1420 1100 

NEW CAR 1570 1250 
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has two levels: male (X1) and female (X2) for gender, luxury (X3) or regular (X4) for the 

classification of the car and old car (X5) and new car (X6) for the age of the car. These indicator 

variables take the value 1 or 0. For example, the male covariate, (X1), is equal to 1 if the gender 

is male, and 0 otherwise. 

The purpose of the linear model is to express the observed item Y (average claim 

severity) as a linear combination of a specific selection of the six variables, plus a normal 

random variable ε with mean zero and variance σ2, often written ε ~ N (0, σ2). One such model 

might be:  

𝑌𝑌 =  𝛽𝛽1𝑋𝑋1 +  𝛽𝛽2𝑋𝑋2 +  𝛽𝛽3𝑋𝑋3 + 𝛽𝛽4𝑋𝑋4 +  𝛽𝛽5𝑋𝑋5 +  𝛽𝛽6𝑋𝑋6 + 𝜀𝜀 

However, this model has as many parameters as it does combinations of rating factor levels 

being considered, and there is a linear dependency between the six covariates. This means that 

the model in the above form is not uniquely defined. To make this model uniquely defined we 

consider selecting a base case, and reducing the number of variables to three instead of six. We 

will do this by assigning variables only to one level for each of the given factors. We chose the 

average claim severity for males who have a regular, old car as our base case (1080 severities). 

This leads to our updated model: 

 

Our new parameters are:  β2 → effect of being a female, β3 → effect of having a luxury car and 

β6→ effect of having a new car.   

The next step of applying the GLM procedure is to specify the design matrix and the vector of 

parameters β.  
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Since the parameters are β2, β3, and β6 the vector of parameters is: 

   

Based on this the design matrix will be: 

  

And the response matrix will be: 

  

The classical linear model case assumes a normal error structure and an identity link function. 

The predicted values in the example take the form:  
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Since error will have Normal distribution, then the response variable “Y” will have Normal 

distribution as well. Therefore, we will have to consider probability density function of Normal 

distribution as below: 

 

To get the best estimation, we use the strategy of maximizing the likelihood function. Likelihood 

function is described with the following expression: 

 

Since maximizing likelihood function is the same as maximizing log-likelihood function, we use 

the log-likelihood function as below: 

 

After applying identity link function: 
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Now, by setting to 0 the partial derivatives of log-likelihood function we get the following: 

 

 

 

Solving the created system of equations, we get: 

  

Using these values we get the following tables of fitted results: 

Fitted    Actual   

MALE LUXURY REGULAR 
 

MALE LUXURY REGULAR 

OLD CAR    1400  1080 
 

OLD CAR    1400 1080 
NEW CAR 1550 1230  NEW CAR 1550 1230 

Table 10: Example 3 Fitted vs Actual Results Male 

 

Fitted    Actual   

FEMALE LUXURY REGULAR 
 

FEMALE LUXURY REGULAR 

OLD CAR    1420 1100 
 

OLD CAR    1420 1100 

NEW CAR 1570 1250 
 

NEW CAR 1570 1250 

Table 11: Example 3 Fitted vs Actual Results Female 
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We see that these tables are exactly the same as the original ones. This happens because 

the data we have has a strong linear correlation that can be noticed even with a careful 

observation. For example, every respective entry in the table of females is exactly 20 more that 

the entry in the table of males (i.e. 1420 = 1400 + 20; 1100= 1080 + 20 etc.). The same happens 

with other variables as well. Since the linear correlation is perfect, then by using Normal 

distribution to model the errors and the identity link function in the GLM procedure, we replicate 

the simple linear model. And, since the linear correlation of covariates is perfect, this model will 

conclude in perfectly predicting the original results.  

Now, let us try doing the GLM procedure using Poisson distribution for errors and a different 

link function. In this case, the analysis of covariates is the same as in the first part of the 

example. We only need to describe the second part of the procedure where logarithm link 

function and Poisson distribution for errors are involved.  

The predicted values will take the form:  

 

Since error will have Poisson distribution, then the response variable “Y” will have Poisson 

distribution as well. Therefore, we will have to consider probability density function of Poisson 

distribution as below: 
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To get the best estimation, we use the strategy of maximizing the likelihood function. Likelihood 

function is described with the following expression: 

 

Since maximizing likelihood function is the same as maximizing log-likelihood function, we use 

the log-likelihood function as below: 

 

After applying logarithm link function: 

 

Now, by setting to 0 the partial derivatives of log-likelihood function we get the following: 

 

 

 

Solving the created system of equations, we get: 
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Using these values we get the following tables of fitted results: 

Fitted    Actual   

MALE LUXURY REGULAR 
 

MALE LUXURY REGULAR 

OLD CAR    1211.63 1080 
 

OLD CAR    1400 1080 

NEW CAR 1558.19 1083.63 
 

NEW CAR 1550 1230 

Table 12: Example 3 Poisson Fitted vs Actual Results Male 

 

Fitted    Actual   

FEMALE LUXURY REGULAR 
 

FEMALE LUXURY REGULAR 

OLD CAR    1299.20 1081.67 
 

OLD CAR    1400 1080 

NEW CAR 1876.32 1086.05 
 

NEW CAR 1550 1230 

Table 13: Example 3 Poisson Fitted vs Actual Results Female 

We notice that even though the fitted values are relatively close to the original values, the 

fit is far from perfect. This happens because the data is perfectly linear and every other fit except 

identity link function and Normal distribution of response variable will give less accurate results. 

 

  



26 
 

Chapter 3: Methodology 

3.1.     Introduction 

The goal of this project was to work with physician Medicare data to identify key factors 

that would affect the ratio of the actual payment that providers received to the amount that they 

charged, which we will define as the Reimbursement Ratio (RR). For instance, if a provider has 

submitted a charge of $100 and Medicare paid them $75, then their RR would be $75/$100 = 

75%. In general, RR can be calculated by the following formula:  

Reimbursement Ratio (RR) = 
Total Amount Paid

Total Submitted Charge
 

 We wanted to identify variables that would have a strong effect on this ratio. To 

accomplish the overarching project goal, we executed the following set of objectives. The first 

one was to gather, review, and clean up the physician Medicare data. The second objective was 

to analyze the relationship between the RR and the factors that we selected after the data 

cleaning process. These factors were: state of the provider, provider type, number of services 

performed by the provider, and the "greediness factor." We define this factor as the amount (per 

service) charged by the provider compared to the average of their specialty. The greediness 

factor for a given provider can be calculated using the following formula: 

Greediness factor = 
Submitted Charge of the Provider (per service)

Average Submitted Charge per service of their specialty  
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Finally, our third objective was to utilize SAS to analyze variables that had more 

influence on the RR. The overall methodology for this project is represented by the flow chart in 

Figure 1. 

 

Figure 1: Methodology Flow Chart 

3.2.     Data Set Organization 

3.2.1.   Removing Factors 

Our first step was to obtain Medicare information on providers through the government 

website, data.cms.gov. We were able to find a spreadsheet titled, "Medicare Physicians and 

Other Supplier National Provider Identifier Aggregate Report Calendar Year 2014", which 

consisted of information on utilization and payment data of doctors and medical organizations 

throughout the year of 2014. We had access to 986,677 providers and 70 categories of 

information, which included personal data such as their name, credentials, state and address, as 

well as more relevant data such as "total submitted charge amount" and "total Medicare 

payment". However, we limited our analysis to the payment data of individual medical providers 

by removing Alaska, Hawaii, and other territories outside of the continental USA to eliminate 

changes in price due to a possible rise in shipping costs. Whereas, since individuals and 

http://data.cms.gov/
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organizations greatly differ in the number of services that they provide, we chose to work only 

with individuals (they represented 94% of the providers). Additionally, we removed possible 

outliers such as providers that reported more than 2000 services (as they were above 300% of the 

mean) and providers that did not report their specialty or whose specialty had very little 

representation, such as providers who worked in the sleep medicine industry. This procedure 

would allow our GLM to fit the RR more efficiently.  Figure 2 represents our cleaning process 

along with the number of providers that remained after each step. 

 

Figure 2: Data cleaning process 

3.2.2.   Summarizing Data 

Next, the data was summarized graphically, allowing us to see the trends in the data and 

the relationship between different variables. Graphs helped the team to understand the data 

provided and revealed trends that needed to be further investigated. Additionally, they allowed 

us to focus on specific factors in our data and helped us eliminate factors that did not have any 

important effects on the RR. An example of a graph that would help describe the data is the 

distribution of the RR based on the number of services performed by the physicians as seen in 

Figure 3 (bigger version in Appendix A) 
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Figure 3: Distribution of Reimbursement Ratio and Number of Services 

The graph above shows the RR as a percent based on the number of services the 

providers performed. The number of services is broken up into intervals of 100 up till 2000 

services. We can see in the graph that in most categories, the common ratio range encountered is 

30%-40% (yellow bar), however, 20%-30% (gray bar) is predominant in the some of the ranges. 

This graph was consistent with the average of the ratios which is about 27%. What this graph 

tells us is that generally, physicians who perform more services have a larger RR. In other words, 

they get more of what they ask for. Once this data set organization was complete, the team 

worked on analyzing and selecting our independent variables. 

3.3.     Selecting Variables 

The next step was to determine which factors were meaningful. We performed one-way 

analysis on all the different categories of data by comparing them to the RR to check for a 

correlation. We then selected the four factors that had the greatest correlation to the RR, which 

were: state of the provider, provider type, number of services and the "greediness factor".  

Identifying these variables was an important part of the generalized linear modeling result 

because the results of the model are interpreted based on the impact of these predictors on our 
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response variable. Additionally, we analyzed these factors graphically for better visualization. 

Figure 4 below shows the RR depending on the state of the provider (bigger version in Appendix 

A).   

 

 

 

 

 

Figure 4: Payment ratio depending on State 

We can see in the graph above that most states in the yellow bars (30%-40%) are highest 

followed by the gray bars (20%-30%). However there are a few states for which the blue and 

orange bars are highest. This tells us that the state the physician is from is a relevant factor for 

our analysis.  
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We illustrate an example of a distribution we found to not be relevant in Figure 5 below.  

 

Figure 5: Distribution of Payment Ratio for Females and Males 

The graph above shows that both male and female providers share a similar distribution, 

therefore, we did not take this factor into consideration for our GLM analysis. Several other 

factors showed similar distributions as in this graph so we did not consider those factors either. 

After selecting our input variables we moved onto the modeling process. 

3.4.     Generalized Linear Model Analysis 

3.4.1    Setting up the Data 

First, we split the data in half in order to use one half for calibration and the other half for 

testing. We separated the data using the "rand" function in Excel to assign each row of data a 

random number. We then sorted the data in numerical order based on these random values and 

then split the data in half. We used the first half of the data to build our GLM and the second half 

to test that model. Since the number of services and the greediness factor had over a thousand 

different values, we grouped them so that we had about the same amount of entries as we did for 

state and provider types. To do this, we grouped the services into intervals of 50, starting at 1 and 

ending at 2000, and the greediness in intervals of 10 percent, starting from 0 to 300 percent. 
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However, since several providers had a greediness factor much higher than 300 percent, we 

grouped them all in a "+300%" interval so that we did not have groups with a single provider. 

3.4.2    Running the data in SAS 

The next step was to run the first half of the data using the GENMOD procedure in SAS 

(Appendix B). This procedure allowed us to acquire estimates for each level of our four factors. 

We ran the GENMOD procedure with three different combinations of distributions and link 

functions (see Table 4 in Chapter 2 for the full list). The distributions with their respective link 

functions are listed below: 

1. Normal distribution & Identity link function 

2. Poisson distribution &  Logarithmic link function 

3. Gamma distribution & Logarithmic link function 

3.4.3    Calculating Results 

We then compared the fitted values of RR produced by each of these combinations to the 

actual RR of each provider. The Normal distribution with the identity link function, which is the 

linear model, yielded the best result in terms of correlation between the actual and fitted values. 

Therefore we used this model to estimate the fitted values of the remaining half of the data. We 

then calculated the correlation between the model's estimates for the second half of the data and 

their respective RR's. To conclude our project, we compared the correlations for each half of the 

data and calculated several statistical measurements such as the R-squared, the root mean 

squared error (RMSE), and the mean absolute error (MAE).  
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Chapter 4: Results 

After conducting the GLM procedure on our four variables, we were able to analyze our 

results. This section presents the results of our analysis of the three distributions, the fitted 

model, the estimates for the four significant variables, and the comparison of the fitted model to 

the estimates.  

4.1.     Fitted Model 

The fitted values of the aforementioned combinations of distributions and link functions 

were compared to the actual RRs and yielded the following statistical measurements: 

Distributions/Link 
functions 

Correlation R-squared RMSE MAE 

Normal/Identity 0.8289 0.6871 0.0947 0.0700 

Poisson/Logarithmic 0.8276 0.6849 0.0950 0.0672 

Gamma/Logarithmic 0.8165 0.6667 0.0986 0.0679 

Table 14: Statistical measurements of the distributions/link functions 

As shown in Table 14 above, the most optimal results were obtained when using the Normal 

distribution with the identity link function. The correlation and R-squared for this combination 

are greater, while the root mean squared error (RMSE) is smaller than the rest. Therefore, we 

selected the results provided by this distribution and link function to create our fitted model. Our 

model can be described by the following equation: 

 = β0 + βSTi  + βPRj + βSRk +βGRh  

where i = 0, 1, …, 49, j = 0, 1, …, 73, k = 0, 1, …, 40, and h = 0, 1, …, 31. 
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As seen in the formula, β0 is the y-intercept in our model, βSTi is the estimate of the effect of the 

i-th level of the state, βPRj is the estimate of the effect of the j-th level of the provider type, βSRk is 

the estimate of the effect of the k-th level of the number of services, and βGRh is the estimate of 

the effect of the h-th level of the "greediness". Table 15 also shows some of the estimates for 

each factor. 

Coefficients i, j, k, h = 1 i, j, k, h = 2 ... i, j, k, h = n-1 i, j, k, h = n  

Intercept (β0) β0 = 0.2068 β0 = 0.2068 ... β0 = 0.2068 β0 = 0.2068  
State (βSTi) βST1 = -0.0023 βST2 = -0.022  … βST(n-1) = -0.0207 βSTn = 0 n = 49 

Provider (βPRj)  βPR1 = 0.045 βPR2 = 0.1478 … βPR(n-1) = 0.0144 βPRn = 0 n = 73 

Services (βSRk) βSR1 = 0.0016 βSR2 = 0.0077 … βSR(n-1) =-0.0045 βSRn = -0.0046 n = 40 

Greediness (βGRh) βGR1 = 0.1792 βGR2 = 0.1993 … βGR(n-1) = -0.143 βGRn = -0.1715 n = 31 

Table 15: Examples of Estimate for each Factor 

Each subscripted variable displayed in the table refers to the estimate for the specific level of 

each factor. The whole list of these estimates is shown in Appendix C. Note that each factor has 

a different number of levels, indicated in the last column of the table.   

 

 



35 
 

4.2.     Estimate Analysis 

By analyzing each factor and its estimates, we were able to understand the weight that 

each level has on the resulting RR. The maximum and minimum for each of the four factors are 

listed below: 

 
State Greediness Provider Type Number of 

Services 
Maximum 

New Jersey 
(0.0432) 

10%-20% 
(0.1993) 

Chiropractor  

(0.3467) 

100-150 
(0.0087) 

Minimum 
Wisconsin (-
0.0467) 

+300% (-
0.1715) 

Interventional 
Radiology (-0.1065) 

1800-1850 (-
0.0075) 

Table 16: Maximum and Minimum for Estimate of Significant Variables 

The middle row of the table represents the level of each factor that has the greatest positive 

impact on the RR of a physician. The bottom row represents the levels with the greatest negative 

impact. For example, our model estimates that living in New Jersey will add 0.0432 to a 

physician's RR, while working on Interventional Radiology would subtract 0.1065 from such 

RR. 

It becomes clear then that the best possible scenario (upper bound) for physicians that 

wish to maximize their RR is working in New Jersey, as Chiropractors, asking for 10 to 20 

percent of the average of their industry, and performing from 100 to 150 services per year. On 

the other hand, the lower bound for a physician's RR would be achieved by working in 

Wisconsin, as an Interventional Radiologist, asking for more than 300 percent of the industry 

average (greediness factor), and performing from 1800 to 1850 services per year.    
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As an important note, we must clarify that our model indicates the effect of factors and 

levels on the RR, not on the overall income of the physicians. It is crucial to consider this in 

order to correctly understand the impact of the greediness factor. For instance, even though our 

model considers 10 to 20 percent as the ideal greediness level for doctors, it is clear that asking 

for about 15% of the industry average is most likely not the strategy to follow when it comes to 

generating greater earning. Our model analyzes the RR of a physician, and does not help 

physicians achieve the greatest possible income. Information on the greediness level that would 

produce the most substantial payment will be provided later. 

4.3.     Testing the Model 

To test the validity of our model, we assigned the estimated value for each level of each 

factor to the second half of our data, and then compared the fitted RRs to the actual ones. Our 

results were satisfactory and are displayed below: 

Correlation R-squared RMSE MAE 

0.8291 0.6874 0.0946 0.0699 

Table 17: Statistical measurements of the fit of our model to the second part of the data 

As shown in Table 17 above, the statistical measurements between the fitted and actual RRs 

were virtually identical (even slightly better) than those obtained by applying our GLM to the 

first half of the data. This shows that our model is not over fit to our dataset and efficiently 

estimates the RR based on our four factors. We were surprised to see that the correlation was 

roughly 83%, since we expected it to be much lower because we did not include provider 

qualifications. However, we realized that it is not the best correlation because the R-squared is 
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only 69%. Therefore, the model explains only 69% of the variability of the RR, leaving more 

room for improvement. 

4.4.     Real World Applications 

As mentioned previously, our model is concerned with estimating the RR of providers 

and not their overall pay. However, the greediness factor can help providers to come up with an 

optimal strategy to maximize earnings.  

The table in Appendix D: Greediness Ranking Levels is intended to explain the outcome 

of charging for each of the 30 possible greediness categories (0%-10%, 10%-20% etc.). These 

intervals are expressed as their midpoint for calculation purposes. The first column simply lists 

the 30 categories. The second column shows our fitted RR for each level. For example, our 

estimation is that providers charging 10 to 20 percent per service of the industry average will get 

40.61% of what they ask for (which is their RR). The third column is the product of the first two, 

this accounts for the percentage of the industry average submitted charge that providers receive 

depending on their greediness level. For example, the first row of data tells us that providers that 

ask for 5% of the average industry charge per service will receive 38.6% of this amount. That 

would mean 1.93% (of the average industry charge per service).  

Finally, the last two columns of our table represent a reordering of the greediness levels. 

These are ranked from the largest to smallest when it comes to generating returns. The optimal 

strategy would be to charge from 230 to 240 percent (per service) of the industry average. 

However, it is also important to note that asking for 230 to 240 percent (per service) of the 

industry average will yield less than 1% more than asking for 90 to 100 percent (per service). In 

other words, being "greedy" is just slightly better than asking for the industry average. 
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Additionally, this table shows that the worst possible strategy for medical providers is to ask for 

less than 70 percent of their industry average as this would lead to the lowest income.     

It is important to note that these calculations take into account the base levels of State, 

Provider Type, and Number of Services (Wyoming, Vascular Surgery and “950-100”), and these 

have an estimated value of zero. It is clear that the returns generated by the previously discussed 

greediness levels are also subject to these other three factors.   
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Chapter 5: Conclusion and Recommendations 

5.1.     Conclusion 

Once we finished studying our results, we came up with conclusions that summarized the 

highlights of our analysis. This section presents what we interpreted from our results and useful 

information for providers. 

5.1.1.   Factor ranking 

One of the most important conclusions inferred from our model, was the importance of 

each factor in estimating the RR. We compared our estimates of the levels of each factors and 

observed that the higher estimates (in absolute value) belonged to type of the provider. That 

indicates that the industry of each provider plays the most significant role in their rate of 

reimbursement (RR).  

A crucial achievement of our project was discovering that the "greediness level", which 

we defined as the amount (per service) charged by the provider compared to the average of their 

industry, plays a very significant role in determining the RR. For instance, being more "greedy" 

will result in having a lower rate of reimbursement, while being less "greedy" will do the exact 

opposite. However, as we explained under Section 4.4, this holds only for the rate of 

reimbursement and not the real income. 

Moreover, we discovered that the state where the provider operates is the third factor 

with most influence to the RR, leaving the number of services as the least important factor. We 

also observed that the number of services had little weight in our model and could also be 

omitted with very little loss of estimating accuracy.  
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Perhaps the most meaningful part of our results is the greediness levels’ ranking. Out of 

the four factor that we took into consideration (state, greed, number of services and provider 

type), greed is the only one that is completely controlled by the providers. Therefore it was 

interesting for us to see how the greediness level affected providers’ income in ways that are not 

obvious (Appendix D).  

5.1.2.   Applications 

As we reveal in our results section, asking for 230 to 240 percent (per service) of the 

industry average yields the largest earnings for medical providers. However, this income does 

not differ much from that of the medical providers that ask for 90 to 100 percent (per service) of 

the industry average. In other words, being very "greedy" does not help much more than asking 

the usual average of your industry. Additionally, this table shows that the strategy that medical 

providers should definitely avoid is to ask for less than 70 percent of the industry average, since 

that would lead to significantly lower payments.   

5.2.    Recommendations 

This section discusses the challenges we faced while carrying out the project. It also 

includes information on how to make future projects more precise. 

5.2.1.  What went well 

In order to get the results, we had to analyze a large amount of data efficiently so that we 

did not make computational errors. We needed to work with Excel and SAS effectively to avoid 

these errors. By combining both of these software, we were able to work faster and more 

accurately. For example, to run SAS correctly, we had to rename provider types and group 

services. Additionally, we sorted greediness into intervals so that SAS could read them and not 
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cut off our entries. Since we had over 700,000 data entries, it was difficult to ensure that all of 

the changes were made to each cell but by using more advanced formulas in Excel, we were able 

to make precise changes. Otherwise, our fitted model could have interpreted a worse correlation, 

making our results useless. 

Another aspect that went well with our project was the timely feedback. Whenever we 

came across a problem or question that could hold our project back, we contacted people in the 

Medicare industry to get clearer definitions on variables. For example, when we first looked at 

our dataset, we did not know what it meant by "services" so we contacted the website where we 

found our data and they explained the exact meaning of a service to us. By getting the feedback 

quickly, we were able to continue our analysis and move onto testing without losing valuable 

data. 

Creating the "greediness" factor also had a significant role in getting meaningful results. 

The amount (per service) charged by the provider compared to the average of their industry was 

very significant in fitting the RR. This factor helped us get a more profound understanding of our 

results, since it allowed us to see the impact that the submitted charge had on the reimbursement 

ratio of the providers. 

5.2.2.   Difficulties 

The most difficult part of our project was finding data that would allow us to build a 

general linear model. We only had access to data published publically by the government. 

Initially, we thought finding car insurance claims data would be ideal for our project but that 

information is private.  Another problem was that most of the data we had access too had very 

little predictive power. In other words, these datasets contained mostly one field that we would 
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be interested in modeling and all the other fields consisted only of personal information such as 

first and last name, address, limited demographics (age was often not included), which had no 

predictive power on the response. After careful research, we selected the "Medicare Physician 

and Other Supplier National Provider Identifier (NPI) Aggregate Report, Calendar Year 2014", 

which was a much more complete information in that it consisted of more than 900.000 data 

points and 70 different columns that included information such as provider, state, number of 

services, etc., that we would expect to play a role on our selected response variable (the RR).  

Another difficulty in our study was understanding and interpreting this data correctly. 

Our background on medical field was not very advanced and many concepts were initially 

vague. To improve our understanding, we used the information and explanations that were given 

in the website where we found the data and did some online research. However, we were still 

missing information about some concepts which were specific to our dataset such as what 

constitutes of a service. This information was crucial, since we believed that the number of 

services played an important role in estimating the RR in our data. Therefore, we contacted the 

data providers and asked for an explanation. Fortunately, they sent us a detailed explanation, 

where they defined service as an appointment of 11-15 minutes with a medical provider. For 

instance, if a patient had a 30 minute appointment with a medical provider, then the medical 

provider would have performed two full services with that patient.  

Unfortunately, the recording of provider qualifications in our data also posed as a 

complication. We believed that this factor could have an impact on the RR and wanted to include 

it in our analysis. However, the formatting made that impossible for us. Same qualifications were 

declared in more than 20 different manners and even with all of our efforts, we could not format 

this field so that it would be usable to our project and therefore did not include it in our analysis. 
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Deciding which software to use to analyze the data was also a challenge. Through 

research, we discovered that fitting a general linear model was already a built-in procedure in 

two statistical software, SAS and R. Since SAS often gives a more detailed output, we selected it 

to analyze our data. After that, we had to find the correct procedure (GENMOD) to fit a general 

linear model to our data. We watched various tutorials to understand how to correctly use the 

procedure to get the desired output.  

This was not the biggest problem though. Once we were able to use SAS, we had to learn 

how SAS operated so that we did not lose data due to incorrect input. We spent a lot of time re-

entering data into SAS to correctly learn why some of our data was rejected. We learned a few 

things from this. One, SAS can only take so many entries with different inputs. Since two out of 

four factors we had are categorical, we made the mistake of putting all of the services and 

greediness into SAS separately, without groups. This error resulted in SAS taking over an hour 

to run, which we knew should not take that long. To fix this, we grouped each continuous factor 

to make them categorical factors. The second lesson we learned is that SAS outputs only eight 

characters. We had a few provider names that were similar in name, yet were completely 

different titles. However, SAS did not notice this and labeled them under the same name. This 

created incorrect models, making us have to go back and rename each provider type with the 

eight character limit. 

Due to all of these difficulties, we spent most of our time going back and correcting 

mistakes in SAS and renaming provider types. But, from these difficulties, we learned more on 

how GLMs operate in SAS and how to improve our project so that we can improve the 

correlation for each distribution. 
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5.2.3.   Feasible Improvements 

We believe that being able to use provider qualifications would increase the predictive 

power of our model. Medical providers that belong to different industries usually require 

different compensation amounts. Therefore, it seems logical that providers with a higher level of 

qualification would usually require a higher amount of compensation than those with a lower 

level of qualification. Since working in a specific industry had the most impact on the RR, we 

believe that providing provider qualifications would further increase the correlation between 

fitted and actual values of the RR. 

We learned from this project that so far only provider type and greediness were 

significant enough to impact the correlation of the linear model. Another improvement would be 

to find more factors, including provider qualifications, which could increase the fitted RR. By 

having at least four or five significant factors, the model could represent the data better.        
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Appendix A: Methodology Graphs 
Distribution of Reimbursement Ratio and Number of Services 
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Payment Ratio Depending on State 
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Appendix B: SAS Code for GLM Procedures 
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Appendix C: Level Estimates for Four Factors 

States 
   Confidence  

Interval 
    Confidence  

Interval 

State Estimate Std. 
Error 

Lower 
Bound  

Upper 
Bound 

 State Estimate Std. 
Error 

Lower 
Bound 

Upper 
Bound 

AL -0.0023 0.0039 -0.0098 0.0053  NC -0.0021 0.0037 -0.0093 0.005 
AR -0.022 0.004 -0.0299 -0.0141 ND -0.0289 0.0044 -0.0374 -0.0203 
AZ 0.0265 0.0037 0.0192 0.0338 NE -0.0244 0.004 -0.0323 -0.0165 
CA 0.0227 0.0036 0.0157 0.0298 NH 0.0025 0.0041 -0.0054 0.0105 
CO 0.0162 0.0038 0.0088 0.0236 NJ 0.0432 0.0037 0.036 0.0504 
CT 0.0102 0.0038 0.0028 0.0176 NM -0.0044 0.0041 -0.0124 0.0035 
DC 0.0249 0.0044 0.0162 0.0335 NV 0.0088 0.0041 0.0008 0.0169 
DE 0.0219 0.0045 0.0131 0.0307 NY 0.0245 0.0036 0.0175 0.0316 
FL 0.0274 0.0036 0.0203 0.0345 OH 0.0061 0.0036 -0.001 0.0133 
GA -0.006 0.0037 -0.0133 0.0012 OK -0.0089 0.0039 -0.0165 -0.0013 
IA -0.0275 0.0039 -0.0351 -0.0199 OR -0.0294 0.0038 -0.0368 -0.0219 
ID 0.0098 0.0042 0.0016 0.0179 PA 0.0178 0.0036 0.0107 0.0249 
IL 0.0095 0.0036 0.0024 0.0167 RI 0.0245 0.0042 0.0163 0.0326 
IN -0.0027 0.0037 -0.01 0.0046 SC -0.014 0.0038 -0.0214 -0.0065 
KS -0.0005 0.0039 -0.0081 0.0072 SD 0.0233 0.0044 0.0148 0.0318 
KY -0.0155 0.0038 -0.0229 -0.008 TN -0.0153 0.0037 -0.0226 -0.008 
LA -0.0097 0.0038 -0.0172 -0.0022 TX 0.0001 0.0036 -0.007 0.0071 
MA -0.0071 0.0037 -0.0142 0.0001 UT 0.0009 0.004 -0.0069 0.0087 
MD 0.0364 0.0037 0.0291 0.0437 VA 0.0078 0.0037 0.0005 0.015 
ME 0.0103 0.004 0.0025 0.0182 VT -0.0006 0.0045 -0.0094 0.0082 
MI 0.0223 0.0036 0.0152 0.0295 WA -0.0132 0.0037 -0.0204 -0.006 
MN -0.0109 0.0037 -0.0181 -0.0037 WI -0.0467 0.0037 -0.054 -0.0395 
MO -0.0036 0.0037 -0.0109 0.0037 WV -0.0207 0.0041 -0.0287 -0.0127 
MS -0.0283 0.004 -0.0362 -0.0203 WY 0 0 0 0 
MT 0.022 0.0043 0.0136 0.0304      
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Providers 

 
   

95% Confidence Interval 
Provider Estimate Std. 

Error 
Lower Bound  Upper Bound 

Addiction Medicine 0.045 0.014 0.0175 0.0725 
Allergy Immunology 0.1478 0.0048 0.1384 0.1572 
Anesthesiologist -0.0779 0.0031 -0.0841 -0.0718 
Audiologist 0.0689 0.0035 0.0619 0.0758 
Certified Nurse Clinical Specialist 0.1519 0.0043 0.1434 0.1604 
Nurse Midwife 0.1577 0.006 0.146 0.1694 
CRNA -0.0709 0.0032 -0.0771 -0.0647 
Cardiac Electrophysiology 0.0353 0.0067 0.0221 0.0485 
Cardiac Surgery 0.0001 0.0047 -0.009 0.0092 
Cardiology 0.0345 0.0034 0.0278 0.0412 
Chiropractic 0.3467 0.0032 0.3406 0.3529 
Clinical Psychologist 0.2646 0.0033 0.2581 0.271 
Colorectal Surgery 0.0578 0.0049 0.0482 0.0673 
Critical Care 0.0614 0.0042 0.0532 0.0695 
Dermatology 0.129 0.0037 0.1217 0.1363 
Diagnostic Radiology -0.065 0.0034 -0.0716 -0.0584 
Emergency Medicine -0.0249 0.0031 -0.0311 -0.0188 
Endocrinology 0.1524 0.0038 0.145 0.1597 
Family Practice 0.1578 0.0031 0.1517 0.1639 
Gastroenterology 0.0291 0.0033 0.0226 0.0356 
General Practice 0.1516 0.0037 0.1443 0.1589 
General Surgery 0.0322 0.0032 0.0259 0.0385 
Geriatric Medicine 0.1644 0.0048 0.155 0.1738 
Geriatric Psychiatry 0.1898 0.0116 0.1671 0.2125 
Gynecological Oncology 0.0371 0.0058 0.0257 0.0485 
Hand Surgery 0.011 0.0054 0.0004 0.0216 
Hematology Oncology 0.1174 0.0038 0.1099 0.1249 
Hematology 0.1053 0.0066 0.0923 0.1183 
Hospice Palliative Care 0.1469 0.0065 0.1341 0.1597 
Interventional Pain Management -0.0135 0.006 -0.0253 -0.0016 
Internal Medicine 0.1527 0.0031 0.1466 0.1587 
Interventional Radiology -0.1065 0.0057 -0.1178 -0.0953 
Infectious Disease 0.1547 0.0038 0.1472 0.1621 
Licensed Clinical Social Worker 0.2167 0.0032 0.2104 0.2231 
Maxillofacial Surgery 0.1213 0.0052 0.1111 0.1315 
Medical Oncology 0.09 0.0045 0.0812 0.0989 
Multispecialty Clinic 0.0342 0.02 -0.005 0.0734 
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95% Confidence Interval 

Provider Estimate Std. 
Error 

Lower Bound  Upper Bound 

Nephrology 0.1269 0.0038 0.1194 0.1344 
Neuropsychiatry 0.1789 0.0137 0.152 0.2058 
Neurology 0.106 0.0034 0.0994 0.1126 
Neurosurgery -0.0262 0.0037 -0.0334 -0.0189 
Nuclear Medicine -0.042 0.0075 -0.0567 -0.0272 
Nurse Practitioner 0.0892 0.0031 0.0831 0.0953 
Obstetrics Gynecology 0.1081 0.0032 0.1019 0.1144 
Occupational Therapist 0.1596 0.0039 0.1521 0.1672 
Ophthalmology 0.1259 0.0034 0.1192 0.1325 
Optometry 0.3321 0.0032 0.3258 0.3383 
Oral Surgery 0.1462 0.0047 0.1371 0.1553 
Orthopedic Surgery -0.0106 0.0033 -0.017 -0.0042 
Osteopathic Manipulative 
Medicine 

0.1656 0.0067 0.1526 0.1787 

Otolaryngology 0.0564 0.0035 0.0495 0.0632 
Physical Medicine and 
Rehabilitation 

0.1171 0.0037 0.1099 0.1243 

Physical Therapist 0.1757 0.0032 0.1694 0.1819 
Pain Management -0.0089 0.0054 -0.0196 0.0018 
Pathology -0.008 0.0034 -0.0147 -0.0012 
Pediatrician 0.0669 0.0044 0.0583 0.0755 
Peripheral Vascular Disease -0.0157 0.0196 -0.0541 0.0227 
Physician Assistant -0.0399 0.0031 -0.0461 -0.0338 
Plastic Surgery 0.012 0.0037 0.0048 0.0193 
Podiatry 0.2105 0.0034 0.2038 0.2172 
Preventive Medicine 0.1993 0.0084 0.1829 0.2158 
Psychiatry 0.2028 0.0032 0.1965 0.2091 
Psychologist 0.3252 0.0089 0.3078 0.3427 
Pulmonary Disease 0.1005 0.0036 0.0935 0.1075 
Radiation Oncology 0.0028 0.0042 -0.0054 0.0111 
Registered Dietician 0.3305 0.0044 0.3218 0.3393 
Rheumatology 0.1316 0.0043 0.1231 0.1401 
Speech Language Pathologist 0.2274 0.0067 0.2142 0.2406 
Sports Medicine 0.0293 0.0068 0.016 0.0426 
Surgical Oncology -0.0059 0.0057 -0.0171 0.0054 
Thoracic Surgery -0.0049 0.0043 -0.0133 0.0035 
Urology 0.0144 0.0038 0.0069 0.0219 
Vascular Surgery 0 0 0 0 
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Services
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Greediness 
 

 

   
95% Confidence Interval 

Greediness Estimate Std. Error Lower Bound Upper Bound 
"0-10" 0.1792 0.0021 0.1751 0.1834 

"10-20" 0.1993 0.0012 0.197 0.2017 
"20-30" 0.1829 0.001 0.181 0.1849 
"30-40" 0.1359 0.0009 0.1341 0.1377 
"40-50" 0.1136 0.0008 0.1119 0.1152 
"50-60" 0.0942 0.0008 0.0926 0.0957 
"60-70" 0.0695 0.0008 0.068 0.0709 
"70-80" 0.046 0.0007 0.0446 0.0475 
"80-90" 0.0219 0.0008 0.0204 0.0234 

"90-100" 0 0 0 0 
"100-110" -0.0223 0.0008 -0.0239 -0.0207 
"110-120" -0.0406 0.0009 -0.0423 -0.0389 
"120-130" -0.0577 0.0009 -0.0596 -0.0559 
"130-140" -0.0714 0.001 -0.0734 -0.0694 
"140-150" -0.0811 0.0011 -0.0832 -0.0789 
"150-160" -0.088 0.0012 -0.0904 -0.0856 
"160-170" -0.096 0.0014 -0.0986 -0.0933 
"170-180" -0.0969 0.0015 -0.0998 -0.0939 
"180-190" -0.1053 0.0016 -0.1085 -0.1021 
"190-200" -0.1072 0.0018 -0.1107 -0.1037 
"200-210" -0.1128 0.0019 -0.1166 -0.109 
"210-220" -0.1141 0.0021 -0.1183 -0.11 
"220-230" -0.1191 0.0023 -0.1236 -0.1146 
"230-240" -0.1192 0.0025 -0.1241 -0.1142 
"240-250" -0.1234 0.0026 -0.1286 -0.1182 
"250-260" -0.1329 0.0029 -0.1386 -0.1272 
"260-270" -0.1312 0.0031 -0.1374 -0.1251 
"270-280" -0.1335 0.0032 -0.1398 -0.1271 
"280-290" -0.1356 0.0036 -0.1425 -0.1286 
"290-300" -0.143 0.0039 -0.1506 -0.1354 

"300+" -0.1715 0.0012 -0.1739 -0.1691 
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Appendix D: Greediness Ranking Levels 

 

They ask for 
___ of the 
industry 
average 
(greed)  

Our SAS 
fitted RR + 
Intercept  

They get ___ 
of the 

industry 
average 

submitted 
charge  

  
  

Ranking of 
the best 

percentages 
to ask for  

 

5%  0.386  1.93%  235%  20.59%  
15%  0.4061  6.09%  245%  20.43%  
25%  0.3897  9.74%  285%  20.29%  
35%  0.3427  11.99%  275%  20.16%  
45%  0.3204  14.42%  265%  20.03%  
55%  0.301  16.56%  215%  19.93%  
65%  0.2763  17.96%  225%  19.73%  
75%  0.2528  18.96%  95%  19.65%  
85%  0.2287  19.44%  85%  19.44%  
95%  0.2068  19.65%  195%  19.42%  

105%  0.1845  19.37%  105%  19.37%  
115%  0.1662  19.11%  205%  19.27%  
125%  0.1491  18.64%  175%  19.23%  
135%  0.1354  18.28%  115%  19.11%  
145%  0.1257  18.23%  75%  18.96%  
155%  0.1188  18.41%  255%  18.84%  
165%  0.1108  18.28%  295%  18.82%  
175%  0.1099  19.23%  185%  18.78%  
185%  0.1015  18.78%  125%  18.64%  
195%  0.0996  19.42%  155%  18.41%  
205%  0.094  19.27%  165%  18.28%  
215%  0.0927  19.93%  135%  18.28%  
225%  0.0877  19.73%  145%  18.23%  
235%  0.0876  20.59%  65%  17.96%  
245%  0.0834  20.43%  55%  16.56%  
255%  0.0739  18.84%  45%  14.42%  
265%  0.0756  20.03%  35%  11.99%  
275%  0.0733  20.16%  25%  9.74%  
285%  0.0712  20.29%  15%  6.09%  
295%  0.0638  18.82%  5%  1.93%  
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